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The EBI2-oxysterol axis promotes the development of
intestinal lymphoid structures and colitis
Annika Wyss1, Tina Raselli1, Nathan Perkins2, Florian Ruiz3, Gérard Schmelczer1, Glynis Klinke2,6, Anja Moncsek1, René Roth1,
Marianne R. Spalinger1, Larissa Hering1, Kirstin Atrott1, Silvia Lang1, Isabelle Frey-Wagner1, Joachim C. Mertens1, Michael Scharl1,
Andreas W. Sailer4, Oliver Pabst5, Martin Hersberger2, Caroline Pot3, Gerhard Rogler1 and Benjamin Misselwitz1,7

The gene encoding for Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2) is a risk gene for inflammatory bowel disease
(IBD). Together with its oxysterol ligand 7α,25-dihydroxycholesterol, EBI2 mediates migration and differentiation of immune cells.
However, the role of EBI2 in the colonic immune system remains insufficiently studied. We found increased mRNA expression of
EBI2 and oxysterol-synthesizing enzymes (CH25H, CYP7B1) in the inflamed colon of patients with ulcerative colitis and mice with
acute or chronic dextran sulfate sodium (DSS) colitis. Accordingly, we detected elevated levels of 25-hydroxylated oxysterols,
including 7α,25-dihydroxycholesterol in mice with acute colonic inflammation. Knockout of EBI2 or CH25H did not affect severity of
DSS colitis; however, inflammation was decreased in male EBI2−/− mice in the IL-10 colitis model. The colonic immune system
comprises mucosal lymphoid structures, which accumulate upon chronic inflammation in IL-10-deficient mice and in chronic DSS
colitis. However, EBI2−/− mice formed significantly less colonic lymphoid structures at baseline and showed defects in
inflammation-induced accumulation of lymphoid structures. In summary, we report induction of the EBI2-7α,25-
dihydroxycholesterol axis in colitis and a role of EBI2 for the accumulation of lymphoid tissue during homeostasis and inflammation.
These data implicate the EBI2-7α,25-dihydroxycholesterol axis in IBD pathogenesis.
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INTRODUCTION
Inflammatory bowel diseases (IBD), with the main forms Crohn’s
disease (CD) and ulcerative colitis (UC), are chronic inflammatory
conditions of the human gut. The pathogenesis of IBD is
incompletely understood, but genetic and environmental factors
were shown to contribute to disease development and progres-
sion. Genome wide association studies (GWAS) have identified
more than 240 genetic regions in the human genome affecting
the risk for IBD.1,2 The majority of IBD-specific single nucleotide
polymorphisms (SNPs) confer an increased risk for both, CD and
UC.1 Genes identified by GWAS provide a framework for future
scientific studies addressing IBD pathogenesis.
Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2,

also known as GPR183), is an IBD risk gene identified by GWAS.1

EBI2 exerts a crucial function for the correct activation and
maturation of naïve B cells in secondary lymphoid organs.3–5

Oxysterols are ligands for EBI2, the most potent being 7α,25-
dihydroxycholesterol (7α,25-diHC).6,7 7α,25-diHC acts as a che-
moattractant, directing migration of EBI2 expressing B cells, T cells,
and DCs.6–9 A 7α,25-diHC gradient in secondary lymphoid organs
seems to be important for correct positioning of immune cells and

a rapid and efficient antibody response.10 7α,25-diHC is produced
from cholesterol via two hydroxylation steps, at position 25 and
7α, by the enzymes cholesterol 25-hydroxylase (CH25H) and
cytochrome P450 family 7 subfamily member B1 (CYP7B1),
respectively.
Besides B cells and DCs, EBI2 is also expressed in macrophages

and natural killer cells,6 and CH25H and CYP7B1 are expressed in
immune cells and many tissues including lymph nodes, lung, and
colon.6,11 Therefore, the oxysterol-EBI2 axis might constitute a
fundamental mechanism in the regulation of the immune system
and tissue homeostasis.
Intestinal immune responses are orchestrated in lymphoid

tissue localized directly in the intestinal tract and draining lymph
nodes. Local lymphoid tissues show considerable plasticity,
varying in organization and cellular composition depending on
the segments of the gut and the immune status. The colonic
immune system comprises two types of secondary lymphoid
organs: large colonic patches (CLP), similar to Peyer’s patches (PP)
in the small intestine, and smaller structures referred to as solitary
intestinal lymphoid tissue (SILT).12 CLP and PP develop before
birth, whereas SILT develop strictly postnatally. SILT comprise a
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continuum of lymphoid structures ranging from nascent small
immature cryptopatches (CP) to mature isolated lymphoid follicles
(ILF) containing B cells.
General principles of secondary lymphoid tissue formation are

shared between mesenteric lymph nodes and intestinal lymphoid
tissues including CLP/PP and SILT (reviewed in ref. 13) Develop-
ment of these lymphoid tissues includes clustering of lymphoid
tissue inducer (LTi) cells, a subclass of innate lymphoid cells (ILC),
and requires an intact lymphotoxin signaling pathway. Most
previous studies focused on the development of lymphoid tissue
in the small intestine; in contrast, formation of SILT in the colon
has been studied to a lower extent and specific factors required
beyond lymphotoxin remain unknown. While in the small
intestine, maturation of SILT depends on CXCL13, RANKL, and
CCR6/CCL20, these chemokines are not essential in the colon.12,14

Furthermore, while the gut microbiota stimulates small intestinal
SILT, the microbiota dampens SILT formation in the colon, an
effect mediated by IL-25 and IL-23.15 Therefore, additional
molecular factors besides those cytokines seem to be required,
and very recently, a role of EBI2 expressing ILCs for the
development of colonic lymphoid structures has been
demonstrated.16

In the colon, adaptation to inflammation includes formation of
additional lymphoid structures. Induction of newly formed
lymphoid structures upon inflammation requires the presence of
microbiota and lymphotoxin signaling but was independent from
the nuclear hormone receptor ROR-γt,17 suggesting that ILCs and
LTi cells are not strictly necessary. SILT were proposed to host a
flexible pool of B cells for the formation of an IgA response
complementing PP and CLP with a fixed B cell pool size.18

However, the role of SILT in colon inflammation has not been
clarified.
Given the function of EBI2 in immune cell migration, we aimed

at investigating the role of EBI2 and oxysterols in the pathogenesis
of intestinal inflammation and the development of colonic
lymphoid tissues. Our results implicate the EBI2-oxysterol axis in
colonic SILT development and inflammatory responses in the
colon.

RESULTS
Human intestinal lymphocytes express EBI2
To test for surface expression of EBI2 on intestinal immune cells,
colon lamina propria mononuclear cells (LPMC) from patients
undergoing intestinal surgery were analyzed by flow cytometry.
We observed robust EBI2 expression on various subsets of B and
T cells. As reported previously, expression levels were highest in
memory CD4+ T cells (Fig. 1a) in human peripheral blood
mononuclear cells (PBMC).19 EBI2 expression was also observed
in PBMCs without significant differences between healthy
volunteers and IBD patients (CD and UC, Fig. 1b). Direct
comparison of LPMCs with identical cellular subsets of PBMCs
revealed significantly higher EBI2 expression in the gut (p=
0.0001).

Upregulation of gene expression of EBI2 and oxysterol-
synthesizing enzymes in inflamed tissue of UC patients
We found an inflammation dependent upregulation of the EBI2-
oxysterol axis in the gut. Results of a whole human genome
microarray performed with total RNA isolated from inflamed and
non-inflamed intestinal tissue from UC patients (GEO data sets:
GDS3268)20 were analyzed. RNA expression levels of the oxysterol-
synthesizing enzymes CH25H, CYP7B1, and CYP27A1 from
inflamed tissue of UC patients were significantly higher compared
to non-inflamed tissue of UC patients (p < 0.05 and p < 0.001) and
tissue of healthy controls (p < 0.001 and p < 0.0001; Fig. 1c and
Supplementary Figure S1a). A similar increase was observed for
the oxysterol receptor EBI2 (p < 0.001 for inflamed vs. healthy).

Expression levels of HSD3B7 remained unchanged in all three
sample groups (Supplementary Figure S1a).
To validate these results, we analyzed colon biopsy samples

from inflamed and non-inflamed tissue of UC patients from the
Swiss IBD cohort study (SIBDCS). Biopsy samples were obtained
from patients with moderate to severe or quiescent UC disease
activity, respectively (Supplementary Table S1).
SIBDCS samples confirmed an upregulation of CH25H (p < 0.01),

CYP7B1 (p < 0.0001), and EBI2 (p < 0.0001) mRNA levels in inflamed
tissue (Fig. 1d). mRNA expression levels of genes encoding
proinflammatory cytokines (TNF, IFNG, and IL1B) were used to
confirm the severity of colonic inflammation (Supplementary
Figure S1b). Expression of genes of the EBI2-oxysterol axis also
depended on clinical parameters: In a multivariate analysis, EBI2
expression was related to UC activity (modified Truelove and Witts
activity index) while expression of CH25H and CYP7B1 was related
to endoscopic activity and a history of past or current TNF
treatment (p < 0.05; Supplementary Table S2).
Expression levels of CYP7B1, EBI2, and TNF strongly correlated

(r ≥ 0.6, p < 0.001 for all correlations) and CYP7B1 expression
correlated with CH25H (r= 0.46, p < 0.05), suggesting an upregu-
lation of the EBI2-oxysterol system in active UC in parallel with the
critical cytokine TNF (Supplementary Table S3). However, TNF does
not seem to directly affect EBI2 expression since treatment of
PBMCs with TNF did not affect EBI2 surface expression (Supple-
mentary Figure S1c-d).

Increased gene expression of EBI2 and oxysterol-synthesizing
enzymes in murine DSS colitis
To further study the function of the EBI2-oxysterol system in gut
inflammation, we induced acute and chronic dextran sulfate
sodium (DSS) colitis in mice. In acute colitis, expression levels of
Ebi2, Ch25h, and Cyp7b1 were significantly increased (p < 0.001;
Fig. 2a). This increase was more pronounced than in human
samples (Fig. 1c, d), potentially reflecting the more acute and
severe inflammation in DSS colitis. In chronic DSS colitis, robust
upregulation of Ebi2 (p < 0.05), Ch25h (p < 0.05), and Cyp7b1 (p <
0.0001) was evident even though the increase was weaker in
chronic than in acute inflammation, reminiscent of the human
situation (Fig. 2b). No significant changes were observed in
Cyp27a1 and Hsd3b7 expression in both acute and chronic colitis
(Supplementary Figure S2a, b).

Increased oxysterol levels in murine colitis
To determine the functional outcome of altered CH25H and
CYP7B1 expression during inflammation, we compared oxysterol
concentrations between mice with acute DSS colitis and controls.
Eight oxysterol derivatives (hydroxycholesterol: HC; dihydroxylated
cholesterols: diHC) were measured by mass spectrometry: 7α,25-
diHC, 7β,25-diHC, 25-HC, 7α,27-diHC, 7β,27-diHC, 27-HC, 24S-HC,
and 7α,24-diHC (Fig. 2c, d and Supplementary Figure S2c-f).
We found a trend for higher levels of 25-HC, 7α,25-diHC, and

7α,27-diHC in colon tissue of DSS-treated mice with acute colitis
compared to untreated controls (Fig. 2c, upper panel) and
significantly higher levels of 25-HC and 7α,25-diHC in liver tissue
of inflamed versus untreated mice (Fig. 2c, lower panel). In both,
colon and liver tissue knockout of CH25H led to lower levels of 25-
hydroxylated oxysterols whereas lack of EBI2 did not influence any
of the liver oxysterols (Fig. 2c and Supplementary Table S4).
In a multivariate linear regression analysis of liver oxysterol

levels (Supplementary Table S4) controlling for DSS, CH25H, and
EBI2 genotype, DSS treatment increased the levels of all 25-
hydroxylated oxysterols (25-HC, 7α,25-diHC, 7β,25-diHC) and all
24-hydroxylated oxysterols (24S-HC, 7α,24-diHC; p ≤ 0.0015 for all
compounds). In contrast, inflammation did not seem to change
7α- or 27-hydroxylation activity. In the same multivariate
regression analysis, CH25H knockout significantly decreased all
25-hydroxylated oxysterols (7α,25-diHC, 7β,25-diHC, and 25-HC,
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p ≤ 0.01 for all compounds). However, as expected, the effect of
CH25H knockout was not absolute and high levels of all 25-
hydroxylated oxysterols remained, most likely due to the 25-
hydroxylation activity of other enzymes including CYP27A1,
CYP46A1, and CYP3A4.21 Intestinal and liver gene expression
levels of all analyzed oxysterol-related enzymes did not increase
predictive value of the analysis (data not shown). A multivariate
analysis for colon oxysterol measurements was not possible due to
a low number of observations.
Our data thus indicate pronounced changes in liver oxysterol

levels upon induction of acute colitis and CH25H knockout. Of
note, inflammation increased levels of the EBI2 ligand 7α,25-diHC
(p= 0.0015) while CH25H knockout decreased its concentration
(p < 0.0001).

In chronic DSS colitis, oxysterol levels were not significantly
elevated in colon or liver tissue (Fig. 2d), in agreement with only
mild upregulation of oxysterol-producing enzymes (Fig. 2b).

Lack of EBI2 and CH25H does not affect severity of inflammation in
the DSS colitis model
Despite the upregulation of the EBI2-oxysterol system in acute and
chronic DSS colitis, knockout of neither EBI2 nor CH25H
substantially decreased histological or endoscopical scoring of
inflammation (Fig. 3a–d, Supplementary Figure S3a–c, and
submitted manuscript.22) For CH25H−/− mice we observed a
trend towards slightly increased inflammation indicated by
significantly higher endoscopic colitis scores in acute DSS colitis
(affecting all sub-scores, Supplementary Figure S3b). Of note, in

Fig. 1 High EBI2 surface expression in human intestinal lymphocytes and upregulated gene expression of EBI2 and oxysterol-synthesizing
enzymes in inflamed intestinal tissue. (a) EBI2 expression on human LPMCs of colon resections shown as mean fluorescence intensity ratio
(MFIR) in naïve (CD19+CD27−) and memory (CD19+CD27+) subsets of B cells and in naïve (CD45RA+) and memory (CD45RA−) CD4+ and
CD8+ T cells determined by FACS analysis. (b) Percentages of memory CD4+ T cells expressing EBI2 on human PBMCs from healthy volunteers
(HV) and CD and UC patients and on human LPMCs of colon resections determined by FACS analysis. (c) Data from a human whole genome
microarray (GEO data sets: GDS3268) was analyzed regarding mRNA expression levels of EBI2, CH25H and CYP7B1 in non-inflamed colon tissue
of healthy volunteers (n= 63) and non-inflamed (n= 61) and inflamed (n= 62) colon tissue of UC patients. The dotted line represents the
mean of healthy tissue (set to 1). (d) mRNA expression levels from rectal biopsies of UC patients, either non-inflamed from patients with
quiescent disease activity (n= 24) or inflamed from patients with moderate to severe disease activity (n= 20) from the Swiss IBD cohort study
were determined by RT-PCR and normalized to GAPDH using the ΔΔCt method. Data shown as mean ± SEM. Statistical analysis: (a): One-way
ANOVA with Dunnetts test; (b-d): Mann–Whitney U test; *p < 0.05, ***p < 0.001, ****p < 0.0001
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chronic colitis we also observed slightly increased inflammation,
but for unclear reasons only the histological score with all sub-
scores was affected (submitted manuscript.22) Reboldi et al.
reported a 25-HC dependent suppression of Il1b expression and

inflammasome activity.23 However, in our experiments, increased
inflammation in CH25H−/− mice could not be explained by
increased Il1b mRNA expression (Supplementary Figure S3d, e).
Similar to wild-type animals, CH25H and EBI2 knockout mice
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showed increased expression levels of Ch25h, Cyp7b1, and Ebi2 in
acute and chronic DSS colitis (data not shown). Taken together, in
the DSS-induced colitis model, the activity of EBI2 and CH25H was
not essential.

EBI2 promotes colon inflammation in the IL-10 colitis model
Genetic defects of IL-10 or its receptor have been linked to
human IBD,24 hence we also addressed the role of EBI2 in the IL-
10 model of spontaneous colitis. For this aim, we generated
EBI2−/−IL10−/− mice and compared inflammatory activity to
EBI2+/+IL10−/− (in the following named IL10−/−) littermate
controls. In 200-days-old mice, the histological colitis score of
male EBI2−/−IL10−/− mice was significantly reduced compared to
IL10−/− controls (p < 0.01; Fig. 4a, b). Reduced spleen weight in
these EBI2−/−IL10−/− animals (p < 0.05) confirmed reduced
systemic inflammation in EBI2−/−IL10−/− males (Fig. 4c). Effects
of EBI2 on colon inflammation were restricted to male animals, in
females no EBI2-dependent changes were detected (Supplemen-
tary Figure S4a–c).

A minority of IL10−/− animals developed rectal prolapses due to
colonic inflammation; however, time to develop prolapse did not
differ between EBI2−/−IL10−/− and IL10−/− in male and female
animals (Fig. 4d, Supplementary Figure S4c). The genotype also did
not affect colon inflammation of animals with prolapse (Fig. 4a).
Testing expression levels of a panel of immune regulatory

genes in 200-days-old male EBI2−/−IL10−/− and IL10−/− mice
revealed similar expression of most cytokines and T cell regulatory
genes except Tbx21 and Il23 for which expression was significantly
higher in EBI2−/−IL10−/− mice (Supplementary Figure S5a, b).
Expression levels of enzymes regulating the concentration of EBI2
ligands (CH25H, CYP7B1, CYP27A1, and HSD3B7) did not differ
significantly between IL10−/− and EBI2−/−IL10−/− mice (Supple-
mentary Figure S5c, d).

EBI2 is required for a normal number of colonic SILT
Since EBI2 affects the localization of immune cells in secondary
lymphatic organs, we speculated that EBI2 knockout might also
alter the distribution of immune cells in the colon. For

Fig. 3 Lack of EBI2 and CH25H does not affect severity of inflammation in the DSS colitis model. (a) Histological scores for acute DSS colitis
were determined on HE-stained colon sections (scale bars: 200 µm) in wild-type and EBI2−/− mice (b), and wild-type and CH25H −/− mice (c).
(d) Histological scores for chronic DSS colitis in EBI2−/− mice were determined accordingly. Data from acute and chronic DSS colitis are pooled
from two independent experiments each. Data shown as mean ± SEM. Statistical analysis: Mann–Whitney U test; *p < 0.05, **p < 0.01

Fig. 2 Increased expression levels of oxysterol-synthesizing enzymes CH25H and CYP7B1 accompanied by elevated oxysterol levels in murine
DSS colitis. Acute and chronic DSS colitis was induced; on day 8 (acute colitis) or 80 (chronic colitis) mice underwent colonoscopy and were
sacrificed to obtain tissue samples. (a) mRNA expression levels of Ch25h, Cyp7b1 and Ebi2 from colon tissue of wild-type mice with acute colitis
and (b) chronic colitis and water controls were determined by RT-PCR and normalized to GAPDH using the ΔΔCt method. (c) Oxysterol levels
from acute DSS colitis experiments were measured by LC-MS/MS. Upper panel: Oxysterol levels in colon tissue of inflamed wild-type (n= 4)
and inflamed CH25H−/− mice (n= 3) with wild-type water controls (n= 3). Lower panel: Oxysterol levels in liver tissue of inflamed wild-type
(n= 12) and inflamed CH25H−/− mice (n= 6) and respective water controls (n= 12/ n= 6). (d) Oxysterol levels from chronic DSS colitis. Upper
panel: Colon tissue from wild-type mice (DSS: n= 6, water: n= 6). # indicates measurements, which were on the limit of detection (grey).
Lower panel: Liver tissue of inflamed wild-type (n= 6) and inflamed CH25H−/− (n= 5) mice and respective water controls (n= 5/ n= 6). Data
from acute and chronic DSS colitis are pooled from two independent experiments each. Data shown as mean ± SEM. Statistical analysis:
Mann–Whitney U test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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quantification of lymphoid structures in whole colons, B cells were
visualized by B220 staining in a whole mount approach. The
number of B220+ structures was strongly reduced in EBI2−/− mice
in comparison to wild-type littermate controls (p < 0.05, Fig. 5a, b).
This difference was much stronger than experimental variation
(i.e., effects of cages). Stratifying B220+ structures by size revealed
a strongly reduced number of small and intermediate B220+

structures (<20’000 μm2: p= 0.004; <100’000 μm2: p < 0.0001)
while the number of large B220+ structures (>100’000 μm2)
remained unchanged (Fig. 5c). Furthermore, classification into
multifollicular or single structures revealed lower numbers for
both types in EBI2−/− mice, but with a much stronger reduction
for single structures, likely representing isolated lymphoid follicles
(ILF) belonging to the group of SILT (Fig. 5d).
Lymphoid structures can also be identified on HE-stained colon

“Swiss rolls”, where SILT are clearly distinguishable from CLP: SILT
locate in the lamina propria, CLP between the two muscular layers
and the muscularis mucosae12 (Fig. 5e). This approach also allows
for the visualization of small lymphoid structures including
cryptopatches, largely devoid of B cells. While the number of SILT
in EBI2−/− animals was reduced (p < 0.05), the number of large
CLP remained unchanged (Fig. 5f).
Immunohistochemical stainings of the colon revealed normal

structures of both SILT and CLP in EBI2−/− animals with a normal
distribution of B and T cells and c-kit+ LTi cells recapitulating the
situation of wild-type mice (Fig. 6). Taken together, our data
suggest that EBI2 does not seem to be required for maturation of
SILT since the few detected lymphoid structures in EBI2−/−

animals were indistinguishable from lymphoid structures in wild-
types.
Development of intestinal lymphoid structures is a complex

process involving ROR-γt-expressing ILCs, cytokines, and chemo-
kines. However, colonic expression of RORC and chemokines
important for lympho-organogenesis and lymphocyte recruitment
including CCL20, CXCL13, and CCL19 were not altered in EBI2−/−

compared to wild-type mice (Supplementary Figure S6a) suggest-
ing that the effect of EBI2 is direct and not mediated via altered
expression of any of the tested chemokines.

EBI2 deficiency does not affect levels of B cells, IgA, and
microbiota composition
To further assess effects of EBI2 knockout on the colonic immune
system, we quantified B and T cells by FACS. Overall, the fraction
of B and T cells in the colon, mesenteric lymph nodes, and spleen
of EBI2−/− animals was similar to wild-types (Supplementary
Figure S6b, c). Similarly, the substantial reduction of SILT numbers
in EBI2−/− mice did not significantly affect fecal IgA levels
(Supplementary Figure S6d). Furthermore, overall microbiota
composition of wild-type and EBI2−/− animals was indistinguish-
able, and the microbiota of EBI2−/− or wild-type animals
resembled more strongly the microbiota of wild-type littermates
from the same cage than animals of the same genotype housed in
a different cage (data not shown). Finally, the fraction of colonic
bacteria covered by IgA was similar in wild-type and EBI2−/−

animals (Supplementary Figure S6e). Overall, these experiments
indicate an intact intestinal adaptive immune system and

Fig. 4 EBI2 promotes inflammation in the IL-10 colitis model. EBI2−/−IL10−/− and IL10−/− male mice were sacrificed after onset of rectal
prolapse or at the age of 120 or 200 days. Histological scoring (a) and representative images (b) from HE-stained colon sections from 200 days
old mice. Scale bars: 200 µm. (c) Spleen weight of animals from (a). (d) Onset of prolapse in EBI2−/−IL10−/− and IL10−/− mice depicted in a
survival curve. Each animal represents an independent observation from continuous breeding > 12 months. Data shown as mean ± SEM.
Statistical analysis: Mann–Whitney U test; *p < 0.05, **p < 0.01
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microbiota composition in the non-inflamed colon of EBI2−/−

animals.

EBI2 promotes an increase of the number of colonic lymphoid
structures in intestinal inflammation
To test for effects of EBI2 on the formation of lymphoid structures
during inflammation, we quantified lymphoid structures in mice
with chronic DSS colitis. As previously reported, in wild-type mice
with DSS colitis, the number of colonic lymphoid structures was
approximately two-fold higher compared to control animals (p <
0.05; Fig. 7a, b). Furthermore, in EBI2−/− animals the number of
lymphoid structures did not significantly increase upon DSS

treatment (p= 0.07, Fig. 7a) and remained well below levels
observed in inflamed wild-type colons even though severity of
inflammation was comparable between wild-type and EBI2−/−

mice (Fig. 3b, d). In CH25H−/− mice the number of lymphoid
structures at baseline was also lower compared to wild-type
animals (p < 0.05; Fig. 7b). However, DSS-induced colonic inflam-
mation increased the number of lymphoid structures in CH25H−/−

mice almost to wild-type levels. Therefore, CH25H activity seems
necessary for normal development of lymphoid structures at
baseline but not for an increase in chronic inflammation. No
increase in lymphoid structures was observed in acute DSS colitis
(Supplementary Figure S7a, b).

Fig. 5 Lack of EBI2 leads to a lower number of lymphoid structures in the colon. Colonic lymphoid structures of 12 weeks old female EBI2−/−

and wild-type littermate mice were assessed using complementary approaches. (a) B220 B cell staining in a whole mounted colon of wild-type
and EBI2−/− mice (B220: white). (b) Quantification of B cell follicles in B220-stained whole mounted colons. (c) Stratification of B220+ structures
from (b) by size (area). ##= p < 0.01 and ####= p < 0.0001 comparing structures < 20’000 µm2 and < 100’000 µm2 respectively with a
multivariate Poisson regression using model-based t-tests. (d) Classification of B220+ structures from (b) by presence or absence of multiple
follicles per structure. (e) HE-stained colon Swiss rolls (left) and representative SILT and CLP structures stained with HE (middle) and B220 and
αSMA (right); scale bars: 200 µm. (f) Lymphoid structures were quantified and categorized according to their location in 20 HE-stained colon
Swiss roll sections per mouse. Scale bars: 200 µm. Data shown as mean ± SEM. Statistical analysis: Mann–Whitney U test; *p < 0.05

The EBI2-oxysterol axis promotes the development of intestinal lymphoid. . .
A Wyss et al.

7

Mucosal Immunology _#####################_



Compared to untreated wild types, the number of lymphoid
structures was increased in IL10−/− mice (>three-fold; Fig. 7c and
Supplementary Figure S8a), and the number of lymphoid structures
strongly correlated with the level of intestinal inflammation in
IL10−/− animals (Fig. 7d). However, this was not the case in
EBI2−/−IL10−/− mice, which had clearly decreased numbers of
colonic lymphoid structures compared to IL10−/− mice (p < 0.05 and
p < 0.0001, at day 120 and 200, respectively). Furthermore,
inflammation did not significantly increase the number of lymphoid
structures in EBI2−/−IL10−/− animals, suggesting that EBI2 is
required for efficient accumulation of lymphoid structures during
inflammation (Fig. 7c, d and Supplementary Table S5). The cellular
composition of gut mucosal lymphoid structures in IL10−/− mice
was very similar to the structures seen in wild-type mice (Fig. 7e, f).

In IL10−/− mice, accumulation of lymphoid structures was
clearly accompanied by an increase in IgA levels in fecal colon
extracts. However, this effect was much lower in EBI2−/− animals
(Supplementary Figure S8b-c), due to a reduced number of SILTs
and/ or other effects of missing EBI2 function. Taken together, our
data indicate an essential role of EBI2 in the accumulation of
lymphoid structures upon colonic inflammation.

DISCUSSION
This study assessed the role of EBI2 and oxysterols for the
development of colonic lymphoid tissue and human and murine
colitis. Key observations of our study include: i) The EBI2-7α,25-
diHC axis is upregulated in colitis, indicated by mRNA

Fig. 6 Similar lymphoid structures (CLP and SILT) in wild-type and EBI2−/−mice. Cellular characterization of CLP and SILTwith immunohistochemical
staining of colon Swiss rolls for c-kit (brown) and B220 (pink; please note unspecific staining of alkaline phosphatase at the top of crypts) and with
immunofluorescent staining for B220 (green) and CD3 (red). Scale bars: 200 µm, images are representative from at least 3 mice
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measurements of EBI2 and oxysterol-synthesizing enzymes in
human and murine colon samples and oxysterol levels in mice. ii)
EBI2 is required for efficient formation of solitary intestinal
lymphoid tissue (SILT) in the mouse colon. iii) EBI2 is required
for accumulation of lymphoid tissue in chronic mouse colitis. iv)
EBI2 increases the severity of colitis in the IL-10 colitis model but
not in acute or chronic DSS colitis.

We show an activation of the EBI2-oxysterol axis in colon
inflammation using mRNA and direct oxysterol measurements.
Analogous to previous studies, our results demonstrate that
inflammation increased CYP7B1 and CH25H mRNA expression and
levels of all 25-hydroxylated oxysterols tested, including the EBI2
ligand 7α,25-diHC.11,25–28 Inflammation did not affect concentra-
tions of most 7α-hydroxylated oxysterols, even though Cyp7b1
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mRNA levels were induced 10-fold. Effects of inflammation on
enzyme expression and oxysterols levels were less pronounced in
chronic DSS colitis. No oxysterol measurements for the IL-10 colitis
models are available, which is a limitation of our study. Yet, very
recently an independent study observed a similar increase of
oxysterol levels both in other mouse models of colitis and in
human colitis cohorts.29

Knockout of the 7α,25-diHC receptor EBI2 decreased the
number of colonic lymphoid structures approximately five-fold,
as also demonstrated very recently.16 Further, the number of
lymphoid structures was reduced in CH25H−/− animals, indepen-
dently confirming a role of the EBI2-7α,25-diHC axis in colonic
lymphoid tissue formation. SILT in EBI2−/− and wild-type animals
were morphologically indistinguishable, suggesting that EBI2
promotes induction but is not essential for subsequent maturation
of SILT. Further, our results indicate an intact IgA response with
intact bacterial IgA coating in homeostasis in EBI2−/− mice with a
reduced number of SILTs.
Our results agree with the recent paper by Emgård et al.,

describing EBI2-dependent lymphoid tissue formation during
homeostasis.16 Emgård et al. showed EBI2 expression by ILC with
a LTi phenotype. LTi cells migrate towards a 7α,25-diHC gradient
in vitro and EBI2 knockout reduced the number of cryptopatches
and ILF (i.e., immature and mature SILT). Emgård et al. also
demonstrated expression of CH25H and CYP7B1 by CD34-Podo-
planin+ fibroblasts as a likely source for 7α,25-diHC production,
which would attract EBI2+ LTi-cells.16

There is agreement that chronic inflammation increases the
number of intestinal lymphoid tissues in the DSS colitis
model.17,30,31 However, in a carefully performed study by Olivier
et al., three large colonic lymphoid structures were induced in
inflammation in three distinct locations in the colon.31 In contrast,
in a study by Lochner et al, up to 30 lymphoid structures were
found in inflamed colonic tissue,17 similar to our experiments. The
reason for this discrepancy remains unclear but might be related
to differences in the intestinal microbiota or different scoring
systems used in these studies.
Our study shows that accumulation of lymphoid structures in

chronic DSS colitis strongly depends on EBI2 activity. Similarly, in
IL-10 colitis, the level of inflammation increased the number of
colonic lymphoid structures and EBI2 knockout abolished
accumulation of lymphoid structures in inflammation (Supple-
mentary Table S5). In contrast, CH25H knockout did not
significantly affect the number of lymphoid structures in
inflammation, suggesting that CH25H activity is not limiting for
immune cell recruitment. In inflammation, we found an increase of
the other EBI2 ligand 7α,27-diHC produced by CYP27A1 in colon
tissue (Figure 2c). 7α,27-diHC might replace 7α,25-diHC as a
chemoattractant in intestinal inflammation, as 7α,27-diHC has
been shown to act as an efficient EBI2 ligand for the positioning of
dendritic cells in the spleen.32 However, we cannot completely
rule out that other enzymes with 25-hydroxylation activity can
replace CH25H. In any case, future studies with CH25H/ CYP27A1
double knockouts are warranted. In previous studies, several
requirements for induction of lymphoid tissue in inflammation,

including a role of lymphotoxin, IL-22, IL-23, and CXCL13 have
been described.17,33,34 Our study identifies EBI2 as a further
molecule promoting the accumulation of lymphoid tissue in
chronic inflammation.
Even though lymphoid structures uniformly accompany colonic

inflammation, it is unclear whether their accumulation promotes
colon inflammation or whether it is a reaction to chronic
inflammation, potentially enabling downregulation of inflamma-
tion, or induction of tolerance.35 Some experimental evidence for
proinflammatory effects of SILT in murine colitis has been
published: ROR-γt deficient mice displayed more colonic SILT
and more severe DSS colitis compared to wild–type. Vice versa,
reduction of the number of SILT by lymphotoxin neutralization
decreased colitis severity.17 A similar correlation between intest-
inal lymphoid tissue accumulation and severity of inflammation
was observed in the TNFΔARE model. Interference by anti-CCR7
treatment further increased lymphoid tissue formation and
severity of inflammation.36

Our results argue against an essential proinflammatory role of
lymphoid structures in the chronic DSS and IL-10 colitis model:
Severity of inflammation in chronic DSS colitis was identical in EBI2
wild-type and knockout animals. Further, EBI2 knockout did not
reduce inflammation in female IL10−/− animals even though the
number of lymphoid structures was decreased to a similar level as
in males.
In contrast to DSS colitis, EBI2 knockout reduces inflammation in

IL-10 colitis; however, EBI2 deficiency only reduced inflammation
in male mice. This gender dependent dimorphism of EBI2−/

−IL10−/− animals has parallels in the literature. Other sexual
dimorphisms regarding colitis severity have been related to
various factors including microbiota37 and colon cellular infil-
trate38 or direct of effects of estradiol.39 Further, in a recent study
with the murine TNFΔARE model, protection from ileitis was
observed in male, but not female mice with a specific pathogen-
free flora.40 Strikingly, for a genetic polymorphism within the
human IL10 gene, a sexual dimorphism regarding the risk of
ulcerative colitis has been described.41 For the enzyme CYP7B1,
producing the EBI2 ligand 7α,25-diHC, differential expression in
mouse livers (male > females) has been described;42 however, our
analysis did not reveal relevant gender specific differences of all
oxysterol producing enzymes tested (Supplementary Figure S5c
and data not shown). Further, the number of lymphoid structures
was similar in both sexes. Taken together, the mechanism for the
sexual dimorphism of the EBI2 knockout in IL-10 colitis regarding
inflammation cannot be explained by our experiments, which
remains a further limitation of our study.
Further, EBI2 knockout only affected IL-10 colitis but not acute

or chronic DSS colitis, likely reflecting different mechanisms of
inflammation.43 In DSS colitis, pathogenesis comprises destruction
of the epithelial barrier and primarily innate immune system
activation. In contrast, IL-10 colitis results from lack of immune-
modulatory effects of IL-10 on several immune cells.44 To test
whether EBI2 knockout would reduce recruitment of proinflam-
matory T cells, we analyzed mRNA levels of several T cell markers
but no clear difference was detected (Supplementary Figure S5a).

Fig. 7 EBI2 promotes an increase in the number of colonic lymphoid structures in chronic intestinal inflammation. Lymphoid structures were
quantified in representative HE-stained colon sections. (a) Quantification of lymphoid structures in female wild-type (n= 6) and EBI2−/− mice
(n= 6) with chronic DSS colitis and water controls (n= 6 each). (b) As in (a), but with wild-type (n= 6) and CH25H−/− mice (n= 5) and water
controls (n= 5 / n= 6). (c) Quantification of lymphoid structures in EBI2−/−IL10−/− and IL10−/− male mice at the indicated ages or after
occurrence of prolapse. The dotted line indicates the mean number of lymphoid structures in wild-type animals at the age of approximately
200 days. (d) Correlation of the numbers of lymphoid structures with histological scoring of 120 (grey) and 200 days old (black) EBI2−/−IL10−/−

and IL10−/− male mice. (e, f) Cellular characterization of lymphoid structures (e): SILT and (f): CLP with immunofluorescent staining of colon
Swiss rolls for B220 (green; left panels) or c-kit (green; right panels), CD3 (red) and DAPI (blue) in wild-type and IL10−/− mice at the age of
200 days. Scale bars: 200 µm. Data from chronic DSS colitis (a and b) are pooled from two independent experiments each. Data from IL-10
colitis: each animal represents an independent observation from continuous breeding > 12 months. Data shown as mean ± SEM. Statistical
analysis: Mann–Whitney U test; *p < 0.05, **p < 0.01, ****p < 0.0001; correlation analysis: Spearman R
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ILCs were shown to have high EBI2 expression and ILCs lacking
EBI2 failed to localize into colonic lymphoid structures.16,45

Impaired ILC recruitment might explain reduced inflammation in
EBI2−/−IL10−/− animals. The role of ILCs in IL-10 colitis has not
been formally addressed; however, in a related infectious colitis
model with Campylobacter jejuni infecting IL10−/− mice, colonic
ILCs were increased and depletion of ILCs abrogated colitis.46 ILCs
have also been implicated in other models of colitis.47–49 In CD40
colitis, ILCs within colonic cryptopatches increased their motility
shortly after induction of inflammation, resulting in ILC accumula-
tion at the tip of the villus.50 The signal driving ILC movements is
unclear but 7α,25-diHC produced immediately after onset of
inflammation might stimulate EBI2-dependent ILC motility.
Emgård et al. also demonstrated reduced colon inflammation

upon EBI2 knockout: In CD40 colitis, EBI2 expressing ILCs and
myeloid cells accumulated in inflammatory foci in the colon
mucosa and colitis severity were much lower in EBI2−/− animals.16

These data, together with our data, suggest that the dependence
of inflammation on EBI2 varies regarding the colitis model. EBI2
dependence would be expected for models with a critical role of
ILCs including CD40 colitis,16,48 TRUC colitis (spontaneous colitis in
RAG2−/−TBX21−/− animals),49 and some infectious colitis mod-
els.47 In contrast, DSS colitis with breakdown of the physical
barrier of the colon seems to develop independently of EBI2. ILCs
have also been implicated in human IBD since proinflammatory
ILCs were found in intestinal samples.51 In addition, a SNP
associated with the EBI2 gene increased the risk for both, UC and
CD.1

In summary, we describe increased oxysterol synthesis in colon
inflammation and a role of the EBI2-7α,25-diHC axis for generation
of colonic lymphoid structures in steady state and inflammation.
Our results provide further insights to lymphoid tissue develop-
ment in the colon, which has been substantially less studied than
the small intestine. We also report a role of EBI2 in IL-10 colitis,
pointing to EBI2 as a potential drug target in IBD since specific
EBI2 inhibitors are available.52

MATERIALS AND METHODS
Human samples
LPMCs were isolated from colon resections of patients undergoing
intestinal surgery. PBMCs were isolated from healthy volunteers
and IBD patients. Intestinal biopsies from IBD patients were
obtained from the Swiss IBD Cohort Study (SIBDCS), a large,
prospective nation-wide registry. The cohort goals and methodol-
ogy are described elsewhere.53 Sample and data collection was
approved by local ethics committees (BASEC 2017-01868, EK-
1316) and all patients provided written informed consent. Data
from a whole human genome oligo microarray (GEO data sets:
GDS3268)20 were used as a complementary data set.

Flow cytometric analysis of human samples
PBMCs and LPMCs (prepared as described in the supplemen-
tary methods) were thawed and resuspended in RPMI-PSG-10%
FCS and plated for resting at 37 °C (PBMCs: overnight; LPMCs: 5
h). The cells were stained with LIVE/DEAD Fixable Dead Cell
Stain Kit (Life technologies/ Thermo Fisher scientific, Waltham,
USA) according to the manufacturer’s instructions. For cell
staining the following antibodies were purchased from
BioLegend (San Diego, USA): CD8 (SK1), CD4 (SK3), CD45RA
(HI100), CD27 (M-T271), CD19 (HIB19), and CCRR6 (G0343E3).
The following antibodies were purchased from BD Biosciences
(Franklin Lakes, USA): PE-Streptavidin and CD3 (SK7). The
isotype control was purchased from R&D Systems (Minnesota,
USA): Mouse IgG2a control biotin conjugated (Cat: IC0038). The
EBI2 antibody (57C9B5C9) was provided by Andreas Sailer from
Novartis and biotinylated. All patient samples were analyzed
with an LSR II flow cytometer (BD Biosciences, Franklin Lakes,

USA) within the same month. The analysis was performed with
FlowJo software (FlowJo LLC).

Animals
All mice were kept in a specific pathogen-free (SPF) facility in
individually ventilated cages. EBI2−/− mice (C57BL/6 x C129) were
originally purchased from Deltagen (San Mateo, USA) and CH25H-
deficient mice (C57/BL6) were provided by David. W. Russell,
University of Texas Southwestern.6 Both strains were subsequently
back-crossed to C57BL/6 for more than 10 generations.6 In our
facility, they were crossed with wild-type C57BL/6 mice and
heterozygous offspring was mated to generate knockout and
wild-type littermates. All animal experiments were conducted
according to Swiss animal well fare law and approved by the local
animal welfare authority of Zurich county (Tierversuchskommis-
sion Zürich, Zurich, Switzerland, License No. ZH256-2014).

Colitis models
Acute dextran sulfate sodium (DSS) colitis was induced in age- and
weight-matched females by administration of 3% DSS (MW: 36-50
kDa; MP Biomedicals/ Thermo Fischer Scientific, Waltham, USA) in
the drinking water for 7 days. Mice were sacrificed after
colonoscopy on day 8. To induce chronic colitis, animals under-
went 4 DSS cycles, consisting of 2% DSS administration for 7 days
followed by 10 days of normal drinking water, each. Mice were
sacrificed after colonoscopy 3 weeks after the last DSS cycle.
Colonoscopy was performed as described previously and scored
using the murine endoscopic index of colitis severity (MEICS)
scoring system.54

IL10−/− mice (C57BL/6) were crossed with EBI2−/− mice; animals
heterozygous for EBI2 (EBI2+/-IL10−/−) were used to generate
EBI2−/−IL10−/− and EBI2+/+IL10−/− littermates. IL10−/− animals
are highly susceptible to develop spontaneous colitis. As
described in previous studies,55 1% DSS for 4 days in drinking
water at the age of 90 days was used to trigger inflammation, as
the spontaneous development of colitis is dependent on the gut
microbiota and is drastically reduced under SPF conditions. Mice
were sacrificed at 120 or 200 days of age or upon development of
rectal prolapse.

Histological score
Colons were dissected, fixed in 4% formalin, embedded in
paraffin, and cut into 5-μm sections. Deparaffinized sections were
stained with hematoxylin and eosin (HE). Histological scoring for
acute and chronic DSS colitis was performed as described;56 a
slightly adapted score was used for IL10−/− colitis (Supplementary
Table S6).

Oxysterol measurements
Extraction of oxysterols from murine liver samples. Frozen colon or
liver samples from colitis experiments were pulverized using a
CryoPrepTM CP02 (Covaris, Woburn, USA), weighed and lysed in
homogenization buffer (0.9% sodium chloride) using a Qiagen
TissueLyser II (Qiagen, Venlo, NL) at 4 °C. Oxysterols were extracted
from the lysate by two liquid–liquid extractions using a methanol:
dichloromethane (1:1) mix and a homogenization buffer:dichlor-
omethane (1:2) mix, respectively. The organic phases from both
extractions were pooled and dried under nitrogen. The residue
was reconstituted with ethanol containing 0.1% formic acid and
filtered before analysis on the liquid chromatography tandem-
mass spectrometry (LC-MS/MS) system.

LC-MS/MS analysis. The LC-MS/MS analysis was performed on a
Dionex UltiMate 3000 RS with HPG Pump (Thermo Scientific,
Waltham, USA), coupled with a Sciex Triple QuadTM 5500 mass
spectrometer (AB Sciex, Zug, CH).
Detailed protocols of oxysterol extraction and LC-MS/MS

analysis are provided in the supplementary methods.
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Quantification of lymphoid structures
Whole mount. Colons were removed intact, flushed with cold
PBS, opened along the mesenteric border, and mounted, lumen
facing up. Colons were then incubated two times for 10 min with
warmed HBSS containing 2mM EDTA at 37 °C on a shaker to
remove epithelial cells. After washing with PBS, colons were fixed
with 4% Paraformaldehyde (PFA) for 1 h at 4 °C. Colons were
washed five times with TBST (1 M Tris (pH 7.2), 1 M NaCl, 0.2%
Triton X-100) and blocked with TBST containing 2% rat serum for
1 h at 4 °C. Colons were incubated with Cy3-conjugated anti-
mouse B220 antibody (clone TIB146; provided by Oliver Pabst:
Institute for Molecular Medicine, RWTH Aachen University, Aachen,
Germany) in the above solution overnight at 4 °C. The next day,
colons were washed with TBST and mounted on glass slides.
B220+ cell clusters were quantified under the microscope.

Swiss rolls. Colons were dissected and opened along the
mesenteric border. Swiss rolls were prepared with the luminal
side facing outwards and embedded in optimum cutting
temperature (OCT) compound, and frozen in liquid nitrogen.
Quantification of lymphoid structures was performed in 20 HE-
stained cryosections (6 µm) per colon, ~100 µm apart (the protocol
for immunofluorescent stainings is provided in the supplementary
methods). Zeiss Axio Scan.Z1 with ZEN blue Software (Zeiss,
Oberkochen, Germany) was used to scan and analyze sections.
SILT and CLP were defined according to their size and localization;
CLP: composed of large lymphoid follicles between the two
external muscular layers and the muscularis mucosae, SILT: smaller
clusters of lymphoid cells in the lamina propria.
Lymphoid structures in animals from colitis experiments were

enumerated using one HE-stained section of the rolled-up colon
per mouse.
If not indicated otherwise, a Zeiss Axio Imager Z2 Microscope

with Axio Vision Software (Zeiss, Oberkochen, Germany) was used.

Statistical analysis
If not indicated otherwise, Mann–Whitney U test was performed
with GraphPad Prism software (GraphPad, San Diego, USA). For
the multivariate linear regression analysis, appropriate modules of
Matlab R2017b were used. To compare the number of B220+

lymphoid structures of different sizes (Fig. 5c) we used R studio to
generate a multivariate Poisson regression relating log(average
counts) with the genotype using model-based t-tests. Data are
presented as mean ± SEM. P-values less than 0.05 were considered
significant (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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