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Part I: Single-plateauedness



Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary
relation - on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition
of X

For X = {a1, a2, a3}, we have 13 weak orderings

a1 ≺ a2 ≺ a3 a1 ∼ a2 ≺ a3 a1 ∼ a2 ∼ a3
a1 ≺ a3 ≺ a2 a1 ≺ a2 ∼ a3
a2 ≺ a1 ≺ a3 a2 ≺ a1 ∼ a3
a2 ≺ a3 ≺ a1 a3 ≺ a1 ∼ a2
a3 ≺ a1 ≺ a2 a1 ∼ a3 ≺ a2
a3 ≺ a2 ≺ a1 a2 ∼ a3 ≺ a1
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Single-plateaued weak orderings

Definition. (Black, 1948)
Let ≤ be a total ordering on X and let - be a weak ordering on X .
Then - is said to be single-plateaued for ≤ if

ai < aj < ak =⇒ aj ≺ ai or aj ≺ ak or ai ∼ aj ∼ ak

Examples. On X = {a1 < a2 < a3 < a4 < a5 < a6}

a3 ∼ a4 ≺ a2 ≺ a1 ∼ a5 ≺ a6 a3 ∼ a4 ≺ a2 ∼ a1 ≺ a5 ≺ a6
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Part II: Quasitrivial semigroups



Quasitriviality

Definition

F : X 2 → X is said to be quasitrivial (or conservative) if

F (x , y) ∈ {x , y} x , y ∈ X

Example. F = max≤ on X = {1, 2, 3} endowed with the usual ≤
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Projections

Definition.

The projection operations π1 : X 2 → X and π2 : X 2 → X are respectively
defined by

π1(x , y) = x , x , y ∈ X

π2(x , y) = y , x , y ∈ X



Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

m

∃ - : F |A×B =

{
max- |A×B , if A 6= B,

π1|A×B or π2|A×B , if A = B,
∀A,B ∈ X/ ∼
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Quasitrivial semigroups
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Order-preserving operations

Definition.

F : X 2 → X is said to be ≤-preserving for some total ordering ≤ on X if
for any x , y , x ′, y ′ ∈ X such that x ≤ x ′ and y ≤ y ′, we have
F (x , y) ≤ F (x ′, y ′)



Order-preserving operations

(∗)

-
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single-plateauedness: a < b < c =⇒ a ≺ b or a ≺ c or a ∼ b ∼ c

Theorem (Couceiro et al., 2018)

F is associative, quasitrivial, and ≤-preserving
m

∃ - : F is of the form (∗) and - is single-plateaued for ≤
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Quasitrivial n-ary semigroups

Definition

F : X n → X is said to be

quasitrivial if

F (x1, . . . , xn) ∈ {x1, . . . , xn} x1, . . . , xn ∈ X

associative if

F (x1, . . . , xi−1,F (xi , . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi ,F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all 1 ≤ i ≤ n − 1.

Characterization?
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Reducibility

Definition

F : X n → X and G : X 2 → X associative operations.

F is said to be reducible to G if

F (x1, . . . , xn) = G (x1,G (x2,G (. . . ,G (xn−1, xn) . . .)))

Example. On X = R

F (x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5,

and
G (x , y) = x + y
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Neutral elements

Definition

e ∈ X is said to be a neutral element for F if

F (x , e, . . . , e) = F (e, x , e, . . . , e) = . . . = F (e, . . . , e, x) = x ,

for all x ∈ X

Example. F (x1, . . . , xn) =
∑n

i=1 xi (mod n − 1)

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.
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Quasitrivial n-ary semigroups

Theorem (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.
F (x , y , z) = x + y + z (mod 2)

G (x , y) = x + y (mod 2) G ′(x , y) = x + y + 1 (mod 2)
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Uniqueness of a reduction

Proposition (Couceiro and D., 2019)

Any quasitrivial n-ary semigroup has at most two neutral elements.

Theorem (Couceiro and D., 2019)

F : X n → X associative and quasitrivial. TFAE

(i) F has a unique binary reduction

(ii) F has a quasitrivial binary reduction

(iii) F has an idempotent binary reduction

(iv) F has at most one neutral element
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Thank you for your attention!


