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ABSTRACT

CHANGEPOINT MODEL FOR BAYESIAN ONLINE

FRAUD DETECTION IN CALL DATA

Keywords: forward-backward recursions, Hidden Markov Model, online event-based

fraud detection

Illegal use in the phone network is a massive problem for both telecommunication com-

panies and their users. By gaining criminal access to customers’ telephone, fraudsters

make an illicit profit and cause heavy traffic in the call network. After rising trend

in mobile phone fraud, telecommunication companies’ security departments mainly fo-

cused on increasing the efficiency of fraud detection algorithms and decreasing the num-

ber of false alarms. In this thesis, we represent an online event-based fraud detection

algorithm based on Hidden Markov Models (HMM). Detection problem is formulated

as a changepoint model on caller’s behavior. To capture call behavior more specifically,

we split it into three parts; call frequency, call duration and call features. We prefer

to adapt changepoint model for call data because of its memoryless property; the data

before the changepoint does not depend on the data after the change point. To in-

vestigate the performance of our algorithm, we conducted an extensive computational

study on our generated data. Our results indicate that the algorithm is practical and

resampling methods can control the difficulty of linearly increasing computational cost.
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ÖZET

DEĞİŞİM NOKTASI MODELİ KULLANARAK ARAMA

VERİSİNDE GERÇEK ZAMANLI, BAYESÇİ TELEFON

DOLANDIRICILIĞI TESPİTİ

Anahtar Kelimeler: ileri-geri yayılım algoritması, Saklı Markov Modelleri, gerçek

zamanlı, olay esaslı dolandırıcılık tespiti

Telekomünikasyon ağlarındaki usulsüz kullanım hem arama şirketleri hem de kul-

lanıcıları için büyük bir sorun. Müşterilerin telefonlarına yasadışı erişim sağlayarak,

dolandırıcılar haksız bir gelir elde etmekte ve arama ağlarında yoğun trafiğe sebep

olmaktadır. Cep telefonu dolandırıcılığında artan trendten sonra, telekomünikasyon

şirketlerinin güvenlik departmanları dolandırıcılık yakalama algoritmalarının etkinliğini

arttırmaya ve yanlış alarm sayısını azaltmaya odaklanmıştır. Bu tezde, gerçek zamanlı,

olay esaslı ve saklı markov modellerine dayanan dolandırıcılık tespiti algoritması an-

latıyoruz. Bu hata tespit problemi arayıcının davranışına odaklanan bir değişim noktası

modeli olarak formüle edildi. Arayıcının davranışını daha iyi yansıtabilmek için, bu

arama sıklığı, arama süresi ve arama özellikleri olarak üçe bölündü. Değişim noktası

modelini tercih etmemizin sebebi de bunun belleksizlik olmasıydı; değişim noktasından

önceki veri , değişim noktasından sonraki veriye bağlı değil. Algoritmamızın perfor-

mansını test etmek için, kendi ürettiğimiz veride kapsamlı bir çalışma yapılmıştır.

Sonuçlarımız algoritmamzın etkili olduğunu ve linear olarak artan hesaplama süresi

budama metodlarıyla kontrol edilebilir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. MODEL DESCRIPTION AND FORMULATION . . . . . . . . . . . . . . . 5

2.1. Continuous-Time Call Fraud Detection . . . . . . . . . . . . . . . . . . 5

2.2. Call Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Call Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. Call Success Probability . . . . . . . . . . . . . . . . . . . . . . 11

2.4. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. Priors for the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6. Changepoints and Detecting Fraud . . . . . . . . . . . . . . . . . . . . 14

3. SOLUTION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1. Multiple Changepoint Model Description . . . . . . . . . . . . . . . . . 17

3.2. Filtering and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1. Forward Filtering and Conjugate Priors . . . . . . . . . . . . . 19

3.2.2. Backward Smoothing . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3. Tracking Latent Variables . . . . . . . . . . . . . . . . . . . . . 23

3.2.4. Fixed L-lag Smoothing . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5. Resampling Methods . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Adaptation of Real-Time and Event-Based Fraud Detection to MCM . 28

3.3.1. Event Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2. Equivalance of events and the process . . . . . . . . . . . . . . . 29

3.3.3. Changepoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4. Filtering and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1. Conjugate Priors . . . . . . . . . . . . . . . . . . . . . . . . . . 32



vii

3.4.2. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1. Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2. Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1. Detecting ChangePoints . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2. Tracking Latent Variables . . . . . . . . . . . . . . . . . . . . . 42

4.2.3. F-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

APPENDIX A: DERIVATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1. Conjugacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX B: Data Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.1. Bookkeeping for the sufficient statistics . . . . . . . . . . . . . . . . . . 56

APPENDIX C: Detailed Results for Algorithm . . . . . . . . . . . . . . . . . 60



viii

LIST OF FIGURES

3.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Estimating last changepoint time for call frequency using filtering, fixed L-lag

smoothing and smoothing densities. . . . . . . . . . . . . . . . . . . . . 40

4.3 Estimating last changepoint time for call duration using filtering, fixed L-lag

smoothing and smoothing densities. . . . . . . . . . . . . . . . . . . . . 41

4.4 Estimating last changepoint time for call features using filtering, fixed L-lag

smoothing and smoothing densities. . . . . . . . . . . . . . . . . . . . . 41

4.5 Estimation of call frequency parameters . . . . . . . . . . . . . . . . 42

4.6 Estimation of call duration parameters . . . . . . . . . . . . . . . . . 42

4.7 Estimation of call features parameters . . . . . . . . . . . . . . . . . 43

4.8 Probability of a changepoint in call frequency in the last three hours . 44

4.9 Probability of a changepoint in call duration in the last three hours . . 44

4.10 Probability of a changepoint in call features in the last three hours . . 45



ix

LIST OF TABLES

2.1 periods of the day . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 notation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 call arrival rate for each period . . . . . . . . . . . . . . . . . . . . . 8

2.4 notation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 call duration rate for each period . . . . . . . . . . . . . . . . . . . . 10

2.6 notation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 event types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 inputs for the call generation . . . . . . . . . . . . . . . . . . . . . 38

4.2 changepoints for the simulated data . . . . . . . . . . . . . . . . . . . 40

4.3 average F-score sample mean ± sample variance . . . . . . . . . . . . 45

C.1 F-score for arrival, threshold = 0.15 . . . . . . . . . . . . . . . . . 60

C.2 F-score for arrival, threshold = 0.30 . . . . . . . . . . . . . . . . . 61

C.3 F-score for arrival, threshold = 0.5 . . . . . . . . . . . . . . . . . . 62

C.4 F-score for duration, threshold = 0.15 . . . . . . . . . . . . . . . . 63

C.5 F-score for duration, threshold = 0.30 . . . . . . . . . . . . . . . . 64

C.6 F-score for duration, threshold = 0.50 . . . . . . . . . . . . . . . . 65

C.7 F-score for feature, threshold = 0.15 . . . . . . . . . . . . . . . . . 66

C.8 F-score for feature, threshold = 0.30 . . . . . . . . . . . . . . . . . 67

C.9 F-score for feature, threshold = 0.50 . . . . . . . . . . . . . . . . . 68



x

LIST OF ACRONYMS/ABBREVIATIONS

CDR Call Detail Record

CE Call End

CP Call Progress

CS Call Start

DC Day Change

HMM Hidden Markov Model

LDA Latent Dirichlet Allocation

MCM Multiple Changepoint Model

NC No Call

TF Time Frame

WC Week Change

WF Week Frame



1

1. INTRODUCTION

In the Report to the Nations on Occupational Fraud and Abuse [ACFE, 2016], it

is stated that a typical organization suffers loss up to 5% of its revenues in a given year

as a consequence of fraud. The financial and telecommunication networks, government

and public administrations, and credit card companies are the ones that suffer from

criminal activity mostly. Phone fraud is unauthorized use of telecommunication services

with the intent of gaining money from, or neglecting to pay, a telecommunication

company or its users. Fraudsters with hacking skills can easily access phone accounts

and cause considerable losses to both service providers and their customers. According

to Global Fraud Loss Survey, telecommunication companies lose $38.1 billion in a

year [CFCE, 2015]. There are many types of phone fraud, ranging from mobile phone

theft to hacking to the communication network. [Becker et al., 2010] introduced a

fraud type called intrusion fraud which is the case of victimization of a legitimate

phone account by a fraudster who makes or sells calls to gain illegal money. The

focus on protecting customer’s privacy and finding ways to reduce revenue loss without

sacrificing on service quality has made fraud detection a highly critical problem for

communication companies. According to [H. Cahill et al., 2002], a suitable detection

system must be event driven not time driven and can detect fraud for every account. In

our work, we have focused on intrusion fraud and its real-time, event-based Bayesian

detection using Multiple Changepoint Model (MCM).

Fraudsters usually move rapidly and cleverly in the network, which makes identi-

fying fraud a tough task. One solution to this problem is constructing a neural network

as a model based on the past behavior of a customer [Davey et al., 1996] [Moreau et al.,

1997]. Whenever a phone call is completed, their algorithm creates a structure called

call detail record (CDR) which includes call time, duration and receiving area, etc.

They recorded CDR’s for both creating a user profile and also comparing recent be-

havior with historical behavior to identify fraud. [Xing and Girolami, 2007] formulated

a signature-based detection method called Latent Dirichlet Allocation (LDA). They

used CDR to create call features, for example, the time of the call initiation, call
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duration, class of destination number, number of calls per day. Customers’ behavior

interpreted as a probability distribution over these call features. To detect whether a

user making a call versus intruder making the same call, LDA compares the likelihood

of a call being fraud to the likelihood of a call being standard.

In addition to neural networks, [Moreau et al., 1998] presented a rule-based

approach. According to this approach, a call is considered illegal if it follows pre-

determined rules created for the detection algorithm. A study by [Rosset et al., 1999]

indicated these pre-determined rules could be established by past examples of normal

and unauthorized usage in the network. Call details, total number or duration of calls

over a specified period, and customer’s price plan are essential in setting rules for a

fraud case. We can deduce that both neural network and rule-based approach require

training for customers’ past data. Also, in the case of an unprecedented intrusion,

the new call will not fit the set of rules based on the historical data and rule-based

approach will fail to detect fraud.

Another way to identify the anomaly is presented in [Taniguchi et al., 1998] as

a Bayesian networks method. Bayesian networks are a proper framework for handling

uncertainty in fraud detection problem. Initially, Bayesian network model constructs

an intuitive stochastic model for the behavior of the customer. Once the model is estab-

lished, they estimated the probability of a phone account being victimized. [Taniguchi

et al., 1998] says there is no deterministic approach to classify a call as a fraud. How-

ever, they formulated probability of fraud given the user’s transactions in the phone

network. The data they used was based on toll tickets which are created after a call

is completed. Unlike in [Taniguchi et al., 1998], we desire to capture fraudsters at the

time of the action, not after it. [Scott, 2004] stated that an intrusion detection sys-

tem depending on stochastic models could be applied to many networks. Customers’

accounts must be monitored in real time to catch intrusion quickly; an important chal-

lenge is to set a proper model that describes customer and intruder behavior. [Hollmén

and Tresp, 1998] proposed a real-time detection system for phone fraud which is based

on a stochastic model like in [Scott, 2004]. They introduced a Bayesian hierarchical

regime-switching model which is a type of Hidden Markov Model (HMM) where hidden
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states show whether an account currently under attack or not. Although it gives an

insight about real-time Bayesian fraud detection, [Hollmén and Tresp, 1998] does not

inform readers about which stochastic model should be used to describe customers’

behavior and how to collect ’s callers’ data in real-time.

After an intrusion, a caller’s behavior suddenly starts to deviate from the usual

pattern, and new observations do not resemble observations before the intrusion. In

this case, observations of a customer would look like two disjoint sets. Our primary

goal is to detect the breakpoint which separate observations into fragments. [Barry

and Hartigan, 1992] and [Barry and Hartigan, 1993] proposed a product partition

model that accepts observations in different segments of the data are independent

and [Yang and Kuo, 2001] suggested a Bayesian approach to locate the changepoints

in the Poisson process. They commented that as the number of observations increases,

the computations becomes infeasible for the large number of changepoints. [Fearnhead,

2006], [Fearnhead and Liu, 2007] utilized filtering recursions to find the probability of

time being a changepoint. The computational cost of recursions is quadratic in the

number observations. To overcome the complexity of the algorithm, they proposed

re-sampling algorithms. A survey by [Kurt et al., 2018] have developed a Bayesian

changepoint model for the intrusion, and they use filtering recursions in [Fearnhead

and Liu, 2007] to calculate the probability of change at each time point recursively.

In this thesis, we focus on a real-time application of Bayesian changepoint detec-

tion problem introduced by [Kurt et al., 2018]. Unlike their work, our observations are

collected as discrete events which helps keeping track of callers’ transactions continu-

ously and therefore distinguish anomaly as early as possible. One assumption in this

work is every caller has a distinct call behavior that describes his/her actions in the

network. An algorithm is developed to detect change in users’ behavior with assuming

fraud is one of the most important cause of deviation in callers’ usual patterns. We split

callers’ behavior into three parts: call frequency, call duration and call features and try

to to detect fraud caused by a change in one of the call behaviors we mentioned. For

catching fraud, we use Bayesian networks method which finds probability of fraud by

calculating forward-backward recursions separately for each behavior type. To bound



4

the computational cost of these recursions, we utilize a resampling algorithm. Lastly,

service providers are cautious when it comes to sharing customers’ personal data,hence,

we implemented a call simulator which generates discrete events for one user.

The remainder of the thesis is organized as follows. Chapter 2 describes continuous-

time call fraud detection and elements of call behavior. Our solution methodology is

provided in 3, followed by the results of computational experiments in 4. Finally,

Chapter 5 summarizes the thesis with remarks and points to some potential research

directions.
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2. MODEL DESCRIPTION AND FORMULATION

In this chapter, we will first introduce continuous time call fraud detection process

Section 2.1 and later describe call behavior elements 2.2.

2.1. Continuous-Time Call Fraud Detection

By acquiring illegal access to the telecommunication network, criminals cause

substantial loss to service providers and users. The goal in call fraud detection algo-

rithm is to distinguish fraudulent calls from the normal ones. The main challenges of

this problem is the following: Call fraud is very rare, and fraudsters do not occupy

the system for a long time. Telecommunication companies monitor their customers’

transactions with desire to detect anomaly instantly.

In many previous works like [Kurt et al., 2018], fraud detection algorithms dis-

cretize time and collect data in intervals with length of some time ∆t for easier calcu-

lation. However, since criminals rush into the network, companies recognize the need

to adopt a continuous-time model where they update their data at of every successive

event and therefore detect frauds as early as possible.

Fraud detection in call data is generally a challenging task. A caller has an

established behavior that describes his/her patterns in mobile networks, and callers’

behavior does not need to follow a uniform process. Caller behavior parameters such as

calling rate can vary during the day and the week. In this case, the change in the caller’s

patterns should not be considered as an intrusion. On the other hand, when criminals

have access to a caller’s account, they sometimes increase the calling rate, change the

location of the customer or make calls to specific phone accounts. Therefore, it would

be useful to create a detector which finds not only a change in the user’s behaviour

but also identify the reason for the change in order to determine whether the change

is within the user’s normal behavior or an intrusion.
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The approach adopted in this thesis for the call fraud detection problem is based

on the assumption that callers’ behaviour changepoint model we introduce in Section

3.1. In many previous works, observation vector yt in (Fig: 3.1) usually stored the

information for the time interval [t − 1, t]. However, we model our observations as

events that we collect at time of the action.

We call the time interval between two successive changepoints a regime. In our

model, we assume a non-homogeneous Poisson process for call arrivals in a single

regime. Duration of successful calls are also modelled as the time for the first arrival of

a non-homogeneous Poisson process. The non-homogeneities introduced are to reflect

the different behaviour types of the user across different intervals of the day (or week).

In that way, we hope to get rid of the false alarms due to the change in behavior by an

hour and day. For example, once can divide a day into seven periods, as in Table 2.1,

such as morning, lunch, afternoon, evening, night, overnight and dawn and separate

week as weekday and weekend. In addition to arrivals and call durations, a call has

a feature vector, whose each component is modelled as a random variable from the

same Multinomial distribution within a regime. In order to represent caller’s behavior

better and understand the reason of anomaly, we split call behavior into three parts:

frequency, duration, and features.

Table 2.1: periods of the day

08:00-12:00 12:00-14:00 14:00-18:00 18:00-21:00 21:00-00:00 00:00-04:00 04:00-08:00

morning lunch afternoon evening night overnight dawn

In the following Sections 2.2, 2.3 and 2.4, parts of the call behavior defined in

this thesis are presented.

2.2. Call Frequency

In this section, we introduce the first part of the call behaviour,namely call fre-

quency. Call frequency can roughly be defined as number of call starts per time. We

assume that every caller has a specific calling rate for a particular hour and day of the
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week as we mentioned in Section 2.1. The notations for call frequency are summarized

in Table 2.2.

Table 2.2: notation 1

Notation

An Start time of the n’th call.

En End time of the n’th call.

Na(t) number of calls arriving from time 0 until time t.

Ii,j Set of times for the (i, j)-type intervals.

Na(t1, t2) number of calls arriving between time t1 and time t2.

Na
i,j(t1, t2)

number of calls arriving in an (i, j) interval between time

t1 and time t2.

λai,j call arrival rate for the (i, j)’th interval.

λa(t) call arrival rate at time t.

τi,j(t1, t2) time spent in the (i, j) type intervals between t1 and t2.

nd number of time frame.

nw number of week frame.

To build a Bayesian model, we need to choose a stochastic process to describe

call generation from a phone. As we mentioned in Section 2.1, We model customers’

call traffic as an non-homogeneous Poisson process having a piecewise constant rate

function that changes over nw “week frame (WF)” and nd “time frame (TF)”periods.

To be concrete in our desciption and to further build up our notation, let us

continue with our example where a week is divided into nw = 2 week periods (weekday,

weekend), and a day is into nd = 7 day periods. For each i, j, define the union of

(i, j)-type periods as Ii,j. Here i denotes whether it is weekday (i = 1) or weekend

(i = 2), and j denotes the j’th period of a day, starting from “morning” and ending

at “dawn”. For example, in words, I1,1 (1, 1 stands for “weekday” and “morning”) will
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be

I1,1 =
∞∑
w=1

5∑
d=1

{morning of d’th day of week w}. (2.1)

For each (i, j) period, our model has a separate λai,j which denotes the call arrival rate

of the Poisson process during the (i, j)’th period for i = 1, . . . , nw and j = 1, . . . , nd.

Table 2.3 shows an example of call arrival rates when nw = 2 and nd = 7

Table 2.3: call arrival rate for each period

morning lunch afternoon evening night overnight dawn

weekday λa1,1 λa1,2 λa1,3 λa1,4 λa1,5 λa1,6 λa1,7

weekend λa2,1 λa2,2 λa2,3 λa2,4 λa2,5 λa2,6 λa2,7

Specially, we define a non-homogeneous Poisson process Na(t) with intensity function

λa(t) defined as

λa(t) =
nw∑
i=1

nd∑
j=1

λai,jI(t ∈ Ii,j). (2.2)

I(x ∈ A) =

1 x ∈ A

0 x 6∈ A

Let Tn refer the elapsed time between (n− 1)’st and n’th call event

Cumulative distribution function for An+1 given An:

P(An+1 ≤ t1|An = t0) = 1− P(An+1 > t1|An = t0) (2.3)

= 1− P(Tn+1 > t1 − t0|An = t0) (2.4)

= 1− exp

{
−
∫ t1

t0

λa(t)dt

}
, (2.5)
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hence,

pAn+1|An(t1|t0) = λa(t1) exp

{
−
∫ t1

t0

λa(t)dt

}
.

• τi,j(t1, t2): amount of time spent in the (i, j)’th period in the interval (t1, t2].

τi,j(t1, t2) =

∫
(t1,t2]∩Ii,j

1dt (2.6)

• Na
i,j(t1, t2): number of calls that fall in the (i, j)’th period in the interval (t1, t2].

Na
i,j(t1, t2) ∼ PO

(
λai,jτi,j(t1, t2)

)

In particular, the probability distribution of the vector of counts during (t1, t2] is given

by,

Na(t2)−Na(t1) =
nw∑
i=1

nd∑
j=1

Na
i,j(t1, t2). (2.7)

2.3. Call Duration

In this section, we will introduce the second part of the call behaviour: call

duration. Call duration can be defined as average call length in a particular time

interval and we assume that every caller has a specific call length for a particular hour

and day of the week as we mentioned in Section 2.1. The notations for call duration

are summarized in Table 2.4.
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Table 2.4: notation 2

Notation

En End time of the n’th call.

Nu(t1, t2)
number of unsuccessful calls ending between time t1 and

time t2.

λdi,j call duration rate for the (i, j)’th interval.

λd(t) call arrival rate at time t.

γ probability of a call being unsuccessful

αc, βc
Hyperparameters for the probability of a call being un-

successful.

In our model, a call is successful with a certain probability γ ∈ (0, 1) and the dura-

tion of a successful call is modelled as if it is an interarrival time for a non-homogeneous

Poisson process with a piece-wise constant rate function λdi,j that is constructed in

a similar fashion to that of the arrival process. Specifically, given intervals Ii,j for

i = 1, . . . , nw, j = 1, . . . , nd, we define the rate function as

λd(t) =
nw∑
i=1

nd∑
j=1

λdi,jI(t ∈ Ii,j). (2.8)

Table 2.5: call duration rate for each period

morning lunch afternoon evening night overnight dawn

weekday λd1,1 λd1,2 λd1,3 λd1,4 λd1,5 λd1,6 λd1,7

weekend λd2,1 λd2,2 λd2,3 λd2,4 λd2,5 λd2,6 λd2,7

Table 2.5 shows an example of call duration rates when nw = 2 and nd = 7

For end times of the calls,we can write cumulative distribution function for En
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given An similar to equation (2.3).

P(En ≤ t1|An = t0) =


γ, t1 = t0

(1− γ)
[
1− exp

{
−
∫ t1
t0
λd(t)dt

}]
, t1 > t0

0. else.

(2.9)

where γ is the probability of a call being unsuccessful. Hence, the probability density

function of a positive duration is

pE|A(t1|t0) = (1− γ)λd(t1) exp

{
−
∫ t1

t0

λd(t)dt

}
, t1 > t0.

2.3.1. Call Success Probability

In our model, we define unsuccessful calls as the calls which their duration equal

to 0 seconds. The change in the success rate of the call process is an indicator for

fraud. Let Nu(t1, t2) be the number of unsuccessful calls ending between time t1 and

time t2.

The probability of a call being unsuccessful is γ and

P(Nu(t1, t2) = x|Na(t1, t2) = n) =

(
n

x

)
γx(1− γ)n−x (2.10)
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Table 2.6: notation 3

Notation

C
(i)
j (t1, t2) number of calls in j’th category of feature i in (t1, t2].

M number of call features.

mi number of categories for feature i.

π(i)
The distribution of categories belonging to the i’th fea-

ture.

The notations for call features are summarized in Table 2.6.

2.4. Features

In this section, we will introduce the last part of the call behavior: call features

which can be determined at the start of the call. We model call features as a multino-

mial distribution with total sum during (t1, t2] being N(t2)−N(t1). Specifically, let us

have M features with than time period of calls, and i’th feature has mi categories.We

define

C
(i)
j (t1, t2) = the number of calls in j’th category of feature i in (t1, t2],

i = 1, . . . ,M ; j = 1, . . . ,mi. Then, given the probability vector for feature i

π(i) = (π
(i)
1 , . . . , π(i)

mi
)

and N(t1, t2) = N(t2)−N(t1), number of calls between t1 and t2, the count vector

C(i)(t1, t2) = (C
(i)
1 (t1, t2), . . . , C(i)

mi
(t1, t2))
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is multinomially distributed:

P(C(i)(t1, t2) = c1:mi |N(t1, t2) = n, π(i)) = Mult(c1:mi ;n, π
(i)). (2.11)

Note that, in implementation one can include the call success information in

call’s features and, in the duration process, focus on detection of a changepoint only

on successful calls. This is indeed what we do in our implementation. In Section 2.2,

2.3 and 2.4, we introduce the elements of the call behavior and associate each one with

a parameter. We give more information about the variables of the call behavior in

Section 2.5.

2.5. Priors for the Parameters

The behaviour of a caller during a regime can be characterised by the parameters

of the model, which are

Φ = {λai,j, λdi,j, i = 1, . . . , nw; j = 1, . . . , nd}, γ, {π(i), i = 1, . . . ,M},

Since in these variables are not observed directly, we will call them the latent variables

of the model. We treat those variables as random and assign them some distributions.

In our problem, we choose a Bayesian approach to distinguish fraudulent behavior

from the normal ones and the first step of this approach is to choose meaningful prior

and posterior distribution. We assume that interarrival times and call durations are

exponantially distributed with parameters λai,j and λdi,j, we set the gamma distribution

as a prior for λai,j and λdi,j

λai,j ∼ Gamma1(κai,j, θ
a
i,j)

λdi,j ∼ Gamma1(κdi,j, θ
d
i,j)

X ∼ Gamma1(κ, θ)→ p(x) =
1

Γ(κ)θκ
xκ−1e−x/θ
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For γ, we assign a Beta prior for it.

γ ∼ Beta(αc, βc).

Finally, for the call features, we model them as a multinomial distribution in Section

2.4 with probabilities π(i) = (π
(i)
1 , . . . , π

(i)
mi), i = 1, . . . ,M and we choose π(i) from

dirichlet distribution.

π(i) ∼ Dir(ρ
(i)
1 , . . . , ρ

(i)
mi

)

Conjugacy is an important tool for Bayesian problems in terms of tractability of the

posterior distributions.

Note that the latent variables are constant during a regime. When the regime

changes following a changepoint, the latent variables are reinitiated from their distri-

butions. What stays constant across the regimes is the set of hyperparameters

µ = {κai,j, θai,j, κdi,j, θdi,j, i = 1, . . . , nw; j = 1, . . . , nd}, αc, βc, {ρ(i), i = 1, . . . ,M},

2.6. Changepoints and Detecting Fraud

As we have mentioned before, our work mainly focuses on detecting illegal in-

trusion in the communication system. In this section, we present the idea behind

changepoints and approach for locating them.

A fraud detection system should be quick to respond to intrusion. On the other

hand, it must abstain from giving false alarms which can affect customers’ satisfaction

severely. A multiple changepoint model breaks data into disjoint sets, so that the data

after the changepoint will become independent of the data before it [Fearnhead and

Liu, 2007]. In our problem, we presume that after customer’s telephone account is

victimized, it is likely that his behavior patterns will change and new observations will
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be unrelated to normal behavior. As we mention in Chapter 1, we choose to adapt

MCM because its memoryless property is suitable with our problem.

According to a multiple changepoint model, a set of observations {y1, y2, . . . , yn}

is divided into some unknown and random number, c > 0, of segments,

[yi0 , yi1−1], [yi1 , yi2−1], . . . , [yic−1 , yic−1] 1 = i0 < i1 < i2 < . . . < ic − 1 = n

where each segment is independent from the other. The indices i0, i1, i2, . . . ic − 1 con-

stitutes the set of changepoints and we presume for our detection algorithm that time

of the initial event, i0 is always a changepoint.

Note that in this thesis we are interested in performing Bayesian filtering given

the continuous-time process. In a discrete-time model, {y1, . . . , yn} is a realization of

a sequence of vectors of random variables. In a continuous-time model, however, yt

can be taken to be the t’th portion of the continuous-time observation process, or the

t’th event. Throughout the rest of the thesis, we will stick to this abuse of notation,

sometimes without giving explicit reference to yt, for sake of simplicity.

In this thesis, we are interested in finding three different partitions {y1, y2, . . . , yn}

of the same observation set, with respect to changes in the call arrival process, call

duration distributions, and features. We consider, for example, a change in the behavior

related to increasing call rate different from the change in call features. We assume

that in the case of varying call frequency, duration and features, the observations can

be split into u, v, and z segments which need not be identical.

[yia0 , yia1−1], [yia1 , yia2−1], . . . , [yiau−1
, yiau−1], 1 = ia0 < ia1 < ia2 < . . . < iau − 1 = n

[yid0 , yid1−1], [yid1 , yid2−1], . . . , [yidv−1
, yidv−1], 1 = id0 < id1 < id2 < . . . < idv − 1 = n

[yif0
, yif1−1], [yif1

, yif2−1], . . . , [yifz−1
, yifz−1], 1 = if0 < if1 < if2 < . . . < ifz − 1 = n
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[Taniguchi et al., 1998] suggested that there is no deterministic approach to label

a call as a fraud. However, one can calculate probability of intrusion given the caller’s

transactions in the phone network by keeping track of the caller’s account in real time.

We have developed three separate detection algorithms working simultaneously

to distinguish call frauds and their reasons from data calculating various probabilities,

such as filtering, smoothing and fixed L-lag smoothing which will describe in Chapter

3
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3. SOLUTION METHODOLOGY

In this chapter we first describe our model and present forward-backward recur-

sions. We later describe how we adapt our problem to this model.

3.1. Multiple Changepoint Model Description

For our problem, we consider that given the position of a changepoint (the mo-

ment of victimization), the call data before the changepoint are independent of the

data after the changepoint. Multiple changepoint models (MCM) are a form of hidden

Markov models,HMM, where the observed states {y1, y2, . . .} conditionally depend on

hidden states, and the hidden states either follow the previous regime or jump to a

different one.

So given the properties of MCM, we choose to model our problem as a multiple change-

point model which breaks data into fractions and presume after the criminal access, a

new regime starts. Main problem is finding the position of the changepoints where the

user’s behavior has changed.

h0 h1 h2 · · · ht−1 ht · · ·

d1 d2 · · · dt−1 dt · · ·

y1 y2 · · · yt−1 yt · · ·

Figure 3.1: Hidden Markov Model
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h0 ∼ φ(h0;µ)

dt ∼ p(dt|dt−1)

ht ∼ p(ht|dt, ht−1)

yt ∼ p(yt|ht)

where δ is Dirac delta function [Kurt et al., 2018].

In this model, we have three variables which changes over time according to

Markov process. At the lowest hierarchical level, yt represents observation at time t

and it is a random variable sampled from p(yt|ht). At the next level, ht appears as the

unknown parameters for the observed data. At the beginning, h0 , initial parameters,

are drawn from φ(h0;µ) - µ represents hyperparameters of the distribution. At each

time point t, if data jumps to new regime (dt = 1), then the parameters re-drawn from

φ(ht, µ) distribution. In other case, they are equal to the previous value (ht = ht−1).

p(ht|dt, ht−1) =

φ(ht;µ) if dt = 1

ht−1 if dt = dt−1 + 1

At the highest level, we define dt as time spent in the current regime (segment) at time

t.

p(dt|dt−1) =

1, if the regime changes at time t with probability ξ

dt−1 + 1, if the old regime continues at time t with probability 1− ξ

where ξ is probability of regime change and d1 = 1
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For any t ≥ 1, the joint probability density of (d1:t, h1:t, y1:t) is given by

p(d1:t, h1:t, y1:t) = p(h0)
t∏

k=1

p(dk|dk−1)p(hk|hk−1, dk)p(yk|hk) (3.1)

In the case of conjugacy, ht integrals out and we have tractable density

p(d1:t, y1:t) =
t∏

k=1

p(dk|dk−1)p(yk|dk−1, dk, y1:k−1) (3.2)

3.2. Filtering and Smoothing

Our main aim is to capture the moment of change from normal behaviour to fraud

based on our observations. At each time point t, we calculate the posterior probability

of regime changing based on observations up to time t (filtering probabilities) p(dt =

1|y1:t). From Bayes Rule,

p(dt|y1:t) =
p(dt, y1:t)

p(y1:t)
(3.3)

Observations up to time t can be derived as

p(y1:t) =
∑
dt

p(dt, y1:t) (3.4)

For calculating p(dt, y1:t), we need to update the probability from the previous

step, p(dt−1, y1:t−1), by taking consideration of the new observation ,yt.

3.2.1. Forward Filtering and Conjugate Priors

Our objective is to calculate joint probability density p(dt, y1:t) recursively.
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We start with t = 1, and set p(d1 = 1, y1) = 1 as we mentioned in Section 2.6.

When t > 1,

αt(k) = p(dt = k, y1:t) = p(dt = k, y1:t−1, yt) (3.5)

=
t−1∑
l=1

p(dt = k, dt−1 = l, y1:t−1, yt) (3.6)

=
t−1∑
l=1

p(dt−1 = l, y1:t−1)︸ ︷︷ ︸
αt−1(l)

p(dt=k|dt−1=l)︷ ︸︸ ︷
p(dt = k|dt−1 = l, y1:t−1) p(yt|dt = k, dt−1 = l, y1:t−1)

(3.7)

=
t−1∑
l=1

αt−1(l)p(dt = k|dt−1 = l)p(yt|dt = k, dt−1 = l, y1:t−1) (3.8)

For finding a repetitive relation between p(dt, y1:t) and p(dt−1, y1:t−1), we marginalize

over all possible dt−1 values to calculate p(dt, y1:t) at equation (3.6) . dt−1, time spent

in the current regime at time t − 1, can vary between 1 and t − 1. In equation (3.7),

which we obtained from Bayes Rule, the first part of the equation shows what we need

for building a recursive relation: p(dt−1, y1:t−1). In addition, the second part can be

obtained from the conditional independence property which we showed in Figure 3.1.

And the last part indicates probability of the new observation given past observations

and the length of the current and previous regime segments.

p(dt = k|dt−1 = l) =


ξ, if k = 1

1− ξ, if k = l + 1

0 otherwise

p(yt|dt = k, dt−1 = l, y1:t−1) = p(yt|yt−k+1:t−1)

Since observations don’t depend on the previous regime.
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• if k = 1,

This means new regime has started, and yt is independent of past observations.

Then, p(yt|yt−k+1:t−1) = p(yt)

• if k > 1,

p(yt|yt−k+1:t−1) =
p(yt−k+1:t)

p(yt−k+1:t−1)
(3.9)

p(yτ :t) =

∫
h

p(yτ :t, h)dh =

∫
h

p(yτ :t|h)p(h)dh (3.10)

In Bayesian statistics, primary step to build a statistical model is to decide on the

likelihood, i.e. the conditional distribution of the data given the unknown parameter.

The likelihood represents the model choice for the data and it should represents the

real stochastic dynamics/phenomena of the data generation process as accurately as

possible.

posterior ∼ prior x likelihood

It is useful to consider a certain family of distributions for the prior distribution so that

the posterior distribution has the same form as the prior distribution but with different

parameters. For making our calculations in equation (3.10) tractable, we choose h as

conjugate prior for the likelihood p(yt|h).

Lastly, ın reference to equation (3.4)

αt(k) = p(dt = k, y1:t), p(dt = k|y1:t) =
αt(k)
t∑
l=1

αt(l)

(3.11)
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3.2.2. Backward Smoothing

For real time fraud detection, our algorithm uses posterior probabilities to capture

moment of change in the behaviour. This online algorithm only needs the observations

until the current time, y1:t. In an offline setting where we have all observations for time

t = 1, . . . , n, estimate for the change point becomes more accurate after calculating

p(dt = 1|y1:n) (smoothing probability).

We start our recursion with p(dn = 1|y1:n) which can be calculated from forward

recursions in Section 3.2.1. The goal is to derive p(dt = 1|y1:n) from p(dt+1 = 1|y1:n).

There are two ways to calculate smoothing probabilities.

• Forward filtering-backward smoothing

p(dt = k|y1:n) =
∑
dt+1

p(dt = k, dt+1|y1:n) (3.12)

=
t+1∑
l=1

p(dt+1 = l|y1:n)p(dt = k|dt+1 = l, y1:n) (3.13)

=
t+1∑
l=1

p(dt+1 = l|y1:n)p(dt = k|dt+1 = l, y1:t) (3.14)

=
t+1∑
l=1

p(dt+1 = l|y1:n)
p(dt+1 = k|dt = l)p(dt = l|y1:t)
t∑

z=1

p(dt+1 = l|dt = z)p(dt = z|y1:t)

(3.15)

The reason for the change from y1:n to y1:t in equation (3.14) is the conditional

independence property of our model.

• Two-filter smoothing

p(dt = k|y1:n) =
p(dt = k, y1:n)
t∑
l=1

p(dt = l, y1:n)

(3.16)

p(dt = k, y1:n) = p(dt = k, y1:t, yt+1:n)

= p(dt = k, y1:t)p(yt+1:n|dt = k, y1:t) (3.17)
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βt(k) = p(yt+1:n|dt = k, y1:t)

For convention, we choose βn(k) = 1, ∀k = 1, . . . , n.

The backward recursion can be shown as

βt(k) = p(yt+1:n|dt = k, y1:t) (3.18)

=
∑
dt+1

p(yt+1:n, dt+1 = l|dt = k, y1:t) (3.19)

=
t+1∑
l=1

p(yt+1, yt+2:n, dt+1 = l|dt = k, y1:t) (3.20)

=
t+1∑
l=1

p(dt+1=l|dt=k)︷ ︸︸ ︷
p(dt+1 = l|dt = k, y1:t) p(yt+1|dt+1 = l, y1:t) p(yt+2:n|y1:t+1, dt+1 = l, dt = k)︸ ︷︷ ︸

βt+1(l)

(3.21)

=
t+1∑
l=1

p(dt+1 = l|dt = k)p(yt+1|yt−y+2:t)βt+1(l) (3.22)

The smoothed density is calculated as

p(dt = k|y1:n) =
p(dt = k, y1:n)
t∑
l=1

p(dt = l, y1:n)

=
αt(k)βt(k)
t∑
l=1

αt(l)βt(l)

(3.23)

3.2.3. Tracking Latent Variables

The behaviour of a user during a regime can be characterized by the hidden

variables of the model, which are

φ = ({λai,j, λdi,j, i = 1, . . . , nw; j = 1, . . . , nd}, γ, {π(i), i = 1, . . . ,M}),

Since these variables are not observed directly, we will call them the latent variables of

the model. In our problem, unknown parameters, ht in 3.1 do not follow the previous

regime when dt = 1.
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To visualize the change in unknown parameters clearly, we calculate the expec-

tations of ht at each event t.

Let ht be the variable of interest so that we want to find

E(Ht|y1:t) =

∫
ht

p(ht|y1:t)htdht =

∫
ht

Nt∑
dt=1

p(dt, ht|y1:t)htdht

Nt∑
dt=1

∫
ht

p(dt, ht|y1:t)htdht =
Nt∑
dt=1

∫
ht

p(dt|y1:t)p(ht|dt, y1:t)htdht

=
Nt∑
dt=1

p(dt|y1:t)

∫
ht

p(ht|dt, y1:t)htdht =
Nt∑
dt=1

p(dt|y1:t)E(Ht|y1:t, dt)

E(Ht|y1:n) =
Nt∑
dt=1

∫
ht

p(dt, ht|y1:n)htdht =
Nt∑
dt=1

∫
ht

p(dt|y1:n)p(ht|dt, y1:n)htdht

Let

ηst (k) = E(Ht|y1:n, dt = k) =

∫
ht

p(ht|dt = k, y1:n)htdht

and

ηft (k) = E(Ht|y1:t, dt = k) =

∫
ht

p(ht|dt = k, y1:t)htdht

Also, use short-hand notations γft (k) = p(dt = k|y1:t) and γst (k) = p(dt = k|y1:n). The

smoothed expectation can be rewritten as

E(Ht|y1:n) =
Nt∑
k=1

ηst (k)γst (k) (3.24)
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We want to derive a backward recursion for ηst (k), hence for E(Ht|y1:n) indirectly.

ηst (k) =

∫
ht

∑
k′

∫
ht+1

p(ht, dt+1 = k′, ht+1|dt = k, y1:n)htdhtdht+1

=

∫
p(ht, dt+1 = k + 1, ht+1|dt = k, y1:n)htdhtdht+1 +∫

p(ht, dt+1 = 1, ht+1|dt = k, y1:n)htdhtdht+1

=

∫
p(ht, dt+1 = k + 1, ht+1, dt = k|y1:n)

p(dt = k|y1:n)
htdhtdht+1 +∫

p(ht, dt+1 = 1, ht+1, dt = k|y1:n)

p(dt = k|y1:n)
htdhtdht+1

We investigate the two terms in the last line. The first term is

∫
p(ht, dt+1 = k + 1, ht+1, dt = k|y1:n)

p(dt = k|y1:n)
htdhtdht+1

=

∫
p(ht+1|dt+1 = k + 1, y1:n)γst+1(k + 1)p(dt = k, ht|dt+1 = k + 1, ht+1, y1:n)

γst (k)
htdhtdht+1

=

∫
p(ht+1|dt+1 = k + 1, y1:n)γst+1(k + 1)

γst (k)

[∫
p(dt = k, ht|dt+1 = k + 1, ht+1, y1:n)htdht

]
dht+1

=

∫
p(ht+1|dt+1 = k + 1, y1:n)γst+1(k + 1)

γst (k)
ht+1dht+1

= ηst+1(k + 1)
γst+1(k + 1)

γst (k)

The second term is

∫
p(ht, dt+1 = 1, ht+1, dt = k|y1:n)

p(dt = k|y1:n)
htdhtdht+1

=

∫
p(ht+1|dt+1 = 1, y1:n)γst+1(1)p(dt = k, ht|dt+1 = 1, ht+1)

γst (k)
htdhtdht+1

=

∫
p(ht+1|dt+1 = 1, y1:n)γst+1(1)

γst (k)

[∫
p(dt = k, ht|dt+1 = 1, ht+1, y1:n)htdht

]
dht+1

=

∫
p(ht+1|dt+1 = 1, y1:n)γst+1(1)

γst (k)
dht+1

∫
p(dt = k, ht|y1:t)htdht

=
γst+1(1)

γst (k)
ηft (k)γft (k)
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Summing up, we have

ηst (k) = ηst+1(k + 1)
γst+1(k + 1)

γst (k)
+
γst+1(1)

γst (k)
ηft (k)γft (k) (3.25)

3.2.4. Fixed L-lag Smoothing

In an ideal world, filtering probabilities should be enough to give accurate es-

timations for the probability of fraud. However, sometimes, depending on the type

of fraud, the intrusion detection might require additional information about the data.

Since smoothing density p(dt = 1, y1:n) possesses more information about the data, it

always gives better evaluation for anomaly in the observations than the filtering den-

sity, p(dt = 1, y1:t). However, the goal of our model is finding fraud as soon as the

customer is victimized and since we are working with real-time data, n is unbounded.

In our case, using smoothing density for fraud detection causes a high delay in the

performance of the algorithm. As it is suggested in [Kurt et al., 2018] , to solve this

problem, we allow ourselves a reasonable delay time and find p(dt = 1|y1:t+L) -posterior

probability of fraud at time t, given data up to time t+ L where L is fixed and called

the lag.

3.2.5. Resampling Methods

As we have demonstrated in section 3.2.1, to calculate the filtering densities at

event t exactly, we require to store all filtering densities p(dt−1 = i|y1:t) where

i = 1, . . . , t − 1. We basically assume every time point until t can be a changepoint

candidate. Hence, the computational cost of our algorithm increases linearly over time

and for t time steps it becomes O(t2). In the interest of bounding the computational

time, we can use a resampling algorithm which the time points with lower filtering

densities can be omitted.
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We predetermine a lower bound for filtering density, ω and upper bound for

number of changepoint candidates N . At time t, Our algorithm choose maximum N

changepoint candidates that their filtering density is higher than ω and approximate

their filtering densities.

Algorithm 1: Resampling Algorithm

Input: Filtering probabilities at time t : p(dt = i|y1:t) i = 1, . . . , t,

maximum number of particles: N , threshold : ω

Output: Resampled filtering probabilities p̃(dt = i|y1:t) i ∈ S ⊆ {1, . . . , t}

1 P̃ = [ ], r̃ = [ ]

2 for i = 1, . . . , t do

3 xit = p(dt = i|y1:t)

4 if xit ≥ ω then

5 add xit to P̃

6 Calculate the length of the vector P̃ as NP̃ and set Ns = min(N,NP̃ )

7 Sort P̃ in a descending order and set P̃ = P̃ [1 : Ns]

8 Set r̃ as
{
i
}
xit∈P̃

9 Calculate total weight , b = SUM
[{
xit

}
xit∈P̃

]
10 for i = 1, . . . , t do

11 if i ∈ r̃ then

12 Normalize xit, xit = xit/b

13 set p̃(dt = i|y1:t) = xit

14 else

15 xit = 0
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3.3. Adaptation of Real-Time and Event-Based Fraud Detection to MCM

In this section, we describe how we adapted our real-time and event-based fraud

detection problem to multiple changepoint model we described above

In the model we introduced in Section 3.1, we show that the variable yt represents

the observation at time t. However in our problem, t in yt stands for the event number

and we refer t as the occurrence time of the event t. In Section 3.3.1, we will describe

our events and their difference from previous works.

3.3.1. Event Types

A study by [Kurt et al., 2018], they also adapted their problem multiple change-

point models and stored their observations in multidimensional vectors. However, in

their problem, they collected yt for time a time interval [t− 1, t] which is not compat-

ible to our goals. Since we are monitoring the call traffic of a customer in real-time,

our observations are mainly when a call starts and ends, where the callee resides or

whether a call is successful or not. We define our observations, yt as vectors which hold

the information we need. We consider the following events generated by a single user,

ordered in time, as observations. We have 6 event types:

Table 3.1: event types

Event type Description Event form

Call Start Start of a call [t, ‘CS’, call ID, features]

Call End End of a call [t,‘CE’, call ID]

Day Change
Change from one interval of the day to

the next
[t,‘DC’]

Week Change
Change from one interval of the week

to the next
[t, ‘WC’]

Call in Progress The call is in progress [t,‘CP’, call ID]

No Call
This is a ‘dummy’ event, simply indi-

cating no event
[t, ‘NC’]
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In all the event types, the first entry t is the time of the event and the second entry

is the abbreviation for the type of the event. Call ID is the call ID, and features is

an array whose elements correspond to several features of the call, including whether

a call is successful or not.

The event types ‘DC’, ‘WC’, ‘CP’, and ‘NC’ are not user-generated. Rather,

they are artificially generated by the detection system. The detection system has to

be noticed the interval changes since we assume that even within a single regime the

user behavior might vary over different intervals of the week. The events ‘CP’, and

‘NC’ are optional. We set a fix call process checking time tCP . If a call starting at

time t continues at time t + tCP , we add Call Process as a new observation. ‘CP’

may be useful for detection of a changepoint in call duration behavior even during a

call since thanks to this event the system does not need to wait until the call ends.

Similarly, ‘NC’ can be used to detect an adverse change in call frequency earlier than

the start of a next call which may happen after a very long time. They are useful if

the changepoint detection system is desired to process the calls in the middle of a call

or when there are no arrivals for a while. In the next section, we explain the use of

discrete events for tracking the caller’s transactions.

3.3.2. Equivalance of events and the process

The continuous-time changepoint process we described is fully observable as a

discrete-event system. In other words, all the states and cumulative statistics that are

necessary to perform changepoint detection in the data can exactly be extracted from

a sequence of events constructed appropriately.

Specifically, let the sequence of call-related events generated by a user, up to the n’th

event, be denoted by

y1, y2, . . . , yn
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Also, let the occurrence times of those events be

t̄1, t̄2, . . . , t̄n

Finally, let the continuous time observation process be

{Y (t)}t≥0

Note that {Y (t)}t≥0 contains all the necessary states and statistics that are necessary

to perform inference, such as the arrival process, the process of the set of all of active

calls, feature counts for the calls, etc.

The k’th event yk can be designed carefully so that, for any k ≥ 1, given Y ([0, tk−1]),

the event yk tells us the rest of the process until time t̄k, i.e. the portion Y ((tk−1, tk]),

where for a time interval A we define Y (A) = {Y (t) : t ∈ A}.

3.3.3. Changepoints

As we have mentioned in Section 2.6, we choose the time of the initial event

as a changepoint candidate for our real-time fraud detection problem. A significant

adaptation of the initial model we described to our problem is our understanding of

the changepoints. According to the model we described at section 3.1, at observation

yt, the time spent in the current regime can vary between 1 to t which implies every

event time up to t is a candidate for a changepoint.

In our problem, the perception about the changepoints has been changed after

considering that treating every event as a changepoint candidate is not useful. Our

main aim is to detect the moment of victimization and intrusion can only be seen when

the fraudster starts making phone calls.

To clarify, we assume only the times of events which are call start (CS) can be
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seen as a changepoint candidate. For every event yk, we define a set

[CS]k = {initial time + All call start times up to event k}

. [CS]k stores all changepoint candidate times up to event k or equivalently time tk.

3.4. Filtering and Smoothing

We define a new random variable Xk to be the occurrence time of the last change-

point at event k.

{Xk = i} = {last changepoint at event k occured at event i where ti ∈ [CS]k}

• Filtering

Now, we calculate sequentially the probabilities

P (Xk = i|y1:k), ti ∈ [CS]k

In particular, we are interested whether there is a changepoint at a given event

k, i.e.

P (Xk = k|y1:k),

• Smoothing

P (Xk = i|y1:n), ti ∈ [CS]k

In particular, we are interested whether there is a changepoint at a given event

k, i.e.

P (Xk = k|y1:n),
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We used particle filters that represents the changepoint candidates and every

particle stores the information that we need for finding probability of fraud. In our

problem, whenever a new call arrives, we first update the information in the particles

and filtering densities then we add a new particle that represents the latest changepoint.

3.4.1. Conjugate Priors

As we have mentioned, for the purpose of conjugacy, we choose λai,j and λdi,j from

the gamma distribution:

λai,j ∼ Gamma1(κai,j, θ
a
i,j)

λdi,j ∼ Gamma1(κdi,j, θ
d
i,j)

X ∼ Gamma1(κ, θ)→ p(x) = 1
Γ(κ)θκ

xκ−1e−x/θ

Proposition 1. Let λ ∼ Gamma1(κ, θ) with p(λ) = θ−κ

Γ(κ)
λκ−1e−λ/θ and X1, . . . , Xn

i.i.d.∼

Exp(λ). Then, for any m ≤ n,

λ|X1:m = x1:m, Xm+1:n > xm+1:n ∼ Gamma1

m+ κ,

[
1

θ
+

n∑
i=1

xi

]−1
 (3.26)

and

p(X1:m = x1:m, Xm+1:n > xm+1:n) =
θ−κ

(1/θ +
∑n

i=1 xi)
m+κ

Γ(m+ κ)

Γ(κ)
(3.27)

Interarrival times and are exponentially distributed, hence we can apply the equa-

tion (3.26) for interarrival times to calculate the likelihood. Let Tn the elapsed time

between (n− 1)’st and n’th call start and Tn is calculated as soon as n’th call arrives.

Let the changepoint for the duration process be tc ,the current time be t, The

following are needed to compute the probability of the events in the last regime:
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• τi,j(tc, t) for each (i, j); i = 1, . . . , nw; j = 1, . . . , nd,

• Na
i,j(tc, t) for each i, j; i = 1, . . . , nw; j = 1, . . . , nd.

Let m be the number interarrival times in period (i, j) between tc and t. Also, the

number interarrival times in period (i, j) equals to number of calls visiting period

(i, j), Na
i,j(tc, t) = m.

p(T1:m = t1:m, Tm+1:n > tm+1:n) =
(θai,j)

−κai,j[
1/θai,j +

Na
i,j(tc,t)∑
i=1

ti

]m+κai,j

Γ(m+ κai,j)

Γ(κai,j)
(3.28)

can be calculated for each (i, j) period, where

Na
i,j(tc,t)∑
i=1

ti equals to total time spent in

(i, j) interval between tc and t, τi,j(tc, t)

By Proposition 1, given τi,j(tc, t) = τi,j, the joint probability of {Na
i,j(tc, t) =

ni,j; i, j} is

pa(n1:nw,1:nd ; τ1:nw,1:nd) =
nw∏
i=1

nd∏
j=1

(θai,j)
−κai,j

(1/θai,j + τi,j)
ni,j+κai,j

Γ(ni,j + κai,j)

Γ(κai,j)
.

Let the changepoint for the duration process be tc ,the current time be t, For each

changepoint for call durations, the following are needed to compute the probabilities

between the two regimes:

• Np
i,j(tc, t): number of calls progressed in interval (i, j) between tc and t for each

(i, j); i = 1, . . . , nw; j = 1, . . . , nd,

• N e
i,j(tc, t): number of calls ended in interval (i, j) between tc and t for each (i, j);

i = 1, . . . , nw; j = 1, . . . , nd,

• Na
i,j(tc, t),

• Dp
i,j(tc, t): duration of calls progressed in interval (i, j) between tc and t for each

(i, j); i = 1, . . . , nw; j = 1, . . . , nd,
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• De
i,j(tc, t): duration of calls ended in interval (i, j) between tc and t for each (i, j);

i = 1, . . . , nw; j = 1, . . . , nd.

For call duration, Let Dn denote the duration of the nth call and m be the number

of calls that ended in period (i, j) between tc and t, N e
i,j(tc, t). It has been noted that

Dn’s are exponentially distributed with rate λdi,j

p(D1:m = d1:m, Dm+1:Na
i,j(tc,t)

> dm+1:Na
i,j(tc,t)

) =
(θdi,j)

−κdi,j

(1/θdi,j +
∑Na

i,j(t1,t2)

i=1 di)
m+κdi,j

Γ(m+ κdi,j)

Γ(κdi,j)

(3.29)

By Proposition 1, given Na
i,j(tc, t) = n, the joint probability of {Dp

i,j(tc, t) =

dpi,j, D
e
i,j(tc, t) = dei,j; i, j} with {Np

i,j(tc, t) = npi,j, N
e
i,j(tc, t) = nei,j; i, j} is

pd(dp1:nw,1:nd
, de1:nw,1:nd

) = (3.30)

nw∏
i=1

nd∏
j=1

(θdi,j)
−κdi,j

(1/θdi,j +
∑ne

l=1 d
e
i,j(l) +

∑np

l=1 d
p
i,j(l))

nei,j+κ
d
i,j

Γ(nei,j + κdi,j)

Γ(κdi,j)
.

(3.31)

where
∑ne

l=1 d
e
i,j(l)+

∑np

l=1 d
p
i,j(l) is the sum of call durations of the calls which processed

or ended at period (i, j)

Let the changepoint for the duration process be tc ,the current time be t, For each

changepoint for call features, the following are needed to compute the probabilities

between the two regimes: For the call features, we model them as a multinomial

distribution in Section 2.4 with probabilities π(i) = (π
(i)
1 , . . . , π

(i)
mi) and for the purpose

of conjugacy, we choose π(i) from dirichlet distribution

π(i) ∼ Dir(ρ
(i)
1 , . . . , ρ

(i)
mi

)
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As a result, we have tractable marginal distribution for the counts in Section

2.11:

P(C(i)(tc, t) = c(i)|Na(tc, t) = n) = Dir-Mult
(
c(i); ρ(i), n

)
(3.32)

where Dir-Mult denotes the Dirichlet-Multinomial distribution, whose probability dis-

tribution is given by

Dir-Mult (x1, . . . , xM ; ρ, n) =
Γ(
∑M

k=1 ρk)n!

Γ(n+
∑

k ρk)

M∏
k=1

Γ(xk + ρk)

Γ(ρk)xk!
.

Therefore, for all the counts,

P(C(1)(tc, t) = c(1), . . . , CM(t1, t2) = cM |Na(tc, t) = n) =
M∏
i=1

Dir-Mult
(
c(i); ρ(i), n

)
(3.33)

In Section 2.3.1, we defined the the probability of a call being unsuccessful as γ

and we assign a Beta prior for it.

γ ∼ Beta(αc, βc).

The marginal probability for the number of unsuccessful calls is a Beta-Binomial prob-

ability with parameters αc and βc:

P(Nu(tc, t) = x|Na(tc, t) = n) =

(
n

x

)
B(αc + x, βc + n− x)

B(α, β)

With every event yt, we update the elements we used for calculating the likelihood

and our filtering densities. See Appendix B.1 for keeping sufficient statistics
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3.4.2. Hyperparameters

Hyperparameters are the variables that stay constant across all the regimes. Un-

like real world, we presumed that the values of hyperparameters are given. Let µ is

the set of hyperparameters

µ = {κai,j, θai,j, κdi,j, θdi,j, i = 1, . . . , nw; j = 1, . . . , nd}, αc, βc, {ρ(i), i = 1, . . . ,M},

For parsimony, we reduce the number of hyperparameters by setting κai,j = κa, θai,j = θa,

κdi,j = κd, θdi,j = θd, ρ
(i)
j = ρ.
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4. EXPERIMENTS AND RESULTS

In this chapter, we perform computational studies to show the performance of

our proposed algorithm in Chapter 3.

4.1. Experimental Setup

4.1.1. Data Generation

In Chapter 3, we discussed the important features of our data types and com-

mented that in order to detect fraud we must collect our observations as events we

have shown in Section 3.3.1. Because of the privacy reasons, we create our own data

generator which simulates events as we discussed. See Appendix B.

4.1.2. Decision Making

There are several possible ways to make an ultimate decision whether a change-

point occurs or not:

• Changepoint probabilities: Since we are using Bayesian method, our filtering

probabilities tells us how likely a time point is a last changepoint at time t

We refer to p(Xk = i|y1:k) as probability of last changepoint time is ti at time tk

given events up to time tk.

In case of filtering (respectively smoothing, fixed-lag smoothing), a decision for

a changepoint can be made based on tracking the probabilities of

p(Xk = k|y1:k) (resp. p(Xk = k|y1:n), p(Xk = k|y1:k+L)) for each k > 0.

Our algorithm creates an alarm if probability of being a changepoint exceeds a
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predetermined threshold ς,

p(Xk = k|y1:k) > ς (resp. p(Xk = k|y1:n) > ς, p(Xk = k|y1:k+L) > ς)

• Latent variables: By tracking the changes in the latent variables, a decision

making procedure can be made based on the common behavioural characteristics

of fraud.

4.2. Results

In this section, we present the results of our fraud detection algorithm that we

implemented in Python 3.6 and all tests are conducted on a 64-bit server with and

Intel Core i7 7700HQ , 2.8 GHz processor and 16 GB RAM running Windows 10

Professional.

We simulated a call data of 15 days for one customer using the values from

Table 4.2 with three changepoints. We run three different fraud detection algorithm

simultaneously to detect the moment of intrusion.

Table 4.1: inputs for the call generation

total time, T 1, 296× 103 seconds

initial time, t0 0.00 seconds

changepoint probability, ξ 0.008

nw 1

nd 1

M 2

κa 2.225

κd 2.10

θa 1.51× 10−4

θd 2.5× 10−4
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αc 0.1

βc 0.9

ρ 0.1

Since we are trying to test the performance of our algorithm, we know the loca-

tions of the changepoints in advance. According to data test we use, the change point

times are at c1 = 74.61949727, c2 = 257.39426515, c3 = 259.13771393 hours.

As we have mentioned in Section 3.3.3, every ’CS’ event is a candidate for a

changepoint. Hence, the computational cost of calculating filtering densities increases

linearly over time. In Section 3.2.5, we represented a resampling method that considers

up to N number of ’CS’ events with filtering probabilities higher than the threshold

value ω as a set of changepoint candidates.

Figure 4.1: Resampling Algorithm
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The number of changepoint candidates fluctuating over time when N = 100 and ω =

10−4 is shown in Figure 4.1. In the next sections, we compare the performances of



40

filtering, fixed L-lag smoothing and smoothing for the simulated data and explain our

method for producing an alert for unusual behavior.

Table 4.2: changepoints for the simulated data

changepoint time (hours)

c1 74.62

c2 257.40

c3 259.14

4.2.1. Detecting ChangePoints

As one can say intuitively, the more information we possess about the data, the

better evaluations we can carry out. For this reason, smoothing densities give best es-

timations for fraudulent behavior in comparison to filtering and fixed L-lag smoothing.

In Figure 4.2, 4.3, and 4.4, event times and the corresponding time our method con-

siders to be the most probable, recent changepoint with respect to p(Xk = i|y1:k),

p(Xk = i|y1:k+5), p(Xk = i|y1:k+10) and p(Xk = i|y1:n) for call frequency, call duration

and call features are given.

Figure 4.2: Estimating last changepoint time for call frequency using filtering, fixed L-lag smoothing

and smoothing densities.
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An important part of fraud detection algorithm is limiting the number of false

alarms which can damage callers’ satisfaction considerably. For example, given c1, c2,and

c3 in Table 4.2, filtering finds a false changepoint for call frequency around 150’th hour,

Figure 4.2, where fixed L-lag smoothing and smoothing perform considerably better.

In our algorithm, we aim to minimize the number of false alarms while being quick to

detect the deviations from normal behavior. Although smoothing probability gives the

best estimation, the delay is high considering the need to collect all the data up to yn.

Figure 4.3: Estimating last changepoint time for call duration using filtering, fixed L-lag smoothing

and smoothing densities.
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Figure 4.4: Estimating last changepoint time for call features using filtering, fixed L-lag smoothing

and smoothing densities.
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Fixed L-lag smoothing, compared to filtering, gives improved results for fraud

detection while coming L events behind which can be considered as an acceptable
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delay for our algorithm. In the next section, we introduce another method for catching

anomaly in the caller’s account.

4.2.2. Tracking Latent Variables

Call behavior in the communication network is defined by the unobserved param-

eters λai,j, λ
d
i,j, and πi which are constant during a regime. After a changepoint, the

latent variables are resampled from their respective prior distributions. Estimations

for the latent variables when nw = 1, nd = 1 and M = 2, mi = 2 for i = 1, 2 are

represented in Figures 4.5, 4.6, and 4.7.

Figure 4.5: Estimation of call frequency parameters
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Figure 4.6: Estimation of call duration parameters
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Figure 4.7: Estimation of call features parameters
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4.2.3. F-score

In this section, we introduce F-score which is a measurement we used to test the

accuracy of our algorithm. F-score uses both the precision value and recall value of the

test.

F-score = 2× Precision× Recall

Precision + Recall

where precision =
number of true alarms

number of alarms
and recall value =

number of true alarms

number of changepoints
High precision indicates that the algorithm returned substantially more relevant results

than irrelevant ones, while high recall means that the algorithm returned most of the

relevant results. F1 score reaches its best value at 1 (perfect precision and recall) and

worst at 0.

When p(Xk = k|y1:k) > ς or
(
p(Xk = k|y1:n) > ς, p(Xk = k|y1:k+L

)
> ς),

our algorithm initiates an alarm at time tk. If there is a changepoint time c such that

tk−ε ≤ c ≤ tk for some tolerance window ε, then we classify it as a true alarm. Alarms

which do not fall in a tolerance window of a any changepoint time are considered as

false alarms. In Figures 4.8, 4.9 and 4.10, the probabilities of filtering, smoothing and
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fixed L-lag smoothing are given.

Figure 4.8: Probability of a changepoint in call frequency in the last three hours
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For example, when ς = 0.15, detection algorithm constructed using filtering prob-

abilities for call arrival finds all changepoints, however it gives false alarms around 7’th,

150’th and 212’th hour. If we set ς = 0.50, we would decrease the number of false alarm

but no longer detect the changepoints at c2 and c3

Figure 4.9: Probability of a changepoint in call duration in the last three hours
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Figure 4.10: Probability of a changepoint in call features in the last three hours
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As expected, smoothing probabilities do not fluctuate at non-fraudulent event

times and depending on the threshold value number of false and true alarms can vary.

In Table 4.3, averages of F-scores of 30 runs that generated from Table 4.2 with respect

to different call behavior elements and thresholds are given. Interested readers can find

the extensive F-score values in Appendix C

Table 4.3: average F-score sample mean ± sample variance

behavior type threshold filtering
fixed lag smoothing

smoothing

L=5 L=10

0.15 0.23± 0.063 0.28± 0.054 0.29± 0.054 0.32± 0.041

arrival 0.30 0.17± 0.065 0.25± 0.084 0.28± 0.076 0.31± 0.075

0.50 0.15± 0.047 0.23± 0.084 0.23± 0.0821 0.26± 0.071

0.15 0.18± 0.045 0.24± 0.045 0.27± 0.039 0.31± 0.036

duration 0.30 0.16± 0.072 0.27± 0.065 0.28± 0.078 0.29± 0.075

0.50 0.11± 0.044 0.21± 0.078 0.25± 0.077 0.27± 0.083

0.15 0.55± 0.035 0.62± 0.030 0.63± 0.032 0.64± 0.027

feature 0.30 0.58± 0.031 0.65± 0.032 0.67± 0.030 0.69± 0.027

0.50 0.60± 0.035 0.66± 0.032 0.67± 0.034 0.70± 0.027
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From Table 4.3, one can easily see that the mean F-score value for smoothing is

always better than the filtering. Also, our algorithm gives significantly better F-score

values for call features compared to call frequency and call duration. One interpretation

we can make for this result is unlike call frequency and duration; call features are

collected at the beginning of each ’CS’ event. Hence, a change in the call features is

observable at the time of the changepoint in contrast to the other call behaviors.
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5. CONCLUSION

Finding fraud in communication network more efficiently would lead to higher

revenues and customer satisfaction for telecommunication companies. In this study,

we addressed phone fraud detection as a Multiple Changepoint model and build an

event-based, real-time Bayesian call fraud detection algorithm which requires collecting

the high volume of data continuously. We used forward-backward recursions to find

the probability of change [Fearnhead and Liu, 2007]. We deduce that while filtering

probabilities calculate the probability of change in real-time, smoothing probabilities

give a much consistent estimation giving that they have more information about the

caller’s observations.

We designed an algorithm that detects change in callers’ behavior with the as-

sumption that illegal use in the network is one of the main reasons of deviation from

the usual behavior. Our work is extended to three detection algorithms which work

separately to catch fraudulent activity in the call network. By doing that, we also con-

sider the fact that call behavior of a customer is not homogeneous. Apart from that,

we adapted our problem to an event-based detection fraud detection model where our

data is updated as soon as an event occurs. We have created our call data generator

which simulates call data considering all the characteristics of a caller.

As mentioned in [Yang and Kuo, 2001], [Fearnhead, 2006], [Fearnhead and Liu,

2007], to overcome the quadratically increasing computational costs of estimating filter-

ing and smoothing probabilities, we implemented a resampling method which basically

omits the changepoint candidates with low filtering probability and approximates the

filtering and smoothing probabilities while decreasing the computational cost.

For the experimental tests, we randomly generated datasets in Python 3.6 which

call traffic followed a non-homogeneous process and user’s behavior jump to a new

regime with probability ξ. We tested our detection algorithm on simulated data by

keeping track of the true and false alarms.. We use F-score as a measurement for our
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test results and conclude that our detection algorithm catches changepoints resulting

from deviations in the call features better.

For future research, an online expectation maximization algorithm can be adapted

to our model to approximate hyperparameters and analyze real call data. Also, algo-

rithm can be changed in a way that it can be applicable for multi-user case.
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APPENDIX A: DERIVATIONS

A.1. Conjugacy

Throughout this document, we have used Gamma1(κ, θ) and Gamma2(a, b) to

mean two different parametrisations of the Gamma distribution.

(1) The probability density functions of these distributions are given by

X ∼ Gamma1(κ, θ)→ p(x) =
1

Γ(κ)θκ
xκ−1e−x/θ (A.1)

X ∼ Gamma2(a, b)→ p(x) =
ba

Γ(a)
xa−1e−bx. (A.2)

Therefore, Gamma1(κ, θ) = Gamma2(κ, θ−1).

(2) The relation between gamma and inverse gamma distributions are given by

X ∼ Gamma1(κ, θ)→ X ∼ Gamma2(κ, θ−1)→ 1/X ∼ IG(κ, θ−1)

where the pdf of inverse gamma distribution is given by

Y ∼ IG(α, β)→ p(y) =
βα

Γ(α)
y−α−1e−β/y

(3) If X ∼ Gamma1(κ, θ), E(X) = κθ and Var(X) = κθ2. Furthermore,

E(1/X) =
1

θ(κ− 1)
, Var(1/X) =

1

θ2(κ− 1)2(κ− 2)
= E(1/X)2 1

κ− 2
(A.3)

(4) We are interested in the moments of 1/X when X is gamma distributed since in

the model interarrival times as well as call durations are exponentially distributed

with rates that are gamma distributed. and the mean of Exp1(λ) is 1/λ.

(5) We can adjust the variability of the expected values of those durations across

regimes between changepoints by playing with the shape and scale parameters of
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the Gamma distribution for rate, the hyperparameters of the model. If desired

expected value and standard deviation of those durations are µ and σ, then, using

(A.3), we would have

κ =
µ2

σ2
+ 2, θ =

1

µ(κ− 1)

(6) If X ∼ Gamma1(κ, θ) and N ∼ PO(X), then

P(N = n) =
Γ(κ+ n)

Γ(κ)n!

(
θ

θ + 1

)n(
1

θ + 1

)κ
(A.4)

=
Γ(κ+ n)

Γ(κ)n!

θn

(1 + θ)n+κ
(A.5)

This is because X ∼ Gamma2(κ, θ−1) and we defer the reader to the wikipedia

page noting that when we solve for (1− p)/p = θ−1 we get p = 1/(θ−1 + 1).

(7) python and MATLAB use the parametrisation Γ1(a, b) and Exp2(µ) = Exp1(1/µ)

We will use the proposition below.

If p1, . . . , pk ∼ Dir(α1, . . . , αk) and x1, . . . , xk ∼ Mult(n; p1, . . . , pk). ............

where DM denotes the Dirichlet-Multinomial distribution, whose probability distri-

bution is given by

DM ((x1, . . . , xK); ρ, n) =
n!Γ(

∑K
k=1 ρk)

Γ(n+
∑

k ρk)

K∏
k=1

Γ(xk + ρk)

(xk!)Γ(ρk)
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APPENDIX B: Data Generator

In order to represent our model fully, we simulate our events for a single user

according to our depiction of call events in Section 3.3.1.

Inputs:

• hyperparameters: κai,j = κa, θai,j = θa, κdi,j = κd, θdi,j = θd, ρ
(i)
j = ρ, αc, βc

• initial time: t0

• total time: T

• intervals of the day: vector of 1×nd that shows the beginning times of the every

interval in the day.

• changepoint probability ξ

• class sizes: vector of 1 ×M that shows number of categories for corresponding

feature.

• checking time for call progress: tCP

• checking time for no call: tNC

Outputs: past events

At the beginning of the simulation, we set an empty vector called active calls and

set number of active calls to 0. We start our algorithm with adding events [t0 + tNC ,

’NC’], ’WC’ and ’DC’ events with their times showing the change in the interval.

• Initialization

– number of active calls = 0,

– active calls = [ ],

– call number = 1

– future events = [[T,”END] ],

– find the period (w, c), t0 belongs to

– t = t0

– schedule no call event [t+ tNC , ’NC’] and add to future events
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– tWC : time of the next weekday/weekend change event

– tDC : time of the next day interval change event

– add [tDC , ’DC’] and [tWC , ’WC’] to future events.

– get parameters λai,j ∼ Gamma1(κai,j, θ
a
i,j), λ

d
i,j ∼ Gamma1(κdi,j, θ

d
i,j) for all

i = 1, . . . , nw, j = 1, . . . , nd, πf ∼ Dir(ρf ), f = 1, . . . ,M and γ ∼

Beta(αc, βc)

– sample interarrival time at ∼ Exp(λai,j)

– Schedule a call start by adding event [t+ at, ’CS’, call number]

• while t < T

– pick the earliest event from future events call it current event

– event type = current event [1] (type of current event)

– t = current event[0] (time of current event)

– process the event

Process of Events

• if event type = ’CS’

– sample feature vector cat from πi

– current event ← current event + cat

– future events ← future events + [t+ tCP , ’CP’, call number]

– u ∼ U(0, 1).

– if u ≤ ξ

∗ update parameters λai,j ∼ Gamma1(κai,j, θ
a
i,j), λ

d
i,j ∼ Gamma1(κdi,j, θ

d
i,j)

for all i = 1, . . . , nw, j = 1, . . . , nd, πf ∼ Dir(ρf ), f = 1, . . . ,M

and γ ∼ Beta(αc, βc)

– u ∼ U(0, 1).

– if u ≤ γ

– future events ← [future events + [t, ’CE’, call number]]

– else

– active calls ← [active calls , call number]

– number of active calls ← number of active calls + 1
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– sample duration time dt ∼ Exp(λdi,j)

– future events ← [future events + [t+ dt, ’CE’, call number]]

– add current event to past event

• if event type = ’WC’

– change i, move to weekday or weekend

– add next week change event to future events meaning future events← [future

events,[tWC , ’WC’]]

– add current event to past events

• if event type = ’DC’

– change j, move to next day interval

– add day interval change event to future events meaning future events ←

[future events,[tDC , ’DC’]]

– add current event to past events

• if event type = ’CE’

– call number = current event [3]

– remove call number from active calls vector

– number of active calls ← number of active calls -1

– add current event to past events

• if event type = ’NC’

– if number of active calls = 0

– add current event to past events

• if event type = ’CP’

– if current event in active calls

– add current event to past events

Notation
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• N : number of calls arriving from time 0 until time t.

• Na
i,j: number of calls arriving in an (i, j) interval

• Np
i,j: number of successful calls in progress that have visited (i, j)-type interval

• N e
i,j(t1, t2): number of successful calls ending in an (i, j) interval between time t1

and time t2.

• Nu: number of unsuccessful calls.

• τi,j: time spent in the (i, j) type intervals.

• Dp
i,j: Vector (of size Np

i,j × 1) of times spent in (i, j) intervals for ongoing calls in

the (i, j) intervals.

• IDp
i,j: The vector of call ID’s of the calls in Dp

i,j.

• De
i,j: Vector (of size N e

i,j × 1) of times spent in (i, j) intervals for ending calls in

the (i, j) intervals.

• Ii,j: Set of times for the (i, j)-type intervals.

B.1. Bookkeeping for the sufficient statistics

For each event type, the content of the event and the list of actions in order to

update the observation density are given below:

• Call Start (CS): the event is of the form

[CS, t, Call ID, feature vector, Call success]

The actions to be taken in a CS event at the time tk of the k’th event:

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1

– N ← N + 1

– τi,j ← τi,j + tk − tk−1

– Na
i,j ← Na

i,j + 1
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– Check the call status:

∗ If call is unsuccessful, then

· Nu ← Nu + 1;

∗ If call is successful, then IDp ← [IDp Call ID]. Furthermore, for all

i, j

· IDp
i,j ← [IDp

i,j Call ID]

· Dp
i,j ← [Dp

i,j 0]

· Np
i,j ← Np

i,j + 1

– Update the counts in the feature vectors:

c
(i)
feature vector[i] ← c

(i)
feature vector[i] + 1, i = 1, . . . , nf

• Call End (CE): the event is of the form

[CE, t, Call ID]

The actions to be taken in a CE event at the time tk of the k’th event:

– Find the element valued Call ID in IDp and IDp
i,j, set the indices to temp

index and temp index local

– Remove the temp index’th element from IDp

– Remove the temp index local’th element from IDp
i,j

– Remove temp index local’th element from Dp
i,j, keep the value of the ele-

ment as temp duration

– Np
i,j ← Np

i,j − 1

– De
i,j ← [De

i,j temp duration + tk − tk−1]

– N e
i,j ← N e

i,j + 1

– τi,j ← τi,j + tk − tk−1

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1
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• Call in progress (CP): the event is of the form

[CP, t, Call ID]

The actions to be taken in a CP event at the time tk of the k’th event:

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1

– τi,j ← τi,j + tk − tk−1

• No Call (NC): the event is of the form

[NC, t]

The actions to be taken are

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1

– τi,j ← τi,j + tk − tk−1

• weekday/weekend change (WC): the event is of the form

[NC, t]

The actions to be taken are

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1

– τi,j ← τi,j + tk − tk−1
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– We update the current interval:

(i, j)← (i mod nw + 1, j)

• change in period of the day (DC): the event is of the form

[DC, t]

The actions to be taken are

– For every index in {1, . . . , Np
i,j}, if IDp

i,j[index] ∈ IDp

Dp
i,j[index]← Dp

i,j[index] + tk − tk−1

– τi,j ← τi,j + tk − tk−1

– We update the current interval:

(i, j)← (i, j mod nd + 1)
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APPENDIX C: Detailed Results for Algorithm

Table C.1: F-score for arrival, threshold = 0.15

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.67 0.44 0.57 0.57

2 1641 586 3 0.50 0.40 0.44 0.33

3 880 298 3 0.67 0.50 0.57 0.60

4 947 378 3 0.00 0.00 0.00 0.36

5 1433 504 1 0.33 0.40 0.40 0.50

6 969 341 4 0.00 0.29 0.25 0.18

7 562 200 5 0.50 0.40 0.33 0.40

8 902 333 5 0.44 0.00 0.00 0.25

9 856 367 2 0.00 0.00 0.00 0.00

10 1045 399 4 0.00 0.33 0.29 0.40

11 1907 689 7 0.25 0.53 0.40 0.44

12 1470 542 2 0.25 0.22 0.18 0.18

13 673 230 2 0.00 0.00 0.00 0.00

14 860 344 3 0.60 0.60 0.60 0.60

15 536 184 2 0.29 0.67 0.57 0.44

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.17 0.00 0.15 0.00

19 727 239 1 0.00 0.40 0.40 0.40

20 1067 383 4 0.29 0.29 0.40 0.46

21 322 99 2 0.00 0.50 0.40 0.40

22 1199 458 2 0.40 0.29 0.00 0.29

23 1077 401 6 0.18 0.18 0.33 0.35

24 878 461 2 0.00 0.00 0.29 0.33

25 1122 413 1 0.00 0.00 0.00 0.00

26 709 228 1 0.00 0.50 0.67 0.40

27 461 152 1 0.67 0.50 0.50 0.50

28 947 363 6 0.62 0.71 0.71 0.71

29 1413 490 2 0.00 0.25 0.29 0.25

30 675 323 2 0.00 0.00 0.00 0.33
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Table C.2: F-score for arrival, threshold = 0.30

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.67 0.44 0.57 0.57

2 1641 586 3 0.29 0.50 0.50 0.44

3 880 298 3 0.40 0.67 0.40 0.67

4 947 378 3 0.00 0.00 0.00 0.00

5 1433 504 1 0.50 0.50 0.50 0.67

6 969 341 4 0.00 0.33 0.33 0.25

7 562 200 5 0.00 0.44 0.50 0.55

8 902 333 5 0.00 0.00 0.00 0.00

9 856 367 2 0.00 0.00 0.00 0.00

10 1045 399 4 0.00 0.00 0.00 0.22

11 1907 689 7 0.00 0.36 0.33 0.43

12 1470 542 2 0.33 0.29 0.29 0.33

13 673 230 2 0.00 0.00 0.00 0.00

14 860 344 3 0.67 0.86 0.86 0.75

15 536 184 2 0.40 0.80 0.80 0.80

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.00 0.00 0.00 0.00

19 727 239 1 0.00 0.50 0.50 0.50

20 1067 383 4 0.33 0.44 0.44 0.40

21 322 99 2 0.00 0.00 0.50 0.40

22 1199 458 2 0.00 0.00 0.00 0.00

23 1077 401 6 0.25 0.25 0.40 0.40

24 878 461 2 0.00 0.00 0.40 0.40

25 1122 413 1 0.00 0.00 0.00 0.00

26 709 228 1 0.00 0.00 0.00 0.00

27 461 152 1 0.67 0.50 0.50 0.50

28 947 363 6 0.72 0.72 0.67 0.72

29 1413 490 2 0.00 0.00 0.00 0.00

30 675 323 2 0.00 0.00 0.00 0.33
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Table C.3: F-score for arrival, threshold = 0.5

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.40 0.57 0.57 0.57

2 1641 586 3 0.40 0.67 0.57 0.57

3 880 298 3 0.40 0.40 0.40 0.40

4 947 378 3 0.00 0.00 0.00 0.00

5 1433 504 1 0.50 0.67 0.67 0.67

6 969 341 4 0.00 0.00 0.00 0.29

7 562 200 5 0.00 0.29 0.50 0.50

8 902 333 5 0.00 0.00 0.00 0.00

9 856 367 2 0.00 0.00 0.00 0.00

10 1045 399 4 0.00 0.00 0.00 0.00

11 1907 689 7 0.00 0.00 0.33 0.33

12 1470 542 2 0.50 0.40 0.33 0.40

13 673 230 2 0.00 0.00 0.00 0.00

14 860 344 3 0.40 0.40 0.40 0.40

15 536 184 2 0.50 0.80 0.80 0.50

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.00 0.00 0.00 0.00

19 727 239 1 0.00 0.50 0.50 0.50

20 1067 383 4 0.33 0.57 0.50 0.50

21 322 99 2 0.00 0.00 0.00 0.50

22 1199 458 2 0.00 0.00 0.00 0.00

23 1077 401 6 0.25 0.25 0.00 0.00

24 878 461 2 0.00 0.00 0.00 0.00

25 1122 413 1 0.00 0.00 0.00 0.00

26 709 228 1 0.00 0.00 0.00 0.00

27 461 152 1 0.67 0.67 0.67 0.67

28 947 363 6 0.25 0.72 0.72 0.72

29 1413 490 2 0.00 0.00 0.00 0.00

30 675 323 2 0.00 0.00 0.00 0.00
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Table C.4: F-score for duration, threshold = 0.15

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.00 0.00 0.29 0.33

2 1641 586 3 0.33 0.40 0.33 0.33

3 880 298 3 0.00 0.29 0.29 0.31

4 947 378 3 0.00 0.00 0.25 0.25

5 1433 504 1 0.29 0.40 0.40 0.40

6 969 341 4 0.60 0.44 0.44 0.44

7 562 200 5 0.29 0.25 0.22 0.25

8 902 333 5 0.33 0.57 0.57 0.57

9 856 367 2 0.00 0.33 0.25 0.33

10 1045 399 4 0.25 0.36 0.36 0.31

11 1907 689 7 0.33 0.50 0.33 0.50

12 1470 542 2 0.14 0.18 0.44 0.50

13 673 230 2 0.33 0.25 0.17 0.25

14 860 344 3 0.75 0.75 0.60 0.67

15 536 184 2 0.00 0.00 0.00 0.00

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.22 0.00 0.50 0.20

19 727 239 1 0.00 0.40 0.40 0.40

20 1067 383 4 0.00 0.25 0.00 0.20

21 322 99 2 0.00 0.00 0.00 0.33

22 1199 458 2 0.44 0.44 0.50 0.57

23 1077 401 6 0.00 0.31 0.33 0.40

24 878 461 2 0.00 0.00 0.00 0.00

25 1122 413 1 0.00 0.00 0.50 0.40

26 709 228 1 0.50 0.29 0.50 0.67

27 461 152 1 0.00 0.00 0.00 0.00

28 947 363 6 0.33 0.43 0.14 0.17

29 1413 490 2 0.25 0.29 0.33 0.29

30 675 323 2 0.00 0.00 0.00 0.33
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Table C.5: F-score for duration, threshold = 0.30

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.00 0.00 0.00 0.40

2 1641 586 3 0.44 0.44 0.50 0.50

3 880 298 3 0.00 0.00 0.00 0.29

4 947 378 3 0.00 0.00 0.29 0.40

5 1433 504 1 0.67 0.50 0.50 0.67

6 969 341 4 0.50 0.50 0.50 0.50

7 562 200 5 0.00 0.25 0.25 0.25

8 902 333 5 0.44 0.44 0.67 0.62

9 856 367 2 0.00 0.50 0.50 0.50

10 1045 399 4 0.33 0.50 0.50 0.36

11 1907 689 7 0.43 0.43 0.43 0.53

12 1470 542 2 0.00 0.33 0.25 0.33

13 673 230 2 0.00 0.50 0.33 0.00

14 860 344 3 0.86 0.67 0.86 0.75

15 536 184 2 0.00 0.00 0.00 0.00

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.00 0.00 0.00 0.00

19 727 239 1 0.00 0.50 0.50 0.50

20 1067 383 4 0.00 0.00 0.00 0.00

21 322 99 2 0.00 0.00 0.00 0.00

22 1199 458 2 0.57 0.80 0.80 0.80

23 1077 401 6 0.00 0.40 0.40 0.44

24 878 461 2 0.00 0.00 0.00 0.00

25 1122 413 1 0.00 0.00 0.00 0.00

26 709 228 1 0.67 0.50 0.67 0.67

27 461 152 1 0.00 0.00 0.00 0.00

28 947 363 6 0.00 0.36 0.00 0.00

29 1413 490 2 0.00 0.40 0.40 0.33

30 675 323 2 0.00 0.00 0.00 0.00
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Table C.6: F-score for duration, threshold = 0.50

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.00 0.00 0.00 0.00

2 1641 586 3 0.29 0.67 0.67 0.40

3 880 298 3 0.00 0.00 0.00 0.33

4 947 378 3 0.00 0.00 0.00 0.00

5 1433 504 1 0.67 0.50 0.50 0.67

6 969 341 4 0.33 0.57 0.57 0.57

7 562 200 5 0.00 0.29 0.25 0.25

8 902 333 5 0.29 0.50 0.67 0.67

9 856 367 2 0.00 0.50 0.50 0.50

10 1045 399 4 0.00 0.00 0.29 0.33

11 1907 689 7 0.55 0.50 0.46 0.36

12 1470 542 2 0.00 0.40 0.40 0.40

13 673 230 2 0.00 0.00 0.50 0.00

14 860 344 3 0.40 0.67 0.00 0.86

15 536 184 2 0.00 0.00 0.00 0.00

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.00 0.00 0.00 0.00

18 846 367 7 0.00 0.00 0.00 0.00

19 727 239 1 0.00 0.00 0.50 0.50

20 1067 383 4 0.00 0.00 0.00 0.00

21 322 99 2 0.00 0.00 0.00 0.00

22 1199 458 2 0.67 0.80 0.80 0.80

23 1077 401 6 0.00 0.00 0.44 0.44

24 878 461 2 0.00 0.00 0.00 0.00

25 1122 413 1 0.00 0.00 0.00 0.00

26 709 228 1 0.00 0.67 0.67 0.67

27 461 152 1 0.00 0.00 0.00 0.00

28 947 363 6 0.00 0.25 0.00 0.00

29 1413 490 2 0.00 0.00 0.40 0.40

30 675 323 2 0.00 0.00 0.00 0.00
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Table C.7: F-score for feature, threshold = 0.15

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.40 0.67 0.57 0.57

2 1641 586 3 0.33 0.55 0.50 0.46

3 880 298 3 0.44 0.57 0.57 0.67

4 947 378 3 0.60 0.60 0.67 0.67

5 1433 504 1 0.33 0.40 0.40 0.67

6 969 341 4 0.80 0.80 0.89 0.80

7 562 200 5 0.83 0.83 0.83 0.83

8 902 333 5 0.57 0.77 0.77 0.77

9 856 367 2 0.80 0.80 0.80 0.80

10 1045 399 4 0.55 0.67 0.67 0.67

11 1907 689 7 0.56 0.71 0.67 0.71

12 1470 542 2 0.67 0.80 0.80 0.80

13 673 230 2 0.40 0.40 0.33 0.40

14 860 344 3 0.50 0.60 0.55 0.60

15 536 184 2 0.50 0.40 0.67 0.80

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.80 0.80 0.80 0.57

18 846 367 7 0.67 0.71 0.67 0.75

19 727 239 1 0.67 0.67 0.67 0.67

20 1067 383 4 0.57 0.67 0.67 0.73

21 322 99 2 0.80 0.50 0.50 0.50

22 1199 458 2 0.33 0.50 0.50 0.50

23 1077 401 6 0.67 0.71 0.80 0.71

24 878 461 2 0.67 0.80 0.80 0.80

25 1122 413 1 0.29 0.50 0.67 0.67

26 709 228 1 0.40 0.67 0.67 0.67

27 461 152 1 0.67 0.67 0.67 0.67

28 947 363 6 0.53 0.73 0.73 0.73

29 1413 490 2 0.50 0.57 0.57 0.57

30 675 323 2 0.57 0.50 0.44 0.67
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Table C.8: F-score for feature, threshold = 0.30

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.40 0.40 0.67 0.67

2 1641 586 3 0.50 0.67 0.75 0.86

3 880 298 3 0.25 0.57 0.57 0.67

4 947 378 3 0.75 0.75 0.75 0.75

5 1433 504 1 0.50 0.50 0.67 0.67

6 969 341 4 0.89 0.89 0.89 0.89

7 562 200 5 0.83 0.83 0.83 0.83

8 902 333 5 0.67 0.67 0.77 0.77

9 856 367 2 0.80 0.80 0.80 0.80

10 1045 399 4 0.60 0.67 0.67 0.67

11 1907 689 7 0.59 0.71 0.71 0.71

12 1470 542 2 0.67 0.80 0.80 0.80

13 673 230 2 0.40 0.40 0.40 0.50

14 860 344 3 0.55 0.67 0.67 0.75

15 536 184 2 0.50 0.40 0.40 0.80

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.80 0.80 0.80 0.80

18 846 367 7 0.67 0.77 0.77 0.86

19 727 239 1 0.67 0.67 0.67 0.67

20 1067 383 4 0.73 0.73 0.73 0.73

21 322 99 2 0.50 0.50 0.50 0.50

22 1199 458 2 0.50 0.50 0.50 0.50

23 1077 401 6 0.67 0.77 0.80 0.62

24 878 461 2 0.67 0.80 0.80 0.80

25 1122 413 1 0.50 0.67 0.67 0.67

26 709 228 1 0.50 0.67 0.67 0.67

27 461 152 1 0.67 0.67 0.67 0.67

28 947 363 6 0.57 0.73 0.73 0.73

29 1413 490 2 0.57 0.67 0.57 0.67

30 675 323 2 0.57 0.80 0.80 0.80
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Table C.9: F-score for feature, threshold = 0.50

F-Scores

run

no.

number

of events

number

of calls

number of

changepoints
filtering

fixed lag smoothing
smoothing

L=5 L=10

1 473 184 2 0.40 0.40 0.67 0.67

2 1641 586 3 0.67 0.57 0.33 0.67

3 880 298 3 0.29 0.57 0.67 0.67

4 947 378 3 0.57 0.75 0.75 0.75

5 1433 504 1 0.50 0.50 0.67 0.67

6 969 341 4 0.89 0.89 0.89 0.89

7 562 200 5 0.83 0.83 0.83 0.83

8 902 333 5 0.80 0.80 0.91 0.83

9 856 367 2 0.80 0.80 0.80 0.80

10 1045 399 4 0.67 0.67 0.67 0.67

11 1907 689 7 0.71 0.71 0.71 071

12 1470 542 2 0.67 0.80 0.80 0.80

13 673 230 2 0.40 0.40 0.40 0.50

14 860 344 3 0.44 0.67 0.75 0.86

15 536 184 2 0.50 0.50 0.50 0.80

16 1037 410 0 0.00 0.00 0.00 0.00

17 1278 479 2 0.80 0.80 0.80 0.80

18 846 367 7 0.67 0.77 0.77 0.77

19 727 239 1 0.67 0.67 0.67 0.67

20 1067 383 4 0.80 0.73 0.73 0.73

21 322 99 2 0.50 0.50 0.50 0.50

22 1199 458 2 0.50 0.50 0.50 0.50

23 1077 401 6 0.83 0.77 0.77 0.67

24 878 461 2 0.50 0.80 0.80 0.80

25 1122 413 1 0.50 0.67 0.67 0.67

26 709 228 1 0.50 0.67 0.67 0.67

27 461 152 1 0.67 0.67 0.67 0.67

28 947 363 6 0.67 0.73 0.73 0.73

29 1413 490 2 0.57 0.80 0.67 0.80

30 675 323 2 0.57 0.80 0.80 0.80
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