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ABSTRACT

A HYBRID PLANNING APPROACH TO

ROBOT CONSTRUCTION PROBLEMS
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Mechatronics Engineering, Master of Science, 2019

Thesis Supervisor: Assoc. Prof. Dr. Volkan Patoğlu

Thesis Co-Advisor: Assoc. Prof. Dr. Esra Erdem Patoğlu

Keywords: Robot construction, Hybrid planning, Answer set

programming

We study robot construction problems where multiple autonomous robots

rearrange prefabricated components to build stable structures. Robot con-

struction problems can play a vital role in construction industries where the

tasks such as designing a desired structure, planning for the necessary actions,

and constructing structures from available components can be performed by

the robots. Robotic construction may especially be useful in places, such as

disaster zones or the space, where it is not safe or feasible for humans to visit.

In these unsafe or hard-to-reach places, robots can build necessary buildings,

bridges or shelters using the surrounding materials.

We view robot construction problems as planning problems: find a plan

(i.e., a sequence of actions) to obtain a final stable configuration of prefabri-

cated objects satisfying some goal conditions, from a given initial configura-

tion. These problems are challenging from the perspective of task planning
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since they may need incorporation of preexisting structure into the final de-

sign, pre-assembly of movable substructures, and use of extra blocks as tem-

porary supports or counterweights during construction. These problems are

challenging from the perspective of geometric reasoning as well, since they

need feasibility checks to ensure reachability of a block, to avoid collisions of

blocks, and to ensure stability of complex structures.

We propose a formal hybrid planning framework to address these chal-

lenges using Answer Set Programming, and state-of-the-art feasibility check-

ers. This framework not only decides for a stable final configuration of the

structure, but also computes the order of manipulation tasks for multiple au-

tonomous robots to build the structure from an initial configuration, while

simultaneously ensuring the stability, supportedness and other desired prop-

erties of the partial construction at each step of the plan.

We show the usefulness of our approach on a wide variety of robot con-

struction tasks, including bridge building and overhang construction scenar-

ios, and using different types of objects, including cylindrical ones.

We demonstrate the applicability of our approach through dynamic sim-

ulations and physical implementations with a bi-manual Baxter robot.
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Chapter 1

1 Introduction

1.1 Motivation

1.1.1 Construction Industry

Nowadays robots are widespread helping humans in solving problems from

simple day to day chores to complex tasks. There are still some areas where

robots are not being used or their employment is low compared to their po-

tential. One such area is construction industry that relies on manual labor as

the main source of its productivity. Bock [4] shows that robots can dramat-

ically improve the speed and quality of construction tasks by automatically

performing the mundane and rigorous tasks.

With the advancement in automation and robotics, the efficiency of some

construction tasks would certainly improve but not all, because we use robots

only for their heavy lifting abilities, not for deciding how to perform a par-

ticular task or what kind of actions are necessary to complete a certain task.

Designing the structure to be built, planning the robot motions and sequence

of actions are still performed by humans. If robots could also do all these

tasks automatically, it would not only assist humans, but would have a major

impact on construction industry.

1.1.2 Disaster Zones

Another motivation of robot construction originates from disaster zones.

Normally, when an earthquake occurs in a remote area, there is destruc-



tion everywhere and in these conditions people urgently need some kind of

shelter. Imagine a team of search and rescue robots, that arrives at the lo-

cation, automatically designs a structure for being used as a shelter, then

selects the necessary blocks from the rubble near destroyed buildings, and

creates a stable shelter out of them. Such an application of construction can

save time and possibly lives in disaster zones. Similarly, those robots may be

able to construct bridges to provide safety passages for the people to leave

that area.

1.1.3 Space Exploration

Space exploration is another potential application. Humans have started

traveling to other planets in search of resources. It might be useful to use

robots with the ability to automatically perform some construction tasks

to build habitable structures before humans arrive. A good example would

be Mars exploration, where a search and rescue robot arrives at Mars and

automatically sets up a camp using the resources around.

1.2 Challenges

We view robot construction problems as planning problems: find a plan (i.e.,

a sequence of actions) to obtain a final stable configuration of prefabricated

objects satisfying some goal conditions, from a given initial configuration.

Robot construction problems possess various challenges, from the perspective

of hybrid planning:

� Finding stable goal configurations of blocks, that satisfy the desired

conditions of a final construction.

� Handling ramifications of robot’s actions.

� Construction and incorporation of sub-assemblies.

� Using counterweights/scaffolding temporarily to maintain stability.

2



� Handling concurrency of actions.

� Maintaining stability of the structure at all times.

� Ensuring feasibility of robot’s actions.

Below these challenges are explained in detail.

1.2.1 Sub-Assembly Construction

A sub-assembly comprises of two or more blocks/boxes being manipulated

together. In Figure 1, a sub-assembly consisting of the blocks L1, S1 and

S2 is being manipulated at time step 4, as the robot picks the block L1 and

places it on top of block S3. As part of hybrid planning, it is challenging

to decide for sub-assembly construction, and to ensure the stability of the

structures. Note that it is also challenging to represent effects of manipulating

a sub-assembly, due to ramifications.

Figure 1: Sub-Assembly Manipulation

3



1.2.2 Temporary Counterweights

Counterweights may be required temporarily to balance the weight of the

structure so that it remains stable during and at the end of the construction.

In Figure 2, the block M1 is being used as a counterweight to balance the

structure. So that the robot can place the blocks S2 and S1 on the ends of

the block L1. Note that the counterweight (block M1) is not a part of the

final configuration. It is used temporarily only. Therefore, deciding the use

of counterweights as part of a hybrid plan is challenging.

Figure 2: Counter Weights
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1.2.3 Temporary Scaffolding

Similar to counterweights, scaffolding may be needed temporarily to complete

the construction. In scaffolding, instead of supporting the structure from

above by putting a heavy object, the structure is supported from below. In

Figure 3, the block S4 is being used as a scaffold to support the structure

below (time step 3 & 5). So that the robot can place the blocks S1 and S2

on top of the block L1, maintaining the stability. Deciding for temporary

use of blocks as scaffolds is challenging.

Figure 3: Scaffolding

5



1.2.4 Concurrency of Actions

For some robot construction problems multiple robots should be able to

perform concurrent (or simultaneous) actions to achieve a task. In Figure 4,

the blocks S2 and S3 are placed simultaneously on the block L1. Note that

if they are not placed concurrently, the structure would lead to instability.

Allowing true concurrency in planning is a challenging problem, from the

perspectives of both representation and reasoning.

Figure 4: Concurrency of Actions
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1.2.5 Finding a Stable Goal Configuration

There may be multiple goal configurations of blocks depending on the de-

sired conditions about the final structure, and all of them may not be stable.

In such cases, finding a stable goal configuration is a challenge itself. For

instance, consider a construction task where the desired condition is to con-

nect the both sides of a river to form a bridge. In such a bridge, as shown in

Figure 5, all the counter blocks are properly placed to ensure a stable goal

configuration. Finding such a stable goal state is important for planning.

Note that stability checks are done in continuous space. Therefore, embed-

ding these checks into discrete state constraints for planning is challenging.

Initial State Final StateFinal State

 

M1 S1 

S2 

S3 

M2 

M3 

S4 M4 

S5 

S6 

S7 

C4 

5 units 

4 units  

M5 

 

5 units 

4 units  

M1 

M2 S6 

S7 S5 M3 

S3 

S4 

M4 

M5 S1 

S2 

C4 

Figure 5: Stable Goal Configuration
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1.2.6 Ramifications of Actions

Representing and reasoning about such indirect effect of actions or ramifica-

tions of actions have been challenging for planning. For instance, consider

the construction task shown in Figure 6. As part of the plan block C1 is

placed on block C5. As an indirect effect of this action block C1 becomes on

top of block M3 as well.

Figure 6: Ramifications of Actions

1.2.7 Embedding Feasibility Checks

Maintaining the stability of structure is of prime importance in construction

tasks. The structure should be stable during all the steps of construction.

Ensuring stability at all times is challenging from both planning and geo-

metric point of view. For instance, consider Figure 7, stability is maintained

by carefully balancing the weight distribution of the whole structure using

counter blocks.
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M1 
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Figure 7: Determination of the order of actions

1.3 Our Contributions

We view robot construction problems as planning problems: find a plan (i.e.,

a sequence of actions) to obtain a final stable configuration of prefabricated

objects satisfying some goal conditions, from a given initial configuration.

These problems are challenging from the perspective of task planning since

they may need incorporation of preexisting structure into the final design,

pre-assembly of movable substructures, and use of extra blocks as tempo-

rary supports or counterweights during construction. These problems are

challenging from the perspective of geometric reasoning as well, since they

need feasibility checks to ensure reachability of a block, to avoid collisions of

blocks, and to ensure stability of complex structures. We can summarize our

contributions as follows:

� We have introduced a general formal planning framework for solving

various robot construction problems from blocks with multiple robots,

using Answer Set Programming (ASP). The framework proposes a hy-

brid planning approach by embedding feasibility checks (e.g., collision

checks, stability checks) in logical formulas of ASP.

� We have extended our approach to solve construction problems that

also involve cylindrical objects.

� We have designed and developed a collection of challenging construc-

tion benchmarks that include scenarios that necessitate sub-assembly

manipulation, true concurrency of actions, scaffolding, use of counter-
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weights, design of connected bridges and stable stack overhangs. Such

a comprehensive collection of construction problems is useful for var-

ious studies, e.g., in robotics, planning, and knowledge representation

and reasoning.

� We have implemented feasibility check algorithms to ensure stability of

structures, and reachability of objects, utilizing state-of-the-art physics

simulator PyBullet and the motion planner RRT*.

� We have illustrated the applicability of our hybrid approach by solving

these benchmark problems, using the ASP solver dlvhex with the

feasibility checkers.

� We have illustrated the applicability of our hybrid approach in robotics

by dynamic simulations of various scenarios of the benchmarks using

a bi-manual Baxter robot. Furthermore, physical implementation of

several scenarios have also been realized.

� We have also implemented an execution and monitoring algorithm to

recover from failure during the execution of plan. The applicability of

our algorithm has also been realized using physical implementation of

several scenarios.
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1.4 Thesis Outline

The organization of this document along with the summaries of upcoming

chapters are provided below:

� In Chapter 2, related work has been presented. Various works related to

the construction problems, such as blocks world, maximum overhang,

image understanding, stability of assemblies, assembly planning and

rearrangement planning have been discussed in detail.

� In Chapter 3, we formally describe the robot construction problems by

discussing the input and output to the problem. Different types of goal

conditions are discussed to further elaborate the problem.

� In Chapter 4, we provide the preliminaries to answer set programming

(ASP) used to model robot construction problems.

� In Chapter 5, we discuss the modeling of construction problems using

ASP. All the rules associated with the actions, preconditions of ac-

tions, fluents, ramifications, state constraints, concurrency constraints

are provided in detail.

� Chapter 6 details the implementation of feasibility checks.

� Chapter 7 introduces the benchmarks scenarios for the robot construc-

tion problems. These benchmarks include scenarios that necessitate

sub assembly manipulation, true concurrency of actions, scaffolding,

counter weights, constructing bridges and overhangs.

� In Chapter 8, we introduce extension to our framework by introducing

relevant ASP rules for cylindrical objects. Assumptions and constraints

associated with the introduction of cylinders in the problem are dis-

cussed. Additional actions, preconditions, ramifications are provided

in this chapter.
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� Chapter 9 presents the solutions to all the benchmarks instances using

our framework.

� Chapter 10 presents the implementation of dynamic and physical ex-

periments.

� Chapter 11 concludes the thesis and elaborates on possible future re-

search directions related to the construction problem.
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Chapter 2

2 Related Work

To the best of authors’ knowledge, this is the first robotic construction study

that addresses a variety of multi-robot stack rearrangement planning prob-

lems for building stable structures of different sorts. In the literature, there

exist several studies that focus on different specific aspects of the robotic

construction task: deciding for the stability of a given structure (e.g., from

an image obtained from Angry Birds), deciding for the existence of a speci-

fied stable structure (e.g., a maximum overhang) from a given set of identical

blocks or an unspecified stack from a given set of different sizes of objects

(e.g., like stones), planning for towers of identical blocks (e.g.. the blocks

world) ignoring stability, etc. Let us go over them to better understand the

challenges of the robot construction problems that we study.

2.1 The Blocks World

The well-known blocks world problems [78] have been widely studied by AI

community [10]; it is proven to be NP-complete for polynomially bounded

plans [23]. Blocks world problems are quite restricted compared to robot

construction problems, since while proposing the problem, Winograd’s inter-

est was in language rather than in construction problems. For instance, the

blocks world deals with identical blocks and allows a block to be placed on a

flat surface or on another block, but not on multiple blocks as necessitated

by the robot construction problems. It does not allow manipulation of sub

assemblies, use of counterweights and scaffolds, or concurrent placements of
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blocks, either. Also, there is no consideration of feasibility checks to ensure

the stability of the stack at each step of a plan.

Later, Fahlman [17] has introduced a set of robot construction prob-

lems where the goal is for a robot to build specified structures out of simple

blocks of different shapes and sizes. These problems allow incorporation of

subassemblies into the final design, and the use of extra blocks as tempo-

rary supports or counterweights during construction; they also consider col-

lisions of blocks and instability of the structures, but not motion planning.

Since Fahlman’s main interest was in maximizing common sense (rather than

soundness, completeness or optimality), he implemented a planning system

guided with heuristics to solve some of these problems. These problems have

not been investigated with a formal approach since then.

2.2 Maximum Overhang Puzzle

Mathematicians and theoretical computer scientists have studied a classic

puzzle that aims to determine the maximum overhang achievable by a stack

of identical blocks [24, 50–52]. A relatively recent solution [50, 52] to this

150 year old puzzle, honored with the prestigious David P. Robbins Prize in

mathematics, has introduced the use of blocks as counterbalance to improve

upon the well-established solution. While the maximum overhang problem

focuses on the determination of a stable and optimal final configuration of

identical blocks, the planning aspects of the construction problem to attain

the goal configuration is not considered within the scope of these studies.

2.3 Image Understanding and Qualitative Reasoning

in Games

Applications in scene understanding from 2D pictures and computer games

require inferring physical relations among objects [23, 29, 30, 57, 59]. Deter-

mination of stability of stacked objects and supportedness among objects
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have been studied, commonly with qualitative reasoning approaches [70,71].

Determination of stable final configuration of constructions has also been

studied in computer games, like Angry Bird [7, 19, 20, 60]. These studies fo-

cus on the physical relations of a given final configuration and do not address

the block rearrangement problem to build stable constructions.

2.4 Stability of Assemblies

In robotics, static stability [3, 38, 39, 41–43,45, 55, 67,74, 75, 79] and dynamic

stability [49,58] of assemblies with and without friction have been thoroughly

studied. The computational complexity of determining the assembly stabil-

ity in 2D is established in [48]. The stability determination techniques have

been utilized in several robotic applications, that include a Jenga playing

robot [73], multiple robots building a ramp [46], an autonomous robot stack-

ing a balancing vertical tower out of irregularly shaped stones [21], and a

robot dry stacking irregular objects to build large piles [65]. Note that, in

these studies, the challenging task planning aspect of construction planning

has not been addressed. [40] focuses limit analysis of masonry brick-block

system. This work formulates a mathematical programming problem with

equilibrium constraints and proposes a solution by a sequence of linear math-

ematical programming problems.

Toussaint [69] has utilized stability checks for building some tallest stable

tower from a set of unlabeled cylinders and blocks; no goal condition is

specified. His method applies a restricted version of task planning to decide

for the order of manipulation actions, based on simple Strips operators and

Monte Carlo tree search, and considers a restricted form of stability check

that depends on whether the objects are placed on support areas of other

objects. Due to these restrictions, his method is limited to building towers

with sequential plans.

Note that for sophisticated constructions that involve temporary scaffold-

ing, counterweights, and sub assemblies, it is required to express ramifications
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of actions as well as true concurrency. However, expressing ramifications di-

rectly by simple Strips operators is not possible [66] due to lack of logical

inference. Also, expressing true concurrency is not possible unless the de-

scription is extended with exponential number of new operators, where each

operator characterizes a concurrent action. Due to these theoretical results,

other studies [15,25,68] that rely on simple Strips operators, do not present

general methods for such sophisticated constructions either.

It is important to note that these methods do not cover sophisticated

structures, like bridges or overhangs, since objects are not necessarily placed

on support areas of other objects. Such sophisticated structures require def-

inition of transitive closure to ensure supportedness or connectedness, but

transitive closure is not definable in first-order logic [16] let alone Strips or

PDDL.

2.5 Assembly Planning

In automated manufacturing, assembly plans aim to determine the proper

order of assembly operations to build a coherent object. During assembly

planning, the goal configuration is well-defined and the problem is generally

approached by starting with the goal configuration and working backwards

to disassemble all parts. Object stability has also been considered within

this context [2, 5, 35, 44, 53, 54, 56, 72, 77]. The assembly planning problem

is significantly different from the robotic construction problems: on the one

hand, it allows assembly of irregular objects; on the other hand, the goal

configuration is pre-determined and solutions are commonly restricted to

monotone plans.

2.6 Rearrangement Planning

Geometric rearrangement with multiple movable objects and its variations

(like navigation among movable obstacles [61, 62]) have been studied in lit-
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erature. Since even a simplified variant with only one movable obstacle has

been proved to be NP-hard [9,76], many studies introduce several important

restrictions to the problem, like monotonicity of plans [1, 8, 11,33,34,47,63].

While a few can handle non monotone plans [28,32]; these studies do not al-

low stacking either. Recently, Han et al. [26] study rearrangement of objects

in stack-like containers (by pushes and pops); these problems do not require

stability checks.

2.7 Our Approach

Our approach is different from all the related works discussed. The differences

have already been mentioned in the respective sub sections. We model robot

construction problems as a planning problem where the goal is to achieve

a final stable configuration; subject to some goal conditions; from an initial

predefined configuration. The planner asks for a sequence of actions that

can take the initial configuration to goal configuration. During planning the

stability of all the states (intermediate and final) are ensured using stabil-

ity checks. We introduce a general framework to solve robot construction

problems using answer set programming.
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Chapter 3

3 Description of Robot Construction Prob-

lems

Robot construction problem can be defined as a planning problem that

asks for a final stable configuration of different types of prefabricated blocks

stacked on each other that satisfy some goal conditions, and a feasible stack

rearrangement plan to obtain that final configuration from a specified initial

configuration of the blocks. Formally, it can in terms of input and output

defined as:

Input: Initial configuration of blocks.

Output: A feasible stack rearrangement plan to obtain a stable final con-

figuration satisfying some goal conditions from initial configuration of blocks.

Goal conditions can vary depending on the problem at hand. It can be

defined in such that a particular block is on top of another block or it can

be defined with more detail by specifying the actual goal location in terms

of units e.g. block 1 should be on block 2 at unit space 3.

Figure 8: Initially all the blocks are on the table. Goal condition is expressed
by specifying the relationship between relative blocks.
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Figure 8 shows final state of 4 blocks. Initially all the blocks are on the

table. Here the goal condition is defined by saying that L1 should be on

Table, S1 and S2 should be on L1, M1 should be on both S1 and S2. Goal

can also defined by considering the physical properties of the block e.g. small

block contains something delicate so it should be placed on top of a medium

block which is heavier so that the medium block does not damage the thing

inside the small block.

Goal can also be defined in an abstract fashion such as maximizing the

height of a block, maximizing the overhang or joining two sides of a river.

For instance consider the overhang problem were the goal is to maximize

the distance a block from the edge of the table [24, 50–52]. Figure 9 shows

the initial and final state in an overhang problem. Initially all the blocks are

stacked on the table and in the final state an overhang of 4 units is achieved.

4 units 

Initial State Final State

C1 M1 

C2 

C3 

M2 

M3 

C4 

M2 

M1 

C4 

C1 

C2 

C3 M3 

Figure 9: Purple blocks are heavier and are used as counter weights, while
yellow blocks are the main blocks used to maximize the overhang. Overhang
of 4 units is achieved.

Alternatively, a set of disconnected surfaces, similar to the banks or sides

of a river can be given and as a goal both of these sides should be connected

so that in the final state a bridge like structure is obtained. Figure 10 shows

bridge like problem. Initially there are blocks on both sides of the river

and in the final state a stable bridge is constructed so that both sides are

connected.
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Figure 10: Green blocks are heavier and are used as counter weights, while
yellow blocks are used to connect the sides of the river. The distance between
the sides of the bridges is 9 units.

In some cases it is even possible, one side of the river is at some height

like a asymmetric bridge. Figure 11 shows a scenario in which the right

side of the river is 4 units higher than the left side. Initially all the blocks

are on the left side of the river and in the final state the a stable stair like

structure is obtained.

Initial State Final StateFinal State

 

M1 S1 
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M2 

M3 

S4 M4 

S5 

S6 

S7 

C4 
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4 units  

M5 

 

5 units 

4 units  

M1 

M2 S6 

S7 S5 M3 

S3 

S4 

M4 

M5 S1 

S2 

C4 

Figure 11: Green and purpleblocks are heavier and are used as counter
weights, while yellow blocks are used to connect the sides of the river. The
distance between the sides of the bridges is 5 units and the height difference
is 4 units.

Goal can also be specified to maximize or minimize the height of a par-

ticular block in tower formation. Figure 12 shows a tower like formation

with 8 blocks where the goal was the maximize the height of S3. In figure

13 the goal was to minimize the height of S3. In both cases it is a condition

that S3 should be part of the stack.
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Figure 12: Maximizing the height of box s3 in a stack of 8 boxes

Figure 13: Minimizing the height of box s3 in a stack of 8 boxes

3.1 Assumptions

We use a hybrid planning approach to solve robot construction problems

that involves planning an action sequence on a discrete level. Solving a

continuous problem in discrete domain always requires some assumptions to

solve the problem properly. Assumptions listed below enables the problem

to be formally modeled.

� We consider a discrete model of robot construction problem where space

on a box/surface or location of box is expressed in terms of unit space.

� A single unit space is set to be equal to the size of the smallest box.

� Without the loss of generality, we consider three size of boxes/blocks:

small block occupies or has one unit space, medium block occupies or

has three unit spaces and large block occupies or has five unit spaces.
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� Width and height of all the boxes are assumed to be the same, but

their weights may vary.

� There can be more than one robot with multiple manipulators.

� Orientation of the blocks remains the same during the planning.

� Weight distribution of blocks can be arbitrary.

� Without the loss of generality, we consider stability check as the only

feasibility check; however, other checks, such as graspability, reachabil-

ity can easily be added into our framework.
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Chapter 4

4 Answer Set Programming (ASP)

ASP is a declarative paradigm to solve computationally complex problems

especially NP hard problems [6, 22, 36, 37]. As robot construction problems

are more harder than blocks world problem; which itself is an NP-Hard prob-

lem [23]; due to the challenges mentioned in chapter II, ASP can be used to

solve these problems.

The basic idea is to model the hybrid domain into a set of logical rules

called the ASP program P , whose model called answer set which satisfies all

the rules in program P corresponds to the plan of the given problem instance.

These answer sets can be computed by answer set solvers like, DLVHEX [12]

and calls to relevant feasibility checkers can be made if necessary.

4.1 Input Language

We consider disjunctive ASP rules of the form:

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm

where m, k ≥ 0, each αi is an atom, and each βi is an atom or an external

atom. Intuitively, a rule expresses that if all βi (1 ≤ i ≤ n) holds but no βi

(n+ 1 ≤ i ≤ m) holds then some αi (1 ≤ i ≤ k) holds as well. When k = 0,

the rule is a constraint; when n = m = 0, it is a fact.
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4.2 Negation

There are two types of negations in ASP:

Classical Negation Classical negation or strong negation of an atom holds

only if it can be derived. Consider an example −A. The rule states that we

know that the atom A does not hold. This kind of negation is expressed by

connective −.

Default Negation Default negation or negation by failure means that if

we cannot show the truth of an atom, it is assumed to be false. It is expressed

by connective not. Consider an example notA. Here notA is assumed to be

true unless the atom A is derived to be true. We do not know if A holds.

4.3 Constraints

There are two types of constraints in ASP:

Hard Constraints The rules of the form

← β1, . . . , βn, not βn+1, . . . , not βm

are known has hard constraints and intutively means that the body must not

hold.

Weak Constraints The rules of the form

← β1, . . . , βn. [w@l, t1, . . . , tn]

are known as weak constraints. Here w is weight and l is priority. Weak

constraints are used to define preferences. Intutively they mean that it is

preferred that the body should not hold but if it holds there is a cost w.
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l is optional and is used to define priorities between more than one weak

constraints.

4.4 Aggregates

Aggregates are used to express properties on specific set of elements. They

are done by the following rules:

s1 ≺1 α{t1. . . . , tn : L1, . . . , Lm} ≺2 s2

Here ti are terms, Li are literals, α evaluates the numerical value of the

aggregate function and ≺i are comparison predicates that compare the value

with terms si. Some of the most common supoorted aggregate functions are

#count, #max, #sum etc.

4.5 External Atom

An external atom:

&g [Y1, . . . , Yn](X1, . . . , Xm)

is defined by its name g, input Y1, . . . , Yn and output X1, . . . , Xm. Intuitively,

g takes the input Y1, . . . , Yn, passes it to an external computation (like a

stability checker), and conveys the results X1, . . . , Xm into the rules.
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Chapter 5

5 Modelling Robot Construction Problems

We use ASP to model robot construction problems. Our formal ASP de-

scription of the preconditions and effects of robot’s pick and place actions,

and the integration of reachability checks into preconditions of manipulation

actions follow the guidelines described by Erdem et al. [13, 14] for hybrid

planning problems. Let us explain, in particular, how the further challenges

of robot construction problems are addressed using ASP. Details of modelling

is provided as follows:

5.1 Fluents

We have two fluents in our domain description that represent the world state:

holding(a,b,t): robot’s gripper a is holding box b at step t of the plan.

on(b,l,u,v,t): box b is at location l at time step t, in such a way that the

unit space v of b is on the unit space u on l.

5.2 Actions

We consider two actions which effect the world state:

pick(a,b,t): pick the box b with the gripper a at step t.
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placeOn(a,b,l,u,v,t): place the box b being held by the gripper a such

that the unit space v of b is on the unit space u of l.

5.2.1 Pick action

Either a pick action can occur or it may not occur. This is defined by the

occurrence of pick action using disjunctive rules.

Occurrence of the pick action is defined as:

pick(a, b, t) ∨ ¬pick(a, b, t)←

The direct effect of pick action is that the object is being held the gripper at

next time step.

Direct effect of pick action is defined as:

holding(a, b, t+ 1)← pick(a, b, t)

Preconditions of pick action are as following:

� A robot cannot pick a box b with its gripper a if it is already holding

some box b′ with it:

← pick(a, b, t), holding(a, b′, t)

� A robot cannot pick a box b with its gripper a if it is already holding

the box b with another gripper:

← pick(a, b, t), holding(a′, b, t)

� A robot cannot place a box b with gripper a at location l which is not
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supported by table

← place(a, b, t), not supported(b, Table, t).

5.2.2 Place action

Either a place action can occur or it may not occur. This is defined by the

occurrence of place action using disjunctive rules.

Occurrence of the place action is defined as:

placeOn(a, b, l, u, v, t) ∨ ¬placeOn(a, b, l, u, v, t)←

The direct effect of place action is that the object is on another location at

next time step.

Direct effect of pick action is defined as:

on(b, l, u, v, t+ 1)← placeOn(a, b, l, u, v, t), holding(a, b, t)

Preconditions of place action are as following:

� A robot cannot place a box on location l if its gripper is empty:

← place(a, l, t),#count{b′ : box (b′), holding(a, b′, t)} = 0

where place is obtained from placeOn by projection:

place(a, l, t)← placeOn(a, b, l, u, v, t)

� A robot cannot place a box b with its gripper a if the target box is

already being held:

← place(a, b, t), holding(a′, b, t)
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� A robot cannot pick a box b with gripper a if it is not supported by

table

← pick(a, b, t), not supported(b, Table, t).

5.3 Ramifications

There a lot of interesting ramifications or indirect effects of actions in robot

construction problems. Following are the necessary ramifications:

� If a box b is placed on some location l, then as a direct effect of this

action b becomes on l; as an indirect effect, the robot’s gripper becomes

empty:

¬holding(a, b, t)← onAux (b, l, t).

� If the unit space v of box b is on the unit space u of location l, then

(b, v) is not on any other unit (l′, u′):

¬on(b, l′, u′, v, t)← on(b, l, u, v, t)

� If a robot’s gripper a picks a box b, then as its direct effect a is holding

b; as an indirect effect, b is not on any box or the table:

¬on(b, l, u, v, t)← holding(a, b, t)

� If a robot’s gripper a picks a box b, then as its direct effect a is holding

b; as an indirect effect, the gripper a is not holding any other box b′

(b 6= b′),

¬holding(a, b′, t)← holding(a, b, t)

� If a robot’s gripper a picks a box b, then as its direct effect a is holding

b; no other gripper a′ is holding b (a 6= a′).

¬holding(a′, b, t)← holding(a, b, t)
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An interesting ramification occurs when a longer box b is placed on top

of another box: after the robot places the box b being held its gripper a onto

the location l, so that unit space v of b is placed on which unit u of l, as an

indirect effect the box b occupies as many unit spaces as its size allows on l.

We represent the ramifications of placing a longer box b is on top of another

box l as follows. Suppose that b occupies the right part of l, starting from

the unit space u of l (Figure 14). This can be expressed by the following

rule:

on(b, l, u+ i, v + i, t)← on(b, l, u, v, t)

where i ranges between 1 and min{size(b)− v, size(l)− u}. Similarly, a rule

is added for the left part of l being occupied by b.

 

 

v-j v v+i 

u-j u u+i 

b 

l 

Ground 

Figure 14: As indirect effects of placing unit v of b on unit u of l, unit v + i
(resp. v − j) of b is on unit u+ i (resp. u− j) of l.

Ground 
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Figure 15: As indirect effects of placing b on l, unit v of b becomes on unit
u of b′, and unit v + i (resp. v − j) of b becomes on unit u+ i (resp. u− j)
of b′.

Another interesting ramification occurs when a longer box b is placed on

top of another box, but as a ramification it is also placed on a neighboring

box b′ that is not too far (Figure 15). Such a sophisticated ramification

is represented as follows. First, we introduce some auxiliary atoms of the
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form above(h, b, v, x, t) to define the global locations of the boxes on the

table, taking the leftmost side of the table as a reference; above(h, b, v, x, t)

expresses that the unit space v of the box b at time step t is at a global

location that is x units to the right of the leftmost side of the table and at

h units high from the surface of the table. This predicate is defined with

double recursion. The first recursion defines the global location of unit v of

a box b vertically within a tower that is located x units to the right of the

leftmost side of the table:

above(1, b, v, x, t)← on(b,Table, x, v, t)

above(h, b, v, x, t)← above(h−1, b′, u, x, t),

on(b, b′, u, v, t).

(1)

The second recursion defines the locations of other units of box b horizontally

to the right and to the left of that tower:

above(h, b, v+1, x+1, t)←
above(h, b, v, x, t) (v<size(b))

above(h, b, v−1, x−1, t)←
above(h, b, v, x, t) (v>1)

(2)

The rule below is used to decide if a neighboring box is on another box

or not:

on(b, b′, u, v, t)← above(h, b, v, x, t), above(h−1, b′, u, x, t)
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5.4 State Constraints

There are some uniqueness constraints associated with the boxes in our do-

main description:

� There can only one box at a particular unit of a location:

← #count{b : box (b), on(b, l, u,, t)} > 1

� A robot should not be holding the same box with both arms:

← #count{a : arm(a), holding(a, b, t)} > 1

5.5 Concurrency Constraints

Unless specified otherwise, the ASP modeling of the construction problem

allows concurrent actions

� The concurrency of two pick actions of the same box but with different

grippers is not allowed with the following formula:

← #count{a : arm(a), pick(a, b, t)} > 1

� The concurrency of two pick actions of different boxes with the same

gripper is not allowed with the following formula:

← #count{b : box (b), pick(a, b, t)} > 1

� The concurrency of two place actions with the same gripper is not

allowed with the following formula:

← #count{l : objloc(l), place(a, l, t)} > 1
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� The concurrency of two place actions at the same location is not allowed

with the following formula:

← #count{a : arm(a), place(a, l, t)} > 1

� A box b cannot be picked by a gripper a while another gripper a′

(a 6= a′) is placing a box on it:

← pick(a, b, t), place(a′, b, t)

5.6 Supportedness Constraints

At any state of the world, no box is supported by itself (i.e., no circular

configurations). For that, we recursively define supportedness by the table:

supported(b, l, t)← onAux (b, l, t)

supported(b, l, t)← onAux (b, l′, t),

supported(l′, l, t) (b 6=l′)

where onAux is obtained from on by projection:

onAux (b, l, t)← on(b, l, u, v, t)

After that, we add a constraint to ensure that no box b is supported by itself:

← supported(b, b, t)
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5.7 The Commonsense of Law of Inertia

We represent the commonsense law of inertia to address the frame problem,

by the following rules:

� For holding fluent

holding(a, b, t+ 1)← holding(a, b, t), not ¬holding(a, b, t+ 1)

¬holding(a, b, t+ 1)← ¬holding(a, b, t), not holding(a, b, t+ 1)

� For on fluent

on(b, l, u, v, t+ 1)← on(b, l, u, v, t), not ¬on(b, l, u, v, t+ 1)

¬on(b, l, u, v, t+ 1)← ¬on(b, l, u, v, t), not on(b, l, u, v, t+ 1)

5.8 Integrating Stability Check

As discussed earlier, we use stability checks as the only feasibility check for

the problem but other checks such as reachability, graspability etc can be

easily added to our framework. Stability checks are quite important in robot

construction problems because they link the discrete model of the problem

with continuous domain calculations. Integration of stability check is done

with the help of external atom construct of ASP by the following rule:

← not &stable[on, t]()

The external atom takes on predicate and time step t as its input.

A similar stability check is also applied for sub-assembly manipulation

which makes sure that the sub-assembly being manipulated is stable or not.

This is done by the following rule:

← holding(a, b, t), onAux (b′, b, t),

not &hStable[holding , on, t]().
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The important thing to note here is that these feasibility checks are ap-

plied as state constraints, not as preconditions to actions which makes sure

that our structure or sub-assembly is going to be stable at every time step.

5.9 Bridge Construction

In bridge construction scenarios, one of the required conditions about a final

structure is that there exists a block x on the left side of the bridge and

another block y on the right hand side of the bridge such that x and y are

connected to each other. For this reason, we recursively define connectedness

of blocks using an auxiliary atom of the form connected(x, y, t) (block x is

supported by block y, or vice versa) similar to the recursive definitions that

we have seen above, and add a constraint to express the required condition

above for the goal (i.e., last time T ):

← #count{x, y : connected(x, y, T ),

side(x,Left , T ), side(y,Right , T )} = 0.

where side is defined as:

side(x, Left, t)← on(x, Table, u, , t), leftsideunits(u)

side(x,Right, t)← on(x, Table, u, , t), rightsideunits(u)

In order to define connectedness, we need to define a bidirectional con-

nectedness graph between boxes as shown in the figure below. This is done

by the following rules:

connected(x, y, t)← supported(x, y, t)

connected(x, y, t)← connected(y, x, t)

connected(x, y, t)← connected(x, z, t), connected(z, y, t)
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Figure 16: Connectedness Graph

5.10 Asymmetric Bridge Construction

In order to solve scenarios involving asymmetric bridges, heights of both sides

are defined separately by the following rule:

above(H,Left, x, x, t)←
above(H ′, Right, x, x, t)←
above(H + 1, b, v, x, t)← on(b,Left , x, v, t)

above(H ′ + 1, b, v, x, t)← on(b,Right , x, v, t)

Here H and H ′ are constants representing height of Left and Right side of

the bridge.

Figure 17: The difference between the height of bridges is 4 units
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5.11 Overhang Construction

In overhang scenarios, one of the required conditions about a final structure

is that there exists a block x supported by table and the difference between

the maximum overhang z and size of table is equal to the global unit space

x of unit space v of box b.

← #count{b : supported(b, Table, t), above( , b, v, x, t),

x = z − size(Table), overhang(z)} = 0.

Figure 18: Overhang of 4 units
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Chapter 6

6 Implementation of Feasibility Checks

In this chapter, implementation of feasibility checks will be discussed. As

discussed earlier, ASP provides a formal framework to solve computationally

complex problems. It allows us to solve planning problems with a defined

initial and goal configurations. These problems are normally modeled in

discrete domain using ASP formulation. Some of these problems require

continuous domain calculations to reason about them in the discrete domain.

The robot construction problem is such a problem. In order to determine the

stability of the structure, continuous domain stability check needs to be done

to ensure the stability. Similarly, reachability check that allow us to find out

if a particular object is reachable or not, needs to be done in the continuous

domain. In order to perform these continuous domain checks, ASP provides

external atom construct to allow these calculations. An external atom is

defined as:

&g [Y1, . . . , Yn](X1, . . . , Xm)

where g is the name of feasibility check, inputs are defined by Y1, . . . , Yn and

outputs are defined by X1, . . . , Xm. Intuitively, g takes the input Y1, . . . , Yn,

passes it to an external computation (like a stability checker), and conveys

the results X1, . . . , Xm into the rules. Let us consider stability check as an

example:
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6.1 Stability Check

Stability check in our domain description is defined as:

← not &stable[on, t]()

Here the name of the check is stable and it takes the on predicate and time

step t as input and based on this information decides if the structure is stable

or not. on predicate holds the state information of all the boxes/blocks and

t indicates the current time step. This stable external atom is implemented

as a Python plugin. In the Python implementation there is a function with

the same name stable and the same inputs. In this Python function some

pre-computation is done to convert the incoming data from ASP into such a

format that it can be passed to a physics simulator to test if the current state

is stable or not. After pre-computation, the data representing the current

state is passed to a physics simulator.

We use Pybullet 2.4.1 for dynamic simulation. Pybullet physics simulator

takes the input state and generates the state accordingly. After generating

the structure, it is tested for some time under real physics parameters, such

as gravity and disturbance forces. All the physical parameters such as size,

shape, gravity, disturbance forces, time of simulation, step time are decided

before hand and can be changed if needed. During the simulation displace-

ments of all the boxes or blocks are measured along 2-dimensions (no depth)

and if the displacements cross an empirically measured threshold, the struc-

ture is considered unstable, otherwise stable. This information regarding

stability is passed to the ASP program which uses it to reason more intelli-

gently.

The important thing note here is that we use stability check as a state

constraint not as a precondition to some action. The reason behind this is

to ensure that only those states are allowed in which stability is guaranteed.

We also have a similar check to ensure the stability of sub-assemblies and
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it is defined as:

← holding(a, b, t), onAux (b′, b, t),

not &hStable[holding , on, t]().

In this check we pass an additional input holding which gives the infor-

mation of boxes in hand and onAux predicate ensures that the check runs

for sub assemblies.

6.2 Reachability Check

Reachability check ensures if a particular box is reachable by a particular

robot gripper without colliding with any of the other boxes. Since the other

boxes are movable obstacles, such a reachability check is challenging.

We implement reachability checks in Python. Our algorithm first con-

verts the discrete high-level information of objects stored in ’on’ predicate

into location of object in continuous domain. Since, in our case we already

have discretization of table in terms of units at high level. We utilize this

information to find location of boxes. A small box occupies one unit space,

so we use this as the basic unit of our grid and assign locations to boxes

according to the units occupied. Then, the algorithm finds inverse kinematic

solutions from the end-effector of the robot to possible grip locations of the

box under consideration. If a solution exists, then the box is reachable; oth-

erwise, it is not. Next, our algorithm employs a motion planner to find a

collision-free trajectory from the end-effector to a reachable grip location on

the box, to make sure that there is no collision. We use the motion planner

based on an asymptotically optimal variant of Rapidly-exploring Random

Trees (RRT∗) [31] from OMPL library [64].

This check facilitates the overall system in two ways. 1) It determines

which objects are reachable from which particular arm. There might be some

objects which are reachable through one arm only. 2) It also makes sure that

while reaching an object the arm is not going to collide with any obstacle.
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We embed these reachability checks into the formal model of previous

section, by formalizing a precondition of the pick action that prevents the

occurrence of the action in a plan if the box is not reachable:

← pick(a, b, t), not&reachable[on, a, b]()

Note that here the external atom &reachable[on, a, b]() gets as input a robotic

gripper a (left one or right one), a box b (to be picked), and the extent of

the predicate on, that describes the current configuration of the boxes (i.e.,

which box is on top of which box(es), and which box is on the table). Place

action involves a similar check.
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Chapter 7

7 Benchmark Scenarios

In this section, we propose benchmark scenarios associated with robot con-

struction problems. Some of these benchmarks were introduced by Fahlman [17]

where the goal of the robot is construct some specified structures from a given

initial configuration. We extend these scenarios to present a comprehensive

set of benchmarks.

7.1 Sub-assembly Manipulation

Incorporating pre-existing structures is an important challenge in construc-

tion tasks. Moving a sub assembly means moving a group of objects all

together. This involves sophisticated ramifications which allows the objects

on top of the object picked to be moved together. In Figure 19, there are

pre-existing stable structures already available and they need to be placed

at appropriate locations so that structure does not fall.
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(a)

(b)

Figure 19: [17][Fig. 1.8]: (a) initial state and (b) goal state.

Similarly, in Figure 20, considering a robot with one manipulator, it is

not possible to achieve the goal state without creating a stable subassembly

of boxes and then incorporating it into the main structure.

(a) (b)

Figure 20: [17][Fig. 1.4]: (a) initial state and (b) goal state.
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7.2 Disassembly

Disassembly is also an important challenge because sometimes when creating

a new structure it is important to disassemble the already built structure but

while doing so the overall the structure should be stable. It is not always

simple to disassemble a structure by simply disassembling it one by one. In

Figure 21, it is not possible to get to goal state by putting one block on the

table at a time. If the structure disassembled one by one the structure would

fall.

(a) (b)

Figure 21: [17][Fig. 1.9]: (a) initial state and (b) goal state.

7.3 CounterWeights

Another challenge in construction problems is utilizing the fact that blocks

can act as counter weights. These counter weights basically help in balancing

the whole structure. The motivation of this challenge comes from the fact

that a robot should be able to utilize material from its surroundings in order

to create a stable structure. In Figure 22, again considering a robot with a

single manipulator, the goal state cannot be achieved without first placing

S4 along with S5 on L1 to act as a counter weight when placing S2 and S1

one by one.
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(a) (b)

Figure 22: A construction problem: (a) initial state and (b) goal state.

Similarly, in Figure 23 the goal state resembles the goal state in Figure 20

but in this scenario there is an extra medium block available. Again consider-

ing a single manipulator and also that the robot cannot create sub assembly,

the robot has to use the heavier block as a counter to weight to put other

blocks one by one.

(a)

(b)
Figure 23: A construction problem: (a) initial state and (b) goal state.
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7.4 Scaffolds

Another challenge similar to counter weights is scaffolding which requires

supporting the structure from beneath the structure. This might be im-

portant in cases where there is no heavy block which can act as a counter

weight. A particular example is given in Figure 24. Considering an single

manipulator and no sub assembly manipulation, there is no way the robot

can achieve the goal state without using scaffolding, because all the blocks

except the large one are light weight and cannot act as counter weights. To

achieve the goal state the structure has to be supported from beneath in the

intermediate states.

(a) (b)

Figure 24: A construction problem: (a) initial state and (b) goal state.
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7.5 True Concurrency

Normally, more than one robots can work on construction problems and in

that case a problem arises which is related to the concurrent or simultaneous

actions of multiple robot. This is also a major challenge while working with

multiple robots. It helps to solve some problems which may not be solved

using a single manipulator. In Figure 25, there are no extra blocks available

and the robot does not know sub assembly manipulation. The robot has to

use true concurrency to achieve goal state.

(a) (b)

Figure 25: A construction problem: (a) initial state and (b) goal state.

7.6 Overhang

The maximum overhang benchmark used for evaluation is a 150 old chal-

lenging puzzle that has been studied in the fields of computer science and

mathematics. A recent solution to this problem using counterbalance blocks

has been awarded by David P. Robbins Prize in mathematics in 2011.

The goal in this problem is to maximize the distance a block from the

edge of the table [24, 50–52]. Figure 26 shows the initial and final state in

an overhang problem. Initially all the blocks are stacked on the table and in

the final state an overhang of 4 units is achieved.
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4 units 

Initial State Final State

C1 M1 

C2 

C3 

M2 

M3 

C4 

M2 

M1 

C4 

C1 

C2 

C3 M3 

Figure 26: Purple blocks are heavier and are used as counter weights, while
yellow blocks are the main blocks used to maximize the overhang. Overhang
of 4 units is achieved.

7.7 Bridges

Another challenge is construction problems is the construction of a stable

bridge. In this challenge the goal is to connect two sides o f a river in such

a way that a stable bridge is obtained. Here the biggest challenge is the

stability of the bridge at every step. Figure 27 shows bridge like problem.

Initially there are blocks on both sides of the river and in the final state a

stable bridge is constructed so that both sides are connected.

 

M1 

M4 S6 

S4 

S2 

M6 

M7 

M2 

M3 

M5 

M8 

S3 

S1 

M9 

S5 

9 units 

 

M1 

M4 S6 

S4 

S2 

M6 

M7 

M2 

M3 S5 

M5 

M8 

S3 

S1 

M9 

9 units 

Initial State Final State

Figure 27: Green blocks are heavier and are used as counter weights, while
yellow blocks are used to connect the sides of the river. The distance between
the sides of the bridges is 9 units.
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7.8 Asymmetric Bridges

Asymmetric bridges involves the same goal conditions as symmetric bridges

but there is a difference in height of both sides of the river. Figure 28 shows

a scenario in which the right side of the river is 4 units higher than the left

side. Initially all the blocks are on the left side of the river and in the final

state the a stable stair like structure is obtained.

Initial State Final StateFinal State

 

M1 S1 

S2 

S3 

M2 

M3 

S4 M4 

S5 

S6 

S7 

C4 

5 units 

4 units  

M5 

 

5 units 

4 units  

M1 

M2 S6 

S7 S5 M3 

S3 

S4 

M4 

M5 S1 

S2 

C4 

Figure 28: Green and purple blocks are heavier and are used as counter
weights, while yellow blocks are used to connect the sides of the river. The
distance between the sides of the bridges is 5 units and the height difference
is 4 units.
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7.9 Tower Stacking

Tower stacking benchmarks allow us to maximize or minimize the height of a

particular block in tower formation. Figure 29 shows a tower like formation

with 8 blocks where the goal was the maximize the height of S3. In Figure 30

the goal was to minimize the height of S3. In both cases it is a condition

that S3 should be part of the stack.

Figure 29: Maximizing the height of box s3 in a stack of 8 boxes

Figure 30: Minimizing the height of box s3 in a stack of 8 boxes
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Chapter 8

8 Cylinder Extensions

Rules introduced in Chapter 4 are sufficient for solving robot construction

problems involving rectilinear objects. Of course, in reality objects are not

perfectly rectangular in shape, but they may be assumed rectangular by

creating a bounding box around them. Alternatively, if we have complex

shaped object, it may be sub divided in to small rectangular objects and the

rules introduced in the previous chapters may be used to reason about the

the stability of the whole structure.

In this chapter, we will consider another extension to the construction

problems, that is, the introduction of cylindrical shaped objects or simply

cylinders in the problem. Cylinders introduce interesting challenges to the

problem due to the following assumptions:

Assumptions

� A cylinder must be supported by objects on its sides. The reason be-

hind this assumption lies on the fact that if a cylinder is not supported

by objects on its sides, it may roll over and in that case the location

of cylinder becomes uncertain. Refer to Figure 31 for both invalid and

valid configurations.

� The diameter of cylinder is equal to the length of the small block.

� Cylinder has point contact with an object. This assumption comes

from the geometrical aspect of cylinder.
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� A cylinder can be on top of another cylinder in three different states:

top left, top mid or top right. Refer to Figure 32 for all these configu-

rations.

� A cylinder can also be on a particular unit of a box or table.

� A unit space of a particular box can be on top of a cylinder provided

the cylinder is supported by objects on both sides (see Figure 36).

(a)

(b)

Figure 31: (a) Invalid state because cylinder is not supported by objects on
sides (b) Valid state because cylinder is supported by objects on sides

(a) (b) (c)

Figure 32: (a) cylinder 2 is on top left of cylinder 1 (b) cylinder 2 is on top
mid of cylinder 1 (c) cylinder 2 is on top right of cylinder 1
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Figure 33: Unit space 2 of box M1 is on cylinder 1

8.1 Modelling

The rules mentioned in the previous chapters are sufficient to solve robot

construction problems involving rectangular objects or boxes, but they are

not enough when cylinders are concerned due to the following reasons:

� We do not have a fluent to express that a cylinder is on a particular

unit of a location.

� We do not have a fluent to express if a cylinder is on top of another

cylinder.

� We do not have a fluent to express the left and right adjacency of a

cylinder or in other words, we cannot express whether a cylinder is

supported on sides by another object or not.

� Similarly, we need some new actions to cause the relative changes in

the world state expressed in the above reasons.

In order to model the rules required to solve scenarios related to cylinders,

consider a sample scenario in Figure 34

8.2 Fluents

We introduce some new fluents to express the world states including cylin-

ders:

on cyl(c,l,v,t): cylinder c is on v unit space of location l at time step t.

Here location l ∈ {Table, boxes}.
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Figure 34: Sample scenario containing boxes and cylinders

top(c,c’,s,t): cylinder c is on top of cylinder c′ in state s at time step t.

Here state s ∈ {Top Left, Top Mid, Top Right}.

box on cyl(b,v,c,t): v unit space of box b is on cylinder c at time step t.

Apart from that we also introduce two more fluents to describe the adja-

cency and global location of cylinders:

adj(c,c’,d,t): cylinder c is adjacent to cylinder c′ in direction d at time

step t. Here direction d ∈ {Right, Left}.

above cyl(h,c,x,t): cylinder c is at height h and global location x at time

step t.
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8.3 Actions

We also consider three new actions:

place cyl on(a,c,l,v,t): place cylinder c on v unit space of location l with

gripper a at time step t.

place cyl top(a,c,c’,s,t): place cylinder c on cylinder c′ in state s with

gripper a at time step t.

push(a,b,d,t): push box b in direction d with gripper a at time step t.

8.3.1 place cyl on action

Either a place cyl on action can occur or it may not occur. This is defined

by the occurrence of place cyl on action using disjunctive rules.

Occurrence of the place action is defined as:

place cyl on(a, c, l, v, t) ∨ ¬place cyl on(a, c, l, v, t)←

The direct effect of place cyl on action is that the cylinder becomes on an-

other location at next time step.

Direct effect of place cyl on action is defined as:

on cyl(c, b, v, t+ 1)← place cyl on(a, c, l, v, t), holding(a, c, t)

Preconditions of place cyl on action are described as following:

� A robot cannot place a cylinder on location l if its gripper is empty:

← place(a, l, t),#count{c : cylinder(c), holding(a, c, t)} = 0
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where place is obtained from place cyl on by projection:

place(a, l, t)← place cyl on(a, c, l, v, t)

� A robot cannot place a cylinder c with its gripper a if the target cylinder

is already being held:

← place(a, c, t), holding(a′, c, t)

� A robot cannot place a cylinder c on unit space v of box b with gripper

a if the box is not supported by table

← place cyl on(a, c, b, v, t), not supported(b, Table, t).

8.3.2 place cyl top action

Either a place cyl top action can occur or it may not occur. This is defined

by the occurrence of place cyl top action using disjunctive rules.

Occurrence of the place action is defined as:

place cyl top(a, c, c′, s, t) ∨ ¬place cyl top(a, c, c′, s, t)←

The direct effect of place cyl top action is that the cylinder becomes top on

another cylinder at next time step.

Direct effect of place cyl on action is defined as:

top(c, c′, s, t+ 1)← place cyl top(a, c, c′, s, t), holding(a, c, t)

Preconditions of place cyl top action are described as following:

� A robot cannot place a cylinder c on another cylinder c′ if its gripper

56



is empty:

← place cyl top aux (a, c, t),#count{c : cylinder(c), holding(a, c, t)} = 0

where place cyl top aux is obtained from place cyl top by projection:

place cyl top aux (a, c, t)← place cyl top(a, c, c′, s, t)

� A robot cannot place a cylinder c with its gripper a if the target cylinder

is already being held:

← place(a, c, t), holding(a′, c, t)

� A robot cannot place a cylinder c on top of cylinder c’ with gripper a

if the c′ is not supported by table

← place cyl top(a, c, c′, s, t), not supported(c′, Table, t).

8.3.3 push action

Either a push action can occur or it may not occur. This is defined by the

occurrence of push action using disjunctive rules.

Occurrence of the push action is defined as:

push(a, b, d, t) ∨ ¬push(a, b, d, t)←

The direct effect of push action is that the box moves one unit space in the

direction the action is performed.

Direct effect of push action is defined as:

57



on(b, l, u− 1, v, t+ 1)← push(a, b, Left, t), on(b, l, u, v, t)

on(b, l, u+ 1, v, t+ 1)← push(a, b, Right, t), on(b, l, u, v, t)

where 0 < u− 1 ≤ size(l), 0 < u+ 1 ≤ size(l)

Preconditions of push action are described as following:

� A robot cannot push a box if it is already holding something:

← push(a, , , t), holding(a, , t).

� A robot cannot push a box b with its gripper a if the target box is

already being held:

← push(a, b, , t), holding(a′, b, t)

� A robot cannot push a box b if the b is not supported by table

← push(a, b, , t), not supported(b, Table, t).
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8.4 Ramifications

As noted before, there are interesting ramifications when cylinders are con-

sidered in the problem. We need to define adjacency of cylinders and in order

to do that we need an above predicate similar to boxes defined before. The

above predicate will allow us to reason about adjacency in an easier way. For

cylinders, we call this predicate as above cyl and it is defined by the following

recursive rules:

above cyl(1, c, v, t)← on cyl(c,Table, v, t).

above cyl(h+ 1, c, x, t)← on cyl(c, b, v, t)

above(h, b, v, x, t).

above cyl(h+ 1, c, x, t)← top(c, c′, T opMid, t)

above cyl(h, c′, x, t).

First rule says that if a cylinder c is on v unit space of table, then it is

globally on v unit space and at height 1.

Second rule says that if a cylinder c is on v unit space of box b and v unit

space of box b is globally at x unit space and box b is at height h, then

cylinder c is globally at x unit space and height h+ 1.

Third rule says that if a cylinder c on top of c′ in TopMid state and cylinder

c′ is globally at x unit space and height h, then cylinder c will be at globally

x unit space and height h+ 1.

Using the rules just mentioned, we have proper definition of above cyl

for cylinders and this can be used to define the adjacency for cylinders. A

cylinder can be adjacent to another cylinder or it can be adjacent to a box.

For cylinders we use the following rules:

59



adj (c, c′, Left, t)← adj (c′, c, Right, t).

adj (c, c′, Right, t)← above cyl(h, c, x, t)

above cyl(h, c′, x+ 1, t).

adj (c, c′, Right, t)← top(c, c′′, T opLeft, t)

top(c′, c′′, T opRight, t).

First rule says that if a cylinder c′ is right adjacent to cylinder c, then cylin-

der c is leftadjacent to cylinder c′.

Second rule says that if a cylinder c is globally at x unit space, height h and

a cylinder c′ is globally at x+ 1 unit space, height h, then c is rightadjacent

to c′ .

Third rule says that if a cylinder c on top of c′′ in TopLeft state and a cylin-

der c′ on top of c′′ in TopRight state, then c is rightadjacent to c′.

Adjacency of a cylinder to box can be expressed by the following rules in

the similar way:

adj (c, b, Right, t)← above cyl(h, c, x, t)

above(h, b, 1, x+ 1, t).

adj (c, b, Left, t)← above cyl(h, c, x+ 1, t)

above(h, b, size(b), x, t).

There is also another important ramification which allows us to deal with

the stack of cylinders. Consider the arrangement of cylinders as shown in

Figure 35. Let us assume that cylinder 5 is placed on cylinder 2 in TopRight

state, we can use ramification rules to find out if it is on top of cylinder 3 or

not:

top(c, c′′, T opRight, t)← top(c, c′, T opLeft, t), adj (c′, c′′, Left, t)

top(c, c′′, T opLeft, t)← top(c, c′, T opRight, t), adj (c′, c′′, Right, t)

60



Figure 35: Cylinders arranged in a stack

Ramification rules also help us express the state when a unit space of v

of box b is on cylinder c. This state is expressed in Figure 36:

box on cyl(b, c, v, t)← above cyl(h, c, x, t), above(h+ 1, b, v, x, t)

Figure 36: Unit space 2 of box M1 is on cylinder 1
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Apart from the ramifications discussed above there are some other rami-

fications:

� If a cylinder c is placed on some location, then as a direct effect it is

on that location but as an indirect effect the gripper is empty:

¬holding(a, c, t)← on cyl(c, , , t)

� Similarly if a cylinder c is on unit space u of location l, then the gripper

is not holding cylinder c:

¬on cyl(c, l, u, t)← holding( , c, t)

� If a cylinder c is placed on top of another cylinder, then as a direct

effect it is on top of that cylinder, but as an indirect effect the gripper

is empty:

¬holding(a, c, t)← top(c, , , t)

� Similarly if a cylinder c is on top of cylinder c′ in state s, then the

gripper is not holding cylinder c:

¬top(c, c′, s, t)← holding( , c, t)
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8.5 State Constraints

Following are the necessary state constraints:

� A cylinder should be adjacent to two objects when it is on top of another

cylinder in topmid state:

← top(c, c′, T opMid, t),#count{o : object(o), adj aux (c, o, t)} < 2.

Here adj aux is defined as:

adj aux (c, o, t)← adj (c, o, Left, t).

adj aux (c, o, t)← adj (c, o, Right, t).

� A cylinder should be adjacent to two object when it is on another

location:

← on cyl(c, , , t),#count{o : object(o), adj aux (c, o, t)} < 2.

� In order to avoid states shown in figure 37, following rules are added:

← top(c, c′, T opLeft, t), adj (c′, b, Left, t).

← top(c, c′, T opRight, t), adj (c′, b, Right, t).

(a) (b)

Figure 37: Invalid state because cylinder cannot be on a box and another
cylinder
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There are some existence and uniqueness constraints associated with the

cylinders are stated below:

� There can be one cylinder at a particular unit of a location:

← #count{c : cylinder(c), on cyl(c, l, y, t)} > 1.

� A cylinder and a box cannot be at the same location:

← on(b, l, u, , t), on cyl(c, l, u, t).

� A cylinder cannot be on top of another cylinder in more than one states:

← #count{c : cylinder(c), top(c, c′, s, t)} > 1.

� A cylinder c cannot be on top of another cylinder c′′ if there is already

a cylinder c′ which is on top of c′′ in state TopMid:

← top(c, c′,, t), top(c′′, c′, T opMid, t).
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8.6 Concurrency Constraints

Following are the concurrency constraints necessary after the introduction of

three new actions:

place cyl on:

� The concurrency of two place cyl on actions with the same gripper is

not allowed with the following formula:

← #count{l : objloc(l), place(a, l, t)} > 1

� The concurrency of two place actions at the same location is not allowed

with the following formula:

← #count{a : arm(a), place(a, l, t)} > 1

In the above two rules are the same as that of original place action.

� A box b cannot be picked by a gripper a while another gripper a′

(a 6= a′) is placing a cylinder on it:

← pick(a, b, t), place(a′, b, t)

place cyl top:

� The concurrency of two place cyl top actions with the same gripper is

not allowed with the following formula:

← #count{c′ : cylinder(l), place cyl top aux (a, c′, t)} > 1

� The concurrency of two place actions at the same location is not allowed
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with the following formula:

← #count{c′ : arm(a), place cyl top aux (a, c′, t)} > 1

In the above two rules place cyl top aux is obtained by projection.

place cyl top aux (a, c′, t)← place cyl top(a, c, c′, s, t)

� A cylinder c cannot be picked by a gripper a while another gripper a′

(a 6= a′) is placing a cylinder on it:

← pick(a, c, t), place(a′, c, t)

push:

� The concurrency of two push actions with the same gripper is not

allowed with the following formula:

← #count{b′ : box (b), push(a, b, , t)} > 1

� The concurrency of two push actions for the same box is not allowed

with the following formula:

← #count{a : arm(a), push(a, b, , t)} > 1

� The concurrency of two push actions of same box in different directions

is not allowed with the following formula:

← #count{d : direction(d), push(a, b, d, t)} > 1

Apart from these individual concurrency constraints of actions, there are

some constraints within different actions
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� Cannot push a box b if place action is being performed on that box:

← push(a, b, , t), place(a′, b, t), a 6= a′.

� Cannot push a box b if that box is being picked:

← push(a, b, , t), pick(a′, b, t), a 6= a′.

� pick and push actions cannot be performed with the same gripper:

← pick(a, b, t), push(a, b′, , t).

� pick and place cyl top aux actions cannot be performed with the same

gripper:

← pick(a, , t), place cyl top aux (a, , t).

67



8.7 Supportedness Constraints

At any state of the world, no cylinder is supported by itself (i.e., no circular

configurations). For that, we recursively define supportedness by the table:

supported cyl(c, l, t)← on cyl aux (c, l, t)

supported cyl(c, l, t)← on cyl aux (c, l′, t),

supported(l′, l, t) (c 6=l′)

where on cyl aux is obtained from on cyl by projection:

on cyl aux (c, l, t)← on cyl(c, l, v, t)

Since, top fluent also describes cylinder so we need to define supportedness

using that fluent also:

supported cyl(c, c′, t)← top aux (c, c′, t)

supported cyl(c, c′′, t)← top aux (c, c′, t),

supported cyl(c′, c′′, t) (c 6=c′)

where top aux is obtained from top by projection:

top aux (c, c′, t)← top(c, c′, s, t)

After that, we add a constraint to ensure that no cylinder c is supported

by itself:

← supported(c, c, t).
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8.8 The Commonsense of Law of Inertia

We represent the commonsense law of inertia to address the frame problem,

by the following rules:

� For on cyl fluent:

on cyl(c, l, v, t+ 1)← on cyl(c, l, v, t), not ¬on cyl(c, l, v, t+ 1)

¬on cyl(c, l, v, t+ 1)← ¬on cyl(c, l, v, t), not on cyl(c, l, v, t+ 1)

� For top fluent:

top(c, c′, s, t+ 1)← top(c, c′, s, t), not ¬top(c, c′, s, t+ 1)

¬top(c, c′, s, t+ 1)← ¬top(c, c′, s, t), not top(c, c′, s, t+ 1)

� For box on cyl fluent:

box on cyl(b, v, c, t+ 1)← box on cyl(b, v, c, t), not ¬box on cyl(b, v, c, t+ 1)

¬box on cyl(b, v, c, t+ 1)← ¬box on cyl(b, v, c, t), not box on cyl(b, v, c, t+ 1)
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Chapter 9

9 Experimental Evaluations

We consider the robot construction planning problems introduced in the pre-

vious chapters, where the aim is for a robot to build specified structures out

of simple rectangular blocks of different sizes. These problems are challeng-

ing both from the perspective of high-level knowledge representation and

reasoning and from the perspective of low-level geometric reasoning. Let us

illustrate these challenges by some examples.

9.1 Experimental Setup

All experiments are conducted on a PC workstation running Ubuntu 14.04

on 16 2.4GHz Intel E5-2665 CPU cores with 64GB memory. For reason-

ing over ASP programs, we use dlvhex version 2.5. We use Python 2.7,

Pybullet 2.4.1 and RRT* from OMPL library for feasibility checks.
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9.2 Sub-assembly Manipulation

Scenario 1 (Figure 38) This construction problem involves incorporation

of the existing structures into the final design. Initial state of all the boxes

is specified by the following facts:

init(M1,Table, 1, 1).init(M1,Table, 2, 2).init(M1,Table, 3, 3).init(S4,M1, 1, 1).

init(S5,M1, 3, 1).init(S3,Table, 6, 1).init(L1, S3, 1, 3).init(S1, L1, 1, 1).

init(S2, L1, 5, 1).init(M2,Table, 9, 1).init(M2,Table, 10, 2).init(M2,Table, 11, 3).

init(S6,M2, 1, 1).init(S7,M2, 3, 1).

Goal conditions for a final configuration are specified by the set of following

facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).goal(M1, S1).

goal(M2, S2).goal(S4,M1).goal(S5,M1).goal(S6,M2).goal(S7,M2).

For such an instance, a plan for a bimanual robot, like Baxter, to achieve the

goal configuration from the initial state involves the following actions:

pick(Left ,M1, 0), pick(Right ,M2, 0).

placeOn(Left ,M1, S1, 1, 2, 1), placeOn(Right ,M2, S2, 1, 2, 1).

(a) (b)

Figure 38: (a) initial state and (b) goal state.
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Scenario 2 (Figure 39) This problem requires first the pre-assembly of a

movable stable substructures on the table. Initial state of all the boxes is

specified by the following facts:

init(L1,Table, 1, 1).init(L1,Table, 2, 2).init(L1,Table, 3, 3).init(L1,Table, 4, 4).

init(L1,Table, 5, 5).init(S1, L1, 3, 1).init(S2, S1, 1, 1).init(S3, S2, 1, 1).

Goal conditions for a final configuration are specified by the set of following

facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).

For such a problem instance, our planner generates the following plan:

pick(Left , S3, 0).

placeOn(Left , S3, Table, 6, 1, 1), pick(Right , S2, 1).

pick(Left , S1, 2), placeOn(Right , S2, L1, 1, 1, 2).

placeOn(Left , S1, L1, 5, 1, 3).

pick(Left , L1, 4).

placeOn(Left , L1, S3, 1, 3, 5).

Note that special attention needs to be paid as to where blocks are placed

on L1 to ensure stability.

(a) (b)

Figure 39: [18][Fig. 1.4]: (a) initial state and (b) goal state.
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9.3 Disassembly

Scenario 3 (Figure 40) This construction problem cannot be solved by

moving one block at a time as in the Blocks World, since the stability of the

overall structure needs to be preserved while executing the plan. It requires

first moving the block M1 and the blocks above it. Initial state of all the

boxes is specified by the following facts:

init(S1,Table, 1, 1).init(M1, S1, 1, 1).init(S2,M1, 1, 1).init(S3, S2, 1, 1).

Goal conditions for a final configuration are specified by the set of following

facts:

goal(M1,Table).goal(S1,Table).goal(S3, S1).goal(S2, S3).

Generated plan is as following:

pick(Left ,M1, 0).

placeOn(Left ,M1, Table, 2, 1, 1).

pick(Right , S3, 2).

placeOn(Right , S3, S1, 1, 1, 3), pick(Left , S2, 3).

placeOn(Left , S2, S3, 1, 1, 4).

(a) (b)

Figure 40: [18][Fig. 1.9]: (a) initial state and (b) goal state.
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9.4 CounterWeights

Scenario 4 (Figure 41) This construction problem requires some kind of

counter weight to balance out the whole structure. Initial configuration is

expressed by the following set of facts:

init(S4,Table, 1, 1).init(S2,Table, 2, 1).init(S3,Table, 5, 1).init(S5, S4, 1, 1).

init(S1, S2, 1, 1).init(L1, S3, 1, 3).

Goal conditions for a final configuration are specified by the set of following

facts:
goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S4, L1).goal(S1, L1).goal(S5, S4).

Generated plan is as following:

pick(Left , S4, 0).

placeOn(Left , S4, L1, 3, 1, 1), pick(Right , S1, 1).

pick(Left , S2, 2), placeOn(Right , S1, L1, 4, 1, 2).

placeOn(Left , S2, L1, 2, 1, 3).

It is interesting that the block S4 (and the block S5 above it) is moved onto

L1 as a counterweight, so that the blocks S2 and S1 can be moved onto L1

appropriately.

(a) (b)

Figure 41: A construction problem: (a) initial state and (b) goal state.
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Scenario 5 (Figure 42) For this problem, again counter weight needs to

be used to balance the whole structure. Initial configuration is expressed by

the following set of facts:

init(L1,Table, 1, 1).init(L1,Table, 2, 2).init(L1,Table, 3, 3).init(L1,Table, 4, 4).

init(L1,Table, 5, 5).init(S1,Table, 6, 1).init(M1,Table, 7, 1).init(M1,Table, 8, 2).

init(M1,Table, 9, 3).init(S2, S1, 1, 1).init(S3, S2, 1, 1).

Goal conditions for a final configuration are specified by the set of following

facts:
goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(M1,Table).

Generated plan is:

pick(Left , S3, 0).

placeOn(Left , S3, Table, 10, 1, 1), pick(Right , L1, 1).

pick(Left ,M1, 2), placeOn(Right , L1, S3, 1, 3, 2).

placeOn(Left ,M1, L1, 2, 1, 3), pick(Right , S2, 3).

pick(Left , S1, 4), placeOn(Right , S2, L1, 1, 1, 4).

pick(Right ,M1, 5), placeOn(Left , S1, L1, 5, 1, 5).

placeOn(Right ,M1, Table, 3, 1, 6).

(a) (b)

Figure 42: A construction problem: (a) initial state and (b) goal state.
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9.5 Scaffolds

Scenario 6 (Figure 43) This construction problem requires scaffolding be-

cause in this scenario we do not have a heavy box or multiple boxes that can

be used as a counter weight. In this scenario scaffolding technique is used to

support the structure. Initial configuration is expressed by the following set

of facts:

init(S1,Table, 1, 1).init(S2,Table, 2, 2).init(L1,Table, 3, 1).init(L1,Table, 4, 2).

init(L1,Table, 5, 3).init(L1,Table, 6, 4).init(L1,Table, 7, 5).init(S3, S1, 1, 1).

init(S4, S2, 1, 1).

Goal conditions for a final configuration are specified by the set of following

facts:
goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(S4,Table).

Generated plan is:

pick(Left , S3, 0).

placeOn(Left , S3, Table, 5, 1, 1), pick(Right , L1, 1).

pick(Left , S4, 2), placeOn(Right , L1, S3, 1, 3, 2).

placeOn(Left , S4, Table, 3, 1, 3), pick(Right , S1, 3).

pick(Left , S2, 4), placeOn(Right , S1, L1, 1, 1, 4).

pick(Right , S4, 5), placeOn(Left , S2, L1, 5, 1, 5).

placeOn(Right , S4, Table, 6, 1, 6).
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(a) (b)

Figure 43: A construction problem: (a) initial state and (b) goal state.

9.6 True Concurrency

(a)

(b)

Figure 44: (a) initial state and (b) goal state.

Scenario 7 (Figure 44) Consider the following problem, where M3 and M2

are swapped by two concurrent actions. This problem shows the importance

of true concurrency. Initial configuration is expressed by the following set of

facts:

init(M1,Table, 2, 1).init(M1,Table, 3, 2).init(M1,Table, 4, 3).init(L1,M1, 1, 2).

init(L1,M1, 2, 3).init(L1,M1, 3, 4).init(M3, L1, 2, 1).init(M3, L1, 3, 2).

init(M3, L1, 4, 3).init(M2,Table, 7, 1).init(M2,Table, 8, 2).init(M2,Table, 9, 3).
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Goal conditions for a final configuration are specified by the set of following

facts:
goal(M1,Table).goal(L1,M1).

goal(M2, L1).goal(S3,Table).

Generated plan is:

pick(Left ,M2, 0), pick(Right ,M3, 0),

placeOn(Left ,M2, L1, 2, 1, 1), placeOn(Right ,M3, Table, 7, 1, 1).

When the box M2 is placed on L1, as a direct effect the first unit space of

M2 is on the second unit space of L1; as its indirect effects, the second unit

space of M2 is on the third unit space of L1, and the third unit space of M2

is on the fourth unit space of L1.

9.7 IndirectOn

(a)

(b)
Figure 45: (a) initial state and (b) goal state.

Scenario 8 (Figure 45) This construction problem shows the importance

of ramifications in our framework. Here when L2 is placed on S2 at the final
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step. As an indirect effect of this action, L2 becomes on top of the block S7

as well. Initial configuration is expressed by the following set of facts:

init(S3,Table, 3, 1).init(S1,Table, 6, 1).init(S2,Table, 7, 1).init(S4,Table, 8, 1).

init(S5,Table, 9, 1).init(L2,Table, 10, 1).init(L2,Table, 11, 2).init(L2,Table, 12, 3).

init(L2,Table, 13, 4).init(L2,Table, 14, 5).init(L1, S3, 1, 3).init(S6, S5, 1, 1).init(S7, S6, 1, 1).

Goal conditions for a final configuration are specified by the set of following

facts:
goal(S3,Table).goal(L1, S3).goal(S1, L1).

goal(S2, L1).goal(S4, S1).goal(S5,Table).

goal(S6, S5).goal(S7, S6).goal(L2, S2).goal(L2, S7).

Generated plan is:

pick(Left , S1, 0), pick(Right , S2, 0),

placeOn(Left , S1, L1, 1, 1, 1), placeOn(Right , S2, L1, 5, 1, 1),

pick(Left , S4, 2), pick(Right , L2, 2),

placeOn(Left , S4, S1, 1, 1, 3), placeOn(Right , L2, S2, 1, 1, 3),

9.8 Stability

Scenario 9 (Figure 46) Consider a construction problem instance with four

boxes on the table: two small boxes S1 and S2, a medium box M1, and a

large box L1. All the boxes are initially on the table. Goal conditions for a

final configuration are specified by a set of facts:

goal(S1, L1).goal(S2, L1).goal(M1, S1).goal(M1, S2).goal(L1,Table).

According to this description, S1 and S2 are on L1, M1 is on S1 and S2,

L1 is on the table.

These goal conditions are ensured at a specified maximum step M by
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constraints as follows:

← goal(b, l), not onAux (b, l,M + 1).

Note that since onAux atoms are projections of on, the final positions of

objects are selected nondeterministically.

(a) (b)

Figure 46: (a) A final stable configuration for Scenario 9. (b) An intermediate
configuration of boxes, obtained by a plan without feasibility checks.

A possible final stable configuration is shown in Figure 46(a). Such a

configuration is achievable by the following hybrid plan of length 4 (with 6

actions), computed by dlvhex:

pick(Left , S2, 0), pick(Right , S1, 0),

placeOn(Right , S1, L1, 2, 1, 1),

placeOn(Left , S2, L1, 4, 1, 2), pick(Right ,M1, 2),

placeOn(Right ,M1, S2, 1, 3, 3).

According to this plan, first the smaller boxes are picked and placed on the

long box; afterwards, the medium box is picked and placed on top of the two

small boxes.

Now let us consider the domain description without any feasibility checks.

Then dlvhex computes the following nonhybrid task plan of length 4 (with
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6 actions):

pick(Right ,M1, 0), pick(Left , S2, 0),

placeOn(Left , S2, L1, 4, 1, 1),

placeOn(Right ,M1, S2, 1, 3, 2), pick(Left , S1, 2),

placeOn(left , S1, L1, 2, 1, 3).

This nonhybrid plan is computed in 60.5 seconds. According to this plan,

first the medium box M2 and the small box S2 are picked, then the small

box is placed on the longer box L1, then the medium box M2 is placed

on S2. At this point, an unstable configuration is obtained, as shown in

Figure 46(b). Therefore, integration of feasibility checks generate achievable

plans, although such plans take longer to compute.

Scenario 10 (Figure 47) Consider a robot construction problem instance

with six boxes on the table, S1, S2, S3, M1, M2, and L1, with the following

goal conditions:

goal(M2, S1).goal(S2,M1).

goal(L1, S2).goal(L1,M2).

goal(S1,Table).goal(S3,Table).goal(M1,Table).

A possible final stable configuration is shown in Figure 47. Such a configu-

ration is achievable by the following hybrid plan of length 4 (with 6 actions),

computed by dlvhex:

pick(Left ,M2, 0), pick(Right , S2, 0),

placeOn(Left ,M2, S3, 1, 3, 1), placeOn(Right , S2,M1, 1, 2, 1),

pick(Right , L1, 2),

placeOn(Right , L1, S2, 1, 5, 3).
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(a)

(b)

Figure 47: (a) A final stable configuration for Scenario 10. (b) An interme-
diate configuration of boxes, obtained by a plan without feasibility checks.

Without feasibility checks, a nonfeasible plan of length 4 (with 6 actions) is

computed as follows:

pick(Right ,M2, 0)

pick(Left , L1, 1), placeOn(Right ,M2, S1, 1, 3, 1),

pick(Right , S2, 2), placeOn(Left , L1,M1, 3, 1, 2),

placeOn(Right , S2,M2, 1, 1, 3).

This nonhybrid task plan leads to an unstable intermediate configuration,

where the medium box M2 is placed on the small box S1 at one end, leaving

the center of mass outside the small box.

Scenario 11 (Figure 48) Consider a problem instance with six boxes on the

table: S1, S2, S3, M1, M2, and L1. Goal conditions for a final configuration

are specified as follows:

goal(S1,M1).goal(S3, S2).goal(L1, S3).

goal(S2,Table).goal(M1,Table).
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A possible final stable configuration is shown in Figure 48. Such a configu-

ration is achievable by the following hybrid plan of length 4 (with 6 actions),

as computed by dlvhex in 4905.2 seconds:

pick(Left , S1, 0), pick(Right , S3, 0),

placeOn(Left , S1,M1, 3, 1, 1), placeOn(Right , S3, S2, 1, 1, 1),

pick(Right , L1, 2),

placeOn(Right , L1, S1, 1, 2, 3).

Without feasibility checks, a plan of length 4 (with 6 actions) can be

computed in 1064.7 seconds. However, this nonhybrid task plan leads to an

unstable configuration (where the long box is placed on a small box in an

unstable way).

pick(Left , S1, 0), pick(Right , S3, 0),

placeOn(Left , S1,M1, 3, 1, 1), placeOn(Right , S3, S2, 1, 1, 1),

pick(Right , L1, 2),

placeOn(Right , L1, S3, 1, 2, 3).
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(a)

(b)

Figure 48: (a) A final stable configuration for Scenario 10. (b) The final
configuration of boxes, obtained by a plan without feasibility checks.
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9.9 Overhang Scenarios

In these sample scenarios, the yellow blocks are used for construction pur-

poses, while the green and purple blocks are used as counterweights. The

yellow and purple blocks occupy 3 unit spaces and green blocks occupy 1

unit space. The purple and green blocks are denoted by alphabet ‘C’ and ‘S’

respectively. The purple blocks are 10 times heavier than the yellow blocks,

while the green blocks are are 3 times heavier than the yellow blocks. In all

the overhang scenarios, goal conditions are defined according to the rules in

5.

Scenario 12 Consider a construction problem involving 8 blocks with 5 of

them as counter weights in Figure 49. The goal here is to achieve a maximum

overhang of 3 units. This requires careful balancing of weights to stabilize

the structure. Initial configuration of blocks is given as:

init(S1,Table, 1, 1).init(S2, S1, 1, 1).init(S3,Table, 2, 1).init(S4, S3, 1, 1).

init(S5, S4, 1, 1).init(M1,Table, 3, 1).init(M1,Table, 4, 2).init(M1,Table, 5, 3).

init(M2,M1, 1, 1).init(M2,M1, 2, 2).init(M2,M1, 3, 3).init(M3,M2, 2, 1).init(M3,M2, 3, 2).

The plan is as follows:

0 : pick(Left, S3), pick(Right, S1).

1 : place(Left, S3,M2, 1, 1), place(Right, S1,M3, 1, 1).

2 : pick(Left,M2).

3 : place(Left,M2,M1, 2, 1), pick(Right,M3).

4 : place(Right,M3,M2, 3, 1).
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Figure 49: Stable construction of a 3 unit overhang

Scenario 13 This construction problem involves 7 blocks with 4 of them

as counter weights Figure 50. In this scenario the counter weights are heavier

and occupy more space. Here the goal is to achieve a maximum overhang of

4 units. Initial configuration of blocks is given as:

init(C1,Table, 1, 1).init(C1,Table, 2, 2).init(C1,Table, 3, 3).init(C2, C1, 1, 2).

init(C2, C1, 2, 3).init(C3, C2, 1, 1).init(C3, C2, 2, 2).init(C3, C2, 3, 3).

init(M1,Table, 4, 1).init(M1,Table, 5, 2).init(M2,M1, 1, 1).init(M2,M1, 2, 2).

init(M2,M1, 3, 3).init(M3,M2, 1, 1).init(M3,M2, 2, 2).init(M3,M2, 3, 3).

init(C4,M3, 1, 2).init(C4,M3, 2, 3).
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The plan is as follows:

0 : pick(Left, C3), pick(Right,M3).

1 : place(Left, C3,M2, 1, 2), place(Right,M3, C2, 1, 1).

2 : pick(Left,M2), pick(Right, C4).

3 : place(Left,M2,M1, 2, 1).

4 : pick(Left,M3), place(Right, C4, C2, 1, 1).

5 : pick(Right, C1).

6 : place(Left,M3,M2, 3, 1), place(Right, C1, C3, 2, 1).

4 units 

Initial State Final State

C1 M1 

C2 

C3 

M2 

M3 

C4 

M2 

M1 

C4 

C1 

C2 

C3 M3 

Figure 50: Stable construction of a 4 unit overhang
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Scenario 14 In this construction problem, maximum overhang of 5 unit is

achieved Figure 51. Initial configuration of blocks is as following:

init(C1,Table, 1, 1).init(C1,Table, 2, 2).init(C1,Table, 3, 3).init(C2, C1, 1, 2).

init(C2, C1, 2, 3).init(C3, C2, 1, 1).init(C3, C2, 2, 2).init(C3, C2, 3, 3).

init(C4, C3, 1, 1).init(C4, C3, 2, 2).init(C4, C3, 3, 3).init(C5, C4, 1, 1).

init(C5, C4, 2, 2).init(C5, C4, 3, 3).init(M1,Table, 4, 1).init(M1,Table, 5, 2).

init(M2,M1, 1, 1).init(M2,M1, 2, 2).init(M2,M1, 3, 3).init(M3,M2, 1, 2).

init(M3,M2, 2, 3).init(M4,M3, 2, 1).init(M4,M3, 3, 2).init(C6,M4, 1, 2).

init(C6,M4, 2, 3).

The plan is as follows:

0 : pick(Left,M2).

1 : place(Left,M2,M1, 2, 1), pick(Right, C5).

2 : pick(Left,M3), place(Right, C5,M2, 1, 2).

3 : pick(Right, C1), place(Left,M3, Table, 1, 3).

4 : pick(Left, C6), place(Right, C1, C5, 2, 1).

5 : place(Left, C6, C4, 1, 2).pick(Right,M3).

6 : place(Right,M3,M2, 3, 1).

88



Figure 51: Stable construction of a 5 unit overhang

9.10 Bridge Scenarios

In bridge construction scenarios the goal is to join both sides of the river

by a stable construction of blocks. These scenarios requires connectedness

and also the stability. Connectedness is achieved by rules expressed in 5.

For stability we rely on stability check. The goal in all these scenarios are

expressed by the rules in 5.

Scenario 15 This bridge construction problem involves a distance of 9

units between the two sides. There total 15 blocks with 6 of them being
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counter weights. Initial configuration is expressed by following set of facts:

init(M1,Table, 1, 1).init(M1,Table, 2, 2).init(S6,M1, 1, 1).init(M4,M1, 2, 1).

init(M4,M1, 3, 2).init(S4, S6, 1, 1).init(M6,M4, 1, 1).init(M6,M4, 2, 2).

init(M6,M4, 3, 3).init(S2, S4, 1, 1).init(M7,M6, 1, 1).init(M7,M6, 2, 2).

init(M7,M6, 3, 3).init(M2,Table, 10, 2).init(M2,Table, 11, 3).init(M3,M2, 1, 2).

init(M3,M2, 2, 3).init(S5,M2, 3, 1).init(M5,M3, 1, 1).init(M5,M3, 2, 2).

init(M5,M3, 3, 3).init(S3, S5, 1, 1).init(M8,M5, 1, 1).init(M8,M5, 2, 2).

init(M8,M5, 3, 3).init(S1, S3, 1, 1).init(M9,M8, 1, 2).init(M9,M8, 2, 3).

The plan for the example in Figure 52 is as follows:

 

M1 

M4 S6 

S4 

S2 

M6 

M7 

M2 

M3 

M5 

M8 

S3 

S1 

M9 

S5 

9 units 

 

M1 

M4 S6 

S4 

S2 

M6 

M7 

M2 

M3 S5 

M5 

M8 

S3 

S1 

M9 

9 units 

Initial State Final State

Figure 52: Stable construction of a 9 unit bridge.

0 : pick(Left,M6), pick(Right, S4).

1 : place(Left,M6,M4, 2, 1).place(Right, S4,M4, 1, 1).

2 : pick(Left,M5), pick(Right, S3).

3 : place(Left,M5,M3, 2, 3).place(Right, S3,M3, 3, 1).

4 : pick(Left,M7), pick(Right, S2).

5 : place(Left,M7,M6, 2, 1).place(Right, S2,M6, 1, 1).

6 : pick(Left,M8), pick(Right, S1).

7 : place(Left,M8,M5, 2, 3).place(Right, S1,M5, 3, 1).

8 : pick(Left,M9).

9 : place(Left,M9,M7, 3, 1).
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Scenario 16 This bridge construction problem has 7 units distance be-

tween the sides Figure 53. There are 13 blocks with 6 of them being counter

weights. Here the counter weights are heavier and occupy more space. Initial

configuration is given by the following set of facts:

init(M1,Table, 1, 1).init(M1,Table, 2, 2).init(M1,Table, 3, 3).init(M2,M1, 1, 1).

init(M2,M1, 2, 2).init(M2,M1, 3, 3).init(M3,M2, 1, 1).init(M3,M2, 2, 2).

init(M3,M2, 3, 3).init(M4,Table, 11, 1).init(M4,Table, 12, 2).init(M4,Table, 13, 3).

init(M5,M4, 1, 1).init(M5,M4, 2, 2).init(M5,M4, 3, 3).init(M6,M5, 1, 1).

init(M6,M5, 2, 2).init(M6,M5, 3, 3).init(M7,M6, 1, 2).init(M7,M6, 2, 3).

init(C6,Table, 15, 1).init(C6,Table, 16, 2).init(C6,Table, 17, 3).init(C5, C6, 1, 2).

init(C5, C6, 2, 3).init(C4, C5, 2, 1).init(C4, C5, 3, 2).init(C3, C4, 1, 2).

init(C3, C4, 2, 3).init(C2, C3, 2, 1).init(C2, C3, 3, 2).init(C1, C2, 1, 2).

init(C1, C2, 2, 3).

The plan is as follows:

0 : pick(Left,M2), pick(Right,M5).

1 : place(Left,M2,M1, 2, 1), place(Right,M5,M4, 1, 2)

2 : pick(Left,M3), pick(Right, C3).

3 : place(Left,M3,M2, 3, 1), place(Right, C3,M2, 1, 2).

4 : pick(Left,M6), pick(Right, C6).

5 : place(Left,M6,M5, 1, 3), place(Right, C6,M5, 3, 2).

6 : pick(Left,M7).

7 : place(Left,M7,M6, 1, 3).

Figure 53: Stable construction of a 7 unit bridge.
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9.11 Asymmetric Bridge Scenarios

These asymmetric bridge scenarios are similar to the bridge scenarios in terms

of goal conditions. The only difference in these scenarios is that both sides

are at different heights. The height difference between the sides is expressed

by the rules in 5.

Scenario 17 This bridge construction scenario has 9 blocks with 4 being

the counter weights Figure 54. Here right side is 2 units higher than left side

and 4 units apart. Initial configuration is given by the following set of facts:

init(S1,Table, 1, 1).init(M1,Table, 2, 1).init(M1,Table, 3, 2).init(S2, S1, 1, 1).

init(M2,M1, 1, 1).init(M2,M1, 2, 2).init(M2,M1, 3, 3).init(S3, S2, 1, 1).

init(M3,M2, 1, 1).init(M3,M2, 2, 2).init(M3,M2, 3, 3).init(S4, S3, 1, 1).

init(M4,Table, 8, 2).init(M4,Table, 9, 3).init(M5,M4, 1, 1).init(M5,M4, 2, 2).

init(M5,M4, 3, 3).

The plan for the example in Figure 54 is as follows:

0 : pick(Left, S1), pick(Right,M2).

1 : place(Left, S1,M1, 1, 1).place(Right,M2,M1, 2, 1).

2 : pick(Left, S2), pick(Right,M3).

3 : place(Left, S2,M2, 1, 1).place(Right,M3,M2, 2, 1).

4 : pick(Left, S3), pick(Right,M5).

5 : place(Left, S3,M3, 1, 1).place(Right,M5,M3, 3, 1).

Scenario 18 This bridge construction scenario has 9 blocks with 4 being

the counter weights Figure 55. Here right side is 4 units higher than left side
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Initial State Final State
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Figure 54: Stable construction of a 4 unit unleveled bridge.

and 5 units apart. Initial configuration is given by the following set of facts:

init(C4,Table, 1, 1).init(C4,Table, 2, 2).init(C4,Table, 3, 3).init(S1,Table, 4, 1).

init(S2, S1, 1, 1).init(S3, S2, 1, 1).init(S4, S3, 1, 1).init(S5, S4, 1, 1).

init(S6, S5, 1, 1).init(S7, S6, 1, 1).init(M1,Table, 5, 1).init(M1,Table, 6, 2).

init(M1,Table, 7, 3).init(M2,M1, 1, 1).init(M2,M1, 2, 2).init(M2,M1, 3, 3).

init(M3,M2, 1, 1).init(M3,M2, 2, 2).init(M3,M2, 3, 3).init(M4,M3, 1, 1).

init(M4,M3, 2, 2).init(M4,M3, 3, 3).init(M5,M4, 1, 1).init(M5,M4, 2, 2).

init(M5,M4, 3, 3).

The plan is as follows:

0 : pick(Left, S6), pick(Right,M2).

1 : place(Left, S6,M1, 1, 1), place(Right,M2,M1, 2, 1).

2 : pick(Left, S5), pick(Right,M3).

3 : place(Left, S5,M2, 1, 1), place(Right,M3,M2, 2, 1).

4 : pick(Left, C4), pick(Right, S3).

5 : place(Left, C4, S7, 1, 2).

6 : pick(Left,M4), place(Right, S3,M3, 1, 1).

7 : pick(Right, S1), place(Left,M4,M3, 2, 1).

8 : pick(Left,M5), place(Right, S1,M4, 1, 1).

9 : place(Left,M5,M4, 3, 1).
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Figure 55: Stable construction of a 5 unit unleveled bridge.

9.12 Tower Stacking Benchmarks

In tower staking benchmarks the goal is to maximize or minimize the height

of a particular box in a stack of given number of boxes. Initially all the boxes

are on the table. Goal conditions are again given according to the rules in

5.

Scenario 19 This construction problem asks to maximize the height of box

S3 in the stack. There are total 5 boxes in the stack. The plan for Figure 56

is as follows:
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0 : pick(Left, S1), pick(Right,M2).

1 : place(Left, S1,M1, 2, 1).

2 : pick(Left, S2), place(Right,M2, S1, 1, 2).

3 : place(Left, S2,M2, 2, 1), pick(Right, S3).

4 : place(Right, S3, S2, 1, 1).

Figure 56: Maximizing the height of box s3 in a stack of 5 boxes

Scenario 20 This construction problem asks to maximize the height of box

S3 in the stack. There are total 8 boxes in the stack. The plan for Figure 57

is as follows:

Figure 57: Maximizing the height of box s3 in a stack of 8 boxes
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0 : pick(Left, S1), pick(Right,M2).

1 : place(Left, S1,M1, 2, 1).

2 : pick(Left, S2), place(Right,M2, S1, 1, 2).

3 : place(Left, S2,M2, 2, 1), pick(Right, S4).

4 : place(Right, S4, S2, 1, 1), pick(Left, S5).

5 : place(Left, S5, S4, 1, 1), pick(Right,M3).

6 : place(Right,M3, S5, 1, 2), pick(Left, S3).

7 : place(Left, S3,M3, 2, 1).

Scenario 21 This construction problem asks to minimize the height of

box S3 in the stack. There are total 5 boxes in the stack. Please note S3

needs to be part of the stack that’s why it cannot be placed directly on the

ground/table. The plan for Figure 58 with two manipulators is as follows:

Figure 58: Minimizing the height of box s3 in a stack of 5 boxes

0 : pick(Left, S1), pick(Right, S3).

1 : place(Left, S1,M1, 2, 1), place(Right, S3,M1, 3, 1).

2 : pick(Left, S2), place(Right,M2).

3 : place(Left, S2,M1, 1, 1), place(Right,M2, S1, 1, 2).

The plan for Figure 58 with three manipulators is as follows:

0 : pick(A1, S1), pick(A2, S3), pick(A3, S2).

1 : place(A1, S1,M1, 2, 1), place(A2, S3,M1, 3, 1),

place(A3, S2,M1, 1, 1).

2 : pick(A2,M2).

3 : place(A2,M2, S3, 1, 3).
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Scenario 22 This construction problem asks to minimize the height of

box S3 in the stack. There are total 8 boxes in the stack. Please note S3

needs to be part of the stack that’s why it cannot be placed directly on the

ground/table. The plan for Figure 59 with two manipulators is as follows:

Figure 59: Minimizing the height of box s3 in a stack of 8 boxes

0 : pick(Left, S1), pick(Right, S2).

1 : place(Left, S1,M1, 2, 1), place(Right, S2,M1, 1, 1).

2 : pick(Left, S3), pick(Right,M2).

3 : place(Left, S3,M2, 3, 1), place(Right,M2, S1, 1, 1).

4 : pick(Left, S5), pick(Right, S4).

5 : place(Left, S5,M2, 1, 1), place(Right, S4,M2, 2, 1).

6 : pick(Left,M3).

7 : place(Left,M3, S5, 1, 2).

The plan for Figure 59 with three manipulators is as follows:

0 : pick(A1, S1), pick(A2, S2), pick(A3, S3).

1 : place(A1, S1,M1, 2, 1), place(A2, S2,M1, 1, 1),

place(A3, S3,M1, 3, 1).

2 : pick(A1, S5), pick(A2, S4), pick(A3,M2).

3 : place(A3,M2, S3, 1, 2).

4 : place(A1, S5,M2, 1, 1), place(A2, S4,M2, 2, 1), pick(A3,M3).

5 : place(A3,M3, S4, 1, 3).
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9.13 Cylinder Scenarios

In cylinder scenarios, additional goal conditions with respect to the cylinders

need to be specified.

Scenario 23 The initial configuration in Figure 60 can be given by the

following set of facts:

init(S1,Table, 1, 1).init(S2,Table, 5, 1).

init cyl(1,Table, 2).init cyl(2,Table, 3).init cyl(3,Table, 4).

init top(4, 2, T opleft).init top(5, 2, T opRight).init top(6, 5, T opLeft).

Here on predicate is initialized by init, on cyl state is initialized by init cyl

and top state is initialized by init top. Goal conditions for the above states

are denoted by goal, goal cyl and goal top respectively. For this particular

scenario it is defined as:

goal(S1,Table).goal(S2,Table).

goal cyl(1,Table).goal cyl(2,Table).goal cyl(3,Table).

goal cyl(4,Table).goal cyl(5,Table).goal cyl(6,Table).

The plan for Figure 60 is as follows:

(a) (b)

Figure 60: (a) Initial State (b) Goal State
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0 : pick(Left, 6).

1 : place cyl on(Left, 6, Table, 5), push(Right, S2, Right).

2 : pick(Left, 5).

3 : place cyl on(Left, 5, Table, 6), push(Right, S2, Right).

4 : pick(Left, 4).

5 : place cyl on(Left, 4, Table, 7), push(Right, S2, Right).

Scenario 24 The construction problem in Figure 61 is the opposite of

Figure 60. The initial configuration can be given by the following set of

facts:

init(S1,Table, 1, 1).init(S2,Table, 8, 1).

init cyl(1,Table, 2).init cyl(2,Table, 3).init cyl(3,Table, 4).

init cyl(6,Table, 5).init cyl(5,Table, 6).init cyl(4,Table, 7).

Goal conditions are defined by the following set of facts:

goal(S1,Table).goal(S2,Table).

goal cyl(1,Table).goal cyl(2,Table).goal cyl(3,Table).

goal top(4, 2).goal top(4, 1).goal top(5, 2).

goal top(5, 3).goal top(6, 4).goal top(6, 5).

(a) (b)

Figure 61: (a) Initial State (b) Goal State
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The plan is as follows:

0 : pick(Left, 4), push(Right, S2, Left).

1 : place cyl top(Left, 4, 1, T opRight).

2 : pick(Left, 5), push(Right, S2, Left).

3 : place cyl top(Left, 5, 2, T opRight).

4 : pick(Left, 6), push(Right, S2, Left).

5 : place cyl top(Left, 6, 5, T opLeft).

9.14 Discussion

In this is subsection we discuss the results corresponding to the various in-

stances discussed in the previous subsections.

Table 1 shows the results for scenarios 1-11. It lists the number of blocks,

number of ASP rules, plan length and the timing information for the scenar-

ios. By carefully observing the results, it is quite obvious that as the number

of ASP rules increase, solving time also increases. Another observation is

related to the type of boxes considered. Scenarios with medium and large

boxes generally take more time as seen in scernario 8.

Table 1: Experimental evaluation of Scenario 1-11

Sc. No
No. of Blocks
T(S+M+L)

No. of
Rules

Plan
Length

Time
(sec)

Grounding Stability Check Solving Total
1 10(7+2+1) 308735 2 3.875 3.254 20.128 27.257
2 4(3+0+1) 72728 6 0.259 12.08 0.907 13.246
3 4(3+1+0) 164817 5 1.427 19.806 7.841 29.074
4 6(5+0+1) 94375 4 0.905 8.557 3.968 13.430
5 5(3+1+1) 181241 7 1.606 20.022 11.041 32.669
6 5(4+0+1) 288686 7 2.719 14.184 34.105 51.008
7 4(0+3+1) 142163 2 1.043 2.573 2.725 6.341
8 9(7+0+2) 816740 4 7.378 48.735 1822.07 1878.183
9 4(2+1+1) 136035 4 1.259 12.197 4.866 18.322
10 6(3+2+1) 55316 4 4.818 15.819 400.736 421.373
11 5(3+1+1) 204566 4 1.774 39.028 125.759 166.561
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Table 2 shows the results for overhang scenarios. Results for overhang of

3,4 and 5 has been shown. Number of blocks used, memory consumption and

the total time increases as the maximum overhang increases. Table 3 and

Table 4 shows the results for symmetric and asymmetric bridge construction

scenarios respectively. Here again the time required to compute the plan

increases as the gap between bridges or the height difference between the

sides increases.
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Chapter 10

10 Execution

After the plan for a particular program has been computed using ASP and

continuous domain motion trajectories for robot grippers are computed using

OMPL library actual execution can be performed. We use a bimanual Baxter

robot for the execution purposes. In this chapter, we will discuss aspects

of executing the computed plans. Video link to the physical and dynamic

simulation is as follows: http://cogrobo.sabanciuniv.edu/?p=1111

10.1 Robot

We are using a bimanual Baxter for execution of the computed planes. Baxter

is a humanoid with two seven degrees of freedom arms. It also has force,

position and torque sensors. Camera support is also available for vision

purposes. Baxter has control at every joint of arm. This robot can only be

used for manipulation purposes.

10.2 Blocks

We are using three kinds of blocks: small, medium and large; for testing

purposes. The size of smallest block is 30 ∗ 30 ∗ 30, the size of medium block

is 90 ∗ 30 ∗ 30 and the size of the largest block is 150 ∗ 30 ∗ 30. All the blocks

are aluminum made are spray painted with different colors for identification.
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10.3 Dynamic Simulation

For dynamic simulation, we are using Gazebo version 7. The positions of

all the boxes are known initially. After computing the plan, OMPL library

is used to generate motion plan for every action in the plan and Moveit

commander is used to actually follow that motion plan. Dynamic simulation

of scenario 5 (see Figure 42). Initially all the boxes are on table and the

Figure 62: Snapshots present dynamic simulation of Scenario 5(benchmark:
counterweight) with two grippers of a Baxter robot

robot picks up a small box (snapshot 1). The robot places the small box on

table and picks the large box (snapshot 2). Robot places the large box on

the small box and picks the medium box (snapshot 3). The robot places the

medium box on the large box (snapshot 4). The robot places the a small box

on the large box and picks up another small box (snapshot 5). The robot

places the small box on the large box (snapshot 6). The robot picks up the
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medium box (snapshot 7) and places it on the table (snapshot 8). In this

scenario, medium box is used as a counter weight to prevent the structure

from falling.

10.4 Physical Simulation

For physical simulation we use an actual baxter robot. We have also imple-

mented execution monitoring algorithm to make sure that if failures occur

during execution, the robot can recover from them. The details are men-

tioned in the next sub section.

10.5 Execution Monitoring

After plan for a particular program has been computed using ASP and con-

tinuous domain motion trajectories for robot grippers are computed using

OMPL library, execution can be performed. We use a bimanual Baxter robot

for the execution purposes. During execution there may be unexpected in-

terventions, such as a human picking up a box and placing it somewhere else.

To handle these interventions we have implemented an execution monitoring

algorithm as in [27]. For the sake of simplicity we only consider only human

intervention as the source of mismatch between actual state and planner his-

tory. It is also assumed that the robot is always successful in performing an

action.

10.5.1 State Recognition

We use RGB camera of a Microsoft Kinect sensor to obtain visual informa-

tion. Small boxes are yellow colored, medium boxes are blue colored and

large boxes are red colored. Instead of monitoring at all times, we check

for discrepancies after every time step. An important aspect of execution

monitoring is to recognize the current state. In order to do so, we capture

the current state using RGB camera and preprocess to convert it into on and
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holding states. First the boxes are recognized in the image using color infor-

mation. After this, the sizes of boxes are determined using pixel lengths. In

order to determine if a box is on top of another box, we find out the contact

area of all boxes. These contact areas are stored in pixel ranges along x and

y directions. In order to check if a box is on top of another box, we see if

the contact area of two boxes matches in the y direction, i.e. they share the

same range of pixel values. Next in order to specify the exact location, we

discretize the whole world by forming grid with smallest cell equal to the size

of the smallest box. A large box is five times the size of small box and a

medium box is three times the size of smallest box. Based on this difference

we can easily find the exact units occupied by a box on top of another box.

For holding, we simply check if the grippers have a box or subassembly in

hand or not. Here we use color information again to differentiate among the

boxes.

10.5.2 Discrepancy Check

After getting the current state information, the next step is to check if the

current state information matches with the planner history. If it matches,

the robot continues the execution of plan, but if it does not match then robot

stops the execution because there exists some discrepancy between planner

history and current state information. The algorithm sends the current state

as an instance to the planner and computes a new plan from the current

state and starts the execution again. Note that we only perform re-planning

when a discrepancy occurs.

10.5.3 Alternative Approach

In the above mentioned approach we check for discrepancy at the beginning

of each time step, this can be quite time consuming especially in cases when

plan makespan is long and the human interferes with the state during the

execution. In order to speed up the process, we have implemented an alter-
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native approach in which the camera monitors for human intervention at all

times. When a human arrives, the robot stops the execution immediately af-

ter saving the current trajectories and states. The robot waits for the human

to leave the area and then checks for discrepancy. If there is no discrepancy,

then the robot starts the executing the plan from the same saved state, but

if there is some discrepancy the robot goes to home location which is some

known location. New state information is gathered using the camera. Note

if the robot is holding some boxes, they would be accommodated in holding

state information and the rest of the boxes are accommodated in on predi-

cate. This information is passed to planner for re-planning from these states.

This approach saves time by checking for discrepancy only after intervention.

Snapshots of physical simulations of scenario 2 (benchmark: subassembly)

and scenario 9 (benchmark: stability) are shown in Figure 63:
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(a) (b)

Figure 63: (a) Scenario 2 (b) Scenario 9.

In Figure 63(a): Initially the all the boxes are on the table (snapshot 1).

Robot picks up a small box (snapshot 2) and the places it on the large

box (snapshot 3). After that it places another small box on the large box

(snapshot 4). The human intervenes and picks the small box and places it

on the table (snapshot 5). The robot realizes that there is a discrepancy asks

for another plan by passing the current state as initial state to the planner.

After replanning, it picks up small box on the table (snapshot 6). It places

small box on the large box (snapshot 7) and then places medium box on the

small box (snapshot 8) to achieve the goal state.
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In Figure 63(b): Initially boxes are stacked on the table (snapshot 1).

The robot places a small box on the table (snapshot 2). After that it places

another small box on the large box (snapshot 3). It adjusts the position of

the last small box to make a balanced sub assembly (snapshot 4). At that

point the human intervenes and changes the position of the small box to

table (snapshot 5). The robot senses the discrepancy and asks for another

plan from the current state. After replanning, the robot places the small box

again on the large box again (snapshot 6). The robot picks the large box

along with the small boxes on top of it (snapshot 7) and places it on the

small box (snapshot 8) to achieve the goal state.

10.5.4 Discussion

The above mentioned approaches provide effective means to implement ex-

ecution monitoring algorithm. The implementation of the algorithm can

still be improved. Some failures may still take place while using the above

mentioned approaches:

� Failure in detecting discrepancy. This occurs when the algorithm can

not detect the mismatch between actual state and planner history.

� Incorrect discrepancy detection. This occurs when the algorithm de-

tects there is a mismatch between actual state and planner history, al-

though no human intervention actually took place. The primary cause

of this failure is due to discretization as the positions of boxes are de-

cided based on their pixel ranges. An incorrect position leads to this

failure.
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Chapter 11

11 Conclusion and Future Work

11.1 Conclusion

We have introduced a formal framework to address multi-robot construction

problems that are challenging for both AI and Robotics not only due to

modeling challenges (e.g., due to ramifications of manipulation actions, true

concurrency of actions, supportedness of blocks by other blocks), but also

due to necessity of stability checks of constructions as they are being built.

We address these challenges by a general hybrid planning framework devel-

oped over the logic-based formalism and automated reasoners of Answer Set

Programming (ASP): ASP allows true concurrency, embedding outcomes of

stability checks into state constraints by external atoms, recursive definitions

of sophisticated concepts, like supportedness and connectedness, and nested

recursive definitions of global positions of blocks from their relative positions.

We introduce a set of challenging robot construction benchmark instances

that include bridges and overhangs constructed with counterweights, scaffold-

ing and true concurrency of manipulations. We have shown the applications

of our approach over various instances of these benchmarks.

We have also introduced the extension of our framework to cylindrical

objects and demonstrated the applicability of our approach using dynamics

and physical simulations on bi-manual Baxter robot.
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11.2 Future Work

The applicability of the framework presented in this thesis has been shown

by solving several instances of the proposed benchmarks. In all the instances,

the framework has been successful in solving the problem. The framework

can still be extended as follows:

In this work, we have considered only regularly shaped objects such as

rectangles and cylinders. In real world, many objects are irregularly shaped.

Although irregular shaped object can be converted into regular shaped object

by carefully dividing the structure, this kind of division is not always possible

or efficient. Generalization to irregular shaped objects poses lots of challenges

because of the inherent unknown geometry of the object under consideration.

Another future direction could be improving the stability checks. Nowa-

days, the state of the art construction methods rely on shake tables to check

the stability of a structure subject to simulated earthquakes. One extension

to the stability check may be designing a standard stability check to test the

robustness of the structure by simulating it under real recorded earthquakes.

Another extension to the framework can be in terms of the computation

times. We have used dlvhex to model the robot construction problems

due to its expressiveness when external atoms are concerned. However, this

expressiveness comes with cost of long construction times, as dlvhex takes

a lot of time to compute plans as seen in the results section. One extension

can be to try out the framework with other state of the art grounders and

answer set solvers.

111



References

[1] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation
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