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Abstract 

 

Inhibitory control deficits represent a key aspect of the cognitive declines associated with aging. Practicing 

inhibitory control has thus been advanced as a potential approach to compensate for age-induced 

neurocognitive impairments. Yet, the functional brain changes associated with practicing inhibitory control tasks 

in older adults and whether they differ from those observed in young populations remains unresolved. 

We compared electrical neuroimaging analyses of ERPs recorded during a Go/NoGo practice session with a 

Group (Young; Older adults) by Session (Beginning; End of the practice) design to identify whether the practice 

of an inhibition task in older adults reinforces already implemented compensatory activity or reduce it by 

enhancing the functioning of the brain networks primarily involved in the tasks.  

We observed an equivalent small effect of practice on performance in the two age-groups. The topographic 

ERP analyses and source estimations revealed qualitatively different effects of the practice over the N2 and P3 

ERP components, respectively driven by a decrease in supplementary motor area activity and an increase in left 

ventrolateral prefrontal activity in the older but not in the young adults with practice. 

Our results thus indicate that inhibition task practice in older adults increases age-related divergences in the 

underlying functional processes. 
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1. Introduction 

 

Deficits in inhibitory control (IC), the ability to suppress irrelevant motor or cognitive processes, constitute 

one of the major factors accounting for the cognitive declines observed in normal aging (e.g. Nielson, 

Langenecker, & Garavan, 2002). Cognitive training interventions targeting IC have thus been advanced as 

potential approaches to slow down the deleterious effects of aging on cognition. However, current functional 

literature on inhibitory control task practice focused mostly on young adults population (for a review, see Spierer, 

Chavan, & Manuel, 2013), leaving largely unresolved whether and how aging interacts with training-induced 

plasticity in IC. 

In young adults, behavioral improvements in IC are typically associated with decreases in right ventrolateral 

prefrontal activity (e.g Berkman et al., 2014; Chavan et al., 2015; Hartmann et al., 2016; Manuel et al., 2010; 

Spierer et al., 2013), a pattern interpreted as reflecting an enhancement in the functioning of the core task areas 

via the exclusion of the task-irrelevant neural activity (e.g. Hartmann et al., 2016). 

However, because of baseline differences in inhibitory control performance and functional organization 

between young and older adults populations (e.g. Beason-Held, Kraut, & Resnick, 2008), different practice-

induced plastic modifications can be hypothesized between these two age groups (Noack et al., 2009).  

During inhibition tasks, older adults typically show longer response times (e.g. Heilbronner & Münte, 2013; 

Hong, Sun, Bengson, & Tong, 2014; Nielson et al., 2002; Vallesi, McIntosh, & Stuss, 2011) and more inhibition 

failures than young adults (e.g. Langenecker & Nielson, 2003; Nielson et al., 2002). Functionally, older adults 

show i) local decreases in activity within the core inhibitory right VLPFC areas, putatively reflecting less efficient 

processing with aging; and ii) a recruitment of additional contralateral homotopic left VLPFC areas (Cabeza, 2002; 

Cappell et al., 2010; Coxon et al., 2016; Hsieh and Fang, 2012) interpreted as compensating for the functional 

deficits in the areas primarily involved in the inhibition tasks (e.g. Reuter-Lorenz & Park, 2014; Sebastian et al., 

2013).  

Such baseline differences in neurocognitive states have been shown to influence both the type and amplitude 

of the plastic changes induced by practicing executive function tasks. For example, Dahlin and colleagues (2008) 

found larger improvement in performance and striatal function after working memory training in young than 

older adults and interpreted this pattern as resulting from differences in baseline performance. Noack and 

colleagues (2009) further suggested that while in young adults training could improve the intrinsic neural 

capacities of task-related regions, neurobiological ‘brakes’ in the older adults’ capacity to engage such plastic 

mechanisms may rather lead them to changes their cognitive strategies; in turn, qualitative modulations in the 

recruited networks would be observed with practice (Park & Bischof, 2013 for discussion). 
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Based on the literature reviewed above, two main hypotheses can be formulated on how aging could interact 

with the effects of inhibitory control training. 

First, practice of IC task in older adults may as in the young adults result in a functional enhancement of the 

brain areas primarily involved in the tasks. Consequently, compensatory activity would be less required and thus 

reduced (Anguera et al., 2013; Heinzel et al., 2014). This hypothesis predicts that with task practice the older 

adults will show a decrease in both primary and compensatory inhibition-related activity (Brehmer et al., 2011; 

Erickson et al., 2007), i.e. bilaterally within the pre-SMA and ventrolateral cortices (Aron, 2007) during the 

inhibition initiation and implementation phases at ca. 200-400ms post-stimulus onset (N2/P3 inhibition ERP 

components; Bokura et al., 2001; Pires et al., 2014). 

Second, the practice may increase the compensatory activity adopted by the older adults to cope with 

inhibition demands, with the practice resulting in an increase in (mostly left) ventrolateral prefrontal cortices 

during the inhibition phases (e.g. Mozolic, Hayasaka, & Laurienti, 2010; Nyberg et al., 2003).  

 

We tested these two models with electrical neuroimaging analyses of event-related potentials recorded 

during a practice session with the same inhibitory control task in a group of young adults (19-40 years old) and 

of older adults (60-76 years old). We focused on the interaction term of a multifactorial Group (Young; Older 

adults) x Session (Beginning; End) mixed ANOVA design applied on the NoGo trials, allowing us to reveal the 

plastic modifications specific to the older adults’ inhibition processes. We identified whether the observed 

changes manifested within areas showing baseline age-related change in activity by comparing the ERP to the 

NoGo stimuli measured at the beginning of the practice between the two age groups.  

The electrical neuroimaging analyses of the ERP consisted in applying data-driven, time-frame-wise, robust 

randomization statistics on the global field power and on the topography of the ERPs. As compared to local 

analyses of the amplitude of ERP components at specific electrodes, analyses of the strength and shape of the 

scalp field potentials enable neurophysiological interpretations of the ERP by identifying if the observed 

modulations follow from change in responses gain and/or change in the configuration of the active brain 

networks across conditions: differences in ERP topography indeed necessarily follow from changes in the 

configuration of the underlying neural generators (Lehmann, 1987), while differences in global field power follow 

from changes in the strength of the same brain generators (Michel and Murray, 2012; Murray et al., 2008; 

Tzovara et al., 2012). As a second step, distributed source estimations were computed and statistically compared 

over the period of global ERP modulations to localize the origin of the effects observed at the scalp.  

In addition to the confirmatory analyses within the N2/P3 inhibition-related time windows, we report the 

results of exploratory analyses over earlier ERP latencies. Previous IC training studies indeed suggest that earlier 

latency processes may likewise be modified by training: An automatization of the task completion may results in 
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modifications of the processing stages when stimulus-response mapping is implemented (i.e. in parietal areas at 

100ms; Manuel et al., 2010) and similarly, a change in task difficulty with practice could modify attention 

allocation and the processing of stimulus feature (N1 amplitude; Benikos et al., 2013). 

 

2. Materials and Methods 

 

Except the addition of specific questionnaires assessing the integrity of basic cognitive functions in older 

adults to control potential confounds related to healthy aging, we used in the older adults the same procedure 

and task as in Hartmann et al. (2016), and the data for the young adult group used in the present paper are those 

from Hartmann et al. (2016).  While the recording of the two groups were separated in time, the same 

experimenters conducted the study and the same devices were used for the data collection in each group. 

 

2.1.  Participants  

Forty-one right-handed (Edinburgh Handedness Inventory; Oldfield, 1971) male volunteers were recruited for 

this study. Our sample size was calculated a priori based on previous ERP literature on inhibitory control training 

(e.g. Hartmann et al., 2016; Manuel, Bernasconi, & Spierer, 2013; Manuel, Grivel, Bernasconi, Murray, & Spierer, 

2010; Paul et al., 2007) reporting medium to large effect size; for a power of 0.8 to detect effect of d=0.8 or f=0.3-

0.4 for α=0.5 with one-tailed independent-sample t-tests or a within-between subject interaction, a sample of 

n=15-20 per group was necessary. 

All the participants had normal or corrected to normal vision. None reported any history of neurological or 

psychiatric disorders. We controlled that all participants had a university degree to minimize between-group 

differences in education level. We included only male participant to facilitate the comparison with previous 

studies on the topic and to prevent any sex-related confounds. Older adults’ scores were within the limit of the 

norm for the Mini-Mental State Examination (M.M.S.E.; Folstein, Folstein, & McHugh, 1975), excluding any 

clinical signs of cognitive impairment (M.M.S.E. mean±SD = 27.95± 0.78 (max = 30)) and within the limit of the 

norm for the Frontal Assessment Battery (FAB; Dubois, Slachevsky, Litvan, & Pillon, 2000; mean±SD = 17.68±0.48 

(max = 18)), indicating no clinically relevant frontal impairments. Three participants were excluded from the 

analyses due to artifacted EEG recording (n=1); improper calibration phase (n=1; see the ‘‘Procedure and task’’ 

section); and part of the task performed with the left hand (n=1). A total of 38 participants (mean age±SD for the 

Young = 25.4±4.8 years (range 19-40 years old); Older adults = 65.9±4.8 years (60-76 years old)) were thus 

eventually included in the data analyses. All procedures were approved by our local ethics committee. 

 

2.2. Stimuli 
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Visual stimuli were colored letter (blue, cyan, green, red, white or yellow ‘A’, ‘E’, ‘M’, ‘O’, ‘S’ or ‘T’) presented 

in the center of a black screen. Each possible combination of the letter and color were used, for a total of 36 

different stimuli. In a given block, NoGo stimuli were either all letters of a given color or all colors of a given letter 

(total 12 different NoGo stimuli); Go trials were all the remaining stimuli. For example, in a block where the letter 

‘‘M’’ was the NoGo stimulus, a total of 30 ‘‘M’’ were presented, 5 in each of the 6 possible colors (5 red ‘‘M’’, 5 

yellow ‘‘M’’, 5 blue ‘‘M’’, etc.) and the 30 Go stimuli were the 30 remaining color/ letter combinations: 5 ‘‘A’’ 

(one of each color), 5 ‘‘E’’, 5 ‘‘O’’, etc., so that in a block, the letter M was presented 5 times more than the other 

letters, while each colors were equally represented (Hartmann et al., 2016; De Pretto et al., in press). 

 

2.3. Procedure and task 

Participants were seated in a sound-attenuated booth and completed a visual Go/NoGo task (Fig. 1). They 

were asked to respond as fast as possible to Go stimuli by pressing a button on a response box with their right 

index finger, while withholding their responses to NoGo stimuli. The E-Prime 2.0 software (Psychology Software 

Tools, Inc., Sharpsburg, PA) was used for stimulus presentation and response recording. A total of 12 blocks of 

60 trials were completed by each participant, separated by 2 minutes breaks. Each block consisted of 30 Go and 

30 NoGo trials presented randomly. The NoGo stimuli (i.e., a given letter or color) were pseudorandomly chosen 

across participants so that the same NoGo was never used two times and the order of the NoGo used in each 

block was different for each participant.  

Before the beginning of each block, participants were presented with spoken and written instructions on 

which was the NoGo stimulus for that block. Participants then completed a calibration block of 12 trials (6 Go; 6 

NoGo) during which the mean response time (RT) to Go trials was measured. This averaged RT (RT threshold, 

RTt) was then used as a threshold to provide a feedback on response speed during the subsequent experimental 

block: if the RT to a Go trial was below 90 % of the mean RTt, a feedback ‘Too late!’ was presented on the screen 

at the end of the trial (no feedback was given on performance during the calibration phase and participants were 

kept naive to the aim of the calibration phase). This procedure enabled maintaining the same level of time 

pressure across participants and blocks, i.e., independently of any initial inter-individual differences in Go/NoGo 

performance and on performance improvement with practice (for similar procedures: Manuel et al., 2010; Vocat, 

Pourtois, & Vuilleumier, 2008). Such pressure on response time was also necessary to increase response 

prepotency in our task because to control for biases related to a differential exposure to Go and NoGo trial during 

the practice we had to present the same number of Go and NoGo trials. The feedback on response time thus 

enabled increasing the tendency to respond when a stimulus was presented and thus the need for inhibition to 

NoGo trials. Our result for 10-15% rate of commission error as in typical Go/NoGo tasks with 0.3 NoGo 
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probability, together with the presence of clear N2 and P3 component (see the Result section), confirmed that 

our paradigm adequately involved inhibition.  

Each experimental trial consisted in the presentation of a grey fixation cross during 1500–1900ms, followed 

by the stimulus (500ms) and a response window (1000ms) terminating as soon as the participant responded, but 

with a minimal duration of 250ms. Then, a feedback on the performance was given for 500ms: a happy smiley 

icon after hits (response after a Go stimulus); a feedback ‘‘Too late!’’ replaced the happy smiley after hits with a 

RT>RTt; a happy smiley after correct rejections (no response after a NoGo stimulus); and an unhappy smiley after 

misses (no response after a Go stimulus) or false alarms (response after a NoGo trial). 

 

  

 

Figure 1. Experimental visual Go/NoGo paradigm. Participants had to respond as fast as possible to the Go stimuli 
while withholding their response to the NoGo stimuli. A feedback was displayed on response speed and accuracy.  
 

 

2.4. Behavioral analysis 

Response times (RT) to Go stimuli and accuracy to NoGo stimuli (as indexed by the false alarm rate (FA): the 

percentage of inaccurately responded NoGo trials) were recorded in the young and older groups. Response times 

were averaged for each block separately after having excluded RT higher or lower than two standard deviations 

from the individual’s mean. In order to enable comparisons between the behavioral and EEG results, RT and FA 

rate were averaged for the three first blocks (condition ‘‘beginning’’, BEG) and the three last blocks of the session 

separately (condition ‘‘end’’, END). The RT and FA were statistically compared based on a Group (Young; Older) 

x Session (BEG; END) mixed ANOVA. Kolmogorov-Smirnov tests revealed that the assumption of normality was 

violated for two variables (FA Older BEG; FA Older END), and Levene’s test for homogeneity of variance that the 

error variance of the dependent variables was unequal between the young and the older adults group for the 

response times (RT) and the false alarms (FA). To control for the influence of these assumption violations on the 

parametric ANOVA and for potentially skewed distribution of percentages and response time, we reconducted 

the same Group x Session analyses but with non-parametric statistics and found that the results did not change 

(see the Supplementary Table 1 & 2 for the test of parametric ANOVA’s assumptions and the p-value of the non-
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parametric statistics). We thus report in the results section the parametric statistics. Effect sizes are interpreted 

according to the Cohen’s (1988) guidelines (d (ηp²) = 0.2 (0.01): small; 0.5 (0.06): medium; and 0.8 (0.14): large 

effect size). 

 

 

2.5. EEG recording 

The 64-channel electroencephalogram (EEG) was recorded at a sampling rate of 1024 Hz with a Biosemi 

ActiveTwo system referenced to the common mode sense-driven right leg (CMS-DRL) ground placed on each side 

of the POz electrode. This circuitry consists of a feedback loop driving the average potential across the montage 

as close as possible to the amplifier zero (cf. the Biosemi website 

(http://www.biosemi.com/pics/zero_ref1_big.gif for a diagram). For the ERP analyses, offline analyses were 

performed with the Cartool software (Brunet et al., 2011), and statistical analyses were performed with the open 

toolboxes RAGU (Koenig et al., 2011) and STEN (http://doi.org/10.5281/zenodo.1164038).  

 

2.6. EEG preprocessing 

Second order Butterworth with −12db/octave roll-off; 0.1 Hz high-pass; 40 Hz low-pass; 50 Hz notch filters 

were applied on the raw EEG data. Then, we extracted and averaged EEG epochs from 100ms pre- to 500ms 

post-stimulus onset, for the correct Go (Hit) and NoGo stimuli (Correct Rejections, CR), for the first three blocks 

(Beginning condition, BEG) and the three last blocks of the Go/NoGo practice session (End condition, END) for 

each participant. Before the event-related potential (ERP) averaging, epochs with at least one electrode with one 

time frame at ±80 µV were automatically rejected to remove eye blinks and other artifacts. After the ERP 

averaging, data from ‘bad’ electrodes from each participant were interpolated using 3D splines before the 

averaging (mean 0.3 % interpolated electrodes; Perrin, Pernier, Bertnard, Giard, & Echallier, 1987), and the ERPs  

recalculated against the average reference and corrected for pre-stimulus baseline. The average number 

(±standard deviation (SD)) of accepted epochs was for the condition (Young Group CR BEG: 68.5±12.5, CR END: 

72.0±7.9; Older Group CR BEG: 74.2±11.4, CR END: 74.7±9.0; Young Group HIT BEG: 66.2±13.0, HIT END: 

68.9±7.4; Older Group HIT BEG: 70.0±12.6, HIT END: 71.1±10.1). These values did not differ statistically on our 

main Group (Young; Older) x Session (Beg; End) interaction term of interest (CR: p=.453; HIT: p=.710), ensuring 

that the observed ERP effects were not confounded by differences in signal-to-noise ratio. 

 

2.7. Event-Related Potential Analyses 

2.7.1. General event-related potentials (ERPs) analytical strategy 
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We conducted electrophysiological analyses both on local and global measures of the electric field at the 

scalp. Local electrode analyses refer to the comparison between the experimental conditions at the level of the 

ERP waveform for each electrode separately. In contrast, global analyses of the ERPs compare the power and 

topography of the whole electric field at the scalp between conditions. Global analyses of the scalp field 

potentials have the advantage of being independent on the choice of the reference electrode and, as detailed 

below, of enabling to differentiate effects following from modulations in the strength of the responses of 

statistically indistinguishable brain generators (i.e. modulations in global field power but not topography) from 

alterations in the configuration of these generators (i.e. modulations of the topography of the electric field at 

the scalp). These methods have been shown to be useful for analyzing EEG data from large electrode sensor 

arrays and have been extensively detailed elsewhere (Michel & Murray, 2012; Tzovara, Murray, Michel, & De 

Lucia, 2012 for a method tutorial). 

The key ERP analyses were conducted on the NoGo ERP because the main aim of the study was to identify 

how practice modified the inhibition processes in the young vs the older adults. This question was addressed by 

the interaction term of a Group (Young; Older) x Session (Beginning (BEG); End of the practice (END)) mixed 

repeated measure ANOVA on the NoGo ERPs. Yet, we still compared the Go and NoGo ERP as a ‘sanity check’ to 

ensure that the key inhibition ERP components were present in our data and to identify the periods of interest 

for the NoGo analyses (Section 2.7.5). We focused on the time period of the N2 and P3 ERP components for our 

main confirmatory analyses because our hypotheses for an interaction between aging and the effect of IC 

practice concerned the inhibition processing phases (e.g. Albert, López-Martín, Hinojosa, & Carretié, 2013; 

Gajewski & Falkenstein, 2013). However, we still conducted and report exploratory analyses of the remaining 

period of the ERP epoch, during which other effects could not be excluded. 

 

2.7.2. Local electrode ERP analyses 

As a first step, we conducted local electrode analyses by applying the (Young; Older) x Session (Beginning 

(BEG); End of the practice (END) mixed ANOVA at each peri-stimulus time frame and for each electrode 

separately. This analysis of the ERP voltage waveform data at the single electrode level aims at identifying the 

time periods showing the modulation of interest (here the Group*Session interaction). Such local electrode 

analysis actually corresponds to the canonical ERP analysis approaches comparing voltage amplitudes for specific 

ERP components of interest (i.e. the ERP voltage at a given electrode and latency), but extended in time to the 

whole ERP epoch and space to the whole electrode montage. This analysis is important because it allows 

comparing our results to those of previous studies based on traditional ERP analyses. For example, our approach 

could reveal an effect on the classical N2 component by showing an interaction on the typical electrodes and 

latency of the N2: Frontocentral/anterior electrodes between 250 and 350ms.  
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Yet, while this approach is highly sensitive to detect the timing of ERP modulations, it entails a large number 

of statistical tests and is thus prone to false positive. To (partially) correct for multiple comparisons and for 

temporal and spatial autocorrelation, we considered in this analysis only the periods showing the interaction of 

interest lasting longer than 11TF on more than 10% of the electrodes. This threshold is based on a permutation 

tests assessing the number of continuous significant data points that would be expected to arise by chance 

(based on 1000 permutations) in temporally auto-correlated noise data (Guthrie & Buchwald, 1991).  

2.7.3. Global ERP analyses 

Modulations of the strength of the electric field at the scalp were analyzed using the global field power index 

(GFP; Koenig et al., 2011; Koenig & Melie-García, 2010; Lehmann & Skrandies, 1980). GFP is calculated as the 

spatial standard deviation of the electric field (i.e., the root mean square of the difference between two 

normalized vectors computed across the entire electrode set). Larger GFP amplitudes indicate stronger electric 

fields; GFP peaks thus indicate highly synchronized neural sources underlying the scalp-recorded activity (Michel 

and Murray, 2012). 

Modulations of the topography of the electric field at the scalp were analyzed using the global map 

dissimilarity index (GMD; Lehmann & Skrandies, 1980). GMD indexes differences in the configuration between 

two electric field and is calculated as the root mean square of the difference between the potentials measured 

at each electrode for the different experimental conditions normalized by instantaneous GFP. Because changes 

in topography forcibly follow from changes in the configuration of the underlying active sources (Lehmann and 

Skrandies, 1980), topographic modulations reveal when distinct brain networks are activated across 

experimental conditions. 

Since the GFP is insensitive to spatial (i.e. topographic) change in the ERP, and that GMD is calculated on GFP-

normalized data, the GFP and GMD are orthogonal measures and can thus be interpreted separately. 

GFP and GMD were compared across experimental conditions at each time frame using non-parametric 

randomization statistics (Monte Carlo bootstrapping): the differences in GFP and GMD between the 

experimental conditions were compared with a distribution of the differences derived from permuting 5000 

times the conditions’ label of the data for each participant (Koenig et al., 2011; Murray, Brunet, & Michel, 2008). 

The probability of obtaining a GMD and GFP value from the permutations higher than the measured value was 

then determined. The threshold for statistical significance was set at p<0.05, and to correct for multiple 

comparison and temporal autocorrelation, differences were only accepted as significant if they were present for 

>11 continuous time-frames (Guthrie and Buchwald, 1991).  

The ERP analyses were used to identify the period of interest showing sustained Group x Session interactions 

over which the analysis of source estimations was conducted to identify the origin of these modulations in the 

brain 
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2.7.4. Electrical source estimations 

Brain sources of ERP modulations were estimated using a distributed linear inverse solution model (a 

minimum norm inverse solution) combined with the local autoregressive average (LAURA) regularization 

approach, which describes the spatial gradient across neighboring solution points (Grave De Peralta Menendez 

et al., 2004; Menendez et al., 2001). LAURA enables investigating multiple simultaneously active sources and 

selects the configuration of active brain networks that better mimics biophysical behavior of neural fields. LAURA 

uses a realistic head model, and the solution space included 3005 nodes, selected from a grid equally distributed 

within the gray matter of the Montreal Neurological Institute's average brain. The head model and lead field 

matrix were generated with the Spherical Model with Anatomical Constraints (SMAC; Spinelli, Gonzalez Andino, 

Lantz, Seeck, & Michel, 2000). As an output, LAURA provides current density measures; their scalar values were 

evaluated at each node. Assessments of the localization accuracy of this inverse solution by fundamental and 

clinical research indicate that the estimations and the results of their statistical analyses can be confidently 

interpreted at the resolution of the grid size (here 6mm; e.g. Gonzalez Andino, Michel, Thut, Landis, & De Peralta, 

2005; Gonzalez Andino, Murray, Foxe, & Menendez, 2005; Grave De Peralta et al., 2001; Michel et al., 2004). 

The ERP were averaged for the period of interest determined by the ERP analyses, their source calculated and 

then submitted to the same 2 x 2 ANOVA with between-subject factor Group (Young; Older) and within-subject 

factor Session (BEG; END) as the ERPs. To correct for multiple testing and spatial autocorrelation, we applied a 

spatial-extent correction (Ke) of ≥15 contiguous nodes with a p-value <0.01. This spatial criterion was determined 

using the AlphaSim program (available at http://afni.nimh.nih.gov) and assuming a spatial smoothing of 6 mm 

FWHM. This program applies a cluster randomization approach. The 10,000 Monte Carlo permutations 

performed on our lead field matrix revealed a false positive probability of <0.005 for a cluster greater than 15 

nodes. 

 

2.7.5. Identification of the periods of interest for the confirmatory electrical neuroimaging analyses 

The periods of the N2 and P3 were determined by the analysis of the Go and NoGo ERP in the Older and Young 

groups with a cluster-based temporal segmentation approach (supplementary figure 1), which was also used to 

confirm that our task induced the typical inhibitory ERP components. To identify the periods of the N2 and P3 

inhibition-related ERP components, we submitted the group-averaged ERP data of the young and the older adults 

to hierarchical clustering based on an atomize and agglomerate analysis (Brunet et al., 2011; Murray et al., 2008). 

This approach is based on evidence that the ERP map topography does not vary randomly across time, but 

remains quasi-stable over 20-100ms functional microstates -i.e. the ERP components- before rapidly switching 

to other stable periods (Cacioppo et al., 2014; Lehmann and Skrandies, 1980; Pascual-Marqui et al., 1995). As in 
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previous literature with the same analysis (e.g. Fargier & Laganaro, 2016; Laganaro, Valente, & Perret, 2012; 

Maitre et al., 2017), the optimal number of clusters that explained the best the grand-average data sets across 

conditions was identified using a modified version of the cross-validation criterion combining a cross-validation 

criterion and the Krzanovski-Lai criterion (Tibshirani & Walther, 2005; see also Murray et al., 2008). This analysis 

enabled identifying the N2 and P3 ERP component in our data in a data-driven manner; it first confirmed the 

presence of a N2 and P3 components typically observed in visual Go/NoGo task (with negative fronto-central 

topography ca. 250-350ms and a positive central topography 350-500ms, respectively, cf e.g. Falkenstein, 

Hoormann, & Hohnsbein, 1999).  

 

 

3. Results 

 

3.1. Behavior 

There was a main effect of Group for the RT, driven by longer response times (RT) in the older than young 

adults group (F1,36 = 38.95; p<0.01; ηp² = .520). There was no main effect of Group for the false alarm (FA) rate 

(F1,36 = 4.05; p=.052; ηp² = .101; See Table 1 and Figure 2).  

There was no main effect of Session on RT (RT Practice Main Effect, F1,36 = 3.284; p=.078; ηp² = .084), nor on 

FA (F1,36 = .770; p=.386; ηp² = .021). 

There was no interaction between Group and the Session for the RT (RT Interaction Effect, F1,36 = .307; p=.583; 

ηp² = .008), nor for the FA (F1,36 = .627; p=434; ηp² = .017). 

Given the limitation of the frequentist approach to provide support for the null hypothesis, we further 

investigated the Group by Session interaction with a Bayes factors (BF) analysis using the free software JASP 

(JASP Team, 2018, https://jasp-stats.org/), with the default priors (r scale fixed effects = 0.5; and r scale random 

effects= 1). Bayes factors express the probability of the data given H0 relative to H1 (Dienes, 2011)). We assessed 

whether the data supported an absence of interaction by comparing the BF10 of the model with the interaction 

against the BF10 of the model with only the two main effects. This analysis revealed BF10 of 0.36 for the RT 

interaction and 0.41 for the FA (table 1), indicating substantial evidence against the interaction (the data were 

ca. 3 times more likely observed under the null hypothesis). 
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Figure 2. Behavioral performance during the Go/NoGo task. Older (A) and Young (B) response times and false 
alarms rate at the beginning and at the end of the Go/NoGo practice. Individual datapoints, means (cross), 
medians (horizontal bar) and minimal-maximal value (whiskers) are represented. 
 
 

 

  OLDER YOUNG    
  

Mean 
±SD Beginning End Beginning End Group 

Main Effect 
Session 

Main Effect 
Group 

x Session 
Interaction 

Go 
RT (ms)  

461.76 
±58.44 

455.38 
±63.39 

375.75 
±25.20 

363.74 
±24.62 

p=.000 
η

p
² = .520 

p=.078 
η

p
² = .084 

p=.583 
η

p
² = .008 

BF10= 0.36 

NoGo FA 
(%) 

9.50 
±6.38 

11.78 
±9.07 

15.91 
±10.91 

16.02 
±9.74 

p=.052 
η

p
² = .101 

p=.386 
η

p
² = .021 

p=.434 
η

p
² = .017 

BF10= 0.41 
 
Table 1. Scores and statistical analyses of the behavioral performance at the beginning and the end of the 
Go/NoGo task practice.  
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3.2. Event-related potentials and source estimations 

We report in Supplementary Figure 1 the results of the comparison between the Hit and CR condition for the 

Young and Older groups. These results were used to identify the period of interest (i.e. of typical inhibition 

process) for the time-frame wise analyses. Importantly, these findings replicate the typical N2 and P3 

components and effects found in Go/NoGo task. Together with the behavioral result for ca 10% FA and 400ms 

RT, these data confirm that our experimental paradigm adequately measured inhibition processes and generated 

data interpretable in the context of previous literature on inhibitory control.  

 

Confirmatory analyses (i.e. during the N2/P3 components, from 250ms to 500ms) revealed a sustained 

p<0.05, >11 time frame; >10% of the electrodes) Group X Session interaction from during the N2 component at 

299-322ms and the P3 component at 333-401ms (Fig. 3). These modulations followed from modulation in ERP 

topographic but not strength, indicating changes in the configuration but not response strength of the underlying 

brain network (Lehmann and Skrandies, 1980; Tzovara et al., 2012). 

Statistical analyses of source estimations over this period revealed that this ERP modulation stemmed from a 

Group X Session interaction (p<0.01, Ke>15) driven by a decrease of a SMA-preSMA network and an increase in 

the left VLPFC activity in response to NoGo stimuli in the Older but not Young group (Fig. 4).  

 

Although our confirmatory analyses focused on the periods of the N2/P3 ERP components, we conducted 

exploratory analyses of the whole ERP epoch. These analyses revealed a sustained (Group X Session interaction 

from 139 to 182ms (Fig. 3). We also find a topographic but not a Global Field Power (GFP) ERP modulation over 

this time period, indicating that the observed ERP interaction resulted from qualitative change in the underlying 

brain activity  

These modulations were respectively within a left ventrolateral prefrontal area centered on inferior frontal 

cortex. Follow-up t-tests indicate that this interaction was mainly driven by a decrease in response to NoGo 

stimuli in the Young group but not Older group within this region with practice (Fig. 4).  

 

Finally our analyses of the baseline difference between the two groups ERP to the NoGo revealed a 

topographic modulation over the N2 time window and of response strength during the P3 components, 

respectively driven by lower engagement of a right parieto-occipital network and a higher activity of the pre-

SMA and right inferior frontal gyrus in the Older than Young group, and by a larger activity of the left posterior 

prefrontal, bilateral occipital and right parietal area in the Young than the Older (Supplementary Figure 2). 
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Figure 3. Electrical neuroimaging analysis of the interaction between the factors Group (Older; Young) and Session 
(Beginning; End of the practice). (A) Exemplar group-average event-related potentials (ERP) for NoGo trials at the 
beginning and at the end of the practice for both group. (B) Electrode-wise statistical analyses of the ERPs. The 
graph (1) represents the percentage of electrodes showing a significant (p<0.05) Group X Session interaction. 
Three periods showed a sustained (>10ms for > 10% of the electrodes) interaction. In the topographic maps, red 
dots represent the electrode sites showing a significant interaction (nasion upward; Old: Older; You; Young). The 
results of the global map dissimilarity (2) and of the global field power (3) interaction revealed topographic but 
not strength ERP modulations over the 139-182ms, 299-300ms and 421-500ms time periods.  
 
 
 

 
 
 
 
Figure 4.  Statistical analysis of the distributed electrical source estimations over the three periods of interest 
defined in the analyses in the sensor space (p < 0.01; KE = 15). The bar graphs depict the mean current densities 
in the clusters showing the interaction for the four conditions. Beg: Beginning; Old: Older; You; Young; lIFG: Left 
inferior frontal gyrus; SMA: Supplementary motor area; lVPLFC: Left ventrolateral prefrontal cortex; *: <0.05; 
**<0.01 
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4. Discussion 

 

We examined how aging interacted with practice-induced changes in inhibitory control (IC), and tested two 

models on the effect of practice on compensatory functional activity (i.e. whether it would reduce or develop 

compensatory activity in the older adults). The Go/NoGo practice had weak positive effects on performance, and 

Bayesian inferential analyses indicated that these effects were identical across age groups. In contrast, electrical 

neuroimaging analyses of the ERP revealed robust differences in the effect of practice between the young and 

older adults: there was topographic but not global field power Group by Session interactions over the periods of 

the N2 (ca. 300ms post NoGo onset) and P3 ERP components (450ms); the practice of the inhibitory control task 

thus resulted in qualitatively (but not quantitatively) different functional effects in the young and older adults. 

Source estimation analyses indicated that these ERP effects were respectively driven by a decrease in the activity 

of the bilateral (pre) supplementary motor areas and an increase in left ventrolateral prefrontal activity in the 

older adults but not young, suggesting differential changes in brain activity between the two age groups at the 

level of both the preparation and implementation of inhibition processes. 

 

Go/NoGo inhibition practice has small and equivalent behavioral effect in both age groups 

Behaviorally, we replicated previous evidence for slower response times during the inhibitory control task in 

older than young adults, associated with a tendency for less false alarm rate (Godefroy et al., 2010; Woods et al., 

2015). This pattern could be accounted for either by a general slowing or sensori-motor processing incidentally 

resulting in less commission error (e.g. Forstmann et al., 2011; Woods et al., 2015) or by a deliberate choice for 

more cautious response strategy to favor accuracy over speed in older adults (Kopp et al., 2014; Starns and 

Ratcliff, 2010). While our data cannot disentangle between these hypotheses, in our task a strong emphasis was 

put on response speed based on the individually and dynamically adjusted feedback on response time; hence, it 

appears unlikely that the participants intentionally decreased their response speed.  

Regarding the effect of practice on behavioral performance, Bayesian evidence for an absence of Group by 

Session interaction indicate that the 40 min practice session resulted in the same effect between our two age 

groups, and the main effect of Session suggests a small improvement in response speed with stable FA rate when 

both groups were considered together. This pattern is typically observed in IC practice studies (e.g. Chavan et al., 

2015; Manuel et al., 2013; Benikos et al., 2013) and interpreted as reflecting faster inhibition processes: if the 

speed of execution processes improves without resulting in more false alarms, it means that the speed of the 

‘intercepting’  inhibition processes also improved. Yet, there was almost no change at the behavioral level in the 

older adults, a finding that provides limited support to previous claim that inhibitory control training might be 

beneficial for older adults (Kühn et al., 2017). The present study however focused on a short practice session, 
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and while such practice durations reliably improve performance in young adults (Benikos et al., 2013; Hartmann 

et al., 2016; Manuel et al., 2013; Spierer et al., 2013), and has been shown to constitute a good model for longer 

training intervention because it results in corresponding effects (e.g. Allom et al., 2016), longer practice time may 

still be needed in older populations to improve performance. However, as suggested by the functional results 

and by previous studies on IC training (e.g. Beauchamp et al., 2016), task practice can modify how participants 

perform a task without this change manifesting behaviorally. Further studies with longer practice time are 

required to determine if IC practice with Go/NoGo task results in measurable behavioral changes. 

 

Inhibitory control practice influences inhibition preparatory processes in older but not young adults 

We found a Group x Session topographic but not global field power interaction during the period of the N2 

ERP component at 300ms. Because topographic modulations necessarily follow from a change in the 

configuration of the underlying intracranial generators (Michel and Murray, 2012), this result first indicates that 

the inhibitory control practice induced qualitatively (and not merely quantitatively) different changes in the 

functional IC organization between the older and the young adults. The statistical analyses of source estimations 

revealed that these modulations stemmed from a decrease in the engagement of the bilateral supplementary 

motor area (SMA) and preSMA in the older adults, with a smaller change in the opposite direction young adults. 

We interpret this modulation as reflecting the engagement of fewer resources in the preparation and triggering 

of inhibition in the older adults. The N2 ERP component has indeed been repeatedly associated with response 

conflict processing (Donkers and van Boxtel, 2004; Enriquez-Geppert et al., 2010; Gajewski and Falkenstein, 2013; 

Nieuwenhuis et al., 2003; Schmajuk et al., 2006) and the initiation of inhibition processes (Millner et al., 2012). 

Importantly, the N2 has also been advanced to reflect preparatory processes occurring before response 

inhibition or execution, such as stimulus-driven attention, detection of response conflict or evaluation of the 

outcome of inhibition (Albert et al., 2013).  

Consistently, the preSMA and SMA have been respectively involved in motor inhibition, as well as in 

movement planning and preparation. Impaired inhibition has indeed been observed after real (Floden and Stuss, 

2006; Picton and Taylor, 2007) or virtual preSMA lesion (Chen et al., 2009), and activity in the preSMA reported 

during inhibition processes  (Chen et al., 2009; Floden and Stuss, 2006; Mostofsky et al., 2003; Ray Li et al., 2006; 

Rubia et al., 2001; Simmonds et al., 2008; Swick et al., 2011; Xue et al., 2008). Importantly, preSMA activity is a 

determinant of inhibition performance, with evidence for greater preSMA activity in participants with efficient 

vs slower inhibition (Ray Li et al., 2006). In contrast, the SMA proper is rather involved in motor execution 

(Nachev, Kennard, & Husain, 2008; Picard & Strick, 2001; Zhang, Ide, & Li, 2012). Our source estimation approach 

does not have the spatial resolution to differentiate between the functional patterns in these two adjacent 

regions, but indicates a globally lower engagement of these motor control functional units in the older adults at 
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the end of the practice. This finding is in line with previous evidence for larger preSMA activity in older adults 

during conflict processing and inhibitory control (Turner & Spreng, 2012 for meta-analysis), and the reduction of 

activity in this region suggests that the practice resulted in a reduction of the compensatory activity related to 

conflict monitoring and a better coping with task demands (e.g. Anguera et al., 2013; Heinzel et al., 2014). 

 

With practice, older but not young adults recruit additional left ventrolateral prefrontal cortices to support motor 

inhibition 

 During the period of the P3 ERP component, we also found a topographic (but not strength) ERP modulation 

driven by an increase in the left VLPFC responses in the older but not young population.  

The P3 ERP component has been typically associated with the implementation of the motor inhibition 

processes (Albert et al., 2013; Gajewski and Falkenstein, 2013; Smith et al., 2008). During this processing phase, 

there was an increase in left prefrontal activity in the older but not the young participants. Larger activity in this 

area during inhibition tasks has been repeatedly reported when comparing older to young populations 

(Colcombe, Kramer, Erickson, & Scalf, 2005; Langenecker & Nielson, 2003; Nielson et al., 2002; see Cabeza, 2002, 

for a review), and interpreted as a mechanism to compensate for the deficits of the right homotopic IFG area 

primarily involved in the task  (Park and Reuter-Lorenz, 2009). Accordingly, our results suggest that the practice 

further developed this coping strategy in the older group. Similar patterns have been observed following the 

training of other executive functions in older adults; Carlson and colleagues (2009) for instance demonstrated 

training-induced increases in the activity of prefrontal regions in older adults with high risk of cognitive 

impairments. A study on the effects of eight weeks of cognitive training program also reported increases in 

resting blood flow in healthy older adults (Mozolic, Havasaka & Laurienti, 2010).  

Our finding however runs counter previous evidence for a decrease in neurocognitive scaffolding with 

performance improvements (e.g. Nielson et al., 2002; Langenecker & Nielson, 2003). This discrepancy might 

follow from the fact that our older adult group did not show a larger engagement of the left PFC at baseline; the 

absence of an initial engagement of compensatory activity in the area showing the interaction may explain why 

we observed an increase and not a decrease in practice-induced functional scaffolding. Our older participants 

were possibly too young to already engage important functional compensation of age-related neural 

deterioration.  Alternatively, because of their low temporal resolution, the imaging methods used in previous 

investigations might have missed the changes during short-lived processing steps in the multiphase inhibition 

process we have observed here. 
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Exploratory analyses of ERP modulation during the pre-inhibition processing phases suggest a decrease in older 

adults’ proactive inhibition with practice 

While our hypotheses focused on the typical inhibition-related periods of inhibition corresponding to the 

N2/P3 ERP components, we conducted exploratory analyses on the rest of the peri-stimulus EEG epoch. These 

analyses revealed a topographic ERP modulation at 150ms post-stimulus onset resulting from a differential 

engagement of the left IFG. We interpret this effect as reflecting a differential change in proactive inhibition 

between groups with practice. This latency indeed corresponds to a processing stage overlapping with the phase 

of retrieval of stimulus-response mapping rules and decision on the response to the stimuli, but preceding the 

proper implementation of the inhibition command. Current models of the functional architecture of inhibitory 

control suggest that after the perceptual discrimination of the Go and NoGo stimuli within sensory and 

associative cortices around 50-150ms post-stimulus onset, whether inhibition must be engaged is determined 

based on the retrieval of stimulus-response mapping rules in memory at ca. 150-250ms (Manuel et al., 2010; 

Watanabe et al., 2002). Then, at 250-300ms, when stop stimuli are identified and action cancellation decided, 

response inhibition is initiated within right inferior frontal a gyrus (rIFG) to eventually stop motor activity via 

projections to the basal ganglia and thalamus (Chambers, Garavan, & Bellgrove, 2009; Hampshire, Chamberlain, 

Monti, Duncan, & Owen, 2010; Zhang, Geng, & Lee, 2017). The activity at 150ms thus entails preparatory 

processes engaged as soon as a task-relevant stimulus was discriminated, before the decision to actually engage 

inhibition processes (Criaud and Boulinguez, 2013). 

Together with the behavioral results suggesting more cautious response strategy in older adults, the timing, 

location and direction of this modulation suggests that with practice the young tended to rely less on proactive 

inhibitory control, most likely because of an improvement in their capacity for reactive inhibition (Jaffard et al., 

2008, 2007). In contrast, the older adults showed no change in activity in this area. In older adults, the left IFG 

has been repeatedly reported as being recruited to compensate for deficits in the core rIFG inhibitory area 

(Langenecker and Nielson, 2003; Nielson et al., 2002). While our data suggest that the practice influenced 

differently the Young and the Older during this processing phase, the exploratory nature of this result requires 

further confirmation. 

 

Limitations 

As mentioned above, the main limitation of our study was the short duration of the practice session; we 

cannot rule out that longer practice would lead to different effects. However, a recent review on behavioral 

effect of inhibitory control training by Allom and colleagues (2016) indicates that there is no direct evidence 

available at the time that longer practice sessions are more beneficial. Moreover, the functional literature 
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indicates that short (e.g. Hartmann et al., 2016; Manuel et al., 2013) and long practice regimen (Berkman et al., 

2014b; Chavan et al., 2015) result in similar effects. 

 

Conclusions 

Our collective results suggest that the practice of inhibitory control tasks induces qualitatively different 

neurophysiological effects in young and older adults. Aging thus interacts with the mechanisms of practice-

induced inhibitory control functional plasticity, which emphasizes the state-dependency of the functional effect 

of cognitive practice and suggests that a normalization of age-related executive deficits with practice could 

unlikely be achieved. Remediation strategies may rather focus on reinforcing the compensatory neurocognitive 

strategies spontaneously manifesting with aging. 
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Supplementary Figure 1. Group averaged event-related potential (ERP) for Hits (Go) and Correct Rejections 
(NoGo) at the beginning of the practice in young (A) and older (B). The ERP topographies of the identified ERP 
components for the Go (Hit) and NoGo (Correct rejection) for the components identified with the temporal 
segmentation analysis, as well as the topography of the difference between the components in the Hit-CR 
condition are represented together with the group-averaged waveforms at an exemplar electrode (FCz) and the 
t- and p- values of the Hit vs CR t-tests over time. 
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Supplementary Figure 2. Electrical neuroimaging analysis of the Young vs. Older Beginning NoGo ERP. (1) the 
percentage of electrodes showing a significant (p<0.05) Young vs. Older NoGo difference. The periods of the N2 
and P3 ERP components (as determined by the temporal segmentation analyses, cf Methods Section) are 
depicted. The results of the global map dissimilarity (2) and of the global field power (3) revealed a topographic 
modulation over the N2 time window and of response strength during the P3 components. The same statistical 
contrast applied on the distributed source estimations reveal the location and direction of these effects in the 
brain space.  
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TEST OF NORMALITY: Kolmogorov-Smirnov 

Condition Group Sig. 

Beginning RT 

Older .200 

Young .200 

End RT 

Older .200 

Young .200 

Beginning FA 

Older .034 

Young .053 

End FA 

Older .036 

Young .200 

Note. Normality test showed non-normal distribution for 2 variables.  

 

Box’s Test of Equality of Covariance Matrices 

 RT FA 

Box’s M 20.609 14.595 

F 6.456 4.572 

df1 3 3 

df2 233280 233280 

Sig. .000 .003 

Note. The covariance matrices of the dependent variables are not equal across groups.  

Supplementary Table 1.Kolmogorov-Smirnov test of normality and covariance matrices of our dependent 
variables. Tables show abnormal distribution for the false alarms at the beginning and the end of the practice in 
older and that the dependent variables are not equal across groups.  
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Supplementary Table 2. Behavioral results with non-parametric statistics.  
 

  OLDER YOUNG    
  

Mean 

rank 

±SEM 

Beginning End Beginning End 

Group 

Main 

Effect 

Session 

Main 

Effect 

Group 

x Session 

Interaction 

Go 

RT 

(ms)  

55.84 

±16.21 

53.16 

±18.64 

25.53 

±13.23 

19.47 

±11.95 

p=.000 

ηp² = .574 

p=.022 

ηp² = .138 

p=.361 

ηp² = .023 

NoGo 

FA (%) 

30.81 

±19.49 

34.79 

±22.39 

43.55 

±22.69 

44.84 

±21.97 

p=.074 

ηp² = .086 

p=.434 

ηp² = .017 

p=.689 

ηp² = .004 

 

 


