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Abstract— This paper extends the previous work on LPV
modeling of a pan-tilt system [1] and tackles the robust stabi-
lization problem by employing angular acceleration feedback
in an LMI based optimal LQR controller. The state vector
of the LPV model is augmented to include the integral of
the position errors in addition to joint angles and velocities.
Therefore, an extended polytopic quasi-LPV model of the pan-
tilt system is derived. The LMI based optimal LQR controller
that utilizes acceleration feedback is synthesized based on the
extended LPV model. Since the time varying parameter vector
is 4 dimensional, the proposed controller is synthesized by
interpolating LMIs at 16 vertices of the polytope. A cascaded
nonlinear high gain observer is also designed to estimate reli-
able positions, velocities and accelerations from noisy encoder
measurements. Simulation results show that the proposed LMI
based optimal LQR controller outperforms the classical LMI
based LQR controller.

I. INTRODUCTION

High precision stabilization is one of the significant prob-
lems in the control of robotic manipulators. It is difficult to
apply nonlinear controllers to the robotic manipulators due
to the complexity of these controllers. In recent years, linear
parameter varying (LPV) models [2] have been widely used
as effective tools to control nonlinear multiple input multiple
output (MIMO) systems. LPV models are linear systems and
depend on time varying measurable scheduling signals.

The advantage of LPV models is to represent many
nonlinear systems using linear dynamical relationships and
allow the use of well known linear optimal controllers and
linear matrix inequalities (LMIs) on these systems. Capturing
nonlinear systems using linear relationships leads to devel-
opment of quasi-LPV model [3]-[4] where the scheduling
signals can be the states, inputs or outputs of the system.
Polytopic LPV approach [5]-[6] is also a popular technique
to synthesize the linear controllers by interpolating LMIs at
different vertices of the polytope. LPV models have been
used to synthesize various control algorithms such as gain
scheduling controllers [7]-[9], H∞ controllers [10]-[11], and
LQR controllers [12]-[13].

In this paper, the polytopic quasi-LPV model derived in
[1] is extended by including the integral of the position
errors in the new state vector. An LMI based optimal
LQR controller that utilizes acceleration feedback (AFB)
is synthesized based on this LPV model. The acceleration
feedback is incorporated into the LMI based LQR controller
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since the effects of external disturbances manifest themselves
first in the acceleration signals. Therefore, the proposed
controller should provide increased robustness of the system
to external disturbances and achieve high precision stabi-
lization. The performance of the proposed controller largely
depends on reliable feedback signals. Thus, a cascaded high
gain observer (CHGO) is designed to estimate reliable po-
sition, velocity and acceleration signals from noisy encoder
measurements. Estimated position, velocity and acceleration
signals are used in the acceleration based LQR controller. A
high fidelity simulation model is constructed by designing
realistic encoder and nonlinear pan-tilt models. Simulation
results demonstrates the validity and effectiveness of the
proposed LMI-LQR controller.

The remainder of this paper is organized as follows:
Section II develops a cascaded high gain observer (CHGO) to
estimate reliable position, velocity and acceleration signals.
In Section III, an extended polytopic quasi-LPV model of a
2 DOF pan-tilt robot is developed and an acceleration based
LMI-LQR controller is synthesized based on the proposed
LPV model. Section IV provides simulation results where the
effectiveness of the proposed control approach is validated
on the pan-tilt system. Finally, Section V concludes the
paper with important remarks and indicates possible future
directions.

II. ENCODER MODELING AND ESTIMATION BY
A CASCADED HIGH GAIN OBSERVER

This section models an encoder and develops the proposed
observer to estimate position, velocity and acceleration feed-
back signals.

A. Encoder Modeling

Encoders measure joint angles in control applications.
Encoders are modeled by corrupting the true sensor mea-
surements with sensor errors as follows:

qm = q0 +be +µe (1)

where qm ∈ Rn is the measured encoder data, q0 ∈ Rn is
the true encoder measurement, and be ∈ Rn and µe ∈ Rn

represent the encoder biases and time correlated noises,
respectively.

B. A Cascaded High Gain Observer

A new high gain observer where two different observers
are developed in a cascaded structure is proposed as depicted
in Figure 1. This observer provides reliable estimates of

2017 11th Asian Control Conference (ASCC)
Gold Coast Convention Centre, Australia
December 17-20, 2017

978-1-5090-1572-6/17/$31.00 ©2017 IEEE 2552

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190019178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


link positions, ζ̂o1 , velocities, σ̂o1 , and accelerations, σ̂o2 ,
by utilizing noisy position measurements from an encoder.
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Fig. 1. Block diagram of Cascaded HGO Structure

The first HGO uses position measurements by an encoder
to estimate position and velocity signals. The second HGO,
on the other hand, utilizes estimated velocities by the first
HGO to provide estimates of link accelerations. The dynam-
ics of the first HGO is designed as:

˙̂ζo1 = ζ̂o2 +L1(y1 − ζ̂o1)

˙̂ζo2 = L2(y1 − ζ̂o1)
(2)

where ζ̂o1 ∈Rn and ζ̂o2 ∈Rn are the estimated link positions

and velocities, ζ̂o(t) =
[
ζ̂o1 ζ̂o2

]T
∈ R2n denotes the ob-

server state vector, y1 = qm ∈Rn is the encoder measurement
given in (1), and the observer gains should be designed as:

L1 =
β1

ε1
, and L2 =

β2

ε2
1

(3)

for some positive constants β1, β2 ∈R, and ε1 ≪ 1. Similarly,
the dynamics of the second HGO is as follows:

˙̂σo1 = σ̂o2 +L3(y2 − σ̂o1)

˙̂σo2 = L4(y2 − σ̂o1)
(4)

where σ̂o1 ∈Rn and σ̂o2 ∈Rn are the estimated link velocities
and accelerations, σ̂o(t) =

[
σ̂o1 σ̂o2

]T ∈R2n represents the
observer state vector, y2 = ζ̂o2 ∈Rn is the estimated velocity
by the first HGO, and L3, L4 are the observer gains as
follows:

L3 =
β3

ε2
, and L4 =

β4

ε2
2

(5)

for some positive constants β3, β4 ∈ R, and ε2 ≪ 1. These
observers are referred as high gain observers because larger
observer gains, L1, L2, L3, and L4, are used in order to
achieve zero estimation errors. High gain observers suffer
from a peaking phenomenon due to sufficiently small ε1 and
ε2. This phenomenon is handled by saturating the control
input. The readers are referred to [14] for the details.

III. LPV ROBUST CONTROL

An extended polytopic quasi-LPV model of the pan-tilt
system is derived and the proposed LPV model is utilized to
synthesize an acceleration based LQR controller.

A. The Extended Polytopic Quasi-LPV Model

The polytopic quasi-LPV model of the pan-tilt system is
derived in [1]. The state vector of this LPV model, x ∈ R4,
is designed as:

x =
[

q1 q2 q̇1 q̇2
]T (6)

where q and q̇ are the joint angles and velocities. The readers
are referred to [1] for the details about the obtained quasi-
LPV model. In this work, the state vector is augmented to
include the integral of the position errors as follows:

z =
[

q1 q2 q̇1 q̇2

∫ (
r1 −q1

)
dt

∫ (
r2 −q2

)
dt

]T

(7)
with z ∈ R6 being the extended state vector and the desired
joint angles are denoted by r =

[
r1 r2

]T ∈ R2. In accor-
dance with the new state vector in (7), an extended polytopic
quasi-LPV model is designed as follows:

ż(t) = E(ϕ(t))z(t)+F(ϕ(t))u(t)+Hr(t)

y(t) = G(ϕ(t))z(t)+M(ϕ(t))u(t) (8)

where

E =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 ϕ1 0 0
0 ϕ2 ϕ3 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

, F =


0 0
0 0
ϕ4 0
0 1

c
0 0
0 0

 ,

H =
[
04×2 I2×2

]T
, G =

[
I2×2 02×4

]
, M = 02×2 (9)

and u∈R2 defines the control input, y∈R2 is the output. The
system matrices E(.) and F(.) depend on the time varying
parameter vector, ϕ(t) ∈R4 whose elements are obtained as
follows [1]:

ϕ1 =
(bsinq2 + csin2q2)q̇1

h

ϕ2 =−d
c

cosq2

q2

ϕ3 =− 1
2c

(bsinq2 + csin2q2)q̇1

ϕ4 =
1
h

(10)

where a, b, c and d represent dynamic and kinematic
parameters of the pan-tilt system.

B. LMI Based LQR Synthesis Based on the Proposed LPV
Model

This section designs an acceleration based LMI-LQR con-
troller on the proposed LPV model. This controller is used to
stabilize the nonlinear pan-tilt system and the performance
of the developed controller is compared with the classical
LMI based LQR controller in Section IV.

The classical LQR controller is designed as

u1 = Kz (11)
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that minimizes the following cost function:

J1 =
∫ (

zT Qz+uT
1 Ru1

)
dt (12)

where K ∈ R2×6 is the feedback gain matrix, Q ∈ R6×6 and
R ∈R2×2 are the state and control input weighting matrices.
These matrices are constant, symmetric and positive-definite,
i.e. Q > 0 and R > 0. K is obtained by solving the following
semidefinite programming problem:

mintr(P) (13)

subject to

(E +FK)T P+P(E +FK)≤−Q−KT RK (14)

where P ∈ R6×6 > 0 is the Lyapunov matrix and tr denotes
the trace. Non-convex optimization problem in (13)-(14) is
converted into a convex problem by multiplying left and right
side of (14) with P−1 and applying Schur Complement [15]:

maxtr(Y ) (15)

subject to −(E +FK)− (E +FK)T Y LT

Y Q−1 06×2
L 02×6 R−1

≥ 0 (16)

Y = P−1 > 0 (17)

where L ∈ R2×6 is introduced as L = KY and Y ∈ R6×6 is
the inverse of the Lyapunov matrix, Y = P−1. The feedback
matrix can be recovered as:

K = LY−1 (18)

An acceleration based linear state feedback law is designed
as

u2 = K1z+K2ż (19)

where K1, K2 ∈ R2×6 are the feedback gain matrices which
will be designed by minimizing the following cost function:

J2 =
∫ (

zT Q1z+ żT Q2ż+uT
2 Ru2

)
dt (20)

where the cost function in (12) is modified such that accel-
eration signals are also included in the new cost function.
Q2 > 0 ∈ R6×6 is a constant symmetric positive-definite
matrix that penalizes the derivative of the state vector. The
overall control system is presented in Figure 2. Utilization
of both z and ż leads to redundancy in terms of position
and velocity in the controller formulation given by (19). In
this work, this redundancy is reduced by selecting smaller
weights corresponding to position and velocity terms in Q2.

NONLINEAR PAN-TILT 
MECHANISM

K2Q1, Q2, R
LMI Constraints

Cost Function
Acceleration 
based LQR 
Optimization

K1 ,z z&

Fig. 2. Control block diagram

The controller in (19) is designed by solving the following
semidefinite programming problem:

min
(

tr(P1)+ tr(P2)
)

(21)

subject to

(E +FK1)
T P1 +P1(E +FK1)≤−Q1 −KT

1 RK1 (22)

(E +FK2)
T P2 +P2(E +FK2)≤−Q2 −KT

2 RK2 (23)

where P1, and P2 ∈ R6×6 > 0 are the Lyapunov matrices,
and there exists a first-order, differentiable, positive-definite
function V (t) ∈ R such that

V̇ (t)≤− zT Q1z− żT Q2ż−uT
2 Ru2 +2żT KT

2 FP1z

+2rT HT P1z+2zT KT
1 RK2ż

− żT [(E +FK2)
T P2 +P2(E +FK2)

]
ż

(24)

is satisfied. The following Lyapunov based analysis proves
the derivation of the constraints given in (22)-(23) using (24).
Proof: A Lyapunov function candidate, V (t) is defined as

V = zT P1z (25)

The following expression is computed by taking the time
derivative of (25), and using the assumption given in (24):

zT
[
(E +FK1)

T P1 +P1(E +FK1)
]
z+ żT

[
(E +FK2)

T P2

+P2(E +FK2)
]
ż ≤−zT Q1z− żT Q2ż−uT

2 Ru2

+2zT KT
1 RK2ż

(26)
By substituting (19) into (26) and performing cancellations,
one obtains that:

zT
[
(E +FK1)

T P1 +P1(E +FK1)
]
z+ żT

[
(E +FK2)

T P2

+P2(E +FK2)
]
ż ≤−zT (Q1 +KT

1 RK1)z

− żT (Q2 +KT
2 RK2)ż

(27)
The following constraints are derived in order to satisfy the
inequality in (26):

(E +FK1)
T P1 +P1(E +FK1)≤−Q1 −KT

1 RK1 (28)

(E +FK2)
T P2 +P2(E +FK2)≤−Q2 −KT

3 RK2 (29)

(21)-(23) is a non-convex optimization problem. It is con-
verted into a convex problem by multiplying left and right
side of (22)-(23) with P−1

1 and P−1
2 , and applying Schur

Complement [15]:

max
(

tr(Y1)+ tr(Y2)
)

(30)

subject to −(E +FK1)− (E +FK1)
T Y1 LT

1
Y1 Q−1

1 06×2
L1 02×6 R−1

≥ 0 (31)

 −(E +FK2)− (E +FK2)
T Y2 LT

2
Y2 Q−1

2 06×2
L2 02×6 R−1

≥ 0 (32)
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and
Y1 = P−1

1 > 0, Y2 = P−1
2 > 0 (33)

where L1 = K1Y1 and L2 = K2Y2. Y1 and Y2 are the inverses
of the Lyapunov matrices, Y1 = P−1

1 and Y2 = P−1
2 . The

controller matrices, K1 and K2 are recovered as

K1 = L1Y−1
1 (34)

K2 = L2Y−1
2 (35)

The robust optimization toolbox YALMIP [16] is used to
design the classical LMI based LQR controller in (11)
and the proposed controller in (19). These controllers are
synthesized based on the developed polytopic quasi-LPV
model given in (8)-(9). Since the time varying parameter
vector is 4 dimensional in the extended polytopic-quasi LPV
model, i.e. ϕ(t) ∈ R4, the total number of vertices is λ =
24 = 16. Therefore, the classical LMI based LQR controller
is designed by interpolating LMIs given in (16)-(17) at each
vertex. Similarly, the proposed controller is developed by
interpolating LMIs given in (31)-(33) at each vertex.

IV. SIMULATION RESULTS

The physical constraints that are applied to the joints are
as follow:

TABLE I
PHYSICAL CONSTRAINTS

Parameter Minimum Value Maximum Value
q1 −170◦ 170◦

q2 −85◦ 85◦

q̇1 −150◦/sec 150◦/sec
q̇2 −50◦/sec 50◦/sec

Using the physical constraint given in Table I, scheduling
position trajectories are designed as quintic polynomials in
Figures 3. Since the position trajectories are designed as
5th degree polynomials, joint velocity trajectories are 4th
degree polynomials as shown in Figure 4. The parameter
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Fig. 3. Scheduling joint position signals

trajectories, θ j, are generated based on (10) in Figures 5-8.
θ1 and θ3 depend on q2 and q̇1. On the other hand, θ2 and
θ4 are the function of only q2. Due to this dependency, the
parameter values have the upper and lower bounds given in
Table II.
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Fig. 4. Scheduling joint velocity signals

TABLE II
UPPER AND LOWER BOUNDS OF THE PARAMETER VECTOR

Parameter Upper Bound Lower Bound
θ1 (rad.sec−1) 0.4225 −0.4225
θ2 (rad.sec2)−1 −1.2812 −14.7
θ3 (unitless) 1.4405 −1.4405
θ4 (kg.m2)−1 1.2581 0.7059
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Fig. 5. Parameter trajectory: ϕ1
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Fig. 6. Parameter trajectory: ϕ2

External disturbances shown in Figure 9 are applied on
the system after the desired positions are reached. These
disturbances are modeled as high amplitude step pulses
with short durations. The amplitudes of the step pulses are
assumed as 10 N.m and 15 N.m. The performance of the
proposed controller in (19) is compared with the performance
of the classical LQR controller in (11). LQR controller is
synthesized based on the developed polytopic quasi-LPV
model in (8)-(9). The total number of vertices is λ = 24 = 16.
The proposed state feedback controller given in (19) is
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designed by interpolating LMIs at each vertex. The elements
of the state feedback gain matrix, K, K1 and K2 are designed
based on the weighting matrices, Q1, Q2 and R:

Q = Q1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5

 , R =

[
0.001 0

0 0.01

]

Q2 =


0.001 0 0 0 0 0

0 0.001 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001


(36)

More weighting is added to the integral of the position
errors than the other states in Q1 to eliminate the steady
state error. R limits the amplitude of the control input and
the elements of the matrix R are designed smaller than the
elements of Q1 matrix. This makes the system sensitive to
the states of the system instead of the control input. As it is
previously mentioned in Section III, there is a redundancy in
the controller due to common position and velocity terms in
z and ż. The effect of this redundancy is reduced by choosing
the elements of Q2 are smaller, Q211 = Q222 = Q255 = Q266 =
0.001.

Using the system model (8)-(9) and the weighting ma-
trices in (36), the optimal feedback gain matrices, K, K1,
K2 ∈ R2×6, obtained by YALMIP is given in (37)-(39). The
performance of the controller is tested on the nonlinear
pan-tilt system. Initial joint angles are assumed as 150
deg and 75 deg. The desired angles are r1 = 65 deg and
r2 = 15 deg. Joint angles converge to reference values as
depicted in Figure 10. Joint velocities converge to zero in
Figure 11. Higher amplitude oscillations are obtained in
all transient responses with the classical controller. As the
external disturbances are applied on the system, acceleration
feedback (AFB) improves the system responses compared to
the case where the acceleration feedback is not used in the
controller.
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Fig. 10. Output joint angles
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Fig. 11. Output joint velocities

The performance specifications given in Tables III and IV
also show that the proposed controller outperforms the
classical LMI based LQR controller.
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K =

[
−81.54 −7.83×10−11 −36.22 −3.6283×10−12 75.86 1.95×10−12

−1.05×10−11 −27.71 −8.85×10−12 −10.61 1.73×10−11 24.70

]
(37)

K1 =

[
−88.31 −3.43×10−11 −36.51 −1.26×10−12 85.42 −5.67×10−11

−3.76×10−9 −30.62 −3.70×10−10 −10.66 2.19×10−8 29.70

]
(38)

K2 =

[
−135.86 −2.73×10−10 −23.98 −2.2578×10−11 384.34 5.86×10−9

−3.76×10−9 −24.33 −3.70×10−10 −3.04 2.19×10−8 105.65

]
(39)

TABLE III
LINK 1 PERFORMANCE SPECIFICATION

Transient Responses (t = 1−10 sec)

Performance Proposed Classical
Criteria Controller Controller

Worst Case Position Error (deg) 20.55 55.08
RMS Position Error (deg) 19.30 20.38
RMS Control Input (N.m) 5.35 3.62

System Responses During Disturbances

Performance Proposed Classical
Criteria Controller Controller

Worst Case Position Error (deg) 1.28 4.92
RMS Position Error (deg) 2.64 3.27
RMS Control Input (N.m) 7.14 7.35

TABLE IV
LINK 2 PERFORMANCE SPECIFICATION

Transient Responses (t = 1−10 sec)

Performance Proposed Classical
Criteria Controller Controller

Worst Case Position Error (deg) 20.51 23.96
RMS Position Error (deg) 8.77 9.13
RMS Control Input (N.m) 4.40 4.16

System Responses During Disturbances

Performance Proposed Classical
Criteria Controller Controller

Worst Case Position Error (deg) 5.42 20.27
RMS Position Error (deg) 3.71 12.37
RMS Control Input (N.m) 7.74 7.27

V. CONCLUSIONS AND FUTURE WORKS

An extended polytopic quasi-LPV model of the nonlinear
pan-tilt system has been derived to synthesize acceleration
based LQR controller for the pan-tilt stabilization. Accel-
eration signals are estimated by a new high gain observer
structure where two different observers are developed in
a cascaded structure. The first HGO uses position mea-
surements by an encoder to estimate reliable position and
velocity information. The second HGO, on the other hand,
utilizes estimated velocities by the first HGO to provide
estimates of acceleration signals. Obtained estimates by the
proposed HGO structure are used in the proposed controller.
The feedback gain matrix is designed by interpolating LMIs
at each vertex of the polytopic model. Pulse disturbances

are exerted on the system to compare the performance of
the proposed LQR controller with the classical one. Smaller
amplitude oscillations are observed as acceleration feedback
is utilized in the optimal controller.
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