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Abstract

Motivated by various trade restrictions in real-life object allocation problems, we intro-

duce an object allocation with a particular class of trade restrictions model. The set of

matchings that can occur through a market-like process under such restrictions is defined,

and each such matching is called feasible. We then introduce a class of mechanisms, which we

refer to as “Restricted Trading Cycles” (RTC). Any RTC mechanism is feasible, constrained

efficient, and respects endowments. An axiomatic characterization of RTC is obtained, with

feasibility, constrained efficiency, and a new property that we call hierarchically mutual best.

In terms of strategic issues, feasibility, constrained efficiency, and respecting endowments to-

gether turns out to be incompatible with strategy-proofness. This in particular implies that

no RTC mechanism is strategy-proof. Lastly, we consider a probabilistically restricted trad-

ing cycles (PRTC) mechanism, which is obtained by introducing a certain randomness to

the RTC class. While PRTC continues to be manipulable, compared to RTC, it is more

robust to truncations and reshufflings.
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1 Introduction

There are sets of agents and objects, which are to be distributed among the agents.

Objects can come with multiple copies, and the null-object, which represents receiving no

object, is not scarce. Agents have strict preferences over the objects. Each agent is to

receive only one object, and there is no medium of exchange, such as money. Objects can be

collectively owned, or some (or all) can be owned by particular agents. Real-life examples

include public housing allocations, dorm assignments, school choice, and office assignments.

This problem has been well studied in the literature, and one of the main desiderata in

the solution has been efficiency, which guarantees that no agent can be assigned to one of his

better objects without harming someone else. An important class of efficient mechanisms is

based on a market-like process, where agents trade objects with each other as if they own

them. In other words, a way to obtain an efficient allocation is to endow the agents with

the objects, and then to let them trade. The well-known top trading cycles (attributed to

David Gale by Shapley and Scarf (1974); henceforth, TTC), and Papai (2000)’s “hierarchical

exchange” are such trading-based mechanisms. However, all such well-studied trading mech-

anisms work under the supposition of free trade in the sense that no trade pattern is banned.

However, in many real-life situations, there are trade restrictions that limit which objects

an agent can receive from each other agent. Specifically, under such restrictions, an agent

may be allowed to receive an object from someone, but not from someone else. For instance,

in course allocations, a student may receive a course from someone for whom the course is

elective, but not from someone else for whom the same course is compulsory. Likewise, in

school choice, a student may be placed at a school through receiving a non-sibling priority of

someone, but not through receiving a sibling priority of some other student. In some public

housing assignments, there is a cap on the number of possible house-change. Thus, an agent

may receive a house from someone, but he may not be allowed to receive the same type of

house from some other if the latter is not allowed to change his house because of the cap.
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Motivated by such trade limitations, we incorporate a wide class of trade restrictions into

an object allocation problem. More specifically, for each agent i and object c, we introduce

a correspondence that specifies the set of agents from whom agent i can receive object c in

any trade arrangement. Whenever each of such sets includes all agents, the problem is with

free trade. At the other extreme, where each of such sets includes only the associated agent,

no agent can receive an object from someone else; hence, no trade would occur. We refer to

the collection of those correspondences as “trade restrictions.”

Because we focus on market-like trading mechanisms, each object is assumed to have a

hierarchical endowment structure, which specifies who are initially endowed with the object

and who inherit it after its owners receive their object assignment and leave the problem.

Our hierarchical endowments structures are a subclass of control right structures of Pycia

and Ünver (2011).1 For ease of exposition, in the main body, we assume that the objects are

not privately owned. However, as we mention in Remark 4, with a natural restriction on the

hierarchical endowment structures, we can easily adapt our results to the private ownership

case as well as to the hybrid ownership case where some, but not all, objects are privately

owned.

After formulating the problem, we introduce a sequential trading mechanism that gives

us a set of matchings that can occur under the trade restrictions. It is such that, in each

step, either a group of agents form a trading cycle and trade their (inherited) endowments, or

an agent is assigned to the null-object. Each such agent leaves the problem with his object.

The remaining agents inherit the leftover object copies, as governed by the hierarchical

inheritance structures. The trade restrictions are incorporated by requiring that an agent

can receive someone else’s object in a trading cycle only if the former is allowed to receive

that object from the latter. Because, in each step, there can be multiple trade possibilities,

the sequential trading mechanism produces a set of matchings, each of which is associated

1As we allow for multiple-copy objects, our hierarchical endowment structures are slightly more general
than those of Papai (2000), and moreover, they do not belong to the family of control right structures of
Pycia and Ünver (2017).
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with a different trade selection rule. We say that a matching is feasible if it can be obtained

through the sequential trading mechanism. A mechanism is feasible if it produces a feasible

matching for every problem.2

Next, we introduce a class of mechanisms that we call “Restricted Trading Cycles”

(RTC). Each RTC mechanism is twofold. The first step iteratively matches agents with

their top choices once they are endowed with them. Then, in the second step, a certain col-

lection of trading cycles is implemented, while some agents possibly receiving the null-object.

While each RTC mechanism yields the same assignments in the first stage, the second-stage

assignments may differ across RTC mechanisms, owing to the possible multiplicity of trad-

ing cycle collections. Because of this, each RTC mechanism is associated with a different

selection rule in its second stage.

We first show that each RTC mechanism is feasible. Then, we study the efficiency

properties of the RTC class. A matching dominates another matching if all the agents at

least weakly prefer the former to the latter, with this holding strictly for someone. Matching

is efficient if it is not dominated. Because feasibility entails trade restrictions, an efficient

and feasible matching does not always exist. Therefore, as the second-best solution, we say

that a matching is constrained efficient if it is not dominated by a feasible matching. We

show that any RTC mechanism is constrained efficient.

To have a better understanding of the RTC class, we provide an axiomatic characteri-

zation. We say that a matching satisfies hierarchically mutual best if any agent receives his

top object if he is endowed with it, and this holds iteratively in the reduced problems after

such agents receive their assignments and leave the problem. A mechanism satisfies hierar-

chically mutual best if its outcome satisfies it at every problem. We show that a mechanism

is feasible, constrained efficient, and satisfies hierarchically mutual best if and only if it is a

RTC mechanism.

2A mechanism is a function that produces a matching for any problem.
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In the final set of results, we study the strategic properties of the RTC class. First,

there is no strategy-proof mechanism3 that is feasible, constrained efficient, and that satisfies

respecting endowments, a desirable property that is weaker than hierarchically mutual best.

This implies that any RTC mechanism is vulnerable to preference manipulations. Finally,

we let trading cycle selections be uniformly random in the course of RTC. This defines a

random mechanism that we call “probabilistically restricted trading cycles” (PRTC). While

this randomization does not give us a strategy-proof mechanism, it increases the robustness

of RTC to certain misreportings.

2 Literature Review

There is a vast body of literature on object allocation problems. Shapley and Scarf

(1974) were the first to study a housing market problem where each agent brings his owned

house to the market. A variant of this problem, the so-called housing allocation problem,

where houses are collectively owned, was first studied by Hylland and Zeckhauser (1979).

Abdulkadiroglu and Sönmez (1999) then introduced a more general housing allocation with

existing tenants model, where tenants have the right to keep occupied houses.

Papai (2000) introduces hierarchical endowment structures in a unit-copy object alloca-

tion problem. She defines a class of hierarchical exchange rules where agents sequentially

trade their endowments, and the remaining objects are inherited by the unassigned agents,

as governed by the hierarchical endowment structures. Papai (2000) characterizes this mech-

anism class by group strategy-proofness, efficiency, and reallocation-proofness. Because we

allow for multiple copies, our hierarchical endowment structures are slightly more general

than hers. In the same setting as Papai (2000), Pycia and Ünver (2017) introduce control

right structures that allow agents to be an owner or a broker of an object. They intro-

duce a class of trading cycles mechanisms based on these control right structures and obtain

3A mechanism is strategy-proof if no agent can ever profitably misreport his preferences.
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that group strategy-proofness and efficiency fully characterize this class.4 Pycia and Ünver

(2011) generalize Pycia and Ünver (2017)’s trading cycles mechanisms to multi-copy object

environments.

In contrast to the aforementioned studies, the current study limits trading possibilities.

There are some other studies that incorporate various trade restrictions in different models.

Pycia (2016) studies a housing market problem with a given network that determines the set

of objects each agent can receive from every other agent. This is a unit-copy object study

where each agent possesses one object; hence there is no inheritance unlike the present study.

Moreover, the trade restrictions under a network are a special case of ours (see Remark 2

for a formal discussion). Papai (2007) considers a general multiple-demand housing market

problem, where agents may own more than one house. She introduces the so-called fixed

deal exchange market, where possible trades are completely determined a priori. In the

same setting as Papai (2007), Papai (2015) imposes responsiveness on preferences in the

hope of obtaining a desirable mechanism under more relaxed trade restrictions. There are

important differences between the current and these two studies. First, the settings differ

in that, as opposed to the current study, both Papai (2007) and Papai (2015) consider only

the private ownership case, and agents are allowed to receive multiple objects; hence there

is no inheritance in them. Moreover, as we will formally discuss in the model, the respective

trade restrictions are different as well.

Another recent study that restricts trades is Dur and Morrill (2015). In a school-choice

framework, they introduce restricted priorities that are not allowed to be traded. They

incorporate these priorities into the school-choice problem through a property, and then

show that this property entails a series of impossibilities. While our approach and theirs

to incorporating the restrictions into the respective trading mechanisms are the same, as

we discuss formally in the model, the considered trade restrictions and the pursued line of

4They also show that in the presence of property rights, a subclass of trading cycles mechanisms, where
the associated control right structures reflect the property rights, coincides with the set of group strategy-
proof, efficient, and individually rational mechanisms.
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results are quite different.

Some well-known trading-based mechanisms have been characterized in the literature.

Roth and Postlewaite (1977) show that whenever agents have strict preferences, TTC is the

unique core mechanism. Ma (1994) and Svensson (1999) prove that TTC is the unique effi-

cient, strategy-proof, and individually rational mechanism in a housing market. In housing

allocation frameworks, TTC has been characterized by others as well, including Abdulka-

diroglu and Che (2010), Morrill (2013b), and Dur (2013). Sönmez and Ünver (2010) axiom-

atize Abdulkadiroglu and Sönmez (1999)’s “you-request-my-house-I-get-your-turn” mecha-

nism. Abdulkadiroglu and Sönmez (1998) obtain that the core from random endowments

mechanism is the same as random serial dictatorship.

3 The Model and Results

An object allocation with trade restrictions problem is a tuple (N,O, P, q,Γ, τ). The sets

of agents and objects are N and O, respectively. Each agent i has a strict preference

ordering Pi over O. We write aRib only if either aPib or a = b (“at-least-as-good-as”

relation). The preference profile of the agents is P = (Pi)i∈N . ForN ′ ⊂ N , let PN ′ = (Pi)i∈N ′ .

Each object c has a capacity of qc, and q = (qc)c∈O. The null-object, which is denoted by ∅ and

representing receiving no object, is not scarce. That is, q∅ = |N |. Object c is acceptable to

agent i if cRi∅. Otherwise, it is unacceptable. The hierarchical endowment structure

profile of the objects is Γ = (Γc)c∈O, and its formal definition is given later.

The new component is τ = (τi)i∈N . It reflects the trade restrictions as follows. For agent

i, τi : O ⇒ N is a correspondence such that for each object c, τi(c) is the set of agents from

whom agent i can demand object c. For instance, if j ∈ τi(c), then agent i can approach

(or, in terms of TTC words, “point to”) agent j to trade for object c (assuming that agent

j is endowed with object c). We assume that for any agent i and object c, i ∈ τi(c), which

means that agent i can obtain object c whenever he is endowed with it. If τi(c) = {i}, then
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this means that agent i cannot demand object c from anyone except himself. The other

extreme, τi(c) = N , means that he can demand object c from anyone.5 We refer to τ as

trade restrictions profile. In the rest of the paper, we suppress all the elements but the

preferences from the problem notation and simply write P to denote the problem.

For any N ′ ⊆ N , a submatching µN
′

is an assignment of the objects to the agents N ′

such that each agent i ∈ N ′ receives one object (possibly the null-object), no agent j ∈ N \N ′

receives an object, and every object is assigned to as many agents as up to its capacity.

Whenever N ′ = ∅, µ∅ is a submatching where no agent is assigned an object. A submatching

µN
′
is a matching whenever N ′ = N ; and in this case, we suppress N from the notation and

simply write µ. For a given submatching µN
′

and an agent or an object k ∈ N ′∪O, we write

µN
′

k for the assignment of k. For any pair of group of agents N ′, N ′′, and submatchings µN
′

and µN
′′
, we write µN

′ ⊆ µN
′′

if (i) N ′ ⊆ N ′′, and (ii) for any agent k ∈ N ′, µN ′k = µN
′′

k . Let

℘ andM be the set of all submatchings and matchings, respectively. By definition,M⊂ ℘.

For any N ′ ⊂ N and submatching µN
′
, let ℘(µN

′
) = {µN ′′ ∈ ℘ : µN

′ ⊆ µN
′′}.6

We are now ready to formally define Γ. For any object c, Γc : ℘→ 2N is a function such

that for any µN
′ ∈ ℘,

Γc(µ
N ′) ∈ {N̂ ⊆ N \N ′ : |N̂ | = min{|N \N ′|, qc − |µN

′
c |}}.

In words, Γc(µ
N ′) tells us who inherit object c after the agents in N ′ receive their assign-

ments at µN
′
. We assume that for any pair submatchings µN

′
and µN

′′
where µN

′ ⊆ µN
′′
, if

qc − |µN
′′

c | ≥ |Γc(µN
′
) \N ′′|, then Γc(µ

N ′) \N ′′ ⊆ Γc(µ
N ′′). This assumption guarantees that

the inheritances are preserved as long as the associated agents and objects are not assigned.7

5This class of trade restrictions includes a more specific one that specifies which objects an agent can
demand from someone else. For instance, if τi(c) = {i} for any c ∈ O′ ⊆ O, then it means that agent i cannot
demand any object in O′ from someone else. Hence, he cannot receive any of them unless he is endowed
with them. On the other hand, the set of objects that agent i can demand from someone else is given by
{c ∈ O : τi(c) ∩ (N \ {i}) 6= ∅}.

6By construction, µN ′ ∈ ℘(µN ′).
7A similar assumption is used by Pycia and Ünver (2017), Papai (2000), and Pycia and Ünver (2011).

The former refers to it as consistency.
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A Specific Class of Hierarchical Endowment Structures: Objects may have a

strict ranking over agents, and their hierarchical endowment structures may be induced by

them in a natural way. Let �c be object c’s ranking order over agents. Below defines Γc

that is induced by �c. For any N ′ ⊆ N and submatching µN
′
:

Γc(µ
N ′) = {N̂ ⊆ N \N ′ : N̂ consists of the best ranked agent group (with respect to �c)

among N \N ′ of size min{|N \N ′|, qc − |µN
′

c |}}.

In the proofs of the negative results, we will make use of this ranking induced hierarchical

endowment structures. For each agent i and submatching µN
′
, Ii(µ

N ′) = {c ∈ O : i ∈

Γc(µ
N ′)}. Note that Ii(µ

N ′) = ∅ for any i ∈ N ′, and the null-object always belongs to

Ii(µ
N ′) for any i ∈ N \N ′. Moreover, Ii(µ

∅) gives the initial endowments of agent i.

In the followings, we will describe the matchings that can take place under the trade

restrictions τ .

Definition 1. A cycle is a collection of distinct objects and agents C = {c1, i1, c2, .., cn, in}

such that for any k = 1, .., n,

(i) ck 6= ∅,

(ii) ik+1 ∈ τik(ck+1), with in+1 = i1 and cn+1 = c1.

Cycles incorporate the trade restrictions through requiring that agent ik be allowed to

demand object ck+1 from agent ik+1 (Condition (ii)).

Definition 2. A cycle C = {c1, i1, c2, .., cn, in} is viable after a submatching µN
′

if for any

k = 1, .., n,

(i) ik ∈ N \N ′,

(ii) ik ∈ Γck(µ
N ′).

For a cycle C and ik ∈ C, let C(ik) = ck+1. A null-pair consists of an agent i and the

null-object, and we write Λi = (i, ∅) to denote it. The implementation of a cycle C yields
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a submatching that places each agent i ∈ C at C(i). Similarly, the implementation of Λi

assigns agent i to the null-object.

Below defines a sequential trading rule, which mimics a market-like process where agents

trade their endowments in a sequential fashion. Given problem P ,

Step 1. Either pick a cycle C that is viable after µ∅ (if any; and in the case of multiplicity,

pick anyone) or select a null-pair and implement it. Let N1 be the set of assigned agents in

this step, and µN
1

be the obtained submatching. If N1 = N , then stop here and the final

matching is µN
1
. Otherwise, move to the next step.

In general,

Step k. Let N ′ and µN
′

be the set of all assigned agents in the previous steps and the

obtained submatching, respectively. Either pick a cycle C that is viable after µN
′
(if any; and

in the case of multiplicity, pick anyone) or select a null-pair that consists of an unassigned

agent and implement it. Let Nk be the set of assigned agents in this step, and µN
k

be the

obtained submatching. If Nk ∪N ′ = N , then stop here, and the final matching is µ that is

defined by the assignments in the previous steps and the current step. Otherwise, move to

the next step.

In the sequential trading rule, at least one agent is assigned to some object in each step,

therefore it terminates in a finitely many round. Because the null-object always belongs to the

endowment sets of the agents, the sequential trading rule allows any agent to match with the

null-object. Note that each null-pair implementation may create new viable cycles through

affecting the endowments of the remaining agents. Therefore, the sequential implementation

of null-pairs enriches the set of matchings that can emerge through the sequential trading

rule.8

Proposition 1. The sequential trading rule produces a non-empty set of matchings, each of

which is associated with a different rule of selecting viable cycle and null-pair.

8That is, the set of matchings that would be obtained through a sequential trading rule where null-pairs
are implemented simultaneously would be a proper subset of what is obtained through our sequential trading
rule above.
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Proof. In each step of the sequential trading rule, at least one agent is assigned to some object

(possibly the null-object), and the assigned agents leave the problem with their assignments.

Hence, in the end, no agent receives more than one object.

It is immediate to see that Step 1 defines a submatching. Let us consider Step k, and

write µN
′

for the obtained submatching by the end of previous Step k− 1. For any object c,

Γc(µ
N ′) ⊆ N \N ′ and |Γc(µN

′
)| = min{|N \N ′|, qc − |µN

′
c |}. This, along with the definition

of viable cycles, implies that an agent can receive object c within Step k as long as there is

a leftover object c copy. Hence, Step k assignments and those under µN
′

together defines

a submatching. These arguments are independent of viable cycles and null-pair selection;

hence the sequential trading rule produces a non-empty set of matchings, each of which is

associated with a different rule of selecting viable cycle and null-pair.

Let Ω be the set of matchings that can be obtained through the sequential trading rule.

We say that a matching µ is feasible if µ ∈ Ω.

Remark 1. Dur and Morrill (2015), in a school choice framework, introduce restricted

priorities. They limit priority trades through a “limiting trade” property that says the

following: a matching limits trade whenever k many students with restricted priorities at a

school c are assigned to schools different than school c, each of the top qc+k priority students

at school c cannot receive a worse assignment than school c. Our trade restrictions are more

general than theirs in that their restrictions correspond to a particular trade restriction

profile τ . Specifically, if a student i has a restricted priority at a school c, then by assuming

i /∈ τj(c) for any j ∈ N \ {i}, we are able to incorporate their trade bans in our formulation.

However, in general, τ can change across both agents and objects in our model, allowing for

i ∈ τj(c) for some j even though i /∈ τk(c) for some other agent k, which is not the case in

Dur and Morrill (2015). Another important difference between the formulations is that any

trade is allowed under their limiting trade property unless restricted priorities are traded

at the expense of certain groups of agents. In other words, trade restrictions are preference

based, thereby we can deem them as “soft” constraints. In contrast, we consider our trade
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bans to be satisfied irrespective of anything else, in other words, they are “hard” constraints.

Remark 2. In a housing market setting where agents own multiple houses, Papai (2007)

considers trade restrictions, which are more stringent than ours. In Papai (2007), every

possible trade deal is specified a priori, which allows for the full control over trades. More

specifically, once a group of agents agree on a trade, then the trade terms (who receive which

objects) are fixed a priori, hence non-negotiable. However, in the current study, the same

parties can agree on different trade terms. In another related paper, Papai (2015) studies

segmented markets in the same setting as Papai (2007). Each object belongs to a certain

market segment, and each agent owns a single object from each market segment. Trades

across different market segments are precluded, but agents can trade within market segments

without any limitation. Neither of the trade restriction classes of the current study and

those of Papai (2015) is a special case of the other. For instance, in a two-agent problem, the

current setting can preclude any trade. However, it is not the case in Papai (2015) (because

each agent owns one object in each market segment, and there is no trade restriction within

each market segment). Similarly, again in a two-agent problem, any allowed trade in our

study can be carried out irrespective of market segment (because there is no market segment

aspect of our trade restrictions), whereas this may not be possible in Papai (2015). In a

housing market setting, Pycia (2016) introduces trade restrictions through networks, which

limit trades by allowing an agent i to receive an object a from its owner j only if there is

a directed link from agent j to i in the given network. His class of restrictions is a special

case of ours as by letting j ∈ τi(a) only if there is such a link, we can have his restrictions.

However, the converse is not possible as both our setting and the class of trade restrictions

are more general.

Matching µ is non-wasteful if for any object c such that cPiµi for some i ∈ N , |µc| =

qc. Matching µ respects endowments if for any agent i and object c ∈ Ii(µ
∅), µiRic.

9

Matching µ dominates another matching µ′ if for any agent i ∈ N , µiRiµ
′
i, with strictly

9In the case of private ownership, we will refer to this condition as “individual rationality.”
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holding for someone. Matching µ is efficient if it is not dominated.

Proposition 2. There does not always exist a feasible and non-wasteful matching.

Proof. Let N = {i, j} and O = {a, b} ∪ {∅}, with qa = qb = 1. Let the preferences and

objects’ rank orders be as follows:

Pi : a, ∅, b; Pj : b, ∅, a.10

�a: j, i; �b: i, j.

Γ is induced by the rank orders above. The trade restrictions profile τ is such that

τi(a) = {i}. The only non-wasteful matching µ is such that µi = a and µj = b. However, it

is not feasible (it is easy to verify that any other matching is feasible).

Efficiency implies non-wastefulness. This, along with Proposition 2, implies the incom-

patibility of efficiency and feasibility as well.

Corollary 1. There does not always exist a feasible and efficient matching.

Matching µ is constrained non-wasteful if, for any agent-object pair (i, c) such that

cPiµi and |µc| < qc, the matching that gives object c to agent i while keeping everyone else’s

assignment the same as under µ is not feasible. Note that constrained non-wastefulness

implies that µiRi∅ for any i ∈ N . Matching µ is constrained efficient if it is not dominated

by a feasible matching. Constrained efficiency implies constrained non-wastefulness whereas

the converse is easily not true.

A mechanism ψ is a systematic way that produces a matching for every problem P .

We write ψ(P ) to denote its outcome in problem P . Mechanism ψ is < feasible, constrained

non-wasteful, constrained efficient> if, for every problem P , ψ(P ) is <feasible, constrained

non-wasteful, constrained efficient>. Mechanism ψ respects endowments if, for each problem

P , ψ(P ) respects endowments.

10The objects are written in decreasing order of the preferences. For instance, object a is the top object
of agent i, then the null-object and object b respectively come. This way of writing is used in the object
rank orders as well.
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3.1 A Class of Feasible Mechanisms: Restricted Trading Cycles

In this section, we propose a class of feasible mechanisms. Let us first introduce some

notations. Consider a collection of cycles and null-pairs Υ = {C1, .., Cn,Λ
n+1, ..,Λn+m} and

a permutation π : Υ→ {1, .., n+m}. For any k ∈ {1, .., n+m}, let Ak = {C` ∈ Υ : π(C`) <

k} ∪ {Λ` ∈ Υ : π(Λ`) < k}. Moreover, Nk = {i ∈ N : i ∈ C for some C ∈ Ak or Λi ∈ Ak}.

Definition 3. Given a problem P , a collection of cycles and null-pairs Υ = {C1, .., Cn,Λ
n+1, ..,Λn+m}

is implementable if there exists a permutation π : Υ→ {1, .., n+m} such that the followings

are satisfied.

(i) Each agent i ∈ N appears either in only one cycle or in only one null-pair in Υ.

(ii) For any k ∈ {1, .., n} and Ck ∈ Υ, if µNπ(Ck) is the submatching obtained by im-

plementing the cycles and the null-pairs in Aπ(Ck), then Ck constitutes a viable cycle after

µNπ(Ck).

(iii) For each agent i that belongs to cycle Ck ∈ Υ for some k ∈ {1, .., n}, his assigned

object through implementing Ck is not worse than any object in Ii(µ
Nπ(Ck)).

(iv) For each agent i that belongs to null-pair Λk ∈ Υ for some k ∈ {n + 1.., n + m},

the null-object is not worse than any object in Ii(µ
N
π(Λk)) where µNπ(Λk) is the submatching

obtained by implementing the cycles and the null-pairs in Aπ(Λk).

In words, a permutation gives us an ordering in which cycles and null-pairs to be imple-

mented. The second condition guarantees that there exists a permutation such that each

cycle in the collection becomes viable after the submatching that is obtained by implementing

the cycles and the null-pairs that come before it in the ordering induced by the permutation.

The third and forth conditions, on the other hand, ascertain that no agent’s assignment is

worse than any of his endowed objects in the reduced economy that emerges after the leaving

of the previously assigned agents along with their assignments.

Let us further clarify the definition and the role of permutation through an example. Let

N = {i1, i2, i3} and O = {c1, c2, c3} ∪ {∅}, each with unit-capacity. Let Γ be induced by
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the ranking orders of �c1 : i1, i3, i2; �c2 : i2, i1, i3; �c3 : i3, i1, i2. Preferences are as follows:

Pi1 : c2, c3, ∅; Pi2 : c1, c3, c2, ∅; and Pi3 : c2, c1, ∅. Let τ be such that τi1(c2) = {i1, i3} and

τ`(d) = N for each other agent-object pair (`, d) ∈ (N ×O) \ {(i1, c2)}. Let us first consider

Υ = {Λi1 , C} where C = {c1, i3, c2, i2}. Υ is implementable under π where π(Λi1) = 1 and

π(C) = 2. However, it cannot be implementable under π′ where π′(C) = 1 and π(Λi1) = 2.

This is because cycle C becomes viable only after agent i1 is matched with the null-object

and leaves the problem, showing the role of permutation. Also note that the implementation

of Υ would produce matching µ where µi1 = ∅, µi2 = c1, and µi3 = c2. Another collection

of cycles and null-pairs is Υ′ = {C ′, C ′′} where C ′ = {c1, i1, c3, i3} and C ′′ = {c2, i2}. It

is implementable under any permutation, and its implementation yields matching µ′ where

µ′i1 = c3, µ′i2 = c2, and µ′i3 = c1. On the other hand, Υ′′ = {Λi2 , C̄ ′, C̄ ′′} where C̄ ′ = {c2, i1}

and C̄ ′′ = {c1, i3} is not implementable under any permutation π. This is because agent i2

is endowed with object c2, which is better than the null-object for himself, violating the last

condition of Definition 3.

The last construction before the mechanism definition is as follows: For any N ′ ⊆ N ,

submatching µN
′
, and object c, we define Γµ

N′

c : ℘(µN
′
) → 2N\N

′
such that, for any µN

′′ ∈

℘(µN
′
), Γµ

N′

c (µN
′′
) = Γc(µ

N ′′). Less formally, Γµ
N′

c is the restriction of Γc to the set of

submatchings ℘(µN
′
). Let Γµ

N′
= (Γµ

N′

c )c∈O.

We are now ready to define our class of mechanisms. Given a problem P ,

Step 1.

Substep 1.1 Consider any agent i such that his top choice object is in Ii(µ
∅). Assign

each such agent i to his top object. Let N1 be the set of matched agents, and µN
1

be the

associated submatching. If N1 = N , then the algorithm terminates with the final outcome

of µN
1
. Otherwise, if N1 6= ∅, then move to the next substep. On the other hand, if N1 = ∅,

then move to Step 2.

In general,

Substep 1.k Let µ′ be the submatching induced by the assignments in the previous

15



steps (by the definition of Γ, it is easy to verify that µ′ defines a submatching). Consider

each agent i ∈ N \ ∪k−1
t=1N

t, and assign agent i to his top choice if it is in Ii(µ
′). Let Nk be

the set of matched agents in this step. If N = ∪kt=1N
t, then the algorithm finishes with the

final outcome of µ that is defined by the assignments in the previous steps and the current

step. Otherwise, if Nk 6= ∅, then move to the next substep. If, on the other hand, Nk = ∅,

then move to Step 2.

As everything is finite, the above substeps terminate in some finitely many round T . Let

N ′ and µN
′

be the set of matched agents in the above rounds and the obtained submatching,

respectively.

Step 2. Consider the reduced problem (N \N ′, O, PN\N ′ , q,Γµ
N′
, τ). Pick a collection of

cycles and null-pairs Υ in the reduced problem such that it is implementable, and its imple-

mentation produces a matching such that the implementation of no other such collection of

cycles and null-pairs produces a matching that dominates the former in the reduced prob-

lem. Then, implement each cycle and null-pair in Υ and obtain a matching in the reduced

problem. The algorithm then terminates with the final outcome of µ that is induced by the

assignments of the agents in Step 1 and Step 2.

In words, Step 1 iteratively matches agents with their top choices once they are endowed

with them. Then, in the reduced problem, Step 2 picks an implementable collection of cycles

and null-pairs among those whose implementation yields a matching that is not dominated by

any other matching induced by such a collection and implements it. While Step 2 produces

its assignments depending on the selection of collection of cycles and null-pairs, there is no

such multiplicity in Step 1. Because of multiplicity in Step 2, the above rule defines a class

of mechanisms, each of which is associated with a different selection of collection of cycles

and null-pairs. In what follows, we will continue not to specify any particular selection, and

obtain all of our results for any such mechanism. We refer to both this class and each of its

mechanisms as “Restricted Trading Cycles” and write RTC for short. The example below

demonstrates how RTC works.
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Example. Let N = {i1, i2, i3, i4} and O = {c1, c2, c3, c4} ∪ {∅}, with qc1 = qc2 = qc3 =

qc4 = 1. Suppose that the objects have a ranking order and Γ is induced by them. Let the

preferences and those ranking orders be as follows:

Pi1 : c1, ∅; Pi2 : c1, c4, ∅; Pi3 : c3, c4, ∅; Pi4 : c4, ∅.

�c1 : i1, ..; �c2 : anything; �c3 : i2, i4, ..; �c4 : i3, ..

Let τ be such that i2 /∈ τi3(c3), i4 ∈ τi3(c3), and i3 ∈ τi4(c4). Let ψ be a RTC mechanism.

In Step 1 of ψ, only agent i1 is matched, and his assignment is object c1. Then, in Step 2, the

only implementable collection of cycle and null-pair that yields an undominated matching is

Υ = {C,Λi2} where C = {c4, i3, c3, i4} (note that Υ is implementable under permutation π

where π(Λi2) = 1 and π(C) = 2).11 Hence, under the unique RTC outcome, say µ, µi1 = c1,

µi2 = ∅, µi3 = c3, and µi4 = c4.

Theorem 1. Each RTC mechanism is feasible, constrained efficient, and satisfies respecting

endowments.

Proof. See the Appendix.

3.2 A Characterization of RTC

In this section, we provide an axiomatic characterization of the RTC class. For agent i

with preferences Pi, let us write top(Pi) for his top choice object. For any k ∈ {1, .., |N |},

we define Zk = {i ∈ N : top(Pi) ∈ Ii(µNk−1)} where (i) Nk−1 = ∪k−1
t=1Zt, (ii) µNk−1 is the

submatching among Nk−1 that assigns each agent j ∈ Nk−1 to his top object, and (iii) for

k = 1, µN0 = µ∅.12

A matching µ satisfies hierarchically mutual best if for any agent i ∈ ∪|N |k=1Zk, µi =

top(Pi). A mechanism ψ satisfies hierarchically mutual best if, for each problem P , ψ(P )

satisfies hierarchically mutual best. In words, hierarchically mutual best guarantees that

11It is the unique such collection because of the trade restrictions τ .
12By the definition of Γ, it is easy to verify that µNk−1 defines a submatching for any k ∈ {1, .., |N |}.
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each agent receives his top object once he is endowed with it or inherits it as others obtain

their top choices.13

Theorem 2. A mechanism is feasible, constrained efficient, and satisfies hierarchically mu-

tual best if and only if it is a RTC mechanism.

Proof. See the Appendix.

The independence of the axioms is provided in the Appendix.

3.3 An Incentive Analysis

A mechanism ψ is strategy-proof if there are no problem P , agent i, and false prefer-

ences P ′i for agent i such that ψ(P ′i , P−i)Piψ(P ).14 Below presents a general incompatibility

result.

Proposition 3. Suppose there exists an agent-object pair (i, a) ∈ N ×O such that j /∈ τi(a)

for some agent j 6= i. Then, there is no strategy-proof mechanism that is feasible, constrained

efficient, and that satisfies respecting endowments.

Proof. Let N = {i, j, ...} and O = {a, b, c, ...} ∪ {∅}, with qa = qb = qc = 1. Let the

preferences and object ranking orders be as follows:

Pi : a, b, c, ∅, ..; Pj : c, ∅; and Pk : ∅ for each k ∈ N \ {i, j}.

�a=�b: j, i, ...; �c: i, j, ..; and, for each other object d ∈ O \ {a, b, c}, �d: anything.

Γ is induced by the above ranking orders. Let τ be such that j /∈ τi(a), and there is no

further assumption on τ .

Let ψ be a mechanism that is feasible, constrained efficient, and that satisfies respecting

endowments. Then, at the true preferences P , ψ selects either of the matchings µ and µ′

13A less stringent version of this property, so-called “mutual best”, is used in Morrill (2013a,b), Toda
(2006), and Klaus (2011).

14P−i stands for the preference profile of the agents except agent i.
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where µi = b, µj = c, and µ′i = a, µ′j = ∅ while all the other agents are unassigned under

both matchings.

If ψ selects µ at P , then consider P ′i : a, c, ∅. At the false preference profile P ′ = (P ′i , P−i),

the only feasible and constrained efficient matching that also satisfies respecting endowments

is µ′ above; hence ψ produces µ′ at P ′, benefiting agent i.

If ψ selects µ′ at P , then consider P ′′j : c, a, ∅. Let P ′′ = (P ′′j , P−j). At P ′′, the only

feasible and constrained efficient matching that also satisfies respecting endowments is µ

above; hence ψ produces µ at P ′′, benefiting agent j. This finishes the proof.

Remark 3. Whenever there is no trade restriction, that is, τi(a) = N for each agent-

object pair (i, a) ∈ N × O, feasibility becomes trivial, hence every matching is feasible.

Therefore, TTC is feasible, efficient, strategy-proof, and satisfies respecting endowments.

This together with Proposition 3 reveals that a even a minimal trade restriction turns down

that positive result.

Corollary 2. No RTC mechanism is strategy-proof.

Proposition 3 no longer holds once we refrain from constrained efficiency, as shown below.

Proposition 4. There exists a feasible and strategy-proof mechanism that also satisfies re-

specting endowments.

Proof. Let us order the set of agents and write N = {i1, .., in}. Consider the following

mechanism:

Step 1. By following the ordering, start with i1. Let him receive his top choice from

Ii1(µ∅). Let µi1 be the associated submatching.

In general,

Step k. Let N ′ be the assigned agents up to the current step, and µN
′

be the associated

submatching. Consider agent ik, and let him receive his top choice from Iik(µ
N ′).
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The algorithm terminates whenever every agent is assigned to an object. It is imme-

diate to verify that it is feasible, strategy-proof, and that satisfies respecting endowments.

However, it is not constrained efficient.

3.4 A Probabilistic RTC Mechanism

So far, we only consider the deterministic RTC mechanisms. However, we can add ran-

domness to the RTC class by letting selections in Step 2 be random. While such a mechanism

gives us a (deterministic) RTC outcome ex-post, hence preserving all the properties of RTC

class ex-post, as shown in the following, the scope of beneficial preference truncation and

reshuffling diminishes under it.

A random matching σ is a probability distribution (lottery) over the deterministic

matchingsM. In what follows, we allow mechanisms to produce random matchings. Let us

consider the twofold mechanism that works almost as the same as RTC with the difference

that any implementable collection of cycles and null-pairs that arises in Step 2 of RTC is

chosen with equal probability. We refer to this mechanism as “Probabilistically Restricted

Trading Cycles” and write PRTC for short.

For a random matching σ and a deterministic matching µ, we write P (σ, µ) for the

probability attached to µ under σ. For agent i and object c, σi,c =
∑

µ∈M: µi=c
P (σ, µ). In

words, it is the probability that agent i receives object c under σ.

Given a pair of random matchings σ and σ′, the former first order stochastically dom-

inates the latter with respect to agent i’s preferences Pi if, for any object c,
∑

c′∈O: c′Ric
σi,c′ ≥∑

c′∈O: c′Ric
σ′i,c′ , with strictly holding for some object. A mechanism ψ is strongly manip-

ulable if there exist a problem P , agent i, and false preferences P ′i such that ψ(P ′i , P−i)

first order stochastically dominates ψ(P ) with respect to Pi. A mechanism ψ is weakly

manipulable if there exist a problem P , agent i, and false preferences P ′i such that ψ(P )
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does not first order stochastically dominate ψ(P ′i , P−i) with respect to Pi.
15

The proof of Proposition 3 also shows that PRTC is strongly manipulable.

Corollary 3. PRTC is strongly manipulable.

In what follows, we consider some well-known manipulation strategies and obtain that

PRTC is only weakly manipulable via these strategies. For a preference list Pi, let Ac(Pi) =

{c ∈ O : cPi∅}, i.e., the set of acceptable objects, excluding the null-object. A preference

list P ′i is a truncation of Pi if the relative rankings of the objects in O \ {∅} are preserved

while Ac(P ′i ) ⊂ Ac(Pi). A preference list P ′i is a reshuffling of Pi if Ac(Pi) = Ac(P ′i ).

As the second stage selection of a RTC mechanism can depend on the submitted prefer-

ences, it can be strongly manipulable via truncation and reshuffling. However, below shows

that PRTC is only weakly manipulable via truncation and reshuffling.

Proposition 5. PRCT is only weakly manipulable via truncation and reshuffling.

Proof. See the Appendix.

Remark 4. In our analysis above, objects are assumed to be collectively owned. How-

ever, we can easily adapt our analysis to the case where some (or all) objects are privately

owned, and they are brought to the problem by their owners (this type of problems is called

“house allocation with existing tenants”). In this case, individual rationality, which requires

no agent to receive a worse object than his owned object, would be a concern. An easy

way to address it is to let the object hierarchical endowments structures be such that each

agent is endowed with his owned object. Respecting endowments implies individual ratio-

nality under that class of hierarchical endowments structures; hence any RTC mechanism is

individually rational.

15Strong (weak) manipulation implies that strategizing is profitable for every (some) cardinal payoffs
profile that is consistent with ordinal preferences.
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4 Conclusion

We incorporate a class of trade restrictions into an object allocation problem. We iden-

tify the set of feasible matchings, which can occur through a market-like process under those

restrictions. Next, the class of RTC mechanisms is introduced and is shown that any RTC

mechanism is feasible, constrained efficient, and satisfies respecting endowments. We charac-

terize the RTC class with feasibility, constrained efficiency, and hierarchically mutual best.

Any RTC mechanism turns out to be manipulable. Yet, this is not a problem specific to the

RTC class, as there is a general incompatibility between feasibility, constrained efficiency,

respecting endowments, and strategy-proofness. Nevertheless, adding a randomness to RTC

reduces the scope of certain misreporting strategies while preserving the properties of RTC

ex-post.

Appendix

Proof of Theorem 1. Let ψ be a RTC mechanism. We first show that it terminates in a finite

time. The first stage of ψ iteratively matches agents with their top choices once they are

endowed with them and removes the assigned agents as well as their assignments from the

problem. It terminates whenever there is no such agent left. From here, because there are

finitely many agents, we conclude that Step 1 terminates in a finitely many round and gives

us a submatching. Then, the second stage of ψ considers the reduced problem, emerging

after removing the assigned agents along with their assignments in the first stage. To show

that the second stage gives us a matching in the reduced problem, it is enough to show

that there always exists an implementable collection of cycles and null-pairs in the reduced

economy. This is what we show in the following.

Let N ′ and µN
′

be the set of assigned agents and the associated submatching in Step 1 of

ψ. Let us first enumerate the remaining agents N \N ′ = {i1, .., in}. Then, start with agent i1.

If his favorite object in Ii1(µN
′
) is the null-object, then let him form a null-pair. Otherwise,
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let him form a cycle with his favorite object (note that the null-object always belongs to

Ii1(µN
′
)). Let µN

′∪{i1} be the obtained submatching after implementing the null-pair or the

cycle over µN
′
. Next, let us consider agent i2 and his favorite object in Ii2(µN

′∪{i1}), and

repeat the same arguments for him, and so on. If we consider the permutation that orders

the collection of these cycles and null-pairs as the same as the associated agents’ indexes,

then the collection becomes implementable under this permutation. Therefore, in Step 2 of

ψ, there always exists an implementable collection of cycles and null-pairs, hence a matching

in the reduced problem is always obtained. This, along with our finding above, shows that

ψ terminates in a finitely many round, with producing a matching.

Next, we show that ψ is feasible. Consider a problem P , and suppose that the set of

agents that are assigned within Step 1 of ψ is non-empty. Among them, consider the ones

that are matched in the first substep of Step 1. By its definition, if i is such an agent, then he

is assigned to his top object, say c, and c ∈ Ii(µ∅), which means that i ∈ Γc(µ
∅). Hence, the

agent-object pair (i, c) constitutes a cycle that is viable after µ∅. Let us now suppose that

there exists another such agent-object pair, say (j, c′). That is, agent j is assigned object c′

in the first substep of Step 1. As the same as before, it implies that j ∈ Γc′(µ
∅); hence (j, c′)

constitutes a cycle that is viable after µ∅. On the other hand, by our supposition, agent j

continues to keep his object c′ endowment even after the submatching formed by the agent

i’s object c assignment. Therefore, each of such cycles continues to be viable even after the

implementation of others in any order.

Let N ′ be the set of agents that are assigned in the first substep of Step 1, and µN
′

be

the associated submatching. Then, in the second substep of Step 1 (if it takes place), only

the agents who inherit their top choices are assigned. That is, if i is an assigned agent to

some object c, then c is his top choice, and moreover, c ∈ Ii(µ
N ′). That is, i ∈ Γc(µ

N ′).

Hence, (i, c) constitutes a cycle that is viable after µN
′
. Moreover, by the same reasoning as

above, any such cycle continues to be viable even after the implementation of the others in

any order.
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The same arguments for the other substeps of Step 1 show that Step 1 of ψ does not

violate feasibility. Once Step 1 is finalized, in Step 2, an implementable collection of cycles

and null-pairs is selected. By Definition 3, it is immediate to verify that Step 2 is compatible

with feasibility as well. All of these show that ψ is feasible.

Because of the feasibility of ψ and our supposition as to Γ, for any agent i, if c ∈ Ii(µ∅),

then c ∈ Ii(µN
′
) where i /∈ N ′ and µN

′
is any submatching that occurs in the course of ψ.

This, along with the definition of implementable collection of cycles and null-pairs, implies

that no agent i is assigned with an object which is worse than any object in Ii(µ
∅), which

means that ψ(P ) respects endowments.

All the agents that are assigned in Step 1 receive their top objects. Moreover, by construc-

tion, the selected implementable collection of cycles and null-pairs in Step 2 of ψ produces

a matching in the associated reduced problem such that no other such collection produces

a matching that dominates the former. These two facts together implies that ψ(P ) is a

constrained efficient matching, which finishes the proof.

Proof of Theorem 2. “If” Part. Let ψ be a RTC mechanism. By the definition of Step 1,

ψ satisfies hierarchically mutual best. From Theorem 1, ψ is both feasible and constrained

efficient.

“Only If” Part. Let ψ be a mechanism that is feasible, constrained efficient, and that

satisfies hierarchically mutual best. Consider a problem P . As there is no multiplicity in

Step 1 of the RTC, any RTC mechanism’s Step 1 outcome is the same. By its definition,

moreover, for any Substep 1.k (k ∈ {1, .., |N |}), any agent i ∈ ∪|N |l=1Zl is matched with his

top object in Step 1. As ψ satisfies hierarchically mutual best, any such agent is matched

with his top choice at ψ as well.

Because of the feasibility and constrained efficiency of ψ, the assignments of the rest of

the agents, that is, N \ ∪k=|N |
k=1 Zk, under ψ can be obtained by implementing a collection of

cycles and null-pairs such that it is implementable in the reduced problem after the agents in

∪k=|N |
k=1 Zk receive their top choices, and its induced matching is not dominated by that of any
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other such collection in the reduced problem. But then, it means that the assignments of the

agents in N \ ∪k=|N |
k=1 Zk at ψ(P ) coincide with the Step 2 outcome of some RTC mechanism

at P . This, along with the above observation, shows that ψ is a RTC mechanism, which

finishes the proof.

The Independence of the Theorem 2 Axioms

Let N = {i, j} and O = {a} ∪ {∅}, with qa = 1. Object a has a ranking order, which

generates Γa. Let the preferences and ranking order be as follows:

Pi = Pj : a, ∅; �a: i, j.

Suppose that there is no trade restriction, that is, τk(a) = N for any k ∈ N . Consider a

mechanism ψ such that at this problem P , ψi(P ) = ∅ and ψj(P ) = a. Suppose that at any

other problem, ψ gives the same outcome as a RTC mechanism. Consequently, ψ is feasible

and constrained efficient. Yet, it does not satisfy hierarchically mutual best (indeed, it does

not respect endowments because a ∈ Ii(µ∅), yet aPiψi(P )).

With the same set of agents, let us now consider O = {a, b}∪{∅}, with qa = qb = 1. The

preferences and object ranking orders are as follows:

Pi : a, b, ∅; Pj : b, a, ∅.

�a: j, i; �b: i, j.

There is no trade restriction (that is, τk(c) = N for any k ∈ N and c ∈ O). Consider a

mechanism ψ such that ψi(P ) = b and ψj(P ) = a. Suppose that at any other problem, ψ

gives the same outcome as a RTC mechanism. Hence, ψ is feasible and satisfies hierarchically

mutual best, yet it is not constrained efficient.

Let us now introduce a trade restriction to the above problem by letting τi(a) = {i}.

Consider a mechanism ψ such that ψi(P ) = a and ψj(P ) = b. Suppose that at any other

problem, ψ gives the same outcome as a RTC mechanism. In this case, ψ is constrained

efficient and satisfies hierarchically mutual best, yet it is not feasible.
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Proof of Proposition 5. For ease of notation, let us write ψ for PRTC. We first show that

ψ is not strongly manipulable via truncation at any problem P . Let P ′i be a truncation

of Pi and P ′ = (P ′i , P−i), and let σ = ψ(P ) and σ′ = ψ(P ′). Suppose that σ′ first order

stochastically dominates σ with respect to Pi.

First of all, at problem P , if agent i receives his assignment in Step 1 of ψ, then this

implies that he is assigned to his top object with probability one. Hence, in this case, he

cannot be better off via truncating his preferences.

Let us suppose that it is not the case, that is, at problem P , agent i receives his assignment

in Step 2 of ψ. Here, we have two cases. Consider that at P ′, agent i receives his assignment,

say c, in Step 1 of ψ. This implies that he inherits (or is initially endowed with) his assigned

object c in some substep of Step 1. As P−i = P ′−i, he inherits object c at P in some substep

of Step 1 as well. But then, by the definitions, any implementable collection of cycles and

null-pairs that arises in Step 2 of ψ at P gives agent i an object that is not worse than object

c. This in turn implies that he does not receive any object that is worse than object c with

a positive probability under σ, which shows that he cannot benefit from reporting P ′i .

Let us now consider the other case where at P ′, agent i receives his assignment in Step 2

of ψ. If the sets of implementable collection of cycles and null-pairs that arise in Step 2 of ψ

at P and P ′ are the same, then agent i’s assignment is the same at both problems. Suppose

it is not the case. Let us first observe that because P−i = P ′−i, and agent i is not assigned in

Step 1 of ψ at both problems, the Step 1 assignments of ψ are the same at both problems;

hence so are the reduced problems in Step 2 of ψ.

Next, observe that in Step 2, any implementable collection of cycles and null-pairs at

P that matches agent i with an object in Ac(P ′i ) ∪ {∅} will continue to arise in Step 2 at

P ′. However, any such collection that matches agent i with an object in Ac(Pi) \ Ac(P ′i )

will no longer arise in Step 2 at P ′. This is because agent i, under P ′i , finds the null-object

better than any object in Ac(Pi)\Ac(P ′i ). Moreover, as Ac(P ′i ) ⊂ Ac(Pi), any implementable

collection of cycles and null-pairs that occurs in Step 2 of ψ at P ′ and that assigns agent i
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to an object in Ac(P ′i ) appears at P as well. All of these show that in order for P ′i to be

beneficial, there has to exist an implementable collection of cycles and null-pairs that arises

at P , but not at P ′ (because, otherwise, the assignment of agent i would be the same at

both P and P ′ under ψ). By our observations, any such collection gives agent i an object in

Ac(Pi) \Ac(P ′i ), and as stated above, the only reason for it not to appear at P ′ is that agent

i finds the null-object better than any object in Ac(Pi) \ Ac(P ′i ). All of these observations

imply that σ′i,∅ > σi,∅. This, along with the fact that no agent receives an unacceptable

object of himself with a positive probability under ψ,16 implies that for the least preferred

acceptable object (with respect to Pi), say c, we have
∑

c′∈O: c′Ric
σi,c′ >

∑
c′∈O: c′Ric

σ′i,c′ .

This contradicts our supposition that σ′ first order stochastically dominates σ with respect

to Pi.

Let us now show that ψ is not strongly manipulable via reshuffling. First, we need to

introduce some notations. For any object c, U(Pi, c) = {c′ ∈ O : c′Ric} and SU(Pi, c) =

U(Pi, c) \ {c}. Assume now that P ′i is a reshuffling of Pi, and let σ = ψ(P ) and σ′ =

ψ(P ′i , P−i). Assume for a contradiction that σ′ first order stochastically dominates σ with

respect to Pi.

By the same arguments above, if agent i is matched in Step 1 of ψ at either (or both) P or

P ′, then we have the result. Hence, let us consider the case where he receives his assignment

in Step 2 of ψ at both problems P and P ′. As the same as above, it implies that the reduced

problems in Step 2 of ψ are the same at both P and P ′.

Let us first observe that swapping the places of a pair of objects at Pi can only be

beneficial only if it decreases the number of implementable collection of cycles and null-pairs

that arise in Step 2 of ψ. To see this, let us suppose that P ′i is such that (i) Ac(Pi) = Ac(P ′i ),

(ii) for a particular pair of objects c, c′, c′P ′i c whereas cPic
′, and (iii) the ranking of every

object remains the same. Any implementable collection of cycles and null-pairs that arises

in Step 2 of ψ at P that gives agent i an object d ∈ U(P ′i , c
′) continues to arise in Step 2 of ψ

16This is due to the facts that ψ satisfies respecting endowments, and the null-object is in Ii(µ
∅) for any

agent i.
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at P ′. However, any such collection that gives an agent i an object in U(P ′i , c)\U(P ′i , c
′) may

disappear. The only reason for it to disappear at P ′ is that agent i reports object c′ better

than any object in U(P ′i , c)\U(P ′i , c
′); thereby it may no longer produce a constrained efficient

matching in the reduced problem. Moreover at P ′, some new implementable collections of

cycles and null-pairs that give object c′ to agent i may arise. These, along with the fact that

each implementable collection of cycles and null-pairs is chosen with the equal probability

in Step 2 of ψ, implies that the only way for P ′i to be profitable to agent i is to have a fewer

such collections so that the probabilities of getting objects in U(Pi, c) may increase.

Let us now suppose that P ′i is any reshuffling of Pi. As P ′i can be obtained by iteratively

swapping the places of objects at Pi, the above reasoning can be applied iteratively to

conclude that the same is true for P ′i . That is, in order for P ′i to be beneficial for agent i, the

number of implementable collection of cycles and null-pairs in Step 2 of ψ has to decrease

at P ′.

Let W be the set of objects such that c ∈ W whenever there exists an implementable

collection of cycles and null-pairs in Step 2 of ψ at P that assigns agent i to object c, yet it

does not constitute such a collection in Step 2 of ψ at P ′. By our observation above, W 6= ∅.

Let c′ ∈ W such that it is the worst ranked one with respect to Pi. This implies that any

implementable collection of cycles and null-pairs in Step 2 of ψ at P and assigns an object

which is worse than c′ (with respect to Pi) continues to arise in Step 2 of ψ at P ′.

Suppose that there are x many implementable collections of cycles and null-pairs in Step

2 of ψ at P that give agent i an object that is not worse than c′. Moreover, suppose that

there are in total n1 many implementable collections of cycles and null-pairs arising in Step

2 of ψ at P . Then,
∑

cRic′
σi,c = x/n1. On the other hand, let k many such collections

disappear at P ′. Then, we have
∑

cRic′
σ′i,c = (x− k)/(n1− k). It is immediate to verify that

x/n1 − (x− k)/(n1 − k) ≥ 0. If it is strict, then we are done as it yields a contradiction to

our supposition that σ′ first order stochastically dominates σ with respect to Pi. Otherwise,

that difference is exactly equal to zero if and only if x = n1. But then, it means that agent i
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does not receive any object that is worse than object c′ with a positive probability under σ,

which implies that
∑

cRic′
σi,c = 1. However, at P ′, some implementable collection of cycles

and null-pairs that gives object c′ to agent i disappears. The only reason for it is that agent

i reports an object that is actually worse than object c′ as a better alternative at P ′. This,

along with the fact that c′ is the least preferred object in W (with respect to Pi), implies

that under σ′, agent i receives an object that is worse than object c′ with some positive

probability. Hence,
∑

cRic′
σ′i,c < 1. Therefore,

∑
cRic′

σi,c >
∑

cRic′
σ′i,c, showing that ψ is

not strongly manipulable via reshuffling.

In the rest of the proof, we will show that ψ is weakly manipulable via truncation and

reshuffling. To see this, let us consider a problem instance where N = {i1, i2, i3, i4, i5, i6} and

O = {c1, c2, c3, c4, c5}, each with unit capacity, except qc4 = 2. The preferences and object

ranking orders are as follows:

Pi1 : c1, c2, c3, c4, ∅; Pi2 : c1, c3, ∅; Pi3 : c2, c3, c1, ∅; Pi4 = Pi5 : c5, c4, ∅; Pi6 : c4, c5, ∅.

�c1 : i3, ..; �c2 : i1, ..; �c3 : i2, ..; �c4 : i1, i4, i5..; �c5 : i6, ...

Suppose that for any agent-object pair (i, c), τi(c) = N . That is, there is no trade

restriction. Then, at the true preference profile P , agent i1’s assignment is as follows:

ψ(P )i1,c1 = 1/2 and ψ(P )i1,c2 = 1/2. Now, consider the false preferences P ′i1 : c1, c4, c2, c3, ∅;

and let P ′ = (P ′i1 , P−i1). Note that P ′i1 is a reshuffling of Pi1 . At P ′, ψ(P ′)i1,c1 = 2/3 and

ψ(P ′)i1,c4 = 1/3. Hence, ψ is weakly manipulable via reshuffling.

For the weak manipulation via truncation, consider the same set of agents and objects,

but each with unit capacity now. Let the preferences and ranking orders be as follows:

Pi1 : c1, c2, ∅; Pi2 : c1, c3, ∅; Pi3 : c2, c3, c1, ∅; Pi4 : c2, c4, c5, c6, ∅; Pi5 : c6, c4, ∅;

Pi6 : c6, c5, ∅.

�c1 : i3, ..; �c2 : i1, i4, ..; �c3 : i2, ...; �c4 : i5, ..; �c5 : i6, ..; �c6 : i4, i5, ..

There is no trade restriction, as above. Under the true preference profile, ψ(P )i1,c1 =

1/2 and ψ(P )i1,c2 = 1/2. Let us consider the following truncation: P ′i1 : c1, ∅, and let

29



P ′ = (P ′i , P−i). Then, under P ′ : ψ(P ′)i1,c1 = 2/3 and ψ(P ′)i1,∅ = 1/3. Hence, ψ is weakly

manipulable via truncation.
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