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Abstract 

Recent advances in silicon-based process technologies have enabled to build low-cost and 

fully-integrated single-chip millimeter-wave systems with a competitive, sometimes even 

better, performance with respect to III-V counterparts. As a result of these developments 

and the increasing demand for the applications in the millimeter-wave frequency range, 

there is a growing research interest in the field of the design and implementation of the 

millimeter-wave systems in the recent years. In this thesis, we present two single-chip D-

band front-end receivers for passive imaging systems and a single-chip W-band 

frequency extension module for VNAs, which are implemented in IHP’s 0.13μm SiGe 

BiCMOS technology, SG13G2, featuring HBTs with 𝑓𝑡/𝑓𝑚𝑎𝑥 of 300GHz/500GHz.   

First, the designs, implementations, and measurement results of the sub-blocks of the 

radiometers, which are SPDT switch, low-noise amplifier (LNA), and power detector, are 

presented. Then, the implementation and experimental test results of the total power and 

Dicke radiometers are demonstrated. The total power radiometer has a noise equivalent 

temperature difference (NETD) of 0.11K, assuming an external calibration technique. In 

addition, the dependence of the NETD of the total power radiometer upon the gain-

fluctuation is demonstrated. The NETD of the total power radiometer is 1.3K assuming a 

gain-fluctuation of %0.1.  The front-end receiver of the total power radiometer occupies 

an area of 1.3 mm2. The Dicke radiometer achieves an NETD of 0.13K, for a Dicke 

switching of 10 kHz, and its total chip area is about 1.7 mm2. The quiescent power 

consumptions of the total power and Dicke radiometers are 28.5 mW and 33.8 mW, 

respectively. The implemented radiometers show the lowest NETD in the literature and 

the Dicke switching concept is employed for the first time beyond 100 GHz. 

Second, we present the design methodologies, implemantation methods, and results of 

the sub-blocks of the frequency extension module, such as down-conversion mixer, 

frequency quadrupler, buffer amplifier, Wilkinson power divider, and dual-directional 

coupler. Later, the implemantation, characterization and experimental test results of the 

single-chip frequency extension module are demonstrated. The frequency extension 

module has a dynamic range of about 110 dB, for an IF resolution bandwidth of 10 Hz, 

with an output power which varies between -4.25 dBm and -0.3 dBm over the W-band. 

It has an input referred 1-dB compression point of about 1.9 dBm. The directivity of the 

frequency extension module is better than 10 dB along the entire W-band, and its 

maximum value is approximately 23 dB at around 75.5 GHz. Finally, the measured s-

parameters of a W-band horn-antenna, which are performed by either the designed 

frequency extension module and a commercial one, are compared. This study is the first 

demonstration of a single-chip frequency extension module in a silicon-based 

semiconductor technology.  
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0.13μm SiGe BiCMOS W/D-Band Tek-Çip Sistemler – Dicke 

Radyometresi, ve VNA’lar için Frekans Genişletici Modül 
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Tez Danışmanı: Prof. Dr. Yaşar Gürbüz 
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Özet 

Silikon bazlı proses teknolojilerindeki son gelişmeler, düşük maliyetli ve tamamen 

entegre tek çipli milimetre-dalga sistemlerinin, III-V muadillerine göre rekabetçi, bazen 

daha da iyi bir performansa sahip olmasını sağlamıştır. Bu gelişmeler ve milimetrik dalga 

frekansı alanındaki uygulamalara olan artan talebin bir sonucu olarak, son yıllarda 

milimetre-dalga sistemlerinin tasarımı ve uygulanması alanında giderek artan bir 

araştırma ilgisi bulunmaktadır. Bu tez çalışmasında, IHP'nin 0.13μm SiGe BiCMOS 

teknolojisinde gerçeklenen, tekli çipli D-bant ön uç alıcıları (toplam güç ve Dicke 

radyometre) ve VNA'lar için tek çipli W-bant frekans uzatma modülü sunulmaktadır.  

İlk olarak, SPDT anahtarı, düşük gürültü kuvvetlendirici (LNA) ve güç dedektörü olan 

radyometrelerin alt bloklarının tasarımları, uygulamaları ve ölçüm sonuçları 

sunulmaktadır. Daha sonra, toplam güç ve Dicke radyometrelerinin gerçeklenmesi ve 

deneysel test sonuçları gösterilmiştir. Toplam güç radyometresi, harici bir mekanik 

anahtarlama olduğu varsayılarak 0.07K'lık bir gürültü eşdeğer sıcaklık farkına (NETD) 

sahiptir. Ek olarak, toplam güç radyometrisinin NETD'nin kazanım-dalgalanması 

üzerindeki bağımlılığı gösterilmektedir. Toplam güç radyometresinin NETD'si,% 0.1'lik 

bir kazanç dalgalanması varsayılarak 1.3K olarak bulunmuştur. Toplam güç 

radyometresinin ön uç alıcısı 1.3 mm2'lik bir alanı kaplar. Dicke radyometresi, 10 kHz'lik 

bir Dicke anahtarlaması için 0.13K'lık bir NETD elde eder ve toplam yonga alanı yaklaşık 

1.7 mm2'dir. Toplam gücün ve Dicke radyometrelerinin sukunet halinde güç tüketimi 

sırasıyla 28.5 mW ve 33.8 mW'dir. Gerçeklenen radyometreler literatürdeki en düşük 

NETD performansını gösterir ve Dicke anahtarlama kavramı 100 GHz'nin ötesinde ilk 

kez kullanılmıştır. 

İkincisi, aşağı-dönüşüm karıştırıcısı, frekans dörtleyici, tampon kuvvetlendirici, 

Wilkinson güç bölücü ve çift yönlü kuplör gibi frekans genişletme modülünün alt-

bloklarının tasarım metodolojilerini, gerçeklenme yöntemlerini ve elde edilen sonuçları 

sunulmaktadır. Daha sonra, tek çipli frekans uzatma modülünün implemantasyon, 

karakterizasyon ve deneysel test sonuçları gösterilmiştir. Frekans uzatma modülü, 10 

Hz'lik bir IF çözünürlük bant genişliği için yaklaşık 110 dB'lik bir dinamik aralığa sahiptir 

ve W-bandı üzerinde -4.25 dBm ve -0.3 dBm arasında değişen bir çıkış gücü vardır. Girişe 

tanımlı 1 dB sıkıştırma noktası yaklaşık 1.9 dBm’dir. Frekans genişletme modülünün 

yönelimi tüm W-bandı boyunca 10 dB'den daha iyidir ve maksimum değeri yaklaşık 75.5 

GHz'de yaklaşık 23 dB'dir. Son olarak, tasarlanan frekans uzatma modülü ve ticari bir 

tanesi tarafından gerçekleştirilen bir W-band horn-anteninin ölçülen s-parametreleri 

karşılaştırılır ve tek-çipli frekans uzatma modülünün çalışması bu şekilde doğrulanır. Bu 

çalışma, bir silikon tabanlı yarı iletken teknolojisinde uygulanan tek-çip frekans uzatma 

modülünün ilk gösterimidir. 
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1. Introduction 

1.1. Millimeter-wave Monolithic Integrated Circuits 

In these days, there is a steadily increasing interest in the millimeter-wave spectrum that 

refers to the frequency range of 30 GHz to 300 GHz, thanks to the recent advances in 

silicon-based semiconductor technologies [1]. The millimeter-wave frequency band has 

significant features that make it convenient and attractive for many applications such as 

multi-Gb/s wireless communications [2], automotive RADARs [3], passive imaging 

systems [4], and sensors [5]. Operating in the millimeter-wave spectrum promises larger 

bandwidth, smaller size, and better resolution than the microwave frequencies (300 MHz 

– 30 GHz). However, the millimeter-wave systems suffer from having limited range due 

to the very high free-space path-losses.  

Figure 1 shows the low-atmospheric attenuation windows in the millimeter-wave 

spectrum (35, 77, 94, 140, 220 GHz), and the atmospheric attenuation levels for various 

weather conditions. The widest window after 60 GHz is between 75 and 110 GHz, and 

this frequency band is known as W-band. This broad low-atmospheric attenuation 

window makes W-band suitable for many different applications, including either short-

range and long-range automotive RADARs [6], passive imaging systems [7], and point-

to-point wireless links [8]. Another low-atmospheric attenuation window which is around 

the center of the D-band (110-170 GHz) makes this frequency band applicative for several 

applications, in particular, radiometers [9], high-speed wireless communications [10], and 

radar sensors [11].   

The integration capability of  SiGe heterojunction bipolar transistor (HBT) technology 

with complementary metal-oxide-semiconductor (CMOS) process has enabled to build 

the RF front-end and baseband circuits together on a single-chip, and this concept is 

named as system-on-a-chip (SoC). In the recent literature, there are several studies that 

present fully-integrated millimeter-wave systems. For instance, Figure 2 shows the 

millimeter-wave SoCs: a 120 GHz SiGe BiCMOS distance sensor [13] and a 143-152 

GHz radar transceiver with built-in calibration [14]. 



2 

 

 

 

 

Figure 1 Amount of atmospheric attenuation for various relative humidity (RH) values 

[12].  

 

Figure 2 Single-chip millimeter-wave systems: (left) 120 GHz distance sensor [13] 

(right) 143-152 GHz radar transceiver with built-in calibration [14]. 
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One of the primary applications in the millimeter-wave spectrum is the imaging of the 

observing targets. Detection and processing of electromagnetic waves make the 

observation of an object or a scene possible and allow to build imaging systems in this 

way. The microwave or millimeter-wave imaging systems can be grouped into two main 

categories, active imaging systems (RADARs) and passive imaging systems 

(radiometers). Active imaging systems are capable of acquiring information on the 

distance, speed, and direction of the target [15].  

An active imaging system radiates electromagnetic signals generated by the signal source 

of itself and measuring either the reflected and scattered electromagnetic waves from the 

scene. Therefore, they require the signal sources and transmitter channels in addition to 

receiver parts, and that would result in high implementing and operating costs.  

On the other hand, the passive imaging systems’ operating principle relies on detection 

and processing of already existing electromagnetic waves. According to Max Planck’s 

black-body radiation law [16], all objects spontaneously and continuously radiates 

electromagnetic waves proportional to their physical temperature. In addition to black-

body radiation, the targeted object might reflect electromagnetic waves arising due to 

other electromagnetic sources in the background of the targeted object. The power of the 

emitted and reflected electromagnetic waves is contingent upon the physical temperature 

and the emissivity constant of the object. These dependencies, especially the relationship 

between the power of the emitted electromagnetic waves and the physical temperature, 

can be processed to create an image of the targeted object and scene [17]. Although the 

passive imaging systems do not require to transmit electromagnetic waves to the targeted 

object or scene, they need a high-gain and low-noise receivers to detect the weak levels 

of the emitted electromagnetic waves by the objects. 

The millimeter-wave imaging systems are mainly used to detect the threat materials such 

as concealed weapons and explosives. Although the active imaging systems promise 

higher scan speed and operation independent of the ambient temperature, the detection of 

hidden objects is much more difficult than with the passive imaging systems [18]. 

Because the specular reflections might occur due to the structures of the fabric surfaces 

of the clothes and this would reduce the quality of the images. For this reason, passive 

imaging methods, including radiometers and infrared detectors, based on black-body 

radiation are preferred instead of active illumination techniques [19]. The operating 
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frequencies of the infrared detectors extend from few tens of THz to the edge of the visible 

spectrum (430 THz). Such high-frequency signals can only pass through thin clothes, so 

the infrared detectors are not capable to thoroughly detect the hidden threats [20]. Figure 

3 shows the passive millimeter-wave and infrared images of a concealed weapon. As can 

be seen from the figure, the passive millimeter-wave systems (radiometers) are better than 

the infrared detectors in the detection of the hidden objects [21]. 

 

1.2. Characterizations of Millimeter-wave Monolithic Integrated Circuits 

Scattering parameters (or S-parameters) are very useful in the characterization of the 

small-signal behaviors of the RF, microwave and millimeter-wave electronic circuits. The 

network analyzers are widely used to measure the s-parameters of the active and passive 

circuits. The network analyzers can be grouped under two main titles: scalar network 

analyzer (SNA) and vector network analyzer (VNA). Although SNAs can measure only 

the amplitude properties of the signals, VNAs are capable of also measuring the phase 

relationships between the incident, reflected and transmitted signals in addition to their 

 

Figure 3 Passive millimeter-wave (PMMW) and infrared (IF) images of a concealed 

weapon [21]. 
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amplitude qualities. For this reason, VNAs are preferred to characterize the small-signal 

properties of electronic networks fully. 

Three market leaders are operating in the field of VNA manufacturing: Anritsu, Keysight, 

and Rohde&Schwarz. The base units of the present state-of-the-art VNAs on the market 

operate from hundreds of Hz up to 70 GHz without using any frequency extension module 

(Anritsu MS4640B VectorStar [22], Keysight N5247B PNA-X [23], Rohde&Schwarz 

ZVA67 [24]). Figure 4 shows the Keysight N5247B PNA-X Microwave Network 

Analyzer which is operating across the frequency range of 900 Hz to 67 GHz. However, 

they can be configured with frequency extension modules for measurements beyond 70 

GHz. The frequency range of a VNA is determined primarily by the lower and upper-

frequency edges of its reflectometer parts. The increasing demand for millimeter-wave 

systems has led to significant research efforts in the domain of low-cost and high-

performance millimeter-wave reflectometers. Ulker and Weikle presented a W-band six-

port reflectometer based on the sampled-transmission line implemented by the WR-10 

rectangular waveguide and configurated with three GaAs Schottky diodes to reduce the 

complexity of the frequency extension modules [26]. After that, Roberts and Noujeim 

demonstrated a tethered E-band (60-90 GHz) GaAs reflectometer based on the nonlinear-

transmission-line (NLTL) technology to build frequency extension modules in smaller 

sizes [27].  Finally, a W-band single-chip reflectometer implemented in SiGe BiCMOS 

technology was successfully presented  [28]. Also, a fully-integrated VNA that can 

operate from 50 GHz to 100 GHz was implemented in SiGe BiCMOS technology [29]. 

Despite these efforts to extend the frequency ranges and reduce the sizes of the 

reflectometers, the technical trend is to employ the frequency extender modules, which 

consists of reflectometers and frequency multiplication chains, to expand the frequency 

range of the VNAs, as discussed in detail in Section 3.1. Figure 5 shows the Anritsu 

MS4640B VectorStar VNA whose the operating frequency is extended to 145 GHz by 

the frequency extension modules which have 0.8mm coaxial outputs. The waveguide-

based frequency extension modules have to be employed beyond 145 GHz since there are 

no coaxial standards. Wohlgemuth et al. proposed an inventive solution to the frequency 

limitations and expensive and cumbersome structures of the waveguide-based frequency 

extension modules, and they successfully demonstrated an active probe that consists of a 

GaAs single-chip frequency extension module for on-wafer s-parameter measurements 

[30]. 
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Figure 4 Keysight N5247B PNA-X Microwave Network Analyzer, 900 Hz to 67 GHz 

[23]. 

 

Figure 5 Anritsu VectorStar ME7838A Millimeter-Wave System, 70 kHz to 125 GHz 

[25].   
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1.3. SiGe BiCMOS Technology 

Recent developments and ongoing advances in SiGe BiCMOS technologies have made it 

possible to produce low cost, fully integrated single-chip millimeter-wave systems with 

a competitive, sometimes even better, performance compared to III-V counterparts. In 

addition to its superior high-frequency performance, the integration capability of the RF 

front-end and baseband circuits on a single-chip makes the SiGe HBT BiCMOS 

technology more convenient and cost-effective solution for millimeter-wave SoCs than 

the III-V counterparts. Table 1 summarizes the respective performances of various 

semiconductor technologies for RF integrated circuits.  

Ge has a smaller bandgap of 0.66 eV than that of Si (1.12 eV). This technology uses 

bandgap engineering to form the base region of the transistor. By this way, the base of 

the transistor is formed by the SiGe compound, resulting in higher electron injection and 

thus higher current gain (𝛽). Moreover, the minority carriers are accelerated across the 

base region thanks to the speeded diffusive transport of minority carriers, and this results 

in the reduced base transit time (𝜏𝑏) [31]. In addition, the parasitic capacitances and 

resistances are reduced by the help of the smaller structure which is vertically and laterally 

scaled. There are mainly two figures of merit to evaluate the high-frequency performances 

of the semiconductor technologies: the unity current gain cut-off frequency (𝑓𝑇) and 

maximum oscillation frequency (𝑓𝑀𝐴𝑋). The unity current gain of a transistor is typically 

found by the small-signal current gain for the short-circuited output, and 𝑓𝑇 is the 

frequency at where the current gain is equal to unity. The 𝑓𝑇 of a BJT can be found using 

equation (1), where 𝜏𝑏 is the base transit time, 𝜏𝑐 is the collector transit time, 𝑔𝑚 is the 

transconductance of the transistor, 𝐶𝜋 and 𝐶𝜇 are parasitic capacitances, and 𝑟𝑒 and 𝑟𝑐 are 

parasitic resistances. The other important performance metric of a transistor, 𝑓𝑀𝐴𝑋 which 

is the frequency where the power gain is equal to one, is given by equation (2). As can be 

seen from the equations, the 𝑓𝑇 and 𝑓𝑀𝐴𝑋 can be improved using the SiGe compound’s 

advantages which are mentioned above. 

𝑓𝑇 =
1

2𝜋
(𝜏𝑏 + 𝜏𝑐 +

1

𝑔𝑚
(𝐶𝜋 + 𝐶𝜇) + (𝑟𝑒 + 𝑟𝑐)𝐶𝜇)

−1

 (1) 

𝑓𝑀𝐴𝑋 = √
𝑓𝑇

8𝜋𝐶𝜇𝑟𝑏
 (2) 
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In this thesis study, the IHP’s 0.13μm SiGe BiCMOS technology, SG13G2, featuring 

HBTs with 𝑓𝑡/𝑓𝑚𝑎𝑥/𝐵𝑉𝐶𝐸𝑂 of 300GHz/500GHz/1.6V [32]. The all-aluminum BEOL 

comprise five thin metallization layers (M1-M5) and two thick layers (TM2-TM1) for 

high-quality on-chip inductor and transmission line designs. The BEOL also offers MIM 

capacitors and three types of polysilicon resistors. The detailed cross-section of the IHP’s 

SiGe BiCMOS process (SG13G2) is depicted in Figure 6. 

Table 1 Respective performance summaries of Various Semiconductor 

Technologies for Radio Frequency Integrated Circuits [31]. 

  

1.4. Motivation 

As mentioned in the previous sections, opportunities in the millimeter-wave spectrum and 

the latest developments in SiGe BiCMOS technology have led to significant research 

efforts and increased interest in low-cost and single-chip millimeter-wave systems.  

One of the objectives of this thesis is to design and implement a fully-integrated D-band 

front-end receiver based on Dicke radiometer architecture for passive imaging systems. 

The temperature resolution of a Dicke radiometer is mainly determined by the 

performances of its sub-blocks which are power detector, LNA, and SPDT switch. In 

order to develop a state-of-the-art Dicke radiometer, the trade-offs and bottlenecks that 

limit the performances of the sub-blocks will be analyzed and 
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investigated. And beyond that, new approaches and existing solutions will be utilized to 

find the optimum design points for the trade-offs and to break the bottlenecks.    

Another aim of this work is to present the design, implementation, and characterization 

of a single-chip W-band frequency extension module for VNAs to make the 

characterizations of the millimeter-wave integrated circuits easier and less costly. Within 

this scope, the required sub-blocks that are capable of performing the operations of the 

frequency extension modules will be designed, and they will be implemented on a single-

chip to build a fully-integrated W-band frequency extension module.  

1.5. Organization 

This thesis consists of four chapters that are organized as follows.  

Chapter 2 begins with the basics of passive imaging systems, including theoretical 

calculations and radiometer architectures. Then, design approaches, implementations and 

 

Figure 6 A detailed cross-section of the IHP’s 0.13μm SiGe BiCMOS process, SG13G2. 



10 

 

simulation and measurement results of the sub-blocks such as power detector, LNA, and 

SPDT switch are presented. Finally, the implementation of the total power and Dicke 

radiometers, the measurement results of these implemented radiometers, and the 

comparison with similar studies are shown. 

Chapter 3 begins with the basics of the s-parameter measurements using frequency 

extension modules. Then, design approaches, implementations and simulation and 

measurement results of the frequency extension modules’ sub-blocks such as the down-

converter mixer, frequency quadrupler, amplifier, Wilkinson power divider and dual 

directional coupler are presented. Finally, the implementation of the single-chip 

frequency extension module for vector network analyzers and the comparison of the 

measurement results with a commercial frequency extension module are presented.  

Chapter 4 concludes the thesis with the summary of work and some additional discussions 

on the suggested solutions to solve existing problems and provides information on 

possible future studies to improve the work. 
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2. D-Band Total Power and Dicke Radiometers 

This section begins with the fundamental operating principles and the basic receiver 

architectures, also their theoretical sensitivity calculations, of the passive imaging 

systems. Then, the designs, implementations, and measurement results of the sub-blocks 

of the passive imaging systems are presented. Also, the comparisons of each sub-block 

with the previously reported studies are summarized. After that, the experimental results 

of the implemented radiometers are demonstrated. Finally, the comparison of the 

implemented radiometers with the studies in the literature are presented.  

2.1. Fundamentals of Passive Imaging Systems 

2.1.1 Detection Principles 

Essentially, radiometers (or passive imaging systems) can be considered as high-sensitive 

receivers that are used to detect the electromagnetic radiation emitted by the objects which 

have a physical temperature. According to Max Planck’s black-body radiation law [16], 

all objects spontaneously and continuously emit electromagnetic waves proportional to 

their physical temperature. The spectral brightness of a black body is described by 

Planck’s black-body radiation law, as presented in equation (3), where 𝐵𝑓 is the black-

body spectral brightness (W∙ 𝑚−2 ∙ 𝑠𝑟−1 ∙ 𝐻𝑧−1), f is the frequency (Hz), h is Planck’s 

constant of 6.63 × 10−34 𝐽 ∙ 𝑠, k is Boltzmann’s constant of 1.38 × 10−23 𝐽/𝐾, T is the 

physical temperature (K), and c is the speed of light of 3 × 108 𝑚/𝑠. Figure 7 shows the 

spectral radiation of objects at different physical temperatures.  

𝐵𝑓 =
2ℎ𝑓3

𝑐2
× (

1

𝑒
ℎ𝑓
𝑘𝑡 − 1

) (3) 

In the millimeter-wave frequency domain (30 – 300 GHz) and below, Planck’s black-

body radiation equation can be approximated to equation (4), which is also known as 

Rayleigh-Jeans’s approximation, using Taylor polynomial expansion (ℎ𝑓/𝑘𝑇 ≪ 1).  

As can be seen from equation (4), the Rayleigh-Jeans’ approximation points a linear 

relationship between the spectral brightness and the physical temperature. This linear 

relationship is valid with a less than 3% error for the frequencies below 300 GHz. Thence, 

it is very useful to use the Rayleigh-Jeans’s approximation to analyze the amount of the 

electromagnetic power emitted by an object, and to calculate the amount of the power 

collected by the antenna in a passive imaging system. Figure 8 shows the comparison of 
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the Planck’s black-body radiation law and the Rayleigh-Jeans’s approximation. As also 

can be seen from the figure, the discrepancy between the Planck’s black-body radiation 

law and the Rayleigh-Jean’s approximation is decreasing with the increase of the 

frequency, as expected. 

𝐵𝑓 =
2𝑓2𝑘𝑇

𝑐2
 (4) 

 

 

 

Figure 7 Spectral radiation of objects at different physical temperatures [33]. 

 

Figure 8 Comparison of the Planck’s black-body radiation law and the Rayleigh-Jeans' 

approximation [34]. 
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Figure 9 demonstrates a basic detection operation of a passive imaging receiver. The 

front-end circuit of the passive imaging receiver is fed by an antenna which has a radiation 

pattern symbolized by 𝐴(𝜃, 𝜙). The total area of the observation scene is determined by 

the half power beam width (HPBW) of the antenna. The power of the electromagnetic 

radiation picked up by the antenna is proportional to the sum of the electromagnetic 

radiation emitted by the scene (𝑇𝐵), and the reflected electromagnetic radiation from the 

scene (𝑇𝑆𝐶) which arises due to the hot objects at the background. The electromagnetic 

signal picked up by the antenna is amplified by a high-gain LNA, and then converted to 

DC-voltage information by a power detector. The DC-signal generated by the front-end 

circuit of the passive imaging system can be transferred to the digital domain by an ADC 

to create an image of the observation scene, after the baseband process. 

  

 

Figure 9 Demonstration of the basic detection operation of a radiometer.  
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The procedure described in [35] was followed to calculate the amount of the power picked 

up by the antenna. Assuming that the brightness is same across the hemisphere and the 

incident radiation is same over the surface and ignoring the free space path loss between 

the target scene and the antenna, the received power (𝑃𝑟𝑒𝑐) can be expressed by equation 

(5) where 𝐵𝑓 is the black-body spectral brightness, 𝑓 is the frequency, 𝐴𝑒 is the effective 

area of the antenna, 𝐴(𝜃, 𝜙) is the radiation pattern of the antenna [35].  

𝑃𝑟𝑒𝑐 =
1

2
𝐴𝑒 ∫ ∬ 𝐵𝑓𝐴(𝜃, 𝜙)𝑑𝛺𝑑𝑓

𝛺𝑓

 (5) 

The brightness temperature (𝑇𝐵) is equal to the multiplication of the physical temperature 

(𝑇) of the object by its emissivity (𝑒) which is the measure of the radiating capability of 

an object compared to a black-body (𝑇𝐵 = 𝑒𝑇). The emissivity values (𝑒) of the common 

objects are briefly presented in Table 2. In addition to the brightness temperature (𝑇𝐵), 

the other source that should be taken into account is the electromagnetic radiation (𝑇𝑆𝐶), 

which is reflected by the target object, of the other hot objects at the background. This 

electromagnetic radiation is equal to the multiplication of the physical temperature of the 

hot objects at the background, which is named as illuminator after now, by the reflectivity 

(𝑝) of the target object (𝑇𝑆𝐶 = 𝑒𝑇𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑜𝑟). The reflectivity value of an object is equal 

to 1 − 𝑒. As a result, the total brightness temperature (𝑇𝑡𝑜𝑡𝑎𝑙) of the target object is equal 

to the sum of these two temperatures, and it can be expressed by equation (6). 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝐵 + 𝑇𝑆𝐶 = 𝑒𝑇 + 𝑝𝑇𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (6) 

Table 2 The effective emissivity values of various materials [35]. 
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Assuming a bandwidth of 40 GHz at 140 GHz center frequency, an effective emissivity 

of 0.5, a 1 mm2 effective antenna area with an isotropic pattern, a target scene temperature 

of 290K, and 5 cm distance between the target and the antenna, the amount of the power 

picked up by the antenna is calculated to be 1.2825 × 10−15 𝑊, which equals to 

approximately -119 dBm. Even if a horn antenna with a gain of 23 dBi is used, the input 

power of the receiver would be no more than -95 dBm. For this reason, a specially 

designed receiver with low noise and high gain is required to amplify the signal picked 

up by the antenna. 

2.1.2 Radiometer Architectures and Theoretical Sensitivity Calculations 

Total power radiometer and Dicke radiometer topologies are two most common 

architectures that used in millimeter-wave passive imaging systems. These two 

radiometer topologies can be implemented in either two different types of the receiver 

architectures: direct detection architecture and superheterodyne architecture. In the direct 

detection receiver architecture, which is shown in Figure 10 and Figure 11 for total power 

radiometer and Dicke radiometer topologies, respectively, the detection of the power of 

the signal is performed at the RF frequencies without performing any down-conversion 

operation. On the contrary, in the superheterodyne receiver architecture, which is shown 

in Figure 12 and Figure 13 for total power radiometer and Dicke radiometer topologies, 

respectively, the detection of the power of the signal is performed at the IF frequencies 

after the down-conversion operation. Although the total power radiometer and Dicke 

radiometer topologies are very similar to each other, there is a significant difference that 

is emerged because of the single-pole-double-throw (SPDT) switch which is placed 

between the antenna and the LNA. 

 

 

Figure 10 Block schematic of a total power radiometer configured as a direct detection 

receiver. 
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As shown in Figure 12 and Figure 13 a superheterodyne receiver architecture down-

converts the RF signal to an IF. Before the down-conversion, the signal is amplified by 

an LNA since the amplitude of the signal picked up by the antenna is very low. The down-

converted signal is then amplified again by an IF amplifier. The amplification of an IF 

signal is much easier and useful than the RF frequencies since the performances of the 

active devices, such as noise, power linearity, and gain, are much better in the lower 

frequencies. However, adding a mixer and a local oscillator (LO) increases the power 

consumption, the chip area, and the level of the complexity. In addition to these 

drawbacks, the superheterodyne receiver architecture suffers from an unstable operation 

problem due to the local oscillator’s dependence on the temperature. The output power 

and the frequency of the LO signal are varying with the temperature, and it would result 

in an error of the detection of the power level picked up by the antenna. These stability 

issues could be solved by thermal control circuits and phase-locked-loop (PLL) 

techniques, but the power consumption, the chip area, and the complexity level would 

surge. 

 

 

Figure 11 Block schematic of a Dicke radiometer configured as a direct detection 

receiver. 

 

Figure 12 Block schematic of a total power radiometer configured as a superheterodyne 

receiver. 
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On the contrary to the superheterodyne receiver architecture, the direct detection receiver 

architecture does not include a mixer and local oscillator so that it does not require the 

associated circuitries such as temperature control circuits and PLL networks. Thence, the 

power consumption, the chip area and the level of the complexity are significantly 

reduced. In the direct detection of radiometer architecture, the power detector operates at 

the directly RF frequencies instead of IF frequencies. Therefore, the signal should be very 

amplified before the power detector, and so that the main challenge here is to design a 

high-gain LNA. Furthermore, the direct detection radiometer architectures promise wider 

bandwidth than the superheterodyne radiometer architectures since the available 

bandwidth is not limited by the down-conversion operation and the IF amplifier. Thus, 

they promise better temperature resolution than the superheterodyne radiometers.  

With this comparison in mind, the direct detection receiver architecture was found to be 

very useful compared to the superheterodyne receiver architecture for the passive imaging 

systems. Therefore, it was decided to build total power radiometer and Dicke radiometer 

systems in the direct detection receiver configuration. 

2.1.2.1 Total Power Radiometer  

Figure 10 shows the detailed block diagram of the direct-detection total power radiometer 

architecture. An LNA amplifies the signal picked by the antenna since the amplitude of 

the received signal is very low, around -100 dBm as analyzed in Section 2.1.1. After that, 

a power detector, which is operating in the square-law region, produces an output voltage 

proportional to the power of the signal. Using an integrator, this DC output signal is 

averaged over the entire period (𝜏), which is called the back-end integration time, to 

minimize the impact of the system noise on the signal as much as possible. The integrated 

 

Figure 13 Block schematic of a Dicke radiometer configured as a superheterodyne 

receiver. 
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output signal can be converted to digital form using an ADC and a data acquisition, and 

then processed by a computer or a specific digital signal processor (DSP). This radiometer 

channel can be considered as a single pixel element, and a two-dimensional (2D) images 

can be created either by implementing a 2D radiometer array, by using a mechanical 

scanner that enable to scan both in the X- and Y- direction, or by using a hybrid solution 

of them. 

Passive imaging systems are characterized by their noise equivalent temperature 

difference (𝑁𝐸𝑇𝐷), also known as radiometric resolution or thermal resolution. Besides, 

in the literature, there are also a few studies that call it as noise equivalent delta 

temperature (𝑁𝐸Δ𝑇). The noise equivalent temperature difference, or the thermal 

resolution, can be defined as the minimum change in the brightness temperature of the 

target capable of generating a detectable voltage change at the output of the radiometer.  

The noise equivalent temperature difference of a total power radiometer can be 

approximately expressed by equation (7) [36], where  𝑇𝑠 is the overall system equivalent 

noise temperature, 𝐵𝑅𝐹 is the effective RF noise bandwidth of the radiometer, 𝜏 is the 

back-end integration time, Δ𝐺 is the rms gain-fluctuation of the LNA, and 𝐺 is the gain 

of the LNA. 

𝑁𝐸𝑇𝐷 = 𝑇𝑆√
1

𝐵𝑅𝐹𝜏
+ (

Δ𝐺

𝐺
)

2

 (7) 

As can be seen from the equation, one of the limiting factors of the thermal resolution is 

the overall system equivalent noise temperature (𝑇𝑆), which is equal to the sum of the 

antenna noise temperature (𝑇𝐴) and the equivalent noise temperature of the front-end 

receiver (𝑇𝐸−𝑅). The equivalent noise temperature of the front-end receiver can be 

calculated using equation (8), where 𝑇𝐸−𝐿𝑁𝐴 is the equivalent noise temperature of the 

LNA, and 𝑇𝐸−𝑃𝐷 is the equivalent noise temperature of the power detector. The equivalent 

noise temperature of the power detector can be calculated by equation (9) [37]. Herewith, 

the equivalent noise temperature of the front-end receiver can be reduced by enhancing 

the gain of the LNA, reducing the noise equivalent power (𝑁𝐸𝑃𝑃𝐷) of the power detector, 

and enhancing the effective bandwidth of the LNA. 

𝑇𝐸−𝑅 = 𝑇𝐸−𝐿𝑁𝐴 +
𝑇𝐸−𝑃𝐷

𝐺
 (8) 
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𝑇𝐸−𝑃𝐷 =
𝑁𝐸𝑃𝑃𝐷

𝑘√𝐵𝑅𝐹

 (9) 

Similarly, the equivalent noise temperature of the front-end receiver can be directly found 

by equation (10), using the noise equivalent power (𝑁𝐸𝑃𝑅) of the overall front-end 

receiver circuit that consists of the LNA and the power detector.  

𝑇𝐸−𝑅 =
𝑁𝐸𝑃𝑅

𝑘√𝐵𝑅𝐹

 (10) 

Another important factor that dictates the thermal resolution is the effective RF noise 

bandwidth of the radiometer which can be calculated using the gain of the LNA (𝐺𝐿𝑁𝐴) 

by equation (11) [36]. In addition, the back-end integration time (𝜏), which is typically 

30ms for the passive imaging systems, has a significant effect on the NETD of the 

radiometer.    

𝐵𝑅𝐹 =
[∫ 𝐺𝐿𝑁𝐴(𝑓)𝑑𝑓

∞

0
]

2

∫ 𝐺𝐿𝑁𝐴
2 (𝑓)𝑑𝑓

∞

0

 (11) 

As can be seen from equation (7), the gain fluctuations term might be the dominant term, 

and so that degrades the noise equivalent temperature difference performance 

significantly. The gain fluctuations in the system arise because of the 1/f flicker noises of 

the active devices. Thence, their periods are much smaller than the back-end integration 

time, and so they cannot be eliminated by the integrator. In order to alleviate these gain 

fluctuations, periodic calibration techniques based on mechanical scanning can be used 

[38], and in this case the noise equivalent temperature difference equation (7) of the 

radiometer is reduced to the simple form described by equation (12) since the gain 

fluctuation term (Δ𝐺/𝐺) can be neglected because it will be very small relative to the 

term of (1/𝐵𝑅𝐹𝜏). However, these type solutions are not usually preferred since they make 

the passive imaging system very bulky and costly.  

𝑁𝐸𝑇𝐷 = 𝑇𝑆√
1

𝐵𝑅𝐹𝜏
 (12) 

2.1.2.2 Dicke Radiometer  

R. Dicke proposed an ingenious solution to evade the problems related to the gain 

fluctuations that arise due to 1/𝑓 flicker noises of the active devices [39]. In this solution, 
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a single-pole-double-throw (SPDT) switch, which is called Dicke switch, is placed 

between the antenna and the LNA as presented in Figure 11 that shows the detailed block 

diagram of the direct-detection Dicke radiometer architecture. The output of the SPDT 

switch is connected to the input of the LNA. One of the inputs of the SPDT switch is 

connected to the antenna, and the other one is connected to a reference resistance (𝑅𝑅𝐸𝐹) 

which is also known as the calibration reference load. In this way, the input of the LNA 

is continuously switched between the antenna and the calibration reference load with a 

frequency which known as Dicke switching frequency (𝑓𝐷).  

During one half of the Dicke switching period which is called the observation period, the 

signal picked by the antenna is transmitted to the input of the LNA. During the other half 

of the Dicke switching period which is called the calibration period, the noise power 

generated by the calibration reference impedance (𝑅𝑅𝐸𝐹) is transmitted to the input of the 

LNA. On the other hand, in the observation period, the DC signal produced by the power 

detector is directed to the positive path of the operational amplifier based subtractor 

circuit by the analog SPDT switch. On the contrary, in the calibration period, the DC 

signal produced by the power detector is directed to the negative path of the operational 

amplifier based subtractor circuit by the analog SPDT. And then, the difference of the 

signals obtained in the observation and calibration periods is taken by integrating the 

signal at the output of the operational amplifier based subtractor circuit by the integrator 

circuit. As a result, the noise equivalent temperature difference of a Dicke radiometer can 

be approximately expressed by equation (13) [40], where  𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅 is the equivalent 

noise temperature of the front-end receiver, 𝑇𝑅𝐸𝐹 is the calibration reference load, and 

𝐵𝐷𝑖𝑐𝑘𝑒−𝑅𝐹 is the effective RF noise bandwidth of the Dicke radiometer. 

𝑁𝐸𝑇𝐷𝐷𝑖𝑐𝑘𝑒

= √
2(𝑇𝐴 + 𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅)2 + 2(𝑇𝑅𝐸𝐹 + 𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅)2

𝐵𝐷𝑖𝑐𝑘𝑒−𝑅𝐹𝜏
+ (

Δ𝐺

𝐺
)

2

(𝑇𝐴 − 𝑇𝑅𝐸𝐹)2 
(13) 

It is important to highlight here that the Dicke switching frequency should be set much 

higher than the 1/𝑓 flicker corner frequency of the front-end receiver to effectively 

employ the solution. Because, as mentioned before, the gain-fluctuations occur due to the 

1/𝑓 flicker noise sources of the front-end receiver. If the Dicke switching period is set to 

be much smaller than the periods of the gain-fluctuations of the receiver, the gain will 

remain approximately the same for both of the observation and calibration periods. In 
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essence, by the Dicke switching technique, the output spectrum of the radiometer is 

shifted from DC to the Dicke switching frequency (𝑓𝐷). Therefore, the output signal of 

the radiometer, which is a difference of the signals obtained in the observation and 

calibration periods, will be not affected by the gain-fluctuations of the front-end receiver 

if the physical noise temperature of the calibration reference load (𝑇𝑅𝐸𝐹) is equal to the 

antenna noise temperature (𝑇𝐴), as presented in equation (14) where 𝑇𝐷𝑖𝑐𝑘𝑒−𝑆 is the overall 

system equivalent noise temperature which is equal to the sum of the antenna noise 

temperature (𝑇𝐴) and the equivalent noise temperature of the front-end receiver 

(𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅). As can be seen from the comparison of the NETD equations of the total 

power (7) and Dicke radiometers (14), the temperature resolution of the Dicke radiometer 

is twice that of the total power radiometer since the effective observation time reduces to 

its half (%50 duty cycle). In spite of this penalty factor of 2 in the Dicke radiometer, the 

improvement in the NETD performance is very much better than that of the total power 

radiometer since it is more than compensated by eliminating the gain-fluctuation term. 

𝑁𝐸𝑇𝐷𝐷𝑖𝑐𝑘𝑒 = 2𝑇𝐷𝑖𝑐𝑘𝑒−𝑆√
1

𝐵𝐷𝑖𝑐𝑘𝑒−𝑅𝐹𝜏
 (14) 

The equivalent noise temperature of the front-end receiver of a Dicke radiometer can be 

calculated using equation (15), where 𝑇𝐸−𝑆𝑃𝐷𝑇 is the equivalent noise temperature of the 

SPDT switch, 𝐺𝑆𝑃𝐷𝑇 is the gain of the SPDT switch, and 𝐺𝐿𝑁𝐴 and is the gain of the LNA 

𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅 = 𝑇𝐸−𝑆𝑃𝐷𝑇 +
𝑇𝐸−𝐿𝑁𝐴

𝐺𝑆𝑃𝐷𝑇
+

𝑇𝐸−𝑃𝐷

𝐺𝑆𝑃𝐷𝑇𝐺𝐿𝑁𝐴
 (15) 

Furthermore, the equivalent noise temperature of the front-end receiver of a Dicke 

radiometer can be directly found by equation (16), using the noise equivalent power 

(𝑁𝐸𝑃𝐷𝑖𝑐𝑘𝑒−𝑅) of the overall front-end receiver circuit that consists of the SPDT switch, 

LNA, and the power detector.  

𝑇𝐸−𝐷𝑖𝑐𝑘𝑒−𝑅 =
𝑁𝐸𝑃𝐷𝑖𝑐𝑘𝑒−𝑅

𝑘√𝐵𝐷𝑖𝑐𝑘𝑒−𝑅𝐹

 (16) 

The effective RF noise bandwidth of a Dicke radiometer can be calculated by equation 

(17) using the pre-detector gain (𝐺𝑝𝑟𝑒−𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟). 

𝐵𝑅𝐹 =
[∫ 𝐺𝑝𝑟𝑒−𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝑓)𝑑𝑓

∞

0
]

2

∫ 𝐺𝑝𝑟𝑒−𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
2 (𝑓)𝑑𝑓

∞

0

 (17) 
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Finally, the integrated output signal can be converted to digital form using an ADC and 

data acquisition and then processed by a computer or a specific digital signal processor 

(DSP). As mentioned for the total power radiometer in Section 2.1.2.1, this radiometer 

channel is considered as a single pixel element, and a two-dimensional (2D) images can 

be created by using the aforementioned techniques. 

2.2. Power Detector 

2.2.1 Circuit Design and Implementation 

The NETD of a radiometer is determined mainly by the NEP performance of the power 

detector. That is why starting with the design of the power detector to build a radiometer 

can be considered as a good starting point. The power detector produces an output voltage 

proportional to the input power. The relationship between the input power and the output 

voltage should be as linear as possible to detect the power difference at the input 

accurately. Therefore, the power detector should be operated in the square-law region.  

The circuit schematic of the designed power detector is shown in Figure 14. A cascode 

like configuration was utilized for the first time beyond 100 GHz to perform power 

detection operation, and its NEP performance was analyzed for the first time for SiGe 

HBT technology.  The CE transistor (Q1) produces a second-order DC current response 

to the input power. The first order response is eliminated by the shunt capacitor of 340 fF 

placed between the CE (Q1) and CB (Q2) transistors. Moreover, since this shunt capacitor 

acts almost perfect AC grounding path for operating frequency range, the input 

impedance of the CE transistor is isolated from the rest of the circuit. The CB transistor 

(Q2) can be considered as a unity gain current buffer. Although the output noise voltage 

is slightly increased by the CB transistor (Q2), it makes easier for the CE transistor (Q1) 

to remain in the forward active regime since the CB transistor (Q2) keeps the collector 

voltage of the CE (Q1) transistor as constant as possible. This improvement is presented 

in Figure 15 using the same load resistor (100 kΩ) and same bias voltage values. As can 

be seen from the figure, although the CE transistor (Q1) starts to operate in the saturation 

region for input powers larger than -24 dBm when operating stand-alone, it is kept staying 

in the forward-active region when configured with the CB transistor (Q2). In addition, it 

has been shown that a SiGe HBT biased with a forced emitter current can have a collector-

emitter breakdown voltage (BVCEO) that is twice as high as its nominal value [41]. 

Thence, the supply voltage VCC of the power detector can be set to higher voltage values, 
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and it makes possible use of larger load resistor which results with larger responsivity and 

better NEP performance as will be explained later in this section. 

 

In the cascode topology, the collector current of the whole circuit is determined by the 

CE transistor (Q1) since the current gain of the CB transistor is equal to one. Thus, 

assuming that the input signal at the base of the CE transistor is a sinusoidal-wave with 

an amplitude of Vin, and a frequency of f, the collector current (Ic) can be expressed by 

equation (18) neglecting early voltage effect; where Is is the saturation current, VBE is the 

base-emitter bias voltage of the CE transistor (Q1), and VT is the thermal voltage which 

equals to kT/q. It should be noted that equation (18) is valid for a transistor operating in 

the forward-active region. 

 

Figure 14 Circuit schematic of the D-band power detector (Electrical lengths of the 

transmission lines are given for 140 GHz). 
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𝐼𝑐 = 𝐼𝑠𝑒
𝑉𝐵𝐸 + 𝑉𝑖𝑛sin (2𝜋𝑓𝑡)

𝑉𝑇  (18) 

If the quiescent current term (𝐼𝑠𝑒𝑉𝐵𝐸/𝑉𝑇) is subtracted from equation (18), the 

multiplication of the remaining expression with the load resistor (RLOAD) gives the 

generated output voltage response to the input signal. Thence the output voltage response 

to the input signal is expressed by equation (19) where ICQ is the quiescent collector 

current. Expanding equation (19) into Taylor’s series and ignoring third and higher order 

terms, the output voltage response (Vout-response) can be approximated by equation (20).  

𝑉𝑜𝑢𝑡−𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐼𝐶𝑄 × (𝑒
𝑉𝑖𝑛 cos(2𝜋𝑓𝑡)

𝑉𝑇 − 1) × 𝑅𝐿𝑂𝐴𝐷 (19) 

𝑉𝑜𝑢𝑡−𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ≅ 𝐼𝐶𝑄 × (
𝑉𝑖𝑛 cos(2𝜋𝑓𝑡)

𝑉𝑇
+

𝑉𝑖𝑛
2

4𝑉𝑇
2 +

𝑉𝑖𝑛
2 cos (2𝜋(2𝑓)𝑡)

4𝑉𝑇
2 ) × 𝑅𝐿𝑂𝐴𝐷 (20) 

As can be seen from equation (20), it includes DC, fundamental and second harmonic 

components. The fundamental and second harmonic components can be easily removed 

 

Figure 15 Collector voltage value of the CE transistor (Q1) in stand-alone operation and 

in the cascode configuration. 
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using a shunt-capacitor at the output of the CE transistor, as employed in Figure 14. 

Therefore, the DC voltage response (Vout-response-dc) to the input signal can be 

approximately expressed by equation (21). The DC output voltage response is 

proportional to the square of the input voltage of the transistor. This also points why the 

power detection operation is called as “square-law operation”. 

𝑉𝑜𝑢𝑡−𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝑑𝑐 ≅ 𝐼𝐶𝑄 × (
𝑉𝑖𝑛

2

4𝑉𝑇
2) × 𝑅𝐿𝑂𝐴𝐷 (21) 

Rewriting equation (21) in terms of the available power from source (𝑃𝑎𝑣𝑠), the impedance 

of the source (𝑍𝑠) and the input impedance (𝑍𝑖𝑛), the voltage response at the output (Vout-

response-dc) to the input signal can be expressed by equation (22). The validity of equation 

(22) is demonstrated by comparison of the calculated and simulated result, as shown in 

Figure 16. The slight difference between the calculated and simulated curves can be 

attributed to the non-idealities of the I-V characteristics of the transistors.  

𝑉𝑜𝑢𝑡−𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝑑𝑐 ≅ 𝐼𝐶𝑄 × (
8𝑃𝑎𝑣𝑠𝑅𝑒{𝑍𝑠} |

𝑍𝑖𝑛

𝑍𝑠 + 𝑍𝑖𝑛
|

2

4𝑉𝑇
2 ) × 𝑅𝐿𝑂𝐴𝐷 

(22) 

The responsivity of power detector, which defined as the change in dc output voltage per 

unit input power, is one of the most crucial performance metrics for radiometer systems. 

The responsivity (𝛽) can be calculated by dividing equation (22) by the available source 

power (𝑃𝑎𝑣𝑠), as presented in equation (23) where 𝛼 is a function of the input impedance 

(𝑍𝑖𝑛) and the impedance of the signal source (𝑍𝑠) (𝛼 = 𝑅𝑒{𝑍𝑠}|𝑍𝑖𝑛/(𝑍𝑠 + 𝑍𝑖𝑛)|2). As 

indicated in equation (23), the responsivity (𝛽) of power detector is proportional to the 

quiescent current (ICQ) and the load resistor (RLOAD) of the power detector, and inversely 

proportional to the square of its operating temperature. It is quite worth to say here that 

the analysis for the responsivity presented above is valid under the condition that the input 

power is small enough to guarantee that the transistors are operating in the forward-active 

region.  

𝛽 =  
𝑉𝑜𝑢𝑡−𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝑑𝑐

𝑃𝑎𝑣𝑠
≅ 𝐼𝐶𝑄 (

8𝑅𝑒{𝑍𝑠} |
𝑍𝑖𝑛

𝑍𝑠 + 𝑍𝑖𝑛
|

2

4𝑉𝑇
2 ) 𝑅𝐿𝑂𝐴𝐷 = 𝛼

𝐼𝐶𝑄

𝑉𝑇
2 𝑅𝐿𝑂𝐴𝐷 (23) 
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The NEP (in 𝑊/𝐻𝑧1/2) of a power detector, which is defined as the ratio of the output 

noise voltage spectral density (𝑆𝑣𝑜) (in 𝑉/𝐻𝑧1/2) to the responsivity (𝛽) as indicated in 

equation (24), is considered as the obvious figure-of-merit of the power detectors in the 

passive imaging systems.  

𝑁𝐸𝑃 =  
𝑆𝑣𝑜

𝛽
 (24) 

The NEP points out the minimum input power that can be detected. In other words, the 

NEP defines the required minimum input power to obtain a unity signal-to-noise ratio at 

the output of the power detector. In order to find out the expression of the NEP of a power 

detector, we first need to figure out the output noise power spectral density (𝑉𝑛
2̅̅̅̅ /Δ𝑓) of 

the power detector. There are four major noise sources at low frequencies in a SiGe HBT: 

the flicker noise (1/𝑓), the thermal noise of the parasitic base resistance (𝑉𝑟𝑏𝑛), the base 

shot noise (𝑖𝑏𝑛), and the collector shot noise (𝑖𝑐𝑛). The flicker noise (or 1/𝑓 noise) can be 

ignored since the circuit will be modulated at the Dicke switching frequency (10 kHz) 

 

Figure 16 Output voltage response to the available source power. 
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which is far above the 1/𝑓 corner frequency illustrated in Figure 17 that shows the low-

frequency output noise voltage spectral density of the designed circuit. The low-

frequency small-signal equivalent circuit of the cascode configuration based power 

detector including the major noise sources is shown in Figure 18. It should not be 

forgotten here that the base-emitter and collector output resistances (𝑟𝑏𝑒 and 𝑟𝑜) represent 

real parts of impedances without having thermal noise. The base-emitter, collector-base, 

collector-emitter, and collector-substrate capacitances can be ignored because they 

behave as open circuits in the frequency of interest (10 kHz). The total output noise power 

spectral density (𝑉𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) was derived by considering Figure 18. The superposition 

theorem was applied to calculate the total output noise power spectral density (𝑉𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) 

since the correlation between the presented noise sources can be ignored in the frequency 

domain of interest. The output noise power spectral density terms due to each noise source 

were derived, as presented in equations (25(32), where k is the Boltzmann constant, 𝐼𝐵𝑄 

and 𝐼𝐶𝑄 are quiescent currents. The total output noise power spectral density (𝑉𝑛𝑜
2̅̅ ̅̅ /Δ𝑓)  is 

equal to the sum of all these terms. When the parameters in these terms are roughly 

evaluated, it is clear that the collector shot noise of the CE transistor (𝑖𝑐𝑛1) and the thermal 

noise of the load resistor (𝑣𝑙𝑜𝑎𝑑) are dominant. Thus, the total output noise power spectral 

density (𝑉𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) can be simplified to equation (33).  

𝑉𝑛𝑜
2

(𝑅𝑠)
̅̅ ̅̅ ̅̅ ̅̅ /Δ𝑓 ≅ 4𝑘𝑇𝑅𝑆 × (

|𝑅𝐵𝐸1|

|𝑅𝐵𝐸1 + 𝑟𝑏𝑛1 + 𝑅𝑠|
)

2

× 𝑔𝑚1
2 × 𝑅𝐿𝑂𝐴𝐷

2  (25) 

𝑉𝑛𝑜
2

(𝑟𝑏𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑟𝑏𝑛1 × (

|𝑅𝐵𝐸1|

|𝑅𝐵𝐸1 + 𝑟𝑏𝑛1 + 𝑅𝑠|
)

2

× 𝑔𝑚1
2 × 𝑅𝐿𝑂𝐴𝐷

2  (26) 

𝑉𝑛𝑜
2

(𝐼𝑏𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐵𝑄1 × (

|𝑟𝑏𝑛1 + 𝑅𝑠|

|𝑅𝐵𝐸1 + 𝑟𝑏𝑛1 + 𝑅𝑠|
)

2

× 𝑅𝐵𝐸1
2 × 𝑔𝑚1

2 × 𝑅𝐿𝑂𝐴𝐷
2  (27) 

𝑉𝑛𝑜
2

(𝐼𝑐𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐶𝑄 × 𝑅𝐿𝑂𝐴𝐷

2  (28) 

𝑉𝑛𝑜
2

(𝑟𝑏𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑟𝑏𝑛2 × (

|𝑔𝑚2𝑅𝐵𝐸2|

|𝑟𝑜1(1 + 𝑔𝑚2𝑅𝐵𝐸2)|
)

2

× 𝑅𝐿𝑂𝐴𝐷
2  (29) 

𝑉𝑛𝑜
2

(𝐼𝑏𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐵𝑄2 × (

|𝑔𝑚2𝑟𝑏𝑛2𝑅𝐵𝐸2|

|𝑟𝑏𝑛2 + (𝑟𝑜1(1 + 𝑔𝑚2𝑅𝐵𝐸2)|
)

2

× 𝑅𝐿𝑂𝐴𝐷
2  (30) 

𝑉𝑛𝑜
2

(𝐼𝑐𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐶𝑄2 × (

1

|1 + 𝑔𝑚2𝑅𝐵𝐸2|
)

2

× 𝑅𝐿𝑂𝐴𝐷
2  (31) 
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𝑉𝑛𝑜
2

(𝑅𝐿𝑂𝐴𝐷)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑅𝐿𝑂𝐴𝐷 (32) 

𝑉𝑛𝑜
2 /Δ𝑓 = 2𝑞𝐼𝐶𝑄𝑅𝐿𝑂𝐴𝐷

2 + 4𝑘𝑇𝑅𝐿𝑂𝐴𝐷 (33) 

As mentioned earlier, the NEP (in 𝑊/𝐻𝑧1/2) of a power detector is defined as the ratio 

of the output noise voltage spectral density (𝑆𝑣𝑜) (in 𝑉/𝐻𝑧1/2) to the responsivity (𝛽). If 

the square root of the total output noise power spectral density (𝑉𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) (33) and the 

responsivity (𝛽) (23) expressions are substituted into the equation of the NEP (24), then 

the NEP can be expressed by equation (34).  

𝑁𝐸𝑃 =  
𝑆𝑣𝑜

𝛽
=

√𝑉𝑛𝑜
2̅̅ ̅̅

Δ𝑓

𝛽
=

√2𝑞𝐼𝐶𝑄𝑅𝐿𝑂𝐴𝐷
2 + 4𝑘𝑇𝑅𝐿𝑂𝐴𝐷

𝛼
𝐼𝐶𝑄

𝑉𝑇
2 𝑅𝐿𝑂𝐴𝐷

=
𝑉𝑇

2

𝛼
√

2𝑞

𝐼𝐶𝑄
+

4𝑘𝑇

𝐼𝐶𝑄
2 𝑅𝐿𝑂𝐴𝐷

 
(34) 

 

 

Figure 17 Output noise voltage spectral density of the designed power detector 

(schematic based result).   
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Figure 18 Low frequency small-signal equivalent circuit of the cascode configuration. 

 

Figure 19 NEP and responsivity (𝛽) versus load resistance (𝑅𝐿𝑂𝐴𝐷) (Loss due to the 

impedance mismacth between the input of the transistor and the source was de-embedded) 

(@140 GHz). 
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As can be seen from (34), the NEP performance of a power detector can be improved by 

increasing the load resistance (𝑅𝐿𝑂𝐴𝐷) and the quiescent current (𝐼𝐶𝑄). But this 

improvement is limited due to two reasons. Firstly, higher quiescent current (𝐼𝐶𝑄) and 

larger load resistance (𝑅𝐿𝑂𝐴𝐷) will cause a significant voltage drop between the supply 

voltage (𝑉𝐶𝐶) and the collector of the CB transistor (Q2), and it would saturate the both 

transistors. Even though this problem will be able to be solved by increasing the supply 

voltage (𝑉𝐶𝐶) to a voltage level that will not damage the transistors, a small increase of 

the amplitude of the input signal (𝑉𝑖𝑛) would cause a significant voltage drop again. The 

second reason is that the maximum current values which can flow through high value 

resistances in semiconductor technologies are very limited. For the used semiconductor 

process (IHP’s SG13G2), the highest value resistor material, which is made by p-doped 

gate polysilicon, can drain a maximum 0.15 mA current, for a width of 0.5 𝜇m.  

 

 

Figure 20 NEP and responsivity (𝛽) versus the base-emitter voltage of the CE transistor 

(Loss due to the impedance mismacth between the input of the transistor and the source 

was de-embedded) (@140 GHz). 
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The dependence of the NEP performance on the load resistance (𝑅𝐿𝑂𝐴𝐷) is shown in 

Figure 19 for same quiescent current and the same quiescent voltage value at the collector 

of the CB transistor. As expected from the equations derived for the NEP and the 

responsivity (𝛽), the performance of the power detector circuit increases with increasing 

load resistance (𝑅𝐿𝑂𝐴𝐷). Figure 20 shows the dependence of the NEP performance on the 

quiescent current (𝐼𝐶𝑄) while using same load resistance (𝑅𝐿𝑂𝐴𝐷) and having the same 

quiescent voltage value at the collector of the CB transistor. The quiescent current (𝐼𝐶𝑄) 

was increased up to the allowed maximum current value for the used resistor material. 

The trade-offs and aforementioned limitations were carefully evaluated, and a higher load 

resistor (𝑅𝐿𝑂𝐴𝐷) was chosen instead of higher quiescent current value (𝐼𝐶𝑄) to minimize 

NEP of the power detector. In order to improve NEP, the responsivity (𝛽) of the circuit 

should be increased, i.e. the second-order dc response of the CE transistor (Q1) should be 

enhanced as possible. Therefore, the transistor size should be as small as possible, as 

verified by the simulation result shown in Figure 21. 

 

 

Figure 21 NEP and responsivity (𝛽) versus the emitter length of the transistor (Loss due 

to the impedance mismacth between the input of the transistor and the source was 

deembedded) (@140 GHz) 
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The available power at the input of the power detector should be transmitted to the input 

of the first transistor (Q1) without having losses due to the impedance mismatching to not 

degrade the responsivity (𝛽). Thus, the impedance matching between the input of the 

power detector and the input of the first transistor (Q1) have a significant effect on the 

responsivity (𝛽), so also on the NEP performance of the power detector. It is very 

important to have a low NEP value across a broadband frequency range to mimize the 

NETD value of the radiometer. As explained before, if the transistor size is set to 

minimum value, the NEP performance is obtained. But this results in narrowband 

impedance matching because of the very large input impedance of the transistor.  

After all these design guidelines had been taken into account and evaluated, the quiescent 

current (𝐼𝐶𝑄) was set to 50 μA, a 100 kΩ load resistance (𝑅𝐿𝑂𝐴𝐷) was used, and the emitter 

size of the transistor was chosen to be 2x unit.  

The transmission line based T-type matching network was used to perform the impedance 

matching between the input of the power detector circuit and the input of the first 

transistor (Q1). All the transmission lines were implemented as microstrip lines with Top 

Metal 2 – Metal 1 configuration and all of them were meandered to reduce the chip area. 

A MIM capacitor of 200 fF was employed to perform DC blocking, as well as to 

contribute to the input impedance matching slightly. Parasitic capacitance due to the RF 

pad was not included in the input impedance matching. Instead, a Through-Reflect-Line 

(TRL) de-embedding fixture was utilized to de-embed the effect of RF-pad and shift the 

reference plane. The collector of the CE transistor (Q1) was shunted by a MIM capacitor 

of 340 fF to remove the fundamental signal component, and to isolate the input impedance 

of the CE transistor (Q1) from the rest of the circuit. The load resistance of 100 kΩ was 

realized by a p-doped gate polysilicon. Full-chip electromagnetic (EM) simulations were 

performed by ADS Momentum. The 3D layout view taken from the electromagnetic 

simulation setup of the D-band power detector is shown in Figure 22. 

An ideal bias network should provide a very good AC grounding for all frequencies, but 

this is not practically possible. For this reason, at least, the bias line network should 

provide a very good AC grounding for the frequency range of interest. A capacitor has a 

self-resonance frequency (SRF) depending on its geometrical structure and its size. For 

instance, the SRF of the 340 fF capacitor which was on the base-bias line is 140 GHz in 

the used process technology (IHP’s SG13G2), and it can just provide an acceptable AC 
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grounding between 100 GHz and 180 GHz. Another bypass capacitor should be placed 

on the base-bias line to ground smaller frequencies, but if it is connected in parallel to the 

first bypass capacitor, their parasitics will be added up, and it would result in unexpected 

and undesired frequency response. Therefore, a small value resistor should be placed on 

the bias line, between these two-bypass capacitors. That is why a double RC section was 

utilized on the base-bias line, as presented in Figure 14. 

 

2.2.2 Simulation and Measurement Results 

The chip microphotograph of the designed power detector is shown in Figure 23. The 

effective chip area excluding the pads and de-embedding lines is 0.18 mm2, and the total 

area of the integrated circuit is 0.32 mm2. The total quiescent power consumption is 0.43 

mW.  

S-parameters of the power detector were measured by Keysight N5224A PNA whose 

frequency extended to 110-170 GHz using a Virginia Diodes Inc. (VDI) WR6.5 

frequency extension module. One-port SOL calibration was performed by an ISS from 

Cascade-Microtech to move the reference plane to the probe tip. The power at the probe 

 

Figure 22 3D layout view taken from the electromagnetic simulation setup of the D-band 

power detector. 
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tip was set to be less than -40 dBm along the D-band to guarantee that the power detector 

is operating in the square-law region. Later, one-port SOL de-embedding algorithm on 

Cascade WinCal XE software was performed using the data obtained from on-chip de-

embedding structures to remove the parasitic effects of the RF pad. Figure 24 shows the 

simulated and measured s-parameters of the power detector.  As can be seen from Figure 

24, there is a quite good agreement between the simulated and measured s-parameter 

results. The return loss of the power detector is better than 10 dB between 123 and 170 

GHz with the RF-pad, and better than 10 dB along the D-band without the RF-pad. 

 

 

Figure 23 Chip microphotograph of the designed power detector (0.53 mm × 0.61 mm). 
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An experimental test setup, which is shown in Figure 25, was set to measure the 1/f 

flicker noise of the power detector. The input of the power detector was externally 

terminated by a WR6.5 waveguide 50Ω load. The noise voltage at the output of the power 

detector was amplified by an external low-noise pre-amplifier (SR-550) and then 

measured by Keysight 35670A dynamic signal analyzer between 1 Hz and 10 kHz. Later, 

the gain of SR-550 was de-embedded from the measurement.  

 

 

Figure 24 Simulated and measured s-parameter results of the power detector.  

 

Figure 25 Experimental setup for the measurement of the 1/f flicker noise of the power 

detector. 
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The measured low-frequency output noise voltage spectral density of the power detector 

is presented in Figure 26.  The output noise voltage spectral density is almost constant 

(620 nV/√Hz) above 2 kHz which can be also considered as the 1/f corner frequency of 

the power detector. As mentioned earlier, the Dicke switching frequency should be set to 

be far away from 2 kHz. Therefore, the output noise voltage spectral density (𝑆𝑣𝑜) was 

taken as 620 𝑛𝑉/√𝐻𝑧 in the noise equivalent power (NEP) calculations. 

 

 

Figure 26 Measured 1/𝑓 flicker noise of the power detector. 

 

Figure 27 Experimental test setup for the measurement of the output voltage waveform 

and the responsivity of the power detector. 
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Figure 28 Measured output voltage waveform of the power detector (@140 GHz). 

 

Figure 29 Simulated and measured responsivity of the power detector.  
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Figure 27 shows the experimental test setup which was used to observe the output voltage 

waveform and to measure the responsivity of the power detector. It is very important to 

know exactly the power at the probe tip at the input of the power detector to measure the 

responsivity correctly. Therefore, first, the conversion loss between the “a” port of the D-

band directional coupler and the IF port (“b”) of the D-band direct down-conversion 

mixer was measured by connecting a D-band power meter to the “a” port of the D-band 

directional coupler. It was verified that this conversion loss is constant for all power levels 

that would be used during the responsivity measurements. Second, a second probe, which 

is identical to the presented probe (at left in the figure), was connected to the D-band 

power meter, and in this way, the total insertion loss of the two s-bend waveguides and 

two probes was measured using a small through-line on the ISS. By dividing this value 

by half, the insertion loss between the “a” port of the D-band directional coupler and the 

probe tip was found. The insertion losses figured out above were taken into account while 

measuring the responsivity of the power detector.   

 

 

Figure 30 Simulated and measured NEP of the power detector. 
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An input signal to the input of the power detector which was AM modulated at 10 kHz 

with a modulation depth of %100 was applied to emulate the impact of the Dicke switch.   

Figure 28 shows the measured output voltage waveform of the power detector while the 

power of the input signal varies from -34.2 dBm to -60 dBm at 140 GHz. As mentioned 

earlier and presented in equation (23), the responsivity can be calculated by dividing the 

change in dc output voltage by the change in input power. This procedure was repeated 

with 10 GHz step-size between 110 and 170 GHz. The simulated and measured 

responsivity results of the power detector are presented in Figure 29. As can be seen from 

the figure, the measured curve matches well with the simulated result. The measured peak 

responsivity value of the power detector is about 883 kV/W at 130 GHz. It gradually 

decreases after 130 GHz, and its minimum value is about 373 kV/W at 170 GHz. 

The NEP of the power detector was calculated by dividing the output noise voltage 

spectral density by the responsivity. Figure 30 shows the simulated and measured NEP 

of the power detector. The measured NEP is better than 1 𝑝𝑊/𝐻𝑧1/2 over 110-150 GHz 

frequency range, and its minimum value is about 0.7  𝑝𝑊/𝐻𝑧1/2 at 130 GHz. The slight 

discrepancy between the simulation and measurement results above 120 GHz can be 

attributed to that the measured responsivity value is slightly better than the simulation in 

at the same frequency range.  

2.2.3 Comparison 

The performance comparison of the power detector with previously reported D-band 

power detectors implemented in silicon technologies is summarized in Table 3. The NEP 

performance of a power detector is the most important parameter, which is also 

considered as the figure-of-merit (𝐹𝑜𝑀) of the power detectors in the passive imaging 

systems. The designed power detector achieves the best noise equivalent power 

performance compare to previously reported D-band power detectors implemented in 

silicon technologies. Moreover, the designed power detector has the highest responsivity 

among the other silicon-based studies in the literature, thanks to higher value load resistor. 

Even though the use of high resistance results in a lower power compression point of 

approximately -30 dBm, it is not a priority performance criterion for the passive imaging 

applications. These results point that the D-band power detector shows the state-of-the-

art performance and emphasize the suitability of the power detector for mm-wave passive 

imaging systems to achieve excellent NETD performance.  
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Table 3 Summary of performance comparison of the D-band power detector with 

previously reported D-band power detectors implemented in silicon technologies. 

 Technology 

NEP 

(𝒑𝑾/
𝑯𝒛𝟏/𝟐) 

Responsivity 

(𝒌𝑽/𝑾) 

RLOAD 

(𝒌Ω) 

S11 

<-10 

dB 

(𝑮𝑯𝒛) 

Area 

(𝒎𝒎𝟐) 

[42] 
45nm CMOS 

SOI 
8 3 1 

167-

194 
0.20 

[43] 
90nm SiGe 

BiCMOS 
2.7 10 1 

125-

170 
0.21 

[44] 
90nm SiGe 

BiCMOS 
0.7 11 0.6 

145-

170 
0.05* 

[44] 
90nm SiGe 

BiCMOS 
1.25 14.5 1 N/A 0.02* 

[45] 
0.13𝜇m SiGe 

BiCMOS 
10 10 1 - N/A 

This 

Work 

0.13𝝁m SiGe 

BiCMOS 
0.7 883 100 

110-

170 
0.18* 

* Excluding the pads 

2.3.  Low-Noise Amplifier  

2.3.1 Circuit Design and Implementation 

The circuit schematic of the designed LNA is shown in Figure 31. The designed LNA 

consists of four cascode stages. In order to reduce the noise contribution of the CB 

transistor, a shunt inductor was placed between the CE and CB transistors, which is based 

on the technique proposed in [46] for WLAN applications and CMOS technology. The 

effect of this shunt inductor on the noise figure performance of the cascode configuration 

was analyzed for the SiGe HBT technology. Furthermore, a Butterworth approximation 

based staggered tuning technique was utilized to enhance the bandwidth and improve the 

gain flatness of the LNA. 

The amplitude of the signal collected by the antenna is expected to be very low, around -

100 dBm, as analyzed in Section 2.1. A high-gain LNA is required to amplify the signal 

collected by the antenna and to suppress the noise of the power 
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Figure 31 Circuit schematic of the designed D-band LNA (Electrical lengths of the 

transmission lines are given for 140 GHz). 
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detector. Assuming a bandwidth of 40 GHz, an integration time of 30 ms, a NEP of 0.8 

𝑝𝑤/𝐻𝑧1/2 for the power detector, and an insertion loss of 2.5 dB for the SPDT switch, 

the dependence of the NETD performance of the Dicke radiometer architecture on the 

gain and noise figure of the LNA is demonstrated in Figure 32. As could be seen in the 

Figure 32, the noise figure of the LNA should be as low as possible, and the LNA should 

have a gain of at least 30 dB to suppress the noise of the power detector enough under 

aforementioned assumptions.  The MATLAB code that was used to figure out the effect 

of the gain and noise figure of the LNA on the NETD of the radiometer is given in 

Appendix A.  

 

 

 

Figure 32 Calculated NETD versus the gain of the LNA for various NF values. 

 

Figure 33 High-frequency small-signal equivalent circuit of the cascode topology 

including major noise sources. 
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The CE topology comes out with better noise performance while the cascode 

configuration comes to the forefront with higher gain performance. The total noise figures 

of the cascaded two identical stages for both CE and cascode topologies were calculated 

to figure out which one is appropriate to obtain better noise figure performance, assuming 

that each stage provides its maximum available gain and minimum noise figure values 

and they are operating at the optimum bias point for minimum noise figure without 

trading off too much gain. The result of this calculation is that the gain of the CE is not 

enough to suppress the following stage. Therefore, it was decided to use the cascode 

configuration. Ulusoy et al. [47] presented a gain-boosting technique to enhance the gain 

performance of the SiGe HBT cascode configuration operating at D-band. This gain-

boosting technique can be used to enhance the gain so that the noise contribution from 

the following stages can be suppressed better. However, it does not cope with the noise 

contribution of the CB transistor which leads to trouble in terms of the noise figure, 

especially for above 100 GHz. In order to figure out how to reduce the noise contribution 

of the CB transistor, the noise figure of the cascode topology was analyzed including the 

major noise sources and parasitics in a SiGe HBT. 

There are three major noise sources at high-frequencies in a SiGe HBT: the thermal noise 

of the parasitic base resistance (𝑉𝑟𝑏𝑛), the base shot noise (𝑖𝑏𝑛), and the collector shot 

noise (𝑖𝑐𝑛). The high-frequency small-signal equivalent circuit of the cascode 

configuration including the major noise sources is shown in Figure 33. It should be 

highlighted here that the base-emitter and collector output resistances (rbe and 𝑟𝑜) 

represent real parts of impedances without having thermal noise and, the collector-base 

capacitance was omitted for simplification. In Figure 34, Cx represents all parasitic 

capacitances between the node-X and the ground such as the collector-emitter and 

collector-substrate capacitances of the CE transistor, and the base-emitter and emitter-

substrate capacitances of the CB transistor.  

The method presented in [48] was used to derive the noise factor equation of the cascode 

topology. The superposition theorem was applied to calculate the total output noise 

current power spectral density (𝐼𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) since the correlation between the presented noise 

sources could be ignored for simplification. The output noise current power spectral 

density terms due to each noise source were derived by considering Figure 33 and Figure 

34, as presented in equations (35-(41), where k is the Boltzmann constant, T is the 



44 

 

temperature, 𝐼𝐵𝑄 is the quiescent base current, 𝐼𝐶𝑄 is the quiescent collector current, and 

𝑅𝑠 is the source resistance. The total output noise current power spectral density (𝐼𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) 

is equal to the sum of all these terms. Consequently, the noise factor equation of the 

conventional cascode topology (𝐹𝑎) can be found out by dividing the total output noise 

current power spectral density (𝐼𝑛𝑜
2̅̅ ̅̅ /Δ𝑓) by the output noise current power spectral density 

due to the source (𝑖𝑛𝑜(𝑠𝑜𝑢𝑟𝑐𝑒)
2̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓), as presented in equation (42). At this step, the noise 

factor terms were called like as shown in equation (42) to highlight the parts related with 

the capacitance 𝐶𝑥 in order to focus its effect on the noise factor. 

𝐹𝑟𝑏𝑛1
, 𝐹𝑖𝑏𝑛1

, 𝐹𝑖𝑐𝑛1
, 𝐹𝑟𝑏𝑛2

, 𝐹𝑖𝑏𝑛2
, and 𝐹𝑖𝑐𝑛2

 are the noise factor terms due to the thermal 

noise voltage of the parasitic base resistances and the shot noise currents of the CE and 

CB transistor, respectively. As can be seen from equation (42), the noise contribution of 

the collector shot noise of the CB transistor escalates as frequency increases, and the 

capacitance 𝐶𝑥 has a significant contribution to this undesired effect.  

𝐼𝑛𝑜
2

(𝑠𝑜𝑢𝑟𝑐𝑒)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑅𝑆 × (

|𝑍𝜋1|

|𝑅𝑠+𝑍𝜋1|
)

2

× 𝑔𝑚1
2 × (

𝑔𝑚2

|𝑔𝑚2+
1

𝑍𝑥
|
)2 (35) 

𝐼𝑛𝑜
2

(𝑟𝑏𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑟𝑏𝑛1 × (

|𝑍𝜋1|

|𝑅𝑠+𝑍𝜋1|
)

2

× 𝑔𝑚1
2 × (

𝑔𝑚2

|𝑔𝑚2+
1

𝑍𝑥
|
)2 (36) 

 

Figure 34 Conventional cascode topology (left) and modified cascode topology with the 

shunt-inductor 𝐿𝑥 (right). 
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𝐼𝑛𝑜
2

(𝐼𝑏𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐵𝑄1 × (

𝑅𝑠

|𝑅𝑠+𝑍𝜋1|
)

2

× |𝑍𝜋1|2 × 𝑔𝑚1
2 × (

𝑔𝑚2

|𝑔𝑚2+
1

𝑍𝑥
 |
)2 (37) 

𝐼𝑛𝑜
2

(𝐼𝑐𝑛1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /Δ𝑓 ≅ 2𝑞𝐼𝐶𝑄 × (

𝑔𝑚2

|𝑔𝑚2 +
1

𝑍𝑥
 |

)2 
(38) 

𝐼𝑛𝑜
2

(𝑟𝑏𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 4𝑘𝑇𝑟𝑏𝑛2 × (

|𝑔𝑚2𝑍𝑥|

|(𝑟𝑜1(1 + 𝑔𝑚2𝑍𝑥)|
)

2

 (39) 

𝐼𝑛𝑜
2

(𝐼𝑏𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/Δ𝑓 ≅ 2𝑞𝐼𝐵𝑄2 × (

|𝑔𝑚2𝑟𝑏𝑛2𝑍𝑥|

|𝑟𝑏𝑛2 + (𝑟𝑜1(1 + 𝑔𝑚2𝑍𝑥)|
)

2

 (40) 

𝐼𝑛𝑜
2

(𝐼𝑐𝑛2)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /Δ𝑓 ≅ 2𝑞𝐼𝐶𝑄 × (

1

|1 + 𝑔𝑚2𝑍𝑥|
)

2

 (41) 

𝐹𝑎 ≅ 1 + 𝐹𝑟𝑏𝑛1
+ 𝐹𝑖𝑏𝑛1

+  𝐹𝑖𝑐𝑛1
+ 𝐹𝑟𝑏𝑛2

+ 𝐹𝑖𝑏𝑛2
+ 𝐹𝑖𝑐𝑛2

(
𝜔𝐶𝑥

𝑔𝑚2
)

2

 (42) 

In order to remove the effect of the capacitance 𝐶𝑥 on the noise figure performance, a 

shunt inductor 𝐿𝑥 is placed to parallel to 𝐶𝑥 as shown in Figure 4(b). The noise factor 

equation of the modified topology with the shunt inductor 𝐿𝑥 was derived by following 

the procedure which is presented above for the conventional topology. In this way, the 

noise factor of the modified topology (𝐹𝑏) can be expressed by equation (43). As can be 

seen from equation (43) if the value of the shunt inductor 𝐿𝑥 is set to resonate with the 

capacitance 𝐶𝑥 at the operating frequency, the collector shot noise of the CB transistor 

which is the dominant noise source can be removed completely. Figure 35 compares the 

simulated maximum stable gain (𝑀𝑆𝐺) and minimum noise figure (𝑁𝐹𝑚𝑖𝑛) of the 

conventional and modified cascode topologies (within the typical case). As seen, this 

noise reduction technique reduces the minimum noise figure (𝑁𝐹𝑚𝑖𝑛) about 0.5 dB 

across whole D-band frequency range. However, the maximum stable gain (𝑀𝑆𝐺) 

remains same for both topologies. 

𝑭𝒃 ≅ 𝟏 + 𝑭𝒓𝒃𝒏𝟏
+ 𝑭𝒊𝒃𝒏𝟏

+  𝑭𝒊𝒄𝒏𝟏
+ 𝑭𝒓𝒃𝒏𝟐

+ 𝑭𝒊𝒃𝒏𝟐
+ 𝑭𝒊𝒄𝒏𝟐

(
𝟏 − 𝝎𝟐𝑪𝒙𝑳𝒙

𝒈𝒎𝟐𝝎𝑳𝒙
)

𝟐

 (43) 

Another important performance specification that determines the noise equivalent 

temperature difference performance of the radiometer is the bandwidth. Bi et al. [49] used 

a staggered tuning technique based on Chebyshev distribution at W-band to obtain broad 

bandwidth and thus to improve the noise equivalent temperature difference of the 

radiometer. Even though it provides broad bandwidth, it has not flat-gain which is another 

important performance criterion for the radiometers. The 
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staggered tuning technique based on Butterworth distribution provides the maximally flat 

gain response. Therefore, the staggered tuning technique based on Butterworth 

distribution was employed to obtain broad bandwidth and flat-gain over the frequency of 

interest in this work.  

It is known from the classical filter theory that the number of dominant poles and their 

relative positions to each other determine the bandwidth and characteristics of the transfer 

response. In order to have Butterworth distribution, the dominant poles of the transfer 

function must be on a semicircle with the center at 𝜔0 on the imaginary axis of s-plane, 

as depicted in Figure 36. The diameter length of this circle determines the bandwidth of 

the transfer function in terms of the angular frequency. The dominant pole of a cascode 

configuration is mainly determined by its output network that determines the gain-

peaking frequency and 3-dB bandwidth of the cascode stage [50].  

The first three stages were designed by obeying the gain-peaking frequencies and 3-dB 

bandwidths which are determined by the Butterworth distribution to have a 40 GHz 3-dB 

bandwidth with a center frequency of 140 GHz in total. The last stage of the low-noise 

 

Figure 35 Comparison of the conventional and modified cascode topologies in terms of 

the minimum noise figure (𝑁𝐹𝑚𝑖𝑛) and maximum stable gain (𝑀𝑆𝐺). 
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amplifier was designed to provide wideband output matching without disturbing the 

Butterworth characteristic as much as possible. According to Figure 36, the gain-peaking 

frequencies of the staggered tuned stages should be 122.7, 140 and 157.3 GHz, and each 

stage should have a 3-dB bandwidth of 20 GHz. The gain-peaking frequency of the first 

stage was set to 140 GHz to have a noise figure as minimum as possible at the center of 

the frequency range. The gain-peaking frequencies of the second and third stages were 

optimized to 157.3 and 122.7 GHz, respectively. This order was chosen to avoid a sharp 

increase in noise figure as frequency increases. If the second stage had been peaked at 

122.7 GHz, the total gain of the first two stages would have been not sufficient to suppress 

the noise of the following stages at the higher frequencies since the noise figure naturally 

increases with the frequency. Also, the peak-gain of each stage should be the same to 

each other to not disturb the Butterworth response. Figure 37 shows the simulated gain of 

each stage and the simulated overall gain. 

The collector current of the first stage was optimized to obtain a good compromise 

between the noise figure (NF) and the maximum available gain (MAG) for the unit 

emitter size. The emitter area of the CE transistor (𝑄1) was chosen to enable 

 

Figure 36 Positions of the poles of Butterworth distribution on the s-plane (for 3-poles). 
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simultaneous input power and noise matching. The inductive emitter degeneration 

technique was used to keep the peak-gain value same for each stage. If the emitter 

degeneration had been used to set the real part of the input impedance to 50Ω as in the 

conventional design approach, it would have resulted in different peak-gains for each 

stage so that the Butterworth response would have been disturbed. That’s why the 

transmission line based T-type matching network was used to perform the input 

impedance matching. The electrical lengths and the characteristic impedances of the 

transmission lines which are used at the output network were set to have peak-gain at 140 

GHz with the calculated 3-dB bandwidth for the Butterworth characteristic. The second 

and third stages were designed in the same way but for different peak-gains, and the 

collector currents of these stages were increased to allow larger output voltage swing to 

achieve better linearity performance.  

All the transmission lines were implemented as microstrip lines with Top Metal 2 – Metal 

1 configuration and all of them were meandered to reduce the chip area. Parasitic 

capacitances due to the RF-pads were not included in the input and output impedance 

 

Figure 37 Schematic based simulations of each stage and overall amplifier. 
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matchings. Instead, a TRL de-embedding fixture was used to de-embed the effect of RF-

pad and shift the reference plane to the input of the LNA. The MIM capacitors were 

employed to perform DC-blocking and AC-grounding. The SRF of the 340 fF capacitor 

which was used at the bias networks to perform AC-grounding is 140 GHz in the used 

process technology (IHP’s SG13G2), and it can just provide an acceptable AC grounding 

between 100 GHz and 180 GHz. Another bypass capacitor should be placed on the bias 

line to ground smaller frequencies, but if it is connected in parallel to the first bypass 

capacitor, their parasitics will be added up, and it would result in unexpected and 

undesired frequency response. Therefore, small value resistors were placed on the bias 

lines, between two bypass capacitors as shown in Figure 31, and by this way, these R-C 

sections on the bias lines help to enhance the low-frequency stability and to improve the 

insulation between the stages. ADS momentum was used to perform the full-chip 

electromagnetic (EM) simulations. Figure 38 shows the 3D layout view taken from the 

electromagnetic simulation setup of the D-band LNA. Isolation walls shown in Figure 38 

were employed between the stages to prevent possible unwanted signal leakage between 

the stages through the SiO2 layers and the Si-substrate. 

 

2.3.2 Simulation and Measurement Results 

The chip microphotograph of the designed D-band LNA is shown in Figure 39. The total 

area of the integrated circuit is 1.0 mm2 (1.25 mm × 0.8 mm). The effective chip area, 

excluding the pads and lines placed for de-embedding, is 0.6 mm2. The total quiescent 

power consumption is 28 mW.  

 

Figure 38 3D layout view taken from EM simulation setup of D-band low noise amplifier. 
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S-parameters of the designed D-band LNA were measured by the Keysight N5224A PNA 

whose frequency extended to 110-170 GHz using VDI WR6.5 frequency extension 

modules. Two-port SOLT calibration was performed by an ISS from Cascade-Microtech 

to move the reference plane to the probe tips. The power at the probe tip was set to be 

less than -40 dBm over the D-band to ensure that the designed low-noise amplifier is 

operating in the linear region. After that, two-port TRL de-embedding algorithm on 

Cascade WinCal XE software was performed using the data obtained from on-chip de-

embedding structures to remove the parasitic effects of the RF pads. The simulated and 

measured s-parameter results of the designed low-noise amplifier, including the effects 

of the RF-pads, is presented in Figure 40. Figure 41shows the de-embedded simulated 

and measured s-parameters of the low-noise amplifier. As can be seen from Figure 41, 

there is a quite good agreement between the simulated and measured s-parameter results 

of the designed D-band low-noise amplifier. The peak gain of the LNA was measured to 

be 33.1 dB at 147 GHz, and the 3-dB bandwidth of the designed LNA is 42 GHz. 

 

Figure 39 Chip microphotograph of the designed D-band LNA (1.25 mm × 0.8 mm). 
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Figure 40 Simulated and measured s-parameter results of the designed LNA, including 

the effects of the RF-pads. 

 

Figure 41 De-embedded simulated and measured s-parameter results of the designed 

LNA. 
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Figure 42 shows the measured 1-dB compression point. The input referred 1-dB 

compression point (𝐼𝑃1𝑑𝐵) was measured to be -37.6 dBm by applying a 140 GHz single-

tone sinusoidal signal to the input of the LNA.  

Noise figure measurement of the designed LNA was performed using the experimental 

test setup shown in Figure 43. As can be seen from the figure, the input of the LNA was 

driven by a D-band ELVA-1 noise source that has an excess-noise-ratio (ENR) of 12-dB. 

A D-band faraday isolator was used to avoid the measurement errors that would arise due 

to the mismatch between the output of the noise source and the input of the LNA. The 

output signal of the LNA was down-converted to an IF frequency by a D-band direct-

down conversion mixer driven by an active multiplication chain configurated with 

Agilent E8257C signal generator. The IF signal was amplified by an IF LNA, and then 

analyzed by Agilent 8973A noise figure analyzer. Figure 44 shows the simulated and 

measured noise figure measurement of the LNA. The extremely low-value points were 

not included in the fitted curve. The fitted noise figure is better than 6.1 dB along the D-

band, and the minimum noise figure value of the LNA is 4.8 dB at 127 GHz. 

 

Figure 42 Measured input referred 1-dB compression point of the LNA. 
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Figure 43 Experimental test setup to measure the noise figure of the LNA.    

 

Figure 44 Simulated and measured noise figure performances of the designed LNA. 
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2.3.3 Comparison 

The performance comparison of the designed LNA with reported D-band LNAs 

implemented in silicon technologies is summarized in Table 4. The figure-of-merit (𝐹𝑜𝑀) 

described by equation (44) was used to assess the performance of the LNA.  

𝐹𝑜𝑀 = 1000 ×
𝐺 ∙ 𝐼𝑃1𝑑𝐵[𝑚𝑊] ∙ 𝐵𝑊3𝑑𝐵[𝐺𝐻𝑧]

(𝐹 − 1) ∙ 𝑃𝐷𝐶[𝑚𝑊] ∙ 𝑓𝑐𝑒𝑛𝑡𝑒𝑟(𝐺𝐻𝑧)
 (44) 

The designed LNA achieves the minimum noise figure, and widest 3-dB bandwidth 

compare to previously reported D-band LNAs implemented in silicon technologies. 

These results point that the designed D-band LNA shows the state-of-the-art performance, 

and it is suitable to be employed in millimeter-wave passive imaging systems to achieve 

excellent noise equivalent temperature difference.  

Table 4 Summary of performance comparison of the designed D-band LNA with 

previously reported D-band LNAs implemented in silicon technologies. 

 Tech. 

Peak 

Gain 

(dB) 

Peaking 

Freq. 

(GHz) 

3-dB 

BW 

(GHz) 

NF 

(dB) 

IP1dB 

(dBm) 

PDC 

(mW) 
FoM 

[51] 65nm CMOS  13.8 113.7 11.2 10.8 -26.8 40 0.01 

[52] 
90nm SiGe 

BiCMOS 
36 138 5.5 N/A N/A 45 -- 

[43] 
90nm SiGe 

BiCMOS 
30 140 25 6.2 N/A  15 -- 

[45] 
0.13𝜇m SiGe 

BiCMOS 
35 164 8 11 N/A 92 -- 

[47] 
0.13𝜇m SiGe 

BiCMOS 
27.5 126 18 

5.5-

6.5 
-33 12 1.32 

[53] 
0.13𝜇m SiGe 

BiCMOS 
24.1 158 40 8.2 -25.9 28 1.07 

This 

Work 

0.13𝜇m SiGe 

BiCMOS 
33 147 42 

4.8-

6.1 
-37.6 28 1.78 
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2.4. SPDT Switch 

2.4.1 Circuit Design and Implementation 

SPDT switch is one of the important sub-blocks in the Dicke radiometer architecture. 

Because its insertion loss directly contributes to the overall noise figure of the radiometer 

since there is no amplification block before the SPDT switch. At millimeter-wave 

frequencies, the quarter-wave shunt switch topology is commonly preferred to avoid the 

parasitics of the series devices since these parasitics, especially the parasitic shunt 

capacitances, become very costly in terms of the insertion loss performance as frequency 

increases. Furthermore, Schmid et al. [54] presented a new mode of operation, which is 

named as reverse saturation, that improves the switching performance of the HBT.  

The circuit schematic of the designed SPDT based on the quarter-wave shunt switch 

topology is shown in Figure 45. When the Vcont is applied, the Q2 is turned “on” and the 

Q1 is turned “off”. Thus, the Q2 provides a low impedance (Ron−state and Con−state), and 

the quarter-wave (λ/4) transmission line transforms this approximate short-circuit to an 

open-circuit. In the meantime, Q1 acts as an open-circuit because of the very high off-

state impedance (𝑅𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒 and 𝐶𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒).  In this way, the RF Power at the wanted 

input is directed to the output. It should be highlighted here that the length of the 

transmission line could be smaller than the quarter-wave length to compensate the non-

ideal short-circuit provided by the on-state-HBT. In addition, an inductive shunt stub is 

placed parallel to HBT device to improve the insertion loss performance by resonating 

the off-state capacitance (𝐶𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒) at the center of the frequency range of interest. 

Thence, the dominant term is the off-state resistance (𝑅𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒), which determines the 

insertion loss of the SPDT. Besides, the inductive shunt stub provides the DC-ground for 

the collector of the HBT, and also contributes to input impedance matching.  

The size of the HBT is the main parameter that determines the insertion loss and isolation 

performances of the SPDT.  The use of smaller HBT device enables to provide higher 

off-state resistance (𝑅𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒) which provides better insertion loss performance. 

However, smaller device inherently brings higher on-state resistance (𝑅𝑜𝑛−𝑠𝑡𝑎𝑡𝑒) which 

reduces the isolation performance of the SPDT. Therefore, there is a trade-off between 

the insertion loss and isolation performances of the SPDT, due to the size of the HBT. 

Consequently, the main challenge in the SPDT design using the quarter-wave shunt 

switch topology is finding out the optimum device size. The main approach should be to 
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find a way that increases the off-state resistance (𝑅𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒) without increasing the on-

state resistance (𝑅𝑜𝑛−𝑠𝑡𝑎𝑡𝑒) to break this trade-off. There are three different ways to use 

 

Figure 45 Circuit schematic of the designed D-band SPDT switch (Electrical lengths of 

the transmission lines are given for 140 GHz). 

 

Figure 46 3D layout view taken from EM simulation setup of D-band SPDT switch. 
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an HBT as an electrical switch: diode-connected, forward-saturation mode, and reverse-

saturation mode. Ulusoy et al. [55] have shown that the HBT operating in forward-

saturation mode achieves superior performance compare to the diode-connected (base 

and collector terminals connected) HBT. Because the parasitic capacitances, 𝐶𝐶𝐵 and 𝐶𝐶𝐸, 

are parallel connected in the diode-configuration while they are series connected in the 

forward-saturation mode. Furthermore, Schmid et al. [56] have revealed that for a same 

on-state resistance (𝑅𝑜𝑛−𝑠𝑡𝑎𝑡𝑒) value, the HBT configurated in the reverse-saturation 

mode provides a very higher (about eight times larger) off-state resistance (𝑅𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒) 

than the forward-saturated HBT.  This improvement enables to build SPDTs that have 

lower insertion loss but also higher isolation performance, by breaking the trade-off 

between the insertion loss and isolation performances. 

After all aforementioned design guidelines had been taken into account and evaluated, 

the HBTs were configurated in the reverse-saturation mode, and the emitter size of the 

transistor was chosen to be 16x unit. The transmission line based T-type matching 

network was used to perform the impedance matching between at the input of the SPDT 

switch. All the transmission lines were implemented as microstrip lines using Top Metal 

2 – Metal 1 configuration, and they were meandered to reduce the area. The DC-blocking 

capacitors were implemented by the MIM capacitor of 50 fF. It contributes to the input 

impedance matching slightly, as well. Parasitic shunt capacitances due to the RF pads 

were not taken into account. Instead of this, a Through-Reflect-Line (TRL) de-embedding 

fixture was utilized to de-embed the effect of RF-pad and to shift the reference plane. The 

self-resonated bypass capacitors of 500 fF were placed on the bias lines to provide an 

AC-grounding as well as possible. Full-chip electromagnetic (EM) simulations were 

performed by ADS Momentum. The 3D layout view taken from the electromagnetic 

simulation setup of the D-band SPDT switch is shown in Figure 46.   

2.4.2 Simulation and Measurement Results 

The die microphotograph of the designed SPDT switch is shown in Figure 47. The 

effective chip area excluding the pads and de-embedding lines is 0.16 mm2. The overall 

integrated circuit occupies an area of 0.33 mm2. The total quiescent power consumption 

is 5.3 mW. 

S-parameters of the SPDT switch were measured by Rohde&Schwarz ZVA24 vector 

network analyzer whose frequency extended to 110-170 GHz using Rohde&Schwarz 
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ZC170 frequency extension modules. Two-port line-reflect-reflect-match (LRRM) 

calibration was performed using ISS 138-356 from Cascade-Microtech to move the 

reference plane to the probe tip. The power at the probe tip was set to be less than -30 

dBm along the D-band to guarantee that the SPDT switch is not compressed. Then, two-

port thru-open-load (TRL) de-embedding algorithm on Cascade WinCal XE software was 

run using the measurement data obtained from on-chip de-embedding structures to 

 

Figure 47 Die microphotograph of the designed SPDT switch (0.46 mm × 0.71 mmm). 

 

Figure 48 Simulated and measured s-parameter results of the designed SPDT switch, 

including the effects of the RF-pads (except isolation performance). 
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remove the parasitic effects of the RF pads. Figure 48 shows the simulated and measured 

s-parameters of the designed SPDT switch, including the effects of the RF-pads. The de-

embedded simulated and measured s-parameters of the designed SPDT switch are 

presented in Figure 49. As can be observed from the results, there is a little discrepancy 

between the simulations and measurements. This discrepancy can be attributed to that the 

simulation program does not solve the full-chip layout of the designed SPDT accurately. 

The input and output return losses of the SPDT switch are better than approximately 10 

dB over the D-band. The de-embedded insertion loss result is better than 4 dB along the 

D-band, and its minimum value is about 2.6 dB at 125 GHz. Figure 50 shows the 

simulated and measured isolation results of the SPDT switch, with and without RF-pads. 

The de-embedded measurement isolation value is better than 25 dB across the entire D-

band, and its maximum value is 30 dB. 

 

2.4.3 Comparison 

The performance comparison of the SPDT switch with previously reported D-band SPDT 

switches implemented in silicon technologies is summarized in Table 5. The designed 

SPDT switch shows the minimum insertion loss performance with the highest isolation 

compared to the other studies implemented in silicon technologies. These results promise 

 

Figure 49 De-embedded simulated and measured s-parameter results of the designed 

SPDT switch (except isolation performance). 
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a state-of-the-art operation, and the designed SPDT switch is adequate to be used in 

millimeter-wave radiometer applications to accomplish a superior noise equivalent 

temperature difference performance.  

Table 5 Summary of performance comparison of the designed D-band SPDT 

switch with previously reported D-band SPDT switches implemented in silicon 

technologies. 

 Technology Topology 

Insertion 

Loss 

(dB) 

Isolation 

(dB) 

PDC 

(mW) 

Area 

(mm2) 

[57] 
32nm 

CMOS SOI  
Single-shunt 2.6 22 0 0.21 

[58] 
65nm 

CMOS  

Magnetically 

Switchable 

Artificial Resonator 

3.3 23.7 0 0.004* 

[55] 

0.13𝜇m 

SiGe 

BiCMOS 

Double-shunt 

Saturated HBTs 
2.6 29 6 0.36 

This 

Work 

0.13𝜇m 

SiGe 

BiCMOS 

Reverse-saturated 

Shunt HBTs 
2.6 30 5.3 0.16* 

* Excluding the pads 

 

Figure 50 Simulated and measured isolation results of the designed SPDT switch. 
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2.5. Total Power and Dicke Radiometers 

2.5.1 Implementation 

The advantages and disadvantages of the direct detection radiometer architectures are 

discussed in Section 2.1.2. Within the scope of this thesis study, the direct detection 

architectures were used to build the total power and Dicke radiometers. As presented in 

Section 2.1.2, a typical total power radiometer consists of an LNA to amplify the weak 

signal collected by the antenna, and a power detector to convert the RF power information 

to DC-voltage. The noise equivalent temperature difference (NETD) performance of the 

total power radiometer is significantly degenerated by the gain-fluctuation of the LNA. 

The effect of the gain-fluctuation of the LNA on the noise equivalent temperature 

difference (NETD) of the radiometer can be eliminated by using the Dicke switch. 

Therefore, a typical Dicke radiometer includes an SPDT switch before the LNA in 

addition to the total power radiometer topology. The performances of the presented sub-

blocks such as SPDT switch, LNA, and power detector were found to be suitable to build 

radiometer systems. The layout view of the implemented Total Power and Dicke 

radiometers are shown in Figure 51 and Figure 52, respectively.  No impedance matching 

network was used between these sub-blocks because all of them were designed to match 

50Ω. All sub-blocks were placed as close together as possible to keep the insertion losses 

due to the interconnection transmission lines as minimum as possible. In this way, the 

loading effects of the sub-blocks on each other were kept minimum for both of the 

radiometer systems. 

 

 

Figure 51 2D layout view of the D-band Total Power Radiometer. 
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2.5.2 Measurement Results 

The chip photos of the total power and Dicke radiometers are shown in Figure 53 and 

Figure 54, respectively. The total chip area of the total power radiometer is 1.3 mm2 (1.55 

mm × 0.84 mm), and the Dicke radiometer occupies a chip area of 1.7 mm2 (2.04 mm × 

0.84 mm). The total quiescent power consumption of the total power radiometer is 28.53 

mW. The Dicke radiometer consumes a DC power of 33.82 mW in quiescent operation. 

One-port s-parameter measurements of the total power and Dicke radiometers were 

performed by Keysight N5224A PNA whose frequency extended to D-band using a 

Virginia Diodes Inc. (VDI) WR6.5 frequency extension module. One port short-open-

load (SOL) calibration was done by an ISS from Cascade-Microtech to move the 

reference plane to the end of the probe. Figure 55 shows the measured input return losses 

of the total power and Dicke radiometers. The input return loss of the total power 

radiometer is better than 10 dB over the frequency range of 111 to 158 GHz and better 

than 8.4 dB across the entire D-band. The input return loss of the Dicke radiometer is 

better than 10 dB from 110 to 153 GHz and better than 7.5 dB along the D-band.  

The experimental test setup shown in Figure 25 was used to measure the 1/f flicker noise 

of the total power and Dicke radiometers. The input ports of the radiometers were 

connected to a WR6.5 waveguide 50Ω termination. The external low-noise pre-amplifier 

(SR-550) was used to amplify the output noise voltage signals of the radiometers. The 

amplified signals were then measured by Keysight 35670A dynamic signal analyzer 

operating between 1 Hz and 10 KHz. Later, the gain of the pre-amplifier was subtracted 

from the measurements.  

 

Figure 52 2D layout view of the D-band Dicke Radiometer. 
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Figure 56 shows the measured low-frequency output noise voltage spectral density of the 

radiometers. The output noise voltage spectral density of the total power radiometer is 

almost constant (6.6 𝜇𝑉/√𝐻𝑧) above 1 kHz which can be also considered as the 1/𝑓 

corner frequency of the total power radiometer. On the other hand, the output noise 

voltage spectral density of the Dicke radiometer remains approximately constant (6.4 

𝜇𝑉/√𝐻𝑧) after 1 kHz which can be also considered as the 1/𝑓 corner frequency of the 

Dicke radiometer. As mentioned earlier, the Dicke switching frequency should be set to 

be far away from 2 kHz. Therefore, the output noise voltage spectral density (𝑆𝑣𝑜) was 

taken as 6.4 𝜇𝑉/√𝐻𝑧 in the noise equivalent power (NEP) calculations of the radiometer. 

 

 

Figure 53 Chip micrograph of the total power radiometer (1.55 mm × 0.84 mm). 

 

Figure 54 Chip micrograph of the Dicke radiometer (2.04 mm × 0.84 mm). 
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Figure 55 Measured input return losses of the radiometers. 

 

Figure 56 Measured 1/𝑓 flicker noise of the radiometers. 



65 

 

The experimental test setup shown in Figure 27 was used to measure the responsivities 

of the radiometers. The power calibration and measurement procedures presented in 

Section 2.2 was followed in the same way to figure out the responsivity performances of 

the radiometers. However, the maximum input power was set to -66 dBm and -62 dBm 

for the total power radiometer and the Dicke radiometer, respectively, to ensure that they 

are operating in the square-law region. Figure 57 shows the measured responsivity 

performances of the radiometers. The peak responsivity value of the total power 

radiometer was measured to be about 1377 MV/W at 130 GHz, and it is higher than 750 

MV/W over the frequency range of 110 to 155 GHz. Therewithal, the peak responsivity 

of the Dicke radiometer is 688 MV/W at 130 GHz, and it is minimum value is about 82.6 

MV/W at 170 GHz. As can be observed from the figure, the difference between these two 

curves is about 3 dB at the center of the frequency range of interest, and it is almost 3.8 

dB at the end of the D-band. This difference can be attributed to the insertion loss of the 

SPDT switch. The observed difference is between the raw and de-embedded insertion 

loss performances of the SPDT switch. This is already expected because one of the RF-

pads is included into the responsivity measurement of the Dicke radiometer. 

 

 

Figure 57 Measured responsivities of the total power and Dicke radiometers. 
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The measured noise equivalent power performances of the radiometers are illustrated in 

Figure 58. Assuming an external calibration technique that completely eliminate the 

effect of the gain-fluctuation, the NEP of the total power radiometer is better than 10 

𝑓𝑊/𝐻𝑧1/2 from 110 to 155 GHz, and it is much less than 30 𝑓𝑊/𝐻𝑧1/2 along the entire 

D-band. Its minimum value was found to be about 4.8 𝑓𝑊/𝐻𝑧1/2 at 130 GHz. In addition, 

the NEP of the total power radiometer was determined including the effect of the gain-

fluctuation which arises due to the 1/f noise. In this case, the NEP of the total power 

radiometer is higher than 36 𝑓𝑊/𝐻𝑧1/2 over the W-band. On the other hand, the noise 

equivalent power of the Dicke radiometer remains below 20 𝑓𝑊/𝐻𝑧1/2 at the frequency 

range of 110-155 GHz, and its minimum value is about 9.3 𝑓𝑊/𝐻𝑧1/2 at 130 GHz. 

The effective RF noise bandwidth (𝐵𝑅𝐹) of a radiometer can be found by equation (45) 

using the measured responsivity (𝛽) performance of the radiometer itself [36]. In this 

way, the effective RF noise bandwidths were calculated to be 52.3 GHz and 51.4 GHz 

for the total power radiometer and the Dicke radiometer, respectively. 

𝐵𝑅𝐹 =
[∫ 𝛽

∞

0
(𝑓)𝑑𝑓]

2

∫ 𝛽2(𝑓)𝑑𝑓
∞

0

 (45) 

 

Figure 58 Measured NEP of the total power and Dicke radiometers. 
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The effective responsivity (𝛽𝑒𝑓𝑓) of a radiometer can be calculated by equation (46) using 

the measured responsivity (𝛽) values of the radiometer itself [59]. Thus, the effective 

responsivity values were found to be 1093 MV/W and 552 MV/W for the total power 

radiometer and the Dicke radiometer, respectively.  

𝛽𝑒𝑓𝑓 =
∫ 𝛽

∞

0

2
(𝑓)𝑑𝑓

∫ 𝛽(𝑓)𝑑𝑓
∞

0

 (46) 

Consequently, the noise equivalent temperature difference (NETD) performance of the 

total power radiometer was determined by equation (47) as in [60].  It should be noted 

that the noise equivalent power (𝑁𝐸𝑃) in equation (3) was derived by dividing the output 

rms noise voltage by the effective responsivity value. The external calibration techniques 

require a shorter back-end integration time such as 3.125 ms. Therefore, the NETD of the 

total power radiometer was calculated for a back-end integration time of 3.125 ms. In the 

NETD calculation of the Dicke radiometer, the integration time was taken to be 30 ms 

which is a typical value for the passive imaging systems. In addition, the NETD value for 

the total power radiometer was calculated assuming an external mechanical switching. 

Therefore, the penalty factor of 2 was included to account either for mechanical (total 

power radiometer) and electrical (Dicke radiometer) switching, as presented in equation 

(48). Moreover, the NETD of the total power radiometer was also calculated for different 

normalized gain-fluctuation values, using equation (7).  Figure 59 shows the NETD 

performance of the total power radiometer respect to various normalized gain-fluctuation 

values.  

𝑁𝐸𝑇𝐷 =
𝑁𝐸𝑃

𝑘𝐵𝑅𝐹√2𝜏
 (47) 

𝑁𝐸𝑇𝐷 = 2
𝑁𝐸𝑃

𝑘𝐵𝑅𝐹√2𝜏
 (48) 

Finally, the NETD of the total power radiometer was found to be 0.11K, assuming an 

external calibration technique and a back-end integration time of 3.125ms. The NETD of 

the total power radiometer was also calculated to be 1.3K, assuming a gain-fluctuation of 

%0.1. In addition, the NETD of the total power radiometer was found to be 0.07K, 

assuming a mechanical switch that has no insertion loss. On the other hand, the NETD of 

the Dicke radiometer was determined to be 0.13K for a back-end integration time of 30 

ms. 
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2.5.3 Comparison 

Table 6 summarizes the performance comparison of the implemented radiometers with 

previously reported millimeter-wave radiometers. To the authors’ best knowledge, the 

implemented radiometers achieve the best noise equivalent temperature difference 

(NETD) performances and widest effective RF noise bandwidths in the literature, even 

better than the millimeter-wave radiometers implemented in III-V semiconductor 

technologies. The key factor in achieving such a high NETD performance is to be having 

widest effective RF noise bandwidth which is almost twice that of the nearest study. 

Therefore, it should be also noted that this study highlights the superior potential of the 

Butterworth staggered-tuning technique for the millimeter-wave radiometers. 

Consequently, the implemented total power and Dicke radiometers show the state-of-the-

art performances, and they are suitable to be employed in millimeter-wave passive 

imaging systems by integrating with on-chip or external antennas, and specifically 

designed baseband parts.  

 

Figure 59 NETD of the total power radiometer for various gain-fluctuation ratios. 
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Table 6 Summary of performance comparison of the implemented radiometers 

with previously reported millimeter-wave radiometers. 

 Technology Top. 

Center 

Freq. 

GHz 

NETD 

K 

𝑩𝑹𝑭 

GHz 

𝝉  

𝑚𝑠 

𝑵𝑬𝑷 

𝑓𝑊

/𝐻𝑧1/2 

𝜷 

𝑀𝑉

/𝑊 

PDC 

mW 

Size 

mm2 

[61] InP HEMT TPR 92 
0.45α 

0.30β* 
29 

3.125 

30 
N/A 18 40 N/A 

[62] InP HEMT TPR 94 
0.29α 

0.18β* 
28 

3.125 

30 
0.9 4.5 N/A N/A 

[63] InAlGaAs Dicke 94 0.32 N/A N/A N/A N/A N/A N/A 

[7] 65nm CMOS TPR 85 1 10 30 8.8± 16.1 93.2 3 

[64] 65nm CMOS Dicke 86 1.1 18 30 36± 0.666¶ 110 0.41 

[60] 
0.13𝜇m SiGe 

BiCMOS 
TPR 90 0.69* 15 30 20 4.4 34.8 N/A 

[60] 
0.13𝜇m SiGe 

BiCMOS 
Dicke 90 0.83 15 30 21 4.9 34.8 0.4 

[67] 
0.18𝜇m SiGe 

BiCMOS 
Dicke 94 0.48 10 30 8.1± 285 197 2.6 

[65] 
0.18𝜇m SiGe 

BiCMOS 
Dicke 85 0.4 26 30 10 43 200 3.1 

[68] 
0.13𝜇m SiGe 

BiCMOS 
TPR 97.5 

0.45* 

0.37β* 
21 

20 

30 
0.28 1150 225 N/A 

[69] 
0.13𝜇m SiGe 

BiCMOS 
Dicke 92 0.78 15 30 37± 27 75 0.32 

[70] 
0.13𝜇m SiGe 

BiCMOS 
Dicke 90 0.21 8 30 

1.9 

2.7± 

240 

166.1¶ 
28.5 3.42 

[66] 65nm CMOS Dicke 140 1.5 21 30 26 1.2 152 N/A 

[4] 

SiGe  

(270/330 

GHz ft/fmax) 

TPR 165 
0.35α 

0.23β* 
10 

3.125 

30 
14 28 95 0.4 

[52] 
90nm SiGe 

BiCMOS 
TPR 136 

0.25 α 

0.16 β* 
11.8 

3.125 

30 
1.4 52 47.2 0.5 

This 

Work 

0.13𝜇m SiGe 

BiCMOS 
TPR 130 

0.11 

1.3γ 

0.07* 

52.3 

3.125 

3.125 

30 

4.8 

6± 

1377 

1093¶ 
28.5 1.3 

This 

Work 

0.13𝜇m SiGe 

BiCMOS 
Dicke 130 0.13 51.4 30 

9.3 

11.6± 

688 

552¶ 
33.8 1.7 

* Assuming an external mechanical switching with a penalty factor of 2. 
± Derived NEP value by using the effective responsivity value (or average NEP). 
¶ Effective (Average) responsivity value. 
α Assuming a calibration without reducing the observation time. 
β Recalculated system performance for 30ms back-end integration time. 
γ Assuming a gain-fluctuation of %0.1. 
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3. W-Band Frequency Extension Module for VNAs 

In this chapter, first, the fundamental operating principle of a VNA, and its basic 

architectures are presented. Then, the frequency extension concept and the architecture 

of the single-chip frequency extension module are depicted. After that, the design 

methodologies, implementation methods, and measurement results of the sub-blocks are 

presented. In addition, the comparisons of the significant sub-blocks (down-conversion 

mixer and frequency quadrupler) with the previously reported studies are briefly 

summarized. Finally, the characterization and the experimental results of the 

implemented single-chip frequency extension module are presented.  

3.1. S-Parameter Measurements Using Frequency Extension Modules 

3.1.1 Network Analyzer 

Network Analyzer is the basic measurement equipment which is mostly used for 

characterization of RF, microwave and millimeter-wave electronic networks. A network 

analyzer measures S-parameters which are capable to completely describe the small-

signal properties of electronic circuits such as active circuits, passive components, and 

sensors. SNAs are capable to measure only amplitude qualities of the incident, reflected, 

and transmitted waves. In other words, it is not possible to acquire the phase information 

of the signals by using an SNA. However, VNAs can also measure the phase relationships 

between the incident, reflected, and transmitted signals in addition to the amplitude 

properties. Therefore, VNAs have tremendous advantages over SNAs to completely and 

precisely figure out the small-signal behaviors of the electronic networks.  

A simplified block diagram of a typical two-port SNA is illustrated in Figure 60. As can 

be seen from the figure, it uses the amplitude detectors to measures the incident, reflected 

and transmitted signals so that it misses the phase relationships between the signals. 

Assume that the s-parameters of a device under test are being measuring, as illustrated in 

Figure 60. First, the RF signal is directed to the port-1 by the port switch. The RF signal 

is sampled by the first directional coupler, and its amplitude (a1') is measured by the 

amplitude detector labeled as “reference-1”. At the same time, the reflected signal is 

sampled by the second directional coupler, and its amplitude (b1') is measured by the 

amplitude detector labeled as “test-1”. In fact, the magnitude of the S11 of the device 

under test is found by dividing the amplitude of the reflected signal (b1) by the amplitude 
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of the incident signal (a1), as presented in equation (49). Therefore, an error correction, 

which is termed as calibration, should be performed, as discussed later. After that, the 

amplitude of the transmitted signal (b2') is determined by the test-2 amplitude detector, 

and the amplitude of the incident signal (a1') continues to be measured simultaneously. 

In the same way, a calibration should be done because of the fact that the S22 of the 

device under test is equal to the quotient of the actual amplitude of the transmitted signal 

(b2) and the actual amplitude of the incident signal (a1), as described in equation (50).  

 

|𝑆11| =
|𝑏1|

|𝑎1|
|

𝑎2=0

 (49) 

|𝑆21| =
|𝑏2|

|𝑎1|
|

𝑎2=0

 (50) 

 

 

Figure 60 Simplified block-diagram of a typical two-port scalar network analyzer. 
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Figure 61 presents a simplified block diagram of a typical two-port VNA. VNAs are 

operating as like described above for SNAs. However, as can be seen from the figure, it 

employs down-conversion mixers instead of amplitude detectors so that the incident, 

reflected, and transmitted signals are down-converted to IF signals. These IF signals are 

converted into digital domain by analog-to-digital converters (ADCs), and then divided 

to I and Q signals by processing with digital IQ-demodulators. Later, these I and Q signals 

are converted to magnitude and phase information for further signal processing. In 

practice, multiple frequency down-conversion process might be performed before ADCs. 

As can be seen from Figure 61, a two-port VNA comprises two front-end circuits, which 

is termed as a reflectometer, that consist of basically two directional couplers, two down-

conversion mixers, and a power divider. In essence, the reflectometers can be considered 

as the hearts of the VNAs since they dominantly determine the main performance 

specifications of the VNAs such as frequency range, input impedance, dynamic range, 

noise floor, etc. In addition, the directivity and the input impedance of the reflectometers 

dominate the measurement uncertainty of the performed measurement.  

Figure 62 shows the flow graph of the 3-term error model of the one-port s-parameter 

measurement which is performed by a VNA, where 𝑒00 is the error that arises due to the 

finite directivity of the reflectometer, 𝑒11 is the error due to the port matching, and 𝑒10 

and 𝑒01 are the tracking errors (insertion losses etc.). The actual reflection coefficient of 

the device under test, which is equal to S11 of the device under test when the other ports 

are terminated with match load if they exist, can be determined by dividing the b1 

(reflected wave) by the a1 (incident wave), as described in equation (51). However, the 

measured reflection coefficient is equal to the division of b0 by a0, as shown in equation 

(52). Therefore, an error correction should be performed to remove the errors such as 𝑒00, 

𝑒01, 𝑒10, and 𝑒11. 

𝛤11 =
𝑏1

𝑎1
 (51) 

𝛤11−𝑀 =
𝑏0

𝑎0
 (52) 

The actual reflection coefficient (𝛤11) can be expressed in terms of the measured reflection 

coefficient (𝛤11−𝑀), the directivity error (𝑒00), the port match error (𝑒11), and the overall 

tracking error (𝑒01𝑒10) by considering the flow-graph of the one-port three-term error 

model shown in Figure 62, as described by equation (53).  This equation can be rewritten 
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Figure 61 Simplified block-diagram of a typical two-port vector network analyzer. 
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as shown in equation (54) by leaving the actual reflection coefficient (𝛤11) alone on the 

left side. The product of 𝑒10 and 𝑒01 can be considered as one term for the ratio 

measurements. That is also why this error model is named as “three-term error model”.  

𝛤11−𝑀 = 𝑒00 + (𝑒10𝑒01) ×
𝛤11

1 − 𝑒11𝛤11
 (53) 

This equation can be rewritten as shown in equation (53) by leaving the actual reflection 

coefficient (𝛤11) alone on the left side and taking the product of 𝑒10 and 𝑒01 as one term 

which is named as the overall tracking error (𝑒𝑇).  

𝛤11 =
𝛤11−𝑀 − 𝑒00

𝑒𝑇 + 𝛤11−𝑀𝑒11 − 𝑒00𝑒11
 (54) 

As can be seen from the equation, there are three unknown terms, and it means that we 

need to have three independent equations at least to find the actual reflection coefficient. 

For this reason, three different measurements must be performed with three independent 

standards such as short (𝛤11 = −1), open (𝛤11 = 1), and match load (𝛤11 = 1) to make 

error correction (calibration). In fact, this works for any three independent linear 

measurement, not just for short-open-load (SOL), but these three standards are very 

suitable to build for all frequency range. 

The flow graph of the six-term forward error model of the two-port s-parameters 

measurement is presented in Figure 63, where e00 is the error that arises due to the finite 

directivity of the reflectometer of the port-1, e11 is the error due to the port-1 matching, 

e10 and e01 are the reflection tracking errors (insertion losses etc.), e22 is the port-2’s 

matching error, e30 is the error because of the signal leakage from the port-1 to the port-

2, and e10 and e01 are the transmission tracking errors. Solving the flowgraph of  the two-

port six-term forward error model shown in Figure 63 yields measured S11 (S11m) and 

S21 (S21m) as described in equation (55) and equation (56), respectively, in terms of the 

errors mentioned above and the actual s-parameters of the device under test 

(𝑆11, 𝑆12, 𝑆21, 𝑆22), where Δ𝑠 = 𝑆11𝑆22 − 𝑆21𝑆12.  

𝑆11𝑀 =
𝑏0

𝑎0
= 𝑒00 + (𝑒10𝑒01)

𝑆11 − 𝑒22Δ𝑠

1 − 𝑒11𝑆11 − 𝑒22𝑆22 + 𝑒11𝑒22Δ𝑠
 (55) 

𝑆21𝑀 =
𝑏3

𝑎0
= 𝑒30 + (𝑒10𝑒32)

𝑆21

1 − 𝑒11𝑆11 − 𝑒22𝑆22 + 𝑒11𝑒22Δ𝑠
 (56) 
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Figure 62 One-port three-term error model for the s-parameter measurement. 

 

Figure 63 Two-port six-term forward error model for the s-parameter measurements. 

 

Figure 64 Two-port six-term reverse error model for the s-parameter measurements. 
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Two-port s-parameters measurement requires a second error model which is the six-term 

error mode for the reverse operation. Figure 64 shows the flow graph of the six-term 

reverse error model of the two-ports s-parameters measurement, where 𝑒′33 is the error 

because of the finite directivity of the port-2’s reflectometer, 𝑒′11 is the error due to the 

port-1 matching, 𝑒′10 and 𝑒′01 are the reflection tracking errors (insertion losses etc.), 𝑒′11 

is the port-1’s matching error, 𝑒′03 is the error because of the signal leakage from the port-

2 to port-1, and 𝑒′23 and 𝑒′32 are the transmission tracking errors. 

Considering the flowgraph of  the two-port six-term reverse error model shown in Figure 

64, the measured S22 (S22m) and S12 (S12m) can be expressed by equation (57) and 

equation (58), respectively, in terms of the errors mentioned above for the reverse 

operation, and the actual s-parameters of the device under test (𝑆11, 𝑆12, 𝑆21, 𝑆22), where 

Δ𝑠 = 𝑆11𝑆22 − 𝑆21𝑆12.  

𝑆22𝑀 =
𝑏′3

𝑎′3
= 𝑒′33 + (𝑒′23𝑒′32)

𝑆22 − 𝑒′11Δ𝑠

1 − 𝑒′11𝑆11 − 𝑒′22𝑆22 + 𝑒′11𝑒′22Δ𝑠
 (57) 

𝑆21𝑀 =
𝑏′0

𝑎′0
= 𝑒′03 + (𝑒′23𝑒′32)

𝑆12

1 − 𝑒′11𝑆11 − 𝑒′22𝑆22 + 𝑒′11𝑒′22Δ𝑠
 (58) 

The four equations derived above ((55-(58) for the forward and reverse measurement 

operations comprise the four-actual s-parameters of the device under test, and total 12 

error terms (6+6=12). It should be highlighted here that either the product of 𝑒10 and 𝑒01, 

and the product of  𝑒′23 and 𝑒′32 is taken as individually one term because of the ratio 

measurements.  If these 12 error terms are figured out, the equation system that includes 

these four equations can be solved in order to acquire the actual s-parameters of the device 

under test. Even though, there are total twelve unknown terms, we have just four 

equations. It means that eight more independent linear equations are required to solve the 

equation system completely. Therefore, the six error terms in the forward operation are 

solved, and then the other six error terms in the reverse operation are figured out using 

the same procedure which is used in the solution of the forward equation system.  

Let’s start with the error correction of the forward mode. First, the directivity error (𝑒00), 

the port-2 matching error (𝑒11), and reflection tracking error (𝑒10𝑒01) are determined 

using the same error correction procedure predefined for the one-port three-term error 

model (i.e., short-open-load for the port-1). Second, the leakage from the port-1 to the 

port-2 (𝑒30) is found by taking the measurement while connecting the match load to each 

of the ports. Third step is to figure out the match error of the second port (𝑒22) by 
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measuring directly by the reflectometer of the first port which is already calibrated at the 

first step. Lastly, the overall transmission tracking (𝑒10𝑒32) is measured by connecting 

the ports to each other.  

The procedure which is described for the six-term error correction of the forward mode 

can be followed for the reverse mode as well to figure out the six error terms mentioned 

before. In this way, total twelve-terms of the two-port error model is determined. 

3.1.2 Frequency Extension Module 

The main limiting factors that determine the upper-frequency edge of a VNA are the 

frequency ranges of the reflectometers and RF&LO sources. Even though there is an 

effort to extend the frequency ranges of the reflectometers and RF&LO sources, the trend 

is not to integrate them with the base units of the VNAs. Instead, the frequency extension 

modules that consist of reflectometers and frequency multiplication components are 

employed to extend the frequency range of the s-parameter measurements. The simplified 

block diagram of a frequency extension module configured with a VNA is presented in 

Figure 65. 

 

 

Figure 65 Simplified block diagram of a frequency extension module. 
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There are several significant reasons of using the frequency extension modules instead of 

extending the frequency ranges of the base units of VNAs. First, the existing coaxial 

cables and connectors in the market do not work properly above 110 GHz. However, 

0.8mm coaxial cables and connectors, which are capable of operating up to 145 GHz, 

have recently begun to appear on the market [71]. Therefore, using the rectangular or 

circular waveguides for above 145 GHz measurements is still an imperative, and thereby 

it is not possible to manage the connections between the outputs of a VNA and the ports 

of a device under test, because of the waveguide’s rigidity structures. Second, the free-

space wavelengths of the signals above 75 GHz are extremely small (<4mm) respect to 

the required lengths of the cables that should use to connect the ports of the device under 

test to the output connectors of the VNA. It results in intolerance to even small changes 

in the positions of the cables that would significantly degrade the accuracy of the 

measurement due to severe phase changes. For this reason, the output of the reflectometer 

should be as close as possible to the ports of the device under test. Last, there are already 

many vector network analyzers available in the customer’s hands which are compatible 

with the configuration with frequency extension modules. Thus, many customers tend to 

extend the frequency range of their measurement systems by using the frequency 

extension modules to avoid high costs of having a new VNA.   

Although there are many advantages of using frequency extension modules to extend the 

frequency range of the measurements, the frequency extension modules have many 

significant drawbacks. First of all, a typical frequency extension module built with 

waveguide components may weigh about 2.5 kg or even more, and its physical 

dimensions might be as much as 18 cm × 7 cm × 24 cm [71]. It leads to difficulties in 

placing the frequency extension modules near to the device under test, and this has a 

negative impact on the performance of the measurement. In addition, they need specially 

designed holders and positioners which are compatible to integrate with the probe station 

because of the bulky and heavy structures of the frequency extension modules, and this 

increases costs. Second, the interior height and width sizes of the waveguides which are 

compatible with such a frequency extension module are typically a few millimeters or 

even less (see Table 7). Discontinuities and erosions at the connection interfaces due to 

usage would significantly deteriorate the accuracies of the measurements [72]. In 

addition, misalignments at the connections of two waveguides might considerably cause 

systematic errors in the error corrections (calibration) of the measurements [73]. Finally, 



79 

 

but most importantly, as can be seen from Table 7 and approximately described in 

equations (59) and (60), where c is the speed of the light in the free-space, and a is the 

physical dimension of the width of the waveguide, for the air filled rectangular 

waveguides, the waveguides have both lower and upper cut-off frequencies that 

determines their operating frequency range. For this reason, the frequency extension 

modules can operate in only the frequency range that they are specifically aimed. In 

addition, the frequency extension modules require the waveguide input wafer probes 

specially designed for each waveguide frequency band for the on-wafer measurements. 

Whereas, the coaxial cables have just one cut-off frequency that determines the upper 

limit of their frequency ranges, as described in equation (61) for the air-filled cables so 

that they can operate from DC to their cut-off frequencies. Therefore, the frequency 

extension modules with the coaxial outputs (1 mm up to 110 GHz and 0.8 mm up to 145 

GHz) have recently begun to take place in the market (Anritsu ME7838E/D [74], 

Keysight N5290A [75], Rohde&Schwarz [76]). They provide a very broad frequency 

range such as from DC to 110 or 145 GHz. Nevertheless, the usage of the coaxial output 

is not an ultimate solution for the higher frequencies.  

Table 7 Millimeter-wave rectangular waveguides’ physical dimensions and 

operating frequency bands. 

Waveguide 

Standard 

Code (EIA) 

Recommended 

Frequency 

Band 

(GHz) 

Lower 

Cutoff 

Frequency 

(GHz) 

 (for lowest 

order) 

Higher 

Cutoff 

Frequency 

(GHz) 

(for lowest 

order) 

Interior 

Width 

(mm) 

Interior 

Height 

(mm) 

WR22 33-50 26.346 52.692 5.6896 2.8448 

WR19 40-60 31.391 62.782 4.7752 2.3876 

WR15 50-75 39.875 79.75 3.7592 1.8796 

WR12 60-90 48.373 96.746 3.0988 1.5494 

WR10 75-110 59.015 118.03 2.54 1.27 

WR8 90-140 73.768 147.536 2.032 1.016 

WR6.5 110-170 90.791 181.583 1.651 0.8255 

WR5 140-220 115.714 231.429 1.2954 0.6477 

WR4 170-260 137.243 274.485 1.0922 0.5461 

WR3 220-330 173.571 347.143 0.8636 0.4318 
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Figure 66 Detailed block diagram of the designed single-chip frequency extension 

module. 
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𝑓𝑙𝑜𝑤𝑒𝑟−𝑐𝑢𝑡𝑜𝑓𝑓 =
𝑐

2𝑎
 (59) 

𝑓𝑢𝑝𝑝𝑒𝑟−𝑐𝑢𝑡𝑜𝑓𝑓 =
𝑐

𝑎
 (60) 

𝑓𝑐𝑢𝑡𝑜𝑓𝑓 =
𝑐

𝜋(
𝐷 + 𝑑

2 )√𝜇𝑅𝜖𝑅

 
(61) 

3.1.3 Single-Chip Frequency Extender and System Simulations 

The detailed block diagram of the designed W-band single-chip frequency extension 

module for VNAs is presented in Figure 66. As can be seen from the figure, the fully 

integrated frequency extension module, which receives RF (18-28 GHz) and LO (17.925-

27.925 GHz) signals from the VNA and sends two IF (MHz) signals (reference and test 

signals) to the VNA, consists of two single-balanced W-band down-conversion mixers, 

two balanced frequency quadruplers (K-band to W-band), two W-band amplifiers, a W-

band Wilkinson power divider, and a W-band dual directional coupler. In essence, the 

frequency extension module can be considered as a superheterodyne transceiver that can 

simultaneously receivers and transmits through single-port.  

Assuming an ideal power splitter with an insertion loss of 3 dB and an isolation of 25 dB, 

a dual directional coupler with a coupling of 10 dB and a directivity of 45 dB, two direct 

down-conversion mixers with a conversion loss 7 dB and a LO-to-RF isolation of 40 dB, 

two frequency quadrupler with a conversion loss of 10 dB for even harmonics and a 

conversion loss of 30 dB for odd harmonics, the system simulations were performed using 

harmonic balance simulations through ADS. A 3-dBm RF input signal sweeping from 

18.75 GHz to 27.5 GHz and a 3-dBm LO input signal sweeping from 18.675 GHz to 

27.425 GHz were applied through 50Ω power terminals.  

The amplitude ratio and the phase difference of the 300 MHz IF reference and test signals 

were tracked as the outputs of the systems. The measured reflection coefficient (Γ11−M), 

which is described in equation (53) for the three-term error model of the one-port s-

parameter measurement, is equal to phasor division of the IF test signal by IF reference 

signal. In this way, a SOL error correction is virtually performed using short, open, and 

load standards through the MATLAB. Finally, an impedance (10-45j Ω) was connected 

to DUT port, and it was verified by the MATLAB code which gives us 10.1232-45.2538j 

Ω at 90 GHz.  The MATLAB code which was used to perform the virtual short-open-

load (SOL) calibration is given in Appendix B.   
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Figure 67 and Figure 68 depict the representative 2D and 3D models of the proposed 

active probe, respectively, which utilizes the designed single-chip frequency extension 

module for the VNAs. In this way, the output of the frequency extension module can be 

placed as close as possible to the device under test so that it helps us to avoid the 

performance degeneration of the measurement due to the long distance, which is detailly 

explained above (in Section 3.1.2). Furthermore, this approach overcomes the frequency 

band limitations of the waveguides. 

 

 

 

Figure 67 2D representative model of the proposed active probe. 

 

Figure 68 3D representative model of the proposed active probe. 
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3.2. Down-Conversion Mixer 

3.2.1 Circuit Design and Implementation 

The mixer is one of the basic RF circuits, which performs the down-conversion and up-

conversion by multiplying two different signals.  There are three basic configurations of 

active mixers: single-ended, single-balanced, and double-balanced [77]. These three 

mixer topologies have their advantages and disadvantages. The single-ended 

configuration comes to the forefront with features such as lower power consumption, less 

LO power requirements, and design simplicity. However, it suffers from some 

performance deficiencies, in particular, a lack of isolations between the RF and LO ports, 

the LO and IF signals, and the RF and IF ports. On the contrary, the double-balanced 

mixer topology has significant drawbacks, including the higher power consumption and 

the design complexity, although it is capable to completely solve the isolation deficiencies 

that cannot be handled by the single-ended configuration. In addition, the double-

balanced mixer configuration requires two baluns that convert the input RF and LO 

signals to balanced RF and LO signals. The single-balanced mixer can be considered in 

the middle of these two topologies, in terms of the RF performances and the requirements. 

For instance, its power consumption and LO power requirement are less than the double-

balanced mixer, but more than the single-ended mixer. Furthermore, it needs just one 

balun, which is employed to convert the unbalanced LO input to the balanced signal for 

the switching LO pair. Moreover, it significantly suppresses the signal leakages from LO 

port to RF port as in the double-balanced configuration.  

In essence, s-parameter measurement can be considered as a kind of single-tone test. 

Therefore, there must be a single signal coming into the port of the device under test. In 

addition, the LO-to-RF leakage of the mixer would degrade the accuracy of the 

measurement since the leakaged LO signal would produce an undesired IF signal in the 

other receiver in the reflectometer [78]. For this reason, it is very significant to suppress 

the leakage between the LO and RF ports of the mixer. With all these considerations in 

mind, the single-ended topology was chosen to perform down-conversion. The detailed 

circuit schematic of the designed W-band single-balanced down-conversion mixer is 

shown in Figure 69. The designed circuit includes a Marchand balun and an off-chip 

wideband discrete IF 3:1 transformer (WBC-3TL) in addition to the single-balanced core.  
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The tail transistor (Q1), which is the CE driver stage, converts the incoming RF voltage 

signal into a current signal, and then the switching differential pair multiplies this current 

signal by the incoming LO signal. Thence, the conversion gain of the mixer strongly 

depends on the transconductance and the parasitic capacitances (𝐶𝜋 and Cμ) of the tail 

transistor. Therefore, the transistor was biased where its 𝑓𝑡 is maximum. The optimum 

number of the transistor was found by considering the input matching of the driver stage 

(RF input). The tail transistor was degenerated by an inductive impedance to set the real 

part of its input impedance to 50Ω, and also this inductive degeneration improves the 

linearity.  

On the other hand, the LO switching transistors were biased at the Class-B point to 

perform switching as ideal as possible [77]. The optimum LO power was found to be -4 

dBm to acquire better conversion gain performance. The number of the transistors were 

optimized to provide better LO input matching. The inductive emitter degenerations were 

utilized to set the real part of the input impedance of each switching transistor (Q2, Q3) 

to 25Ω thanks to that the collector node of the driver stage is the virtual ground for the 

switching differential pair.  

The leakages of the LO and RF signals to IF ports were eliminated by placing a shunt-

capacitor of 550 fF at the output of each switching transistor. The supply voltage (𝑉𝐶𝐶) 

was supplied through the resistors of 250Ω instead of the inductors. Because, tens of nHs 

are required to provide high impedance at the IF frequency of 300 MHz, and an on-chip 

inductor of around these values would occupy an incredibly large area with respect to the 

mixer itself. However, the resistive load would dramatically reduce the 1-dB compression 

point of the mixer. Therefore, the resistors of 250Ω were employed to avoid significant 

voltage drop, considering also the output impedance matching. The differential IF output 

was converted to single-ended output using an off-chip 3:1 wideband transformer. 

However, the IF output was taken single-endedly in the frequency extension module, as 

depicted in Figure 70, to avoid large areas of passive baluns and the high-power 

consumptions of the active baluns, and meanwhile the other IF output was terminated 

with an on-chip resistor of 50Ω.  The LO signal was supplied into the switching 

differential pair transistors by the designed Marchand balun that consists of two quarter 

wave coupled line pairs. Figure 71 shows the simulated EM results of the amplitude and 

phase balances of the designed Marchand balun. The amplitude balance is better than 1 

dB and the phase balance is less than 2°  over the W-band. 
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Figure 69 Detailed circuit schematic of the w-band direct down-conversion mixer 

(Electrical lengths of the transmission lines are given for 94 GHz). 

 

Figure 70 Detailed circuit schematic of the W-band direct down-conversion mixer 

inserted into the frequency extension module (Electrical lengths of the transmission lines 

are given for 94 GHz). 
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All the transmission lines were implemented as microstrip lines with Top Metal 2 – Metal 

1 configuration. Parasitic capacitances due to the RF pads were included in the RF and 

LO ports’ input impedance matchings. Full-chip electromagnetic (EM) simulations were 

performed by ADS Momentum. The MIM capacitors were utilized to perform DC-

blocking and AC-grounding. The 3D layout view taken from the electromagnetic 

simulation setup of the W-band single-balanced down-conversion mixer is shown in 

Figure 72.   

 

 

Figure 71 Simulated amplitude and phase balances of the designed Marchand balun. 

 

Figure 72 3D layout view taken from EM simulation setup of W-band single-balanced 

down-conversion mixer. 
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3.2.2 Simulation and Measurement Results 

The chip photo of the designed W-band single-balanced down-conversion mixer is shown 

in Figure 73. The overall integrated circuit occupies an area of 0.54 mm2 (0.94 mm × 0.57 

mm), the effective chip area, excluding the pads, is 0.37 mm2 (0.82 mm × 0.45 mm). The 

total quiescent power consumption is 13.8 mW. As depicted in Figure 69 and Figure 70, 

two different PCB boards were fabricated. An off-chip wideband (0-1 GHz) IF 3:1 

transformer (WBC-3TL) was mounted to one of these and the measurement was taken in 

this way. On the other PCB board, one of the outputs of the mixer was terminated by 

discrete 50Ω so that the IF output was measured single-endedly. Figure 74 shows the 

experimental test setup for the measurements of the W-band down-conversion mixer. 

Two VDI WR10 frequency extension modules were employed to perform the frequency 

multiplications of RF and LO signals. In the meantime, Keysight N5224A VNA 

configurated with these frequency extension modules was used to track the power level 

at the RF and LO ports of the designed mixer. Since the number of the VNA's signal 

sources is not enough to perform the measurement of the mixer, an external signal 

generator, which is Keysight E8257D, was configurated with the VNA using the GPIB 

interfaces. By this way, the mixer was fed with continuously and simultaneously RF and 

LO signals. Also, the Keysight E4448A spectrum analyzer was used to determine the 

power level at the IF output of the designed mixer. 

 

 

Figure 73 Chip microphotograph of the designed W-band mixer (1.25 mm × 0.8 mm). 



88 

 

 

 

 

Figure 74 Experimental test setup for the measurements of the designed W-band mixer.  

 

Figure 75 Simulated and measured conversion gains versus LO port power (IF fixed at 

300 MHz, and RF fixed at 92.5 GHz).  
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First, the effect of the LO port power on the conversion gain was examined to find the 

optimum LO power level of the designed mixer. The frequencies of the RF and LO signals 

were fixed 92.5 GHz and 92.2 GHz, respectively, to set the IF frequency to be 300 MHz. 

The power at the LO port of the designed mixer was swept from -10 to 0 dBm with 1 dB 

steps. Figure 75 shows the simulated and measured conversion gains versus LO port 

power. The conversion gain steadily increases until the LO power of -4 dBm. The 

optimum LO power level was found to be -4 dBm for both single-ended and differential 

output. The conversion gain remains almost constant for the LO power levels of higher 

than -4 dBm. As can be seen from Figure 75, for single-ended, the difference between the 

simulated and measured results is about 1.5 dB. This difference can be attributed to the 

losses of the bond-wire of 5 mm in the package, the SMD dc-blocking capacitor, and the 

board-to-connector transition. This difference is about 2.8 dB for the differential output, 

and the difference of 1.3 dB with respect to single-ended version is most likely due to the 

insertion loss of the used transformer.  

 

 

Figure 76 Measured IF output power versus RF port power (IF fixed at 300 MHz, RF 

fixed at 92.5 GHz, and LO power fixed at -4 dBm).  
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Second, the input referred 1-dB compression point of the designed mixer was tested. The 

frequencies of the RF and LO signals were fixed 92.5 GHz and 92.2 GHz, respectively, 

and the LO port power was fixed to be -4 dBm. Figure 76 shows the measured IF output 

power versus RF port power. The measured input referred 1-dB compression points of 

the single-ended and differential output mixers were found to be -9.6 dBm, and it is same 

for both versions as expected. Third, the difference between the RF and LO frequencies 

was set to 300 MHz, and the LO port power was fixed to -4 dBm. The RF port power was 

set to be less than -20 dBm along the W-band to ensure that the mixer does not compress. 

Figure 77 shows the simulated and measured conversion gain performances across the 

entire W-band. The measured maximum conversion gains were found to be about -2 dB 

and -5.7 dB at around 84.5 GHz for the differential output and single-ended mixers, 

respectively. The conversion gains of them remain above -4.8 dB and -8.2 dB across the 

whole W-band. It means that both of them achieve a 3-dB bandwidth of at least 35 GHz.  

 

 

 

Figure 77 Simulated and measured conversion gains versus RF Frequency (IF fixed at 

300 MHz, and LO power fixed at -4 dBm).   
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S-parameter measurements of the designed W-band down-conversion mixer were 

performed by Keysight N5224A PNA whose frequency extended to 75-110 GHz using 

VDI WR10 frequency extension modules, as can be seen from the Figure 74. Two-port 

SOLT error correction was done using a Cascade-Microtech ISS (138-357) to shift the 

reference plane to the ports of the designed mixer. The power at the RF input port of the 

mixer was set to be less than -20 dBm over the W-band to guarantee that the mixer is not 

compressed, and the LO port power was fixed to be -4 dBm. Also, the frequency of the 

IF output was fixed to 300 MHz. Figure 78 shows the simulated and measured s-

parameters of the input ports of the designed mixer. As can be seen from Figure 78, there 

is a good match between the simulated and measured s-parameter results of the mixer. 

The measured return loss of the RF input port of the mixer is better than 10 dB across the 

W-band. Also, the measured return loss of the LO port is greater than 10 dB in the 

frequency range of 78 GHz to 110 GHz.   

 

 

Figure 78 Simulated and measured s-parameters of the input ports of the designed mixer. 

(IF fixed at 300 MHz, and LO power fixed at -4 dBm).   
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The simulated and measured LO-to-RF isolation results are presented in Figure 79. The 

measured LO-to-RF isolation of the mixer is better than 40 dB over the W-band. This 

discrepancy can be attributed to that the simulation program does not solve the 3D 

structure of the designed Marchand balun accurately. 

3.2.3 Comparison 

Table 8 presents the summary of the performance comparison of the designed mixer with 

previously reported W-band mixers implemented in silicon technologies. All of the 

published studies, which are included in the comparison, consists of the mixer cores and 

IF buffer amplifiers. This results in higher conversion gain performance, but it also 

reduces the input referred 1-dB compression point or increases the DC power 

consumption. The designed W-band single-balanced down conversion mixer achieves a 

3-dB bandwidth of 35 GHz. To the author’s best knowledge, the designed mixer is the 

single work that completely covers whole W-band frequencies.  

 

Figure 79 Simulated and measured LO-to-RF isolation of the designed mixer. (IF fixed 

at 300 MHz, and LO power fixed at -4 dBm). 
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Table 8 Summary of performance comparison of the designed mixer with 

previously reported W-band down-conversion mixers implemented in silicon 

technologies. 

 Tech. 

Center 

Freq. 

(GHz) 

Conv. 

Gain 

(dB) 

3-dB 

BW 

(GHz) 

IP1dB 

(dBm) 

PDC 

(mW) 

PLO 

(dBm) 

[79]* 
0.13𝜇m SiGe 

BiCMOS 
77 0.7 6 -8 22 10 

[80]* 
0.13𝜇m SiGe 

BiCMOS 
80 3.9 N/A N/A 2.2 -7 

[81]* 
0.13𝜇m SiGe 

BiCMOS 
77 20 N/A -14.7 9.6 -4 

[81]* 
0.13𝜇m SiGe 

BiCMOS 
94 15 N/A -10.7 9.6 6 

[82]* 
0.13𝜇m SiGe 

BiCMOS 
85 10.8 4 N/A 57 -3 

This 

Work 

0.13𝜇m SiGe 

BiCMOS 
84.5 

-2± 

-5.7¶ 
35 -9.6 13.8 -4 

* Including IF buffer amplifier. 
± Including off-chip 3:1 transformer.  

¶ Single-ended, one of the outputs is terminated by 50Ω. 

 

3.3. Frequency Quadrupler 

3.3.1 Circuit Design and Implementation 

Frequency multipliers, which perform the frequency multiplication operations, are one of 

the essential blocks in the RF front-end circuits. The detailed circuit schematic of the 

designed frequency multiplier is presented in Figure 80. An active balanced frequency 

multiplier configuration was utilized to perform the multiplication of the frequency of the 

input signal by four. That is also why it is termed as “frequency quadrupler”. The designed 

frequency quadrupler, which consists of a transformer based passive balun and 

differential transistor pair, receives the signals between 18 and 28 GHz (K-band) and then 

produces signals between 72 and 112 GHz (W-band) using their fourth harmonics. 

Therefore, the input part of the circuit was optimized for the K-band, and the output part 

of the circuit was designed for the W-band. The unbalanced input signal is converted to 

a balanced signal through the transformer based passive balun. The 3D layout view of the 



94 

 

designed balun is shown in Figure 81. Two different conductor layers (Top Metal-2 and 

Top Metal-1 for the primary and secondary windings, respectively) were utilized to 

implement the overlay transformer with a k-factor of 0.77 [83]. The self-inductances of 

the primary and secondary windings are approximately 320 pH so that the turn ratio of 

the transformer is unity (1:1). Figure 82 shows the EM simulation results of the amplitude 

and phase differences of the transformed. The amplitude difference is less than 0.25 dB, 

and the phase difference is approximately 180° across the entire the frequency range of 

18 to 28 GHz with an error of less than 0.5°. The transistors in the quadrupling stage (Q1 

and Q2) were biased at the Class-B bias point to enrich their output currents in terms of 

harmonic contents [84]. The number of the transistors were determined to be x4 by 

considering the output power and the input matching. The optimum power value of the 

input signal was found to be 5 dBm, taking the loss of the passive balun into account. The 

collector nodes were connected to each other to combine the even harmonics, and this 

 

Figure 80 Detailed circuit schematic of the designed frequency quadrupler (Electrical 

lengths of the transmission lines are given for 94 GHz). 
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node will be virtual ground for the odd harmonics so that the odd harmonics can be 

significantly suppressed [85]. The third and fifth harmonics of the frequency qudrupler 

would cause significant degradation in the accuracy of the measurement that would be 

performed by the frequency extension module since they will also be in the frequency 

range of interest. Therefore, the elimination of the odd-harmonics is very important to 

reduce the systematic errors in the s-parameter measurement. This is also the most 

important reason for choosing the balanced configuration in the frequency multiplication.  

 

 

 

Figure 81 3D layout view taken from EM simulation setup of the designed K-band 

transformed based balun. 

 

Figure 82 Simulated amplitude and phase balances of the designed K-band transformed 

based balun. 
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Efforts were made to ensure that the circuit is as symmetrical as possible throughout the 

design of the frequency quadrupler circuit. All the transmission lines were implemented 

in microstrip from with a Top Metal 2 – Metal 1 configuration. Parasitic capacitances due 

to the RF pads were included into the input and output impedance matching networks. 

Full-chip electromagnetic (EM), harmonic-balance and transient simulations were 

performed on ADS Momentum. The MIM capacitors were used to perform DC-blocking 

on the signal paths and bypassing on the feed lines. The 3D layout view taken from the 

electromagnetic simulation setup of the designed balanced frequency quadrupler is shown 

in Figure 83.   

3.3.2 Simulation and Measurement Results 

Figure 84 shows the micrograph of the designed frequency quadrupler circuit. The total 

IC occupies an area of 0.56 mm2, and the effective area is 0.41 mm2, excluding the pads. 

The total power consumption is 44.8 mW while applying an RF input signal of 5 dBm. 

S-parameter measurement of the frequency quadrupler circuit was performed by Keysight 

N5224A PNA. One-port SOL calibration was performed by as ISS from Cascade-

Microtech to move the reference plane to the probe tip. The power at the probe tip was 

set to be approximately 5 dBm at the center of the W-band. The simulated and measured 

s-parameters of the frequency quadrupler circuit were presented in Figure 85. The 

measured S11 is better than -5 dB along the entire W-band. The simulated and measured 

output powers (4th harmonic) of the frequency quadrupler were shown in Figure 86. The 

measured peak output power is about 1.5 dBm at 95 GHz, and it is greater than -6 dBm 

over the W-band. Figure 87 shows the simulated and measured harmonic levels relative 

to the 4th harmonic signal. The second, third and fifth harmonics could not be measured 

 

Figure 83 3D layout view taken from EM simulation setup of the frequency quadrupler. 
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since our measurement setup does not cover the frequency ranges of these harmonics. 

The fundamental signal is suppressed better than 28.5 dB along the W-band. 

 

 

         

Figure 84 Chip micrograph of the designed frequency quadrupler circuit (0.89 mm × 

0.63 mm). 

 

Figure 85 Simulated and measured s-parameter results of the frequency quadrupler. 



98 

 

 

 

 

Figure 86 Simulated and measured output power of the frequency quadrupler. 

 

Figure 87 Simulated and measured output harmonic levels of the frequency quadrupler. 
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3.3.3 Comparison 

The performance comparison of the designed frequency quadrupler with previously 

reported W-band frequency multipliers implemented in silicon technologies is 

summarized in Table 9.  It achieves the maximum output power compared to other 

frequency multiplier circuits implemented in silicon technologies.   

Table 9 Summary of performance comparison of the designed frequency 

quadrupler with previously reported W-band frequency multipliers implemented in 

silicon technologies. 

 Tech. 
Freq. 

(GHz) 
xN 

Pin 

(dBm) 

Pout 

(dBm) 

f0 

sup. 

(dB) 

PDC  

(mW) 

[86] 65nm CMOS 73-88 x2 -4 -3.2~-8.2 >19 14 

[87] 65nm CMOS 75-110 x2 5 -11 >20 13.8 

[88] 65nm CMOS 75-110 x4 10 -14.3 >30 16 

[89] 
0.18𝜇m SiGe 

BiCMOS 
80-100 x3 0 -10.5 >20 78 

This 

Work 

0.13𝜇m SiGe 

BiCMOS 
75-110 x4 5 1.5~-6 >28.5 44.8 

 

3.4. Buffer Amplifiers 

3.4.1 Circuit Design and Implementation 

The input impedance of the following stage of the frequency quadrupler has a significant 

impact on the output power of the frequency quadrupler circuit. This would significantly 

reduce the accuracy of the s-parameter measurement since the input impedance of the 

device under test would change the output power of the frequency quadrupler at the RF 

path of the frequency extension module. Therefore, an amplifier with high reverse 

isolation was employed as a buffer stage to eliminate the dependence of the output power 

of the frequency quadrupler on the input impedance of the following stage. A cascode 

configuration was utilized to acquire high reverse isolation performance since the cascode 

transistor reduces the effect of the 𝐶𝜇 the capacitance of the CE transistor on the overall 

transfer function of the amplifier.  



100 

 

 

Figure 88 shows the detailed circuit schematic of the designed single-stage W-band 

amplifier which is used at the RF path. As presented in Section 3.3, the simulation results 

show that the average output power of the frequency quadrupler circuit is around -3 dBm 

over the W-band.  A power of 0 dBm at the output of the frequency extension module 

was aimed to achieve a high dynamic range. Therefore, assuming an insertion loss of 2 

dB for the dual-directional coupler, the amplifier should have a gain of 5 dB with an input 

1-dB compression point greater than -3 dBm. For this reason, the collector current was 

set to provide the required input 1-dB compression point and required gain, and it was 

also optimized to not increase the noise figure too much for the unit emitter size. The 

number of the transistor was found to be x8 considering the required output power level. 

The inductive emitter degeneration (35 pH) was utilized to set the real part of the input 

impedance to 50Ω. The imaginary part of the input impedance was canceled out using a 

series inductor of 55 pH at the base of the CE transistor. It should be also noted that the 

 

Figure 88 Detailed circuit schematic of the single-stage W-band buffer amplifier, which 

is at the RF path.  (Electrical lengths of the transmission lines are given for 94 GHz). 
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designed amplifier behaves as a band-pass filter for W-band. By this way, the second 

harmonics of the frequency quadrupler (36-56 GHz) are suppressed. 

As stated in Section 3.2, the optimum power of the LO signal of the designed mixer was 

found to be -4 dBm, according to simulation results, and the conversion gain of the mixer 

remains almost constant for LO power of greater than -4 dBm. Assuming an insertion 

loss of 3.5 dB for the power divider which is at the LO path of the frequency extension 

module, and an insertion loss of 2 dB due to the interconnection transmission lines, the 

output power of the buffer amplifier at the LO path must be at least 1.5 dBm across the 

entire W-band.  

 

The simulation results of the frequency quadrupler show that the minimum output power 

is around -4.5 dBm across the W-band. Therefore, the buffer amplifier should have a 

minimum gain of 6 dB and an output 1-dB compression point greater than 1.5 dBm. 

Taking into account a deviation of 2 dB which may occur in these performance 

specifications after fabrication, a double-stage buffer amplifier was designed by 

cascading the single-stage amplifier which is used at the RF path. Figure 89 shows the 

 

Figure 89 Detailed circuit schematic of the double-stage W-band buffer amplifier, which 

is at the LO path.  (Electrical lengths of the transmission lines are given for 94 GHz). 
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circuit schematic of the double-stage buffer amplifier which is used at the LO path of the 

frequency extension module.  

All the transmission lines were implemented in microstrip form with Top Metal 2 – Metal 

1 configuration and all of them were meandered to reduce the chip area. The inductors 

were implemented using the Top Metal 2 layer. Parasitic capacitances due to the RF-pads 

were included in the input and output impedance matchings. The MIM capacitors were 

used to perform DC-blocking and AC-grounding. ADS momentum was used to perform 

the full-chip electromagnetic (EM) simulations. Figure 90 shows the 3D layout view 

taken from the electromagnetic simulation setup of the designed single-stage amplifier. 

 

3.4.2 Simulation Results 

Figure 91 shows the simulated s-parameter results of the single-stage W-band buffer 

amplifier. The maximum gain is approximately 5.8 dB at 100 GHz, and its minimum 

value is 4.5 dB across the W-band. The input return loss is better than 12 dB over the 

whole W-band, and the output impedance matching can be considered as an acceptable 

level. The reverse-isolation is about 32 dB along the frequency range of interest thanks 

to that the cascode topology eliminates the effect of the CB capacitance of the CE 

transistor. The relationships between the input and output power of the single-stage and 

double stage amplifiers are depicted in Figure 92. As can be seen from the figure, both 

amplifiers have a saturated output power of 6 dBm. The input referred 1-dB compression 

 

Figure 90 3D layout view taken from EM simulation setup of the single-stage W-band 

buffer amplifier. 
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points of the single-stage, and double-stage amplifiers are -1.5 dBm and 6.5 dBm, 

respectively. 

 

 

           

Figure 91 Simulated s-parameter results of the single-stage buffer amplifier.   

 

Figure 92 Simulated input power versus output power of the single-stage and double-

stage amplifiers.    
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3.5. Dual-Directional Coupler 

3.5.1 Circuit Design and Implementation 

A directional coupler is a four-port passive circuit that samples the incident wave to the 

coupling port. The directivity of the coupler, which is used in the reflectometer part to 

sample transmitted and reflected signals, has a significant impact on the accuracy of the 

s-parameter measurement [90].  

As shown in Figure 93, a quarter-wave coupled transmission line can be utilized to build 

a directional coupler by terminating the isolated port (4th port) with a 50Ω impedance, but 

it allows sampling only in one direction. On the other hand, a quarter-wave coupled 

transmission line can be also employed to sample both forward and reverse directions 

simultaneously. However, in this configuration, the isolation, hence directivity, of the 

coupler depends on the impedance matchings at the coupling ports. An impedance 

mismatch at the coupling ports would significantly degrade the directivity of the coupler. 

For this reason, two directional couplers were connected back to back by terminating their 

isolation ports with on-chip resistors of 50Ω in order to eliminate the dependence of the 

directivity on the port matchings, and this coupler configuration is known as dual-

directional coupler. 

The even and odd characteristic impedances of the coupled lines were determined to 

obtain a coupling of 10 dB [91]. The 3D layout model of the implemented dual-directional 

coupler is presented in Figure 94. The coupled transmission lines were implemented using 

microstrip lines with Top Metal 2 and Metal 1 configuration, and they were meandered 

to reduce overall area. Full-chip electromagnetic (EM) simulations were done using ADS 

Momentum.  

 

 

Figure 93 A single-section coupled-line based directional coupler [91]. 
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3.5.2 Simulation Results 

The simulated insertion loss and coupling values of the designed dual-directional coupler 

is presented in Figure 95. The insertion loss is about 1.7 dB, and the average coupling 

value is approximately 10.2 dB across the W-band. Figure 96 shows the isolation and 

directivity of the designed dual-directional coupler. The directivity is around 20 dB over 

the W-band. 

 

 

Figure 94 3D layout view taken from EM simulation setup of the W-band dual- 

directional coupler. 

 

Figure 95 Simulated insertion loss and coupling performances of the dual-directional 

coupler. 
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3.6. Wilkinson Power Divider 

3.6.1 Circuit Design and Implementation 

A Wilkinson power divider is a three-port passive circuit that splits the incident wave into 

two equal-phase output waves. The Wilkinson power divider can be also utilized to split 

the incoming signal into different amounts [91], but an equal division was utilized for this 

design. s powers arbitrary. It consists of two quarter-wave transmission line transformers 

and a resistor of 100Ω between the output ports.  

Figure 97 shows the circuit schematic of the designed W-band Wilkinson power divider. 

The 3D layout model of the implemented power divider is shown in Figure 98. quarter-

wave transmission lines were implemented using microstrip lines using Top Metal 2 and 

Metal 1 configuration, and they were meandered to avoid the large area. Full-chip 

electromagnetic (EM) simulations were performed using ADS Momentum.  

 

 

Figure 96 Simulated isolation and directivity results of the dual-directional coupler. 

 

Figure 97 Circuit schematic of the designed Wilkinson power divider. 
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3.6.2 Simulation Results 

Figure 99 shows the simulated insertion losses and isolation results of the W-band 

Wilkinson power divider. The insertion loss is approximately 3.45 dB across the whole 

W-band, and as can be seen, the power split ratio is almost the same. The maximum 

isolation was found to be almost 33 dB, and its minimum value is 18.5 dB at the lower 

edge of the frequency range of interest. As can be seen from the Figure 100, which 

presents the simulated return losses performance of the power divider, the port 

impedances pretty match to 50Ω. 

 

 

Figure 98 3D layout view was taken from the EM simulation setup of the W-band dual 

directional coupler. 

 

Figure 99 Simulated insertion losses and isolation results of the designed power divider. 
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3.7. Frequency Extension Module 

3.7.1 Implementation 

The designed sub-blocks (down-conversion mixer, frequency quadrupler, buffer 

amplifier, dual-directional coupler, and Wilkinson power divider) were assembled to 

build a frequency extension module whose detailed block diagram is shown in Figure 66. 

The 2D layout view of the implemented frequency extension module is presented in 

Figure 101. The transmission lines which are used to carry RF signals between the sub-

blocks were implemented as grounded coplanar transmission lines that configurated as 

follow: Top Metal 2 for top lines, Metal 3 for ground, and with via-walls from Metal 3 to 

Top Metal 2. This enabled to use Metal1 and Metal 2 layers for DC routings. In order to 

reduce the insertion losses of the interconnection transmission lines, sub-blocks were 

located as close as possible to each other. Since the inputs and outputs of the sub-blocks 

were matched to 50Ω, any impedance matching network between the sub-blocks was not 

used.  

 

Figure 100 Simulated return losses of the designed power divider. 
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3.7.2 Characterization 

Figure 102 shows the chip micrograph of the frequency extension module designed for 

VNAs. The total chip occupies an area of 5.9 mm2, including the other designs. The total 

power consumption is approximately 410 mW while applying both RF and LO input 

signals. A quad-probe (GSGSGSGSG, DC-to-40 GHz) which is custom manufactured by 

Cascade Microtech to characterize the single-chip frequency extension module was used 

either to apply the RF and LO input signals (RFin and LOin) and to measure the IF 

reference and test signals (IFref and IFtest). The DUT port was connected to the 

measurement instruments or the DUTs by the WR10 GSG probe. 

The experimental test setup which was used to determine the output power of the designed 

frequency extension module is depicted in Figure 103. The RFin (18.75-27.5 GHz) and 

LOin (18.675-27.425 GHz) signals were applied by Keysight N5224A PNA. The output 

power was down-converted by a W-band down-converter mixer which is configurated 

with an active multiplication chain (AMC) and Keysight E8257D signal generator. The 

 

Figure 101 2D layout view of the implemented W-band frequency extension module for 

VNAs. 
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down-converted signal was measured using the Keysight E4448A spectrum analyzer. 

Figure 104 shows the measured output power of the designed frequency extension 

module. The maximum output power is -0.3 dBm at 95 GHz, and it is greater than -4.25 

dBm across the W-band. The average noise floor of the DUT port was found to be -110 

dBm for an IF resolution bandwidth (RBW) of 10 Hz. Consequently, the designed 

frequency extension module achieves a dynamic range of 105-110 dB over the W-band. 

 

 

Figure 102 Chip micrograph of the frequency extension module (2.75 mm × 2.15 mm). 

 

Figure 103 Experimental test setup to measure the output power of the designed 

frequency extension module. 
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Figure 105 depicts the experimental test setup which is used to determine the input 

referred 1-dB compression point of the designed frequency extension module. A 92.5 

GHz, the center of the frequency range of interest, the signal was applied to the DUT port 

of the frequency extension module. This applied signal was sampled and then down-

converted to IF signal to determine its power. In the meanwhile, the IF test signal of the 

designed frequency extension module was observed by the IF receiver of the VNA. The 

relationship between the power of the DUT port and the power at the IFmeas port is 

shown in Figure 106. The measured IP1dB was found to be about 1.9 dBm.  

 

 
Figure 104 Measured output power of the designed frequency extension module. 

 

Figure 105 Experimental test setup to measure the input referred 1-dB compression point 

of the designed frequency extension module. 
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The directivity of the designed frequency extension module was determined as follow. 

First, the DUT port was terminated with an open circuit using the WR10 calibration kit, 

and the IF reference and test signals of the designed frequency extension module were 

measured. The power difference between the IF reference and test signals gives us to the 

conversion gain difference between the reference and test receiver channels of the 

designed frequency extension module. After that, the match load (50Ω) from the WR10 

calibration kit was connected to the waveguide interface of the WR10 probe, and the 

power of the IF reference and test signals were measured again. Consequently, the 

directivity can be found by de-embedding the conversion gain difference from the power 

difference at the second configuration (match load). Figure 107 shows the measured 

directivity of the designed frequency extension module. The peak value of the directivity 

is about 23 dB, and it remains above 10 dB across the W-band. The degradation in the 

directivity of the single-chip frequency extension module relative to the directivity of the 

dual-directional coupler can be attributed to the mismatching which might arise due to 

the used WR10 probe and the parasitic capacitances of the pads of the DUT port.  

 

Figure 106 Measured power of the IFtest port versus the power of the DUT port. 
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3.7.3 Measurement Results 

Figure 108 depicts the experimental test setup which is used to perform one-port s-

parameter measurements by the designed single-chip frequency extension module. The 

single-chip frequency extension module was configurated with Keysight N5224A PNA 

through the quad probe, and the DUT port was connected to the calibration standards and 

the DUTs using the WR10 probe. One-port short-open-load (SOL) calibration was 

performed by a WR10 calibration kit, and IF resolution bandwidth was set to 10 Hz.  

S-parameters of a W-band horn-antenna was measured using both the designed single-

chip frequency extension module and a commercial frequency extension module, under 

the same conditions such as IF resolution bandwidth, a number of points, sweep time, etc. 

The amplitudes of the measured S11 of the W-band horn-antenna is shown in Figure 109. 

Figure 110 presents the phases of the measured S11 of the W-band horn-antenna. As can 

be seen from the figures, there is a pretty good agreement between the results. However, 

there are some noticeable discrepancies, even between two different measurements which 

 

Figure 107 Measured directivity of the single-chip frequency extension module, 

including the WR10 probe. 
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are performed by the same commercial frequency extension module due to the 

misalignments of the waveguide interfaces during the measurements and the calibrations. 

In addition to these misalignments, the considerable part of the discrepancies between the 

commercial and designed frequency extension modules arise because of the low 

directivity of the single-chip frequency extension module. The directivity of the single-

chip frequency extension module can be significantly improved using the shielded 

coplanar lines instead of the microstrip lines. 

 

 

 

Figure 108 Experimental test setup to measure the one-port DUT by the designed 

frequency extension module. 

 

Figure 109 Measured amplitudes of S11 of a W-band horn-antenna using the designed 

single-chip frequency extension module and a commercial WR10 frequency extension 

module. 
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Figure 110 Measured phases of S11 of a W-band horn-antenna using the designed single-

chip frequency extension module and a commercial WR10 frequency extension module. 
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4. Conclusion & Future Work 

4.1. Summary of Work 

Latest developments in silicon-based semiconductor technologies have led to an 

important research interest in the field of millimeter-wave systems. There are a few 

significant low-atmospheric attenuation windows in the millimeter-wave spectrum (35, 

77, 94, 140, 220 GHz). These low-atmospheric attenuation windows make the millimeter-

wave domain appropriate and attractive for many various applications such as automotive 

RADARs, passive imaging systems, high-speed point-to-point wireless communication 

links, and radar sensors.  

SiGe BiCMOS technology provides the integration of the high-speed SiGe HBTs and the 

Si CMOS transistors on single-chip. Recently, the RF performances, 𝑓𝑡 and 𝑓𝑚𝑎𝑥, of the 

SiGe HBTs have caught up those of III-V counterparts. Therefore, SiGe HBT BiCMOS 

technology have enabled to build low-cost and fully-integrated single-chip millimeter 

wave systems that include the RF front-end and baseband parts together.  

In this thesis, two single-chip D-band front-end receivers for passive imaging systems 

and a single-chip W-band frequency extension module for VNAs are presented. These 

systems are implemented in IHP’s 0.13μm SiGe BiCMOS process, SG13G2, featuring 

HBTs with 𝑓𝑡/𝑓𝑚𝑎𝑥/𝐵𝑉𝐶𝐸𝑂 of 300GHz/500GHz/1.6V. This thesis can be summarized 

under two main groups as D-band radiometers and W-band frequency extension module.  

Under the chapter of D-band radiometers, first, the designs, implementations, and 

measurements of the sub-blocks of the radiometers (SPDT switch, LNA, and power 

detector) are presented. After that, the implementation and experimental test results of the 

total power and Dicke radiometers are demonstrated. The total power radiometer attains 

an NETD of 0.11K, assuming an external calibration technique. The NETD of the total 

power radiometer is 1.3K for a gain-fluctuation of %0.1. The Dicke radiometer shows an 

NETD of 0.13K for a Dicke switching of 10 kHz. These implemented radiometers show 

the state-of-the-art operations with respect to the previously reported radiometers 

implemented in either silicon-based technologies and  III-V group semiconductor 

technologies. 
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In the other main chapter, named as W-band frequency extension module for VNAs, first, 

the design methodologies, implementation methods, and experimental results of the sub-

blocks (down-conversion mixer, frequency quadrupler, Wilkinson power divider, and 

dual-directional coupler) are presented. Then, the implementation, characterization and 

experimental results of the single-chip W-band frequency extension module are 

demonstrated. The maximum output power of the designed frequency extension module 

is -0.3 dBm at 95 GHz, and it remains above -4.25 dBm along the entire W-band. The 

average noise floor of the DUT port is -110 dBm for an IF resolution bandwidth of 10 

Hz. Thence, the designed frequency extension module has a dynamic range of 105-110 

dB across the W-band. The measured input referred 1-dB compression point of the single-

chip frequency extension module is approximately 1.9 dBm. One of the most critical 

performance criteria of a frequency extension module is the directivity. The maximum 

value of the directivity of the designed frequency extension module is about 23 dB, and 

it is greater than 10 dB over the W-band. Lastly, the measurement results of a W-band 

horn antenna, performed using the single-chip frequency extension module and a 

commercial frequency extension module, are demonstrated. It is observed that there is a 

good agreement between these measurements. Consequently, this thesis highlights the 

potential of the SiGe BiCMOS technology in the field of millimeter-wave passive 

imaging systems and the measurement instruments.   

4.2. Future Work  

As a short-term future work for the D-band radiometers, an on-chip antenna and a 

baseband part need to be designed on the same chip and to be implemented together. After 

that, suitable packaging is required for the DC supply connections and the output signal. 

Finally, a focal-plane array needs to be implemented to obtain the image of the scene 

using the designed single-pixel radiometers. 

On the other hand, the performance of the single-chip frequency extension module should 

be improved to obtain more accurate results. Within this scope, the directivity of the 

frequency extension module can be significantly improved using the shielded coplanar 

transmission line based directional coupler instead of the microstrip line based coupler. 

Moreover, the transmission lines of the coupler were meandered to reduce the chip area, 

but it considerably reduces the isolation of the dual-directional coupler so that the 

directivity of the frequency extension module is dramatically degraded. Therefore, the 

priority should be given to achieving high isolation rather than reducing the chip area. In 
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addition, the gain of the double-stage amplifier at the LO channel of the frequency 

extension module is too much so that it is compressed for the fourth harmonic (actual 

operating signal of the frequency extension module) of the frequency quadrupler. Thence, 

it would result in the degradation of the harmonic suppression performance. For this 

reason and considering the current performance of the system, a single-stage amplifier 

would be enough instead of the double-stage amplifier. After the proposed performance 

improvements, an electrically controlled attenuator can be placed after the single-stage 

amplifier at the RF channel to enable the control of the output power of the frequency 

extension module. The final step of the frequency extension module work is to integrate 

into a suitable RF probe, as proposed in Section 3.1.2. 
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APPENDIX 

A. Appendix 

k= 1.38 * 10^-23; %boltzmann's constant (J/K) 

T0= 290; %Temperature (K) 

B= 15*10^9; %bandwidth (GHz) 

NEP=0.43*10^-12; %NEP of PD 

 

G1_dB=-2.1; %S21 of the SPDT 

G2_dB=22.5; %S21 of the LNA 

G1=10.^(G1_dB/10); 

G2=10.^(G2_dB/10); 

 

NF1_dB=-G1_dB %NF of the SPDT 

NF2_dB= 4.4 %NF of the LNA 

F1=10.^(NF1_dB/10); 

F2=10.^(NF2_dB/10); 

F3=1+(NEP/(k*T0*sqrt(B)));; %noise factor of the PD 

 

TE1= T0*(F1-1); %the equivalent noise temperature of the SPDT 

TE2= T0*(F2-1);%the equivalent noise temperature of the LNA 

TE3= T0*(F3-1)%the equivalent noise temperature of the PD 

 

T_R= TE1 + (TE2./G1) + (TE3./(G1.*G2));%the equivalent noise temperature of the 

receiver  

T_A=T0; ; %The equivalent noise temperature of the antenna 

T_S=T_R+T_A; %the system noise temperature  

 

tau= 30*10^-3 ;%back-end integration time 

NETD=2 .*(T_S)./sqrt(B*tau); %the noise equivalent temperature difference (K) 

 

plot (G2_dB, NETD) 

hold on 
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B. Appendix 

R1= 0.902768; 

theta1 = deg2rad(-25.807768); 

GM1 = R1.*exp(i*theta1) % GM1 = measured short 

R2 =0.628266; 

theta2 = deg2rad(170.674668); 

GM2 = R2.*exp(i*theta2) % GM2 = measured open 

R3 =0.153073; 

theta3 = deg2rad(247.575889); 

GM3 = R3.*exp(i*theta3) % GM3 = measured 50ohm 

GA1 = -1; %short 

GA2 = 0.8181818182; %open 500ohm 

GA3= 0; %load 

syms a b c 

eqn1 = GA1 * a + b - GA1 * GM1 * c == GM1; 

eqn2 = GA2 * a + b - GA2 * GM2 * c == GM2; 

eqn3 = GA3 * a + b - GA3 * GM3 * c == GM3; 

S= solve (eqn1, eqn2, eqn3) 

S= [S.a S.b S.c] 

d=double (S); 

am=d(1) 

bm=d(2) 

cm=d(3) 

R4= 0.467042; 

theta4 = deg2rad(70.697597); 

GM4 = R4.*exp(i*theta4) %GM4 = measured reflection coefficient - DUT 

syms GA4 

eqn4 = GA4 * am + bm - GA4 * GM4 * cm == GM4; 

Sol = solve(eqn4) 

e=double(Sol) 

ZL=50*((1+e)/(1-e)) 
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