On quasitrivial semigroups

Jimmy Devillet

University of Luxembourg

Part I: Single-plateauedness

Weak orderings

Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation \leq on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X = \{a_1, a_2, a_3\}$, we have 13 weak orderings

$$a_1 \prec a_2 \prec a_3$$
 $a_1 \sim a_2 \prec a_3$ $a_1 \sim a_2 \sim a_3$
 $a_1 \prec a_3 \prec a_2$ $a_1 \prec a_2 \sim a_3$
 $a_2 \prec a_1 \prec a_3$ $a_2 \prec a_1 \sim a_3$
 $a_2 \prec a_3 \prec a_1$ $a_3 \prec a_1 \sim a_2$
 $a_3 \prec a_1 \prec a_2$ $a_1 \sim a_3 \prec a_2$
 $a_3 \prec a_2 \prec a_1$ $a_2 \sim a_3 \prec a_1$

Weak orderings

Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation \lesssim on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X = \{a_1, a_2, a_3\}$, we have 13 weak orderings

$$a_1 \prec a_2 \prec a_3$$
 $a_1 \sim a_2 \prec a_3$ $a_1 \sim a_2 \sim a_3$
 $a_1 \prec a_3 \prec a_2$ $a_1 \prec a_2 \sim a_3$
 $a_2 \prec a_1 \prec a_3$ $a_2 \prec a_1 \sim a_3$
 $a_2 \prec a_3 \prec a_1$ $a_3 \prec a_1 \sim a_2$
 $a_3 \prec a_1 \prec a_2$ $a_1 \sim a_3 \prec a_2$
 $a_3 \prec a_2 \prec a_1$ $a_2 \sim a_3 \prec a_1$

Weak orderings

Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation \lesssim on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X = \{a_1, a_2, a_3\}$, we have 13 weak orderings

Single-plateaued weak orderings

Definition. (Black, 1948)

Let \leq be a total ordering on X and let \lesssim be a weak ordering on X. Then \lesssim is said to be *single-plateaued for* \leq if

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$

Examples. On $X = \{a_1 < a_2 < a_3 < a_4 < a_5 < a_6\}$

$$a_3 \sim a_4$$
 a_2
 $a_1 \sim a_5$
 a_6
 $a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6$

Single-plateaued weak orderings

Definition. (Black, 1948)

Let \leq be a total ordering on X and let \lesssim be a weak ordering on X. Then \lesssim is said to be *single-plateaued for* \leq if

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$

Examples. On $X = \{a_1 < a_2 < a_3 < a_4 < a_5 < a_6\}$

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6$$

Part II: Quasitrivial semigroups

Quasitriviality

Definition

 $F: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if

$$F(x,y) \in \{x,y\} \quad x,y \in X$$

Example. $F = \max_{\leq} \text{ on } X = \{1, 2, 3\} \text{ endowed with the usual } \leq$

Quasitriviality

Definition

 $F: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if

$$F(x,y) \in \{x,y\}$$
 $x,y \in X$

Example. $F = \max_{\leq} \text{ on } X = \{1, 2, 3\} \text{ endowed with the usual } \leq$

Quasitriviality

Definition

 $F: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if

$$F(x,y) \in \{x,y\}$$
 $x,y \in X$

Example. $F = \max_{\leq} \text{ on } X = \{1, 2, 3\} \text{ endowed with the usual } \leq$

Projections

Definition.

The *projection operations* $\pi_1 \colon X^2 \to X$ and $\pi_2 \colon X^2 \to X$ are respectively defined by

$$\pi_1(x,y) = x, \quad x,y \in X$$

 $\pi_2(x,y) = y, \quad x,y \in X$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$\exists \precsim : F|_{A \times B} = \begin{cases} \max_{\precsim} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$\exists \precsim : F|_{A \times B} = \begin{cases} \max_{\precsim} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

Quasitrivial semigroups

Definition.

 $F: X^2 \to X$ is said to be \leq -preserving for some total ordering \leq on X if for any $x, y, x', y' \in X$ such that $x \leq x'$ and $y \leq y'$, we have $F(x,y) \leq F(x',y')$

single-plateauedness: $a < b < c \implies a \prec b$ or $a \prec c$ or $a \sim b \sim c$

Theorem (Couceiro et al., 2018)

F is associative, quasitrivial, and \leq -preserving

 $\exists \preceq : F \text{ is of the form (*) and } \preceq \text{ is single-plateaued for } \leq$

single-plateauedness: $a < b < c \implies a \prec b$ or $a \prec c$ or $a \sim b \sim c$

Theorem (Couceiro et al., 2018)

F is associative, quasitrivial, and ≤-preserving

 $\exists \preceq : F \text{ is of the form (*) and } \preceq \text{ is single-plateaued for } \leq$

single-plateauedness: $a < b < c \implies a \prec b$ or $a \prec c$ or $a \sim b \sim c$

Theorem (Couceiro et al., 2018)

F is associative, quasitrivial, and \leq -preserving \uparrow

 $\exists \lesssim : F \text{ is of the form (*) and } \lesssim \text{ is single-plateaued for } \leq$

Definition

 $F: X^n \to X$ is said to be

quasitrivial if

$$F(x_1,...,x_n) \in \{x_1,...,x_n\}$$
 $x_1,...,x_n \in X$

associative if

$$F(x_1, ..., x_{i-1}, F(x_i, ..., x_{i+n-1}), x_{i+n}, ..., x_{2n-1})$$

$$= F(x_1, ..., x_i, F(x_{i+1}, ..., x_{i+n}), x_{i+n+1}, ..., x_{2n-1})$$

for all
$$x_1, ..., x_{2n-1} \in X$$
 and all $1 \le i \le n-1$.

Definition

 $F: X^n \to X$ is said to be

quasitrivial if

$$F(x_1,...,x_n) \in \{x_1,...,x_n\}$$
 $x_1,...,x_n \in X$

associative if

$$F(x_1, ..., x_{i-1}, F(x_i, ..., x_{i+n-1}), x_{i+n}, ..., x_{2n-1})$$

$$= F(x_1, ..., x_i, F(x_{i+1}, ..., x_{i+n}), x_{i+n+1}, ..., x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $1 \le i \le n-1$

Definition

 $F: X^n \to X$ is said to be

quasitrivial if

$$F(x_1,...,x_n) \in \{x_1,...,x_n\}$$
 $x_1,...,x_n \in X$

associative if

$$F(x_1, ..., x_{i-1}, F(x_i, ..., x_{i+n-1}), x_{i+n}, ..., x_{2n-1})$$

$$= F(x_1, ..., x_i, F(x_{i+1}, ..., x_{i+n}), x_{i+n+1}, ..., x_{2n-1})$$

for all $x_1, ..., x_{2n-1} \in X$ and all $1 \le i \le n-1$.

Definition

 $F: X^n \to X$ is said to be

quasitrivial if

$$F(x_1,...,x_n) \in \{x_1,...,x_n\}$$
 $x_1,...,x_n \in X$

associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1})$$

$$= F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$
for all $x_1, \dots, x_{2n-1} \in X$ and all $1 < i < n-1$.

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be reducible to G if

$$F(x_1,...,x_n) = G(x_1, G(x_2, G(..., G(x_{n-1},x_n)...))$$

Example. On $X = \mathbb{R}$

$$F(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 + x_5,$$

and

$$G(x, y) = x + y$$

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be reducible to G if

$$F(x_1,...,x_n) = G(x_1, G(x_2, G(..., G(x_{n-1},x_n)...)))$$

Example. On $X = \mathbb{R}$

$$F(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 + x_5$$

and

$$G(x, y) = x + y$$

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be reducible to G if

$$F(x_1,...,x_n) = G(x_1, G(x_2, G(..., G(x_{n-1},x_n)...)))$$

Example. On $X = \mathbb{R}$

$$F(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2 + x_3 + x_4 + x_5,$$

and

$$G(x, y) = x + y$$

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x, e, ..., e) = F(e, x, e, ..., e) = ... = F(e, ..., e, x) = x,$$

for all $x \in X$

Example.
$$F(x_1,...,x_n) = \sum_{i=1}^{n} x_i \pmod{n-1}$$

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x, e, ..., e) = F(e, x, e, ..., e) = ... = F(e, ..., e, x) = x,$$

for all $x \in X$

Example.
$$F(x_1, ..., x_n) = \sum_{i=1}^n x_i \pmod{n-1}$$

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x, e, ..., e) = F(e, x, e, ..., e) = ... = F(e, ..., e, x) = x,$$

for all $x \in X$

Example.
$$F(x_1, ..., x_n) = \sum_{i=1}^{n} x_i \pmod{n-1}$$

Proposition (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup is reducible to a *semigroup*.

But the binary reduction is not necessarily quasitrivial nor unique

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ $G'(x, y) = x + y + 1 \pmod{2}$

Theorem (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup is reducible to a *semigroup*.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ $G'(x, y) = x + y + 1 \pmod{2}$

Theorem (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup is reducible to a *semigroup*.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ $G'(x, y) = x + y + 1 \pmod{2}$

Uniqueness of a reduction

Proposition (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)

 $F: X^n \to X$ associative and quasitrivial. TFAE

- (i) F has a unique binary reduction
- (ii) F has a quasitrivial binary reduction
- (iii) F has an idempotent binary reduction
- (iv) F has at most one neutral element

Uniqueness of a reduction

Proposition (Couceiro and D., 2019)

Any quasitrivial *n*-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)

 $F: X^n \to X$ associative and quasitrivial. TFAE

- (i) F has a unique binary reduction
- (ii) F has a quasitrivial binary reduction
- (iii) F has an idempotent binary reduction
- (iv) F has at most one neutral element

Thank you for your attention!