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ABSTRACT 

 

Multimodal freight transport developed in the transportation sector as an alternative to 

unimodal transport faced with the challenges brought by the growing global demand for 

transporting goods. Multimodal transport is the transportation of goods using at least 

two modes of transport, usually door-to-door. The common transport modes include 

railways, maritime routes, and the roads. Multimodal transport network has an 

inherently complex structure with numerous stakeholders. Sea-rail multimodal freight 

transportation is an environmentally sustainable transport chain against road 

transportation; however, this environmental impact should be considered together with 

economic aspects in order to make multimodality more competitive in the sector. This 

thesis first provides a taxonomic review of multimodal transportation literature 

enumerating its components: data, demand, cost and time management, modal shift, 

collaboration, sustainability, governmental policy-setting, operational planning and 

modeling, revenue management and joint optimization of slot allocation and pricing 

strategies. Next, it proposes a dynamic pricing approach against fixed pricing to 

increase the revenue of multimodal transport providers. For slot allocation and cost 

component of dynamic pricing equation, a time-space diagram is developed to include 

time dimension and the sea-rail multimodal freight transportation problem is formulated 

as a linear network flow model. Thus, this study of operational planning and dynamic 

pricing strategy from multimodal transport provider's perspective provides managerial 

insights on the advantages of multimodality. 
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ÖZET 

 

Kombine taşımacılık, diğer bir isimle çok türlü taşımacılık, uluslararası yük taşıma 

zincirinde genellikle tek tip taşıma türü olan kara yolu yerine, en az iki farklı taşıma 

türünün birleştirilmesi ile yapılan taşımacılığı ifade etmektedir. Kombine yük 

taşımacılığı yükün müşteriden alınan kabul noktasından varış noktasına en az iki taşıma 

türünün kombinasyonları kullanılarak nakledilmesidir; genellikle kullanılan taşıma 

türleri karayolları, deniz yolları ve demiryolu sistemleridir. Çok türlü taşımacılık ağı, 

birçok paydaşın iletişim içinde olduğu, doğal olarak karmaşık bir yapıya sahip olan bir 

ulaşım ağıdır. Bu tez, ilk olarak, çok türlü taşımacılık literatürünün bileşenlerini 

taksonomik olarak şu başlıklar altında inceler: veri, talep, maliyet ve zaman yönetimi, 

taşıma türü değişimi, işbirliği, sürdürülebilirlik, ilgili devlet politikaları belirleme, 

operasyonel planlama ve modelleme, gelir yönetimi, fiyatlandırma stratejileri ve yer 

tahsisinin  ortak optimizasyonu. Deniz-demiryolu kombine taşımacılığı, karayolu 

taşımacılığına kıyasla çevresel olarak daha sürdürülebilir bir taşıma zinciridir; bununla 

birlikte, çok türlü taşımacılığın sektörde daha rekabetçi hale gelmesi için bu çevresel 

etkinin yanında ekonomik yönleriyle birlikte ele alınmalıdır. Bu nedenle, bu tez, çok 

türlü taşımacılık operatörlerinin gelirini artırmak için sabit fiyatlandırmaya karşı 

dinamik bir fiyatlandırma yaklaşımı önermektedir. Yer tahsisi ve dinamik fiyatlandırma 

denkleminin maliyet kalemini belirlemek için, zaman boyutunu da içeren bir uzay-

zaman ağı oluşturulmuş ve bu deniz-demiryolu çok türlü taşımacılık problemi doğrusal 

ağ akış modeli olarak tasarlanmıştır. Böylece, bu çok türlü taşımacılık operatörleri bakış 

açısıyla sürdürülen  operasyonel planlama ve dinamik fiyatlandırma çalışması, çok türlü 

ulaşımın avantajlarına yönelik yönetim anlayışları sunmaktadır. 
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Chapter 1 

 

 

Introduction 

 

 

 

 

Multimodal freight transport developed in the transportation sector as an alternative to 

unimodal transport faced with the challenges brought by the growing global demand for 

transporting goods. The use of the Rhone River for transportation which dates back to 

the 17th century is the first time when two means of transport utilized in order to 

facilitate the work ahead. This method, nowadays, is preferred and encouraged since it 

is more advantageous and solution oriented in terms of cost efficiency, traffic 

congestion, environmental concerns and freight safety throughout the transport process. 

Multimodal transport is the transportation of goods using at least two modes of 

transport, usually door-to-door and the transfer from one mode to another is performed 
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at an intermodal terminal. The common transport modes include railways, maritime 

routes, inland waters, airways, and the roads. Moreover, United Nations Economic 

Commission for Europe (2008) defined this concept as "the movement of goods in one 

and the same loading unit or road vehicle, which uses successively two or more modes 

of transport are used to transport the same loading unit or truck in an integrated manner, 

without loading or unloading, in a door to door transport chain". 

Multimodal transport is mostly preferred because of its flexibility compared to using a 

single mode and its environmental benefits towards sustainable transportation. The 

global environmental issues and carbon dioxide mitigation problems have induced the 

importance of maritime and rail transport since these transport modes play an important 

role in reducing carbon footprints (Pruzan-Jorgensen et al., 2010; SteadieSeifi et al., 

2004). One of the strategies of the European Commission to lower transport emissions 

in the EU as in the rest of the world is optimization of multimodal logistic chains for a 

competitive and sustainable transport system. Actions foreseen in the area of 

multimodal freight transports aim 30% of road freight over 300 km should shift to other 

modes such as rail or waterborne transport by 2030, and more than 50 % by 2050, 

facilitated by efficient and green freight corridors. By 2020, the establishment of the 

framework for a European multimodal transport information, management and payment 

system is targeted for better integration of modes and smart pricing system (White 

Paper on Transport, 2011). To be competitive against road transport, multimodal 

transport chain requires a smart and applicable pricing approach in order to maximize 

revenue from the operator’s point of view and to be preferable and reasonable from the 

customer’s point of view. Multimodal transport network has an inherently complex 

structure with numerous stakeholders. The effective usage of the rail and sea modes 

increases even more with the right decisions and accurate system implementations. In 

other words, efficiency and efficacy are directly linked with the construction of right 

conditions and choices of operational planning strategies (Caris et al., 2008; Guajardo et 

al., 2015).   

Multimodal transportation management is a transportation network and a supply chain 

system which is composed of several sub-groups. These groups emphasized in the 

literature can be enumerated: Data, demand, cost and time management, modal shift, 

collaboration, sustainability, governmental policy-setting, operational planning and 



3 

 

modeling, revenue management, joint optimization of slot allocation and pricing 

strategies. A vast collection of scientific literature focuses on different objectives taking 

into account various limitations. For instance, in the context of short-term planning, the 

challenge is to take real-time decisions considering the interests of all stakeholders. 

With the need for real-time decision making, this problem becomes complex, dynamic, 

and stochastic. Its planning involves a multi-criteria decision making process where the 

objectives might consist of the minimization of cost, time, and/or carbon emissions as 

well as improvement of service levels and utilization (Chang, 2008). Stakeholders 

establish horizontal collaborations across the same or different type of modes where it is 

necessary to gain benefits during the seamless transition of consecutive modal shift 

processes (Kayikci et al., 2012; Krajewska et al., 2008; Mutlu et al.; 2017). Efficient 

slot allocation and capacity management throughout the multimodal freight transport 

chain have a critical importance at the operational level of stakeholders’ collaboration. 

However, the allocation of the benefits achieved through collaboration among the 

corresponding stakeholders and beneficiaries arises as a key issue to be resolved. 

Intensive research has been conducted multimodal transport planning problem at the 

strategic, tactical, and operational decision-making levels. However, a successful 

implementation of multimodality requires other technology integrated and innovative 

concepts: a different point of view and an appropriate pricing strategy for multimodal 

transport service. Li et al. (2015) claim that the pricing strategy has the power to affect 

the competitiveness of multimodal freight transport and the mode choice during modal 

shift process. This pricing strategy and revenue management can be defined basically as 

a searching for a strategy to find the optimal maximum quantity of freight traveling 

along each leg and their prices in order to maximize the revenue over a time horizon. In 

the literature, effective and efficient strategies of freight transport have been examined 

widely together with multimodality, advantages, and disadvantages; however, 

examination of smart pricing strategies is scarce. 

In this thesis, we are motivated by the bringing of a dynamic pricing approach together 

with slot allocation. In the developed model, sea-rail transport chain is taken into 

consideration and operators providing the ship and train transportation services 

cooperate to provide combined and synchronized transport of goods. Multimodal freight 

transport providers manage their services applying mainly a fixed/list price policy in the 
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current sector. Conversely, we have demonstrated the possibility of the increase in total 

revenue by applying dynamic pricing which is a strategy often seen in airline and hotel 

management as a complement to the operational planning and slot allocation. 

The remainder of the thesis is organized as follows: Chapter 2 reviews the related 

literature extensively and presents taxonomy on multimodal transportation’s operational 

planning and revenue management. Chapter 3 describes the problem and proposes a 

dynamic pricing approach on top of the operational planning of a sea-rail multimodal 

freight transportation problem. The experimental studies comparing outcomes of 

different demand scenarios are provided in Chapter 4. Finally, Chapter 5 concludes the 

thesis with general remarks and directions for future research. 
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Chapter 2 

 

 

Taxonomic Review of Literature 

 

 

 

 

Freight transportation is the fundamental part of each modern supply chain since it 

undertakes moving raw materials, semi-finished and final products from origin source 

to destined customers. Multimodal freight transportation is the backbone of 

international freight trade and economic globalization. Transportation of freight from 

origin to destination by a sequence of at least two transportation modes, namely, 

multimodal transportation is established by several actors who are in interaction with 

each other, decision makers and operational conductors. This characterization makes the 

system multi-actor involved a complex system which needs a broad investigation and 

comprehensive operations management (Crainic et al, 2017). Shippers generate the 

demand, carriers provide the service, and related authorities establish the rules while 
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operating several transportation infrastructures; each actor cares about their interests 

and overall gains of the system and decides on strategies accordingly (Ghiani et al., 

2004). Careers, indeed, perform the transport service to meet the demand created by 

shippers and are responsible to arrange a sufficient number of vehicles needed (Crainic 

et al, 2017). While some carriers operate dedicated services to a single customer, most 

of them operate on the consolidation basis and they can own the vehicles or hire for 

need base customization. In addition to these stakeholders, freight forwarders play an 

important role in sea routes, acting as agents of shippers who are less popular to reach 

customers (Lu, 2013).  

For the multimodal freight transportation where the combination of at least two modes 

of transportation is operated, an additional actor, classified as Multimodal Transport 

Providers (MTPs) are included into play. The latter are the companies that can offer 

multimodal transport operations within the framework of national and international 

trade and transport practices in the sector (Lu, 2013). In most cases, a shipper is a 

company that is responsible for initiating a shipment and who may also decide on the 

total freight cost. This type of member has control over the supply chain and is capable 

of stabilizing the financial part of improving their cost levels, service capabilities and 

environmental footprint (Cruijssen, 2012). However, shipper, who becomes the 

customer of MTPs, needs to decide on the MTP to conduct transport of their freight. 

Since carriers take the charge of providing services from origin to destination, shippers 

can select the MTP in a modal-free environment. This setting establishes gradually with 

the maritime container terminal operators developed into MTP (Ypsilantis and 

Zuidwijk, 2013).  

The freight transport network consists of three essential components including pre-

haulage, main-haulage, and end-haulage as illustrated in Figure 2.1. While pre-haulage 

and end-haulage are usually provided by road transport for short distances, the main-

haulage is carried out by using other types of transport such as rail, sea, and inland 

water for longer distances. It is recognized that multimodal transport is competitive 

during main-haul transportation if the transported distances are beyond 300 km which is 

longer than one day of trucking (SteadieSeifi et al., 2014; Tavasszy and Van Meijeren, 

2011). Rodrigues et al. (2016) claimed that the distances above 500 km (longer than one 

day of trucking) usually require intermodal transportation. 
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Essentially, it depends on the geographic conditions of the aforementioned distance and 

governmental transportation policies. To illustrate, European countries limit the usage 

of road by big vehicles and trucks favoring rail usage in order to reduce their road 

depreciation and maintenance cost.  

SteadieSeifi et al. (2014) described that multimodal transport is simply the transport of 

goods by at least two different means of transport such as various combinations of road, 

rail, sea, and air. The freights are generally transported by means of transport units: 

transportable containers, trailers, semi-trailers or freight carriers. Existing literature puts 

forward different definitions of the “usage of more than one mode of transport”; 

principally there is a consensus on 4 distinguished terms depending on the use of 

different transport networks in different circumstances over the years: multimodal, 

intermodal, co-modal, synchromodal. As a fifth term, Reis (2015) included combined 

transport, multimodal transport concept caring sustainability, after classification under 

four different domains: technological, organizational and managerial, production, 

externalities domains. The definitions are organized according to the nature of freight 

content, properties of modal shift, frequency, origin-destination terminals, and sequence 

of legs through entire trip which is perceived as a whole. The relation and the 

distinction of each concept clearly pinpointed in Figure 2.2 by Reis (2015), the original 

concept is multimodal and each new concept inherits properties of the original term and 

gains more complex structure.  

                                  Figure 2.1: Multimodal Freight Transport Network, MTP Collaboration 



8 

 

Intermodal transport is another type of multimodal transportation during which the 

freight is carried from the starting point to the destination point as one and the same 

transport unit without handling it at any terminal (Crainic and Kim, 2007). To specify, a 

unitized good/sealed freight is carried from origin to destination without any processing 

or handling during ant transshipment period. Co-modal transportation is based on the 

efficient use of transport means. It is defined as the selection of the most effective and 

efficient combinations that can be useful for all types of transportation. Each 

stakeholder’s profit is protected and all types of collaborations (horizontal, vertical) 

between the stakeholders are encouraged thanks to co-operated modal shift. Shapley 

value is a method generally used to assign fair profit allocation among the stakeholders 

(Dai and Chen, 2012). 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Difference in the terminology of “multimodal” in transport chains (Reis, 2015) 

 

Synchromodal transportation is a freight transport chain in which all combined transport 

types are hybridized according to the choices of the customers, based on the efficiency 

and the conditions of the operation. This type of transportation is seen as a logical 

choice in terms of increasing efficiency and making loading capacity flexible and 
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effective. Verweij (2011) defined it for the first time as the ability to switch liberally 

between different modes via only one consignment through whole flow. In addition to 

this, definitions on synchromodality accumulated on the idea of optimal operational 

alignment providing flexible, efficient, sustainable, and cost-effective transport. 

However, it is not widely preferred in business life since it is difficult to plan and 

implement, requires a long laborious process. In academia, research began to intensify 

during the last decade on this topic comprising synchronization of service schedules and 

operations amongst modes of transport, the main goal is to provide seamless operations 

decreasing delays and waiting time during transshipments which lead to a reduction in 

total cost. This seamless flow continuity and compatibility of transshipment nodes of 

the network are key elements while deciding on the transport mode together with 

customer’s preferences, freight types and mode choices (Huang et al., 2011).  

Synchromodality has a role of adding more flexibility to the usage of different modes 

capturing demand variability and speeding up the terminal operations. To exemplify, 

train schedules especially Ro-La (as known as Rolling Highway) timetables are very 

strict and before the freight loading at the terminal, only one expert has a right to 

monitor visually each trailer and confirm their suitability to fast movement of Ro-La. 

Synchromodality can handle this situation by aligning the schedules and eliminating the 

number of expert monitoring.  

Multimodal transportation management is a transportation network design and supply 

chain management which is composed of several sub-groups. These groups emphasized 

in the literature can be listed (Figure 2.3): Data, demand, cost and time management, 

modal shift, collaboration, sustainability, governmental policy-setting, operational 

planning and modeling, revenue management, and joint optimization of slot allocation 

and pricing strategies. A vast collection of scientific literature focuses on different 

objectives taking into account various limitations. Additionally, these enumerated 

groups are not separated strictly; they tend to cover each other for different objectives 

and applications. To illustrate, demand management is the core of multimodal transport 

management; subsequently, the core of other components. 
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Figure 2.3: Components of Multimodal Transport Management 

                                                      

2.1 Demand Management 

Demand management is the mainstream area of interest for each supply chain network, 

especially multimodal freight network in order to supply the demanded service. 

Demand management builds up the basis of all the other components.  To illustrate, 

demand management appears in the literature with terms demand estimation, 

forecasting (Fite et al., 2002), impacts of demand changes, drivers/barriers of demand 

change and demand learning (Bertsimas and Perakis, 2006; Escobari, 2012; Lin, 2006). 

2.2 Collaboration and Information Sharing 

Main topics discussing impacts of collaboration and role of information sharing in the 

multimodal transport chain are profit sharing, cooperation, interest sharing, information 

sharing (Zuidwijk and Veenstra, 2015), profit allocation (Dai and Chen, 2012), 

consortium, horizontal and/or vertical collaboration (Mason et al., 2007), empty 

container transportation and value of sharing (Qui and Lam, 2018). 



11 

 

In the multimodal transport chain, cooperation can be established between carriers, 

shippers, and all MTPs. Different forms of collaboration, both vertical and horizontal 

are important to ensure the competitiveness of companies. The system where the 

operators and shippers work together is considered as the most suitable combination of 

these collaborations; however, it is also the most difficult system to establish and 

maintain despite being the most effective. The cost components of this system should be 

identified and the distribution of income should be arranged carefully; since it is 

necessary to consider revenue and cost allocations, risks, and involvement of each 

operator. Describing and measuring the performance of different stakeholders in the 

collaboration are one of the key points in allocating revenue. At the core of their 

partnership lies the fact that each shipping or transport company has to reduce or share 

their costs while they are satisfying the demands of the shippers (Ergun et al., 2007). 

These horizontal collaborations reduce costs and increase productivity. A good example 

is the replacement of empty container shipments with those that are filled in a 

coordinated manner, and the transfer of loads in rapid coordination instead of waiting 

for the storage and landfilling. For this purpose, multiple carriers can form an alliance 

gathering under an umbrella consortium by sharing demand requests and their vehicle 

capacities. This will be a win-win situation by increasing vehicle utilization and 

reducing empty backhauls (Dai and Chen, 2011). 

Horizontal collaboration and vehicle co-loading will serve to reduce the number of 

operations resulted in carbon dioxide (CO2) emission reduction also. Qiu and Lam 

(2018) shed light on the value of sharing and gave managerial implications: Dry port 

profit improved with shared transport services, usage of large equipment ensured the 

cost savings for shippers. Nevertheless, they disproved the environmental benefits of the 

sharing, since the distance of large vehicle operated can be longer if the shippers are far 

from each other and heavy freight vehicles emit more harmful gases. In order to provide 

environmentally friendly shared transport service, performance measurements should 

consider the trade-off between CO2 savings and cost savings.   

On the other hand, time to share information and mutual self-sacrifice is required to 

establish and maintain mutual trust and transparency among collaborative stakeholders 

(Caris et al., 2008). Motivators, facilitators, limitations, and different scenarios of 

information sharing and transportation-based collaboration are broadly examined by 

Gonzalez-Feliu and Morana (2011). They suggest that forming an efficient information 
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system is the first step and the must of horizontal and vertical collaboration in the 

international freight transportation sector. Security and reliability can be kept under 

control by a special scoring system in the collaborated system (SteadieSeifi et al., 

2017). Information is an indispensable element of sharing. Tools currently utilized to 

data exchange between stakeholders are Electronic Data Interchange (EDI) and system 

to trace freights is Radio Frequency Identification (RFID) (Gonzalez-Feliu and Morana, 

2011). Use of information and information sharing between stakeholders may increase 

network utilization and performance by reducing uncertainties (Zuidwijk and Veenstra, 

2015). Although, quantitative modeling on the value of information enables increase 

performance of transportation planning; quantitative studies on information through the 

multimodal network chain is scarce. Intelligent transportation systems such as demand 

learning, information sharing must be assessed in the planning model as a component. 

On the other hand, if there should be no disclosure of the confidential data between the 

providers, a coordination scheme can be elaborated without sharing the private 

information. Puettmann and Stadtler (2010) propose a quantitative collaborative method 

to study service coordination of independent providers.  

2.3 Cost Management  

Strategies of cost management coincide greatly with collaboration strategies. The 

expressions of cost management are generally cost minimization, cost calculation, 

actors and factors who affect cost components, cost sharing, cost-benefit analysis, 

external costs and monetary costs. Minimization of cost items is the primary objective 

of operational planning and routing at the multimodal service network.  

Wang et al. (2015) claim that container freight shipping is the biggest part of maritime 

transportation by relying on UNCTAD reports. The operational cost of liner shipping 

has two components: fixed and variable cost. Fixed costs are indispensable expenses to 

operate the ship and crew. Variable costs are dependent costs: the amount of fuel 

consumption, terminal operations, loading, unloading, handling, type of freights, cargo 

characteristics and sudden disruptions. These properties can be applied to all kind of 

freight transportation transported by different means. Cost saving strategies allow MTPs 

to be more competitive in terms of providing cheaper price for the same quality 

transportation and reliability. 
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As a transportation network, multimodal transportation carries external costs associated 

with environmental and societal issues depending on the transport mode. For instance, 

Demir et al. (2015) classified these negativities in six groups including air pollution, 

greenhouse gasses and CO2 emissions, noise and water pollution, congestion, accidents, 

and land damages. They point out the importance of being aware of these negativities of 

each transport mode and inventing the model to measure the tradeoff between 

disadvantages and users’ preferences. If they are not internalized as monetary values 

into cost calculations, they are measured and included as willingness-to-pay or selection 

among Pareto optimal solutions (Janic, 2007).  

Globalization and improvement in the communication facilities have encouraged the 

multimodalism and the latter is recognized worldwide as an efficient way to reduce 

logistics cost exploiting different operational methods. To illustrate, the collaboration 

between the carriers and also between the MTPs is an important example of cost-saving 

approaches. Through collaboration, MTPs decide together on which shippers' 

reservations can be executed, postponed, or canceled by analyzing different slot 

allocation scenarios. If they accept the reservation of a shipper, they arrange all the 

necessary slots from both vessels and trains simultaneously on the main-haul.  

2.4 Data Management 

Data management is listed as a separate subgroup in order to emphasize the importance 

of data keeping, collection and validation, data sharing (Agamez-Arias and Moyano-

Fuentes, 2017), machine learning and automatization. It is the core of the other 

components allowing accurate estimation and compatibility with real-life applications. 

2.5 Time Management 

Time management contains delays, terminal operations, fuel consumption calculations, 

disruption management (Huang et al. 2011), berth usage and scheduling. Time 

management is mostly correlated with cost management during operational planning. 

One of the advantages of multimodality is gain of time due to bureaucratic 

documentation gathered at one hand. Instead of protecting their rights and giving 

service permission to transport providers of each mode separately, the documentation 

and responsibility are collected under MTP's control and customs paper works are 
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simplified. This documentation of accepted freight is called a bill of lading, a term used 

generally for sea transport. It can be more ameliorated utilizing electronic 

documentation system; but, this requires a complex and thorough system which is 

known as blockchain technology. Implementation of blockchain will definitely decrease 

the cost of documentation on paper separately and waiting time for the documentation 

process and in-between coordination. Autonomous adaptation to changing and 

disruptions by adapting each leg of the system, in other words, self-organization of the 

network, is the aim of the future routing and supply chain management network 

(Rodrique et al., 2016). 

2.6 Modal Shift Policy 

The need for the modal shift was examined and discussed in the literature through 

various measurement methods and several solution methodologies were proposed for 

achieving competitive advantages against unimodal transportation. Mode change and 

the need for the modal shift is affected by demand, capacity, environmental concerns, 

governmental investments, and infrastructure, in other words, whole multimodal 

transport network relies on the feasibility of modal shift (Tavasszy and Van Meijeren, 

2011). It is broadly studied inclining on best route selection (Frejinger et al., 2009), 

modal choice (Arencibia et al., 2015; Combes and Tavasszy, 2016; Shinghal and 

Fowkes, 2002), modal split (Ferrari, 2015), customer choice, decision support systems 

(DSS), technology integrated systems and intelligent transportation systems.  

The modal shift focuses on evaluating multimodal transport policy measures and aims 

to raise awareness and consideration towards the change of transportation mode as a 

transport policy option. It also includes various collaboration settings throughout the 

freight flow from the origin to the final destination. Usual freight mode choice model is 

based on the estimation of the utility functions representing the values of each mode, 

leg, travel time and the transport providers’ preferences. This classic model only 

satisfies a part of the reasoning behind the modal choice. To improve the aforesaid old 

model, Combes and Tavasszy (2016) proposed an approach on inventory theory 

including shipment size as decision criteria. Ferrari (2015) evaluated the system as a 

whole flow network, antecedent and precedent events of modal split forecasting its 

phases as stable and unstable as freight transport is a dynamic system with dynamic 

characteristics. Macharis et al. (2011) put forward the DSS involving three components: 
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a Geographic Information System (GIS), network planning and pricing part and lastly 

simulation model for performance measurement. Due to economies of scale, modal shift 

and multimodality have an impact on the reduction of total transport costs thanks to the 

usage of more efficient modes and intermodal operations. Especially freight rail can 

provide transportation service during long-haulage at a lower cost than road 

transportation by trucks (Rodrique et al., 2016). If the capacity utilization of ships and 

trains, in other words, the load factor is kept as high as possible, benefits of transport 

service will increase too in terms of cost reduction, time management, and reliability.  

In multimodal freight transportation, uncertainties, and randomness always take place 

throughout the freight flow process. This complexity increases the importance of 

reliability, smart disruption management, and sustainability of the operation while 

determining the decision criteria (Huang et al., 2011). Ferrari (2015) concluded that 

dynamic parameters of the modal split of a multimodal freight transport system between 

origin and destination are gathered under three subtitles. These are the increase rate of 

overall freight flow, the delay, and the dynamic cost functions of different modes. Since 

the multimodal network is complex and dynamic, determining dynamic characteristics 

and modeling modal split is useful to forecast overall freight flow and to decide 

accordingly on the uncertainties of future time periods. 

2.7 Sustainability 

Sustainability, environmental concerns, reduction of CO2 emissions and greenhouse 

gases (GHG) mitigation are unseen criteria for selecting multimodality against 

unimodal road transportation. In order to be competitive in the transport sector, service 

providers should be more flexible favoring multimodal choices such as the combination 

of road, sea, rail, and air. At this point, the transport service provided should be 

preferable by shippers and also MTPs should arrange their services environmentally 

friendly. Rail is a green alternative in the transport sector and one of the efforts of 

European countries to reduce harmful gases emissions is increasing rail usage for 

freight and passenger transport (Armstrong et al., 2010). Increase in the usage of 

multimodal transportation can gradually improve the environmental benefits of freight 

transport, especially international freight transport (Dong et al., 2017). Flodén et al. 

(2017) gathered key factors contributing to the decision making processes such as cost, 

quality, reliability, transport time, and sustainability of the system and environment. In 
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general, reduction of carbon dioxide (CO2) emissions through the terminal network 

design and operations are the objectives of the governments and CO2 pricing can be 

regulated accordingly as a part of the cost structure (Zhang et al., 2015).  

2.8 Policy-setting  

Governmental policy-setting is long-term planning of the multimodal transportation, 

that is to say, strategical planning. It includes schedule arranging, multimodal rule 

regulations, infrastructure works, and paperwork during operations ensuring the 

reliability of the service. Essentially policymakers and political authorities appreciate 

multimodality and modal shift as the favorable savior from the environmental problems 

and congestion caused by unimodal road transportation. Thus, they encourage related 

projects favoring modal shift strategies, to illustrate, European Commissions reports, 

OECD reports, Intergovernmental Panel on Climate Change and European Environment 

Agency Air Reports.  

2.9 Operational Planning and Modeling 

In the literature, the decision process to select most effective modes of transport and the 

establishment of collaborations are categorized into three sub-headings as strategic, 

tactical and operational planning (SteadieSeifi et al., 2014). Strategic planning defines 

broadly the operating strategy of the network chain, preparing physical network and 

expensive equipment to run the chain in the big picture. This network chain where the 

movements of freights and services of transport providers are conducted simultaneously 

is exerted at the international, national, and regional level (Crainic, 2007). Briefly, 

strategic issues are the decisions which affect the long-term process of multimodal 

transportation for instance customer classes, geographical localization, and 

collaboration. Tactical level planning arranges the available resource allocation to meet 

the demand involving medium-term decisions being vehicle scheduling and routing, 

fixed pricing strategies and equipment preparation (Li and Tayur, 2005). Operational 

level deals with short-term planning, urgent adjustments, real-time decisions involving 

dynamic pricing, revenue management and freight assignments (Ghiani et al., 2004; Li 

and Tayur, 2005). Various models and solution techniques are suggested to ameliorate 

operational planning, routing, service network design, and mode choice comprising 
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several actors and influencing factors; including newly emerging areas such as 

synchromodality, machine learning, and technology-based DSS. 

The operational planning basically consists of deciding on which freight to accept or 

reject for routing and planning the overall route to transport selected vessel, train and 

trucks. Freight mode choice is one of the most problematic issues while preferring the 

multimodal transportation. The main drivers of the decision-making process are cost, 

transit time, reliability, and frequency of the service. Frequency is usually preferred by 

manufactured good sectors while temporal reliability and security of the service are 

mostly preferred by automobile manufacturers and exporters (Shinghal and Fowkes, 

2002; Cho et al., 2012). In addition to these, constraints related to the capacity of modes 

and nodes, pickup and delivery times should also be incorporated into the model and the 

associated data should be collected and gathered for taking the necessary actions. The 

selection of the non-dominated and applicable routes to construct multiple Pareto 

solutions pool is achieved via various mathematical models (Zuidwijk and Veenstra, 

2015). The subsequent phase is determining the best route according to the user's 

preferences among the optimal alternatives. 

The operational planning part contains practical planning techniques and case studies 

that deal with the implementation of multimodal transport at the operational level in 

order to assess the feasibility of a modal shift. Each mode of transportation has its own 

characteristics, limitations, similarities and differences, advantages and disadvantages. 

Planning each of them separately requires different techniques, but planning them 

together within a systemic framework coherently needs more complex techniques and 

models. Various operations research techniques are widely utilized in order to improve 

the design and operations of multimodal networks (Gorman et al., 2014). Furthermore, 

transport solutions have to be realizable, flexible, easy to apply, reliable, transparent, 

and efficient to cope with the preferences of different decision makers operating in the 

multimodal transport network (Caramia and Guerriero, 2009). The solution techniques 

for operational planning are mainly classified as direct solution methods using linear 

programming; stochastic solution methods using dynamic programming; heuristics; 

decision analysis models for mode choice, and other methods such as survey and 

simulations. 
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In general, minimizing cost and transport time are the two main objectives that service 

providers and researchers have looked after. In addition to these, awareness towards the 

environment, willingness to pay, and service quality are the additional objectives and 

constraints to satisfy. Multi-objectivity requires using a combination of several 

methods. The crucial point is to choose the appropriate model type(s) after the 

examination of the acquired information about the system. Deterministic models give 

fairly enough discrete values in order to use in planning but they do not cover the reality 

completely; so, some dynamic properties and randomness in the data require stochastic 

models. Besides these, probabilistic models are utilized to come up with estimations 

directly such as the mode choice and shipment size (De Jong et al., 2016). 

2.10 Revenue Management and Pricing 

Revenue management is the crucial part where multimodality becomes attractive for 

service providers; for MTPs mainly. It investigates pricing strategies, dynamic pricing 

approaches (Bertsimas and Perakis, 2006), capacity control (Gönsch, 2017), several 

models and solution techniques, pay attention to customer’s willingness-to-pay (Chen et 

al., 2016; Wittman et al., 2016). 

Traditionally, revenue management objective is to maximize revenues via capacity 

control assigning different, fixed/list price classes gradually; but recently, online 

booking systems allow frequent and spontaneous price deviations. Industries practice 

RM, in fact, to balance uncertain, stochastic demand and inflexible capacity. Classical 

approaches take care of only uncertain variables, demand, following a known 

distribution without risk component to maximize expected revenue (Gönsch, 2017). It is 

basically setting the right price at the right time to maximize revenue (Gallego et al., 

2014). However, modern RM begins to focus on dynamic pricing thanks to strategically 

developed pricing policies which can keep the price under the level of maximum 

willingness-to-pay. Avlonitis and Indounas (2005) listed pricing objectives of a firm 

who provide the services as profit and sale maximization, capacity utilization, 

maintenance of the existing customers, discouragement of new competitors, fair pricing, 

and long-term sustainability of the firm. All of these express main goals of the service 

sectors such as insurance companies, transport providers, medical services and IT 

products. Furthermore, dynamic pricing methods are mostly practiced in industries such 

as hotels (Aydın and Birbil); airlines (Williams, 2017) where the capacity is fixed and 
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slots/rooms are perishable in the short-term. To facilitate and improve the 

implementation of dynamic pricing approaches, systems require past demand data and 

decision-support tools to analyze available demand structure (Elmaghraby and 

Keskinocak, 2003). Ng et al. (2017) support this idea by dividing RM research into four 

modules: demand management, resource management, data analytics and data 

collection.  

Wittman defines the willingness-to-pay information as private budget information about 

the passenger, different customer types and transport providers are not aware of the 

distributions of this dynamic component, willingness-to-pay. Different customer 

classes’ willingness to pay is inherently heterogeneous; but, each of them is aware of 

that they receive the same service simultaneously sharing the common areas of the 

vehicle (Kostami et al., 2017). The providers should estimate willingness-to-pay budget 

for different customer classes and plan its dynamic availability accordingly. Customers 

usually are willing to pay more if they want to book slots closer to departure time. 

National MTP's representatives that we met to get information about the conduct of the 

multimodal freight industry also confirmed that the customers who need quick and 

urgent service are willing to pay more than normal slot prices. Willingness to pay 

(WTP) measures provide a quantitative measure of the monetary cost that a user would 

pay for improving the level of service in the attributes of transport alternatives. 

One of the fixed pricing strategies to determine transport service prices is cost-plus-

pricing strategy proposed by Li et al. (2015) as a strategy that accepts transport 

provider's operational costs and wages as a base and adds targeted profit margins. 

Koenig et al. (2010) compare list pricing to dynamic pricing and summarize that the 

dynamic pricing policy amends prices, again and again, resolving the underlying 

problem every determined time period, where the list pricing policy sets static prices 

from beginning only once but controls the capacity by allowing or preventing slot 

bookings. Also, it is confirmed this resolving the deterministic problem at each time 

step and making necessary updates and implementations give better results than sticking 

to the initial problem. The only trade-off between them is the cost of price change, if the 

costs exceed the profitability of dynamic pricing, the latter will not be preferable in the 

short term. For the long-term average profit, for example, without relying on seasonality 

but considering all-year long time period, costs of price changes lost its importance as a 
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component in the cost calculation. Thus, these updates of prices transform dynamic 

pricing into capacity control problem. 

 A case of dynamic pricing approaches is setting price levels and the limited number of 

slots for each customer type. Similar approach is practiced for the airline pricing 

process for years by predefining complete set of several price options and related slot 

capacities for each fare (Cizaire et al., 2013; Yoon et al., 2017). The main two reasons 

for dynamicity in pricing listed by Zhao et al. (2000) are statistical fluctuations of 

demand and the revenue impact. Dynamic pricing strategies are widely studied and 

currently applied in the airline industry. Firms having fixed capacities of multiple types 

of products prefer also different dynamic pricing strategies to maximize total expected 

revenue over a finite time horizon (Maglaras and Meissner, 2006). Even though freight 

industry has some similarities with other industries applying dynamic pricing strategies 

and wants to imitate their planning and pricing approaches, the additional actors, 

factors, and constraints turn processes of multimodal freight transport management into 

complex and difficult to solve problems (Armstrong et al., 2010).  

The capacity management during routing and scheduling is the crucial success factor for 

the sustainability of the multimodal transport, especially in sea-rail legs. The capacity of 

vessels and trains should be filled at least 70% per trip in order to maintain profitability 

(Kayikci, 2014). And we did not consider air transportation as one of the mode choices; 

because load units of sea and rail transports are different from air. At this point, revenue 

management and pricing strategies may help decision makers, principally MTPs; to 

increase their profit by augmenting the capacity utilization rate. So; the main goal is to 

find the maximum freight traveling along each possible leg in order to maximize the 

revenue by minimization of costs, allocation of slots, and dynamic pricing. It is 

demonstrated that the application of different fare and customer classes may help to 

achieve up to 2% increase in revenue per multimodal trip while the minimum capacity 

requirements are fulfilled. This application is required due to different arrival/booking 

times of shippers. Customer types can be divided into three reasonable clusters: the first 

group is contracted shippers who are loyal and subject to an annual fixed price, shippers 

who book their slots during the booking time form the second group and finally urgent 

customers whose demands may be supplied with a higher fare. Price discrimination may 

be applied to the different contents of containers or semi-trailers since hazardous and 

perishable products require additional equipment and care. 
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Capacity control problem put forward demand management decisions as the main 

uncertainty of revenue management and dynamic pricing approaches. Talluri and van 

Ryzin (2004) classify the RM into two subgroups after reviewing the concept 

comprehensively: price varying in time, dynamic pricing and capacity allocation 

according to customer classes, capacity management. Demand function is mostly 

unknown in practice for the providers; but studies estimate the available demand and its 

fluctuations in order to elaborate on further (Gallego et al., 2012). The successful 

approach of dynamic pricing depends on accurate demand forecasting (Lin, 2006). At 

this point, the term ‘demand learning' is a newly emerging technique in the literature 

and deals with uncertainties about customer behaviors, natural unpredictable factors, 

distribution of arrival rate and reservation prices. Ting and Tzeng (2004) summarize the 

major problems of the liner shipping industry as a vicious circle in cost reduction 

competition, wrong pricing strategy, and empty container repositions. The providers 

always try to increase space to increase the quantity of freight carried by providing 

additional capacity and cutting costs to compete by reducing freight rates; however, this 

can lead them to suffer from low rates, unutilized capacity because of uncertain 

demand, fuzzy brand recognition, weak loyalty, and expensive equipment during 

disruptions. Hence, providing smart pricing strategies will allow providers to plan the 

operations ahead and guarantee revenue while the demand is weak. In the big picture, 

the multimodal transport providers will stay in the industry since they will have an 

attractive revenue share in order to sustain their transport management.   

2.11 Joint Optimization of Operations and Revenue Management  

Since pricing and slot allocation problems highly correlated in revenue management 

studies, these two problems ought to be handled jointly (Ypsilantis and Zuidwijk, 2013). 

There is extensive research on the planning of multimodal transportation at each level: 

strategical, tactical and operational. Besides the planning part, revenue management and 

pricing of multimodal transportation is also emphasized in the literature. Agamez-Arias 

and Moyano-Fuentes (2017) claimed that optimization of multimodal systems rotates 

around the trade-off between minimization cost and time and maximizing users' profit. 

The term of "user" depends on the perspective of problem setting; however, problem 

objectives are the same and they should be handled jointly. Despite the fact that 

researchers generally considered these two problems separately, slot allocation and 
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pricing are interrelated; so, the need is joint optimization of pricing and operational 

planning –slot allocation- in the multimodality sector (Moon et al., 2017; Williams, 

2017; Zhao et al., 2017). Thus, hybrid solution strategies and holistic approaches which 

are developed to deal with planning, technological changes, information sharing, 

dynamic pricing, and even governmental issues all together. For this reason, our study 

inclined to dynamic pricing approach together with slot allocation on a rolling horizon 

basis. Normally, dynamic pricing influences demand by price adaptations over time 

(Gönsch, 2017). 

In our study, strategical and tactical levels are already prepared for service, type of 

commodities to carry and origin-destination points are determined via sea routes and 

rail lines. Their schedules and frequencies are known and capacities are organized to be 

allocated to customers. Terminal operations’ equipment, regulations, labor quantity and 

terminal area for repositioning are also agreed previously for each terminal. Strategic 

planning approaches and models are widely available in the literature. Price of fully 

loaded shipment from origin to destination is recognized; but the demand is stochastic 

and at the operational level, an MTP needs dynamic slot allocation of its available 

vehicles (train, vessel) without knowing the demand and fulfillment rate at the end. 

Using strategies such as dynamic pricing according to booking time and customer type 

to maximize the fill rate and revenue, MTP should decide on acceptance or rejection of 

each good to carry and allocate its available and determined resources. Another option 

would be hiring contracted vehicles, conducting consolidation-based transportation in 

order to meet the demand at hand in a rolling horizon basis. At the current freight 

transportation system in Turkey, strategic planning part has already missing phases such 

as data collection and preparation, demand management, and performance control. 

Hence, the operational planning level becomes more challenging and demanding while 

modeling the optimization on the network representation of the transportation system. 

Since multimodal transportation is essentially a supply chain where the urgency, the 

uncertainty and the complexity run in the whole process; coordination and rapid 

gathering of information between stakeholders enhance the logistics and supply chain 

management of international freights. To shed light on the multimodal freight network 

management, this literature review is conducted using a desktop research methodology; 

i.e. our study reviews articles related to multimodal transport management published in 

major academic journals and conference papers addressing multimodal transportation. 
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Published papers are collected from 2000 to 2018. Few papers published before 2000 

are excluded from this study since they have already been referred to in the recent 

literature and our primary objective is to shed light on the recent developments on the 

topic. 

Firstly, a keyword search in major digital academic journal databases including 

ScienceDirect, INFORMS, Emerald Insight, Wiley Online Library, Taylor & Francis 

Online and Springer has been performed. The principal keywords utilized are 

“multimodal transportation”, “multimodal collaboration”, “multimodal transport 

provider”, “planning multimodal transportation”, “revenue management”, “yield 

management” and “dynamic pricing”. Furthermore, the reference lists of selected 

articles have also been carefully exploited in order to form a large database of articles. 

In consequence, this comprehensive subject is widely studied in the literature, and a 

total of 293 articles were gathered, classified and schematized in Figure 3. Hence, 

following taxonomic review of literature is emerged showing problem contents and 

solution methods used for operational planning and/or revenue management of 

multimodal transportation. Each model has its own set of assumptions and definitions in 

terms of objective(s) and constraints. We scrutinized the articles carefully and selected 

20 articles which are leading and compact researches summarizing the studies in the 

area of multimodal transportation management in general (Table 2.1). There are many 

valuable articles that we could not include in this taxonomic table. 

There are articles that present taxonomy of the related literature of various research 

areas. While building this taxonomy we benefit from discussions of Agamez-Arias and 

Moyano-Fuentes (2017), Başar et al. (2011) and Crainic at al. (2017). Taxonomy 

reveals the studies on operational planning and slot allocation in the multimodal 

transport network, revenue management and pricing multimodal transportation, and 

joint optimization of both operational planning and revenue management. This 

taxonomy presents the settings of the model such as objective function(s), parameters, 

decision variable(s) and constraints together with the type of model and solution. 

 

 

 



24 

 

       Taxonomy: 

A. Operational Planning of Multimodal Freight Transport   ✗ 

B. Revenue Management    ✔ 

C. Joint Optimization    ✗✔ 

1. Modeling 

1.1. Objective Function 

1.1.1. Number of Objective(s) 

1.1.1.1.Single 

1.1.1.2.Multiple 

1.1.2. Content of Objective(s) 

1.1.2.1.Cost 

1.1.2.2.CO2 Emission 

1.1.2.3.Time 

1.1.2.4.Revenue 

1.1.2.5.Price 

1.1.2.5.1. Fixed Price 

1.1.2.5.2. Dynamic Price 

1.1.2.6.Mode Choice/ Operator Choice 

1.2. Parameter(s) 

1.2.1. Demand 

1.2.2. Time/ Distance 

1.2.3. Capacity/Slot 

1.2.4. Cost 

1.2.5. Reliability 

1.2.6. Price 

1.2.6.1.Fixed Price 

1.2.6.2.Dynamic Price 

1.2.7. Frequency 

1.2.8. Mode Choice/ Customer Choice/ Ratio 

1.2.9. Commodity/ Freight Type 

1.2.10. CO2 Emissions/ Environmental Concerns 

1.3. Decision Variable(s) 

1.3.1. Binary/ 0-1 Integer 
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1.3.2. Integer 

1.3.3. Continuous 

1.3.4. Slot Allocation Variables/ Flow 

1.3.5. Mode Choice 

1.3.6. Price 

1.3.6.1.Fixed Price 

1.3.6.2.Dynamic Price 

1.3.7. Demand 

1.3.8. Time/ Waiting Time 

1.3.9. Terminal Operations/ Holding Amount 

1.4. Constraint(s) 

1.4.1. Capacity 

1.4.2. Capacity Utilization Rate/ Load Factor 

1.4.3. Demand/ Flow Balance 

1.4.4. Price (Upper-Lower Bound) 

1.4.5. Speed (Upper-Lower Bound) 

1.4.6. Time/ Distance (Upper-Lower Bound) 

1.4.7. Modal Shift 

2. Types of Model 

2.1. Linear Programming 

2.2. Integer Programming 

2.3. Mixed Integer Programming 

2.4. Dynamic Programming 

2.5. Non-linear Programming 

2.6. Chance Constrained/ Two-Stage/ Stochastic Programming 

2.7. Probabilistic Programming 

2.8. Fuzzy Programming 

2.9. Goal Programming 

3. Type of Solution 

3.1. Optimal 

3.2.Pareto Optimal Alternative(s) 

3.3. Heuristic 

3.4. Metaheuristic 

3.5. Simulation/Survey/Others 
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Table 2.1: Taxonomy of Operational Planning and Revenue Management in Multimodal Transportation 
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This taxonomy represents the distribution of the studies between operational planning 

and revenue management as a miniature sample of the whole literature of multimodal 

transportation. It is notable that revenue management part of the studies takes a small 

space; dynamic pricing approaches are even scarcer in the literature. However, problem 

settings are almost the same as the additional price related parameters, objectives, and 

constraints. Generally used objectives are cost and time management; pricing problems 

add one more dimension to the existing problem settings only. Parameters of demand, 

time, capacity, and cost are generally included in the model; but, these are differently 

calculated or extracted from the sector in each study according to nature of the problem 

and network. Flow balance and capacity constraints are the constraints inevitable for 

both types of problems. Problems are mostly formulated as Mixed Integer Programming 

models and they are solved directly to optimality or mostly with various heuristics: 

agent-based, search-based, schedule-based, simulation-based, and sampling-based. Our 

study, using basic settings of the slot allocation problem which is already widely 

studied, aims to enhance the existing literature by adding a new and easy to implement 

dynamic pricing approach.   

Since there are various transport chain properties, similarities and differences in the 

terminology, the usage of terms may change from country to country in the literature. 

Herewith, we decided to use only the original term “multimodal”, even if we include 

sustainability, competitive strategies to reach a synchronized transportation system. Our 

research requires more supplies including governmental policies and ensured 

infrastructure to be optimized in an orchestrated manner to be denominated as 

“synchromodal” transport. Besides these, we elaborate on this multimodal transport 

chain from multimodal transport providers’ point of view; that is to say, from the 

transportation perspective. Shippers’ point of view is the concern of supply chain 

management which allows broader perspective on the shipper-based synchromodal 

transport chain. This is proposed by Dong et al. (2017) as a new concept which is called 

synchromodality from a supply chain perspective (SSCP). If shippers prefer relying on 

the MTPs’ choice, it means they are undertaking a modal free consignment. Gorris et al. 

(2011) note that transport providers who are MTPs apply the horizontal integration of 

different mode choices and arrange the internal freight flow processes according to their 

benefits. They can buy required transport means or affreight, use on a contracted base 

without referring shippers. Also, the shippers only decide on the MTPs, not the modes 
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or the legs of network, their goods are carried according to scheduled service and agreed 

prices. Selection of operation route is done by only MTPs. In sum, our study contributes 

to this wide research area as an operational planning model on a time-space network 

from the MTPs perspective and promotes multimodality proposing a dynamic pricing 

strategy instead of classical fixed price per slot. 
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Chapter 3 

 

 

Dynamic Pricing and Slot Allocation 

Methodology 

 

 

 

 

3.1 Problem Description 

Revenue management and pricing together with slot allocation targets to determine the 

optimal quantity of freight transported from origin to destination, on each leg, to 

maximize the total revenue. This goal can be accomplished by various strategies: 

minimizing cost, arranging infrastructure and schedules, increasing price, and 

promoting the reliable services. In our study, a revenue-driven dynamic pricing 

approach from the MTPs perspective is proposed with the aim of encouraging 

continuity of multimodal transportation. Because multimodality has many advantages 
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through right conditions and planning strategies comparing to unimodal road 

transportation: more flexible, more efficient and effective, sustainable choice, less CO2 

emissions, less monetary cost, less external cost, less total cost, less transport time, less 

documentation time, less congestion on roads, and less accidents. Determination of 

these right conditions and strategies take time and effort, but, once established, 

multimodal transportation pays back to MTPs who are operating the system and 

customers who are getting a seamless transport service at a price rate lower than road 

transportation by truck. At this point, our proposed approach of dynamic pricing plays 

an important role in encouraging MTPs to widen their operation network and continue 

to their service or encouraging shippers to become an MTP. Because our approach plays 

with the price offered to customers keeping it between the limits of base price and 

trucking price.  

3.2 Dynamic Pricing Formulation 

Using linear algebra notation, a multiple linear regression model with k predictor 

variables 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑘 and a response Y , can be written as 

Y = 𝜷𝟎 +  𝜷𝟏 ∗ 𝑥1 + 𝜷𝟐 ∗ 𝑥2 + 𝜷𝟑 ∗ 𝑥3 + ··· + 𝜷𝒌 ∗ 𝑥𝑘 + ε                                   

ε being the residual terms of the model, namely, error terms showing model deviations. 

Regression residuals generally have a normal distribution with mean 0 and variance 𝜎2. 

As a predictive analysis, a multiple linear regression model is used to explain the 

relationship between one continuous dependent variable (response) and two or more 

independent variables (predictor). A linear relationship is assumed between the 

dependent variable and the independent variables. Since we have not enough and related 

data to realize this regression and discover model parameters by conducting 

performance measurements, we decided to use only this dynamic pricing equation, 

determine independent variables which affect price changes and then estimated the 

parameters in order to increase the revenue without exceeding willingness-to-pay of the 

customers. Since the dynamic pricing is not applied in the current multimodal 

transportation industry, the related past data cannot be collected and be utilized for 

regression analysis. However, we have benefited from this multilinear regression 

equation using it as a dynamic pricing equation by defining variables and estimating the 

parameters applying scenario based calculations. 
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Extensive research of the related literature and website of current MTPs in addition to 

conversations with national MTPs (UNRORO, Ekol Logistics, and Arkas Logistics) 

supported to determine independent variables influencing slot prices. These declared 

variables are vehicle’s capacity utilization rate at the moment of demand arrival, the day 

of the booking period with T=10 being the first day of the period and T=1 being the last 

day, number of demand arrived at the moment and marginal cost of the current demand 

calculated by the operational planning model (Section 3.2.3). The dynamic pricing 

equation becomes: 

𝑷𝒓𝒊𝒄𝒆𝒊 = 𝜶𝒊 + 𝜷𝟏,𝒊* 𝐹𝑖𝑙𝑙𝑅𝑎𝑡𝑒𝑖 + 𝜷𝟐,𝒊* 𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝐷𝑎𝑦𝑖 + 𝜷𝟑,𝒊*  𝐷𝑒𝑚𝑎𝑛𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖     + 

𝜷𝟒,𝒊*  𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝑖  

The subscript 𝚤̇ refers to the 𝑖𝑡ℎ demand arrived in the rolling horizon for a vessel. The 

vessel type is Ro-Ro in this case, it stands for “Roll-on, Roll-off” which takes mostly 

wheeled vehicles. Since the vessel is the biggest and first vehicle in our determined 

network, departure point coincides with the vessel’s departure point in the system. It is 

interpreted that each 𝛽𝑖 coefficient represents the change in the mean response, price, 

per unit increase in the associated predictor variable when all the other predictors are 

kept constant. To illustrate, 𝛽1 represents the change in the mean response, price, per 

unit increase (decrease if 𝛽𝑖 is negative) in 𝐹𝑖𝑙𝑙𝑅𝑎𝑡𝑒 while holding other variables 

𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝐷𝑎𝑦, 𝐷𝑒𝑚𝑎𝑛𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, and 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡 constant. The intercept term 𝛽0 

denotes the mean 𝑃𝑟𝑖𝑐𝑒 while other predictors kept unchanged.  

To apply this approach, it is necessary to determine meaningful model parameters α and 

𝛽𝑘 of the price function. It would be very straightforward to calculate the parameters 

after pre-processing of the related data if there is a related database keeping the 

available past data. Since this dynamic pricing approach is new for the transportation 

service provided by MTPs on the determined network, because of the lack of data, we 

were required to elaborate on the model parameters by trying different scenarios and 

parameters and select the best which will serve our revenue maximization goal 

respecting possible ranges. For this reason, after several initial trials and tests 

concerning the industrial attitudes and literature outcomes, we come up with the 

aforementioned parameters.  



35 

 

 𝐹𝑖𝑙𝑙𝑅𝑎𝑡𝑒 notes the capacity utilization rate and it changes from 0 to 1. A vessel 

(240 slots) has to be filled at least 70% in order to be profitable. By the courtesy 

of economic rules in the market, price increases as the inventory decreases; so, 

𝛽1 should be a positive number. 

 𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝐷𝑎𝑦 denotes the sequence of the day when the demand arrived in the 

booking period. In the sector, it is known that the willingness-to-pay of 

customers is higher when the departure time is close. However, price can 

decrease with time for the same inventory level due to resource perishability 

effect. Hence, 𝛽2 is not straightforward to assign directly, it might depend on the 

arrival day and fill rate.   

 𝐷𝑒𝑚𝑎𝑛𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 indicates the total number of slot demand arrived together. 

Since multiple slot purchases should be encouraged, 𝛽3 should be negative. 

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡 signifies marginal cost per slot calculated via operational 

planning model of a sea-rail multimodal freight transportation problem 

configured on a time-space diagram, formulated as a linear network flow model. 

         3.2.1 Sea-Rail Multimodal Freight Transportation Problem Network Settings 

Our network flow problem, also, we can say slot allocation problem is formulated on a 

directed graph G= (V, A). Vertex set V stands for the set of facilities for each mode 

such as terminals, dry-ports, freight villages, hubs. And arcs in the set A show the 

possible flow links, connecting routes between these facilities. These vertices represent 

origins (O), destinations (D), and transshipment (S) points in the network chain. In our 

designated network (Figure 3.1) the origin is Istanbul where the vessel begins shipping 

the freights. Destinations to where demands are assigned are Hamburg, Duisburg, and 

Rotterdam. Transshipment points are Trieste, Salzburg, and Ludwigshafen together with 

Duisburg when it is needed to direct the flow in order to meet the demand of destination 

points Rotterdam and Hamburg. This network is a sample of real multimodal freight 

network currently utilized by national MTPs. While freights are generally containers, 

semi-trailers, and trailers, we assume that all the commodities are carried with semi-

trailers and capacities are determined accordingly. Each arc defined together with its 

assigned cost and capacity. The cost paid by an MTP for transporting a shipment is 

straightforward since the operational costs such as wages, fuel, vehicle, sustaining the 
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operation, insurance, and land occupancy depends on time and distance. Other factor 

related to collaboration, hiring a vehicle, using a public carrier, consolidation, and 

handling costs have an impact to influence the cost on a large scale. Cost calculation 

and allocation is a major research subject in itself; because of this reason, we assigned 

costs proportional to the distances between OD pairs and relying on the website of 

currently operating companies. Terminal operations cost together with delay/waiting 

time costs during these operations are assigned to waiting arcs according to the real 

costs of chosen terminals. Cost function normally embodies external cost like 

congestion, air pollution, CO2 emission, noise, accidents and land use besides monetary 

costs. However, since we exclude road transportation, maritime and rail routes add less 

external costs comparing to road usage, we find considering only monetary costs is 

sufficiently enough to construct network flow considering only repositioning during 

transport service and waiting time costs at the transshipment points.  

 

Figure 3.1: Designated Multimodal Transport Network 
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We put a space-time diagram into use as we need a time dimension to show travel time 

of vehicles and penalize waiting times at the terminals over a given planning horizon 

through this time-space network, in order words, a time-expanded directed graph. Yang 

and Meng (1998) used the abbreviation of STEN which stands for space-time expanded 

network representing time-varying traffic flow. Yang and Meng’s (1998) statement of 

dynamic pricing in general networks supports our study’s aim since this type of network 

is required to emphasize the dynamicity in the network. Ghiani et al. (2004) defined the 

horizon in a time-expanded directed graph with two dimensions: one dimension is time 

with many periods (hours, quarter days, days, and weeks) and the other one is the 

physical network, the static representation of physical network is replicated in each 

determined time period. When transportation schedules are designed and if goods have 

a due date to be sent before, a time dimension must be explicitly identified in the 

formulation. This is easily realized by using a space-time network. Temporal arcs, in 

other words, waiting arcs are the connections that link two nodes of the same terminal at 

two different time periods representing the terminal operations, waiting time at the 

transshipment node or delay. Service arcs, namely, operation links are the connections 

that link two nodes of different terminals together with two different time periods as 

much as transport time between those two terminals. Costs related to each arc 

determined by terminal operations costs, waiting costs or transportation cost relying on 

the distance and the mode (Crainic, 2007).  

Generally, time-dependent service network design problems have two types of decision 

variables inherently. One of them is integer design variable which is 1 if there is a 

service on that arc and 0 otherwise. The second one is continuous variable standing for 

representation of the related freight flow on that arc. In the service network, distribution 

of flows –if there is any- can be observable through these continuous decision variables. 

Our formulation does not contain integer design variable for the sake of simplicity since 

most of the arcs should be utilized in order to meet the shippers’ demand, the cost of 

each arc will allow the flow transmission between the arcs explicitly.  

         3.2.2 Assumptions and Limitations 

 Cancellations, no-shows, and overbooking are not considered. 
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 A request for booking of multiple slots is either satisfied or denied it 

entirely.  

 Whenever a request arrives, a decision about its acceptance has to be made 

by customer and service provider directly. 

 Vehicle capacities are fixed and reordering is not possible since they are 

accepted as perishable inventories.  

 Type of freight is only semi-trailer. 

Type of freight is only semi-trailer. Normally, containers also can be carried by Ro-Ro 

and Ro-La; but, in the Ro-Ro, containers can be stacked on top of other containers. 

Whereas one slot can be sold up to five containers instead of one semi-trailer, containers 

need extra equipment while loading and unloading at the terminal and require extra time 

and effort for leashing and unleashing to stabilize in the Ro-Ro. Furthermore, containers 

are available in different capacities and dimensions: 1 twenty-foot equilibrium unit (1 

TEU), 1 forty-foot equilibrium unit (1 FEU), shown as 20’, 40’, 45’, 48’, 53’, ISO etc. 

With the simple modeling, it is difficult to include the effect of size diversities, because 

of this; we assume freights in unique shape and size, as semi-trailers that are ready to 

occupy only one slot in the Ro-Ro and Ro-La having fixed capacity. This size problem 

of diversities can be further modeled by counting capacity as volume and weight and 

freight size relying on several modes of transportation. Besides the lack of size unity, 

several sections of the ship can be used by diverse type and number of freights. To 

illustrate, one slot of a train can be loaded by two container double-stacked and upper 

deck of a ship can be utilized to put hazardous material filled containers/semi-trailers, 

cold cargoes, multiple-stacked containers favoring reachability by cranes. 

         3.2.3 Formulation 

This section presents the formulation of the multimodal network flow problem as 

single-objective linear programming model on a time-space network. Each node in the 

physical base network is represented by the number of mode type at each time period of 

the planning horizon. The simple formulation of the sea-rail multimodal freight 

transportation problem as a linear network flow model follows: 
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Parameters 

𝒊         Origin index 

𝒋         Destination index 

𝒕         Current time index 

𝝉𝒊,𝒋      Lead time (service or waiting) index of each arc from i to j  

𝑻         Booking day of reservation period with customer types: 

            𝑻 = 11 (dummy day) is for contracted customers 

            𝑻 = 10, 9, 8, 7, 6, 5, 4, 3, 2 days for normal booking period customers 

            𝑻 = 1 is for last minute demand arrivals, urgent customers 

𝑸𝒗       Vessel capacity 

𝑸𝒊,𝒋
𝒕       Train capacity at time t from i to j 

𝑫𝒋,𝑻,𝒅
     Demand of customers/shippers 

𝒄𝒊,𝒋,𝒕     Cost of each arc at time t from i to j relying on waiting times or distances 

Decision Variables 

𝑿𝒊,𝒋,𝒕    Number of slots allocated (flow assigned) at time t from i to j according to 

demand and capacity 

Objective Function 

Minimize      ∑ ∑ ∑ ∑ (𝑿𝛕 𝒊,𝒋,𝒕
∗ 𝒄𝒊,𝒋,𝒕)𝒕𝒋𝒊  

Constraints 

Capacity constraints:  

𝑿𝟏,𝟐
𝒕   ≤   𝑸𝒗                                                  ∀ t                                                       (1) 

𝑿𝒊,𝒋
𝒕  ≤  𝑸𝒊,𝒋

𝒕                                                   ∀ i≠1; ∀ j≠2; ∀ t                                 (2) 
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Flow balance constraints:   

∑ 𝑿
𝒊,𝒋

𝒕−𝝉𝒊,𝒋  𝒊 - ∑ 𝑿𝒋,𝒊
𝒕

𝒋  = 0                                  ∀ i S; ∀ j S, ∀ t                             (3) 

∑ 𝑿
𝒊,𝒋

𝒕−𝝉𝒊,𝒋  𝒊 - ∑ 𝑿𝒋,𝒊
𝒕

𝒋  = ∑ 𝑫𝒋,𝑻,𝒅𝑻,𝒅 ;                  for  j D and ∀ t                                (4) 

𝑿𝟏,𝟐
𝒕 = ∑ 𝑫𝒋,𝑻,𝒅𝒋,𝑻,𝒅 ;                                    for t=0                                                (5) 

𝑿𝒊,𝒋,𝒕 ≥ 𝟎                                                     ∀ i; ∀ j; ∀ t                                          (6) 

The marginal cost calculation per slot is conducted with this formulation which aims at 

minimizing the cost and assigns the freight flows on each arc accordingly. Constraints 1 

and 2 limit the capacity according to vehicle type. Actual capacity of an arc depends on 

the daily frequency of the vehicle on that leg; however, since we developed the space-

time diagram, there is no need to insert frequency parameter to the formulation. 

Constraints 3, 4, and 5 are the famous constraints of flow balance which are 

indispensable for this kind of network flow problems. Integrality constraint is not 

required since all the parameters and limitations are integer, the decision variables result 

in directly integer values. Fourer et al. (1993) defend that many solvers result in integer 

solutions if the bounds are integral, explains this concept by the use of integer bounds 

and integral data in the model.  
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Chapter 4 
 

 

Experimental Studies 

 

 

 

 

Pricing part consists of four components: time (remaining days before departure/day of 

booking), capacity (remaining slot/fill rate), the quantity of demand (slot), and marginal 

cost obtained from operational planning part. Pricing rules are set according to previous 

studies on airline industry and meeting notes from national multimodal transport 

providers. Firstly intuitive then proved with appropriate case studies, Escobari (2012) 

argues that the price increases as the inventory decreases and price decreases as there is 

less time to sell. Furthermore, Pang et al. (2014) demonstrated that a lower inventory 

level yields a higher optimal bid price at any time; it means customers’ willingness-to-

pay increases as the remaining number of slots decreases. This is referred as the 

resource scarcity effect. Moreover, the optimal bid price decrease with time for the 
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same inventory level because of resource perishability effect. This proves that the last 

slots can be given at a lower price if departure time is really close because slots are 

perishable inventories without salvage value after departure. If the time for departure 

approaches and there are a lot of empty slots, providers can consider decreasing the 

price or inversely increasing the price dramatically in order to close the profit gap 

addressing the last minute comers whose willingness-to-pay is higher. Cutting off the 

price if there is not enough slot sold or if there is a few slots to sell is a good idea since 

empty slots are worth nothing after the departure of the vehicle. The estimation of 

parameters should cover these already-known concerns. 

Firstly, beginning with the marginal cost calculation, the process of flow on the time-

space network is explained as follows: 

There are three types of customers in our multimodal network chain; they are classified 

according to demand arrival time for the known vessel. The first type is contracted 

customers who sign an annual agreement for the pre-determined number of slots which 

are reserved to them. Even if they did not send any freight for that reserved slots, they 

should pay the price. Their prices are fixed prices and it is the smallest possible price 

proposed for a customer. Briefly, contracted customers are the loyal segment of the 

customers who commit long-term agreement for the definite amount of slots. 

Accordingly, they are charged less than the temporary customers (normal and urgent) 

coming at the booking period or last minute. In our study, the fraction of slots dedicated 

to contracted customers is 30 percent of a vessel’s total capacity (Liu and Yang, 2015). 

The second type is normal customers, who book the slots during 9 days booking period. 

It is denoted in the formulation as a time interval from T=10 to T=2. Their proposed 

prices are not fixed but dynamically determined in terms of booking day, fill rate, 

number of demand and calculated marginal price through operational planning. The last 

type is urgent, in other words, last-minute customers who demand last day before the 

departure of the vessel. They are generally ready to pay more because they have a time 

constraint, approaching deadline to send their goods. Exploiting their high willingness-

to-pay, MTP can increase their revenue by keeping the prices high. This high prices 

should be less than or equal to costs of trucking from origin to destination. In fact, 

trucking has higher external costs too besides the monetary costs.  
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We could not find enough real data to analyze and estimate the model parameters 

accurately. But with the little amount of available industrial data obtained from national 

MTPs, we produced demand data using examples from the previous studies. Poisson 

distribution (Lin, 2006) is widely found as an appropriate method to assume demand 

arrivals. In order to get rid of some well-known limitations of the Poisson distribution 

which are related to its mean and variance relationship as known as equidispersion, 

negative binomial distribution is used (Koenigsberg et al., 2008). Uniform demand 

(Zhang and Pel, 2016) is straightforward and gives us a chance to impacts of different 

demand sets representing a base demand set. Demand arrival rates in airline revenue 

management collected in previously conducted studies show an increasing trend of price 

in time while getting closing to the flight date (Koenigsberg et al., 2008). This linear 

trend can be applied also to the sea-rail multimodal transportation 

Recognizing the customer classification, we decided to produce 3 different demand sets 

coming from 3 distributions: Uniformly distributed demand, demand from Poisson 

distribution and linearly increasing demand. The mean of these distributions is 

determined as 6 relying on the monthly data obtained from a national MTP. The aim of 

producing different demand sets, in other words, scenarios is to have a chance to 

compare the results and cover as much as possible situation with the dynamic pricing 

approach. 

In the time and space diagram, each node in the physical base network (Figure 4.1) is 

represented by the number of mode type at each time period of the planning horizon. 

The physical base network is replicated at each time period in sequence (Figure 4.2). 

The duration of one time period is 6 hours (6h) since it is based on the link travel time 

for each mode and maximum frequency of a rail connecting route is four times a day, it 

means at least 6 hours-time interval. Also, it is small enough to express the amount of 

handling and waiting time on the transshipment links. Setting smaller time periods is 

also possible and it will lead more sensitive planning, but 6h time periods are 

sufficiently enough for our case. The movements of freights on a physical network over 

time are represented by the operation links in the time-space network. In the classical 

model, the total capacity is calculated by multiplying the capacity of a vehicle with the 

daily, weekly or monthly frequency according to the accepted time horizon. While 

using space-time network, we do not need extra calculations for the total capacity; the 
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time period becomes smaller -6 hours in our case- and departure time changes for each 

frequency of a leg on the network at hand. 

Our point of view, which is MTPs perspective, requires special attention to vessel 

shipment from the origin point. So, we choose to deal with the departure of a vessel 

having 240 freights capacity. The vessel has three types of the customer according to 

the arrival time of demands as mentioned above. 

 

 

 

 

 

 

 

 

 

If we had a larger network where multiple MTPs operate together and time period 

becomes smaller for example 1 hour instead of 6 hours, the problem will become more 

complex and time-consuming to solve. Under these circumstances, one will need to 

consult metaheuristics to cope with the complexity and the frequently used search 

algorithms are Tabu Search, Simulated Annealing and Adaptive Large Neighborhood 

Search (ALNS) (SteadieSeifi et al., 2017). 

For the calculation of fixed price, in our case, the total cost divided by the capacity 

which is derived from the operational planning model plus the profit margin being 43 

percent of this cost per slot from O to D. This profit margin is the currently used 

realistic margin, since the capacity of a vessel should be filled at least 70% in order to 

be profitable.  
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Figure 4.1: Designated Physical Base Network 
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Figure 4.2: Designated Time-Space Network 
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To apply the dynamic pricing approach; it is necessary to determine meaningful model 

parameters α and β𝑘 of the price function. For this reason, after several initial trials and 

tests concerning the industrial attitudes and literature outcomes, we tried to estimate the 

appropriate model parameters for online booking period, so to say, price offers for 

normal customers. Firstly we fixed α as the base price and determined five values for 

each parameter β𝑘.  

 

 

 

 

 

 

 

 

 

 

Firstly, we produced demand sets and integrate them one by one in the rolling horizon 

to the model. This operational planning model formulation has been implemented using 

IBM ILOG OPL modeling language and solved with CPLEX 12.6. After solving the 

model for each demand arrival, the marginal cost for each demand is obtained. This 

marginal cost together with other independent variables of fill rate, booking day and 

demand quantity. Next, in each scenario, only one β𝑘 parameter changed and the other 

three parameters are kept unchanged (Figure 4.4).  

 

 

 

Figure 4.4: Principe of Dynamic Pricing Revenue Increase Rate Calculation 
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Figure 4.3: Scenarios of Model Parameters β_k 
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The 625 revenue increase percentages are calculated compared to the fixed price for one 

demand set obtained from one of the 3 distributions (Table 4.1, Table 4.2, Table 4.3, 

and Table 4.4). From these 625 values, it is necessary to determine the best parameter(s) 

for further usages. So, we have determined a percentage interval of revenue increase 

compared to fixed pricing strategy. 

The upper limit of a price to offer a customer is trucking cost from the same origin to 

same destination. This total trucking cost is determined with the already demonstrated 

formula presented by Dong et al. (2017) and the maximum revenue increase rate is 

designated 10% in order to be competitive against unimodal road transportation by 

truck. As a lower increase rate 5% increase rate is accepted. This 5 % is determined in 

order to exceed the revenue increase rate which is already achieved in the literature. 

 Table 4.1: Scenarios of Linearly Increasing Demand while β_4 = 0.3 

LINEAR DEMAND     β4 = 0.3 

 β1 β2 β3 = -1 β3 = -2 β3 = -4 β3 = -7 β3 = -11 

  -5 0.119 0.118 0.115 0.112 0.108 

  -10 0.115 0.114 0.112 0.109 0.104 

80 -25 0.103 0.102 0.098 0.096 0.092 

  -50 0.088 0.087 0.085 0.081 0.077 

  -100 0.054 0.053 0.050 0.046 0.041 

  -5 0.121 0.120 0.118 0.114 0.110 

  -10 0.118 0.116 0.114 0.111 0.106 

100 -25 0.105 0.104 0.102 0.098 0.094 

  -50 0.090 0.089 0.087 0.083 0.079 

  -100 0.056 0.055 0.052 0.048 0.043 

  -5 0.126 0.125 0.123 0.119 0.115 

  -10 0.123 0.122 0.119 0.116 0.111 

150 -25 0.112 0.111 0.109 0.106 0.101 

  -50 0.095 0.094 0.092 0.088 0.084 

  -100 0.061 0.060 0.057 0.053 0.048 

  -5 0.137 0.136 0.133 0.130 0.125 

  -10 0.133 0.132 0.130 0.126 0.122 

250 -25 0.123 0.122 0.120 0.116 0.112 

  -50 0.106 0.105 0.099 0.096 0.094 

  -100 0.071 0.070 0.067 0.063 0.058 

  -5 0.163 0.162 0.160 0.156 0.152 

  -10 0.159 0.158 0.156 0.153 0.148 

500 -25 0.149 0.148 0.146 0.142 0.138 

  -50 0.132 0.131 0.129 0.125 0.121 

  -100 0.098 0.096 0.094 0.091 0.086 
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Table 4.2: Scenarios of Linearly Increasing Demand while β_4 = 0.4 

LINEAR DEMAND     β4 = 0.4   

β1 β2 β3 = -1 β3 = -2 β3 = -4 β3 = -7 β3 = -11 

  -5 0.164 0.163 0.161 0.158 0.153 

  -10 0.161 0.160 0.157 0.155 0.150 

80 -25 0.151 0.150 0.147 0.144 0.139 

  -50 0.133 0.132 0.130 0.127 0.122 

  -100 0.099 0.098 0.096 0.093 0.088 

  -5 0.166 0.165 0.163 0.160 0.155 

  -10 0.163 0.162 0.159 0.157 0.152 

100 -25 0.153 0.152 0.149 0.146 0.141 

  -50 0.135 0.134 0.132 0.129 0.124 

  -100 0.101 0.100 0.098 0.095 0.090 

  -5 0.171 0.170 0.168 0.165 0.160 

  -10 0.168 0.167 0.164 0.162 0.157 

150 -25 0.158 0.157 0.154 0.151 0.146 

  -50 0.140 0.139 0.137 0.134 0.129 

  -100 0.106 0.105 0.103 0.100 0.095 

  -5 0.182 0.181 0.177 0.175 0.171 

  -10 0.178 0.177 0.174 0.172 0.167 

250 -25 0.168 0.167 0.164 0.162 0.157 

  -50 0.150 0.149 0.148 0.144 0.139 

  -100 0.117 0.116 0.113 0.110 0.105 

  -5 0.208 0.207 0.204 0.201 0.197 

  -10 0.205 0.204 0.201 0.199 0.194 

500 -25 0.195 0.194 0.191 0.189 0.183 

  -50 0.177 0.176 0.174 0.171 0.166 

  -100 0.143 0.142 0.140 0.137 0.132 

 

 

        Table 4.3: Scenarios of Poisson Demand while β_4 = 0.3 

POISSON DEMAND     β4 = 0.3   

β1 β2 β3 = -1 β3 = -2 β3 = -4 β3 = -7 β3 = -11 

  -5           

  -10 0.108 0.107 0.104 0.100 0.096 

80 -25 0.094 0.093 0.091 0.087 0.082 

  -50 0.071 0.070 0.068 0.064 0.059 

  -100 0.024 0.023 0.021 0.017 0.013 

  -5           

  -10     0.103 0.104 0.099 

100 -25 0.096 0.095 0.093 0.089 0.084 

  -50 0.073 0.072 0.070 0.066 0.061 

  -100 0.026 0.025 0.023 0.020 0.015 
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  -5           

  -10         0.105 

150 -25 0.102 0.101 0.100 0.095 0.090 

  -50 0.079 0.078 0.076 0.072 0.067 

  -100 0.032 0.031 0.029 0.025 0.020 

  -5           

  -10           

250 -25 0.113 0.112 0.109 0.106 0.102 

  -50 0.091 0.090 0.088 0.084 0.079 

  -100 0.044 0.043 0.040 0.037 0.032 

  -5 0.157 0.156 0.154 0.150 0.145 

  -10           

500 -25 0.142 0.141 0.138 0.135 0.131 

  -50 0.119 0.118 0.115 0.112 0.108 

  -100 0.072 0.071 0.068 0.065 0.061 

 

Table 4.4: Scenarios of Linearly Increasing Demand while β_4 = 0.3 

UNIFORM DEMAND     β4 = 0.3   

β1 β2 β3 = -1 β3 = -2 β3 = -4 β3 = -7 β3 = -11 

  -5 0.114 0.113 0.110 0.106 0.101 

  -10       0.100 0.096 

80 -25 0.093 0.092 0.090 0.086 0.081 

  -50 0.068 0.067 0.065 0.061 0.056 

  -100           

  -5       0.108 0.103 

  -10       0.102 0.098 

100 -25 0.095 0.094 0.092 0.088 0.083 

  -50 0.07 0.069 0.067 0.063 0.058 

  -100           

  -5         0.109 

  -10           

150 -25 0.101 0.100 0.098 0.094 0.089 

  -50 0.076 0.075 0.073 0.069 0.064 

  -100           

  -5           

  -10           

250 -25 0.113 0.112 0.109 0.106 0.100 

  -50 0.087 0.086 0.084 0.080 0.075 

  -100 0.037         

  -5 0.151   0.148     

  -10           

500 -25 0.141 0.140 0.138 0.134 0.129 

  -50 0.116 0.115 0.113 0.109 0.104 

  -100 0.066 0.065 0.062 0.058 0.053 
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After producing results of all scenarios for each type of 3 demand distribution and best 

parameters that gives 10.0 % (or 9.9 % ) increase rate are selected finally (Table 4.5). 

The final 9 parameters’ performances are measured with calculations from scratch using 

newly produced sets of demand. The best parameter for each type of demand is 

nominated at the end of this process; these are shown in purple on Table 4.5. These 

selected parameters turn out dynamic prices for normal and urgent customers showing 

an increasing trend towards the end of the booking period (Figure 4.5). The horizontal 

axis of the chart represents the demand arrival during booking period from T=10 to 

T=1. Since customer type depends on the customer arrival during the booking period, 

the horizontal axis shows the customer types for one vessel. T= 11 is used as a dummy 

day in order to represent the contracted customers who sign a contract annually. 

Table 4.5: Selected Best Working Parameters 

 

 

 

                                      Figure 4.5: Dynamic Price vs Fixed Price (Normalized) 

Demand β1 β2 β3 β4 β1 β2 β3 β4 β1 β2 β3 β4

Uniform 80 -10 -7 0.3 250 -25 -11 0.3 150 -25 -2 0.3

Linear 250 -50 -4 0.3 100 -100 -2 0.4 150 100 -7 0.4

Poisson 80 -10 -7 0.3 100 -10 -11 0.3 150 -25 -4 0.3
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Demand Set Poisson Uniform Linear

Demand_1 0.094 0.094 0.104

Demand_2 0.096 0.093 0.103

As a next step, we searched if we can finalize our calculations finding a unique 

parameter set by taking the average of these three best parameter sets (Table 4.6): 

 

 

It is important to test the performance of this common parameter set and we 

accomplished this using two different demand set from 3 different distributions (Table 

4.7). This unified parameter set almost conforms to the interval limits of revenue 

increase percentage and it is acceptable for further calculations. 

 

 

 

Let’s measure the performance of chosen parameter sets on uniformly distributed 

demand regarding different scenarios of fill rate: full, early full (no slot for urgent 

customers), and not full (Table 4.8): 

Table 4.8: Performance Measurement of Parameters on the Uniformly Distributed Demand 

UNIFORM Demand_1 Demand_2 Demand_3 Demand_4 Demand_5 Demand_6 

160,-30,-4,0.3 9.3% 9.4% 6.1% 6.9% 8.4% 8.0% 

150,-25,-2,0.3 10.0% 10.0% 6.7% 7.5% 8.9% 8.6% 

 

 

                                              

Figure 4.6: Graphic of Table 4.8 

     Table 4.7: Performance Measurement Results for Unified Parameters 

  Table 4.6: Unified Dynamic Pricing Model Parameters 
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6.90% 

8.40% 8.00% 
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7.50% 
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Demand_1 Demand_2 Demand_3 Demand_4 Demand_5 Demand_6

Performance of Model Parameters 
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Table 4.8 and Figure 4.6 allows declaring that the estimated parameters are working 

well and do not fall down the determined lower level of revenue increase (5%) for the 

uniformly distributed demand sets. These demands sets also represent different 

scenarios because randomly produced demands can cause fulfillment of the capacity 

earlier than the end of booking period or lack of total capacity utilization. But the 

estimated parameters work well and stay within the determined limits of revenue 

increase rates 5% and 10%.  

The dynamically changing prices fluctuate up and down by using estimated parameters; 

however, it is possible to restrict the decrease of price in time (Figure 4.7). But then 

again the increase in the revenue against fixed pricing strategy becomes 10.5 % which is 

only 0.5% higher than the proposed dynamic pricing model (Figure 4.5). This is also 

applicable; however, fluctuations are not problematic for this kind of dynamic pricing 

approach in various sectors. 

 

 

Figure 4.7: Non Decreasing Dynamic Prices 
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In sum, the dynamic pricing approach relies on the scenario-based parameter 

estimations and the performance of these estimated parameters demonstrated the 

success of the proposed approach. The overall process of dynamic pricing and slot 

allocation in the designated multimodal freight network is summarized in the following 

flowchart (Figure 4.8):  

Figure 4.8: Flowchart of Dynamic Pricing and Slot Allocation in Multimodal Freight Network 
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Chapter 5 

 

 

Conclusion and Future Studies 

 

 

 

 

In this thesis, we proposed a dynamic pricing approach to be applied together with slot 

allocation from the MTPs perspective in order to increase their revenue, without 

exceeding customer’s convenient willingness-to-pay for a slot, considering the different 

type of pre-defined customer classes and online booking system. Pursuing the slot 

allocation and marginal cost calculation, we developed a time-space diagram and 

formulate the sea-rail multimodal freight transportation problem as a linear network 

flow model. The variables of dynamic pricing equation are determined relying on the 

literature and discussion with national MTPs as influencing elements for price changes; 

parameters are estimated with scenario-based calculation and their performances are 

measured on different demand sets. Since the results of proposed dynamic pricing 
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approach are promising in order to increase revenue and encourage MTPs to maintain 

their multimodal transport services, we can claim that this study provides managerial 

insights about the advantages of multimodality and dynamic pricing strategy.  

As a future research direction, one can release some limitations and assumptions to 

elaborate deeply on the subject of dynamic pricing in multimodal transport 

management. To begin with, the testing of multilinear pricing strategies and achieving 

more accurate parameters of the dynamic pricing model in the multimodal transport 

sector has been very restricted due to the lack of available data, especially daily 

demand, and individual pricing because of confidentiality of the adequate data and 

continuation of traditional methods. As already applied in the airline industry, online 

reservation system –if established- will help to keep track of the demand and price 

changes and correlation between them. Collaboration between stakeholders and MTPs –

if established- can release issue of confidentiality rights and this will precede common 

benefits between stakeholders of the same consortium thanks to transparent 

communication and fair revenue allocation parallel to service ratio. Thanks to this price 

transparency and past data accumulation; customer behaviors, willingness-to-pay, price 

changes, demand changes can be followed closely and learned in time. Possible 

extensions of this research include incorporating machine learning through an online 

reservation system to update demand, arrival rate, and price distributions over time. 

This system will allow empirical analysis to result in better coefficient predictions. By 

looking further, the focus of transportation and supply chain management is not only 

minimization of costs but also adding value to global supply chain via automation and 

robotization building hyper-connected networks. It is presumable that future studies will 

emerge as a collaboration of autonomous vehicles, terminals and online data keeping 

and mining systems. Users and providers will still be the ones who provide the 

destinations and system developments. 

As an extension to existing problem setting, first, the current network is designed using 

real-life network being operated by national MTPs; however, it shows a small piece of 

the network in the world of sea-rail transportation. Hence, thanks to collaboration and 

agreements between various stakeholders, one can work on a larger and complex 

network which will be very interesting to implement further. 
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Secondly, the only freight type of semi-trailer limits the compatibility with real life 

application and it can be developed by adding containers as an alternative freight type 

and increasing the number of overall capacity since containers can be stacked on top of 

each other. The fraction of allowed containers in a vessel should be arranged 

accordingly to the capacity of trains afterward. Because the frequency of trains depends 

on the schedule of the whole network and containers can be only double-stacked on 

trains, mainly Ro-La.  

Furthermore, the operational planning model can be extended adding due date index to 

demand to be arrived at the destined terminal; price and slot allocation scheme can be 

assigned in this direction. To illustrate, if the due date of some freights is too close; they 

need to allocated and transported directly while others can wait for the departure of the 

vessel the next day. This system will obviously influence the pricing strategy with the 

reason of urgency. 

Moreover, allowing cancellation and overbooking will be a novelty to multimodal 

transportation and a new opportunity to increase revenue without upsetting the 

customers. Overbooking can increase revenue significantly due to high no-show rates. 

Increasing revenue strategies can merge with the objective of cost saving without 

reducing the reliability of operation.  

Empty container reposition and allocation of round trips will also have a positive impact 

on capacity utilization rate and revenue maximization.  

Next, our study assumes that there is no demand uncertainty by producing demand 

instances from different distributions; however, consideration of stochastic demand and 

arrival rates will be an interesting and real-life problem to direct the related research 

further.  

As a final extension to dynamic pricing approach, the fact that the amount of increase in 

price when moving from BookingDay = 6 to BookingDay = 7 is equal to the increase 

when moving from BookingDay = 1 to BookingDay = 2 is a strong assumption and it is 

not realistic to follow in real life applications. This negative effect of this assumption 

can be prevented using interaction effects of two or more variables and it would be 

better if one can estimate varying parameters instead of fixed parameters for each 

demand arrival.  
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Appendix 

 
Figure A: The Plot of Data: Variables and Assigned Dynamic Prices 


