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Abstract

We study urban structures driven by demand and vertical linkages in the presence of increasing

returns to scale. Individuals consume local urban varieties and firms use these varieties to produce

a national good. We prove the existence of a spatial equilibrium and obtain an invariance result

according to which more intense demand or vertical linkages have the same effect on the urban

structure as lower commuting costs. Various urban configurations can emerge exhibiting a mono-

centric, an integrated, a duocentric, or a partially integrated city structure. We discuss the role

of commuting and transport costs, intensities of demand and vertical linkages, and urbanization

in affecting these patterns. We show that multiple equilibria may arise in equilibrium involving

the monocentric city and up to a couple of duocentric and partially integrated structures.

Keywords: Urban spatial structure, demand and vertical linkages, monopolistic competition, land

use

J.E.L.: R12, R14, R31

1 Introduction

In this paper we study spatial urban structures driven by demand and vertical linkages in the presence

of increasing returns to scale. Individuals consume local urban varieties produced by firms under
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monopolistic competition. Firms also use these varieties as intermediate components to produce a

homogeneous national good under perfect competition, which is sold within and outside the city.

Our aim is to study how commuting and transport costs, intensities of demand and vertical linkages,

and urbanization affect the urban structure. For this purpose, we establish equilibrium conditions in

the product and land markets. Our results are the following. First we prove the existence of a spatial

equilibrium and obtain an invariance result according to which more intense demand or vertical linkages

have the same effect on the urban structure as lower commuting costs. We then study several urban

structures and discuss their condition of existence and properties. For the monocentric and integrated

cities, we provide explicit conditions that can be represented in terms of the parameters of interest. As

for duocentric and partially integrated cities, we derive implicit conditions that determine the borders

of business/residential districts. These restrictions on district borders make part of the equilibrium

conditions determining the emergence of duocentric and partially integrated patterns.

Our analysis confirms that a monocentric city emerges for very low commuting costs while spa-

tial integration of business and residential districts occurs when goods are shipped at low transport

costs within the city. As more intense demand or vertical linkages have the same effect as lower

commuting costs, they make the monocentric structure more likely. Furthermore, for intermediate

commuting/transport costs and moderate intensities of demand/vertical linkages, many urban struc-

tures may emerge and coexist in equilibrium. We show the existence of multiple equilibria involving

the monocentric city and up to a couple of duocentric and partially integrated urban structures. Ur-

banization via an increase in city size induces transitions from the monocentric configuration to full

integration possibly passing by duocentric or partially integrated structures depending on the mag-

nitude of the transport cost. When transport costs are high, the economy undergoes discontinuous

transitions reflecting larger benefits gained by firms when production locations separate into several

business districts.

The present paper extends the existing literature on the endogenous formation of urban areas by

uncovering the role of backward and forward linkages on the formation of cities. Whereas Fujita and

Ogawa (1982) and Lucas and Rossi-Hansberg (2002) discuss the implications of agglomeration benefits

arising from face-to-face communication and exogenous technological spillovers respectively, our paper

studies agglomeration forces that are microfounded in the existence of imperfect competition and firms’

increasing returns to scale. Accordingly, firms operating in the city have market power and earn a
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positive profit before proceeding to land rent and labor wage payments. The presence of these internal

increasing returns makes our analysis more appealing in an urban context. As such, our work fills a gap

in the literature. Note that the reduced form of our model encompasses the model structure proposed

by Fujita and Ogawa (1982). Namely, in the absence of demand linkages and profit in the production

of urban varieties, the reduced form of our model is reminiscent to their seminal work. This suggests

that vertical linkages have similar agglomeration effects on the urban structure as those generated by

face-to-face communication and technological spillovers. We therefore confirm the generality of the

latter approaches. As in Lucas and Rossi-Hansberg (2002), our paper provides an existence proof of

spatial equilibrium. However, ours is based on Carlier and Ekeland (2007) and applies to Fujita and

Ogawa (1982). Regarding the analysis and computation of multiple equilibria, our approach contrasts

with methods relying on fixed point algorithms. We propose an innovative way of determining urban

structures, which consists in determining the borders of potential business/residential districts first,

and then in checking whether each structure candidate actually constitutes a spatial equilibrium or

not.

The paper is structured as follows. Section 2 presents the model and discusses the product and land

markets equilibrium. Section 3 establishes the existence of a spatial equilibrium and the invariance

result between demand/vertical linkages and commuting costs. Section 4 studies various spatial equi-

libria exhibiting a monocentric, an integrated, a duocentric, or a partially integrated city structure.

Section 5 presents numerical computations and results regarding the structure of these urban patterns.

Section 6 concludes.

2 The model

We consider a linear city hosting a continuum of N individuals and N firms along the interval

B ≡[−b, b] ⊂ R with unit width. The location supports of individuals and firms are denoted re-

spectively by X and Y, with X ∪ Y = B. Individuals occupy a unit of residential land, commute to

their workplace, and consume differentiated varieties supplied in the local urban markets as well as an

homogeneous good supplied in the national (i.e. intercity) market. In contrast to the national good,

trade of local varieties incurs iceberg transport costs. These varieties are also used as components

(inputs) to produce the national good. For these two production activities, each firm hires a worker
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and uses s units of land in the production process.

Using the functional form proposed by Pflüger (2004), an individual residing at x ∈ X and working

at z ∈ Y is endowed with the utility function

U(x, z) = α ln

[∫
Y
c(z, y)

σ−1
σ µ(y)dy

] σ
σ−1

+ c0(x)

where c(z, y) is her consumption at workplace location z of a variety produced by a firm located at

y ∈ Y, c0(x) her consumption of the national good at residence location x, µ(y) the density of firms at

y ∈ Y, σ > 1 the elasticity of substitution between local varieties, and α > 0 the expenditure intensity

on local varieties. Her budget constraint writes as∫
Y
p(y)c(z, y)eτ |z−y|µ(y)dy + p0c0(x) + t |x− z|+R(x) ≤ w(z) + c0

where p(y) is the mill price of a local variety produced at y, τ the iceberg cost, c(z, y)eτ |z−y| the

quantity of a variety to be purchased at the mill so that consumption is c(z, y), p0 the price of the

national good, t the commuting cost per unit of distance between residence and work places, R(x)

the land rent at the worker’s residence, w(z) her wage at the workplace, and finally c0 some initial

endowment of the national good.

On the production side, each firm hires a unit mass of workers, each of them supplying a unit

of labor. Each firm simultaneously produces the national good and a single component variety. To

highlight the effect of vertical linkages, we assume that the national good is made of the component

varieties available in the urban markets. For instance, think of a city exporting wood and metal

furniture: woodcraft makers could be exporting wood furniture with steel ornaments made by local

steelmakers while steelmakers would be exporting steel furniture with wood ornaments made by local

woodcraft subcontractors. Similarly, the city of London hosts law firms that use other law firms’and

banks’expertise to provide law services in the national market while banking firms use other banking

and law firms’competencies to provide national banking solutions. Therefore, the productions of the

national good and local components are integrated within the same plant or offi ce. This is because

firm’s expertise or supervision is too costly to manage over different plants. Also additional discussion

on outsourcing would bring the model out of focus. Finally, the national good is assumed to be

homogeneous across firms (and cities) and firms are price takers in this market.1 In contrast, each firm

1Product differentiation and imperfect competition in the national market would not add much to our urban structure

analysis.
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is a price setter in the market of its own urban variety.

More specifically, production takes place as follows. On the one hand, the national good is made

of local inputs with the output of a firm located at y ∈ Y given by the production function

q(y) = β ln

[∫
Y
i(y, z)

σ−1
σ µ(z)dz

] σ
σ−1

(1)

where i(y, z) is firm y’s local component use of a variety produced by a firm located at z ∈ Y and β > 0

the intensity of vertical linkages. Because of iceberg transport costs, firm y purchases i(y, z)eτ |x−y| units

of a variety produced in z and sold at mill price p(z). On the other hand, the firm produces its specific

component using the national good as input. Every component requires γ units of the national good.

Therefore, firm y’s profit is given by

π(y) = p0q(y)−
∫
Y
p(z)i(y, z)eτ |y−z|µ(z)dz︸ ︷︷ ︸

national product market

+[p(y)− γ]

∫
Y

[c(z, y) + i(z, y)]µ(z)dz︸ ︷︷ ︸
urban product market

−w(y)−sR(y) (2)

In this profit expression, the first two terms represent the operating profit in the national market (i.e.

revenue minus the cost of inputs), the third term the operating profit in the local component market

(i.e. the component markup times the demand from consumers and firms), and the two last terms the

labor and land costs. The national good is chosen as the numeraire so that its price can be normalized

to p0 = 1.

We now turn to the product market equilibrium where product markets clear.

For this purpose, we consider the locations of firms and individuals as fixed. Assuming c0(x) > 0,

the demand for local varieties by an individual residing at y and working at z is given by

c(z, y) = α

[
p(y)eτ |z−y|

]−σ
P (z)1−σ

(3)

where the local price index is given by P (z) ≡
[∫
Y p(y)1−σeτ(1−σ)|z−y|µ(y)dy

] 1
1−σ . Her spending on local

varieties is equal to αp0 and her demand for the national good is given by c0(x) = [w(z) − t |x− z|

−R(x) + (c0 − α)].

On the other hand, a firm located at y simultaneous chooses its input mix i(y, ·) and its own

component price p(y) that maximize its profit subject to relation (1). Since the firm has a zero mass,

it is too small to influence the other firms’local component prices and consumers’demand. Because the

profit in the national market has the same functional form as the individual utility, the optimal input
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mix is equal to i(y, z) = (β/α) c(y, z) where c(y, z) is given by expression (3). The firm’s spending on

local varieties is equal to β. The operating profit on the national market can therefore be written as

β [ln (β/P (y))− 1] so that a firm supplies the national market as long as β > P (y). Also, because the

total demand for a local variety produced in y,
∫
Y [c(y, z) + i(y, z)] dz, has a constant price elasticity

σ, the firm sets its component price to p(y) = γσ/(σ − 1) > γ, which leads to a positive operating

profit in the local component market that turns out to be the same across firms.

The above demand functions and profit-maximizing prices allow us to derive the utility of house-

holds and the profit of firms in the product market. First, the price index becomes

P (z) = γ
σ

σ − 1
T (z)

where

T (z) ≡
[∫
Y
e(1−σ)τ |z−y|µ(y)dy

] 1
1−σ

(4)

is an access measure of location z corresponding to the aggregate delivery cost from all locations on

Y to location z, which increases with the transport cost τ and the dispersion of support Y.

Consumers’and firms’demands for local varieties are given respectively by

c(z, y)

α
=
i(z, y)

β
=
σ − 1

γσ

e−στ |z−y|

T 1−σ(z)
(5)

As the demand for the national good is c0(x) = w(z)− t |x− z| −R(x) + (c0 − α), the indirect utility

writes as

U(x, z) = α

[
ln
αρ

γ
− lnT (z)

]
+ [w(z) + c0 − α− t |x− z| −R(x)] (6)

where ρ ≡ 1− 1/σ and e is the Euler number. In this expression, the term in the first squared bracket

represents the net consumer surplus from local urban varieties while the term in the second squared

bracket reflects the net consumer surplus from the national good. The latter is indeed equal to the

income left after paying for local urban varieties, commuting cost and land rent. The firm’s output in

the national market is given by q∗(y) = β ln (βρ/γ)− β lnT (y).

Using the profit-maximizing price p(y) = γσ/(σ− 1), the gross operating profit from the sales of a

local variety to consumers and firms can be written as

[p(y)− γ]

∫
Y

[c(z, y) + i(z, y)]µ(z)dz = (α + β)G(y)

where profit G is defined by

G(y) ≡ 1

σ

∫
Y

µ(z)

T 1−σ(z)
e−στ |z−y|dz (7)
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The expression (2) of the firm’s profit at location y can then be written as

π(y) = β

[
ln
βρ

γe
− lnT (y)

]
+ (α + β)G(y)− w(y)− sR(y) (8)

The term in the squared bracket is the profit derived in the national market and the second term that

derived in the market of the local variety. The firm has an incentive to produce the national good

if the former profit is positive, i.e. ln βρ
γe
≥ lnT (y). This holds if γ is suffi ciently small, which we

assume from now on.2 The third term (α + β)G(y) aggregating the operating profits from the sales

of its variety to consumers and firms, increase with the expenditures intensities on local varieties of

consumers (α) and firms (β). Note that this operating profit clearly depends on the firm’s location y.

We now turn to the land market equilibrium still assuming the distributions of consumers and firms

as given. We assume that land is used either as consumption or firms’input so that the opportunity

cost of land is nil. In competitive land markets, landowners allocate their plots of land to the highest

bidders (i.e. resident-workers or firms). By using (6), the bit rent of an individual residing at location

x and working at z = z(x) is given by

Ψr(x) = α

[
ln
αρ

γe
− lnT (z)

]
+ [w(z)− t |x− z|+ c0]− U∗ (9)

where U∗ denotes the utility she can obtain outside the city. Due to free entry and relation (8), as

firm at location y can bid for land up to a level which makes its profit π(y) equal to zero, its bid rent

is given by

Ψb(y) =
1

s

{
β

[
ln
βρ

γe
− lnT (y)

]
+ (α + β)G(y)− w(y)

}
(10)

As total land consumption (1 + s)N is equal to the total available land 2b, the city edge is given

by b = (1 + s)N/2.

3 Spatial equilibrium

In this section, we define and study the spatial equilibrium of our economy where both consumers and

firms exploit spatial arbitrage opportunities. For this purpose, we rewrite the worker’s and the firm’s

bid rents as follows. The worker’s bid rent in location x corresponds to the maximum bid a worker

2That is, if γ ≤ β (1− 1/σ) /(emaxy∈YT (y)). Given that maxy∈YT (y) > e2bτ , a suffi cient condition is γ < γmax ≡

β (1− 1/σ) e−2bτ−1.
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can make on a parcel of land in x while receiving a wage from a firm located in y ∈ Y willing to hire

her under free entry. Using (9) and (8), we get

Ψr(x) = max
y∈Y,w(y)∈R+

[
α ln

αρ

γe
− α lnT (y) + w(y)− t |x− y|+ c0 − U∗

]
(11)

s.t. π(y) = β ln
βρ

γe
− β lnT (y) + (α + β)G(y)− w(y)− sR(y) ≥ 0

Similarly, the firm’s bid rent corresponds to the maximum bid that it can make on a parcel of land

in y while the wage it pays to a worker located in x ∈ X induces her to supply her labor to the firm

given her outside utility U∗. Using (10) and (6)

Ψb(y) = max
x∈X ,w(y)∈R+

1

s

[
β ln

βρ

γe
− β lnT (y) + (α + β)G(y)− w(y)

]
(12)

s.t. U(x, y) = α ln
αρ

γe
− α lnT (x) + w(y)− t |x− y| −R(x) + c0 ≥ U∗

We now make the connection with Fujita and Ogawa (1982). In their seminal paper, urban struc-

tures endogenously emerge from agglomeration effects generated by face-to-face communication be-

tween firms’managers and/or employees. This face-to-face communication generates a production

surplus that depends negatively on the logarithm of the average distance between firms. One could

then interpret the parameter expression(σ − 1)τ in lnT (y) as Fujita and Ogawa’s parameter for face-

to-face communication. This means that from a reduced form point of view, vertical linkages have

the same role as face-to-face communication in Fujita and Ogawa. However, our vertical linkages also

stem from the production of urban varieties under imperfect competition, which generates a profit

G(y) that is absent in the face-to-face communication model. To sum up, the reduced form of our

model encompasses the structure of Fujita and Ogawa in the absence of demand linkages and profit

from production of urban varieties (that is, α = 0 and G(y) = 0).

The above problems can be solved for the wage so that

Ψr(x) = max
y∈Y

[
α ln

αρ

γe
+ β ln

βρ

γe
+ (α + β)S(y)− t |x− y|+ c0 − U∗ − sR(y)

]
(13)

Ψb(y) =
1

s
max
x∈X

[
α ln

αρ

γe
+ β ln

βρ

γe
+ (α + β)S(y)− t |x− y|+ c0 − U∗ −R(x)

]
(14)

where S(y) ≡ G(y)− lnT (y) is the economic surplus in location y.

We can now define a competitive spatial equilibrium.

Definition 1 A competitive spatial equilibrium is defined by the residents’and firms’density functions

λ : B → [0, 1] and µ : B → [0, 1/s], a land rent R : B → R+, residents’and firms’bid rent functions
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Ψr, and Ψb : B → R+ and a utility level U∗ ∈ R that satisfy (i) mass conservation
∫
B λ = N , (ii) land

market clearing µ(z) = (1− λ(z))/s for all z ∈ B, (iii) land allocation to highest bidder for all z ∈ B

λ ∈


{1} if Ψr > Ψb

[0, 1] if Ψr = Ψb

{0} if Ψr < Ψb

and R = max{Ψr,Ψb, 0}, and (iv) zero land rent R at city borders z = ±b.

3.1 Economic gains and invariance

The urban economic activity generates gains for workers and landlords, firms making zero profit due to

free entry. It is instructive to examine those gains and disentangle the agglomeration force stemming

from demand and vertical linkages from the dispersion force due to transportation, and in particular,

commuting costs.

Consider a worker residing at x and its firm producing at y at the competitive land market equi-

librium. Land rent should correspond to their respective bid rents: Ψr(x) = R(x) and Ψr(y) = R(y).

Therefore, from (13) or (14), the total gains from their urban economic interaction are

U∗ +R(x) + sR(y) = α ln
αρ

γe
+ β ln

βρ

γe
+ (α + β)S(y)− t |x− y|+ c0 (15)

While the left hand side expresses workers’utility and landlords’rents, the right hand side reflects

the consumer surplus from local varieties and the producer surplus from both consumers and firms

and from the national market (through terms in α and β). The surpluses are explicitly diminished by

commuting costs.

Observe that the spatial structure (λ, µ) has an impact only on the terms (α + β)S(y)− t |x− y|.

This means that it is possible to maintain the same equilibrium spatial structure (λ∗, µ∗) by multiplying

both parameters (α + β) and t by the same factor k > 0. To maintain the above equality for all x and

y, equilibrium rents need to be multiplied by this factor k and the equilibrium utility U∗ increased to

the level
(
kα ln αkρ

γe
+ kβ ln kβρ

γe

)
. This heuristic argument is confirmed below in a formal way.

Suppose that a spatial equilibrium exists and denote the mass of commuters moving to the right

and crossing location x by n(x) =
∫ x
−b [λ(z)− µ(z)] dx. In Appendix A, we show that the spatial
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equilibrium (λ, µ) satisfies the identity

λ(z)− µ(z) ∈


{1} if Ψb(z)−Ψr(z) < 0

[−1
s
, 1] if Ψb(z)−Ψr(z) = 0

{−1
s
} if Ψb(z)−Ψr(z) > 0

(16)

where

Ψb(z)−Ψr(z) =

∫ z

ẑ

[
1

s
(α + β)

dS

dx
− 1 + s

s
t sign (n(x))

]
dx, (17)

and ẑ ∈ B is a solution to λ(ẑ)−µ(ẑ) = 0 and designates a location where commuting stops or changes

direction. There always exists is at least one such location. Bid rents equate in those locations ẑ since

workers and firms settle either on the same land plot or on two infinitely close residential and industrial

land plot. The first term in the integral yields the economic surplus S∗ (x) (up to a constant) generated

at location x. The second term reflects the travel cost of commuters crossing location x. Of course,

we can use the relationship λ = 1− sµ to eliminate a density profile either λ or µ.

The above identity tells that workers and firms settle in the locations where they respectively place

the highest bid rents. When they offer the same bid, any share of firms and residents is possible. In

this competitive allocation, the spatial equilibrium depends on the sign of the bid rent differentials but

not on their amplitudes. Hence multiplying both the parameters (α + β) and t by any scalar k > 0 has

no effect on the sign of the bid differentials and therefore is compatible with the spatial equilibrium

structure. This yields the following main result:

Proposition 1 Cities with a same parameter ratio (α + β)/t have an identical spatial structure.

The ratio shows that stronger demand or vertical linkages and higher commuting costs have opposite

effects on the urban structure. The economic surplus generated by any pair of worker and a firm is

balanced with the commuting cost between the worker’s residence and her firm. A proportional

increase in the intensity of demand or vertical linkages and in commuting cost does not change this

spatial balance though each effect becomes more intense. As a result, stronger linkages have the same

impact as lower commuting costs.

3.2 Existence

Relationships (16) and (17) define a fixed point problem for the firms’spatial distribution. Indeed,

the firms’density µ determines the values of the surplus S which in turn determines µ. In Appendix
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B, we show the existence of a fixed point using Shauder’s theorem.

Proposition 2 A spatial equilibrium exists.

The proof of spatial equilibrium existence relies on the determination of the stock of commuters

flowing over each urban location, n(x). This is referred as the ’stock of unhoused workers’by Lucas

and Rossi-Hansberg (2002). As shown in (16), the main diffi culty in establishing the existence of

spatial equilibrium lies in the discontinuity of the land allocation process across firms and workers.

As in Carlier and Ekeland (2007), we first show the existence of a fixed point for smoother land

allocation processes by replacing (16) by an equation where the land allocation decision across firms

and workers is a continuous function of their bid rent differential Ψb − Ψr. In economic terms, this

may be interpreted by the presence of exogenous uncertainty in landlords’choices. We then prove the

convergence of those fixed points to that defined by (16) and (17) for less and less smooth allocation

processes. Using the same interpretation, the fixed point takes place at the limit of zero uncertainty

in the land allocation process. It must be noted that the above existence result applies to Fujita and

Ogawa’s (1982) model which lacks a general existence proof and displays parameter values for which no

equilibrium could be constructed. As mentioned earlier, their equilibrium conditions are structurally

the same as ours if one sets α and G to zero and interprets (σ − 1)τ as a parameter for face-to-face

communication.

4 Urban structures

Our existence result in Section 3 says nothing about uniqueness of equilibrium. In this section, we

present and discuss a variety of urban structures and determine their condition of existence.

4.1 Monocentric city

We consider the business district Y = [−b1, b1] surrounded by the residential districts X = [−b,−b1)∪

(b1, b], see Figure 1 (a). The densities of firms and households are µ(y) = 1/s and 1 respectively. The

business district edge is given by b1 = sN/2. In the monocentric city, workers commute from the

residential district to the business district.

11



The monocentric equilibrium conditions are as follows: (i) firms outbid households in the business

district (Ψb(y) ≥ Ψr(y) for all y ∈ Y), (ii) households outbid firms in the residential district (Ψr(x) ≥

Ψb(x) for all x ∈ X ); (iii) the residential and the business bid rents equalize at the business district

border (Ψb(b1) = Ψr(b1)); (iv) the zero opportunity cost of land at the city border b requiringΨr(b) = 0.

As of expressions (4) and (7), we define the surplus at location z as SM(z) ≡ GM(z) − lnTM(z),3

where the access measure TM and the profit GM are given by

T 1−σM (z) =
1

s

∫ b1

−b1
e(1−σ)τ |y−z|dy (18)

GM(z) =
1

σs

∫ b1

−b1

e−στ |y−z|

T 1−σM (y)
dy (19)

Proposition 3 The monocentric configuration is a spatial equilibrium if and only if

t ≤ tM = min(t̂M , tM)

where

tM =
α + β

1 + s

SM(0)− SM(sN/2)

sN/2
and t̂M ≡

α + β

1 + s

SM(sN/2)− SM((1 + s)N/2)

N/2

When s→ 0, tM = (α + β) τN < t̂M .

Proof. Given the symmetry of the city, our analysis focuses on the right side of the city [0, b].

Under linear commuting costs, workers can arbitrage between the different workplaces. As a result,

a firm located at y must offer individuals a wage w(y) that is as attractive as that available in other

work locations. Denoting U0 by α [ln (αρ/γe)− lnTM(0)] +w(0) + c0, we can write the following wage

arbitrage condition for any 0 ≤ y < x:

α

[
ln
αρ

γe
− lnTM(y)

]
+ w(y) + t y + c0 = U0

so that the equilibrium wage w(y) satisfies

w(y) = U0 − α
[
ln
αρ

γe
− lnTM(y)

]
− t y − c0

By using this wage expression, the household’s bid rent (9) can then be written as

Ψr(x) = (U0 − U∗)− t x (20)

3The surplus SM (z) corresponds to the profit in the market of a local variety accounting for the cost of accessing all

components in order to produce the national good.
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Similarly, the firm’s bid rent (10) writes as

Ψb(y) =
1

s

[(
α ln

αρ

γe
+ β ln

βρ

γe
− U0 + c0

)
+ (α + β)SM(y) + t y

]
(21)

At the land market equilibrium, landlords reap the surplus derived by firms and households.

As the district border is given by b1 = sN/2, we need to impose conditions (i), (ii), (iii), and

(iv) on the bid rent functions (20) and (21) of residents and firms. It is shown in Appendix C that

conditions (i) and (ii) reduce to (i’) Ψb(0) ≥ Ψr(0) and (ii’) Ψr(b) ≥ Ψb(b) respectively.

Condition (i’) Ψb(0) ≥ Ψr(0) can be rewritten as

1

s

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0 − U0

)
+

1

s
(α + β)SM(0) ≥ (U0 − U∗) (22)

The equilibrium conditions (iii) and (iv) (Ψb(b1) = Ψr(b1) and Ψr(b) = 0) determine U0 and U∗. In

particular, we have

U0 =

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0

)
+ (α + β)SM(b1) + (1 + s) t b1 − s t b

By plugging the above expression of U0 into (22) and using b1 = sN/2,we get

t ≤ tM ≡
2(α + β)

(1 + s) sN
[SM(0)− SM(b1)] (23)

When s→ 0, we have

lim
s→0

tM = − (α + β) lim
s→0

SM(sN/2)− SM(0)

sN/2
=

(α + β) τ

N

Furthermore, we also have

Ψb(b) =
1

s

[
(α + β)SM(b) + t b+

(
α ln

αρ

γe
+ β ln

βρ

γe
− U0 + c0

)]
=

1

s

[
(α + β) [SM(b)− SM(b1)] + (1 + s)N

t

2

]
so that the condition (ii’), Ψb(b) ≤ Ψr(b) = 0, can now be rewritten as

t ≤ t̂M ≡
2(α + β)

(1 + s)N
[SM(b1)− SM(b)] (24)

Gathering expressions (23) and (24) leads to t ≤ min(t̂M , tM).

When s→ 0, we get

lim
s→0

[lnTM(sN/2)− lnTM((1 + s)N/2)] = −τN/2

lim
s→0

[GM(sN/2)−GM((1 + s)N/2)] =
1− e−στN/2

σ

13



Therefore

lim
s→0

t̂M ≡ 2(α + β) lim
s→0

[SM(sN/2)− SM((1 + s)N/2)]

= 2(α + β) lim
s→0

[GM(sN/2)−GM((1 + s)N/2)− lnTM(s/2) + lnTM((1 + s)N/2)]

= (α + β)

(
2

1− e−στN/2
σ

+ τN

)
> (α + β)τN = lim

s→0
tM

so that lims→0 t̂M < lims→0 tM .

Proposition 3 says that lower commuting costs favor the monocentric configuration as they allow

residents to commute longer distances to the business district. Larger final demand or vertical linkages

also make the monocentric configuration more likely as they increase the operating profit in the market

of local varieties due to increasing returns to scale, thus allowing firms in the business district to pay

higher wages and making people more willing to commute.

Figure 2 illustrates the shape of bid rents in a monocentric city. The firms’bid rent curve, rep-

resented in red, is above (resp. below) the residents’bid rent curve (in blue) around the city center

(resp. the city edge). Bid rents are equal to the zero opportunity cost of land at the city border and

intersect at the location y = ±0.5, which separates business and residential districts. Workers’bid

rents are linear in the distance to the center as longer commutes are compensated by lower rents. As

firms benefit from agglomeration economies, their bid rent is endogenous and depends on the location

of other firms. Typically it is non-linear in the distance to the city center. A priori, it is not obvious to

guarantee a single intersection between bid rents. Nevertheless, according to the above Proposition, it

turns out that only the bid rent properties at the city center and border matter. While the condition

t ≤ t̂M guarantees that firms do not overbid workers at the city border (Ψb(b) ≤ Ψr(b)), the condition

t ≤ tM guarantees that they are not overbid by residents at the city center (Ψb(0) ≥ Ψr(0)).

The last statement in Proposition 3 implies that, even if the manufacturing sector makes no use

of land (s → 0), the monocentric city structure may not be a spatial equilibrium. This qualifies the

standard discussion based on the monocentric city model where firms are assumed to be located in a

city business center using no space. This paper highlights the role of the trade-off between workers’

commuting cost and goods’transport costs.

Finally, note that, when transport costs vanish (τ → 0), the economic surplus SM(z) becomes

location independent and the above thresholds become tM = t̂M = 0. Then, the monocentric city is

never a spatial equilibrium for any commuting cost t > 0. In this case, the demand for final goods

14



and intermediate goods demand is unrelated to space. There is no agglomeration force and spatial

concentration brings no benefit.

4.2 Integrated city

We consider firms and households locating in X = Y = [−b, b], see Figure 1 (b). Given the unit

demand for land of households and the s unit demand of firms, the density of firms is µ(y) = 1/(1 + s)

and the city edge is still at b = (1 + s)N/2. The integrated configuration involves no commuting.

The integrated equilibrium conditions are as follows: (i) the business and residential bid rents

equalize (Ψr(z) = Ψb(z), ∀z ∈ X = Y); (ii) the no-arbitrage relocation implying |Ψ′r(z)| ≤ t; (iii) the

zero opportunity cost of land at the city border b requiring Ψ(b) = 0.

As of expressions (4) and (7), we define the surplus at location z as SI(z) ≡ GI(z)− lnTI(z) with

the access measure TI and the profit GI given by

T 1−σI (z) =
1

1 + s

∫ b

−b
e(1−σ)τ |z−y|dy (25)

GI(z) =
1

σ (1 + s)

∫ b

−b

e−στ |y−z|

T 1−σI (y)
dy (26)

Proposition 4 The integrated city is a spatial equilibrium if

t ≥ tI = −α + β

1 + s
S ′I(b) > 0

When s→ 0, tI = (α + β)S ′I(b).

Proof. As before, we focus on [0, b]. We need to impose the above conditions (i)-(iii) on the bid

rent functions. The equilibrium condition (i), Ψr = Ψb, leads to

w(y) =
1

1 + s
(αs− β) lnTI(y) +

α + β

1 + s
GI(y) + C (27)

where C ≡ s/(1 + s) {U∗ − c0 − α ln[αρ/(γe)] + β/s ln [αρ/(γe)]}.

From equilibrium condition (iii), Ψ(b) = 0, we have

α

[
ln
αρ

γe
− lnTI(b)

]
+ w(b) + c0 − U∗ = 0 (28)

From relations (27) and (28), the constant C can be determined

C =
s

1 + s
(α + β)SI(b) + β ln

βρ

γe
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By plugging the wage expression (27) into (10) (or (9)), we get the equilibrium land rent

R(z) =
α + β

1 + s
[SI(z)− SI(b)]

According to the no-arbitrage condition (ii), an urban configuration is an equilibrium if workers have no

incentive to commute to any other location, i.e., if |R′(z)| =
∣∣(α + β)/(1 + s)S

′
I(z)

∣∣ ≤ t, for ∀z ∈ [0, b].

In Appendix D, it is shown that
∣∣S ′I(z)

∣∣ ≤ ∣∣S ′I(b)∣∣, ∀z ∈ [0, b], so that the no-arbitrage condition

reduces to |R′(b)| =
∣∣(α + β)/(1 + s)S

′
I(b)
∣∣ ≤ t.

Proposition 4 states that higher commuting costs foster the integrated configuration. Intuitively,

very large commuting costs entice workers to take residence as close as possible to their workplace.

Also, weaker final demand or vertical linkages make the integrated configuration more likely. They

indeed decrease the operating profits from the production of local varieties, which reduces workers’

wages, and in turn the incentives to commute. Finally, it turns out that tI is an increasing function of

τ (see Appendix D). So, lower trade costs enlarge the domain of economic parameters for which firms

integrate with residents. For lower trade costs, input costs depend less on distance between firms and

vertical linkages lead to a weaker agglomeration force for the firms. Therefore, firms do not benefit

much from clustering with other firms and make land rent bids that can be matched by workers.

Figure 3 illustrates the shape of bid rents in an integrated city. The firms’and the residents’bid

rent curves coincide at any location in the city. Bid rents vanish at the city borders due to the zero

opportunity cost of land. As workers do not commute, rents do not reflect linear commuting costs but

rather non-linear agglomeration economies coming from demand and input-output linkages. In the

above Proposition, the equilibrium condition t ≥ tI guarantees that each worker has no incentive to

accept a job away from her residential location. This property obtains if bid rents from are not too

steep. It is ensured as long as demand and input-output linkages are weak enough (low α + β).

When the transport cost becomes negligible (τ → 0), the economic surplus SI(z) is location in-

dependent so that S ′I(z) = 0 and tI = 0. The integrated city is then a spatial equilibrium for any

commuting cost t > 0. In this case, the demands for final goods and intermediate goods are indepen-

dent of space and the agglomeration force vanish.

Finally, we prove the following corollary:

Corollary 1 For s→ 0, the monocentric and the integrated urban configurations never coexist. That

is, tM < tI .
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Proof. See Appendix E.

When the manufacturing sector makes no use of land, a high commuting cost is compatible only

with the integrated structure. This results from the tension between backward and forward linkages

and commuting costs. When backward and forward linkages are too weak, firms are unable to post

land bids that are high enough to foreclose the workers to reside close to them. The above result forbids

the possibility of multiple equilibria, where the monocentric and integrated structures coexist for the

same set of parameter values. To the best of our knowledge, this property is not well emphasized in

the literature (e.g. Fujita and Ogawa 1982, and followers).

4.3 Partially integrated city

Next, we consider a city where workers and firms locate with each other in the central district (−b1, b1),

which is surrounded by business districts (−b2,−b1) ∪ (b1, b2), themselves bordered by residential

districts (−b,−b2) ∪ (b2, b), see Figure 1 (c). The density of firms is µ (y) = s/(1 + s) in the interval

(−b1, b1) and µ(y) = 1/s in the intervals (−b2,−b1)∪ (b1, b2), while that of workers is λ(x) = 1/(1 + s)

in the interval (−b1, b1) and λ(x) = 1 in the intervals (−b,−b2)∪ (b2, b), with 0 < b1 < b2 < b. Because

the total mass of firms is N , we get

2 (b2 − b1)
1

s
+ 2b1

1

1 + s
= N

that is,

b2 =
b1

1 + s
+
sN

2
(29)

The partially integrated equilibrium conditions are as follows: (i) the bid rents of households and

firms equalize in the integrated district (Ψr(z) = Ψb(z), ∀z ∈ (−b1, b1)); (ii) no-arbitrage relocation

in the integrated district implying |Ψ′(z)| ≤ t, ∀z ∈ (−b1, b1); (iii) firms outbid households in the

business districts (Ψb(y) ≥ Ψr(y) ∀y ∈ [−b2,−b1]∪ [b1, b2]); (iv) households outbid firms in residential

districts (Ψr(x) ≥ Ψb(x), ∀x ∈ [−b,−b2]∪ [b2, b]); and (v) the zero opportunity cost of land at the city

border b requiring Ψr(b) = 0.

As of expressions (4) and (7), we define SP (z) ≡ GP (z) − lnTP (z) where the access measure TP
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and the profit GP are given by

T 1−σP (z) =
1

s

(∫ −b1
−b2

+

∫ b2

b1

)
e(1−σ)τ |z−y|dy +

1

1 + s

∫ b1

−b1
e(1−σ)τ |z−y|dy (30)

GP (z) =
1

σs

(∫ −b1
−b2

+

∫ b2

b1

)
e−στ |z−y|

T 1−σP (y)
dy +

1

σ (1 + s)

∫ b1

−b1

e−στ |z−y|

T 1−σP (y)
dy (31)

Proposition 5 The partially integrated city is a spatial equilibrium if and only if

t̂P ≤ t ≤ t∗P

where the thresholds t̂P and t∗P are given by

t̂P ≡
α + β

1 + s
max
z∈[0,b1)

|S ′P (z)| ; t∗P ≡ min
{
tP , t̃P

}
with

t̃P ≡
α + β

1 + s

SP (b2)− SP (b)

b− b2
; tP ≡ min

y∈[b1,b2]

α + β

1 + s

SP (y)− SP (b2)

b2 − y
The district borders (b1, b2) satisfy

t =
α + β

1 + s

SP (b1)− SP (b2)

b2 − b1
(32)

where b2 is given by (29) and 0 < b1 < b2 < N .

Proof. As before, we focus on [0, b]. In the integrated district of the city, condition (i) writes

R(z) = Ψr(z) = Ψb(z). From expressions (9) and (10), we get

R(z) =
α + β

1 + s
SP (z) +

1

1 + s

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0 − U∗

)
, z ∈ [0, b1) (33)

w(z) =
αs− β
1 + s

lnTP (z) +
α + β

1 + s
GP (z)

− s

1 + s

(
α ln

αρ

γe
− β

s
ln
βρ

γe
+ c0 − U∗

)
, z ∈ [0, b1) (34)

In the residential district, we have R(x) = Ψr(x), x ∈ [b2, b]. However, since the residential bid rent

Ψr(x) given by (9) is independent of the workplace y in business district [b1, b2], it can be written as

R(x) = Ψr(x) = A− tx, x ∈ [b2, b]

where

A = α

[
ln
αρ

γe
− lnTP (y)

]
+ w(y) + ty + c0 − U∗, y ∈ [b1, b2]
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is constant with respect to y. Condition (v) says that the land rent is nil at b, from which we get

A = tb. So, from the last two expressions, we can write the equilibrium land rent in the residential

district and the wage in the business district as

R(x) = t(b− x), x ∈ (b2, b] (35)

w(y) = t (b− y)− α
[
ln
αρ

γe
− lnTP (y)

]
− c0 + U∗, y ∈ [b1, b2] (36)

Inserting the wage (36) into R(y) = Ψb(y) as given by relation (10) yields the land rent in the business

district

R(y) =
1

s

[
(α + β)SP (y)− t (b− y) + α ln

αρ

γe
+ β ln

βρ

γe
+ c0 − U∗

]
, y ∈ [b1, b2] (37)

As land rents are continuous, R(b1 − 0) = R(b1 + 0) and R(b2 − 0) = R(b2 + 0), we get

U∗ = (α + β)SP (b2)− t (1 + s) (b− b2) + α ln
αρ

γe
+ β ln

βρ

γe
+ c0

and

(α + β) [SP (b1)− SP (b2)] = t (1 + s) (b2 − b1)

which is equation (32) and determines b1 as b2 is given by relation (29).

We still have to impose conditions (ii), (iii), and (iv). First, condition (ii) ensuring no commuting

within any two locations in the integrated district writes as

(α + β) |S ′P (z)| ≤ t (1 + s) , z ∈ [0, b1)

that is,

t > t̂P ≡
α + β

1 + s
max
z∈[0,b1)

|S ′P (z)| (38)

Second, condition (iii) says that firms outbid workers in the business district: R(y) ≥ Ψr(y) ∀y ∈

[b1, b2]. Subtracting (35) from (37), we get

(α + β) [SP (y)− SP (b2)] ≥ t (1 + s) (b2 − y) , y ∈ [b1, b2]

which gives

t ≤ tP ≡ min
y∈[b1,b2]

α + β

1 + s

SP (y)− SP (b2)

b2 − y
(39)

Finally, condition (iv) ensuring that workers outbid firms in the residential district (R(x) ≥ Ψb(x),
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∀x ∈ [b2, b]) gives

(α + β) [SP (b2)− SP (x)]− t (1 + s) (x− b2) ≥ 0, x ∈ [b2, b] (40)

which is similar to relation (39). Only signs and supports differ. Note that in the interval (b2, b), SP (x)

is convex because G′′P (x) = σ2τ 2GP > 0 and (lnT 1−σP (x))′′ = 0. Since the LHS of inequality (40) is

zero at x = b2, this inequality is satisfied for all x ∈ [b2, b] if and only if

(α + β) [SP (b2)− SP (b)] ≥ t (1 + s) (b− b2) ≥ 0

Thus, inequality (40) is equivalent to

t ≤ t̃P ≡
α + β

1 + s

SP (b2)− SP (b)

b− b2
(41)

To sum up, the spatial equilibrium is given by (b1, b2) that solve equations (29) and (32) and satisfy

(38), (39), and (41).

Proposition (5) shows the partially integrated configuration can only exist for intermediate values

of the commuting cost. It also makes explicit the condition that district borders need to satisfy. By

inspection of equation (32), the commuting cost from b2 to b is to be proportional to the surplus

difference between locations b1 and b2.

Figure 4 illustrates the shape of bid rents in a partially integrated city. Panel a) presents the case of

balanced use of space, where firms and workers use the same amount of land (s = 1). Around the city

center, firms and residents populate an integrated district where the firms’and the residents’bid rents

coincide. This integrated area is surrounded by two business districts where firms outbid residents.

Residential districts emerge at city edges where residents outbid firms. The condition t ≥ t̂P ensures

suffi ciently high commuting cost so that workers have no incentive to commute within the integrated

district. The economic intuition is similar to that prevailing in the integrated city. The condition

t ≤ t̃P guarantees that residents outbid firms in peripheral districts. In particular it expresses the

suffi cient condition that firms producing at y = b2 have no incentives to relocate production at the city

edge y = b. Firms indeed balance the effects of such a relocation on their revenues and wage bills. On

the one hand, they lose revenues at the city edge because of the lower access to their customers. On

the other hand, they pay lower wages at the city edge because workers need not be compensated for

long commuting. The latter effect gets smaller and is dominated by the former when commuting costs
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become lower. To sum up, partially integrated cities therefore exist only for intermediate commuting

costs and, by Proposition 1, only for intermediate values of demand and input-output linkages.

We provide two Corollaries exhibiting additional properties of partially integrated equilibria. The

first property relates to the contiguity and intersection of the sets of parameters supporting the inte-

grated and the partially integrated cities. In particular, we show that the partially integrated city is

a spatial equilibrium for t = tI − δ and δ > 0 small enough.

Corollary 2 The parameter sets that support the integrated and the partially integrated cities do not

intersect and are contiguous.

Proof. See Appendix F.

The second property is about the existence of partial integrated cities even when firms do not use

space. The literature generally extends Alonso’s (1964) model to multiple business centers located

on points (e.g. Fujita, Krugman and Mori 1999). The following corollary suggests that, although

insightful, this strategy does not cover the exhaustive set of urban configurations. Indeed, consider

infinitesimally small business districts (s → 0). By Corollary 1, the commuting cost interval (tM , tI)

is not empty. For such commuting costs, monocentric and integrated city structures are not spatial

equilibria. In the following corollary, we show that spatial equilibria include partially integrated cities

when businesses use no land.

Corollary 3 Suppose firms use an infinitely small amount of land (s → 0). Then, there exists a

partially integrated equilibrium with an integrated district surrounded by two infinitely small business

districts and residential districts in the periphery when commuting costs satisfy max{tM , t̂0P} ≤ t ≤

min
{
tI , t

0
P , t̃

0
P

}
.

Proof. Towards this aim, we rewrite equation (32) as

t = fs(b1) ≡
α + β

1 + s

SP (b1)− SP (b2)

b2 − b1

where b2 is given by (29). As s→ 0, one can verify

lim
s→0

fs(0) = tM and lim
s→0

fs (b) = tI

Because tI > tM > 0 and fs(b1) is continuous in [0, b/2], we can apply the intermediate value theorem.

There exists at least a value of b01 that solves t = fs(b1) for all t ∈ (tM , tI). One then computes the
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thresholds

t̃0P = (α + β)
SP (b01)− SP (b)

b− b01
t
0
P = − (α + β)S ′P (b01)

t̂0P = (α + β) max
z∈[0,b01)

|S ′P (z)|

Then, if t̂0P ≤ t ≤ min
{
t
0
P , t̃

0
P

}
, there exists a partially integrated equilibrium with two infinitely small

business districts at y = ±b01.

Panel b) in Figure 4 presents a second example of bid rents in a partially integrated city where the

use of space is unbalanced. In such a case, firms do not use much space unlike residents and business

districts have a very small spatial extent (s = 0.01). Additional numerical exercises show that the

city configuration remains identical as s→ 0. In that case, the two business districts become so small

that the central integrated district becomes contiguous to the peripheral residential districts. The

parameters fulfill the conditions of the above corollary, which therefore determine non-empty sets of

parameters. To sum up, the partially integrated city exists even in the absence of space requirement

by firms. So, although very insightful, previous discussions on city subcenters concentrated on spatial

points do not encompass the full set of urban configurations.

4.4 Duocentric city

Here, the city consists of two business districts Y = [−b3,−b1) ∪ (b1, b3] and three residential districts

X = [−b,−b3)∪[−b1, b1]∪(b3, b], see Figure 1 (d). Households living in [−b,−b3) commute to [−b3,−b2),

those living in [−b1, 0) to [−b2,−b1), those living in [0, b1] to [b1, b2), and those living in (b3, b] to [b2, b3).

Given the total masses of firms and consumers, we have

b1 =
1

s
(b2 − b1) , b− b3 =

1

s
(b3 − b2) (42)

The density of firms is µ(y) = 1/s on Y and district edges satisfy b2 = (1 + s) b1 and b3 = b1 + sN/2.

As before, we focus on [0, b].

The duocentric equilibrium conditions are as follows: (i) firms outbid households in the business

districts (Ψb(y) ≥ Ψr(y) for all y ∈ Y); (ii) households outbid firms in the residential districts (Ψr(x) ≥

Ψb(x) for all x ∈ X ); (iii) the business and the residential bid rents equalize at district borders
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(Ψr(b1) = Ψb(b1) and Ψr(b3) = Ψb(b3)); and (iv) the zero opportunity cost of land at the city border

requiring Ψr(b) = 0.

As of expressions (4) and (7), we define SD(z) ≡ GD(z) − lnTD(z), where the access measure TD

and the profit GD are given by

T 1−σD (z) =
1

s

[∫ −b1
−b3

e(1−σ)τ |z−y|dy +

∫ b3

b1

e(1−σ)τ |z−y|dy

]
GD(y) =

1

σs

[∫ −b1
−b3

e−στ |z−y|

T 1−σD (z)
dz +

∫ b3

b1

e−στ |z−y|

T 1−σD (z)
dz

]
Proposition 6 The duocentric city is a spatial equilibrium if and only if

t ≤ max(t̂D, tD)

Ψb(y) ≥ Ψr(y) for all y ∈ Y

where

t̂D ≡
α + β

1 + s

SD(b1 + sN/2)− SD(0)

(1 + 2s) b1 − sN/2
and tD ≡

α + β

1 + s

SD(b1 + sN/2)− SD(b)

N/2− b1
with b1 ∈ (0, N/4] satisfying

t (N − 4b1) (1 + s) s/2 = (α + β) [SD(b1)− SD(b1 + sN/2)] (43)

Proof. As in earlier sections, workers arbitrage between the different workplaces up to their

commuting cost and land rent payments. As a result, a firm located at z must offer individuals a wage

w(z) that is as attractive as in other workplaces. Since workers commute from the left and right hand

sides of the business district located on (b1, b3), it is convenient to denote the business center of the

business district by b2 ∈ (b1, b3). This is the unique location where a firm attracts workers from each

side of its location. Since the labor market divides about y = b2, the left hand side’s labor demand

and supply balance so that b2 − b1 = sb1 while its right hand side clears so that b3 − b2 = s (b− b3).

Denoting the utility of a worker working at b2 by U2 ≡ α [ln (αρ/γe)− lnTD(b2)] +w(b2) + c0, we can

write the following wage arbitrage condition for any y ≥ 0:

α

[
ln
αρ

γe
− lnTD(y)

]
+ w(y) + t |y − b2|+ c0 = U2

so that the equilibrium wage w(y) satisfies

w(y) = U2 − α
[
ln
αρ

γe
− lnTD(y)

]
− t |y − b2| − c0 (44)
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This is also the wage that a firm should pay to attract a worker when it relocates in a residential

district.

By plugging the wage expression into (9) and setting y = b2, the household’s bid rent can be

rewritten as

Ψr(x) = U2 − U∗ − t |x− b2|

Similarly, the firm’s bid rent (10) writes as

Ψb(y) =
1

s

[(
α ln

αρ

γe
+ β ln

βρ

γe
− U2 + c0

)
+ (α + β)SD(y) + t |y − b2|

]
Landlords reap the surplus of the production and consumption of each pair of individuals and firms

up to the level of the individual’s utility.

As before, we focus on [0, b] when imposing the equilibrium conditions (i)-(iv) on the bid rents

from households and firms. Using the wage (44) from the wage arbitrage condition and applying it for

x > b3 > y > b2, one can express the relations Ψr(b) = 0 and Ψr(b3) = Ψb(b3) as functions of U2, U∗, b2

and b3. Using the same wage (44) and applying it for x < b1 < y < b2, one can also express the relation

Ψr(b1) = Ψb(b1) as function of the same variables. Therefore, conditions (iii) and (iv) together with

the identities b2 = (1 + s) b1 and b3 = b1 + sN/2 provide five equations for the five variables U2, U∗,

b1, b2 and b3. The solution for U2 and U∗ is given by

U2 =

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0

)
+ (α + β)SD(b1) + t (b2 − b1)− st (b− 2b2 + b1)

U∗ =

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0

)
+ (α + β)SD(b1)− (1 + s) t (b− 2b2 + b1)

while b1 solves (43).

The equilibrium inequality condition (ii) Ψr(x) ≥ Ψb(x) for all x ∈ X , writes as

Ψr(x)−Ψb(x) = U2 − U∗ −
1

s

[
α ln

αρ

γe
+ β ln

βρ

γe
− U2 + c0 + (α + β)SD(x)

]
− 1 + s

s
t |x− b2| ≥ 0

where SD(x) can be shown to be convex on the intervals (0, b1) and (b3, b): S ′′D = G′′D − 1
1−σ

(
lnT 1−σD

)′′
where G′′D = σ2τ 2GD > 0 and (lnT 1−σD )′′ =

[
(T 1−σD )′′T 1−σD − (T 1−σD )′

2
]
/T

2(1−σ)
D ; the last expression is

equal to 0 on (b3, b) and to
[
2(σ − 1)τ/(sT 1−σD )

]2 ∫ −b1
−b3 e

(1−σ)τ(y−z)dz
∫ −b1
−b3 e

(1−σ)τ(z−y)dz > 0 on (0, b1).

Then, Ψr(x) − Ψb(x) is concave on those two intervals. Since Ψr(b1) − Ψb(b1) = 0, we have Ψr(x) −

Ψb(x) ≥ 0 for all x ∈ (0, b1) if and only if Ψr(0) − Ψb(0) ≥ 0, which can be rewritten as t ≤

t̂D ≡ (α + β)[SD(b3) − SD(0)]/[(2b2 − b3) (1 + s)]. Similarly, since Ψr(b3) − Ψb(b3) = 0, we have

24



Ψr(x) − Ψb(x) ≥ 0 for all x ∈ (b3, b) if and only if Ψr(b) − Ψb(b) ≥ 0, which can be rewritten

as t ≤ tD ≡ (α + β) [SD(b3) − SD(b)]/ [(b− b3)(1 + s)]. This means that condition (ii) reduces to

t ≤ max(t̂D, tD). The equilibrium inequality condition (i) remains as it is: Ψb(y) ≥ Ψr(y) for all

y ∈ Y.

Finally, it can easily be shown that b1 should not exceed N/4. Otherwise, the residential bid rent

would be negative at x = 0.

To understand, the equilibrium condition in Proposition (43),we rewrite it as

t (b3 − b2)− t (b2 − b1) =
α + β

(1 + s) s
[SD(b1)− SD(b3)]

The LHS corresponds to the difference in the commuting cost to workplace b2 from district borders

b3 and b1, while the RHS is proportional to the surplus difference between locations b3 and b1. This

means that these commuting costs and surplus differences should balance.

Figure 5 illustrates the shape of bid rents in a duocentric city. Residential districts are located

at the city center and peripheries where the residents’bid rent (in blue) is above the firms’bid rent

curve (in red). In between these residential districts, two business districts gather firms outbidding

residents. Panel a) and b) of Figure 5 show two different duocentric city structures for the same set

of economic parameters, for which equation (43) accepts two solutions. It can be checked on Figure 5

show that Ψb(y) ≥ Ψr(y) for all y in the business districts. So, this means that multiple duocentric

equilibria can arise.

In Proposition 6, the endogenous border b1 is the solution to (43), which accepts no closed-form

solution. Proposition 6 also imposes the bid rent condition Ψb(y) ≥ Ψr(y), for any location y in the

business districts Y. As the purpose will be to determine the duocentric configurations by use of

numerical computations, we shall replace the condition Ψb(y) ≥ Ψr(y), for all y ∈ Y, by the necessary

condition Ψb(b2) ≥ Ψr(b2), which is equivalent to t ≤ t̃D where

t̃D ≡
α + β

1 + s

SD(b2)− SD(b1)

b2 − b1

Note that we did not find any example where this condition was not also suffi cient. So, the threshold

value of the commuting cost is given by

t ≤ tD = max(t̂D, tD, t̃D)
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5 Numerical analysis

The theoretical analysis of urban structures in the previous section allows us to determine and study

the nature of city structures in terms of economic parameters. Given the complex nature of duocentric

and partially integrated configurations, we determine them by numerical computations. This is done

in two steps. First, given some fixed parameter values, district borders are determined by solving (43)

and (42) for the duocentric configuration (resp. (32) for the partially integrated configuration). Note

that up to two roots are found in either case. Second, additional restrictions reflecting rent conditions

at district borders are imposed. The role of these restrictions is to retain only the candidates that

actually lead to an equilibrium configuration.

Equilibrium city structures Figure 6 gathers the central results of our numerical analysis. It

presents the equilibrium structures derived in Propositions 3, 4, 5, and 6 in the plane of transport

and commuting costs (τ, t) for fixed values of other parameters, i.e. α = β = γ = s = 1 and

σ = 3. The figure displays the monocentric "m", the integrated "i", the partially integrated "p",

and the duocentric "d" configurations. The concatenation of several letters indicates the presence of

multiple equilibria with different urban structures for the same set of parameters. For instance, "mdd"

indicates the co-existence of a monocentric equilibrium and two different duocentric equilibria. For

some parameter configurations, up to four equilibria can co-exist (see "dmpp" at the center of Figure

6). In Section 2, existence of a spatial equilibrium was proved. Indeed, numerical computations always

deliver at least an equilibrium for any point in (τ, t) plane. This contrasts with Fujita and Ogawa

(1982) where some parameter configurations were shown to support no equilibrium.

Figure 6 displays the curve corresponding the threshold tM below which parameters support the

monocentric city. The monocentric city arises only if commuting costs are relatively low. By definition

of tM , residents and businesses make the same land bid at the city center for any value of t lying on

the curve tM . For slightly higher commuting costs -and as long as transport costs are low enough-,

residents are willing to match the firms’bid rent at the city center. Some residents and firms can then

gather at the city center, while many other workers are still willing to commute. Hence the curve tM

refers to a transition between the monocentric and the partially integrated configurations.

Figure 6 also displays the curve corresponding to the threshold tI above which parameters support

the integrated city. In the integrated city, residents work and reside in the same location. By definition
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of threshold tI , when commuting costs equate tI , some individuals are indifferent between working at

their residence location and commuting to a firm located further away. For commuting costs slightly

below tI , residents located at the city border have an incentive to commute and choose a workplace

between the city center and the city border, so that a partially integrated city structure emerges. Hence

the curve tI refers to a transition between the the partially integrated and the integrated configurations.

The partially integrated configuration exists only for intermediate commuting costs. Consider such

a partially integrated structure. When the commuting cost rise becomes too high, the business centers

and the residential peripheries shrink, and ultimately vanish when the commuting cost reaches the

threshold tI . Hence the partially integrated configuration converges smoothly to the integrated city.

For low transport costs (i.e., when only one partially integrated equilibrium exists), the two business

centers get closer to each other to finally join each other as the commuting cost approaches tM from

above: the partial integrated structure then converges smoothly to the monocentric configuration. For

higher transport costs (i.e., when the partially integrated and the monocentric cities co-exist), one par-

tially integrated configuration converges continuously to the monocentric structure as the commuting

cost approaches tM from below.

Duocentric cities are equilibria only for high transport costs and intermediate commuting costs

(see the right-hand side of Figure 6). Indeed, when shipping goods are costly, firms benefit from

clustering their production activities in two separate business centers so as to decrease the average

distance to suppliers and consumers. Consider commuting costs rising from zero (i.e., a rising path in

the right-hand side of Figure 6). When commuting costs are very low, workers accept long journeys

to their workplace and benefit from a concentrated business district, i.e. the monocentric pattern

"m". However, when commuting costs reach intermediate values, an urban structure with two activity

centers becomes beneficial to them because long commutes can be avoided. When this happens, two

duocentric configurations emerge (see transition from "m" to "mdd" in Figure 6). As commuting costs

keep on increasing, one duocentric configuration persists while the other disappears (transition from

"dmd" to "dm"). Finally, for even higher commuting costs, the remaining duocentric city pattern

ceases to exist as households want to locate closer to their workplace, which gives rise to a transition

to a partially integrated configuration.
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Multiple equilibria Figure 6 also illustrates the multiplicity of equilibria. In many regions of

the parameter space, a unique equilibrium emerges (see "m", "i", "p" and "d"). There are also large

sets of parameters for which several structures among the monocentric, the duocentric, or the partially

integrated configurations co-exist. Note that all structures can co-exist for a narrow set of parameter

values. The fully integrated structure cannot co-exist with any other configuration. As mentioned

in the above paragraph, multiple equilibria can involve different urban structures of the same type:

either two partially integrated structures like in "mpp" and "dmpp" or two duocentric structures like

in "dmd" and "mdd". This can only happen for intermediate commuting costs. For higher commuting

costs, one of the two equilibria always disappears. It is interesting to describe how two equilibria of the

same type emerge. When commuting costs increase, it can be shown that the transition from "m" to

"mpp" (resp. from "m" to "mdd") implies that the monocentric city keeps the same structure while a

partially integrated city (resp. a duocentric city) initially emerges and immediately separates into two

distinct partially integrated structures (resp. a duocentric) with business centers evolving at different

locations.

Welfare ranking Importantly, the ordering of letters in Figure 6 indicates the ranking of equi-

libria in terms of aggregate welfare (i.e., the sum of residents’utility plus aggregate land rents). For

instance, the ordering "mdd" indicates that the monocentric configuration has the highest welfare

while the two duocentric configurations have lower and distinct welfare values. The welfare ranking

can be obtained from Figure 7, which plots the aggregate welfare in terms of the transport cost for

nine values of commuting cost. The top left panel shows that for t = 0.2, the aggregate welfare falls

with higher transport costs as they indeed reduce consumption and therefore profits, wages and utility.

The panel shows continuous welfare transitions between the integrated, the partially integrated and

the monocentric cities as transport costs rise. For high transport costs, two duocentric configurations

emerge but yield lower welfare levels. The next two top panels show that for higher commuting costs

t = 0.32 and 0.56 respectively, duocentric structures can bring higher welfare. The central panel illus-

trates equilibria and the welfare ranking for t = 0.64: two partially integrated equilibria rank below

the monocentric city equilibrium. In the next panels, commuting cost are so high that the monocentric

configuration is not part of equilibria. It can be observed that the duocentric city abruptly emerges

as commuting costs increase and yields a higher aggregate welfare.
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Population growth Finally, we look at the impact of urbanization on spatial structures by

considering gradual increases in the city size N for given commuting and transport costs. According

to our numerical analysis, three cases arise depending on transport costs τ .

(i) For low transport costs τ , transitions are smooth. The configuration is initially monocentric for

small N (i.e. t < tM), then it becomes partially integrated for intermediate N (i.e. tM < t < tI).

(ii) For intermediate transport costs τ , the configuration is initially monocentric. Then it bifur-

cates into either a partially integrated or duocentric city. These patterns are quite different from the

monocentric city so that the transition is discontinuous, the resulting path being undetermined. In

the case of a duocentric city, it will partially integrate at a later stage, and will finally approach full

integration.

(iii) For large transport costs τ , the configuration is initially monocentric. When it bifurcates, it

becomes a duocentric city. Then, it becomes partially integrated, and finally fully integrated. Figure 8

plots this case with τ = 3 and t = 0.7 for an increasing population N . It shows that the configuration

is initially monocentric (black). When it breaks, it becomes duocentric (red), and then partially

integrated (blue).

These results show that transitions are continuous (resp. discontinuous) for small (resp. large)

transport costs. This reflects the fact that when transport costs are large, firms can gain more when

firms locate in several business districts.

6 Conclusion

We have studied urban structures driven by demand and vertical linkages in the presence of increasing

returns to scale, which in contrast to the existing literature on the topic, are internal to the firm.

Existence of equilibrium has been proved and an invariance result has been obtained regarding the

equivalent role of more intense demand and vertical linkages and lower commuting costs. Various

urban configurations can emerge in equilibrium exhibiting a monocentric, an integrated, a duocentric,

or a partially integrated city structure. We have discussed the role of commuting and transport costs,

intensities of demand/vertical linkages, and urbanization in affecting these patterns. We have finally

presented a numerical approach to discuss the emergence of multiple equilibria.
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Appendix A: Equilibrium conditions

Let B = [ − b, b], b ∈ R+0 , be the support of the city. The densities of residents and firms are given

by λ : B →[0, 1] and µ : B →[0, 1/s]. The land market clearing imposes that λ + sµ = 1 while labor

market clearing imposes that the mass of workers is equal to mass of firms
∫
B λ =

∫
B µ = N . With the

city border b ≡ N(1 + s)/2, every worker and every firm find a job match. So, we just need to impose∫
B µ = N .

While worker’s bid rent is the maximum bid a worker makes on a parcel of land as of (13), the firm’s

bid rent is the maximum bid that it can make on land as of (14). The necessary and suffi cient conditions

for spatial equilibrium are given by identities (16) and (17). Remind that S(y) = G(y)− lnT (y), where

T (y) =
[∫
B e

(1−σ)τ |z−y|µ(z)dz
] 1
1−σ and G(y) = 1

σ

∫
B
e−στ |z−y|

T 1−σ(z) µ(z)dz. Note that G, T and therefore S :

B →R+ are integrals and therefore continuous functions of y. Functions G and T are also strictly

positive because their integrands are positive as µ has positive measure.

No cross commute At every location, the flow of commuters is unidirectional. The proof can be

found in Ogawa and Fujita (1980, Property 1). The authors show that workers commuting in opposite

directions have no incentives to cross each other in equilibrium.

City edges Spatial equilibrium involves workers residing at city edges. Suppose this is not the

case: λ(b) = 0 and µ(b) = 1/s. Then, there would be workers at x < b facing a positive land rent and

commuting to a firm located at b. These workers would benefit from relocating to b + δ, with δ > 0

infinitely small, because of a zero land rent and an infinitely small commuting cost tδ, which violates

equilibrium. The same argument applies at x = −b.

More generally, spatial equilibrium involves more residents than firms at city edges. Otherwise,

λ(b) < µ(b), and the above argument still applies as there would be workers at x < b facing a positive

land rent and commuting to a firm in b, who would benefit from relocating to b+δ, with δ > 0 infinitely

small.

Lemma 1 City edges host more residents than firms: λ > 0, λ ≥ µ for z = ±b.

Land rent continuity The bid rents Ψr and Ψb are the maximum values of programs (13) and

(14), which involve not only the continuous functions S and |·|, but also the land rent function R which
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is not a priori continuous. Therefore, the Maximum Theorem cannot be applied in order to show the

continuity of bid rents Ψr and Ψb. Instead, the continuity of bid rents is shown by the fact that they

are linear functions of the land rent R.

Lemma 2 The bid rents Ψr and Ψb in (13) and (14) are continuous functions B → R. So Ψr − Ψb

and R = max{Ψr,Ψb, 0} are also continuous functions B → R.

Proof. Indeed, each bid rent can be written as the function Ψ(x) = maxz f1(x) +f2(z) +f3(x− z),

where f1 : B → R and f3 : [−2b, 2b]→ R are continuous functions and f2 : B → R is not necessarily a

continuous function. For Ψ = Ψr, take f1 = 0, f2 = α ln αρ
γe

+ β ln βρ
γe

+ (α + β)S + c0 − U∗ − sR and

f3(x− z) = −t |x− z|. For Ψ = Ψb, take f1 = (α ln αρ
γe

+ β ln βρ
γe

+ (α + β)S + c0 − U∗)/s, f2 = −R/s

and f3(x − z) = −t |x− z| /s. Remember that S is a continuous function. In contrast, the land rent

R is not a priori a continuous function. Let y and y′ be the maximizers of Ψ respectively at x and x′.

By the definition of a maximum, we have Ψ(x) = f1(x) +f2(y) +f3(x− y) ≥ f1(x) +f2(y
′) +f3(x− y′)

and Ψ(x′) = f1(x
′) + f2(y

′) + f3(x
′ − y′) ≥ f1(x

′) + f2(y) + f3(x
′ − y). Using the conditions, we have

f3(x− y′)− f3(x− y) ≤ f2(y)− f2(y′) ≤ f3(x
′ − y′)− f3(x′ − y) (45)

Then, we compute the difference

Ψ(x)−Ψ(x′) = f1(x)− f1(x′) + f2(y)− f2(y′) + f3(x− y)− f3(x′ − y′)

and therefore

f2(y)− f2(y′) = Ψ(x)−Ψ(x′)− (f1(x)− f1(x′))− (f3(x− y)− f3(x′ − y′))

Plugging this in (45), we get

f1(x)− f1(x′) + f3(x− y′)− f3(x′ − y′) ≤ Ψ(x)−Ψ(x′) = f1(x)− f1(x′)− f3(x′ − y) + f3(x− y)

Then, because f1 and f3 are continuous functions, limx′→x |f1(x)− f1(x′)| = 0 and limy′→y |f3(x− y′)− f3(x′ − y′)| =

limx′→x |f3(x′ − y)− f3(x− y)| = 0, we have that limx′→x |Ψ(x)−Ψ(x′)| = 0.

Commuting flows Let n : B →R be the number of commuters flowing in the right hand direction

(i.e. toward positive x). Since there is no resident and no firm at the left of x = −b and at the right of
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x = b, we have n(±b) = 0. This flow increases with the mass of residents who start their commuting

trip in the right direction and decreases with the mass of firms that hire commuters located on their

left:
·
n = λ− µ. Given the definition of spatial equilibrium, we have

·
n ∈


{1} if Ψr > Ψb

[−1
s
, 1] if Ψr = Ψb

{−1
s
} if Ψr < Ψb

(46)

Given the absence of cross commuting, a location is a ‘source’of commuters if
·
n > 0 and a ‘sink’of

commuters if
·
n < 0. The flow of commuters points to the right direction (x < y) when n > 0 and to

the left direction (x > y) if n < 0. By the first fundamental theorem of calculus, the flow of commuters

n(z) =
∫ z
−b
·
ndz is a continuous function. At city edges, because λ ≥ µ at z = ±b, we have ·n(±b) ≥ 0.

Also, when
·
n(±b) > 0, the function

·
n is equal to 0 at least twice in order to satisfy n(b) =

∫ b
−b
·
ndz = 0.

It is useful to introduce some terminology about the sets of sources and sinks of commuters moving

to right or left direction. Let the set of sources Sκ = {z ∈ B :
·
n > 0 and κn > 0} and the set of sinks

(destinations) Dκ = {z ∈ B :
·
n < 0 and κn > 0} where κ = 1 if commuters flow to the right direction

and κ = −1 otherwise. For example, S1 includes source locations of commuters flowing to the right

direction and S−1 those flowing to the left direction. Obviously, commuters departing from Sκ and

arriving in Dκ flow to the right direction (resp. the left direction) if κ = 1 (resp. −1). Locations that

are neither origin nor destination of commuters define the set P = {z ∈ B :
·
n = 0}. Locations that

involve a change in commuting direction are denoted by the set Q = {z ∈ B : n = 0 and
·
n 6= 0}.

Because n is a continuous function and either
·
n > 0 or

·
n < 0 for z ∈ Q, any location z ∈ Q has zero

measure, i.e. it is an isolated point. Finally, note that those definitions determine six disjoint sets:

D+1, D−1, S1, S−1, P and Q.

We now study the land rent properties on these sets.

Wage arbitrage in Sκ ∪ Dκ. Consider two disjoint, open and convex intervals, S ′ ⊆ Sκ and

D′ ⊆ Dκ, such that (i) workers residing in S ′ commute to firms located in D′ and labor flows in the

same direction within each interval (S ′ ∩D′ = ∅). Since n (x) and n (y) have the same sign for x ∈ S ′

and y ∈ D′, one readily checks that |x− y| = (y − x) sign(n (x)) = ysign(n (y)) − xsign(n (x)) where

sign(n) = 1, 0,−1 depending on whether n is positive, zero, or negative. Since n has the same sign

in each interval, each function sign(n) is a constant. The first order conditions for the maximum
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problems (13) and (14) are given by

(α + β)
·
S − t sign(n)− s

·
R = 0, y ∈ D′ (47)

t sign(n)−
·
R = 0, x ∈ S ′ (48)

While the first identity includes only residents irrespective of their workplaces, the second one involves

only firms irrespective of workers’residences. These identities apply for any infinitesimal interval where

workers start to commute in the same direction and firms hire from the same side of the city. Since

these conditions hold for all S ′ ⊆ Sκ and D′ ⊆ Dκ, they hold a.e. in Sκ and Dκ, where a.e. (almost

everywhere) means for all points except on a zero-measure set.

Lemma 3 The land bid rent differential is given by

·
Ψb −

·
Ψr =

1

s
(α + β)

·
S − 1 + s

s
tsign(n), a.e. z ∈ Sκ ∪ Dκ

Proof. Consider again the two disjoint, open and convex intervals S ′ ⊆ Sκ and D′ ⊆ Dκ. Then,

conditions (47) and (48) imply that the equilibrium land rent R is equal to workers’and firms’bid

rents. Applying the envelope theorem to (13) and (14) yields

·
Ψr = t sign (n) , x ∈ S ′

·
Ψb =

1

s

[
(α + β)

·
S − t sign (n)

]
, y ∈ D′

We construct the ‘highest losing’bids Ψr on D′ and Ψb on S ′. We first look at the set S ′. Because

workers depart from their residence x ∈ S ′ to work, they must reside on S ′ and win the land market

competition. Because workers reside in S ′, her bid Ψr must be equal to the equilibrium land price R.

Consider then a firm that would produce at x ∈ S ′ and hire a resident at x′ ∈ S ′. Because of (48), any

resident in S ′ has the same incentive to work in the firm. So, we can say that the firm hires a worker

residing at x′ = x. The firm’s highest (losing) bid Ψb is given by (14) evaluated at y = x. Using this,

the bid rent differential writes as

Ψb −Ψr =
1

s

[
α ln

αρ

γe
+ β ln

βρ

γe
+ (α + β)S + c0 − U∗

]
− 1 + s

s
R (49)

Differentiating this expression and using (48), we have the bid rent differential

·
Ψb −

·
Ψr =

1

s
(α + β)

·
S − 1 + s

s
t sign (n) , z ∈ S ′ (50)
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which holds for any S ′ in Sκ, and thus for any measurable set in Sκ.

We then look at the set D′. Because D′ hosts firms, it must be that Ψb = R. Consider a resident

who would choose to reside at y ∈ D′ and be hired by a firm in D′. Because of (47), the worker is

indifferent to any firm producing at y′ ∈ D′, so that we can focus on the case where the hiring firm

produces at y′ = y. The worker’s highest (losing) bid is given by (13) evaluated at x = y. The bid

rent difference writes as

Ψb −Ψr = −
(
α ln

αρ

γe
+ β ln

βρ

γe

)
− (α + β)S − c0 + U∗ + (1 + s)R (51)

Differentiating this expression and using (48), we get the bid rent differential

·
Ψb −

·
Ψr =

1

s
(α + β)

·
S − 1 + s

s
t signn, y ∈ D′

which holds for any D′ in Dκ, and thus for any measurable set in Dκ.

Wage arbitrage in P. Consider a location z ∈ P, which is neither a source nor a sink of

commuters. Since there is no empty hinterland, this location must host both workers and firms, so

that land market clearing imposes R = Ψb = Ψr. So,

R =
1

1 + s

[
α ln

αρ

γe
+ β ln

βρ

γe
+ (α + β)S + c0 − U∗

]
, z ∈ P

Furthermore, let
◦
P be the interior set of P so that z ∈

◦
P is not an isolated point in P. Then, we

have
·
R =

·
Ψr =

·
Ψb =

1

1 + s
(α + β)

·
S, z ∈

◦
P

and
·

Ψb −
·

Ψr = 0, z ∈
◦
P (52)

Bid rent differential at city borders. The zero opportunity cost of land imposes R = 0 at

the city border z = −b. By Lemma 1, there must be workers with residences at z = −b so that the

highest bid is that of workers: Ψr = R = 0 at z = −b. The edge location z = −b also belongs to

the set S1 since λ(−b) > 0 and workers there cannot commute to the left direction. We can therefore

apply (49) and get the land rent differential

Ψb −Ψr = Ψb =
1

s

[
α ln

αρ

γe
+ β ln

βρ

γe
+ (α + β)S + c0 − U∗

]
, z = −b (53)
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Equilibrium condition We summarize the above results as follows. Let us define φ : B → R,

φ (z) =
1

s
(α + β)

·
S (z)− 1 + s

s
t sign(n (z)) (54)

Note that
·
n and φ may not be continuous in z. However φ is bounded because

·
S is bounded.

A spatial equilibrium is defined by the rent differential functionΨb−Ψr and the commuting function

n such that Ψb −Ψr is continuous everywhere on B, Ψb −Ψr = Ψb and
·
n ≥ 0 = n at z ∈ {−b, b}, and

z ∈ Sκ ∪ Dκ ⇒
·

Ψb −
·

Ψr = φ (z) a.e.

z ∈ P ⇒
·

Ψb −
·

Ψr = 0 a.e.
(55)

Remind that Q has zero measure and therefore is not affected by the above implications.

Lemma 4 A spatial equilibrium is such that

z ∈ Sκ ∪ Dκ ⇐⇒ φ (z) 6= 0 a.e.

z ∈ P ⇐⇒ φ (z) = 0 a.e.

Note that any equilibrium commuting function n has two possible patterns: it is either such that
·
n = n = φ = 0, ∀z ∈ B (fully integrated city) or such that the city space is partitioned with ·

n > 0

for some source locations z and
·
n < 0 for some sink locations z. In the latter case, we have φ > 0 for

some z and φ < 0 for some other z. This means that φ always accepts a zero. Let Z be the set of

zeroes or changes in the sign of φ, Z = {z ∈ B : limε→0 φ (z + ε) · φ (z − ε) ≤ 0}.

Then, the spatial equilibrium is given by the function n : B → R, which is the solution to

·
n(z) ∈


{1} if Φ (z) < 0

[−1
s
, 1] if Φ (z) = 0

{−1
s
} if Φ (z) > 0

with
·
n ≥ 0 = n at z = ±b and Φ (z) ≡

∫ z
ẑ∈Z φ (x) dx. Using n(x) =

∫ x
−b (λ− µ) dz yields condition (16)

in the text.

Invariance To check invariance, one can replace t and (α+β) by t̃ = mt and (α̃+ β̃) = m(α+β),

m ∈ R0. This yields φ̃ (n) = mφ (n), which gives the same set of roots Ẑ = {z ∈ B : φ̃ (n) = 0} =

{z ∈ B : φ (n) = 0}. As a result, the sign of Φ̃ (n) is the same as that of Φ (n), and thus, the

equilibrium must be the same. We therefore have invariance with respect to changes in parameters as

long as (α + β)/t remains constant.
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Appendix B: Existence of a spatial equilibrium

Formulation of a fixed point

We denote the set of continuous functions on B =[−b, b] by C0(B) and the set of functions with con-

tinuous first derivative by C1(B). To formulate the fixed point problem, we work with the commuting

flow function n which is continuous: that is, n ∈ N where N ≡ {n ∈ C0(B) : n(−b) = n(b) = 0,
·
n ∈ [−1/s, 1] a.e.} where a.e. means almost everywhere, that is everywhere except on a zero measure

set. We also use a concise notation for operators where Mn expresses the application of operator

M : N → C0(B) on a function n ∈ N and Mn (z) expresses the value returned by Mn at z ∈ B.

We redefine the economic surplus as the operator S : N → C1(B) and its slope
·
S : N → C0(B)

so that Sn (z) = Sn (−b) +
∫
B

·
Sn(x) · 1{z>x}dx where 1{A} is the indicator function that returns 1 if

A is true and 0 otherwise. Then, we denote the rent differential by ∆Ψ : N → C0(B), (∆Ψ) (z) =∫
B

(
·

Ψb −
·

Ψr

)
· 1{z>x}dx. Using the value for

·
Ψb −

·
Ψr in (54) and (55), integrating from z = −b, and

using rent differential (53) at this location, we get

∆Ψn (z) =
1

s

(
α ln

αρ

γe
+ β ln

βρ

γe
+ c0 − U∗

)
+

1

s
(α + β)Sn (z)− 1 + s

s
t

∫ z

−b
sign(n (x))dx

We rewrite the bid rent differential in a more compact form as

∆Ψ =
1

s
(Λ + Λ0 − U)

where the operator Λ : N → C0(B) is defined by Λ = (α + β)S − (1 + s) tL, the operator L : N →

C0(B) by Ln(z) =
∫
B sign(n (x)) · 1{z>x}dx, and the scalar Λ0 by s

(
α ln αρ

γe
+ β ln βρ

γe
+ c0

)
.

A spatial equilibrium is then defined by the function n : [−b, b] → R and the scalar U which are

the solutions to

·
n ∈


{1} if Λn+ Λ0 − U < 0

[−1
s
, 1] if Λn+ Λ0 − U = 0

{−1
s
} if Λn+ Λ0 − U > 0

(56)

with
·
n ≥ 0 = n at z = ±b.

We now formulate the fixed point problem in terms of the continuous function n rather than the

discontinuous function
·
n. Towards this aim, we integrate the previous condition (56). To take care

of the three subconditions, we define the correspondence F : R→ [−1/s, 1] such that F (z) = −1/s if

36



z < 0, F (z) = [−1/s, 1] if z = 0, and F (z) = 1 if z > 0. We define the functional U∗ : N → R that for

any function n, gives the scalar U that solves

0 =

∫
B
F [U − Λ0 − Λn (z)]dz

and the operator O : N → N ′,

(On) (z) =

∫
B
F [U∗n− Λ0 − Λn (x)] · 1{z>x}dx (57)

The definition of U∗ guarantees that n(b) = 0 while n(−b) = 0 is trivially satisfied. By construction,

the operator O returns a function n such that
·
n ∈ [−1/s, 1]. So, O maps N into itself.

Lemma 5 The existence of a spatial equilibrium is equivalent to the existence of a fixed point n ∈ On.

Sequences of fixed points

The Schauder theorem applies on a set of continuous mappings of continuous functions. So, we

use continuous approximations of F and sign functions and then prove convergence. We define the

continuous, differentiable and strictly increasing functions Fk : R → [−1/s, 1], k ∈ N, such that Fk
converges to F as k → ∞ and 0 < F ′k ≤ k, and the continuous, differentiable and strictly increasing

function Hl : R → [−1, 1], l ∈ N, such that Hl converges to sign as l → ∞ and 0 < H ′l ≤ l.

In particular, we consider logistic functions with images on [−1/s, 1] and [−1, 1]: Fk(z) = −1 +

(1 + s) / [1 + exp(−4kz/ (s+ 1)] and Hl(z) = −1 + 2/ [1 + exp(−2lz)]. The type of convergence will

be defined formally below.

We use the subset of continuous functions N and the sup norm ‖n‖∞ = supz∈B |n(z)|. We define

the operators Λl and Ll : N → C0(B) by

Λln (z) = (α + β)Sn (z)− (1 + s) tLln(z)

Lln(z) =

∫
B
Hl(n (x)) · 1{z>x}dx

Furthermore we define the functional U∗kl : N → R as being the solution U to
∫
B Fk[U − Λ0 −

Λln (x)]dx = 0 and the operator Okl : N → N by

Okln(z) =

∫
B
Fk[U

∗
kln− Λ0 − Λln (x)] · 1{z>x}dx
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Note that U∗kl is a unique solution because Fk is strictly increasing.

Our strategy is to prove the existence of fixed points n∗kl to n
∗
kl = Okln

∗
kl ∀k, l ∈ N and prove that

the limit n∗ = limk→∞ liml→∞ n
∗
kl satisfies n

∗ = On∗. We first prove that the set N is a closed convex

set in the Banach space C0(B) and the mapping Okl is well defined and continuous.

Lemma 6 The set N is a closed convex set in the Banach space C0(B).

Proof. The space C0(B) is a vector space of continuous scalar functions on the real compact

interval B =[−b, b] for the operation of addition and scalar multiplication. It is equipped with the sup

norm ‖n‖ = supz∈B |n|. Every Cauchy sequence {nk}∞k=1 with nk ∈ N converges to some function

n ∈ N . It is thus a Banach space. The set of continuous functions N = {n ∈ C0(B) : n(−b) = n(b) =

0,
·
n ∈ [−1/s, 1]} is closed and convex. Indeed, any convex combination αn + (1 − α)m, n,m ∈ N ,

belongs to N . It is also closed because every sequence {nk}∞k=1 with nk ∈ N converges to some n ∈ N .

We now check that Okl is a well-defined continuous mapping. We remind that an operator is well

defined if it actually maps its domain into the defined set of images. An operator M : X → Y , with

X, Y ∈ C0(B), is a continuous mapping if for all δ > 0, there exists k > 0 such that for any n,m ∈ X,

‖n−m‖∞ < 1/k ⇒ ‖Mn−Mm‖∞ < δ. It must be noted that the composition of continuous

mappings is also a continuous mapping. Also, the convolutionM : X → Y ,Mn(z) =
∫
B f(z−x)n(x)dx

is a continuous mapping for any bounded valued function f : R→ R, |f | <∞.

Lemma 7 S is a well defined continuous mapping.

Proof. We first prove the following useful statement: An operator M : N → C0(R), Mn(z) =∫
B f(x, n)g(x − z)

·
n(x)dx is a continuous mapping when we consider f : B ×N →R as a continuous

function in m with bounded image (i.e. |f | < fmax) and g : R→R+ with bounded image (i.e. |g| <
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gmax). We indeed successively get

‖Mn−Mm‖∞ = sup
z∈B

∣∣∣∣∫
B
f(x, n)g(x− z)

·
n(x)dx−

∫
B
f(x,m)g(x− z)

·
m(x)dx

∣∣∣∣
= sup

z∈B

∣∣∣∣∣∣
∫
B f(x, n)g(x− z)

·
n(x)dx−

∫
B f(x,m)g(x− z)

·
m(x)dx

−
∫
B f(x, n)g(x− z)

·
m(x)dx+

∫
B f(x, n)g(x− z)

·
m(x)dx

∣∣∣∣∣∣
≤ sup

z∈B

∣∣∣∣∫
B
f(x, n)g(x− z)

(
·
n(x)− ·

m(x)
)

dx

∣∣∣∣+

∣∣∣∣∫
B

[f(x,m)− f(x, n)] g(x− z)
·
m(x)dx

∣∣∣∣
≤ fmaxgmax

∣∣∣∣∫
B

(
·
n(x)− ·

m(x)
)

dx

∣∣∣∣+ gmax
∣∣∣∣∫
B

[f(x,m)− f(x, n)]
·
m(x)dx

∣∣∣∣
Note that

∫
B

(
·
n(x)− ·

m(x)
)

dx =
∫ b
−b dn(x) −

∫ b
−b dm(x) = n(b) − n(−b) − [m(b)−m(−b)] = 0 since

n(±b) = m(±b) = 0 for any n,m ∈ N . Also, for any m ∈ N , one has that ·m ∈ [−1/s, 1] and therefore∣∣∣ ·m∣∣∣ ≤ max{1, 1/s}. Using this,

sup
z∈B

∣∣∣∣∫
B

[f(x,m)− f(x, n)]
·
m(x)dx

∣∣∣∣ ≤ max{1, 1

s
} ·
∣∣∣∣∫
B

[f(x,m)− f(x, n)] dx

∣∣∣∣
≤ max{1, 1

s
} · 2b sup

z∈B
|f(z,m)− f(z, n)|

Finally, by continuity of f , for any δ > 0, there exists ε > 0 such that ‖m− n‖ < ε implies

|f(z,m)− f(z, n)| < δ for all z, or equivalently, supz∈B |f(z,m)− f(z, n)| < δ. Thus, for any δ′ we can

use the same ε such that ‖m− n‖ < ε⇒ ‖Mn−Mm‖∞ < δ′ where we set δ = δ′/ [2bgmax max{1, 1/s}].

This proves the continuity of M .

Second, the operator T 1−σ : N → C0(R) with T 1−σn(z) =
∫
B e

(1−σ)τ |z−x|µ(x)dx is a well-defined

continuous operator. Indeed, using µ =
(

1− ·
n
)
/(1 + s), we have T 1−σn(z) =

∫
B e

(1−σ)τ |z−x|dx/(1 +

s) −
∫
B e

(1−σ)τ |z−x| ·ndx/(1 + s). The first term is independent of n. Regarding the second term,

just set f(x, n) = 1 and g (z − x) = e(1−σ)τ |z−x|, which have bounded images for x, z ∈ B. The

operator is well defined as it returns continuous functions having images in a strictly positive range:

T 1−σn (B) ⊂ (2be(1−σ)2bτ/ (1 + s) , 2b/s). For the highest bound, we simply plug
·
n = −1/s in the first

line of the above expression. For the lowest bound, we compute T 1−σn(y) =
∫
B e

(1−σ)τ |z−y| 1−
·
n(z)
1+s

dz ≥

e(1−σ)2bτ
∫
B
1− ·n(z)
1+s

dz = 2be(1−σ)2bτ

1+s
> 0 where we use |z − y| < 2b in the inequality and

∫
B
·
ndz = 0 in

the last equality. Therefore, 1/ [σT 1−σn(x)] is also a continuous function having images in a strictly

positive range while ln [T 1−σn(x)] is a continuous functions having real bounded images.

Third, the operator G : N → C0(R) with Gn (z) = 1
σ

∫
B

e−στ |z−x|

(T 1−σn)(x)µ(x)dx is a well-defined contin-

uous operator. Indeed, one just has to set f(x, n) = 1/ [σT 1−σn(x)] and g (z − x) = e−στ |z−x| in the
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above statement. It is clear that the operator returns a function with bounded positive images.

Finally, since S = G− lnT = G+ 1
σ−1 lnT 1−σ, it is a linear combination of well defined continuous

operators. Thus, we can conclude that S : N → C0(B) is a well-defined continuous mapping.

Lemma 8 Ll is a well-defined continuous mapping.

Proof. For any δ > 0, we must find ε such that ‖m− n‖∞ < ε ⇒ ‖Lln− Llm‖∞ < δ. We

successively get

‖Lln− Llm‖ = sup
z∈B

∣∣∣∣∫
B
Hl(n (x)) · 1 (z > x) dx−

∫
B
Hl(m (x)) · 1{z>x}dx

∣∣∣∣
= sup

z∈B

∣∣∣∣∫
B

[Hl(n (x))−Hl(m (x))] · 1{z>x}dx
∣∣∣∣

= sup
z∈B

∣∣∣∣∫
B

[n (x)−m (x)]H ′l (p(x)) · 1{z>x}dx
∣∣∣∣

where p(x) ∈ [min(n (x) ,m (x)),max(n (x) ,m (x))] by the mean value theorem and the continuity and

the differentiability of Hl. Using the fact that H ′l ≤ l and that n(−b) = m(−b) = 0, we have

‖Lln− Llm‖∞ ≤ l sup
z∈B

∣∣∣∣∫ z

−b
[n (x)−m (x)] dx

∣∣∣∣
≤ l sup

z∈B

∫ z

−b
|n (x)−m (x)| dx

= 2bl sup
z∈B
|n (z)−m (z)|

= 2bl ‖n−m‖

So, for any δ, choose ε < δ/l. Therefore, Ll : N → C0(B) is a continuous mapping. Since Hl has

image on [−1, 1], the image of Ll lies in the interval [−2b, 2b]. So, it is well defined.

Since Λl : N → C0(B) is composition of well-defined continuous mappings with bounded images,

it is also a well defined continuous mapping. We finally need to show the corresponding result for Okl

which depends on U∗kl.

Lemma 9 U∗kl is a well-defined continuous functional.

Proof. For readability we here temporarily write U∗kl as U . Then, U : N → R is the unique

solution to
∫
B Fk[U − Λ0 − Λln (x)]dx = 0 because Fk is strictly increasing. Also, it is clear that the
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solution U must lie between minx∈B [Λ0 + Λln (x)] and maxx∈B [Λ0 + Λln (x)]. Since Λln has bounded

image, Un has also bounded images and is well defined.

Let us consider two commuting functions n and m : N → R. Let also pmin and pmax : N ×N → R

be the minimum and the maximum functions of Un−Λln and Um−Λlm. By the mean value theorem

and the differentiability of Fk, we have

Fk[Un− Λ0 − Λln (x)]− Fk[Um− Λ0 − Λlm (x)] = F ′k(p(x)) · [Un− Λln (x)− Um+ Λlm (x)]

where p : B → R such that p ∈ [pmin, pmax]. This yields

F ′k(p(x)) · (Un− Uklm) = Fk[Un− Λ0 − Λln (x)]− Fk[Um− Λ0 − Λlm (x)]

+ F ′k(p(x)) · [Λln (x)− Λlm (x)]

Integrating, applying
∫
B Fk[U − Λ0 − Λln (x)]dx = 0 to n and m, and subtracting expressions, we

get

(Un− Um) ·
∫
B
F ′k(p(x))dx =

∫
B
F ′k(p(x)) · [Λln (x)− Λlm (x)]dx

Since F ′k > 0, we have

|Un− Um| =
∫
B F

′
k(p(x)) · [Λln (x)− Λlm (x)]dx∫

B F
′
k(p(x))dx

≤
∫
B F

′
k(p(x)) · |Λln (x)− Λlm (x)| dx∫

B F
′
k(p(x))dx

≤
∫
B F

′
k(p(x)) · supz |Λln (z)− Λlm (z)| dx∫

B F
′
k(p(x))dx

= sup
z
|Λln (z)− Λlm (z)|

= ‖Λln− Λlm‖∞

In other words Un is a continuous mapping of Λln. Since Λln is a continuous mapping of n, Un is also

a continuous mapping of n.

Lemma 10 For any k, l ∈ N, Okl : N → N is a continuous mapping.

Proof. The operator Okl is defined by

Okln(z) =

∫
B
Fk[U

∗
kln− Λln (x)] · 1{z>x}dx (58)
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where U∗kln was discussed in the previous lemma. By construction, the image functions m ∈ Okln are

continuous and satisfy m(−b) = m(b) = 0 and
·
m ∈ [−1/s, 1]. The operator Okl is well defined as it is

a mapping N → N .

For readability we temporarily dispense U∗kl and Okl with the subscripts kl and superscript ∗. Using

the mean value theorem and the differentiability of Fk and p defined in the previous lemma, we get

‖On−Om‖∞ = sup
z∈B

∣∣∣∣∫
B
{Fk[Un− Λln (x)]− Fk[Un− Λln (x)]} · 1{z>x}dx

∣∣∣∣
= sup

z∈B

∣∣∣∣∫
B
F ′k(p(x)) · [Un− Λln (x)− U(m) + Λlm (x)] · 1{z>x}dx

∣∣∣∣
≤ sup

z∈B

∣∣∣∣∫
B
F ′k(p(x)) · [Λln (x)− Λlm (x)] · 1{z>x}dx

∣∣∣∣
+ |Un− Um| · sup

z∈B

∣∣∣∣∫
B
F ′k(p(x)) · 1{z>x}dx

∣∣∣∣
We successively have

sup
z∈B

∫
B
|F ′k(p(x))[Λln (x)− Λlm (x)]| · 1 (x < z) dx ≤ sup

z∈B

∫
B
|F ′k(p(x))| · |Λln (x)− Λlm (x)| · 1{z>x}dx

≤
∫
B
|F ′k(p(x))| · |Λln (x)− Λlm (x)| dx

≤ k

∫
B
|Λln (x)− Λlm (x)| dx

≤ 2bk sup
z∈B
|Λln (z)− Λlm (z)|

= 2bk ‖Λln− Λlm‖∞

and

|Un− Um| · sup
z∈B

∣∣∣∣∫
B
F ′k(p(x)) · 1 (x < z) dx

∣∣∣∣ ≤ ‖Λln− Λlm‖∞ · sup
z∈B

∫
B
|F ′k(p(x))| 1 (x < z) dx

≤ ‖Λln− Λlm‖∞ ·
∫
B
|F ′k(p(x))| dx

≤ 2bk ‖Λln− Λlm‖

Finally,

‖On−Om‖∞ ≤ 4bk ‖Λln− Λlm‖∞

For any δ, we can then choose ε = δ/(4bk) so that ‖Λln− Λlm‖∞ < ε implies ‖On−Om‖∞ < δ.

Hence, putting back the subscripts kl, Okl is a continuous mapping of Λl. Since Λl is a continuous

mapping of n, we have that Okl is also a continuous mapping of n.
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Lemma 11 The image Okl(N ) is a relatively compact subset of N .

Proof. By Arzela-Ascoli theorem, this is true if n ∈ Okl(N ) are uniformly bounded and equicon-

tinuous on B. To say that n ∈ Okl(N ) are uniformly bounded means that there existsM > 0 such that

‖n‖∞ = supz∈B |n(z)| < M for all n ∈ Okl(N ). This is true since Fk has image on [−1/s, 1]. Therefore,

Okl generates functions n : B → R such that n(−b) = n(b) = 0 and
·
n ∈ [−1/s, 1]. These functions

have image in [−2n, 2b]. To say that n is equicontinuous on B means that for every δ > 0 there exists

an ε such that for every x, y ∈ B and every n ∈ N , we have |x− y| < ε ⇒ |n(x)− n(y)| < δ. This

follows from the continuity of n ∈ C0(B).

To sum up, the set N is a closed convex set in the Banach space C0(B). The operator Okl : N → N

is a continuous mapping such that Okl (N ) is a relatively compact subset of N . We can then apply

Schauder fixed point theorem.

Lemma 12 For each k, l ∈ N, there exists a fixed point n∗kl ∈ N such that n∗kl = Okln
∗
kl.

Convergence

We now turn to the question about whether the sequence of fixed points {n∗kl}k,l∈N converges to a

function that is also a fixed point of (57). Because N is relatively compact and any n∗kl belongs to N ,

the sequence {n∗kl}k,l∈N converges uniformly on B to a function n∗∞ ∈ N .

Note that F is a correspondence because F (0) = [−1/s, 1]. In turn, the operator O : N → N is a

correspondence. We therefore want to check whether n∗∞ ∈ On∗∞. Formally, we ask whether for any

δ > 0, there exists a function n∗ ∈ On∗∞ and two positive integers k and l such that we have

‖Okln
∗
∞ − n∗‖∞ < δ

for k > k and l > l.

We here assume that the sequence {Hl}l∈N converges to the sign function under the norm ‖·‖1.

Formally, for any δ > 0, there exists l ∈ N such that
∫
|Hl(ξ)− sign(ξ)| dξ < δ. Similarly, we assume

that {Fk}k∈N converges to F under the norm ‖·‖1. That is, for any δ > 0, there exists k ∈ N such that∫
|Fk(ξ)− F (ξ)| dξ < δ. The last integral returns a scalar because the correspondence F returns a set

only on the zero measure set at ξ = 0.

Lemma 13 Λl converges to Λ uniformly under the norm ‖·‖∞.
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Proof. The mapping Λl uniformly converges to the mapping Λ if for any δ > 0, we can find l such

that ‖Λl − Λ‖∞ ≤ δ for all l > l. Note that ‖Λl − Λ‖∞ = ‖(α + β)S − (1 + s) tLl − (α + β)S + (1 + s) tL‖∞
= (1 + s) t ‖Ll − L‖∞. So, we just need to check the uniform convergence of the mapping Ll : N → R,

Lln(z) =
∫
BHl(n (x)) · 1{z>x}dx to the mapping Ln(z) =

∫
B sign(n (x)) · 1{z>x}dx. By the definition of

the convergence for Hl, for any δ > 0, we can find l such that
∫
|Hl (ξ)− sign(ξ)| dξ ≤ δ for all l > l.

Furthermore we have

‖Ll − L‖∞ = sup
z∈B

∣∣∣∣∫
B

[Hl(n (x))− sign(n (x))] · 1{z>x}dx
∣∣∣∣

≤
∫
B
|Hl(n (x))− sign(n (x))| dx

=

∫
|Hl(ξ)− sign(ξ)| · M(x : ξ ≤ n (x) < ξ + dξ)dξ

≤ 2b

∫
|Hl(ξ)− sign(ξ)| dξ

≤ 2bδ

whereM(E) denotes the measure of the set E ⊆ B so thatM(B) = 2b. So, for any δ′, we can use the

above integer l for δ = δ′/2b and get ‖Ll − L‖∞ < δ′ for all l > l. Therefore, Ll converges uniformly

to L. The same conclusion applies to Λl and Λ. That is, the sequence {Λln}l∈N converges to Λn.

Let the function F̂ : R→ [ − 1/s, 1] be such that F̂ (ξ) = 1 if ξ > 0, F̂ (ξ) = 0 if ξ = 0, and

F̂ (ξ) = −1/s if ξ < 0. It is clear that F̂ ∈ F and that {Fk}k∈N converges to F̂ under the norm ‖·‖1.

For any δ > 0, there indeed exists k ∈ N such that
∫∞
−∞

∣∣∣Fk(ξ)− F̂ (ξ)
∣∣∣ dξ < δ. This is true because

{Fk}k∈N converges to F and
∫∞
−∞

∣∣∣Fk(ξ)− F̂ (ξ)
∣∣∣ dξ =

∫∞
−∞ |Fk(ξ)− F (ξ)| dξ since F and F̂ differ only

on a zero measure set.

Lemma 14 For any operator Z : N → C0(B) and function n ∈ N ,
∫
B Fk [Zn(x)] · 1{z>x}dx converges

uniformly to
∫
B F̂ [Zn(x)] · 1{z>x}dx under the norm ‖·‖∞ and

∫
B F̂ [Zn(x)] · 1{z>x}dx ∈

∫
B F [Zn(x)] ·

1{z>x}dx.

Proof. We first prove that for any δ > 0 there exists a positive integer k ∈ N such that

Ik =

∥∥∥∥∫
B
F̂ (Zn(x)) · 1{z>x}dx−

∫
B
Fk[Zn(x)] · 1{z>x}dx

∥∥∥∥
∞
< δ
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for k > k. We indeed successively have

Ik =

∥∥∥∥∫
B

{
F̂ (Zn(x))− Fk[Zn(x)]

}
· 1{z>x}dx

∥∥∥∥
∞

= sup
z∈B

∣∣∣∣∫
B

{
F̂ (Zn(x))− Fk[Zn(x)]

}
· 1{z>x}dx

∣∣∣∣
≤
∫
B

∣∣∣F̂ (Zn(x))− Fk[Zn(x)]
∣∣∣ dx

=

∫ ∣∣∣F̂ (ξ)− Fk(ξ)
∣∣∣ · M{x:ξ≤Zn(x)<ξ+dξ}dξ

whereME denotes the measure of a set E ⊆ B so thatMB = 2b. We can use the fact that the measure

is always smaller than 2b and get

Ik ≤ 2b

∫ ∣∣∣F̂ (ξ)− Fk(ξ)
∣∣∣ dξ

Finally, using the definition of convergence of Fk to F̂ , we can find a positive integer k such that∫ ∣∣∣F̂ (ξ)− Fk(ξ)
∣∣∣ dξ < δ/2b, so that Ik ≤ δ for any k > k.

We finally prove that
∫
B F̂ [Zn(x)] · 1{z>x}dx ∈

∫
B F [Zn(x)] · 1{z>x}dx. For any z ∈ B, we have∫

B
F̂ [Zn(x)] · 1{z>x}dx =

∫
F̂ (ξ) · M{x:x<z,ξ≤Zn(x)<ξ+dξ,Zn(x)6=0}dξ + 0 · M{x:x<z,Zn(x)=0}∫

B
F [Zn(x)] · 1{z>x}dx =

∫
F (ξ) · M{x:x<z,ξ≤Zn(x)<ξ+dξ,Zn(x)6=0}dξ +

∫
F (0) · M{x:x<z,:Zn(x)=0}dξ

whereME denotes the measure of a set E ⊆ B. For any z ∈ B,∫
B
F [Zn(x)] · 1{z>x}dx =

∫
B
F̂ [Zn(x)] · 1{z>x}dx+

∫
F (0) · M{x:x<z,:Zn(x)=0}dξ

The last term in the RHS is equal to either {0} if M{x:x<z,:Zn(x)=0} = 0 or the interval [−m/s,m]

where m = M{x:x<z,:Zn(x)=0} if M{x:x<z,:Zn(x)=0} > 0. It is then clear that
∫
B F [Zn(x)] · 1{z>x}dx 3∫

B F̂ [Zn(x)] · 1{z>x}dx.

Given these lemmas, for any n ∈ N and U ∈ R, we get

lim
k→∞

lim
l→∞

Okln (z) = lim
k→∞

lim
l→∞

∫
B
Fk [U − Λ0 − Λln (x)] · 1{z>x}dx

= lim
k→∞

∫
B
Fk

[
U − Λ0 −

(
lim
l→∞

Λln
)

(x)
]
· 1{z>x}dx

= lim
k→∞

∫
B
Fk [U − Λ0 − Λn (x)] · 1{z>x}dx

=

∫
B
F̂ [U − Λ0 − Λn (x)] · 1{z>x}dx

45



where the second equality stems from the continuity of Fk, the third one from Lemma 13, and

the last one from Lemma 14. Also, from Lemma 14, we have
∫
B F̂ [U − Λ0 − Λn (x)] · 1{z>x}dx ∈∫

B F [U − Λ0 − Λn (x)] · 1{z>x}dx. So, limk→∞ liml→∞Okln (z) ∈ On (z). Applying this to the fixed

point solution n∗∞ = limk→∞ liml→∞ n
∗
kl and U

∗
∞ = limk→∞ liml→∞ U

∗
kln
∗
kl, we get n

∗
∞ = limk→∞ liml→∞Okln

∗
∞ ∈

On∗∞. Hence, n
∗
∞ is a fixed point of O, which proves Proposition 2.

Appendix C: Monocentric city

The proof makes uses of the following lemma.

Lemma 15 (i) SM is convex in [0, b) then concave in [b, b1) for some b ∈ [0, b1) with S ′M(0) = 0. (ii)

SY is convex in (b1, b]. (iii) SM ∈ C1 in the interval of [0, b] with S ′M(b1) < 0 and S ′′M(b1 − 0) < 0 <

S ′′M(b1 + 0).

Proof. (i) The access measure TM given by (18) can be written as

T 1−σM (z) =
2

(σ − 1) τs
{1− e(1−σ)τb1 cosh[(σ − 1)τz]} (59)

Because − cosh (z) is strictly concave and decreasing for z ≥ 0, so is T 1−σM . As (lnT 1−σM )′′ =

[(T 1−σM )′′T 1−σM − (T 1−σM )′2]/T
2(1−σ)
M < 0, lnT 1−σM is strictly concave and decreasing for z ≥ 0, and so is

− lnTM(z). Differentiating GM as given by (19), we successively get

G′M(z) =
1

σs

[
−στ

∫ z

−b1

e−στ(z−y)

T 1−σM (y)
dy + στ

∫ b1

z

e−στ(y−z)

T 1−σM (y)
dy

]
(60)

G′′M(z) =
τ

s

[
στ

∫ z

−b1

e−στ(z−y)

T 1−σM (y)
dy + στ

∫ b1

z

e−στ(y−z)

T 1−σM (y)
dy − 2

T 1−σM (z)

]
=
τ

s

[
sτσ2GM(z)− 2

T 1−σM (z)

]
Given the above expression of G′′M and the fact 2/T 1−σM is strictly increasing for z ≥ 0, the curve

sτσ2GM is convex (resp. concave) when above (resp. below) the curve 2/T 1−σM . Two possibilities

actually arise: sτσ2GM is either concave and below the curve 2/T 1−σM or there exists some b ∈ (0, b1)

such that sτσ2GM is convex on [0, b] and concave on [b, b1] with b necessarily corresponding to the

single intersection point of sτσ2GM with the curve 2/T 1−σM . See the illustration in Figure A1. It can

also be shown that S ′M(0) = G′M(0) = (− lnTM)′(0) = 0.
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(ii) We now prove that SM is convex in (b1, b]. For x ∈ (b1, b], we have

GM(x) =
1

σs

∫ b1

−b1

e−στ(x−y)

T 1−σM (y)
dy

G′M(x) = −τ
s

∫ b1

−b1

e−στ(x−y)

T 1−σM (y)
dy < 0

G′′M(x) =
στ 2

s

∫ b1

−b1

e−στ(x−y)

T 1−σM (y)
dy > 0 (61)

and

lnTM(x) = τx+
1

1− σ ln

(
1

s

∫ b1

−b1
e−(1−σ)τydy

)
which is linear in x. Hence, SM is convex in (b1, b].

(iii) We showed that − lnTM(z) is concave, decreasing and C1 on [0, b]. For z → b1 − 0, we have

G′M(b1 − 0) = −τ
s

∫ b1

−b1

e−στ(b1−y)

T 1−σM (y)
dy < 0

G′′M(b1 − 0) =
τ

s

[
στ

∫ b1

−b1

e−στ(b1−y)

T 1−σM (y)
dy − 2

T 1−σM (b1)

]
< 0

as GM is concave in z = b1 by part (i). For z → b1 + 0, we have

G′M(b1 + 0) = −τ
s

∫ b1

−b1

e−στ(b1−y)

T 1−σM (y)
dy < 0

G′′M(b1 + 0) =
στ 2

s

∫ b1

−b1

e−στ(b1−y)

T 1−σM (y)
dy > 0

by using expression (61). Therefore, S ′M(b1 − 0) = S ′M(b1 + 0) but S ′′M(b1 − 0) < 0 < S ′′M(b1 + 0). So,

SM is C1 on [0, b]. It also appears that S ′M(b1) < 0.

INSERT FIGURE A1 HERE

Figure A1: Concavity and convexity of GM .

Note: The figure represents sτσ2GM and 2/TM with plain and dashed curves respectively.

Parameters: left panel: σ = 3, τ = 1, s = 1; right panel σ = 6, τ = 2, s = 1.

We now show that the equilibrium conditions Ψb(y) ≥ Ψr(y) for all y ∈ [0, b1] and Ψr(x) ≥ Ψb(x)

for all x ∈ [b1, b] can be reduced to Ψb(0) ≥ Ψr(0) and Ψb(b) ≤ Ψr(b) = 0 respectively.

Proof. In the interval of [0, b], the bid rents of residents and firms are given by

Ψr(y) = Ψr(0)− ty

Ψb(y) =
1

s

[
(α + β)SM(y) + ty +

(
α ln

αρ

γe
+ β ln

βρ

γe
− U0 + c0

)]
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Given Lemma 15(i), Ψb is convex in [0, b) then concave in [b, b1) for some b ∈ [0, b1) with Ψ′b(0) = t.

Therefore Ψb(y) − Ψr(y) is quasiconcave on [0, b1]. As Ψb(b1) = Ψr(b1), the equilibrium condition

Ψb(y) ≥ Ψr(y) for all y ∈ [0, b1] reduces to Ψb(0) ≥ Ψr(0). According to Lemma 15(ii), Ψb(z) is convex

for z ∈ [b1, b]. As Ψr(z) is linear and Ψb(b1) = Ψr(b1), the equilibrium condition Ψb(x) ≤ Ψr(x) for all

x ∈ [b1, b] reduces to Ψb(b) ≤ Ψr(b) = 0.

Appendix D: Integrated city

We show that |S ′I(b)| ≥ |S ′I(z)|, ∀z ∈ [0, b].

Proof. Given the similarity of expression of TI (25) with that corresponding to the monocentric

case (18), the argument used in Appendix A showing that lnT 1−σM is strictly concave and decreasing

in z in Appendix A, can be applied here. Thus, − ln(TI) is strictly concave and decreasing for y ≥ 0.

By differentiating GI(z) as given by expression (26), we get

G′I(z) =
1

σ (1 + s)

[
−στ

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy + στ

∫ b

z

e−στ(y−z)

T 1−σI (y)
dy

]
=

τ

1 + s

[∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy +

∫ b

z

e−στ(y−z)

T 1−σI (y)
dy − 2

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
=

τ

1 + s

[
σ (1 + s)GI(z)− 2

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
G′′I (z) =

τ

1 + s

[
(1 + s) τσ2GI(z)− 2

T 1−σI (z)

]
It suffi ces to show that G′I(b) +G′I(z) ≤ 0 in order to have

|G′I(b)| ≥ |G′I(z)| , ∀z ∈ [0, b] (62)
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as G′I(b) < 0. To show that G′I(b) +G′I(z) ≤ 0, we develop G′I(b) +G′I(z) into

τ

1 + s

[
σ (1 + s) [GI(b) +GI(z)]− 2

∫ b

−b

e−στ(b−y)

T 1−σI (y)
dy − 2

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
=

τ

1 + s

[∫ b

−b

e−στ(b−y)

T 1−σI (y)
dy +

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy +

∫ b

z

e−στ(y−z)

T 1−σI (y)
dy − 2

∫ b

−b

e−στ(b−y)

T 1−σI (y)
dy − 2

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
=

τ

1 + s

[∫ b

z

e−στ(y−z)

T 1−σI (y)
dy −

∫ b

−b

e−στ(b−y)

T 1−σI (y)
dy −

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
=

τ

1 + s

[∫ b

z

e−στ(y−z)

T 1−σI (y)
dy −

∫ z

−b

e−στ(b−y)

T 1−σI (y)
dy −

∫ b

z

e−στ(b−y)

T 1−σI (y)
dy −

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
=

τ

1 + s

[∫ b

z

e−στ(y−z) − e−στ(b−y)

T 1−σI (y)
dy −

∫ z

−b

e−στ(b−y)

T 1−σI (y)
dy −

∫ z

−b

e−στ(z−y)

T 1−σI (y)
dy

]
As T 1−σI is decreasing for z ≥ 0, we have

∫ b
z
(e−στ(y−z)− e−στ(b−y))/T 1−σI (y)dy ≤ 0, ∀z ≥ 0, because the

increasing function e−στ(y−z) is the reflected image of e−στ(b−y) over the line y = (z+ b)/2. This proves

G′I(b) +G′I(z) ≤ 0. Finally, using the fact that − lnTI is strictly concave and decreasing and relation

(62) leads to

|S ′I(b)| ≥ |S ′I(z)| , ∀z ∈ [0, b]

Also, note that S ′I(b) < 0 as both G′I(b) and −(lnTI)
′(b) are negative. Therefore, SI(z) is concave and

decreasing in the neighborhood of z = b.

We next prove that tI is an increasing function of τ .

Proof. We need to show that S ′I(b) is a decreasing function of τ . First, it can be shown that

d
[
− (lnT )′ (b)

]
/dτ = −1. Second, by using expression (26) we haveG′I(b) = −τ/(1+s)

∫ b
−b e

−στ(b−z)/T 1−σI (z)dz

and

d

dτ
G′I(b) = − 1

1 + s

∫ b

−b

e−στ(b−z)

T 1−σI (z)
dz +

στ

1 + s

∫ b

−b

(b− z)e−στ(b−z)

T 1−σI (z)
dz − τ

1 + s

∫ b

−b
e−στ(b−z)

d

dτ
T σ−1I (z)dz
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As d[T 1−σI (z)]/dτ < 0, it suffi ces to show that the sum of the first two terms is negative. We have

− 1

1 + s

∫ b

−b

e−στ(b−z)

T 1−σI (z)
dz +

στ

1 + s

∫ b

−b

(b− z)e−στ(b−z)

T 1−σI (z)
dz

=
1

1 + s

∫ b

−b
[(b− z)στ − 1]e−στ(b−z)T σ−1I (z)dz

=
1

(1 + s)στ

∫ 2στb

0

(r − 1)e−rT σ−1I [b− r/(στ)]dr

=
1

(1 + s)στ

(∫ 1

0

+

∫ 2στb

1

)
(r − 1)e−rT σ−1I [b− r/(στ)]dr

≤ T σ−1I [b− 1/(στ)]

(1 + s)στ

(∫ 1

0

+

∫ 2στb

1

)
(r − 1)e−rdr < 0

as T σ−1I [b− r/(στ)] a decreasing function of r and
∫ R
0

(r − 1)e−rdr < 0.

Appendix E: Cut-offs tM and tI

We prove that lims→0 tM < lims→0 tI . As s −→ 0, tM = tM = (α + β) τ . We need to check that

(lnTI)
′(b)−G′I(b) > τ

when s→ 0. Given the expressions (25), (26) of T 1−σI and G′I , we have

(lnTI)
′(b) =

1

1− σ
d

dz
ln
[
1− e(1−σ)τb cosh[(σ − 1)τz]

]∣∣∣∣
z=b

= τ
e(1−σ)τb sinh[(σ − 1)τz]

1− e(1−σ)τb cosh[(σ − 1)τz]

∣∣∣∣
z=b

= τ

and

G′I(b) = −(σ − 1) τ 2

2

∫ b

−b

e−στ(b−y)

1− e(1−σ)τb cosh[(σ − 1)τy]
dy

where G′I(b) is negative because the denominator of this integrand is positive as

1− e(1−σ)τb cosh[(σ − 1)τz] ≥ 1− e(1−σ)τb e
(σ−1)τb + e−(σ−1)τb

2

= 1− 1 + e−2(σ−1)τb

2

=
1− e−2(σ−1)τb

2

> 0

Hence, we get (lnTI)
′(b)−G′I(b) > τ .
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Appendix F: Proof of Corollary 2

We show that the partially integrated city is a spatial equilibrium for t = tI − δ and small enough

δ > 0. By continuity, SP (z) tends to SI(z) for any z when b1 tends to b. This is also true for S ′P (z)

and S ′′P (z). It is shown in Appendix D that SI(z) is decreasing and concave in the neighborhood of

z = b and |S ′I(b)| > |S ′I(z)|, z ∈ [0, b]. Hence, we have S ′P (z) < 0 and S ′′P (z) < 0 for z close enough to

b while |S ′P (b)| > |S ′P (z)|, ∀z ∈ [0, b]. By continuity, |S ′P (b1)| > |S ′P (z)|, ∀z ∈ [0, b1] when b1 tends to

b. In this case, SP (z) is decreasing and concave in z within the intervals [b1, b] for small δ > 0. So, by

concavity of SP (z), we compute

tP ≡ min
y∈[b1,b2]

α + β

1 + s

SP (y)− SP (b2)

b2 − y
=
α + β

1 + s

SP (b1)− SP (b2)

b2 − b1

t̃P ≡
α + β

1 + s

SP (b2)− SP (b)

b− b2
t̂P ≡

α + β

1 + s
max
z∈[0,b1)

|S ′P (z)| = α + β

1 + s
|S ′P (b1)|

while

t =
α + β

1 + s

SP (b1)− SP (b2)

b2 − b1
We now check that t̂P ≤ t ≤ min(tP , t̃P ). Indeed, t = tP and t̂P ≤ t ≤ t̃P by concavity of SP (z).
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Figure 1: Spatial urban structures
(         : firms and         : households)

(a) Monocentric city

(c) Partially integrated city (d) Duocentric city
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Figure 2: Monocentric city: residential (blue) and business (red) bid rents.



Figure 3: Integrated city: residential (blue) and business (red) bid rents.



Figure 4: Partially integrated city: residential (blue) and business (red) bid rents.

Panel a: balanced use of space, s=1 Panel b: unbalanced use of space, s=0.01



Figure 5: Duocentric city: residential (blue) and business (red) bid rents.

Panel a): Duocentric equilibrium 1 Panel b): Duocentric equilibrium 2



Figure 6: Monocentric (m), partially integrated (p), integrated (i), and duocentric configurations in (τ,t) plane
(α=β=γ=s=1 and σ=3)
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Figure 7: Aggregate welfare of urban configurations 
in terms of transport cost τ for various values of commuting cost t



Figure 8: City structure as population size increases
The horizontal axis is population and the vertical axis location. Diagonal straight lines display city borders. Residential districts
are represented in white, monocentric business districts in grey, duocentric business districts in red, and the business and the
integrated districts of the partially integrated city in plain and dash blue respectively. Overlaps indicate multiple equilibria.



Figure A1: Concavity and convexity of GM

ετσ²GM (resp. 2/TM
1-σ) is represented by the plain (resp. the dashed) curve

Left panel: σ=3, τ=1, ε=1; right panel σ=6, τ=2, ε=1


