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Abstract

The advent of online data aggregator infrastructures has facilitated the accumulation of Digi-

tal Accessible Knowledge (DAK) about biodiversity. Despite the vast amount of freely avail-

able data records, their usefulness for research depends on completeness of each body of

data regarding their spatial, temporal and taxonomic coverage. In this paper, we assess the

completeness of DAK about terrestrial mammals distributed across the Iberian Peninsula.

We compiled a dataset with all records about mammals occurring in the Iberian Peninsula

available in the Global Biodiversity Information Facility and in the national atlases from Por-

tugal and Spain. After cleaning the dataset of errors as well as records lacking collection

dates or not determined to species level, we assigned all occurrences to a 10-km grid. We

assessed inventory completeness by calculating the ratio between observed and expected

richness (based on the Chao2 richness index) in each grid cell and classified cells as well-

sampled or under-sampled. We evaluated survey coverage of well-sampled cells along four

environmental gradients and temporal coverage. Out of 796,283 retrieved records, quality

issues led us to remove 616,141 records unfit for this use. The main reason for discarding

records was missing collection dates. Only 25.95% cells contained enough records to

robustly estimate completeness. The DAK about terrestrial mammals from the Iberian Pen-

insula was low, and spatially and temporally biased. Out of 5,874 cells holding data, only

620 (9.95%) were classified as well-sampled. Moreover, well-sampled cells were geographi-

cally aggregated and reached inventory completeness over the same temporal range.

Despite the increasing availability of DAK, its usefulness is still compromised by quality

issues and gaps in data. Future work should therefore focus on increasing data quality, in

addition to mobilizing unpublished data.

Introduction

The mobilization via the Internet of a vast amount of biodiversity data offers new opportuni-

ties for basic research and evidence-based decision-making in conservation [1–3]. Biodiversity

data exchange infrastructures such as the Global Biodiversity Information Facility (GBIF)

facilitate access to massive amounts of primary biodiversity data records (PBR) which become
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digital accessible knowledge (DAK [4]; also referred to as digital accessible information or DAI

[5]). However, the unprecedented availability of digital PBR still seems insufficient to over-

come existing biodiversity information gaps [5–7]. Data portals usually aggregate smaller

datasets derived from local surveys designed for a specific purpose. GBIF, the largest portal,

enabled access to more than one billion (109) PBR in 40,521 datasets as of August 2018. Taxo-

nomic, spatial and temporal gaps arise inevitably from the nature of these data aggregators [8].

Ensuring a degree of completeness of biodiversity databases is fundamental to obtaining

reliable results to map species richness [9,10] or to improve the design of sampling campaigns

[5,8,11]. Recently, researchers have engaged in developing methods to determine inventory

completeness and in providing guidelines to assess gaps in biodiversity data [12]. Much of this

research focused on botanical databases in megadiverse areas [5,13–16], although other taxo-

nomic groups and areas have also been explored [8,17,18].

Records are not free from uncertainties and errors. The quality of biodiversity data shared

online has been long questioned in the literature. Spatial and sampling effort biases have been

discussed frequently [7,19,20]. There is thus a baseline of literature about how to quantify

these spatial errors and how to deal with their effects. However, temporal gaps and issues seem

to have been addressed much less often [5,14,21,22], even though time is one of the key attri-

butes of a PBR: where and when a specimen was recorded [23]. Such an oversight might per-

haps owe to the contemporary nature of most DAK [24].

The Iberian Peninsula constitutes an interesting biogeographical area, as it is one of the

important Pleistocene glacial refugia [25], influenced by both the Atlantic Ocean and the Med-

iterranean Sea. Its wide range of climates, and its complex variety of landscapes and habitats,

have a positive effect on biodiversity [26]. Regarding the mammal community, the Iberian

Peninsula is home to typically Central European species, which find their southern distribu-

tion limit within the peninsula, while it also hosts Mediterranean species, many of them as

endemic species [27].

The purpose of this study was to determine the completeness of DAK about terrestrial

mammals in the Iberian Peninsula. We focused on both spatial and temporal gaps existing in

the digital accessible knowledge [4] as represented by the data available through GBIF and the

data in the national atlases of Spain [27] and Portugal [28]. We also assessed how the dataset

covered the environmental characteristics of the territory. The analysis was done on the entire

dataset and then repeated after splitting the dataset by taxonomic groups [29] to test whether

the inventory completeness and survey and temporal coverage were taxonomically dependent.

Material and methods

Study area

The Iberian Peninsula is the westernmost peninsula of Europe. Its location facing both the

Atlantic Ocean and the Mediterranean Sea, while almost touching the African continent, pro-

vides for a broad range of climates. Topography also contributes to its variety of habitats and

landscapes that include temperate and Mediterranean forests, and scrublands [26]. Human

activity has had a significant effect on the peninsula, modifying its territory towards a predom-

inately agricultural landscape [30].

Biodiversity data

We downloaded from GBIF all georeferenced records from the Iberian Peninsula that met the

taxonkey ‘Mammalia’ in October 2016 for a preliminary analysis and proof of concept (http://

doi.org/10.15468/dl.mcbdbq and http://doi.org/10.15468/dl.exhvrs2) and then an updated

dataset in September 2018 (https://doi.org/10.15468/dl.acitdv) for the final analysis described
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here. The dataset was checked, cleaned and filtered in several steps. We first excluded records

from the islands and Spanish cities in North Africa, domestic species and invasive species (e.g.,

raccoon and coypú). Secondly, we removed all the records that lacked a collection date, and

that had not been determined down to species level. We also removed records that had coordi-

nates falling outside the boundaries of the Iberian Peninsula. Thirdly, following Sousa-Baena

et al. [4], we kept the unique combinations of 1) scientific name, 2) latitude and longitude, and

3) collection date.

We obtained from the Spanish Society of Mammalogists (SECEM) the raw data of the

Spanish national atlas updated until 2016 [27], and downloaded the data of the Atlas of Portu-

gal [28]. We repeated the GBIF cleaning process on these records (hereinafter “atlas data”).

The information about collection date in the Atlas of Portugal was of very low resolution (i.e.,

records dated before or after 2000). Thus, we decided to use records from Portuguese atlas for

the spatial gap assessment but omit them while addressing the temporal gaps.

While filtering the GBIF data records, we detected a remarkable peak of 179,757 (30.9%)

observations in 2007. All of them belonged to one single dataset (ARM dataset) shared by the

National Inventory of Terrestrial Species of Spain, which compiled information about terres-

trial species in the country harvested from the Spanish national atlases of birds, amphibians,

and mammals. These observations qualified as duplicates after merging the data in the Spanish

atlas, even though the information level was different (more precise and exhaustive in the atlas

data than in the version shared through GBIF). We removed those records as superseded by

the atlas data which were also more up to date than the GBIF data.

Before merging both datasets, we assigned all records to the 10 km reference Universal

Transverse Mercator (UTM) grid, corresponding to the lowest spatial resolution of the data we

had, tagging each record with its cell’s ID. Joining both datasets may have resulted in the crea-

tion of duplicate records (same observation record uploaded twice), as the national atlases

were built by contributions from different authors or institutions (e.g., natural history collec-

tions, research projects, opportunistic observations) who could also have independently

uploaded their records to GBIF. To address this, we generated a marker for each record by

combining scientific name, collection year and cell’s ID. Then, we used these markers to

extract the unique records in the atlas dataset. We added the unique records to the GBIF data-

set, thus building the full dataset.

We performed a factor correspondence analysis on the full dataset in order to observe taxo-

nomical patterns or biases that could affect the results as a consequence of the difference in

sampling methods [29]. A bimodal pattern was observed (Fig A in S1 Appendix), roughly cor-

responding to taxon groups of different size and sampling method: large- and medium-size

mammals, usually detected by indirect methods such as footprints, camera trapping, or scats

[31], and small mammals sampled through analysis of owl pellets or traps [32]. Accordingly,

we segmented the data into two taxonomic groups: non-small mammals comprising the orders

Lagomorpha, Artiodactyla, Carnivora, Chiroptera and the family Erinaceidae of the order

Eulipotyphla, and small mammals including the order Rodentia and the family Soricidae of

the order Eulipotyphla.

Completeness analysis

We estimated inventory completeness based on the approaches of Sousa-Baena et al. [4] and

Yang et al. [15]. For each cell, we calculated the expected number of species using the Chao2

index and completeness (Cc) as the ratio between observed and expected richness, Sobs/Sexp

[33]. We also calculated the mean slope (Cm) of the final 10% of the species accumulation curve

[15]. We calculated these two estimators for the full dataset and for each taxonomic group.
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The Cc index ranged from zero (low completeness) to one (high completeness). Cells with

low sample levels can exhibit high but artificial completeness values [4]. Therefore, we estab-

lished a minimum number of records per cell to calculate the estimators. This minimum was

established by assessing the relationship between Cc and number of records, following Sousa-

Baena et al. [4]. For the generation of the species accumulation curves (SAC), we used the

function ‘speccacum’ (method = ‘exact’) in the R package vegan [34], and then we obtained the

slope of the final 10% of the SAC. Values close to zero (flat slopes) indicated high completeness

(saturation of the curve almost reached) whereas higher values (steeper slopes) indicated low

completeness [15]. We plotted the completeness values based on Cc vs. Cm to test whether they

were correlated. As the analysis showed high correlation for the full dataset (r Spearman: -0.60,

p value < 0.001, Fig B in S1 Appendix) we chose to use Cc. Finally, we classified the cells as

well-sampled or under-sampled based according to two criteria, strict (high-threshold) and lax

(low-threshold), based on thresholds used in previous studies but adapted to data availability

[17]. Well-sampled cells for the strict criterion required having more than 50 records and a

value of Cc equal to or greater than 0.8, while the lax criterion identified well-sampled cells as

having more than 25 records and a value of Cc equal to or greater than 0.7. The following anal-

yses were performed based on well-sampled cells according to the lax criterion.

Environmental coverage

We evaluated the coverage of well-sampled cells along environmental gradients [17]. We

downloaded bioclimatic variables at 2.5-minute resolution (approximately five km resolution)

from the WorldClim database [35] and land cover data from the 2006 Corine Land Cover

(CLC) database at 100-meter resolution from the European Environmental Agency [36].

Each climatic variable was averaged over each cell. For land cover uses, we first reclassified

CLC categories into five new categories. CLC classifies land cover uses into 44 classes, grouped

in a three-level hierarchy [36]. ‘Urban,’ ‘crops’ and ‘wetlands’ categories consisted of all land

use categories grouped under classes 1, 2 and 4 respectively from the level 1 of the CLC

nomenclature (“major categories”). Class 3 in the CLC nomenclature (‘Forest and semi-natu-

ral areas) was divided into two categories: ‘Forest’ included class 3.1 (Forests), and ‘scrubland’

included classes 3.2 and 3.3 (Shrub and herbaceous vegetation association and Open spaces

with little or no vegetation, respectively). We then summarised the percentage of coverage of

each land cover type in each cell.

We conducted a Variance Inflation Factor (VIF) analysis to discard correlated variables

(VIF> 5), and correspondingly retained Annual Mean Temperature (AT), Annual Precipita-

tion (AP), forest coverage (FC), and crops coverage (CC). Then we performed Kolmogorov-

Smirnov (K-S) goodness-of-fit tests to compare the frequency distribution of well-sampled

(lax criterion) and all sampled cells against the background cells (i.e. all territory) across the

environmental gradients, following Clifford et al. [37]. Low values of the D statistic indicated

that well-sampled cells reached a high level of survey coverage spanning all of the background

environmental gradients [17].

Temporal coverage

For each cell, we calculated (1) the median of collection years, (2) time since the last records

were collected and (3) the interquartile range. Furthermore, we correlated Cc of well-sampled

cells (lax criterion) with the median collection year to determine whether the high level of

completeness was acquired from recent or historical surveys [14]. We also assessed whether

well-sampled cells were spatially aggregated with regard to the decades in which completeness

was reached using the Moran I test. Following Stropp [14], we calculated Cc for each
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cumulative decadal period, starting from 1900 to 1910, 1900 to 1920, . . ., until the last period

1900 to 2020. We assumed that a variation of 5% (upwards or downwards) of the final value of

Cc was enough to conclude that the inventory completeness had been reached.

All analysis and data management were performed in R [38], and for the final graph modifi-

cations we used Inkscape [39]. See List A in S1 Appendix for references of the R packages

employed in the study.

Results

Inventory completeness

582,720 records were retrieved from GBIF. We discarded 25,244 records from species not tar-

geted for the study. Among the remaining records, 284,427 (48.81%) had quality issues such

as lacking a collection date or species determination, or having wrong coordinates (Fig 1).

Another large exclusion of data corresponded to the removal of the dataset from the National

Inventory of Terrestrial Species of Spain that contained 179,757 records that had already been

fed to GBIF at a different resolution. From the initial spatial coverage of 5,444 cells, after the fil-

tering process, only 1,486 cells contained GBIF-mediated data (23.85% of the territory). The

final number of GBIF records fit for this purpose was 93,292 (16% of the original dataset). Sim-

ilarly, the data from the atlases yielded 213,563 records distributed in the Iberian Peninsula,

but data quality issues precluded 126,713 of them (59,33%, Fig 1).

Finally, the combination of both datasets resulted in a dataset with 179,767 records of 89

species distributed in 5,874 cells out of the 6,232 cells covering the Iberian Peninsula. Although

the spatial coverage of mammals was high (Fig 2A), the number of records per species in each

Fig 1. Number of records removed in each step of the filtering process for the three sources of data: Global Biodiversity Information Facility

(GBIF), Spanish and Portuguese national atlases. Points show the leakage rate in each filtering step for each source of data. The first filter kept records

from wild terrestrial mammals distributed in the Iberian Peninsula. The second filter removed records lacking collection date or species determination,

and those having coordinates issues. ARM removal is the additional filtering step applied to the GBIF dataset to remove the data from the National

Inventory of Terrestrial Species of Spain. The aggregation step collapsed the information by using the combination of scientific name, coordinates, and

collection year.

https://doi.org/10.1371/journal.pone.0213542.g001
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Fig 2. Distribution of sampled 10-km cells across the Iberian Peninsula (PRT: Portugal, ESP: Spain) for (A) full dataset, (D) non-

small mammals (Lagomorpha, Artiodactyla, Carnivora, Chiroptera and Erinaceidae), and (G) small mammals (Rodentia and

Soricidae). Color shades highlight well-sampled cells according to the strict and lax criteria. Blank cells retained no data. The

distribution of cells by their number of records per species (classes expressed as Preston octaves) is shown for the (B) full dataset, (E)

non-small mammals, and (H) small mammals. The relationship between the Chao2 completeness index and the median year in which

records were collected is shown for the (C) full dataset, (F) non-small mammals, and (I) small mammals. Records derived from the

Global Biodiversity Information Facility and the Spanish and Portuguese national atlases.

https://doi.org/10.1371/journal.pone.0213542.g002
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cell was generally low (mean: 1.37; 5th and 95th quantiles: 1, 4.89, Fig 2B). For example, 33% of

the cells contained one record per species (Fig 2B). Concerning taxonomic groups, the analysis

showed that non-small mammals contained 97,501 records of 55 species distributed in 5,850

cells, while small mammals (Rodentia and Soricidae) contained 82,266 records of 34 species

found in 3,785 cells (Table 1).

The inventory completeness in the Iberian Peninsula was low for the full dataset. The mean

value for Cc was 0.62 for all cells having at least 25 occurrences, the frequency threshold we

allowed for a cell to be included in the calculations. Based on the lax criterion (n� 25, Cc�

0.7), 9.95% of the cells (620) were classified as well-sampled while the strict criterion (n� 50,

Cc� 0.8) left 262 well-sampled cells (4.20%). We found that most of the well-sampled cells

were located within Spain, particularly at both ends of the Pyrenees, on the Mediterranean

coast and the midwest of Spain (Fig 2A).

Environmental and temporal coverage

The environmental coverage of well-sampled cells (lax criterion) was significantly low for all

the selected variables (Fig 3). For the full dataset, the K-S D statistic was high, ranging from

0.6 to 1 (mean 0.76) in well-sampled cells. Similarly, poor environmental coverage of the

well-sampled cells resulted for non-small mammals and small mammals (Rodentia and Sori-

cidae) separately, with D values also ranging from 0.6 to 1 (mean 0.76 and 0.89 respectively,

Fig 3).

The temporal coverage of the complete dataset was 183 years, spanning from 1835 to 2018

(Fig 4). However, the inventory records were scarce from the early 1800’s to mid-1900’s with

only 651 before 1960 for the whole Iberian Peninsula. Over the following decades records

accumulated, peaking in 2006. There was a taxonomical difference in the accumulation pat-

tern. Records in non-small mammals were mostly accumulated in the late 2000’s (median:

2006; p25: 2001; p75: 2012) whereas in small mammals (Rodentia and Soricidae) records accu-

mulated about one decade earlier, in the 1990’s (median: 1996; p25: 1986; p75: 2006).

Over the full dataset, even though we found that the inventory completeness was negatively

correlated with the median year in which occurrences were recorded (Spearman’s r = -0.06,

p-value = 0.02), the effect was very small, and its significance was likely due to high sampling

Table 1. Summary of 10-km cells sampled across the Iberian Peninsula for full, non-small mammals (Lagomor-

pha, Artiodactyla, Carnivora, Chiroptera and Erinaceidae) and small mammals (Rodentia and Soricidae)

datasets.

Dataset

Full Non-small mammals Small mammals

Records 179,767 97,501 82,266

Observed richness 89 55 34

Mean Cc 0.54 0.61 0.60

Mean Cm 0.41 0.29 0.22

Sampled cells 5,874 5,850 3,785

Well-sampled cells (lax criterion) 620 531 205

Well-sampled cells (strict criterion) 262 184 89

Temporal range 1835–2018 1835–2018 1900–2018

Median years 2005 2006 1996

Cc: completeness index based on Chao2 index

Cm: completeness index based on the final SAC slope

https://doi.org/10.1371/journal.pone.0213542.t001
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Fig 3. Survey coverage of well-sampled cells (number of records� 25 and Cc� 0.7) along four environmental variables: Annual Mean

Temperature (AT), Annual Precipitation (AP), forest coverage (FC), and crops coverage (CC). Green: full dataset; pink: non-small mammals’

dataset (Lagomorpha, Artiodactyla, Carnivora, Chiroptera and Erinaceidae); blue: small mammals’ (Rodentia and Soricidae) dataset; grey: all cells

having data (n = 5,874); black: rest of cells in the territory not holding data. Values correspond to the D-statistics from Kolmogorov-Smirnov goodness-

of-fit tests. Lever of significance of 0.05 (�), 0.01 (��) and 0.001 (���).

https://doi.org/10.1371/journal.pone.0213542.g003
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size. However, the separate taxonomic groups showed no significant correlation between the

median collection year and the inventory completeness at α = 0.05.

Nearby well-sampled cells (lax criterion) usually reached inventory completeness at roughly

the same time (Moran’s I: 0.13, p< 0.001, Fig 5A). The pattern held after splitting the dataset

by taxonomic groups (Fig 5B and 5C).

Discussion

Quality of DAK of terrestrial mammals in the Iberian Peninsula

Our goal was to characterize the availability of Digital Accessible Knowledge about terrestrial

mammals distributed in the Iberian Peninsula, which could become suitable for further distri-

butional, biogeographical or ecological studies requiring spatial and temporal representative-

ness. First, a coarse search in GBIF yielded more than a half-million occurrence data records

from Spain and Portugal. Successive quality, suitability and reliability checks filtered out the

majority of these data, and only 16.01% were deemed suitable for representativeness analysis

on both the space and time dimensions. On the other hand, raw data collected from the

national atlases yielded less than half as many records, of which 22.23% were fit for our

Fig 4. Temporal accumulation of records for non-small mammals (Lagomorpha, Artiodactyla, Carnivora, Chiroptera and Erinaceidae) in pink

and small mammals (Rodentia and Soricidae) in blue. Arrows: year containing the data median for each series.

https://doi.org/10.1371/journal.pone.0213542.g004
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Fig 5. Recency maps of well-sampled cells (number of records� 25 and Cc� 0.7) across the Iberian Peninsula

(PRT: Portugal, ESP: Spain) for the (a) full dataset and (b) non-small mammals (Lagomorpha, Artiodactyla,

Carnivora, Chiroptera and Erinaceidae) and (c) small mammals (Rodentia and Soricidae) datasets. Yellow colors

indicate cells that reached inventory completeness in recent decades. White cells have no data.

https://doi.org/10.1371/journal.pone.0213542.g005
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purpose. Although the leakage rate [40] was thus higher in the case of the GBIF, overall, we

observed comparable retention of records in both datasets as well as similar factors leading to

attrition. The main reason for discarding records was data quality. While having partial data

still allows records to be used for specific purposes, we needed complete records in our analy-

sis. The lack of collection dates was the largest cause of leakage from GBIF and Spanish atlas

data (Fig 1). The Portuguese atlas data had fewer data quality issues, but had a much larger

proportion of records with inadequate distribution data that were removed first (Fig 1), and

the collection dates were merely specified as before or after the year 2000.

The quality of data is of capital importance [41]. Imprecise data can suggest inaccurate

diversity patterns [42] or biased species distribution models [43]. Errors such as misspelled

species, or occurrences mismatching the expected territory for a record (e.g., political divi-

sions) can be relatively easy to track and correct [44]. However, other errors such as wrong

dates can easily go unnoticed and in many cases cannot be corrected although they could be

detected (for example, misrepresenting unknown day of the month or month of the year [45],

an anomalous concentration of records on the first day of each month or year). In our case,

the coincidence of the publication date of the Spanish national atlas and a single batch of

179,757 observation records from 2007 found in the GBIF dataset led us to discover that those

records had been assigned the atlas’ publication year rather than the actual occurrence dates.

We were thus able to remove these GBIF records from the dataset, substituting them with the

raw data. However, this type of detailed intervention may be difficult to accomplish when

working with very large datasets, where these time-consuming checks for errors and inconsis-

tencies [46] can easily become cost-ineffective. Thus, it is of utmost importance that data pub-

lishers provide accurate data and comprehensive metadata to inform data users about the true

limitations of the data [40].

Inventory completeness

Studies addressing inventory completeness are becoming more frequent [4,5,13,15,17,18,40,

47–49]. Overall, these assessments tend to conclude that inventory completeness is spatially

biased. We found that to be also the case for mammals in the Iberian Peninsula. Our analysis

showed that DAK completeness was low, and spatially and temporally biased. Despite the

relatively high proportion of territory cells holding data at the chosen spatial resolution, the

number of records per cell was low (Fig 2B). The lax criterion excluded 90.05% of the cells

from the full dataset. Well-sampled cells tended to be geographically aggregated, particularly

in the western and eastern edges of the Pyrenees, the Mediterranean coast and one spot in the

midwest of Spain (Fig 2A). Several causes might account for the comparatively high level of

inventory in those areas, such as local atlases, research projects, or citizen science. When split-

ting the dataset by taxonomic groups, the spatial distribution of well-sampled cells for both

groups did not substantially differ from the full dataset (Fig 2). DAK about non-small mam-

mals seemed to be higher than that for small mammals in the Iberian Peninsula (e.g., 531 well-

sampled cells compared to 205 using the lax criterion). Still, the overall completeness was very

low.

Although both GBIF and the atlases yielded comparable numbers of records, as expected

the spatial coverage provided by the atlas data was higher [50] (see Fig C in S1 Appendix).

Grid-based biological atlases are often generated by compiling existing data, aggregating them

to a reference grid that is reported as a single, generalized georeferencing for the data, and

then seeking to fill in the cells lacking in data [51]. Consequently, atlases commonly represent

trade-offs between their spatial coverage (which is generally high, and largely based on expert

judgement) and the sampling effort (which is generally low). Also, the “unknown recurrence”
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(not reporting data considered as redundant) is common while constructing atlases [52]. All

of this results in presence-only datasets with a low number of records and species per cell that

may be assigned a low-resolution coordinate set (corresponding to the centerpoints of each

cell in the grid). In our case, over the full dataset, almost half of the cells had equal numbers of

records and observed species: that is, each species was reported as a single observation in the

cell, probably leading to the underestimation of well-sampled cells [52].

Survey and temporal coverage

Although the spatial coverage of mammals was high (i.e., most of the cells contained data, Fig

2), the low and spatially biased inventory completeness led to low, and spatially biased, survey

coverage over all datasets (Figs 2A, 2B, 2C and 3).

The information about mammals in the Iberian Peninsula has been accumulating since the

early 19th century, although most records that were made in, or converted into, digital form

were only contributed in recent decades (Fig 4). We observed that records peaked at the start

of the 21st century, but the inventorying activity decreased thence. One possible cause for the

recent decrease in number of records might be the lag between data collection and data mobili-

zation [53] although other causes could also be possible, such as an actual reduction in field

campaigns or data collection, or possibly the processing of the backlog of natural history col-

lections data [54]. The temporal pattern of inventorying was similar among taxonomic groups,

even though they peaked at different times (Fig 4). The high inventorying of small mammals

(Rodentia and Soricidae) during the later years of the 20th century in the western side of the

Pyrenees (Figs 2G and 4) was driven by the publication of the extensive regional atlas for the

province of Navarra [55]. Similarly, the publication of the Spanish national atlas resulted in a

distinct increase in the number of records (Fig 4).

Low completeness or low data sharing?

The results in this paper stress the necessity of mobilizing the data buried in personal data-

bases, museums catalogs or research centers. The three countries in the Iberian Peninsula have

been active in data sharing since GBIF was launched [45], with Spain leading the way with

more than three-quarters of the peninsula’s data published as of September 2018 (https://

www.gbif.org/occurrence/search?country=ES). Nonetheless, we are aware that many data may

be still locked away [56,57]. Our results show not only a map of the inventory completeness of

the mammals but also the areas where biodiversity data have been made digitally accessible. As

the concentration areas tend to coincide with the political boundaries of a few, selected Span-

ish administrative divisions, it is quite likely that data exist as well in other regions within

Spain that have not yet been mobilized through digital platforms and, thus, are not part of the

DAK. However, unless scientific community and administrations incorporate the publication

of data as a routine step in their workflow [58], access to data will continue to rely on the will

of data holders to invest their resources to doing so.

Designing, surveying, and managing data have associated costs that can run high. Specifi-

cally, sampling mammals is a highly demanding task [31,32]. Mammal species usually show

elusive behavior, or have nocturnal habits that influence their detectability and increase the

efforts necessary to document them. Such effort involved in collecting data could be wasted if

all the potential in the resulting data are not put to full use by properly converting them into

DAK. We believe that releasing all the compiled information is a desirable and highly valuable

step forward for research and conservation. As pointed out in several studies, data gathered in

databases can be relevant for designing new and more efficient sampling protocols [59] even if

the source of information is biased or scarce [11].
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Conclusion

Incomplete inventories limit the information yield, particularly when trying to determine

the true spatial distribution of species as absences are difficult to confirm. Obtaining a better

understanding of the species distributional and temporal patterns requires filling the existing

information gaps, both positive and negative. While some gaps will surely be impossible to fill

due to lack of surveys, much information from actual surveys may still remain to be discov-

ered, debugged and published. Such data would allow us to fill historical gaps and to design

better surveys to fill contemporary gaps. However, the volume of data by itself is not always a

surrogate of increased knowledge [5,40]. We call for significant efforts to be made to increase

the quality of the shared data, thus enlarging their fitness-for-use spectrum. The present and

future of biodiversity research and conservation rely on freely available data. Good and suffi-

cient data availability may facilitate better allocation of limited resources for research. With

the release of that data we might be better prepared to understand changes in distributional

patterns of species, and to answer questions when dealing with the biodiversity crisis we are

facing.
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28. Bencatel J, Álvares F, Moura AE, Barbosa AM. Atlas de Mamı́feros de Portugal. 1a. Évora; 2017. 256
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