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Abstract

In developing countries, the opportunity costs of children’s time can significantly
hinder universal education. This paper studies one of these opportunity costs: we
estimate the agricultural productivity of children aged 10 to 15 years old using the
LSMS-ISA panel survey in Tanzania. Since child labor can be endogenous, we exploit
the panel structure of the data and instrument child labor with changes in the age
composition of the household. One day of child work leads to an increase in pro-
duction value by roughly US$0.89. Children enrolled in school work 26 fewer days
than nonenrolled children. Compensating enrolled children for loss in income can be
accomplished with monthly payments of $1.92. However, a complete simulation of a
hypothetical conditional cash transfer shows that even $10/month transfers would fail
to achieve universal school enrollment of children aged 10 to 15 years old.
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1 Introduction

Worldwide, 144 million children aged 5 to 14 years old were economically active in 2012.

Child labor is primarily concentrated in agriculture (58.6%) and is mostly performed within

households (68.4% of child laborers are unpaid family workers).1 Although work opportu-

nities are a key determinant of children’s time allocation and hence a key aspect of any

fight for universal education, we know very little about the economic contributions of chil-

dren. Indeed, children who provide wage work are a minority among working children and

a very selected sample of this population. We should not infer anything from the wages

that they earn to a broader population. This article contributes to the understanding of

barriers to education by estimating the productivity of children in household farming in

rural Tanzania. For most children, this estimate of the opportunity cost is better than

the children’s average wage in the country.2 To do so, we estimate several production

functions, compute the productivity of children and exploit the features of the LSMS-ISA

panel dataset for identification. Finally, we use these results to simulate the effect of a

hypothetical conditional cash transfer.

Our article contributes to two different strands of the literature. The first is the es-

timation of the opportunity cost of children, about which the literature has been scarce

and has mostly focused on paid employment. IPEC (2007) studied different sectors em-

ploying children and concluded regarding the diversity of situations in terms of children’s

return to labor that it ranges from children who are as productive as adults and are paid

as such to children who have significantly lower productivity or the same productivity

but who are paid much less.3 To our knowledge, this study was the only one evaluating
1Diallo et al. (2013).
2Indeed, in our Tanzanian sample, 80.65% of child workers are employed in household farms.
3Children exhibit a productivity similar to that of adults in carpet manufacturing in India but are paid

less (Levison et al., 1998; Anker et al., 1998). In the fishing sector in Ghana and the construction sector
in Uganda, adults and children receive similar pay. However, in most other sectors considered in the study
(chop bars in Ghana, the pyrotechnics industry in the Philippines and vehicle repair in Delhi), children are
paid less than adults, and this reduction in pay is greater than the difference in productivity.
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child productivity, and it did not cover farm labor. However, the large body of literature

on market imperfections in developing countries has incidentally addressed this question

(Jacoby, 1993; Skoufias, 1994; Lambert and Magnac, 1997) since authors have provided

estimations of agricultural production functions. The opportunity cost of individuals who

do not participate in the market is called the shadow wage and is equal to the marginal

productivity of their on-farm labor. The papers by Jacoby (1993) (for Peru) and Skoufias

(1994) (for India) did not compute the marginal productivity of children, but the param-

eters associated with child labor in the Cobb-Douglas production function are fairly low

compared to those for adult labor, indicating that children contribute only marginally.

This work relates to a second strand of the literature: the effect of conditional cash

transfers (CCTs) on children’s time allocation. CCTs have been increasingly seen as an

efficient tool for fighting current and future poverty. They have been implemented in

almost all Latin American countries but remain rare in Africa, except for pilot studies.

The evaluation of these programs leads to the conclusion that child labor supply reacts

very heterogeneously to cash transfers. For instance, Edmonds and Schady (2012) found

that a transfer amounting to approximately 7% of the GNI per capita leads to a sharp

decline in paid employment by 10 percentage points and in unpaid economic activity by

19 percentage points in Ecuador.4 Large effects relative to the transfers (3% of GNI per

capita) were also found in the Food for Education program in Bangladesh (Ravallion and

Wodon, 2000). In comparison, Attanasio et al. (2010) found no effect of the program on

child participation in economic activities in Colombia.5 Other Latin American programs

lead to intermediate results, sometimes with much larger transfers.6 From these results, it

is difficult to extrapolate the amount of transfer that would lead to nonnegligible increases
4This finding corresponds to a decline in paid employment by 41% and in unpaid employment by 34%.
5The transfer in Colombia is approximately 5% of the GNI per capita when a child is in secondary

school.
6See, for instance: Edmonds and Shrestha (2014); Bourguignon et al. (2003); Ravallion and Wodon

(2000); De Leon and Parker (2000); Skoufias et al. (2001); Carpio et al. (2016); Galiani and McEwan (2013);
Dammert (2009); Barrera-Osorio et al. (2011); Behrman et al. (2011); Schady and Araujo (2006).
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in schooling and reductions in child labor, if one were to implement a conditional cash

transfer in Africa. Bourguignon et al. (2003) showed that ex-ante evaluations are useful

tools for designing programs; it is therefore of interest to identify the key parameters of

these models ahead of the implementation of an economic policy. Indeed, de Hoop et al.

(forthcoming) showed that child labor might actually increase when the cash transfer only

provides a partial schooling subsidy. Kakwani et al. (2005) attempted to provide an ex-

ante assessment of the implementation of a cash transfer program conditional on school

attendance in 15 Sub-Saharan African countries. However, the model failed to reproduce

the conditionality due to a lack of data on the opportunity costs of children.7 This work

provides an ex-ante evaluation of a conditional cash transfer, based on our measure of the

value of children’s time.

The main contribution of this paper is the measure of the productivity of child labor.

Provided that most working (African) children are unpaid family workers on farms, we focus

on them and identify their productivity. The estimation of production functions is delicate

since inputs are chosen to maximize profits and might be plagued by endogeneity issues.

In our case, we exploit both the panel dimension of the data to control for unobserved and

permanent determinants of household productivity, and we instrument child labor with

the number of children belonging to the household. With an imperfect labor market, the

household characteristics affect production choices, such as labor input (Singh et al., 1986).

Provided that we control for household fixed effects, the identification strategy relies on

the aging of children between rounds of the panel. We also provide robustness checks to

confirm that the endogeneity of other inputs does not plague our estimates. When allowing

for different production functions, we find consistent results for child productivity. One day

of work performed by a child between 10 and 15 years old leads to an increase in production

value by roughly US$ 0.89, depending on specifications. Children enrolled in school work
7The model therefore provided an ex-ante evaluation of an unconditional cash transfer.
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on average 26 fewer days per year than nonenrolled children. Compensating them for the

loss of income could be accomplished by monthly payments of $1.92. However, considering

the income elasticity of education demand suggests that conditional cash transfers would

have to be larger to truly bring children to school. We estimate that a monthly CCT of

$10 results in enrollment in school of only 14% of working poor children, and we discuss

why this outcome occurs.

The remainder of the paper is organized as follow: section 2 describes the dataset, and

section 3 presents the specifications and the identification strategy, while section 4 provides

the results. Section 5 assesses the productivity heterogeneity by child age and gender, and

section 6 computes the compensation that should be offered in a CCT.

2 Data

2.1 LSMS-ISA data

Our analysis is based on the Tanzanian LSMS-ISA (LSMS-Integrated Surveys on Agricul-

ture) panel data. The panel is composed of three rounds: 2008-2009, 2010-2011 and 2012-

2013.8 It is representative at the national, the urban/rural and the major agro-ecological

zones levels. The original sample size is 3,265 households, spread over 409 enumeration

areas across Tanzania and Zanzibar. Roughly two-thirds of these households are located in

rural areas. The subsequent rounds revisit all households and include potential split-offs.

Given the large rate of split-off and the extremely low attrition rate in the panel (only

4.84% of households surveyed in 2008 were not observed in 2010 or 2012), the third round

of the panel interviewed 5,015 households. The panel dimension of the dataset is crucial

to our analysis; therefore, it is extremely important to rely on a panel in which attrition is

not an issue.
8The data collection occurred from October 2008 to October 2009 for the first wave, from October 2010

to December 2011 for the second wave and from October 2012 to December 2013 for the third wave. The
fourth wave, collected in 2014-15, is a new sample.
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The data are also particularly relevant for our analysis because they gather detailed

information both about the production side and about the household side. All inputs and

outputs are reported for each plot. Most importantly, who has provided labor is recorded so

that we are able to compute how many days of work have been provided by each household

member (and a general category for nonhousehold members). The estimation of production

functions is always delicate because it might be difficult to observe all inputs, and failure to

observe all inputs increases the risk of biased estimates. In the case of LSMS-ISA, a large set

of inputs is collected in addition to labor days: organic and inorganic fertilizers, pesticides,

and irrigation information. Land area is measured with a GPS, which is considered much

more accurate than estimations.9 Self-reported land quality, as well as erosion of the plot,

is also recorded. In addition, the LSMS-ISA data are matched with information about

rainfall, greenness and temperature, obtained from satellite measurements. Appendix A

describes the variables in detail, and Table A1 provides descriptive statistics about the

sample.

2.2 Production

Although inputs and outputs are collected at the plot level, the panel does not allow for

matching of plots from one date to the next, and we aggregate the information at the

household level. As a consequence, our unit of analysis is a household observed in a given

year. Household farm output is the self-reported monetary value of the harvest (in T-

shillings), as declared by the household. We do not include farm outputs, such as fruit

growing and cattle herding, in our analysis for the following reasons: 1) trees do not need

much labor investment once they are planted; 2) from the data, it is not possible to compute

the value of the cattle; and 3) in both cases, the labor time allocated to these activities

is not collected. Neglecting cattle might be an issue in regard to the analysis of child
9In the first round, not all plots were measured with GPS. We use the GPS information when available

and use the estimations when it is not.
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labor since this cattle tending is one of the predominant activities of children. However,

the household should equalize the marginal productivity of child labor between various

possible farm activities and focusing on activities on the plots should not bias our estimate

of child productivity.

Tanzania has two types of agriculture: in the North-North East, there is only one

cropping season, which lasts roughly from November to May; the rest of the country has

two cropping seasons, the short one in October-February and the long one in February-July.

In the LSMS-ISA data, households were retrospectively interviewed about working time,

inputs and production during the long and short rainy seasons separately. We aggregate

the two seasons so that, for each household, we use the output and inputs for the full year.

2.3 Child labor in the data

Much information is available about child labor: we know whether the child worked in

the week before the survey (and how many hours), the hours of domestic work on the day

before the survey and, as previously said, the days of agricultural work over the previous

year. The data confirm the importance of agricultural work for children living in rural

areas of Tanzania. Among the 5 to 15 year old children who live in rural areas, 76% did

not work in the previous 7 days. Only 2% of children in this age range provided some

wage work. When they did so, they earned an average daily wage of 2,696 TSh (equivalent

to 2016 US$2.6).10 Among children aged 5 to 15 years old who belong to a land-owning

household, 22.4% participated in farming in the previous year. There was no difference

by gender: 22.7% of boys participated, compared to 22.1% of girls. Two-thirds of children

did not perform any domestic work on the day before the interview. Among those who

provided domestic work, the median duration was half an hour. As expected, girls are more
101,000 TSh in 2008 = US$ 0.95 in 2016; authors’ computation based on World Bank series of in-

flation rates in consumer price index and official average exchange rates. Sources: http://donnees.
banquemondiale.org/indicateur/FP.CPI.TOTL.ZG?locations=TZ&name_desc=true.
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likely to perform domestic chores (41% of them participate compared to 25% of boys) but

when they do so, they do not spend more hours than boys.

The ILO definition of child labor includes all economically active children aged 5 to 15

years old. However, children from 5 to 9 years old work only marginally: Table 1 shows

that the share of working children significantly increases with age and that older children

also devote more time to agricultural work.11,12 Estimating the labor productivity of

young children is difficult because few of them actually work. We therefore focus on the

productivity of children older than 10 and younger than 15. However, we provide estimates

of the productivity differential by child age.

Table 1: Agricultural child labor by age

Age Share of Nb. of days of Observations
working children working children

5 1.50% ns 21
6 2.26% ns 32
7 4.68% ns 65
8 7.40% 31.11 103
9 16.27% 28.88 211
10 19.90% 35.95 277
11 27.11% 41.15 331
12 35.34% 37.48 463
13 41.83% 42.81 504
14 49.10% 46.35 629
15 51.86% 51.20 598

We restrict our analysis to farm labor because it encompasses the main activity of

children and because it is the only activity for which the output is measurable. Our child

labor variable is therefore the number of farming days in the previous year performed by

children aged 10 to 15 years old. At the household level, we observe that, on average, 16 days

of farming are provided by children, compared to 185 days by adults. Child labor therefore
11Very few children are economically active in other sectors than agriculture: among the 5 to 9 year

olds, 0.10% earn a wage, and 0.06% are self-employed.
12This finding is also consistent with 99% of 5 to 9 year old children being enrolled in school, while 87%

of those 10-15 years old are enrolled.
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constitutes 8% of total farm labor and as much (in days) as nonhousehold workers.13

Roughly one-third of child farm labor is devoted to preparing and planting, one-third to

weeding and one-third to harvesting. Adults from the household have a fairly similar work

allocation to them; if anything, adults spend slightly more time on the preparation of the

field and less on harvesting (Figure A1).14 Finally, children mostly allocate their time to

the same crops as their parents (see Figure A2), except for cassava: 34% of their working

days are allocated to cassava, compared to only 20% for the adults. Cassava is known to

be an easy crop to cultivate and might be an “easy” task to give to a child.

2.4 Sample

Our sample is composed of households farming land in which at least one adult member

participates in the farming. Because we implement a household fixed-effect strategy, we

only retain households surveyed at least twice. Households that are resurveyed but that

have moved to a new location are discarded since we want to control for unobserved soil

characteristics. Our total sample is composed of 4,986 households x dates (1,702 surveyed

in 2008, 1,707 in 2010 and 1,577 in 2012).15

3 Production functions and identification

Estimating the productivity of children on the farm entails estimating a production func-

tion, which leads to a series of choices. First, different functional forms are available with

different properties and sometimes different ways of estimating these functional forms. Sec-
13These numbers are stable across years.
14Nonhousehold members spend significantly more time on weeding (almost 40%) and significantly less

on harvesting (22%).
15Special attention must be paid to households that split during the panel (20% of households in each

wave). We treat differently households considered as original households and the split-offs. In practice, the
“original” household after the split is mostly composed of members from the original household (85%), while
the split-off is only composed of 35% original members, i.e., on average fewer than 2 members from the
original household. Very often, the split-off household declares itself in a new location, while the original
household is in the same location. As a consequence, we treat the split-off as a totally new household
entering the panel.

8



ond, we must choose the set of inputs; third, we must address null values of inputs and

output; fourth, we must also choose what type of productivity is reported; and finally,

inputs on the farm are the result of a choice made by households and could therefore be

endogenous. In this section, we describe our set of choices and explain how we manage the

question of identification.

Before turning to this set of choices, we should also clarify why we have chosen to

estimate production functions rather than profit functions. Indeed, profit functions can

be expressed as functions of input prices rather than input levels, which is convenient

because prices are more naturally assumed to be exogenous to the household, while input

levels are the result of precisely the profit maximization and should therefore be considered

endogenous. However, estimating profit functions run into two additional issues. First,

collected prices must reflect relevant prices for the households, which is not necessarily the

case if markets are imperfect, particularly for some inputs that the household can acquire

without the market (seeds, for instance). Second, some households end up with negative

profits. While this outcome could be due to shocks on production, it could also be due to

incorrect estimation of the production costs; therefore, it is difficult to properly address

this situation.

3.1 Production function

There is a large choice set in regard to specifying a production function. Insofar as we are

interested in estimating child labor productivity, particularly by comparison with adult la-

bor productivity, we have allowed for specifications that varied the degree of substitutability

between the two types of labor. Much less emphasis has been placed on the analysis of the

link between labor as a whole and the other inputs: we posit a Cobb-Douglas relationship

between (total) labor and the other inputs. The elasticities of substitution between labor

and other inputs are therefore assumed constant equal to one.
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We focus our attention on the possible substitution between child and adult labor. A

Cobb-Douglas specification for the different types of labor does not seem attractive since

it entails a zero production when child labor is not used, which is not supported by the

data. A flexible functional form would be a CES function:

Y = A[L−ρa + γcL
−ρ
c ]−α/ρXβ (1)

where La and Lc are, respectively, adult and child labor, X are the other inputs (land,

fertilizers...), and A is a productivity factor. ρ ∈ [−1,+∞[ is the substitution parame-

ter between the two types of labor, γc ∈ [0, 1] is the relative productivity of child labor

compared to adult labor, and α, β < 1. Eq. (1) can be log-linearized:

log Y = logA− α

ρ
log(L−ρa + γcL

−ρ
c ) + (logX)β (2)

but it cannot be linearly estimated and often leads to very unstable results (Henningsen

and Henningsen, 2012).

Based on this general specification, we offer three different specifications and lineariza-

tions.

Perfect substitutes The first assumes that child and adult labor are perfect substitutes

(ρ = −1). In this case, the total amount of efficient labor is La+ γcLc. The corresponding

production function is:

log Y = logA+ α log(La + γcLc) + (logX)β (3)
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When γcLc � La, it can be linearly approximated by:

log Y ≈ logA+ α logLa + αγc
Lc
La

+ (logX)β (4)

Imperfect substitutes The second venue consists of departing from the perfect substi-

tution approach (ρ > −1). Assuming that γc
(
Lc
La

)−ρ
� 1 and that ρ remains close to -1,

Equation (2) can be approximated by a Taylor development as:

log Y ≈ logA+ α logLa + αγc
Lc
La

+ α(1 + ρ)γc
Lc
La

(
1− log

Lc
La

)
+ (logX)β (5)

If the fourth term is equal to 0 (but αγc 6= 0), then both types of labor are perfect

substitutes.

Translog Finally, we can simply use a Translog function, which is very flexible and allows

us to avoid any assumptions about the parameters.16 The Translog function has also been

demonstrated to approximate the CES function when ρ ≈ 0 (Kmenta, 1967).

log Y ≈ logA+ αa logLa + αc logLc + αaa(logLa)
2 + αcc(logLc)

2

+ αac logLa logLc + (logX)β (6)

Obviously, the Translog specification is the most flexible among the three offered speci-

fications, but the coefficients cannot be interpreted as structural parameters. This step

determines how we compare the results of the three specifications.
16In this specification, we adjust the Translog function to our hypothesis that the substitution between

labor and other inputs is constant and equal to 1. Robustness tests show that the results are similar with
a complete Translog function. The results are available upon request.
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3.2 Child labor productivity

We want to compute a child’s productivity per day of farm labor. We are more interested

in the average productivity than in the marginal productivity. Indeed, if marginal returns

are decreasing, marginal productivity informs us about the production obtained on the last

day of work. A cash transfer would aim to reduce substantially, perhaps even suppress,

child labor. To do so, families would have to be compensated for a larger number of days,

and average productivity on those days is the relevant concept.

As a consequence, we provide for each specification the average semi-elasticity of output

with respect to days of child labor. More precisely, our estimates of Equations (4), (5) and

(6) allow us to compute the expected production in the absence of child labor and with the

actual number of days of child labor for each farm for their observed level of other inputs.

We compute for each household:

EY cit =
log Ŷit(Lc = Locit)− log Ŷit(Lc = 0)

Locit
(7)

where Locit is the number of days of child labor observed in household i on date t. EY cit is

the average labor productivity of children in household i on date t, estimated for households

that use child labor.

We then weight households by amount of child labor and calculate the average of the

individual semi-elasticities to obtain an aggregate measure of child labor productivity:

EY c =
1∑

i,t L
o
cit

∑
i,t

Locit · EY cit (8)

Because adult productivity is a benchmark against which child productivity should be

evaluated, we also compute it. Adult on-farm labor is never null in our sample; therefore,

to compute the average productivity on a meaningful margin, we use as a base the 10th
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percentile of the adult labor distribution (La equals 38 labor days per year).17 The adult

semi-elasticity EY a is computed as:

EY ait =
log Ŷit(La = Loait)− log Ŷit(La = La)

Loait − La
(9)

EY a =
1∑

i,t L
o
ait

∑
i,t

Loait · EY ait (10)

3.3 Inputs

The inputs that are included in the estimation are the following: adult labor, child labor,

land area, use of organic and inorganic fertilizer, use of pesticides, erosion of the plot,

irrigation of the plot and productive assets. Nonhousehold labor days are aggregated to

household adult labor days (there is hardly any nonhousehold child labor on the farms).

Several inputs, such as child labor, fertilizers and pesticides, frequently have null values,

raising the issue in our specifications of logs. To avoid restricting the sample to households

with positive values of inputs, which would lead to selection bias, we follow MacKinnon

and Magee (1990), Burbidge et al. (1988), and Pence (2006) and use a modified function

of the logarithm, which is defined in (11):

logM (x) = log
1

2

(
x+

√
1 + x2

)
(11)

This function behaves similarly to the log function when x is large. As a consequence,

for all inputs that have large values, the estimated coefficient reflects the increase in the

production (expressed as a percentage) associated with an increase by 1% of the input.

Given that child labor is often equal to 0 in our data, we cannot use this approximation

for the interpretation of the coefficient. The same also holds for the other inputs that tend

to be close to zero. The semi-elasticities of production to labor are computed considering
17The estimated production function fits the data only for the range of adult labor that is observed. We

do not want to extrapolate outside of this range.
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that the logM function (instead of log) is used for the estimation. The details for these

computations are provided in Appendix B.

In the data, we also have a nonnegligible number of households declaring null production

despite nonzero inputs because of disasters, such as droughts and pests. We must retain

these observations with null production to avoid selection bias. We therefore use the same

modified function. Given that the expected value of output is always large, we consider our

function to be well approximated by the logarithm function and interpret it accordingly (the

effect of one additional unit of input is expressed as a percentage increase in production).

3.4 Identification and specifications

Ordinary Least Squares (OLS) estimates of Equations (4), (5) and (6) can suffer from

endogeneity bias for several reasons. First, unobserved permanent household characteristics

(wealth, abilities, education, networks, etc.) can both influence a household’s production

and its labor allocation decisions. In addition, households observe the circumstances of

production much more clearly than econometricians and therefore might adapt their farm

allocation decisions to determinants of production that we do not observe (sunlight, pests,

etc.).

Our solution to this endogeneity issue combines three techniques. First, we exploit the

panel dimension of our data and control for household fixed effects. Second, we control for

observed household time-varying characteristics, such as rainfall, temperature, greenness

increase, idiosyncratic and covariate shocks that the household has declared. We also

control for village-year fixed effects, which should also capture common shocks. Third,

because unobserved idiosyncratic time-varying determinants can still be correlated with

labor decisions and productions, we instrument child labor.

According to the agricultural household model (Singh et al., 1986; De Janvry et al.,

1991), when markets are complete and competitive, the household production decision is

14



separable from its consumption decision, and labor demand depends only on inputs and

output prices. The literature testing whether markets are perfectly competitive in devel-

oping countries has almost unanimously rejected the hypothesis (Jacoby, 1993; Skoufias,

1994; Chennareddy, 1967; Chavas et al., 2005; Le, 2009). In addition, it has used household

composition as a determinant of farm labor supply. For instance, Benjamin (1992) tested

whether the household labor demand is independent from the family composition in rural

Java and rejected the separable assumption. We exploit the labor market imperfections in

rural Tanzania18 and use the number of children aged 10 to 15 years old in the household as

an instrument for child labor. Given that we control for household fixed effects, it amounts

to predicting variations in farm labor, based on within household variations in household

members’ ages.

More precisely, for each household, we build a pool of children 10 to 15 years old at

some point during the course of the panel. This pool of children consists only of offspring

of at least one member of the household. Fostered children are excluded for endogeneity

reasons: they could have been fostered in the household precisely because the household

requires human resources.19 Ideally, we would use all offspring of adult household members.

However, the dataset lacks information about those children: we do not know whether

adults have children living elsewhere. The pool of children is therefore composed of all

offspring of household members, who were recorded as belonging to the household on least

at one date during the panel. The underlying assumption is that this pool of children

constitutes all children who might belong to the household in case of shocks (offspring who

never belonged to the household during the six years of the panel are assumed not to be

available for help). This pool of children Nci for household i is then fixed for the entirety

of the panel, and Ncit is the number of children who belong to this pool and are aged 10
18Dumas (forthcoming) showed that only 5 % of households hire an external workforce. She also showed

that positive rainfall shocks increase child labor, suggesting that the separability assumption does not hold.
19Safir (2009) showed that the household composition (in Senegal) reacts to shocks.
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to 15 in year t:

Ncit =
∑
k∈Nci

1(10 ≤ age in year t of child k ≤ 15). (12)

This procedure is useful because only the aging of children provides variation in Ncit,

not the actual presence of children in the household, which could be correlated with the

needs of the household. Therefore, only the entry/exit of children into/out of the 10-15 age

bracket provides the exogenous variation used in the IV estimation. Children who provide

time variation in a given household are those included in the pool and who cross the age

limit between two rounds. Since rounds are spaced by two years, they are aged 10 or 11

when they enter the age bracket, and they are aged 14 or 15 before exiting the age bracket.

The productivity estimation thus relies on a mixed composition of children aged 10, 11,

14 and 15 years old.20 When no heterogeneity in productivity is allowed, we estimate the

average productivity on children of the previously mentioned ages, which should be close

to the average productivity of children between 10 and 15 years old.

However, despite our instrument not being manipulated by the household, we could

still face violations of the exclusion restriction if this entry/exit of children into/out of the

age range had other consequences in terms of production. Starting with entry into the

10-15 age range, one additional child in the 10-15 age range is associated with one fewer

child in the 5-9 age range. If children in this age range actually work and are productive,

then our production function is misspecified (because labor performed by young children is

not included), with consequences for the identification. This issue is unlikely to be serious

since young children provide little labor. Conversely, exit out of the age range is in fact

associated with an increase in adult labor time. Here, the problem is slightly different since

we do control for adult labor. However, this control is imperfect if adult productivity is
20We checked that the children in the pool were balanced with respect to age.
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actually heterogeneous according to age. Allowing for heterogeneous productivity by child

age helps us to check whether the exclusion restriction is violated, but we postpone this

analysis until section 5.

To summarize, our specifications are the following, with i indexing households in village

v and t indexing dates:

log Yit = α logLait + αγc
Lcit
Lait

+ (logXit)β + µi + ζvt + εit (Perfect)

log Yit = α logLait + αγc
Lcit
Lait

+ α(1 + ρ)γc
Lcit
Lait

(
1− log

Lcit
Lait

)
+ (logXit)β + µi + ζvt + εit (Imperfect)

log Yit = αa logLait + αc logLcit + αaa(logLait)
2 + αcc(logLcit)

2

+ αac logLait logLcit + (logXit)β + µi + ζvt + εit (Translog)

with µi standing for household fixed-effects and ζvt for village-year fixed effects (not sys-

tematically included). The first stage Equations are the following:

Lcit
Lait

= δ1
Ncit

Nait
+ δ2 logLait + (logXit)δ3 + νi + ξvt + ηit (Perfect and Imperfect)

logLcit = δ1Ncit + δ2 logLait + δ22 logL
2
ait + (logXit)δ3 + νi + ξvt + ηit (Translog)

with νi household fixed-effects and ξvt village-year fixed effects. Ncit is named the number

of children from 10 to 15, but it is actually the variable defined in Equation (12). Nait is

built similarly to Ncit: it is number of adults from 16 to 65 years old on date t among the

adults observed at least once in household i during the panel.
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The demographic structure is a valid instrument if:

E

(
Nc

Na
· ε| log(X), log(La), log(La), µ, ζ

)
= 0 (Perfect and Imperfect)

E(Nc · ε| log(X), log(La), µ, ζ) = 0 (Translog)

A second issue to consider in specifications Imperfect and Translog is that the term to be

instrumented appears more than once and with different interactions or functional forms.

It is not advisable to instrument each of these terms because it would lead to an extremely

low partial R-squared for each of the instrumented terms. Instead, we follow Wooldridge

(2015) and implement a control function approach, which amounts to predicting η̂it in the

first stage equation and including it as a control in the main equation. The underlying idea

is that η̂it captures the endogeneity of the household behavior and then is controlled for, in

the same spirit as the inverse-Mills ratio in a selection equation. Wooldridge (2015) showed

that this parsimonious control function approach leads to more efficient estimates than the

IV estimates when the left-hand-side variable is not linear in the endogenous variable.

So far, we have only discussed how to address the endogeneity of child labor. However,

the households are also expected to choose other inputs. Part of the identification strategy

for child labor productivity already answers most endogeneity concerns for other inputs. In

particular, household and village-year fixed effects likely control for a substantial amount of

joint determination issues. In addition, η̂ should also pick up unobserved and idiosyncratic

shocks occurring to households, which are also relevant for the determination of other

inputs used, particularly adult labor.

Nevertheless, it is worth discussing the consequences of possible violations of exogeneity

for the other inputs. Notably, it is important to recognize that adult productivity is in itself

a result of interest, to which child labor productivity will be compared. If endogeneity issues

remain for adult labor, then we should be cautious in the comparison. However, we can
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provide additional tests to assess the extent of this remaining endogeneity. First, we test for

child labor exogeneity, conditional on household and village-year fixed effects. If exogeneity

is not rejected for child labor, then it is less likely that adult labor is endogenous, provided

that we also condition on the same fixed effects. Second, neglecting the endogeneity of

other inputs could lead to a bias in the child labor estimates under certain circumstances.

According to the Zellner property, the IV estimates can be biased only if the instrument

(Nc or Nc
Na

) is correlated with the other inputs, conditional on household and village-year

fixed effects. This condition could be invalidated if, for instance, households anticipate that

their children age and adjust for other inputs based on the increased productivity of the

children. However, additional regressions show that inputs are barely correlated with Nc,

i.e., the number of children aged 10 to 15 years old.

4 Results

4.1 OLS estimations

We start with OLS estimations of the three production functions.

Perfect substitutes Table A2 provides estimates when child labor and adult labor are

assumed to be perfect substitutes. The α parameter estimate is 0.663 (coefficient of logLa)

when not controlling for household fixed effects and 0.802 with household fixed effects,

which is consistent with decreasing marginal returns to labor (since the coefficients are

less than 1). The relative productivity of children γc compared to adults is estimated to

1.22 = 0.814/0.663 when we do not control for household fixed effects (column 1). However,

once we control for household fixed effects, the relative productivity of children decreases:

γc is estimated at 0.71 = 0.569/0.802, suggesting that more productive households are

those that tend to make their children work, which is consistent with previous evidence

that households with more work opportunities are those that employ children (Bhalotra
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and Heady, 2003; Dumas, 2007). When controlling for observable shocks on the production

(column 3), the estimate remains the same, and it somewhat decreases when allowing for

unobservable shocks at the village level. The other inputs that display significant, positive

effects in the specification with household fixed effects are: land area, inorganic fertilizer,

and pesticides. Covariate shocks impact negative household production. Rainfall does

not, perhaps because declared shocks are more accurate. The estimated semi-elasticities,

computed with formulas (8) and (10), are provided in Table 2, Panel A. They are precisely

estimated, but we find in this specification that the average productivity of children is

similar to that of adults. On average, one additional day of child work is associated with

an increase of 0.3% in production.

Imperfect substitutes Table A3 provides the estimates for production in which adult

labor and child labor are imperfect substitutes. The adult productivity is very close to that

estimated earlier; again, controlling for household fixed effects lowers the child productivity.

In Table 2, Panel B, we find that, on average, one day of adult work is associated with

a 0.66% increase in production, while one day of child work is associated with a 0.45%

increase in production. This outcome is consistent with the Perfect estimates since child

productivity is estimated to be two-thirds of adult productivity. The last column, however,

provides lower semi-elasticities of work.

Given that the Imperfect model is an overmodel of the Perfect model, we can test

whether the Perfect model is rejected. The bottom part of Panel B shows that, in all

specifications but one, we can reject the Perfect model. However, allowing for the imperfect

term does not improve the estimation since the R-squared is the same in Tables A2 and

A3.

Translog Finally, Table A4 provides the estimates for the Translog specification. Table

2 Panel C shows that the childs semi-elasticity obtained from the Translog is strikingly the
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Table 2: Average semi-elasticities of labor (based on estimates in Tables A2, A3 and A4)

(1) (2) (3) (4)

Panel A: Perfect substitute specification
Adult −0.0002 0.0027** 0.0029** 0.0028**

(0.0009) (0.0011) (0.0011) (0.0013)
Child 0.0045*** 0.0031*** 0.0029*** 0.0026***

(0.0007) (0.0009) (0.0009) (0.0010)

Panel B: Imperfect substitute specification
Adult 0.0035** 0.0066*** 0.0066*** 0.0036

(0.0016) (0.0016) (0.0016) (0.0023)
Child 0.0057*** 0.0047*** 0.0045*** 0.0029*

(0.0010) (0.0013) (0.0013) (0.0015)
Test α(1 + ρ)γc = 0 6.030 6.036 5.589 0.109
Prob>F 0.015 0.015 0.019 0.741

Panel C: Translog specification
Adult 0.0025*** 0.0047*** 0.0048*** 0.0037***

(0.0008) (0.0010) (0.0010) (0.0012)
Child 0.0057*** 0.0047*** 0.0045*** 0.0028

(0.0010) (0.0015) (0.0015) (0.0017)
Test αaa = αcc = αac = 0 9.982 5.889 5.063 5.065
Prob>F 2.60×10−6 0.001 0.002 0.002

Household FE × × ×
Climatic factors ×
Village-year FE ×
Computation sample 1480 1480 1458 1480

Note: The computation sample is made of households with positive adult labor, child labor and farming area. Standard
errors are clustered at the ward level and are reported in parentheses. ***,**,* means, respectively, that the coefficient
is significantly different from 0 at the level of 1%, 5% and 10%. Climatic factors are rainfall, the number of idiosyncratic
and covariate shocks, the mean temperature and the greenness increase in days.
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same as that obtained from the Imperfect specification.

Based on this specification, we can test whether the Cobb-Douglas specification is

rejected. This test amounts to evaluating the joint significance of the interacted terms

between lnLa and lnLc (αaa, αcc and αac in Equation (6)), and the test is provided in the

bottom part of Panel C. We clearly reject the Cobb-Douglas specification, as expected. An

alternative specification with interacted terms between each labor variable and the other

inputs has been estimated and provides similar results.

4.2 First-stage

Table 3: Effect of the number of children Nc on child labor (first stage)

Perfect and imperfect Translog
(1) (2) (3) (4)

Dependent variable Lc/La Lc/La log(Lc) log(Lc)
Nc
Na

0.203*** 0.187***
(0.028) (0.031)

Nc 0.559*** 0.566***
(0.060) (0.059)

R-squared 0.077 0.268 0.078 0.299
F-test 52.45 35.76 87.16 91.63
Household FE × × × ×
Climatic factors × ×
Village-year FE × ×
Observations 4912 4982 4914 4984

Note: The computation sample is made of households with positive adult labor, child labor and farming
area. Standard errors are clustered at the ward level and are reported in parentheses. ***,**,* means,
respectively, that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.
Climatic factors are rainfall, the number of idiosyncratic and covariate shocks, the mean temperature
and the greenness increase in days.

We now turn to the identification of child labor productivity based on the exogenous

variation provided by children aging. We first check whether aging of the children in

the pool provides sufficient explanatory power. From now on, we systematically control for

household fixed effects. Columns (1) and (3) of Table 3 control for shocks, while columns (2)

and (4) control for village-year fixed effects. We find that household composition predicts

22



well the labor supply, even when conditional on household and village-year fixed effects.

In particular, if adults have one more child aged 10-15 years old, it increases child labor

days by 60%. The F-statistics are high accordingly (ranging from 36 to 92, depending on

specifications). We also attempt to predict total child labor using the number of children

of each age in the pool, but doing so does not improve the F-statistics.

4.3 IV estimations

Table 4: Average semi-elasticities of labor, based on OLS and IV estimations

Variables Perfect Imperfect Translog
OLS IV OLS IV OLS IV

Panel A: Without village-year FE
Adult 0.0029** 0.0053 0.0066*** 0.0096* 0.0048*** 0.0048***

(0.0011) (0.0054) (0.0016) (0.0055) (0.0010) (0.0010)
Child 0.0029*** 0.0009 0.0045*** 0.0021 0.0045*** 0.0032

(0.0009) (0.0044) (0.0013) (0.0044) (0.0015) (0.0065)
η̂ 0.3874 0.4612 0.0242

(0.8711) (0.8658) (0.1226)
Climatic factors × × × × × ×
Household FE × × × × × ×
Computation sample 1458 1458 1458 1458 1458 1458

Panel B: With village-year FE
Adult 0.0028** 0.0033 0.0036 0.0042 0.0037*** 0.0037***

(0.0013) (0.0060) (0.0023) (0.0074) (0.0012) (0.0010)
Child 0.0026*** 0.0022 0.0029* 0.0025 0.0028 0.0026

(0.0010) (0.0050) (0.0015) (0.0050) (0.0017) (0.0068)
η̂ 0.0744 0.0922 0.0035

(0.9751) (1.0017) (0.1293)
Household FE × × × × × ×
Computation sample 1480 1480 1480 1480 1480 1480

Note: The estimation sample is made of households with positive adult labor and farming area while
the computation sample is constrained to households with positive adult labor, child labor and farming
area. Standard errors reported in parentheses are clustered at the ward level and are bootstrapped for IV
estimates. ***,**,* means respectively that the coefficient is significantly different from 0 at the level of 1%,
5% and 10%. For the perfect and the imperfect specification, the IV is Nc

Na
. For the translog specification,

the IV is Nc.

We now turn to the IV estimations. The full specifications are reported in Table A5.

Table 4 reports tests of the specifications and the estimated labor semi-elasticities with

IV (but it also reports OLS results for ease of comparison). The test of exogeneity is
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simply given by the significance of the coefficient of η̂. Quite surprisingly, we never reject

the exogeneity hypothesis of child labor. However, we lose much in terms of the precision

of the estimates, which become nonsignificant, including in the Translog specification, in

which the F-statistic was particularly large. In the specification without village-year fixed

effects, we find that the semi-elasticity of production to child labor is roughly divided by

two when controlling for first-stage residuals. The estimates are consistent with each other

in the various specifications: on average, one day of child labor increases production by

0.2%. In the second part of the panel, precision is again an issue, but the estimates are very

close to those obtained in Panel A and to the OLS estimates. These OLS semi-elasticities

of production to child labor range from 0.26% to 0.29%, which is a very small range. In

comparison, the estimated adult labor semi-elasticities range from 0.28% to 0.37%. We

must be more cautious about this last set of estimates, for which we have not properly

addressed the question of endogeneity. However, the ratio between the two, ranging from

0.76 (Translog) to 0.93 (Perfect), is plausible and points to high efficiency of child labor,

which might be driven by children working on-farm being only household children, while

adult work encompasses a more diverse category: household males, households females and

nonhousehold members. This last category of workers could have lower productivity due

to a lack of incentives. In addition, adult labor includes all labor provided by individuals

aged between 16 and 65 years old, and older workers are presumably less productive than

younger ones.21

5 Heterogeneity in productivity

We now want to explore the heterogeneity in productivity by child characteristics, namely,

age and gender.
21The tests for comparing the different functional forms provide the same results as previously: we reject

the Perfect substitutes production function to the benefit of the Imperfect function, and we cannot reduce
the Translog to a Cobb-Douglas.
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5.1 Specification

We do so based on the Perfect specification. While we have shown that the data reject the

hypothesis that both types of labor are perfect substitutes, we have also seen that the esti-

mates are strikingly close from one functional form to the other. Testing for heterogeneity

by children’s characteristics is straightforward with the Perfect functional form.

Starting back from Equation (3) but allowing for a different γc by child’s gender and

then linearly approximating, we obtain:

log Y = logA+ α log(La + γbLb + γgLg) + (logX)β (13)

log Y ≈ logA+ α logLa + αγb
Lb
La

+ αγg
Lg
La

+ (logX)β (14)

where Lb stands for labor performed by boys and Lg for labor performed by girls.

For heterogeneity by age, we allow for a parsimonious specification according to which

productivity depends linearly in age. For limited variations in age, this assumption should

be reasonable.

log Y = logA+ α log

(
La +

o=15∑
o=10

(γc + γc′ · (o− 15))Lco

)
+ (logX)β (15)

log Y ≈ logA+ α logLa + α
o=15∑
o=10

(γc + γc′ · (o− 15))
Lco
La

+ (logX)β (16)

where Lco stands for labor time provided by children of age o.

Given that the data do not reject the hypothesis of exogeneity in the allocation of child

labor, we simply treat each of the child labor variables as exogenous.22

22We have also exploited the composition of the pool of children to instrument the child labor variables,
but again, exogeneity is never rejected and leads to comparable, but less precise, results.
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5.2 Results

Table 5 provides the semi-elasticities of production to child days of work by gender. We find

that boys are markedly more productive than girls, which could be either due to differences

in strength or due to girls spending only a proportion of their day in the field (because

they have to also provide domestic work, for instance), while boys spend their full day on

the plot. We do not have information about farming hours per day on an annual basis.

However, we know the number of hours devoted to each activity in the week before the

survey. Figure A3 provides the statistics for economically active children. Boys spend

more than 18 hours per week on agricultural tasks, while girls provide only 13 hours. We

do not have information about the number of days spent farming in the previous week,

so we cannot compute a number of hours per day of work. However, we know that girls

spend, on average, 54.3 days per year conditional on participation, compared to 48.9 days

for boys. This small discrepancy suggests that girls indeed provide less farm labor per day

of work. If parents allocate child working hours to equate the marginal productivity in

various activities, then the productivity of boys is a better estimate of the full productivity

of a child.

Table 5 provides the semi-elasticities by child age. We confirm that older children

are more productive than younger ones. Fifteen year old children are three times more

productive than 11 year old children, and the semi-elasticity for 10 year old children is

not significantly different from 0, consistent with few children younger than 10 working on

farms.

This finding also informs us about the validity of our instrumentation strategy. Indeed,

entry in and exit out of the age range are also associated with changes in the other inputs if

1) children younger than 10 actually contribute; or 2) children older than 15 have different

productivity than adults. Given that children younger than 10 have been shown not to be

economically productive, 1) is excluded. We also provide in Table A6 a specification with
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Table 5: Average semi-elasticities by gender and by age

(1) (2) (3) (4) (5) (6) (7) (8)
Gender Age

Boy Girl 10 11 12 13 14 15

Panel A: Without village-year FE
0.0046*** 0.0015 0.0006 0.0012 0.0018 0.0024** 0.0029*** 0.0035**
(0.0014) (0.0010) (0.0036) (0.0027) (0.0018) (0.0011) (0.0009) (0.0014)

Household FE × × × × × × × ×
Climatic factors × × × × × × × ×
Computation sample 1458 1458 1458 1458 1458 1458 1458 1458

Panel B: With village-year FE
0.0042*** 0.0013 -0.0003 0.0004 0.0012 0.0019 0.0027*** 0.0034*
(0.0016) (0.0014) (0.0049) (0.0036) (0.0024) (0.0013) (0.0010) (0.0020)

Household FE × × × × × × × ×
Computation sample 1480 1480 1480 1480 1480 1480 1480 1480

Note: The estimation sample includes all households with adult labor while the simulation sample is constrained to households
with adult and child labor. Standard errors are clustered at the ward level and are reported in parentheses. ***,**,* means
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.

labor provided by children younger than 10 years old. It confirms the results. We also

find that the productivity of 15 year old children is not significantly different from adults’

productivity, which excludes 2). The instruments therefore seem to satisfy the exclusion

restriction.

6 How much should children be compensated?

We are now equipped with estimates of child labor productivity. Based on this information,

we can compute two measures of interest. The most direct one is the children’s opportunity

cost of time, which is obtained by simply expressing these productivity estimates as the

value for one day of labor. We can also infer how much would be needed to bring children

to school, i.e., the amount of cash transfer that would be required to convince parents

to enroll their children in school. To do so, we must additionally estimate the education

demand, which comes with additional assumptions but provides a key figure for a potential

economic policy.

27



Table 6: Average value of one day of labor in US$, by gender and by age

(1) (2) (3) (4) (5) (6)
Adult Child Girl Boy

3.252*** 0.890*** 0.375 1.471***
(0.188) (0.306) (0.389) (0.457)

Age 10 11 12 13 14 15
-0.0406 0.221 0.466 0.697* 0.915*** 1.122**
(1.682) (1.175) (0.746) (0.412) (0.311) (0.501)

Household FE × × × × × ×
Computation sample 1458 1458 1458 1458 1458 1458

Note: Standard errors are clustered at the ward level and are reported in parentheses. ***,**,*
means respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and
10%.

The previous specifications have displayed remarkable homogeneity in results. Given

that we want to keep a specification allowing for heterogeneity by children’s characteristics,

we simply use in this last section a Perfect production function. The OLS estimates of the

Perfect specification with climatic factors are those obtained in Panel B of Table 4; we thus

proceed with these estimates.23

6.1 Child opportunity cost of time

We compute the value of one day of child labor in 2016 US$. We find that the child

productivity is roughly $0.89.24 Gertler and Glewwe (1992) computed the opportunity

cost of education by differencing work duration between enrolled and nonenrolled children.

In our data, nonenrolled children work 26 days more than enrolled children, on average.

Therefore, the opportunity costs of education are roughly equal to $23, which could be

compensated by monthly payments of $1.92.

As previously said, using the child wage on the market to assess the child time opportu-

nity cost is difficult to defend. However, it is interesting to compare the adult agricultural

wage with our estimates of adult productivity. In our data, wages can be reported per
23The main discrepancy is the lower estimated productivity for adults.
24The Translog specification, which provides the higher estimates, predicts that the child productivity

is $1.25.
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day or per month at the discretion of the respondent. The average per day wage among

adults who are paid by the day is 4,818 TSh ($4.6).25 This amount is slightly greater than

most of the adult elasticities obtained in Table 6, which is expected since the existence

of labor market imperfections would lead to a discrepancy between observed wages and

shadow wages. In particular, household workers would presumably have difficulties being

hired full time on the market, and considering the likelihood of remaining unemployed on

a given day reduces the opportunity cost of time and increases on-farm employment. This

discrepancy confirms that we cannot completely rely on child wages to inform us about

child time opportunity costs, but the difference between adult wages and adults’ estimated

productivity suggests that our estimates are meaningful.

We can also compute the child earnings per day by age and gender. As previously

discussed, boys have higher estimated productivity than girls, and 15 year old children are

found to provide $1.12 per day of work.

6.2 Simulation of the effect of a conditional cash transfer

Our simulation of the opportunity cost of time, however, does not lead to a clear policy

recommendation. Indeed, how much is needed to convince parents to enroll their children

in school also depends on the income elasticity of education demand, which has not yet

been estimated. The (conditional) cash transfer to provide might well be lower than the

opportunity cost if parents value education but simply cannot afford it, but it could also

be higher if the parents dislike education and/or attach a specific value to child labor.

We therefore perform a simulation exercise to evaluate the effect of a CCT. To do so,

we replicate the simulation provided in Bourguignon et al. (2003), which is one of the

few papers computing the ex-ante effects of a CCT. Their paper was applied to Brazil.
25When performing a similar computation for adults paid by the month, we obtain a monthly average

agricultural wage of 96,334 TSh, corresponding to 20 days of the daily wage. Therefore, there does not
seem to be a striking difference between pay per day and pay per month for 20 days of work in a month,
which seems sensible.
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Compared to their method, we only change the simulation of child income: they relied on a

Mincer equation function to predict unobserved child wages, while we rely on our production

function (with heterogeneity in productivity by age). The rest of the specifications are

similar.

The method boils down to estimating an occupational choice (Sci) with 3 options as

follows: 0 if the child does not attend school, 1 if the child goes to school and works on

the farm and 2 if the child goes to school and does not work on the farm. The choice of

child c in household i (Sci) therefore takes on three values. When Sci = 0, the child is

assumed to work full time, when Sci = 1, the child cannot provide as much economic labor

since s/he also attends school, and when Sci = 2, s/he might also be employed in domestic

activities, along with school attendance. The child’s occupation is chosen to maximize the

utility (Uci), and we assume that:

Uci(j) = Zci · γj + (Y−i + ycij)αj + vcij (17)

where j = 0, 1, 2 are the alternatives, Y−i is the total income of household members other

than the child, and ycij is the contribution of the child in alternative j, Zci, all of which are

nonincome explanatory variables, while vcij is a random variable that reflects unobserved

preferences for schooling and labor. Once the parameters are estimated, we can simulate the

occupation choice with a household income increased by the transfer amount, conditional

on school enrollment (i.e., for alternatives 1 and 2) and on being in a poor household.

Appendix D provides more details about the method, the computation of the incomes,

and the intermediate results for the parameters estimates. Table 7 provides the estimated

effect of a monthly $10 conditional cash transfer.26 The effect of the transfer is small. The
26Such a transfer targeted to children aged 10-15 years old and below the poverty line would cost

approximately 0.6% and 0.8% of the GDP, respectively, depending on whether only rural areas or the
whole territory is treated. In 2014, the government expenditures on education amounted to 3.48% of the
GDP.
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Table 7: Simulated effect of a conditional monthly transfer ($10) on
schooling and work status of children aged 10-15

New status
Actual Status Work Work and Attend Attend Total

All children
Work 88.89 6.21 4.90 100.00
Work and Attend 0.00 99.74 0.26 100.00
Attend 0.00 0.00 100.00 100.00

Before the transfer 6.90 35.37 57.73 100.00
After the transfer 6.14 35.71 58.15 100.00

Only children below the poverty line
Work 86.23 7.69 6.07 100.00
Work and Attend 0.00 99.75 0.25 100.00
Attend 0.00 0.00 100.00 100.00

Before the transfer 7.59 36.16 56.25 100.00
After the transfer 6.54 36.65 56.80 100.00

Note: The conditionality is based on schooling attendance and being below the
poverty line.

bottom panel of the table states that, among the 7.59% of children who do not attend school

and are below the poverty line, only 13.77% of them would switch to school enrollment

(7.69% combining the two activities and 6.07% only attending school). As a result, the share

of nonenrolled children diminishes only slightly to 6.54%. When using the whole sample,

this targeted transfer has a smaller effect, as expected, since the transfer is conditional on

poverty. This outcome is in stark contrast to the results obtained in Bourguignon et al.

(2003), despite a very similar methodology. The corresponding figure for Bolsa Escola

(first figure of bottom panel) is 41.3%, while the transfer per child is lower (2016$ 6.67

per month). Of course, additional assumptions come with the simulation. In particular,

we estimate the occupational choice model and its elasticity to income without considering

potential endogeneity issues (as Bourguignon et al. (2003) did). However, instrumenting

the income variable with a wealth index based on durable ownership does not change the

results. One must recognize, however, that the conclusion that we reach in this section bears

not only on our estimates of the child earnings but also on the validity of the occupation
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choice specification.

It is interesting to try and understand the discrepancy between the two figures provided

in this paper. On the one hand, we find that children make only a marginal contribution

to their households (see Table A7) and that having them enrolled in school only costs, on

average, $26 per year. On the other hand, we find that, with a yearly CCT of $120, only

a small proportion of nonenrolled children would attend school. It therefore seems that

households opting for child labor are reluctant to stop using it. How can we explain this

finding? First, the average child productivity hides considerable heterogeneity. Examining

the characteristics of the compliers and of the noncompliers is very informative. Table

A8 displays the characteristics of the children who are never enrolled, who enroll due to

the program and who are always enrolled. It shows that the children who comply are

actually poorer and rely less on farming than the noncompliers. Actually, the estimated

farm production of children who do not comply is $213 per year, compared to $46 for those

who comply and $80 for those who are enrolled, computed for a similar number of work

days (full time). These outcomes clearly suggest that, for efficiency purposes, the transfer

would have to be higher for children who have higher opportunity costs (more land area).

This finding raises ethical issues. Interestingly, the land area is similar for the compliers

and for the always-takers. The former, however, have fewer other sources of income. We

also find that children who do not comply have left school for longer periods, limiting their

possibility of returning to school.

Second, it might also be that parents value child labor per se, not only for the income it

provides, which could be the case if child labor is actually an investment in specific human

capital. Additionally, if parents anticipate higher transfers from their grown-up children if

they continue farming (and remain close to their parents), they might decide not to enroll

them in school. Both explanations fit the stylized fact that education demand is not very
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sensitive to household income,27, but in the absence of information on returns to investment

in the two types of human capital, we cannot disentangle the two explanations.

This result also incidentally speaks to the debate between proponents and opponents

of CCT schemes. Proponents argue that the conditionality allows sending more children

to school and therefore reducing poverty in the long-run. Opponents argue that there are

hidden costs associated with “forcing” the household to send their children to school and

that some households might decide not to comply, hampering the fight against poverty.

Baird et al. (2011) provided mixed evidence for the relative efficiency of conditional versus

unconditional cash transfers. They also showed that, when there is a large proportion

of non-compliers (with the CCT), it is best to opt for an unconditional cash transfer.

Evaluating the impact of our hypothetical program on poverty reduction is beyond the

scope of our paper, but it seems that, in our setting, an unconditional cash transfer would

be preferable. Bauchet et al. (2018) reached a similar conclusion when observing that, in

Bolivia, the most marginalized group of children was less likely to participate in educational

CCTs. In our case as well, many children would not comply and belong to the poorer

households. Of course, opting for an unconditional cash transfer incurs the expense of

any improvement in schooling (see Table A11 for the simulated effect of an unconditional

transfer), but one must remember that only 1% of children living in poverty change their

schooling status due to CCTs.

7 Conclusion

In this paper, we estimate the economic contributions of children as unpaid family workers

on Tanzanian farms. To do so, we exploit the panel dimension of the data to control

for unobserved permanent household and time-varying village characteristics. We also
27The estimated effect of household income on education demand is roughly half that obtained in Brazil

by Bourguignon et al. (2003).
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instrument child labor by the variation in the number of children of household members

over time; however, exogeneity is never rejected. Our results are consistent despite the

use of various functional forms and specifications. The results show that one day of labor

performed by a child aged 10 to 15 years old increases production by roughly $0.89.

This outcome informs us about the opportunity costs of children in agricultural house-

holds. To our knowledge, this paper is the first to provide an estimate of the child con-

tribution per day of work for a setting reflecting the most common form of child labor in

African countries.

We also explore the heterogeneity of child productivity by gender and age. It appears

that children begin being productive from 12 years old and reach adult productivity by 15

years old. In addition, that boys spend more time working on farms and contribute less

than girls to domestic activities could explain why their daily productivity is higher.

Considering the discrepancy in the amount of work that enrolled and nonenrolled chil-

dren perform (26 days per year), we find that households should be compensated on average

with $1.92 per month for enrolling their children. However, when simulating a hypothetical

CCT program, we find that even larger cash transfers ($10 per month) would fail to bring

nonenrolled children into school. The heterogeneity in productivity as well as the low sen-

sitivity of education demand to income seems to explain this result. Our methodology and

our findings are especially relevant when assessing the value of conditional cash transfer

programs.
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A Variables definition

Production: Total household production on farm. Each crop’s output is the output valued

at the median price in the district. The value of the production is expressed in current

Tanzanian shillings.

Area: Total surface area (in acres) of farmed plots.

Adult labor La: Number of farming days in the last year performed by adults aged 16

to 65 in the household.

Child labor Lc: Number of farming days in the last year performed by children aged 10

to 15 in the household.
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Organic fertilizer: Dummy variable equal to 1 if the household uses organic fertilizer for

at least one plot.

Inorganic fertilizer: Total spending (in Tanzanian shillings) on inorganic fertilizer during

the year of the survey.

Pesticide: Total spending (in Tanzanian shillings) on pesticide during the year of the

survey.

Rainfall: We use data from the NOAA to compute a standardized rainfall index from

July to June of the year prior to the survey: http://iridl.ldeo.columbia.edu/

SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/.est_prcp/datafiles.

html.

Number of idiosyncratic shocks: Number of productivity shocks (drought, flood, crop

disease, crop pests and severe water shortages) that severely affected the household

and/or some households in the village in the year of the survey.

Number of covariate shocks: Number of productivity shocks (drought, flood, crop dis-

ease, crop pests and severe water shortages) that severely affected most or all house-

holds in the community in the year of the survey.

Temperature: Annual mean temperature in degrees Celsius, multiplied by 10.

Greenness increase: Average change in greenness (integral of daily EVI values) during

growing season.

Productive assets: Based on the ownership status of 25 farming assets (carts, tractors,

harvesting machine, etc.), we adopt Principal Component Analysis (PCA) to con-

struct a productive asset index.
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Land erosion: Dummy variable equal to 1 if the household had an erosion issue for at

least one plot during the year of the survey.

Land irrigation: Dummy variable equal to 1 if the household has at least one irrigated

plot.

Gender of the household head: Dummy variable equal to 1 if the household head is a

woman.

Crops: Variables equal to the percentage of maize, paddy, sorghum, cassava, sweet pota-

toes, beans, cowpeas, sunflowers, groundnuts and cotton on the farm (these crops

constitute the ten main crops in Tanzania).

B Semi-elasticities with function logM

Dependent variable

Equations (4), (5) and (6) describe the functional forms used in this paper (respectively,

for the specifications of Perfect, Imperfect and Translog). These equations follow the form

log Y = f(Lc, La, X). We estimate these equations with the function logM since we need

to consider the observations that report an absence of output: logMY = f(Lc, La, X).

This decision affects marginally the interpretation of the semi-elasticities. Indeed, the

monetary unit of Tanzania is small (1$ ≈ 1, 000TSh) and accordingly, logMY ≈ log Y as

soon as Y > 0. In addition, we write the fundamental model Y = u exp f(Lc, La, X), where

u ≥ 0 is a multiplicative error term independent from Lc, La, X.

logM (Y ) ≈ f(Lc, La, X) + log u when u > 0 (18)

= 0 when u = 0 (19)

E(logM (Y )|Lc, La, X) ≈ P (u > 0)E(log Y |u > 0, Lc, La, X) (20)
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The semi-elasticities (7) and (9) are based on the difference in log Y between two sit-

uations with and without labor. The corresponding differences in logM (Y ) are differences

in log Y multiplied by the chance of having production. In other words, we measure an

additional production per day as a percentage multiplied by the likelihood of having pro-

duction.

Explanatory variables

The semi-elasticities (7) and (9) depend on the expected production for two different levels

of Lc, La. When log enters the estimated equations, we use the function logM in the

estimation and in the computations following the estimation; hence, the simulated function

is the same as the estimated function.
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C Additional tables and figures

Table A1: Descriptive statistics on the sample

(1) (2) (3) (4) (5)
N Mean Std. Dev. Min Max

logM (production) ≈ log(production) 4986 11.12 3.69 −0.69 18.16
logM (area) ≈ log(area) 4986 1.16 0.97 −0.69 6.41
logM (La) ≈ log(La) 4986 4.88 0.96 0.75 7.90
logM (Lc) ≈ log(Lc) 4986 0.52 1.98 −0.69 6.47
Nc 4986 1.05 1.16 0 16
Na 4986 3.49 2.25 0 28
Organic fertilizer 4986 0.22 0.41 0 1
log(inorganic fertilizer) 4986 1.30 4.39 −0.69 16.05
log(pesticide) 4986 0.87 3.73 −0.69 13.76
Number of idiosyncratic shocks 4986 0.07 0.28 0 3
Number of covariate shocks 4986 0.27 0.51 0 3
Land erosion 4985 0.17 0.37 0 1
Land irrigation 4985 0.03 0.17 0 1
Rainfall 4986 −0.02 0.81 −2.08 2.66
Temperature 4915 227.38 26.85 146 278
Greenness increase 4944 129.26 18.76 −12.8 166
Age of household head 4986 48.84 14.46 19 107
Productive assets 4986 0.08 1.84 −0.34 113.54
Percentage of maize 4986 0.45 0.38 0 1
Percenrage of paddy 4986 0.10 0.23 0 1
Percentage of sorghum 4986 0.05 0.17 0 1
Percentage of cassava 4986 0.02 0.11 0 1
Percentage of sweet potatoes 4986 0.03 0.12 0 1
Percentage of beans 4986 0.14 0.27 0 1
Percentage of cowpeas 4986 0.03 0.13 0 1
Percentage of sunflower 4986 0.03 0.13 0 1
Percentage of groundnuts 4986 0.05 0.16 0 1
Percentage of maize 4986 0.02 0.10 0 1
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Figure A1: Activities in agricultural work, by category of worker

(a) Children (b) Household adults

(c) Non-household adults

Note: Distribution of total labor days by activity. Data for 2012.

Figure A2: Labor distribution among main crops

Note: Distribution of total labor days by crop, only plots without intercropping
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Table A2: Perfect substitutes: OLS estimation

(1) (2) (3) (4)

logLa 0.6628*** 0.8024*** 0.7903*** 0.7394***
(0.0711) (0.0933) (0.0903) (0.1014)

Lc
La

0.8140*** 0.5695*** 0.5310*** 0.4787***
(0.1254) (0.1587) (0.1569) (0.1835)

log(area) 1.0828*** 0.6786*** 0.6808*** 0.5330***
(0.0730) (0.1040) (0.1046) (0.1096)

Organic fertilizer 0.4186*** 0.1137 0.1185 0.2423
(0.1260) (0.1400) (0.1395) (0.1695)

log(inorganic fertilizer) 0.1095*** 0.0659*** 0.0662*** 0.0694***
(0.0112) (0.0176) (0.0177) (0.0203)

log(pesticide) 0.0234 0.0291** 0.0286* 0.0154
(0.0162) (0.0144) (0.0146) (0.0167)

Number of idiosyncratic shocks -0.0206 0.0066 0.0474 -0.1401
(0.1621) (0.2080) (0.2060) (0.2280)

Number of covariate shocks -0.1272 -0.1845** -0.1923** -0.0071
(0.0791) (0.0883) (0.0891) (0.1012)

Land erosion 0.2255* -0.0781 -0.0696 -0.0392
(0.1179) (0.1219) (0.1236) (0.1496)

Land irrigation 0.6326** 0.5095 0.5241 0.3514
(0.2498) (0.3904) (0.3875) (0.4083)

Productive assets 0.0034 -0.0052 0.0112 0.0344
(0.0113) (0.0118) (0.0125) (0.0604)

Rainfall 0.0553
(0.0734)

Temperature 0.0410
(0.0439)

Greenness increase 0.0153**
(0.0069)

R-squared 0.380
Within household R-squared 0.233 0.231 0.466
Household FE × × ×
Village-year FE ×
Observations 4984 4984 4914 4984

Sample: The estimation sample is made of households with positive adult labor and farming
area. Standard errors are clustered at the ward level and are reported in parentheses. ***,**,*
means respectively that the coefficient is significantly different from 0 at the level of 1%, 5%
and 10%. We also control for the crops variables, the household head’s gender and age, the
use of plot GPS information, survey month and year dummies.
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Table A3: Imperfect substitutes: OLS estimation

(1) (2) (3) (4)

logLa 0.6587*** 0.8009*** 0.7886*** 0.7394***
(0.0711) (0.0932) (0.0902) (0.1014)

Lc
La

0.5175*** 0.2686* 0.2429 0.4235*
(0.1444) (0.1495) (0.1481) (0.2176)

Lc
La
∗ (1− log Lc

La
) 0.5069** 0.5653** 0.5459** 0.1067

(0.2064) (0.2301) (0.2309) (0.3228)
log(area) 1.0795*** 0.6741*** 0.6769*** 0.5317***

(0.0730) (0.1039) (0.1046) (0.1093)
Organic fertilizer 0.4131*** 0.1191 0.1242 0.2432

(0.1260) (0.1398) (0.1391) (0.1697)
log(inorganic fertilizer) 0.1094*** 0.0657*** 0.0659*** 0.0694***

(0.0111) (0.0176) (0.0177) (0.0203)
log(pesticide) 0.0239 0.0289** 0.0285* 0.0155

(0.0161) (0.0144) (0.0146) (0.0167)
Number of idiosyncratic shocks -0.0207 0.0047 0.0454 -0.1404

(0.1616) (0.2075) (0.2055) (0.2279)
Number of covariate shocks -0.1309* -0.1897** -0.1976** -0.0081

(0.0791) (0.0885) (0.0893) (0.1012)
Land erosion 0.2253* -0.0748 -0.0662 -0.0389

(0.1173) (0.1220) (0.1236) (0.1497)
Land irrigation 0.6366** 0.5189 0.5332 0.3538

(0.2493) (0.3873) (0.3848) (0.4065)
Productive assets 0.0034 -0.0053 0.0109 0.0342

(0.0113) (0.0117) (0.0125) (0.0607)
Rainfall 0.0552

(0.0732)
Temperature 0.0413

(0.0437)
Greenness increase 0.0151**

(0.0069)

R-squared 0.381
Within household R-squared 0.234 0.231 0.466
Household FE × × ×
Village-year FE ×
Observations 4984 4984 4914 4984

Sample: The estimation sample is made of households with positive adult labor and farming
area. Standard errors are clustered at the ward level and are reported in parentheses. ***,**,*
means respectively that the coefficient is significantly different from 0 at the level of 1%, 5%
and 10%. We also control for the crops variables, the household head’s gender and age, the
use of plot GPS information, survey month and year dummies.

46



Table A4: Translog: OLS estimation

(1) (2) (3) (4)

logLa 1.1940*** 1.4674*** 1.4126*** 1.5193***
(0.3700) (0.5022) (0.5215) (0.5291)

logLc 0.6496*** 0.5680*** 0.5300*** 0.5562***
(0.1203) (0.1442) (0.1439) (0.1560)

(logLa)
2 -0.0586 -0.0713 -0.0665 -0.0837

(0.0372) (0.0504) (0.0524) (0.0535)
(logLc)

2 -0.0070 -0.0285 -0.0306* -0.0107
(0.0152) (0.0184) (0.0184) (0.0205)

logLc · logLa -0.1000*** -0.0719*** -0.0639** -0.0893***
(0.0243) (0.0272) (0.0265) (0.0303)

log(area) 1.0791*** 0.6667*** 0.6673*** 0.5220***
(0.0730) (0.1040) (0.1048) (0.1099)

Organic fertilizer 0.3864*** 0.0991 0.1012 0.2373
(0.1263) (0.1396) (0.1389) (0.1704)

log(inorganic fertilizer) 0.1082*** 0.0665*** 0.0667*** 0.0701***
(0.0110) (0.0178) (0.0178) (0.0203)

log(pesticide) 0.0262 0.0327** 0.0323** 0.0188
(0.0161) (0.0144) (0.0146) (0.0167)

Number of idiosyncratic shocks -0.0463 -0.0186 0.0224 -0.1618
(0.1607) (0.2078) (0.2059) (0.2278)

Number of covariate shocks -0.1200 -0.1774** -0.1840** -0.0063
(0.0789) (0.0883) (0.0891) (0.1012)

Land erosion 0.2266* -0.0875 -0.0791 -0.0456
(0.1162) (0.1222) (0.1238) (0.1500)

Land irrigation 0.6230** 0.5434 0.5566 0.3906
(0.2506) (0.3801) (0.3778) (0.4012)

Productive assets 0.0066 -0.0046 0.0108 0.0366
(0.0127) (0.0120) (0.0126) (0.0634)

Rainfall 0.0636
(0.0725)

Temperature 0.0465
(0.0448)

Greenness increase 0.0142**
(0.0069)

R-squared 0.383
Within household R-squared 0.237 0.235 0.469
Household FE × × ×
Village-year FE ×
Observations 4984 4984 4914 4984

Sample: The estimation sample is made of households with positive adult labor and farming area.
Standard errors are clustered at the ward level and are reported in parentheses. ***,**,* means
respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and 10%.
We also control for the crops variables, the household head’s gender and age, the use of plot GPS
information, survey month and year dummies.
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Table A5: IV estimations of the production functions

Perfect Imperfect Translog
(1) (2) (3) (4) (5) (6)

logLa 0.7760*** 0.7358*** 0.7715*** 0.7349*** 1.4176*** 1.5200***
(0.0880) (0.0974) (0.0881) (0.0979) (0.5142) (0.4036)

Lc
La

0.1657 0.4078 -0.1977 0.3343
(0.7336) (0.9208) (0.7941) (1.0244)

Lc
La
∗ (1− log Lc

La
) 0.5569** 0.1094

(0.2618) (0.3531)
(logLa)

2 -0.0667 -0.0838**
(0.0511) (0.0421)

logLc 0.5085** 0.5531***
(0.2046) (0.1998)

(logLc)
2 -0.0305 -0.0106

(0.0218) (0.0168)
logLc · logLa -0.0642** -0.0893***

(0.0259) (0.0298)
log(area) 0.6877*** 0.5350*** 0.6849*** 0.5342*** 0.6706*** 0.5229***

(0.0985) (0.0949) (0.0988) (0.0946) (0.1169) (0.0951)
Organic fertilizer 0.1187 0.2423 0.1246 0.2432 0.1036 0.2377

(0.1464) (0.1723) (0.1455) (0.1728) (0.1408) (0.1737)
log(inorganic fertilizer) 0.0659*** 0.0694*** 0.0657*** 0.0694*** 0.0668*** 0.0701***

(0.0193) (0.0187) (0.0193) (0.0186) (0.0169) (0.0188)
log(pesticide) 0.0308** 0.0160 0.0310** 0.0161 0.0327** 0.0188

(0.0153) (0.0153) (0.0154) (0.0153) (0.0155) (0.0155)
Number of idiosyncratic shocks 0.0498 -0.1396 0.0483 -0.1397 0.0246 -0.1613

(0.2128) (0.2164) (0.2122) (0.2161) (0.2041) (0.2153)
Number of covariate shocks -0.1963** -0.0072 -0.2025** -0.0084 -0.1848** -0.0062

(0.0890) (0.0894) (0.0898) (0.0895) (0.0868) (0.0907)
Land erosion -0.0609 -0.0369 -0.0565 -0.0365 -0.0780 -0.0456

(0.1347) (0.1353) (0.1352) (0.1353) (0.1217) (0.1370)
Land irrigation 0.5177 0.3474 0.5259 0.3491 0.5513 0.3894

(0.3831) (0.3374) (0.3795) (0.3364) (0.3581) (0.3352)
Productive assets 0.0119 0.0354 0.0117 0.0355 0.0113 0.0371

(0.0516) (0.0581) (0.0515) (0.0579) (0.0558) (0.0638)
Rainfall 0.0557 0.0557 0.0633

(0.0779) (0.0778) (0.0808)
Temperature 0.0155** 0.0153** 0.0145**

(0.0074) (0.0074) (0.0065)
Greenness increase 0.0410 0.0412 0.0458

(0.0449) (0.0447) (0.0421)
η̂ 0.3874 0.0744 0.4612 0.0922 0.0242 0.0035

(0.8711) (0.9751) (0.8658) (1.0017) (0.1226) (0.1293)

Household FE × × × × × ×
Village-year FE × × ×
R-squared 0.091 0.075 0.091 0.075 0.096 0.080
Observations 4986 4986 4986 4986 4914 4984

Sample: The estimation sample is made of households with positive adult labor and farming area. Standard errors are
clustered at the ward level and are reported in parentheses. ***,**,* means respectively that the coefficient is significantly
different from 0 at the level of 1%, 5% and 10%. We also control for the crops variables, the household head’s gender and
age, the use of plot GPS information, survey month and year dummies.



Figure A3: Working hours by activity in the last week, among children who work

Sample: Children who have an economic activity and who live in a farm household.
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Table A6: Average semi-elasticities by age for chil-
dren 5 to 15 years old

(1) (2)
Age OLS

5 0.000656 0.00214
(0.00350) (0.00454)

6 0.000934 0.00221
(0.00306) (0.00394)

7 0.00121 0.00228
(0.00263) (0.00335)

8 0.00149 0.00235
(0.00220) (0.00277)

9 0.00177 0.00242
(0.00179) (0.00220)

10 0.00204 0.00248
(0.00140) (0.00166)

11 0.00232** 0.00255**
(0.00107) (0.00121)

12 0.00260*** 0.00262***
(0.000860) (0.000944)

13 0.00288*** 0.00269***
(0.000863) (0.00104)

14 0.00315*** 0.00276*
(0.00108) (0.00142)

15 0.00343** 0.00283
(0.00141) (0.00192)

Adult 16-65 0.00209 0.00250
(0.00179) (0.00250)

Household FE × ×
Climatic factors ×
Village-year FE ×
Computation sample 1545 1569

Note: The estimation sample is made of households with
positive adult labor and farming area while the compu-
tation sample is constrained to households with positive
adult labor, child labor and farming area. Standard er-
rors are clustered at the ward level and are reported in
parentheses. ***,**,* means respectively that the coef-
ficient is significantly different from 0 at the level of 1%,
5% and 10%.
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D Simulation exercise

We provide a brief description of the simulation exercise. More details and justifications

can be found in Bourguignon et al. (2003).

D.1 Detail of the simulation method

The objective is to estimate an occupation choice model, as in Equation 17, and then

simulate the effect of the CCT. To do so, we must obtain estimates of household and child

incomes in the various alternatives.

If yci0 denotes the child’s contribution to the household income in alternative 0; then,

the child’s contribution in the other alternatives j is:

yci1 =Myci0; yci2 = Dyci0 (21)

where M can be observed, and D is not. M reflects the difference in child income when

s/he attends school instead of only working. D reflects the difference in child contribution

when s/he does not perform farm work, instead of only working. Such a contribution is

expected if children engage in domestic activities, for instance.

Plugging in these incomes into the utilities under the various alternatives (eq. 17)

yields:

Uci(j) = Zci · γj + αjY−i + βjyci0 + vcij (22)

with β0 = α0;β1 = α1M ;β2 = α2D. Bourguignon et al. (2003) showed that a multilogit

model identifies αs and D.

Once these parameters are obtained, we can simulate a conditional cash transfer, tar-

geted on people below the poverty line (Y 0).28 The simulation simply consists of assessing
28This process also requires drawing residuals for the individuals that are consistent with the observed
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the alternative that results in the greatest utility when a transfer T is given to the house-

hold, under the condition that the child is enrolled in school (alternatives 1 and 2).29

Uci0 = Zci · γ0 + α0Y−i + β0yci0 + vci0

Uci1 = Zci · γ1 + α1(Y−i + T ) + β1yci0 + vci1 if Y−i +Myci0 ≤ Y 0

Uci1 = Zci · γ1 + α1Y−i + β1yci0 + vci1 if Y−i +Myci0 > Y 0

Uci2 = Zci · γ2 + α2(Y−i + T ) + β2yci0 + vci2 if Y−i +Myci0 ≤ Y 0

Uci2 = Zci · γ2 + α2Y−i + β2yci0 + vci2 if Y−i +Myci0 > Y 0

D.2 Computation of child and adult incomes

The child contribution is determined by two components: the intensity of work (number of

days per year); and the productivity of work (obtained from the production function). The

intensity of work depends on whether the child combines work with schooling or not (M

parameter). We first identify this parameter, along with the estimate of the “full working

time”, i.e., the average number of work days for children only engaged in economic activity.

We estimate how child farming days change with age and enrollment in school with the

following Equation:

Lci = µageci + ν1(Sci = 1) + ξageci · 1(Sci = 1) + εci (23)

performed for children who work (Sci ≤ 1). This specification provides M30 and the “full

working time” (Lc)31, which varies with age.

We now turn to the estimation of the child’s full-time income. We use the Perfect

choice.
29In the absence of information about actual attendance, we assume that children who are enrolled

actually attend.
30M = µ̂age+ν̂+ξ̂age

µ̂age .
31Lc = µ̂ageci
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Substitutes production function:

log Yit = α logLait + αγc
Lcit
Lait

+ (logXit)β + µi + ζvt + εit (24)

The household production absent his/her contribution is estimated to be:

Y0ict = exp
(
log(Yit)− α̂γ̂c

Lcit
Lait

)
(25)

where Lcit here stands for the labor of the child under scrutiny (keeping constant the labor

provided by the other household children). The household production, if the child was

contributing his/her full-time Lc, would be:

Yfict = exp
(
log(Yit)− α̂γ̂c

Lcit
Lait

+ α̂γ̂c
Lc
Lait

)
(26)

The difference between the two is the full-time contribution of the child to the household

income:

yci0 = exp
(
log(Yit)− α̂γ̂c

Lcit
Lait

+ α̂γ̂c
Lc
Lait

)
− exp

(
log(Yit)− α̂γ̂c

Lcit
Lait

)
(27)

The definition of the child’s full-time contribution does not depend on the actual child labor

supply but solely on his/her age (which determines how much time can be allocated to the

farm) and on the household production characteristics (adult labor inputs, farm size, flexi-

ble inputs, and household unobserved fixed productivity components). Landless households

are incorporated into the computation sample with a child potential contribution equal to

0.

The adult income is made up of not only farm production but also income obtained

from other activities. However, the survey does not allow to us to compute these additional
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incomes because we do not have the information on an annual basis. As a result, we

must use the household consumption measure, from which we subtract the actual child

contribution Y0ict.

D.3 Descriptive statistics on the simulation sample

Table A7 provides descriptive statistics on the simulation sample.

Table A7: Descriptive statistics on the simulation sample

Mean Std. Dev. Min Max
Household consumption minus child contribution (Y−i) 2565.59 2236.24 -1375.97 27935.29
Agricultural production 477.88 2107.35 0 51925.14
Estimated production of other household members 611.12 3380.24 0 84887.25
Estimated production of the child if working full time (yci0) 86.38 501.25 0 25510.36
Estimated child work days, when working full time (Lc) 51.73 4.61 45.42 59.01
Estimated production of the child (Y0ict) 18.57 66.27 0 2152.02
Estimated production of the child, conditional on participation 46.86 98.78 0 2152.02
Work days of the child (Lcit) 16.60 42.51 0 645
Work days of the child, conditional on participation 41.89 59.16 1 645
Cultivated area 7.05 21.23 0 605
Age 12.32 1.70 10 15
Boys 0.50 0.50 0 1
Last grade 4.52 2.26 0 20
Experience2 6.97 12.95 0 81
Age of household head 49.98 12.54 19 107
Education of household head 5.08 3.80 0 20
Number of children below 7 1.13 1.54 -2 17
Number of children 7 to 9 1.19 1.07 0 8
Number of children 10 to 15 2.12 1.16 1 10
Number of adults below 65 3.37 2.14 1 24
Number of adults 65 and more 0.18 0.44 0 2

Note: The simulation sample includes all households used in the estimation and the landless households. The variables used in
the education demand and in the simulations are: household consumption minus child contribution and estimated production
of the child if s/he was working full time. The other variables are given for the discussion. The statistics are computed on 4728
observations, except when conditional on labour participating children (1874 children). The monetary amounts are expressed
in current 2016 $ and all the variables are annual.
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D.4 Structural parameters of the occupation choice

Table A9 provides the multilogit estimates. Table A10 provides the values of the structural

parameters for the occupational choice model, based on the multilogit estimation. Table

A11 provides the mobility matrix if the transfer was implemented without school enrollment

conditions.

Table A9: Occupational Choice Models for children aged 10-15 (reference: Only work)

Work and Attend School Attend School

Y−i 0.0001** 0.0002***
(0.0001) (0.0001)

ycij -0.0004** -0.0002**
(0.0002) (0.0001)

Age of household head -0.0123 -0.0065
(0.0089) (0.0088)

Education of household head 0.0130 0.0138
(0.0288) (0.0307)

Number of children below 7 -0.0332 -0.0365
(0.0800) (0.0822)

Number of children 7 to 9 -0.0285 -0.0931
(0.0812) (0.0818)

Number of children 10 to 15 -0.0575 -0.1162
(0.1224) (0.1298)

Number of adults below 65 0.0364 0.3073***
(0.0813) (0.0796)

Number of adults 65 and more 0.2055 0.2153
(0.2419) (0.2416)

Birth order 0.4520** 0.5363***
(0.1892) (0.1919)

Boy 0.1955 0.1781
(0.1827) (0.1817)

Last grade 0.5731*** 0.4935***
(0.1748) (0.1746)

Experience2 -0.0516** -0.0550**
(0.0243) (0.0258)

Pseudo R-squared 0.183
Observations 4433 4433

Additional controls: Year of the panel and age dummies. Experience measures the time
since the child left school (and zero if the child is still enrolled in school). ***,**,* means
respectively that the coefficient is significantly different from 0 at the level of 1%, 5%
and 10%.
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Table A10: Structural parameters estimates in occupational choice model, children aged
10 to 15

α0 α1 α2 M D β0 β1 β2
0.0019*** 0.0020*** 0.0021*** 0.7314 0.8129*** 0.0019*** 0.0015*** 0.0017***
(0.0007) (0.0007) (0.0007) (0.0418) (0.0007) (0.0005) (0.0006)

Note: ***,**,* means respectively that the coefficient is significantly different from 0 at the level of 1%, 5% and
10%.

Table A11: Simulated effect of an unconditional monthly transfer ($10)
on schooling and work status of children aged 10-15

New status
Actual Status Work Work and Attend Attend Total

All households
Work 99.35 0.65 0.00 100.00
Work and Attend 0.00 99.74 0.26 100.00
Attend 0.00 0.00 100.00 100.00

Before the transfer 6.90 35.37 57.73 100.00
After the transfer 6.86 35.33 57.82 100.00

Below the poverty line
Work 99.19 0.81 0.00 100.00
Work and Attend 0.00 99.75 0.25 100.00
Attend 0.00 0.00 100.00 100.00

Before the transfer 7.59 36.16 56.25 100.00
After the transfer 7.53 36.13 56.34 100.00

Note: The conditionality is only based on being below the poverty line.
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