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Dept. of Electrical and Computer Eng., University of Rochester, Rochester, NY, USA

mcetin@sabanciuniv.edu

Selim Balcisoy
Faculty of Engineering and Natural Sciences

Sabancı University, İstanbul, Turkey
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Abstract—AutoTrainBrain is a neurofeedback and multi-
sensory based mobile phone software application, designed in
Sabancı University laboratory with the aim of improving the cog-
nitive functions of dyslexic children. It reads electroencephalog-
raphy (EEG) signals from 14 channels of eMotiv EPOC+ and
processes these signals to provide neurofeedback to child for
improving the brain signals with visual and auditory cues in
real time. AutoTrainBrain software has been applied to a 14-
year old dyslexic child, 10 minutes per week for 9 consecutive
weeks.The EEG data has been analyzed by using the following
three approaches: estimation of single-channel EEG complexity
levels (entropy), spectral brain connectivity between two-channels
(coherence), single channel relative Alpha band power ratio. Our
experimental analysis shows that the proposed brain training
system offers improvements based on the measures used in the
three approaches mentioned above. This suggests such training
may help increase the number of active cortical neurons and
improve regional brain connectivity.

Keywords—Neurofeedback, EEG signal processing, multi sen-
sory learning, dyslexia.

I. INTRODUCTION

Dyslexia is a specific learning disability that is neuro-
biological in origin. It has a prevalence of 10 to 15 %
of children. It is characterized by difficulties with accurate
and/or fluent word recognition and by poor spelling and
decoding abilities. These difficulties typically result from a
deficit in the phonological component of language that is often
unexpected given the otherwise normal cognitive abilities of
the person as well as the provision of effective classroom
instruction. Secondary consequences may include problems in
reading comprehension and reduced reading experience that
can impede growth of vocabulary and background knowledge
[1]. Dyslexia is probably the most common neurobiological

disorder affecting children. Reading problems manifest them-
selves mainly in the following areas: difficulty in learning
to utilize correspondence regularities between graphemes and
phonemes poor phonological awareness, i.e., awareness of the
sound structure of words, especially phonemic awareness as
manifested in the ability to analyze and manipulate sounds
within a syllable and poor use of orthographic word reading
strategies; and consequently inaccurate and non-fluent word
identification. As a result of these difficulties, full alphabetic or
phonological reading skills are often not attained [2]. The most
frequently reported EEG abnormality in children with learning
disabilities is increased theta relative power in their electroen-
cephalography (EEG) signals relative to their peers. Several
studies have reported higher amounts of delta and theta, and
lower amounts of alpha in children with learning disabilities
compared to normal children of the same age. An important
percentage of children with learning disabilities show EEG
patterns that are more typical for younger children, which has
been interpreted as a delay of EEG maturation. Other groups
of children with learning disabilities show paroxysmal EEG
activity [3]. In neurofeedback applications, the user’s brain
activation is depicted in real-time with the goal of helping
the user to gain control over specific aspects of the activity
in his/her central nervous system. Hence, the user receives
direct feedback about their actual brain activation pattern and
consequently can learn to gain voluntary control over neural
signals. By watching and listening to real-time multi-media
representations of its own activity, the brain can modify its
functionality and even its structure. Healthy, age appropriate
brain activity is rewarded with visual, auditory or even tactile
stimulation. In contrast, undesirable patterns of brain activity
are ignored or even penalized [4]–[7]. AutoTrainBrain is a
patent pending software application specifically designed for
dyslexic children. Within this software application, a system
and method for improving reading ability and cognitive func-
tions is proposed, the system relying on a distinctive protocol978-1-5386-1501-0/18/$31.00 c© 2018 IEEE
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of multi-sensory learning and EEG neurofeedback. The EEG
neurofeedback protocol is specifically designed for learning
disabilities and the EEG neuroofeedback system integrated
with multisensory learning provides a powerful and robust tool
for improving reading ability. The EEG neurofeedback system
is easily usable and does not require technical expertise (Figure
1 and Figure 2).

Figure 1: The usage of AutoTrainBrain

Figure 2: AutoTrainBrain Software User Interface

A single user software module/application on a mobile
phone for improving reading abilities and cognitive functions
in general is provided. Before the training or concurrently
with the training, EEG signals are read from a sufficient
number of electrodes (1-14) from the user’s scalp and these
EEG signals are translated to auditory and visual feedback to
improve the user’s brain performance.The software contains
norm data collected from healthy people. This data is used for
determining thresholds during neurofeedback to eliminate the
side effects.

II. MATERIALS & METHODS

A. Subject and Experimental data

A dyslexic child at the age of 14 voluntarily participated
in this study. Before the experiment, his parents and him gave
their informed consent after the experimental procedure was

explained to them in accordance with guidelines set by the re-
search ethics committee of Sabanci University. Throughout the
experiments, eMotiv EPOC+ headset (http://www.emotiv.com)
is used. Internal sampling rate in the headset is 2048 per
secs per channel. This is filtered to remove main artefacts
and alias frequencies then down-sampled to 128 per secs per
channel.There are 14 EEG channels plus two references and
128 samples per second per channel is used. Electrodes were
placed according to the 10-20 system. Before the experiments,
the calibration of eMotiv Headset on the subject’s scalps
is done with MyEmotiv mobile application of eMotiv, each
electrode is made sure to transfer EEG data with high quality.

B. Study Design

The main goal of the experiment is to reduce the slow
brain waves, which is achieved by visual and auditory feedback
provided online in real time by the Android Java program
after processing the EEG data gathered from the subject’s
head. Before the experiment, the raw EEG signals in the
resting, "eyes closed" state are measured for two minutes
using eMotivPro software and the data are stored in .edf files.
During the neurofeedback session, EEG data are recorded, and
after the experiment, another two minutes of resting "eyes
closed" state raw EEG signals are recorded. During these
recordings, the subject is placed approximately 0.5 meters in
front of a mobile phone and instructed to relax with eyes open.
AutoTrainBrain software is written with Android Java and uses
the Community SDK provided by eMotiv to communicate with
eMotiv EPOC+ headset. Artefact removal and conversion from
Analog to Digital is done by the standard eMotiv procedures.
For 9 consecutive weeks, different sessions of neurofeedback
by AutoTrainBrain are conducted for 10 minutes.

C. Resting State Raw EEG processing

For all analyses in this study, all of the 14-channel
EEG data are recorded during the experiments in Theta
(4-8 Hz), Alpha(8-12 Hz), Beta-1 (12-16 Hz), Beta-2(16-
25 Hz), Gamma (25-45 Hz) bands. As we have used
libEDK.IEE_GetAverageBandPowers routine, we have col-
lected averaged and cleaned data from eMotiv EPOC+ headset
and used the session average band powers in our calculations.

D. Raw EEG Data Analysis

In several pieces of previous work, it has been shown
that complexity/entropy, coherence and relative Alpha Power
values indicate the wellness of brain [10], [11], [12]. The
analysis is conducted by comparing the before Neurofeedback
raw EEG resting state, eyes closed recordings with that of
the after neurofeedback session and that of the consecutive
sessions. The raw data are filtered by using a bandPass
FIR filter (1-50Hz). The artefacts are removed manually by
using EEGLAB’s data rejection options. The raw EEG signals
collected from each electrode channel are segmented into 2-
second sliding windows. For each 2-second EEG segment, the
spectral entropy and related Alpha Band (8-13 Hz) absolute
power are calculated. As shown in Figure 3, 60 short segments
are constructed for 2- minute recorded session. The EEG data
has been analyzed by using the following three approaches:
The EEG data has been analyzed by using the following three



approaches: estimation of single-channel EEG complexity lev-
els (entropy), spectral brain connectivity between two channels
(coherence), single channel relative Alpha band power ratio.
In these three methods, power spectral density of short EEG
segment of 2-second has been commonly computed by using
Burg Method based on AR model assumption where the best
model order is estimated through ARfit algorithm, spectral
brain connectivity between two channels, single channel rel-
ative Alpha band power ratio. In these three methods, power
spectral density of short EEG segment of 2 seconds has been
commonly computed by using Burg Method based on AR
model assumption where the best model order is estimated
through ARfit algorithm.

Figure 3: The raw EEG data segmentation

III. RESULTS

• If we compare the entropy which is estimation of
single-channel EEG complexity levels (based on Burg
method) calculated with EEG recordings before the
first neurofeedback session with that after the first
neurofeedback session, there are entropy increases in
almost all channels (Figure 4).

Figure 4: Spectral entropy based on Burg Method (Session 1)

• After the 9th neurofeedback session, the entropy
which is estimation of single-channel EEG complexity
levels (based on Burg method) increase compared with
that at the first neurofeedback session is retained.
In the 9th session, the difference between entropy
increase before and after the neurofeedback is low-
ered. It means the cognitive improvement is permanent
(Figure 5).

Figure 5: Spectral entropy based on Burg Method (Session 9)

• If we compare the Alpha Band Power (8-13 Hz) over
total EEG (0-30 Hz)(Alpha Band Relative Power)
calculated with EEG recordings before the first neuro-
feedback session with that after the first neurofeedback
session, Alpha Band Relative Power is increased in
almost all channels (Figure 6). After the 9th neuro-

Figure 6: Single channel Alpha Relative Power increase (Ses-
sion 1)

feedback session, the increase in Alpha Band Relative
Power compared with that at the first neurofeedback
session is retained. In the 9th session, the increase in
Alpha Band Relative Power before and after neuro-
feedback is lowered. It means the cognitive improve-
ment is permanent (Figure 7).

• If we compare the coherence calculated with EEG
recordings before the first neurofeedback session with
that after the first neurofeedback session, there are
coherence increases in almost all channels (Figure 8).
After the 9th Neurofeedback sessions, the increase
in coherence which is spectral brain connectivity be-
tween two channels compared with that at the first
neurofeedback session is retained. In the 9th session,
the increase in cherence before and after neurofeed-
back is lowered. It means the cognitive improvement
is permanent (Figure 9).

• The increase in entropy/ complexity, coherence, and
Alpha Band Relative Power, observed more noticeably
in the right hemisphere, may possibly be associated
with cognitive performance enhancement mediated by



Figure 7: Single channel Alpha Relative Power increase (Ses-
sion 9)

Figure 8: Increase in coherence (Session 1)

Figure 9: Increase in coherence (Session 9)

neurofeedback sessions. Before neurofeedback ses-
sion and after neurofeedback session, the increase is
determined in the frontal lobes, which are mainly
responsible for organization, managerial, and motor
functions. Other increases are also found in Occipital
and Parietal regions.
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