On quasitrivial semigroups

Jimmy Devillet

University of Luxembourg

Part I: Single-plateauedness

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation $\precsim ~ o n ~ X ~ t h a t ~ i s ~ t o t a l ~ a n d ~ t r a n s i t i v e . ~$

Defining a weak ordering on X amounts to defining an ordered partition of X

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation $\precsim ~ o n ~ X ~ t h a t ~ i s ~ t o t a l ~ a n d ~ t r a n s i t i v e . ~$

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X=\left\{a_{1}, a_{2}, a_{3}\right\}$, we have 13 weak orderings

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation \precsim on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X=\left\{a_{1}, a_{2}, a_{3}\right\}$, we have 13 weak orderings

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} & a_{1} \sim a_{2} \prec a_{3}
\end{array} \quad a_{1} \sim a_{2} \sim a_{3}
$$

Single-plateaued weak orderings

Definition. (Black, 1948)
Let \leq be a total ordering on X and let \precsim be a weak ordering on X.
Then \precsim is said to be single-plateaued for \leq if

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k} \quad \text { or } \quad a_{i} \sim a_{j} \sim a_{k}
$$

Examples. On $X=\left\{a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}\right\}$

Single-plateaued weak orderings

Definition. (Black, 1948)
Let \leq be a total ordering on X and let \precsim be a weak ordering on X. Then \precsim is said to be single-plateaued for \leq if

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k} \quad \text { or } \quad a_{i} \sim a_{j} \sim a_{k}
$$

Examples. On $X=\left\{a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}\right\}$

$$
a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6}
$$

$$
a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}
$$

Part II: Quasitrivial semigroups

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max \leq$ on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Projections

Definition.

The projection operations $\pi_{1}: X^{2} \rightarrow X$ and $\pi_{2}: X^{2} \rightarrow X$ are respectively defined by

$$
\begin{array}{lll}
\pi_{1}(x, y)=x, & & x, y \in X \\
\pi_{2}(x, y)=y, & & x, y \in X
\end{array}
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$
\exists \precsim:\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$
\exists \precsim:\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Quasitrivial semigroups

Order-preserving operations

Definition.

$F: X^{2} \rightarrow X$ is said to be \leq-preserving for some total ordering \leq on X if for any $x, y, x^{\prime}, y^{\prime} \in X$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Order-preserving operations

single-plateauedness:

Theorem (Couceiro et al., 2018)
F is associative, quasitrivial, and $\leq-$ preserving

Order-preserving operations

single-plateauedness: $a<b<c \quad \Longrightarrow \quad a \prec b$ or $a \prec c$ or $a \sim b \sim c$ Theorem (Couceiro et al., 2018)
F is associative, quasitrivial, and \leq-preserving

Order-preserving operations

single-plateauedness: $a<b<c \quad \Longrightarrow \quad a \prec b$ or $a \prec c$ or $a \sim b \sim c$

Theorem (Couceiro et al., 2018)

F is associative, quasitrivial, and \leq-preserving
I
$\exists \precsim: F$ is of the form $(*)$ and \precsim is single-plateaued for \leq

Order-preserving operations

Order-preserving operations

Quasitrivial n-ary semigroups

Definition

$F: X^{n} \rightarrow X$ is said to be

Quasitrivial n-ary semigroups

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$.

Quasitrivial n-ary semigroups

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, F\left(x_{i}, \ldots, x_{i+n-1}\right), x_{i+n}, \ldots, x_{2 n-1}\right) \\
& \quad=F\left(x_{1}, \ldots, x_{i}, F\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$.

Quasitrivial n-ary semigroups

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, F\left(x_{i}, \ldots, x_{i+n-1}\right), x_{i+n}, \ldots, x_{2 n-1}\right) \\
& \quad=F\left(x_{1}, \ldots, x_{i}, F\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$.

Characterization?

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

Example.

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

$$
F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}, G\left(x_{2}, G\left(\ldots, G\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right)
$$

Example. On $X=\mathbb{R}$

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

$$
F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}, G\left(x_{2}, G\left(\ldots, G\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right)
$$

Example. On $X=\mathbb{R}$

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1}+x_{2}+x_{3}+x_{4}+x_{5},
$$

and

$$
G(x, y)=x+y
$$

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$

Proposition (Couceiro and D., 2019)
Anv quasitrivial n-ary semigroun has at most two neutral elements

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.

Quasitrivial n-ary semigroups

Theorem (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

\square

Quasitrivial n-ary semigroups

Theorem (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.
Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

$$
G(x, y)=x+y(\bmod 2) \quad G^{\prime}(x, y)=x+y+1(\bmod 2)
$$

Quasitrivial n-ary semigroups

Theorem (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.
Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

$$
G(x, y)=x+y(\bmod 2) \quad G^{\prime}(x, y)=x+y+1(\bmod 2)
$$

Uniqueness of a reduction

Proposition (Couceiro and D., 2019)
Any quasitrivial n-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)

$F: X^{n} \rightarrow X$ associative and quasitrivial. TFAE
F has a unique binary reduction
F has a quasitrivial binary reduction
F has an idempotent binary reduction
F has at most one neutral element

Uniqueness of a reduction

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)
$F: X^{n} \rightarrow X$ associative and quasitrivial. TFAE
(i) F has a unique binary reduction
(ii) F has a quasitrivial binary reduction
(iii) F has an idempotent binary reduction
(iv) F has at most one neutral element

Thank you for your attention!

