
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Efficient Multiple Constant Multiplication Using

DSP Blocks in FPGA

Ahmet Can Mert, Hasan Azgin, Ercan Kalali, Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences

Sabanci University

Istanbul, Turkey

{ahmetcanmert, hasanazgin, ercankalali, hamzaoglu}@sabanciuniv.edu

Abstract—Multiple constant multiplication (MCM)

operation multiplies an input variable with multiple constants.
MCM operations are widely used in many applications such as
video processing and compression. In this paper, a method is

proposed for efficient implementation of MCM operations
using DSP blocks in Xilinx FPGAs. The proposed method
reduces number of DSP blocks used for implementing a given

MCM operation by manipulating the multiple constants used in
this MCM operation. In this paper, a high level synthesis tool
implementing the proposed method is also proposed. The

proposed tool takes the input variable bit length and multiple
constants as inputs, and generates a Verilog RTL code which
efficiently implements this MCM operation using DSP blocks.

The proposed method and tool are used for one of the most
complex video compression algorithms, HEVC 2D DCT. They
reduced number of DSP blocks used in the FPGA

implementation of HEVC 2D DCT algorithm by 35.8%.

Keywords—MCM, FPGA, DSP Block, HEVC

I. INTRODUCTION

Modern FPGAs provide different full-custom built-in
blocks in addition to look up tables (LUTs) and registers.
FPGA implementations using these built-in blocks can
perform operations faster with less resources and power
consumption than FPGA implementations using LUTs.
Therefore, they are used in wide range of applications. DSP
blocks, which have full-custom multiplier hardware, are one
of these built-in blocks in FPGAs. They are used in FPGA
implementations of many applications such as video
processing and compression, and machine learning [1]-[2].

Multiple constant multiplication (MCM) operation
multiplies a single variable with multiple constants. It is
used in many digital signal processing (DSP) applications
such as finite impulse response (FIR) filter, discrete cosine
transform (DCT) and fast Fourier transform (FFT).

DSP blocks perform constant multiplications faster and
with less energy than adders and shifters. A DSP block can
be used to perform different constant multiplications by
providing proper constant value to its input. Therefore, it is
more efficient to implement constant multiplications using
DSP blocks instead of using adders and shifters in an FPGA
implementation.

In this paper, a method is proposed for efficient
implementation of MCM operations using DSP blocks in
Xilinx FPGAs. The proposed method reduces number of DSP
blocks used for implementing a given MCM operation by
manipulating the multiple constants used in this MCM
operation. In this paper, a high level synthesis tool
implementing the proposed method is also proposed. The
proposed tool takes the input variable bit length and multiple
constants as inputs, and generates a Verilog RTL code which
efficiently implements this MCM operation using DSP
blocks.

In this paper, to demonstrate effectiveness of the
proposed method and tool, an FPGA implementation of one

of the most complex video compression algorithms, HEVC
Two Dimensional (2D) DCT, is done using them. They
reduced the number of DSP blocks used in the FPGA
implementation of HEVC 2D DCT algorithm by 35.8%.

There are many techniques proposed in the literature to
optimize multiple constant multiplication operations [3]-[5].
These techniques try to find common sub-expressions
between multiple constants, and they implement MCM
operations using adders and shifters. They provide efficient
solutions for ASIC implementations. Since their FPGA
implementations use LUTs instead of DSP blocks, they are
inefficient for FPGA implementations compared to using
DSP blocks in FPGAs.

The techniques proposed in [6]-[7] use pipeline registers
in DSP blocks to schedule operations efficiently. They also
use different scheduling techniques to increase the resource
sharing on DSP blocks. In this way, they can increase the
throughput. The method proposed in [8] can map two
constant multiplication operations into one DSP block by
concatenating two constants and assigning them to one input
of DSP block. Therefore, it reduces the number of DSP
blocks used for MCM operations. The method proposed in
[8] uses only two inputs (A, B) of a DSP block. It works only
for unsigned input variables. However, the method proposed
in this paper can map more constant multiplication
operations to one DSP block by manipulating the constants
and using three inputs (A, B, C) of a DSP block. In addition,
it works for both unsigned and signed input variables.

II. XILINX DSP BLOCK ARCHITECTURE

 Simplified architecture of Xilinx DSP48E1 block is
shown in Fig. 1. A DSP48E1 block has a signed 25 bit pre-
adder, a signed 25x18 bit multiplier and an ALU which has
48 bit adder/subtractor and pattern detector. Since these sub-
blocks are implemented as full-custom hardware on FPGA,
they provide higher speed and lower power consumption than
equivalent LUT implementations of the same operations.
These sub-blocks can be configured to implement different
operations in each clock cycle. In this way, a DSP48E1 block
can perform different operations such as A×B and A×B+C.

III. PROPOSED METHOD

The proposed method manipulates the constants in a
multiple constant multiplication operation to map more
constant multiplication operations to one DSP block.

Multiplication of a 𝑣 bit input variable 𝑉 with two
constants 𝑚1bit 𝑀1 and 𝑚2 bit 𝑀2 can be performed using
two DSP blocks, where each DSP block performs
multiplication with one constant. The method proposed in [8]
concatenates two constants to perform two constant
multiplications using one DSP block as shown in (1). A DSP
block has a 25x18 bit signed multiplier. Therefore, 𝑣 and
(𝑣 + 𝑚1 + 𝑚2) should be less than 18 and 25, respectively,
to map two constant multiplications to one DSP block.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190019068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Simplified architecture of Xilinx DSP48E1 block.

Fig. 2. An example constant manipulation.

TABLE I. MAXIMUM NUMBER OF CONSTANTS PER DSP BLOCK

Input Variable
Bit Length (v) 1

<
v
≤

2

2
<

v
≤

3

3
<

v
≤

4

4
<

v
≤

6

6
<

v
≤

8

8
<

v
≤

1
2

1
2
<

v
≤

1
8

MaxConstDSP 24 12 8 6 4 3 2

{𝑉 × 𝑀2, 𝑉 × 𝑀1} = 𝑉 × ((𝑀2 ≪ (𝑣 + 𝑚1))|𝑀1) (1)

 The symbols “×”, “{ , }”, “|”, “≪” and “≫” represent
multiplication, concatenation, bit-wise or, left shift and right
shift operations, respectively. This method can be used for k
constant multiplications if the bit lengths of input variable
and constants satisfy the condition in (2).

 ((𝑘 − 1) × 𝑣 + ∑ 𝑚𝑖

𝑘

𝑖=1

) < 25 (2)

 The proposed method reduces bit length of a constant by
manipulating the constant and utilizing C input of DSP block.
Manipulation of an 𝑚 bit constant 𝑀 multiplied with 𝑣 bit
input variable 𝑉 is shown in (3)-(10). First, 𝑉 and 𝑀 can be
represented as shown in (4)-(5). Thus, 𝑀𝑀 is equal to
((𝑀 ≫ 𝑠) − 1) ≫ 𝑛. 𝑠 and 𝑛 can take different values. The
proposed method uses 𝑠 and 𝑛 values that minimize 𝑀𝑀 .
Then, 𝑉 and 𝑀 are substituted into (3).

 After the proposed manipulation, 𝑉 × 𝑀 is converted to
{(𝑀𝑀 × 𝑉 + 𝑉[𝑣 − 1: 𝑛]), 𝑉[𝑛 − 1: 0]} ≪ 𝑠 which means
multiplication of 𝑣 bit input variable and 𝑚 bit constant is
converted to multiplication of 𝑣 bit input variable and (𝑚 −
(𝑛 + 𝑠)) bit manipulated constant, addition of (𝑣 − 𝑛) bit
input variable, concatenation and shift operations. Since
concatenation and shift operations require no computation,
only the equation (𝑀𝑀 × 𝑉 + 𝑉[𝑣 − 1: 𝑛]) needs to be
implemented using DSP block.

𝑉 × 𝑀 = 𝑉[𝑣 − 1: 0] × 𝑀[𝑚 − 1: 0] (3)
𝑀 = 2𝑠 × (1 + 2𝑛 × 𝑀𝑀) (4)

𝑉 = 2𝑛 × 𝑉[𝑣 − 1: 𝑛] + 𝑉[𝑛 − 1: 0] (5)
𝑤ℎ𝑒𝑟𝑒 𝑠 ≥ 0 , 𝑛 ≥ 0

𝑉 × 𝑀 = 𝑉 × 2𝑠 × (1 + 2𝑛 × 𝑀𝑀) (6)
𝑉 × 𝑀 = 2𝑠 × (𝑉 + (𝑉 × 2𝑛 × 𝑀𝑀)) (7)

V×M=2s×(2n×V[v-1:n]+V[n-1:0]+(V×2n×MM)) (8)

V×M=2s×(2n×(V×MM+V[v-1:n])+V[n-1:0]) (9)

V×M={(MM×V+V[v-1:n]),V[n-1:0]}≪s (10)

 𝑀𝑀 , V and 𝑉[𝑣 − 1: 𝑛] are assigned to A, B and C
inputs of DSP block, respectively. The bit length of 𝑀𝑀 is
smaller than the bit length of 𝑀. Therefore, more constant
multiplications can be mapped to one DSP block by
manipulating the constants before multiplication.

 If the input variable is a signed number, sign extension of
𝑉[𝑣 − 1: 𝑛]for each constant multiplication should also be
added to multiplication result using C input of DSP block.
Sign extension calculation for an m bit constant 𝑀 and 𝑣 bit
signed input variable 𝑉 is shown in (11). After sign
extension, {𝑠𝑖𝑔𝑛𝑒𝑥𝑡 , 𝑉[𝑣 − 1: 𝑛]} should be assigned to C
input of DSP block.

𝑠𝑖𝑔𝑛𝑒𝑥𝑡 = (V[v-1]×(2m-s-M×2-s))[m-s-1:0] (11)

 Multiplication of a 𝑣 bit input variable 𝑉 with two
constants 𝑚1bit 𝑀1 and 𝑚2 bit 𝑀2 can be performed using
the proposed method as shown in (12)-(14). Final
concatenation and shift operations are not shown for
simplicity.

𝑀1 = 2𝑠1 × (1 + 2𝑛1 × 𝑀𝑀1) 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑒𝑥𝑡1 (12)
𝑀2 = 2𝑠2 × (1 + 2𝑛2 × 𝑀𝑀2) 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑒𝑥𝑡2 (13)

{𝑉 × 𝑀2, 𝑉 × 𝑀1} =
(14) 𝑉 × (𝑀𝑀2 ≪ (𝑣 + 𝑚1 − (𝑠1 + 𝑛1)) | 𝑀𝑀1)

+{𝑠𝑖𝑔𝑛𝑒𝑥𝑡2, 𝑉[𝑣 − 1: 𝑛2], 𝑠𝑖𝑔𝑛𝑒𝑥𝑡1, 𝑉[𝑣 − 1: 𝑛1]}

 The proposed method can be used for k constant
multiplications if the bit lengths of input variable and
manipulated constants satisfy the condition in (15).

 ((𝑘 − 1) × 𝑣 + ∑(𝑚𝑖 − (𝑠𝑖 + 𝑛𝑖))

𝑘

𝑖=1

) < 25 (15)

 An MCM example using the proposed method is shown
in Fig. 2. In this example, a 9 bit signed input variable is
multiplied with two constants; 78913 and 10066336. Since a
DSP block has a 25x18 bit multiplier, multiplication with 27
bit constant 100663360 cannot be mapped to one DSP block
without the proposed constant manipulation. Therefore,
concatenation method proposed in [8] cannot map this
constant multiplication to a DSP block. However, the
proposed method can map these two constant multiplications
to one DSP block.

IV. PROPOSED HIGH-LEVEL SYNTHESIS (HLS) TOOL

In this paper, a high level synthesis tool implementing the
proposed algorithm is also proposed. As shown in Fig. 3, the
proposed tool takes the input variable bit length and multiple
constants as inputs, and generates a Verilog RTL code which
efficiently implements this MCM operation using DSP
blocks. If a constant is power of 2, this constant
multiplication is implemented with shift operation. If a
constant is a power of 2 multiple of another constant in the
input constants, this constant multiplication is also
implemented with shift operation. The remaining constant
multiplications are mapped to DSP blocks using the proposed
DSP mapping algorithm. Finally, a Verilog RTL code is
generated for this MCM operation.

Flow chart of the proposed DSP mapping algorithm is
shown in Fig. 4. The proposed algorithm takes bit length of
input variable and multiple constants as input. It groups and
maps the multiple constant multiplications to minimum
number of DSP blocks.

+/-

0

B

A

D
C

P

18

30

25

48

25

42 48

DSP48E1

25

48

25

30

18

25

30 X + -

Input Bit Length: 9 Bit Signed

78913 = 20(1 + 26
×1233), n1=6, MM1=1233s1=0,m1=17,

n2=19, MM2=3s2=6,m2=27,

cost = v + m1 + m2 – (s1 + s2) – (n1 + n2) = 22 < 25

B = 9 Bit Signed Input

DSP48E1 Inputs:
A = {MM2 << (v+m1-(n1+s1)) | MM1)} A = {3 << 20 | 1233}

signext78913 = V[8]*[217 - 78913×20][16:0]
signext100663360 = V[8]*[221 - 100663360×2-6][20:0]

V[v-1:n2] = V[8:19] ()

C = {signext100663360, signext78913, V[8:6]}

Constants: [78913, 100663360]

V[v-1:n1] = V[8:6]

100663360 = 26(1 + 219
×3),

Fig. 3. Flow chart of the proposed DSP mapping HLS tool.

Fig. 4. Flow chart of the proposed DSP mapping algorithm.

𝑐𝑜𝑠𝑡_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ, 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛){

𝑐𝑜𝑠𝑡 = 0, 𝑖 = 0, 𝑐𝑜𝑚𝑏𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

WHILE(i < combsize)

IF(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑖] ! = 0)
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑖] = 2𝑠 × (1 + 2𝑛 × 𝑀𝑀)

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 + 𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ((1 + 2𝑛 × 𝑀𝑀)) − 𝑛
𝑖 = 𝑖 + 1

ENDWHILE
𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 + 𝑖𝑛𝑝𝑢𝑡𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ × (𝑐𝑜𝑚𝑏𝑠𝑖𝑧𝑒 − 1)

IF(𝑐𝑜𝑠𝑡 > 24) 𝐷𝑆𝑃_𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 = 0
ELSE 𝐷𝑆𝑃_𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 = 1
𝑟𝑒𝑡𝑢𝑟𝑛 𝐷𝑆𝑃_𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 }

Fig. 5. The proposed cost calculation function.

The proposed DSP mapping algorithm is an iterative
algorithm. It starts with Iteration 0 and Level 0. It puts all the
constants that will be multiplied with input variable to
Constants_List. It sorts the constants in Constants_List,
generates all possible combinations of these constants and
puts them to Combinations_List. Each combination has the

same number of constants, and the number of constants in a
combination is determined by input variable bit length. Table
I shows maximum number of constant multiplications that
can be mapped to a DSP block (MaxConstDSP) for different
input variable bit lengths. MaxConstDSP can be calculated
by using (15).

Counter keeps the number of combinations tried to be
mapped to a DSP block at each level. Initially, Counter is set
to zero for each level. The proposed algorithms takes the first
combination in Combinations_List of the current level and
determines whether it can be mapped to one DSP block or
not by using the cost calculation function shown in Fig. 5.

 If the current combination cannot be mapped to a DSP
block, Counter for the current level is incremented by one,
the next combination in Combinations_List is taken and
determined whether it can be mapped to one DSP block or
not by using the cost calculation function shown in Fig. 4.
This process continues until either a combination that can be
mapped to one DSP block is found or it is determined that
none of the combinations in Combinations_List can be
mapped to a DSP block.

If the current combination can be mapped to one DSP
block, then it is added to DSP_List and the constants in the
current combination are removed from Constants_List.
DSP_List contains the combinations of constants that are
mapped to DSP blocks. Counter for the current level is
incremented by one. Level is incremented by one and the
proposed algorithm continues with the next level. Level keeps
the recursion depth of the current iteration.

If there are no constants left in Constants_List, this means
all the constant multiplications are mapped to DSP blocks
and the proposed algorithm terminates successfully.

If none of the combinations in Combinations_List of the
current level can be mapped to a DSP block and Level is
greater than 0, Counter for the current level is reset to 0,
Level is decremented by one, the last combination is removed
form DSP_List, the constants in that combination are added
to Constants_List, and the proposed algorithm continues with
the previous level.

If none of the combinations in Combinations_List of the
current level can be mapped to a DSP block and Level is 0,
this means the proposed algorithm cannot map the constant
multiplications to DSP blocks in groups of MaxConstDSP
and the proposed algorithm terminates the current iteration.

In that case, the proposed algorithm adds constant 0 to
Constants_List and it starts the next iteration with this new
Constants_List. In these iterations, if a combination contains
0 as a constant, it means that only nonzero constants in this
combination are mapped to a DSP block. Therefore, some
combinations with fewer nonzero constants than
MaxConstDSP can be mapped to DSP blocks.

The proposed algorithm continues with next iterations by
adding constant 0 to Constants_List until all the constant
multiplications are mapped to DSP blocks successfully.

The proposed algorithm sorts the constants in
Constants_List before generating Combinations_List. In this
way, it generates combinations of constants in the same order
as it goes back and forth between different levels.

An example of mapping constant multiplications to DSP
blocks using the proposed algorithm is shown in Fig. 6. In
iteration 0, the proposed algorithm cannot map the four
constant multiplications to two DSP blocks. Constant 0 is
added to Constants_List in iteration 1 and iteration 2. The
proposed algorithm mapped the four constant multiplications
to three DSP blocks successfully in iteration 2.

Input Bit Length Constants

Preprocessing

DSP Mapping

Generate Verilog
RTL Files

Multiple
Constants

Power of 2
Constants

Inputs

Processing

Outputs
Top_module.v

mblock0.v
mblock1.v

…
ReadMe.txt

Generate
Combinations of

Constants

Input_Bit_LengthConstants List

DSP
Mappable

Cost_Calculation()

Add Current
Combination to

DSP_List

YES

Remove Current
Constants from
Constants List

Take Next
Combination

NO

Last
Combination

NO

Remove Last
Combination from

DSP_List

YES

Add the Constants in
the Last Combination

to Constants List

Counter[Level] ++
Level ++

Level --

Level == 0
NO

Add Zero to
Constants List

Take
Combination[Counter[Level]]

YES

Constants List
Empty

NO Exit
YES

Fig. 6. An example DSP mapping using the proposed algorithm.

TABLE II. CONSTANT MULTIPLICATIONS ON DSP BLOCKS

 Mult.
Block

Input
Length

Constants List DSP Mapping
of

DSPs

D
C

T
_

C
o
lu

m
n

 1st 4x4 13 bit 36,64,83 (36,83) 1

2nd 4x4 12 bit 18,50,75,89 (18,75),(50,89) 2

8x8 11 bit
9,25,43,57,
70,80,87,90

(9,87),(80,70),
(25,43),(57,90)

4

16x16 10 bit
4,13,22,31,38,

46,54,61,67,73,
78,82,85,90

(13,67),(22,85),
(82,78),(31,90),
(38,73),(46,61),(54)

7

 D
C

T
_

R
o

w

1st 4x4 20 bit 36,64,83 (36),(83) 2

2nd 4x4 19 bit 18,50,75,89 (18),(50),(75),(89) 4

8x8 18 bit
9,25,43,57,
70,80,87,90

(25,90),(80,43),
(9,70),(57),(87)

5

16x16 17 bit
4,13,22,31,38,

46,54,61,67,73,
78,82,85,90

(82,73),(22,90),
(13,85),(31),(38),(46),
(54),(61),(78),(67)

10

TABLE III. IMPLEMENTATION RESULTS

 Baseline Concatenate Proposed

FPGA Virtex-6 Virtex-6 Virtex-6

DFF 7123 7119 7117

LUT 17176 17100 17086

DSP 584 438 380

Freq. (MHz) 147 130 147

V. CASE STUDY: HEVC 2D DCT

HEVC uses DCT-II for DCT operations. It uses 4x4, 8x8,
16x16, 32x32 Transform Unit (TU) sizes. HEVC performs
2D transform operation by applying 1D transforms in vertical
and horizontal directions. The coefficients in the HEVC 1D
transform matrices are derived from the DCT-II basis
functions. However, integer coefficients are used for
simplicity.

In this paper, three different HEVC 2D DCT hardware for
all TU sizes are designed and implemented. The first
(baseline) hardware uses DSP blocks for multiple constant
multiplications. In this hardware, each multiplication is
implemented using one DSP block. The second (concatenate)
hardware uses concatenation method proposed in [8]. In the
baseline and concatenate hardware, if a constant is a power of
2 or a power of 2 multiple of another constant, it is
implemented using shift operation instead of DSP block.
Finally, the third (proposed) hardware uses the proposed DSP
mapping algorithm to reduce number of DSP blocks.

The proposed hardware perform 2D DCT by first
performing 1D DCT transform on the columns of a TU, and
then performing 1D DCT transform on the rows of the TU.
After 1D column DCT, the resulting coefficients are stored in
a transpose memory, and they are used as input for 1D row

DCT. One 4x4 datapath is used for 4x4 TU size. Two 4x4
datapaths are used for 8x8 TU size. Two 4x4 datapaths and
one 8x8 datapath are used for 16x16 TU size. Two 4x4, one
8x8 and one 16x16 datapaths are used for 32x32 TU size [9].

Since different constants are used in HEVC 2D DCT for
4x4, 8x8, 16x16 and 32x32 TU sizes, four different multiplier
blocks are used in the proposed hardware. Multiplier blocks
in the first 4x4, second 4x4, 8x8 and 16x16 datapaths
multiply a single input with 3, 4, 8 and 16 different constants,
respectively. The proposed DSP mapping algorithm is used
for MCM operations implemented in these datapaths. As
shown in Table II, the proposed DSP mapping algorithm
performs 27 different constant multiplications in HEVC 2D
DCT using only 14 and 21 DSP blocks in the column
(DCT_Column) and row (DCT_Row) transforms,
respectively.

The Verilog RTL codes are synthesized and mapped to a
Xilinx XC6VLX550T FF1760 FPGA with speed grade 2
using Xilinx ISE 14.7. FPGA implementations are verified
with post place and route simulations. The implementation
results are shown in Table III. The proposed FPGA
implementation uses 35.8% and 13% less DSP blocks than
baseline and concatenate FPGA implementations,
respectively.

VI. CONCLUSIONS

In this paper, a method is proposed for efficient
implementation of MCM operations using DSP blocks in
FPGAs. The proposed method reduces number of DSP
blocks used for implementing a given MCM operation by
manipulating the multiple constants used in this MCM
operation. In this paper, a high level synthesis tool
implementing the proposed method is also proposed. The
proposed tool takes the input variable bit length and multiple
constants as inputs, and generates a Verilog RTL code which
efficiently implements this MCM operation using DSP
blocks. The proposed method and tool reduced number of
DSP blocks used in the FPGA implementation of HEVC 2D
DCT algorithm by 35.8%.

REFERENCES

[1] H. Nakahara and T. Sasao, “A deep neural network based on nested
residue number system,” Int. Conf. on Field Programmable Logic and
Applications (FPL), Sep. 2015.

[2] H. Azgin, A. C. Mert, E. Kalali, and I. Hamzaoglu, “An efficient
FPGA implementation of HEVC intra prediction,” IEEE Int. Conf. on
Consumer Electronics, Jan. 2018.

[3] Y. Voronenko and M. Püschel, “Multiplierless constant multiple
multiplication,” ACM Trans. on Algorithms, vol. 3, no. 2, May 2007.

[4] A. K. Oudjida, A. Liacha, M. Bakiri, and N. Chaillet, “Multiple
constant multiplication algorithm for high-speed and low-power
design,” IEEE Trans. on Circuits and Systems-II: Express Briefs, vol.
63, no. 2, pp. 176-180, Aug. 2015.

[5] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U. M. Baese,
“Multiple constant multiplication with ternary adders,” Int. Conf. on
Field Programmable Logic and Applications (FPL), Sep. 2013.

[6] B. Bonak and S. A. Fahmy, “Efficient mapping of mathematical
expressions into DSP blocks,” Int. Conf. on Field Programmable
Logic and Applications (FPL), Sep. 2014.

[7] B. Bonak and S. A. Fahmy, “Improved resource sharing for FPGA
blocks,” Int. Conf. on Field Programmable Logic and Applications
(FPL), Sep. 2016.

[8] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Witting, “Deep
learning with INT8 optimization on Xilinx devices,” Xilinx White
Paper, WP486, Nov. 2016.

[9] E. Kalali, A. C. Mert, and I. Hamzaoglu, “A computation and energy
reduction technique for HEVC Discrete Cosine Transform,” IEEE
Trans. on Consumer Electronics, vol. 62, no. 2, pp. 166-174, May
2016.

Constants: [29,47,78,93] Outputs: [(29,47),(78),(93)]

29,47 29,78 29,93 47,78 47,93 78,93

78,93 47,93 47,78

47,93 47,0 78,93 78,0 93,0 0,029,47 29,78 29,93 29,0 47,78

78,93 78,0 93,0

93,0

...

Input Bit Length: 15

It
e

ra
ti

o
n

 0
It

e
ra

ti
o

n
 2

Le
ve

l 0
Le

ve
l 1

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2

: Not DSP_mappable

: DSP_mappable

0,0

Not Last Combination

Last Combination

