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Abstract

Triangular simultaneous equation models are commonly used in econometric analysis to

analyse endogeneity problems caused, among others, by individual choice or market equilibrium.

Empirical researchers usually specify the simultaneous equation models in an ad hoc linear form;

without testing the validity of such specification. In this paper, approximation properties of a

linear fit for structural function in a triangular system of simultaneous equations are explored.

I demonstrate that, linear fit can be interpreted as the best linear prediction to the underlying

structural function in a weighted mean squared (WMSE) error sense. Furthermore, it is shown

that with the endogenous variable being a continuous treatment variable, under misspecification,

the pseudo-parameter that defines the returns to treatment intensity is weighted average of the

Marginal Treatment Effects (MTE) of Heckman and Vytlacil (2001). Misspecification robust

asymptotic variance formulas for estimators of pseudo-true parameters are also derived. The

approximation properties are further investigated with Monte-Carlo experiments.
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Chapter1 Triangular Simultaneous Equations Model under Structural Misspecification

1.1 Introduction

Despite recent innovations in nonparametric/semiparametric methods, linear modelling

remains widely popular in regression analysis, since it is simpler to handle and statistical inference

in linear models is well established. Linear models ensure fast convergence rates, thus require

smaller sample size compared to nonparametric models. Linear regression, unlike nonparametric

regression, permits direct interpretation of estimates in terms of policy-relevant quantities, such as

elasticities or derivatives of the response variable. However, a linear specification is often assumed

without any kind of economic justification whatsoever; this in turn, leads to misspecification

biases. In this paper, I explore the nature of pseudo-parameters in a linearly misspecified structural

equation within a triangular system. Specifically, I show that the pseudo-parameters solve a

weighted least squares problem with possibly negative weights. An explicit expression for the

weight function, as well as a misspecification bias formula for the structural function is provided.

Several interpretations of linear estimates under misspecification have been proposed. Early

interpretations include Cramer (1969), Denny and Fuss (1977) who define the OLS (ordinary least

squares) estimator for a misspecified linear regression model as a Taylor series approximation to

the underlying true conditional expectation, under strict assumptions on the functional form of

true conditional expectation. White (1980), under relatively mild conditions, demonstrates that the

OLS estimator for the misspecified linear regression model is the best linear prediction to the true

conditional expectation in the mean squared error minimizing sense; and derives the asymptotical

properties of OLS estimator under misspecification. An analogous result in the case of quantile

regression has recently been established by Angrist, Chernozhukov and Fernandez-Val (2006),

albeit in a weighted mean squared error minimizing sense.
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Since the pioneering work of Haavelmo (1943), simultaneous equation models have been

used in empirical analysis to analyse endogeneity problems caused by individual choice, market

equilibrium or unobserved heterogeneity. Many applied researchers specify the triangular systems

of simultaneous equation models in an ad hoc linear form. Basmann (1957) and Theil (1953)

introduced well-known 2SLS estimation of linear coefficients in triangular models. Following

Heckman (1979), a "control function" approach was introduced to correct for endogeneity in

triangular systems of simultaneous equations. This approach amounts to the inclusion of a first

stage residual as a covariate in the structural equation, therefore treating the endogeneity problem

as an omitted variables problem. During the last two decades, there has been a move towards the

use of nonparametric methods in triangular simultaneous equations models, thanks to methods

proposed by Newey and Powell (1989) and Newey, Powell and Vella (1999), Chesher (2003),

Florens et al. (2008), Imbens and Newey (2009). These last two papers analyze systems with

non-additive errors.

Several interesting questions naturally arise when considering the intersection of triangular

systems of simultaneous equations and linear misspecification. How well does the linear form in

a triangular system approximates true underlying, potentially nonparametric, structural function?

How should one interpret estimates of the pseudo-parameters1 of the misspecified model?

What are the asymptotic properties of the estimators under misspecification? The last question

is particularly relevant for empirical researchers who wish to confine themselves to a linear

specification because of sample size limitations. In this case, researchers would still like to know

the asymptotic variance of their estimates under possible misspecification and nonobservability of

the control variable to ensure robust statistical inference.

I first define the notion of structural misspecification in a triangular array of simultaneous

1 I use the term "pseudo-parameters" to indicate the parameters of the specified model. In contrast, the word

"population parameter" refers to the parameters of the underlying data generation process.
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equations and discuss two different types of misspecification. I then characterize the

approximation properties of the linear fit under misspecification of the structural function. I show

that under linear misspecification of the structural function, the linear fit for the structural function

approximates the true underlying structural function in weighted minimum squared error sense,

as in Angrist et. al (2006); albeit with possibly negative weights. I show that the weights are

directly related to the signs and magnitudes of both true specification error and the expectation of

the specification error conditional on the control variable. In particular I conclude that, even in

models with small specification error, the weights might have large variation across observations

depending on the average specification error given the control variable. It must be noted that the

analysis here assumes that a consistent estimator of the true control variable is available. In the

case where only a contaminated control is available from the first stage (Kim and Petrin, 2011), it

is difficult to trace the approximation properties of the linear fit in the second stage.

This weighted mean squared error approximation result is analogous to conclusions in

Heckman and Vytlacil (2001, 2005) that unify different evaluation measures via the concept of

marginal treatment effects. Specifically, I show that the pseudo-parameter defining the returns

to treatment intensity can be written as a weighted average of marginal treatment effects as in

Heckman and Vytlacil (2001).

I describe a two-stage estimator for the structural pseudo-parameters, and present its asymptotic

properties. I use the results from the literature on asymptotics of semiparametric M-estimators

described in Ichimura and Lee (2010) to demonstrate asymptotic normality of the estimators. The

paper is concluded with a simulation study.

The next section defines the concept of misspecification in triangular simultaneous equation

models. Section 3 explores the properties of the misspecified model. Section 4 relates the

misspecified estimator to unifying theorems of Heckman and Vytlacil (2001, 2005). Section 5
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gives the asymptotic distributions for estimators of misspecified models. Section 6 analyses the

properties of the misspecified model by a Monte Carlo experiment.

1.2 Definition and Characterization of Misspecification

It is natural to ask the question "what does a misspecified triangular model really estimate?".

Note that, unlike the single equation case, the answer to the question depends on two distinct

factors: the nature of true underlying data generating process and the specific combination of

various "elemental" misspecifications that I will discuss below.

The true data generating process is assumed to be the error separable triangular nonparametric

simultaneous equations model as in Newey, Powell and Vella (1999) (NPV henceforth)2,

Y = h(X,Z1) + ε (1.1)

X = g(Z) + ν (1.2)

E[ε|X,Z] = E[ε|X − g(Z)] = E[ε|ν] = λ(ν) (1.3)

E[ν|Z] = 0 (1.4)

η = ε− E[ε|ν] = ε− λ(ν) is such that E[η2] <∞ (1.5)

where Y is the outcome variable, X is the univariate endogenous variable. Z is a dz × 1 vector of

instrumental variables that consists of a subvector Z1 of size dz1 × 1 and a subvector Z2 of size

dz2×1 with dz1 +dz2 = dz. g(Z) is a function of instruments Z and ε, ν are the disturbances. This

is effectively a nonparametric generalization of the linear triangular simultaneous equations model.

Theorem 2.3 of NPV concludes that assuming λ(ν) = E[ε|ν, Z] = E[ε|ν], g(Z) and h(X,Z1)

2 The instrumental equation could be specified nonseparably as in Matzkin (2003), without affecting our approximation

analysis. In that case, the control variable to be included in the estimation of the second stage would be the

cumulative distribution function of the endogenous variable conditional on the set of instruments.
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differentiable, and (Z, ε) has a density that vanishes at the boundary and rank(∂g(Z)/∂Z2) = 1;

h(X,Z1) is identified. Notice that, if g(Z) were linear in Z, then the rank condition would

be precisely the identification condition of a linear simultaneous equations system in terms of

reduced form coefficients. The identification of h(X,Z1) is obviously up to an additive constant,

however, with a simple location restriction such as λ(ν∗) = λ∗ for some known ν∗,λ∗ then

complete identification of h(X,Z1) is achieved.

Linear misspecification is defined as one or more of the components in the structural equation

being specified in a linear form. I focus on the cases, where linear forms are assumed for functions

h(X,Z1) and/or λ(ν):

Y = Xβ + Z ′1γ + ε̃ (1.6)

E[ε̃|ν, Z] = E[ε̃|ν] = φ(ν), (1.7)

and

φ(ν) = c+ αν. (1.8)

Notice that misspecification of (1.1) as (1.6) and (1.7) as (1.8) may exist together. Specifically,

the linear misspecification of the control function may arise under the false assumption that (ε, ν)

is jointly normal or entirely out of convenience. Although White (1980) gives a single equation

interpretation about misspecification of this type, it is silent about how well the linear fit for the

structural function alone approximates the structural function.

When the control function is specified nonparametrically and (1.1) is misspecified as (1.6); the

analysis will be the one for a misspecified partially linear regression model.
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1.3 Interpretation of Linear Fit under Misspecification

1.3.1 Complete Linear Misspecification

Y = h(X,Z1) + ε is misspecified as

Y = Xβ + Z ′1γ + ε̃

and in addition, the control function E[ε̃|ν, Z] = E[ε̃|ν] = φ(ν) is misspecified as c + αν,

with the rest of the system correctly specified. The linearity assumption regarding the control

function might be motivated by false assumption about the joint normality of the structural

error and instrumental error. On the other hand, as I have discussed in the introduction, linear

misspecification of the structural function might arise out of convenience or out of sample size

limitations.

For any t0, t1, t2, t3 define structural specification error ∆h,t0,t1(X,Z1) = h(X,Z1)−Xt0−Z ′1t1

and specification error of the control function ∆λ,t2,t3(ν) = λ(ν) − t2 − νt3. Under Complete

Linear Misspecification, I can make the following proposition in line with White (1980).

Proposition 1 Under Complete Linear Misspecification; the fit Xβ + Z ′1γ + c + αν is a linear

projection of the conditional expectation E[Y |ν, Z,X] = h(X,Z1) + λ(ν) on X ,Z1 and ν.

Therefore, one can interpret Xβ + Z ′1γ + c + αν as the best linear prediction to the

conditional expectation E[Y |ν, Z,X] = h(X,Z1) + λ(ν); minimizing total specification error

∆λ,t2,t3(ν) + ∆h,t0,t1(X,Z1) in mean squared error sense along the lines of White (1980).

1.3.2 Structural Linear Misspecification

Y = h(X,Z1) + ε is misspecified as

Y = Xβ + Z ′1γ + ε̃

with the rest of the system correctly specified

X = g(Z) + ν, E[ε|ν, Z] = E[ε|ν] = λ(ν), E[ν|Z] = 0.

The resulting misspecified partially linear regression model consists of pseudo-parameters (β, γ′)′
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and a function φ(ν)

Y = Xβ + Z ′1γ + φ(ν) + ω, (1.9)

with error ω = ε̃− E[ε̃|ν]. For any t0, t1 define the structural specification error

∆h,t0,t1(X,Z1) = h(X,Z1)−Xt0 − Z ′1t1. (1.10)

The following theorem establishes the population quantity that pseudo-parameters (β, γ′)′

minimize; and asserts that it is the integrated conditional variance of the specification error

∆h,β,γ(X,Z1).
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Theorem 1 Under structural linear misspecification; pseudo-parameters β and γ minimize the

specification error ∆h,t0,t1(X,Z1) = h(X,Z1) − Xt0 − Z ′1t1 in Integrated Conditional Variance

(ICV) sense:

(β, γ′)′ ε argmint0,t1 E[V ar[∆h,t0,t1(X,Z1)|ν]] =

∫
ν∈ν

V ar[∆h,t0,t1(X,Z1)|ν]σ(ν).dν (1.11)

where σ(ν) is the density of error ν. Also, the control function at the misspecified partially linear

model 1.9 is related to the true control function (1.3) in DGP with φ(ν) = λ(ν)+E[∆h,β,γ(X,Z1)|ν].

The last part of the above theorem states that the specification error of the control function is

∆λ,φ(ν) = λ(ν)− φ(ν) = −E[∆h,β,γ(X,Z1)|ν]. This means that the control function φ(ν) in 1.9

absorbs the specification error ∆h,β,γ(X,Z1) after conditioning it on control variate. Keeping that

in mind I may state following lemma;

Lemma 1 Under structural linear misspecification, the pseudo-parameters (β, γ′)′ minimize the

distance between mean squared specification error (MSSE) of the structural function and MSSE of

the control function;

(β, γ′)′ ε argmint0,t1E[∆2
h,t0,t1

(X,Z1)]− E[∆2
λ,f(t0,t1)

(ν)] (1.12)

where the structural specification error is absorbed by the control function, that is, for any t0, t1,
f(t0,t1)(ν) = E[∆h,t0,t1(X,Z1)|ν] + λ(ν) so the specification error of the control function is

∆λ,f(t0,t1)
(ν) = λ(ν)− f(t0,t1)(ν) where f(β,γ)(ν) = φ(ν).

Note that above Lemma 1 directly follows from Theorem 1 simply because the structural

specification error is absorbed into the specification error of the control function conditional on

ν, that is, −E[∆h,t0,t1(X,Z1)|ν] = λ(ν) − f(t0,t1)(ν) = ∆λ,f(t0,t1)
(ν). A few words can be said

about Lemma 1, which is in contrast with Proposition 1. Under complete linear misspecification,

(β, γ′, α, c)′ minimizes the total specification error, ∆λ,f(t0,t1)
(ν) + ∆h,t0,t1(X,Z1), in Mean

Squared Error (MSE) sense. Under structural linear misspecification, (β, γ′, φ(.))′ minimizes

the difference between mean squared specification error of the structural function and the

control function. In a way, the optimization 1.12 aims to equalize expected squared structural

error and expected squared control function error, while minimizing total specification error

∆λ,f(t0,t1)
(ν) + ∆h,t0,t1(X,Z1) in MSE sense. In empirical studies, it might worth being aware of

15



this particular character of the misspecification. Note the minimized spread in Theorem 1 can also

be interpreted as the recentered expectation of the squared specification error, similar in spirit to

White (1980).
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It is possible to express the above problem as a weighted minimization.

Theorem 2 Under structural linear misspecification, the true pseudo-parameter vector (β, γ′)′

is the solution to a weighted MSE problem

(β, γ′)′ ∈ arg min
t0,t1

E[∆2
h,t0,t1

(X,Z1)W(Z,X)]

where the weights

w(Z,X; β, γ) =

{
0 ∆h,β,γ(X,Z1) = 0

1− E(∆h,β,γ(X,Z1)|ν)

∆h,β,γ(X,Z1)
otherwise

. (1.13)

This result contrasts with that of White (1980) for single equation mean regression and that

of Angrist et al. (2006) for single equation quantile regression models. Although I establish

a weighted approximation property like the latter do, I do so with possibly negative weights.

The weights given above are negative whenever the true specification error unexplained by

conditioning on the control variable, that is, π at

∆h,β,γ(X,Z1) = E(∆h,β,γ(X,Z1)|ν) + π

is such that

1 >
π

∆h,β,γ(X,Z1)

It is easy to see that the weight is directly related to the sign and the magnitude of the specification

error and the average specification error conditional on the control variable. Contrary to initial

perception, the weight does not need to be increasing as the portion of the specification error

explained by the control variable decreases: When E(∆h,β,γ(X,Z1)|ν) and ∆h,β,γ(X,Z1) have

opposite signs; the weight will indeed decrease as the specification error explained by the control

variable, E(∆h,β,γ(X,Z1)|ν), decreases.
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1.3.3 Omitted Variable Bias Formula

The above specification is useful to write down an omitted variables-like formula for parameters

of the true structural function when it is a polynomial. Assume that the true structural function is

h(X,Z1) = Xθ0 + Z ′1θ1 +

L∑
l=2

X lθl (1.14)

When

L∑
l=2

X lθl is omitted from the model, using Theorem 2, I can show that the resulting

parameters (β, γ′)′ in the misspecified model

Y = Xβ + Z ′1γ + φ(ν) + ω

are related to the parameters of the true structural function in 1.14 as follows:

(
β
γ

)
= E

[
Wi(Z,X)

(
X2
i XiZ

′
1i

XiZ1i Z1iZ
′
1i

)]−1

E

Wi(Z,X)


Xi(Xiθ0 + Z ′1iθ1 +

L∑
l=2

X lθl)

Z1i(Xiθ0 + Z ′1iθ1 +
L∑
l=2

X lθl)




= E

[
Wi(Z,X)

(
X2
i XiZ

′
1i

XiZ1i Z1iZ
′
1i

)]−1

E

Wi(Z,X)


X2
i θ0 +XiZ

′
1iθ1 +Xi

L∑
l=2

X lθl

Z1iXiθ0 + Z1iZ
′
1iθ1 + Z1i

L∑
l=2

X lθl




= E

[
Wi(Z,X)

(
X2
i XiZ

′
1i

XiZ1i Z1iZ
′
1i

)]−1

×

E
[
Wi(Z,X)

(
X2
i XiZ

′
1i

XiZ1i Z1iZ
′
1i

)(
θ0

θ1

)]
+ E

Wi(Z,X)


Xi

L∑
l=2

X lθl

Z1i

L∑
l=2

X lθl





=

(
θ0

θ1

)
+ E

[
Wi(Z,X)

(
X2
i XiZ

′
1i

XiZ1i Z1iZ
′
1i

)]−1

E

[
L∑
l=2

Wi(Z,X)

(
Xi

Z1i

)
X lθl

]
.

Denoting X̃i = (Xi, Z
′
1i)
′, θP = (θ2, ..., θL)′ and XP

i = (X2
i , X

3
i , ..., X

L
i )′

=

(
θ0

θ1

)
+ E

[
WiX̃iX̃

′
i

]−1

E
[
WiX̃i(X

P
i )′
]
θP

where

Wi(Z,X) = 1−E(∆θ0,θ1,θP ,β,γ(X,Z1)|ν)

∆θ0,θ1,θP ,β,γ(X,Z1)
= 1−E(X|νi)(θ0 − β) + E(Z ′1|νi)(θ1 − γ) + E((XP

i )′|νi)θP
Xi(θ0 − β) + Z ′1i(θ1 − γ) + (XP

i )′θP

18



with

νi = Xi − g(Z1i, Z2i) = Xi − g(Zi).

E
[
WiX̃iX̃

′
i

]−1

E
[
WiX̃i(X

P
i )′
]
θP is the bias resulting from the linear misspecification.

1.4 Relation with Treatment Effects

It is possible to interpret the pseudo-parameter β as an aggregate measure of treatment effects

where the treatment intensity X is a continuous endogenous regressor. When the true DGP is as

in NPV, the Marginal Treatment Effect (MTE) of Heckman and Vytlacil (2001) adapted to the

continous treatment case (Florens et al. 2008) becomes

MTE(Xi, Z1i, νi) = E

(
∂

∂X
(h(X,Z1) + λ(ν)) |X = Xi, Z1 = Z1i, ν = νi

)
(1.15)

= E (h1(X,Z1)|X = Xi, Z1 = Z1i, ν = νi) = h1(Xi, Z1i)

where h1(Xi, Z1i) denotes the partial derivative of function h(.) with respect to its first argument.

We know from the proof of Theorem 4 that the pseudo-parameter vector (β, γ′)′ can be written as

follows

(β, γ′)′ = E[X̃iX̃i

′
W(Zi, Xi)]

−1E[X̃ih(Xi, Z1i)W(Zi, Xi)]

= E[X̃iX̃i

′
Wi]

−1E[X̃ih(X̃i)Wi]

where X̃i = (Xi, Z
′
1i)
′ as before. Note that; (β, γ′)′ above can be described as the parameters in

the parsimonious instrumental variable model

Wh(X,Z1) =WX̃ ′(β, γ′)′ + ζ with E(ζ |X̃) = 0 by construction (1.16)

with X̃ being the vector of instruments. The mean independence condition implies,

E
[
Wh(X,Z1)−WX̃ ′(β, γ′)′|X̃

]
= 0 taking expectation on both sides,

E [Wh(X,Z1)] = E
[
WX̃ ′

]
(β, γ′)′ .

Assuming µW = E [W ] <∞ and differentiating the above condition w.r.t. treatment intensity Xi,

19



I obtain

E [Wh1(X,Z1)−Wβ] = 0

E

[(
W
µW

)
h1(X,Z1)

]
= β

Using the MTE as a building block, I show that the pseudo-parameter β, which defines

the returns to the treatment intensity Xi, is weighted average of the marginal treatment effects

h1(X,Z1) where weights are given by
(
W
µW

)
. Having thus proven it, we state this result at below

Theorem.

Theorem 3 Assume that the weight function 1.13 has a finite mean µW = E [W ] .Then under

structural linear misspecification, the pseudo-parameter that defines the returns to treatment in-

tensity is a weighted average of marginal treatment effects with weights

(
W
µW

)
,

β = E

[(
W
µW

)
h1(X,Z1)

]
.

1.5 Estimators for Pseudo-Parameters under Misspecification and Their Asymptotic

Properties

We now describe estimators of pseudo-parameters under structural linear misspecification and

derive asymptotic properties.

We start with the first step estimation. Suppose the function g(Z) in

X = g(Z) + ν

is estimated using series estimators, as in NPV or Carneiro and Lee (2009). Let

{Bk(Z) : k = 1, 2, ...κ} denote tensor product B-spline basis for real valued smooth functions de-

fined on the compact support [−1, 1]dz such that a linear combination of {Bk(Z) : k = 1, 2, ...κ}

can approximate g(Z) as the number of approximating functions, κ goes to infinity. Z here can be

rescaled to lie within the rectangle [−1, 1]dz .

Let Bκ(Zi) denote the tensor product B-spline basis {Bk(Zi) : k = 1, 2, ...κ}. The estimator of
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g(Z), ĝ(Z) is obtained by series estimation

ĝ(Zi) = Bκ(Zi)
′δ̂nκ

where

δ̂nκ =

(
n∑
i=1

Bκ(Zi)Bκ(Zi)
′

)−1( n∑
i=1

Bκ(Zi)Xi

)
consequently, the estimator of νi is

ν̂i = Xi − ĝ(Zi)

The convergence properties of ĝ(Zi) follows from standard results in the series estimation

literature. (Newey, 1997)

Remember that my misspecified model is partially linear;

Yi = Xiβ + Z ′1iγ + φ(ν̂i) + ωi (1.17)

The pseudo-parameters (β, γ′)′ and the function φ(.) in 1.9 can be consistently estimated with the

estimator given in Robinson (1988)3. Denote Ai = 1(ν̂i ∈ V) where V is a compact set on which

continuously distributed ν has a density fν bounded away from zero. Then Robinson’s estimator

for pseudoparameters (β, γ′)′ is given by;

(β̂, γ̂′)′ =

[
n∑
i=1

Ai

(
X̃i − E(X̃|ν̂i, Ai)

)(
X̃ ′i − E(X̃ ′|ν̂i, Ai)

)]−1

×
[

n∑
i=1

Ai

(
X̃i − E(X̃|ν̂i, Ai)

)
(Yi − E(Y |ν̂i, Ai))

]
A trimming function of the type Ai = 1(ν̂i ∈ V) is considered here to avoid the noise at the tails

of the distribution of ν̂.

Assumption 1 The data, {(Yi, Xi, Zi) : i = 1, ..., n} is independent and identically distributed,

and the νar(X|Z) is bounded.

Assumption 2 The support of Z lies within the rectangle [−1, 1]dz on which Z has an

absolutely continuous probability density which is bounded above by a positive constant and

bounded away from zero.

3 Alternatively, one could employ Speckman’s (1988) estimator.
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Assumption 3 The function g(Z) is rg − times continuously differentiable on [−1, 1]dz with

rg > 2dz.

Assumption 1-3 are standard in the series estimation literature. See Li and Racine (2007,

pp.450-451) for details.

Assumption 4 Continuously distributed ν has a density σν that is bounded away from zero on

a compact set ν.

The following theorem is standard in the series estimation literature.

Theorem 4 Suppose assumptions 1-4 hold. Then

max
i=1,.....n

|ν̂i − νi| = max
i=1,.....n

|ĝ(Zi)− g(Zi)| = Op

(
κ

n1/2
+ κ

−
(
2rg−dz
2dz

))

Denote X̃i = (Xi, Z
′
1i)
′ as before.

Assumption 5 The conditional expectation E(X̃|νi, Ai) is twice continuously differentiable

with repect to νi and its kernel estimator Êh(X̃|νi, Ai) is consistent uniformly over ν ∈ V .

Furthermore, assume that

sup
ν∈ν

∣∣∣Êh(X̃|νi, Ai)− E(X̃|νi, Ai)
∣∣∣ = op(n

−1/4)

Assumption 6 κ4/n→ 0 and κ(2rg/dz)/n→∞

Note that Assumption 6 is satisfied with κ ∝ na with (dz/2rg) < a < (1/4).

Define

Σ0 = E
[(
X̃i − E(X̃|νi, Ai)

)(
X̃ ′i − E(X̃ ′|νi, Ai)

)
× Ai

]
Φ(Zi) = E

[
−Ai ×

(
X̃i − E(X̃|νi, Ai)

)( ∂φ(ν)

∂ν

∣∣∣∣
ν=νi

)∣∣∣∣∣Z = Zi

]
and

Ω0 = E
[
Ai × ω2

i ×
(
X̃i − E(X̃|νi, Ai)

)(
X̃ ′i − E(X̃ ′|νi, Ai)

)]
+E

[
ν2
i × Φ(Zi)× Φ(Zi)

′]
Assumption 7 Σ0 is positive definite, Φ(Zi) is continuously differentiable with respect to its
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argument, E [Φ(Zi)× Φ(Zi)
′] is nonsingular and Ω0 is finite.

The following theorem gives the asymptotic distribution of the estimators of the pseudopara-

meters.

Theorem 5 Under Structural Linear Misspecification; the estimators (β̂, γ̂′)′ for pseudo-parameters

(β, γ′)′ are asymptotically normal as

√
n

((
β̂
γ̂

)
−
(
β
γ

))
→d N(0,Σ−1

0 Ω0Σ−1
0 )

The term E [ν2
i × Φ(Zi)× Φ(Zi)

′] arises since νi is not observed and must be estimated.

1.6 Simulation

In order to illustrate the nature of the structural misspecification; I present the results of a

Monte Carlo experiment here. The true DGP assumed is;

Y = 3X +X2 + 2Z1 + ε

X = sinZ1 + logZ2 + ν

where Z2 is the square root of a folded standard normally distributed random variable, Z2 =
√
|N |

and Z1 = N3U/10 where N refers to a standard normally distributed random variable and U a

random variable drawn from uniform [0, 1] distribution. Likewise, the unobservable

ε = 0.25ν2 + η

where ν and η are normalized independently distributed random variables. They are both

constructed from interaction of a set of independent standard normal and uniform [0, 1]

distributions, i.e. ν = NU and η = NU . We use MATLAB software to perform the simulation.

I choose this slightly complex specification of DGP in order to illustrate that the previous results

are robust to the specification of DGP.

We first want to estimate the probability limit of the estimates obtained from weighted

minimization problem at Theorem 4, and want to see whether this estimated limit coincides

with the true-pseudo parameters as predicted by Theorem 4. Since it is not possible to obtain
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true pseudo-parameters algebraically, I use the estimate of probability limit of Robinson’s

estimators (1988) of the model 1.9. Since I want to increase the accuracy of the estimates of

these probability limits, when I estimate the model 1.9 I use true ν at this stage. The estimates

of the probability limits are obtained by simply averaging the estimates of the model across

replications. The conditional expectations involved in Robinson’s estimation (1988) are replaced

by Nadaraya-Watson estimators using rule of thumb bandwidths given in Li and Racine (2007,

pp. 66).

Secondly, I need to contruct the weight function as accurately as possible. Using the estimate of

the probability limit of estimators of model 1.9, I construct the weight function 1.13. However, the

weight function 1.13 involves a conditional expectation which can not be obtained algebraically.

We therefore replace the conditional expectation E(∆h,β,γ(X,Z1)|ν) with its Nadaraya-Watson

estimate as well.

We set the sample size n = 10000 and the number of replications to be 1000. We first obtain

(β̂
r

PL, γ̂
r
PL) for r = 1, ..., 1000 from the partially linear model 1.9 using the true ν. The average

of (β̂
r

PL, γ̂
r
PL)’s across replications, (βPL, γPL) should, by consistency of the estimates; be close

to the true pseudo parameters. We then estimate the weights at 1.13 using near-true values for

pseudo-parameters (βPL, γPL) I obtained previously and obtain estimates from the weighted

linear regression (β̂
r

W , γ̂
r
W ). Denote the estimate of the probability limit of (β̂

r

W , γ̂
r
W ) with

(βW , γW ).

(βPL, γPL) (βW , γW )
β 1.0335 0.9909
γ 2.6359 2.6950

Table 1: Probability Limits of Estimators of Partially Linear Model and Weighted Linear Fit

The estimated probability limit of the estimates obtained from weighted minimization,

(βW , γW ), is, as predicted, fairly close to the "true" pseudo-parameter values, (βPL, γPL).

The gap between (βW , γW ) and (βPL, γPL), despite the large sample size and large number of
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replications, is possibly due to the fact that I replace the conditional expectations in the above

procedure with their Nadaraya-Watson estimates.

To explore the effects of two stage estimation, I estimate a misspecified partially linear model;

Y = βX + γZ1 + φ(ν̂) + ζ

where ν̂ is the residual from the first step estimation. We estimate ĝ(Z1, Z2) in

X = g(Z1, Z2) + ν

by series estimation described in Section 1.5. As basis functions Bκ(Zi) I use the tensor product of

cubic B-splines with 4 knots placed equiprobably. Then I estimate the partially linear model using

the estimator described in Section 1.5 with a trimming function that eliminates the observations

with estimated density of ν̂ below the 5th percentile of the density estimates. Table 2 gives the

estimates from a random replication.

Estimates of the Partially Linear Model

Parameter Estimate Standard Error Corrected Standard Error

β 1.2163 0.0147 0.0755

γ 2.4498 0.0105 0.0120

Estimates of the Weighted Least Squares Approximation

Parameter Estimate Standard Error

β 1.0406 0.0269

γ 2.6287 0.0366

Table 2

Looking at Table 2, the corrected standard errors are higher due to the two-stage nature of the

estimation. The kernel density of the weights from the same replication is given at Figure 1.1.

Figure 1.1 reveals that the distribution is highly centered. As I have pointed out earlier in

Section 1.4, in order to interpret the pseudo-parameter β as a weighted average of marginal

treatment effects, above distribution needs to have finite mean. This seems very likely to be true

in this particular example, although further numerical analysis is required to be certain.

1.7 Conclusion

In this work the nature of linear misspecification of structural function in a triangular
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Figure 1.1: Kernel Density of Weights from a Random Replication

simultaneous equations system is explored. It is found that the linear fit approximates the

structural function in a weighted mean squared error sense, possibly with negative weights. The

pseudo-parameters of the misspecified model are also found to be the average marginal treatment

effects, when the weights have finite mean. Building on the weighted approximation result, an

omitted variable formula is derived for cases where the true structural function is a polynomial.

There are a few routes left to explore. The nature of total linear misspecification of the

triangular system, that is, when both the instrumental equation and the structural equation are

linearly misspecified, is left for future work. Future research should also explore the nature of

linear instrumental variable estimators when the true DGP is a fully nonparametric triangular

simultaneous equations system.
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1.8 Proofs

Proof. [Proposition 1] Note that from the usual OLS problem I can write

(c, α, β, γ) ∈ arg min
t0,t1,t2,t3

E[Y −Xt0 − Z ′1t1 − t2 − t3ν]2

= arg min
t0,t1,t2,t3

E[h(X,Z1) + λ(ν) + η −Xt0 − Z ′1t1 − t2 − t3ν]2

= arg min
t0,t1,t2,t3

E[∆h,t0,t1(X,Z1) + ∆λ,t2,t3(ν) + η]2

= arg min
t0,t1,t2,t3

[E[∆h,t0,t1(X,Z1) + ∆λ,t2,t3(ν)]2

+Eη2 + 2E[η(∆h,t0,t1(X,Z1) + ∆λ,t2,t3(ν))]]

= arg min
t0,t1,t2,t3

E[∆h,t0,t1(X,Z1) + ∆λ,t2,t3(ν)]2

The last two terms cancel to zero since η is mean independent of any measurable function of

X ,Z,ν; and Eη2 is a constant with respect to the minimization. QED.

Proof. [Theorem 1] Note that pseudoparametes minimize

(β, γ) ∈ arg min
t0,t1

E [(Y − E[Y |ν])− (X − E[X|ν])′t0 − (Z1 − E[Z1|ν])′t1]2

= arg min
t0,t1

E(h(X,Z1)−Xt0 − Z ′1t1 + ε− λ(ν)

−E[h(X,Z1)|ν]− E[X|ν]t0 − E[Z1|ν]′t1]]2

= arg min
t0,t1

E(∆h,t0,t1(X,Z1) + ε− λ(ν)− E[∆h,t0,t1(X,Z1)|ν]]2

= arg min
t0,t1

E(∆h,t0,t1(X,Z1) + η − E[∆h,t0,t1(X,Z1)|ν]]2

= arg min
t0,t1

E[∆h,t0,t1(X,Z1)− E[∆h,t0,t1(X,Z1)|ν]]2

+E[η2] + 2E[η(∆h,t0,t1(X,Z1)− E[∆h,t0,t1(X,Z1)|ν])] (1.18)

where η = ε− E[ε|ν, Z] = ε− λ(ν) with E[η|ν, Z] = 0. Therefore, η is mean orthogonal to any
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function of ν and Z, thus X . The last two terms cancel to zero

(β, γ) ∈ arg min
b,γ

E[∆h,t0,t1(X,Z1)− E[∆h,t0,t1(X,Z1)|ν]]2

= arg min
t0,t1

E[E[(∆h,t0,t1(X,Z1)− E[∆h,t0,t1(X,Z1)|ν])2|ν]] (by law of iterated expectations)

= arg min
t0,t1

E[V ar[∆h,t0,t1(X,Z1)|ν]] (1.19)

As for φ(ν), note that

φ(ν) = E [̃ε|ν] = E[Y −Xβ − Z ′1γ|ν]

= E[h(X,Z1) + ε−Xβ − Z ′1γ|ν]

= E[∆h,β,γ(X,Z1) + ε|ν]

= E[∆h,β,γ(X,Z1)|ν] + E[ε|ν]

= E[∆h,β,γ(X,Z1)|ν] + λ(ν).

QED.

Proof. [Lemma 1] From Theorem 2

(β, γ)′ε arg min
t0,t1

E[V ar[∆h,t0,t1(X,Z1)|ν]] = E[E[∆2
h,t0,t1

(X,Z1)|ν]]−E[[E[∆h,t0,t1(X,Z1)|ν]]2].

Noting E[∆h,t0,t1(X,Z1)|ν]] = −∆λ,f(t0,t1)
(ν) where f(t0,t1)(ν) = E[∆h,t0,t1(X,Z1)|ν]]+λ(ν),

therefore the control

(β, γ)′ ε argmint0,t1 E[∆2
h,t0,t1

(X,Z1)]− E[[−∆λ,f(t0,t1)(ν)]2]

= E[∆2
h,t0,t1

(X,Z1)]− E[∆2
λ,f(t0,t1)(ν)] .

QED.

Proof. [Theorem 2] Directly from Theorem 2, (β, γ)′ solve

min
t0,t1

E[V ar[∆h,t0,t1(X,Z1)|ν]]

= min
t0,t1

E[E(∆2
h,t0,t1

(X,Z1)|ν)− E(∆h,t0,t1(X,Z1)|ν)2]

= min
t0,t1

[E[∆2
h,t0,t1

(X,Z1)− E(∆h,t0,t1(X,Z1)|ν)2|∆h,t0,t1(X,Z1) = 0] Pr(∆h,t0,t1(X,Z1) = 0)

+E[∆2
h,t0,t1

(X,Z1)− E(∆h,t0,t1(X,Z1)|ν)2|∆h,t0,t1(X,Z1) 6= 0] Pr(∆h,t0,t1(X,Z1) 6= 0)].
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Since X and Z have continuous support, Pr(∆h,t0,t1(X,Z1) = 0) = 0 for any t0, t1.Then,

min
t0,t1

E[V ar[∆h,t0,t1(X,Z1)|ν]]

= min
t0,t1

E[∆2
h,t0,t1

(X,Z1)− E(∆h,t0,t1(X,Z1)|ν)2|∆h,t0,t1(X,Z1) 6= 0].

By first order condition,

0 = −2E[X̃∆h,t0,t1(X,Z1)− E(∆h,t0,t1(X,Z1)|ν)E(X̃|ν)|∆h,t0,t1(X,Z1) 6= 0],

this equality must hold at the true β, γ;

0 = −2E[X̃∆h,β,γ(X,Z1)− E(∆h,β,γ(X,Z1)|ν)E(X̃|ν)|∆h,β,γ(X,Z1) 6= 0].

Define ζ = X̃ − E(X̃|ν), which is by construction mean orthogonal to E(X̃|ν). Then

E[E(∆h,β,γ(X,Z1)|ν)E(X̃|ν)|∆h,β,γ(X,Z1) 6= 0]

= E[(E(X̃|ν) + ζ)E(∆h,β,γ(X,Z1)|ν)|∆h,β,γ(X,Z1) 6= 0]

= E[X̃E(∆h,β,γ(X,Z1)|ν)|∆h,β,γ(X,Z1) 6= 0].

Plugging this into the the first order condition;

0 = −2E[X̃∆h,β,γ(X,Z1)− X̃E(∆h,β,γ(X,Z1)|ν)|∆h,β,γ(X,Z1) 6= 0]

= −2E

[
X̃∆h,β,γ(X,Z1)− X̃∆h,β,γ(X,Z1)

(
E(∆h,β,γ(X,Z1)|ν)

∆h,β,γ(X,Z1)

)
|∆h,β,γ(X,Z1) 6= 0

]
,

which is the first order condition of the minimization problem

min
t0,t1

E[∆h,t0,t1(X,Z1)w(Z,X; β, γ)

with

w(Z,X; β, γ) =

{
0 ∆h,β,γ(X,Z1) = 0

1− E(∆h,β,γ(X,Z1)|ν)

∆h,β,γ(X,Z1)
otherwise

.

QED.

Proof. [Theorem 4] Noting that |ν̂i − νi| = |ĝ(Zi)− g(Zi)|, the proof follows from Theorem 7 of

Newey (1997) given in Corollary 15.1 of Li and Racine (2007). QED.

Proof. [Theorem 5] Our proof and notation rely heavily on the proof of Theorem 3 found in

Carneiro and Lee (2009, hereafter CL). In principle, the theorem is proven by verifying the
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assumptions of the general Theorem 3.2 in Ichimura and Lee (2010, hereafter IL). Like CL, I

make the derivations implicit in the trimming function Ai = 1(ν̂i ∈ V). Then the estimator θ̂ can

be written as an M-estimator with;

m[(y, x, z), t, f(.)] =
1

2
[y − f1(x− f3(z))− {x̃− f2(x− f3(z))}′t]2

where f = f1, f2, f3 are the nonparametric components. The true function f0 = f10, f20, f30 is

given by f10(.) = E[Y |ν = .], f20 = E[X̃|ν = .] and f30 = E[X|Z = .] = g(.)

Assumption 3.1(a) of IL is not necessary in my case because my estimator minimizes a

convex objective function. Assumptions 3.1(b) is satisfied with the assumption that Σ0 is positive

definite4. The consistency of the estimator follows from Assumption 5, thus Assumption 3.1(c)

of IL is satisfied. Assumptions 3.2 and 3.3 are trivial given the form of my objective function.

Following our Theorem 4, Assumption 6 implies that;

max
i=1,.....n

|ĝ(Zi)− g(Zi)| = op
(
n−1/4

)
Using above and Assumption 5, Assumption 3.4 of IL is satisfied. Given the form of m, it is

straightforward to verify Assumption 3.5 of IL5. Assumption 3.6 of IL is the critical assumption

which characterizes the effect of first stage estimation. Following the notation of IL;

Df1m
∗(t, f0(.))[h1(.)] = −E[{(Y − E[Y |ν])− (X̃ − E[X̃|ν])′t}h1(.)];

Df2m
∗(t, f0(.))[h2(.)] = E[{(Y − E[Y |ν])− (X̃ − E[X̃|ν])′t}h2(.)′t];

Df3m
∗(t, f0(.))[h3(.)] = −E[{(Y − E[Y |ν])− (X̃ − E[X̃|ν])′t}

×{− ∂f10(ν)

∂ν

∣∣∣∣
ν=ν

+
∂f20(ν)

∂ν

∣∣∣∣
ν=ν

t}h3(.)].

4 see Section 4 of Robinson (1988)
5 see Proposition 3.1, Example 4.1 and 4.2 of IL on verification of this assumption.
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Then;

∂

∂t
Df1m

∗(t, f0(.))[h1(.)]|t=θ = E[(X̃ − E[X̃|ν])′h1(.)]

= E[(X̃ − E[X̃|ν])′(Ê[Y |ν]− E[Y |ν])]

= 0

the last equality follows from the fact that the residual (X̃ − E[X̃|ν]) is mean orthogonal to any

measurable function of ν. Similarly;

∂

∂t
Df2m

∗(t, f0(.))[h2(.)]|t=θ = 0

∂

∂t
Df3m

∗(t, f0(.))[h3(.)]|t=θ

= E

[
−(X̃ − E[X̃|ν])

∂φ(ν)

∂ν

∣∣∣∣
ν=ν

h3(.)

]
= E

[
−(X̃ − E[X̃|ν])

∂φ(ν)

∂ν

∣∣∣∣
ν=ν

(ĝ(Z)− g(Z))

]
Therefore, only the third term affects the asymptotic distribution. Its limiting behavior at

ĝ(Z) − g(Z) can be described by the argument at Section 4 of Newey (1997), because it is a

linear functional of ĝ(Z) − g(Z). Assumption 7 of Newey (1997) is satisfied with Φ(Z) given

previously (see Assumption 7 at Section 1.5). Then the proof follows from Theorem 3.2 of IL

with the restriction n1/2κ−(rg/dz) → 0 given at Assumption 6. QED.
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