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Abstract: We focus on optimization models involving individual chance constraints, in which only the right-hand

side vector is random with a finite distribution. A recently introduced class of such models treats the reliability levels

/ risk tolerances associated with the chance constraints as decision variables and trades off the actual cost / return

against the cost of the selected reliability levels in the objective function. Leveraging recent methodological advances for

modeling and solving chance-constrained linear programs with fixed reliability levels, we develop strong mixed-integer

programming formulations for this new variant with variable reliability levels. In addition, we introduce an alternate

cost function type associated with the risk tolerances which requires capturing the value-at-risk (VaR) associated with

a variable reliability level. We accomplish this task via a new integer linear programming representation of VaR. Our

computational study illustrates the effectiveness of our mathematical programming formulations. We also apply the

proposed modeling approach to a new stochastic last mile relief network design problem and provide numerical results

for a case study based on the real-world data from the 2011 Van earthquake in Turkey.

Keywords: stochastic programming; risk-averse; probabilistic constraints; chance constraints; variable reliability; Bonfer-

roni approximation; value-at-risk; network design; post-disaster; humanitarian logistics; accessibility; equity

1. Introduction In many decision making problems under uncertainty it is desired to account for the

probability of certain unfavorable events. This is very much in agreement with the concept of reliability often

used to characterize the quality of service. In a wide range of domains, applications concerned with such issues

(the probability of meeting demand or the reliability of a system) give rise to mathematical programming models

that involve chance (or probabilistic) constraints. Areas of application of chance-constrained optimization

models include but are not restricted to production planning, supply chain management, power system planning

and design, financial portfolio optimization, and humanitarian relief network design. For a thorough overview

of the applications of chance-constrained optimization models and the corresponding theory and numerical

methods, we refer the reader to Kall and Wallace (1994), Prékopa (1995), Prékopa (2003), Dentcheva (2006),

Shapiro et al. (2009), and the references therein.

There are two main types of chance constraints: joint and individual (separate) chance constraints. A joint

chance constraint imposes that a set of goal constraints (inequalities) hold together with a high probability. In

contrast, an individual chance constraint is introduced to account for the probability of a single goal constraint.

From a modeling point of view, the problem of interest determines the appropriate type of chance constraint. As

discussed in Haneveld and van der Vlerk (2015), a joint chance constraint is more fitting when the individual

goal constraints collectively describe one single goal. Otherwise, if the individual goal constraints describe

different goals, it makes more sense to consider them separately. In this case, the ability to vary the reliability

levels associated with the separate chance constraints provides us with a flexible modeling framework, which can

prioritize the set of goals at hand. In practice, another important criterion is the computational tractability of

the resulting mathematical programming formulations. Optimization with a joint chance constraint is generally

significantly more challenging than optimization with individual chance constraints (see, e.g., Luedtke et al.,

2010; Küçükyavuz, 2012; Lejeune, 2012). Enforcing a joint chance constraint with a high probability level on

a large set of goal constraints typically leads to individual probability levels close to one, and consequently,

may result in very conservative solutions. As a partial remedy, the decision maker may opt for decreasing the

probability level of the joint chance constraint, but this exacerbates the computational difficulties. Therefore,

one may prefer to employ individual chance constraints even if a joint chance constraint is more appropriate

from a modeling perspective. In particular, it is natural to use individual chance constraints to develop a
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computationally tractable approximation of a joint chance-constrained optimization model (see, e.g., Prékopa,

2003; Haneveld and van der Vlerk, 2015).

Our study is dedicated to individual chance-constrained linear programs (LP), where the uncertainty is

restricted to the right-hand sides of the probabilistic constraints, and the random parameters have discrete

distributions. The convexity of the feasible region is still preserved in this structure given the fixed probability

levels. A general form of the classical LP with multiple individual chance constraints is then given by:

(MICC) min
x

cTx (1)

s.t. P(Tkx ≥ ξk) ≥ 1− ǫk, ∀ k = 1, . . . ,m (2)

x ∈ X . (3)

Here, the feasible set associated with the deterministic constraints is represented by the polyhedron X ⊆ Rn
+.

We assume that T is a deterministic m× n matrix with its kth row denoted by Tk, and ξ = (ξ1, . . . , ξm)T is an

m-dimensional random vector with a finite support. The realizations of the random vector ξ are denoted by ξi

with corresponding probabilities pi > 0 for i ∈ {1, . . . , N}. The individual chance constraints (2) ensure that

the stochastic (goal) constraint Tkx ≥ ξk holds with a probability at least equal to 1− ǫk for all k ∈ {1, . . . ,m},

where ǫk is the risk tolerance corresponding to the reliability level 1− ǫk. Note that integrality requirements can

also be incorporated into the definition of X , and our entire modeling and solution framework directly carries

over to individual chance-constrained integer linear programs as well.

It is well-known that (MICC) can be reformulated as a linear program when the risk tolerances ǫk, k =

1, . . . ,m, are input parameters specified by the decision maker. Alternatively, we can consider the risk tolerances

/ reliability levels as decision variables, and the resulting mathematical models can be put into good use in sev-

eral ways at the expense of additional complexity. For instance, (MICC) with a set of additional constraints on

the variable/adjustable reliability levels is presented in Prékopa (2003) – see formulation (5.10) – as an approxi-

mation of a joint chance-constrained optimization model. This approximation optimizes the risk tolerances and

is a natural extension of the classical Bonferroni approximation, which is based on the particular choice of equal

risk tolerances. Another motivation for varying the values of the reliability levels is to perform a Pareto analysis

in order to extract insights about the trade-off between the actual cost/return factors and the cost associated

with the probabilities of the undesirable events of interest (Rengarajan and Morton, 2009; Rengarajan et al.,

2013). In a similar vein, Shen (2014) proposes a new class of optimization models with adjustable reliability

levels, where the author incorporates a linear cost function of the individual risk tolerances into the objective

function (1). Lejeune and Shen (2016) follow this line of research in the context of joint chance-constrained

optimization. They consider two types of a joint constraint – with a deterministic technology matrix T on

the left-hand side (randomness exists only on the right-hand side) and with a random technology matrix T –

and develop effective mathematical programming formulations based on a Boolean modeling framework. We

also refer to Lejeune and Shen (2016) for a detailed review on studies which consider a trade-off between the

conflicting cost/return criteria and reliability objectives.

Our study is directly related to and motivated by Shen (2014). The author presents a mixed-integer linear

programming (MIP) reformulation for (MICC) with adjustable risk tolerances. However, the reformulation of

the chance constraints relies on the classical big-M paradigm and solving large instances presents a formidable

challenge due to the well-known weakness of the LP relaxations of formulations featuring big-Ms. Our primary

objective in this paper is therefore to offer a computationally effective MIP reformulation of (MICC) when

the reliability levels are treated as decision variables. To this end, we exploit recent methodological advances

for modeling and solving chance-constrained linear programs with fixed reliability levels. In particular, we use

a modeling approach similar to that presented in Luedtke et al. (2010). The fundamental idea is to rewrite

the chance constraints (2) in the form of Tkx ≥ zk, where zk corresponds to the (1 − ǫk)th quantile of the

random component ξk for k ∈ {1, . . . ,m}. Variable reliability levels render the quantile values denoted by

zk, k ∈ {1, . . . ,m}, variable as well, and reformulating the chance constraints requires being able to express the
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quantile values as functions of the reliability level variables. To this end, we develop two alternate approaches

to express the decision variables zk, k ∈ {1, . . . ,m}. The first representation is based on the mixing inequalities

proposed by Luedtke et al. (2010). The authors study the mixing set with a knapsack constraint arising in the

deterministic equivalent formulation of a joint chance-constrained optimization model with a finitely distributed

random right-hand side and a fixed reliability level. It turns out that the results of this work can be applied to

individual chance-constrained optimization models with adjustable risk tolerances as well. An alternate second

representation arises from using a different set of binary variables to identify the scenarios under which the

goal constraints are violated. The resulting MIP formulations scale very well with an increasing number of

scenarios and outperform the current state-of-the-art based on the big-M type of constraints by a significant

margin – see Section 5. Therefore, one noteworthy contribution of our work is to highlight the existence and

efficacy of alternate formulations for individual chance-constrained (integer) linear programs with and without

variable risk tolerances and make recent methodological progress in modeling and solving chance-constrained

optimization models more accessible to practitioners.

Optimization capturing the trade-off between the actual cost factors and the cost of the risk tolerances

associated with the chance constraints is a fairly recent research area, and such a hybrid modeling approach

has promise to be applied in different fields. In this context, we elaborate on how to construct a cost function

of the variable reliability levels and extend/modify Shen (2014)’s model by quantifying the cost of reliability

with a different perspective. Ultimately, we apply the proposed modeling approach to humanitarian relief

logistics, where it may be essential to consider multiple and possibly conflicting performance criteria – such

as accessibility and equity, see, e.g., Noyan et al. (2016). In particular, we focus on balancing the trade-

off between accessibility and the level of demand satisfaction in the context of post-disaster relief network

design. We introduce a new stochastic last mile distribution network design problem, which determines the

locations of the Points of Distribution (PODs), the assignments of the demand nodes to PODs, and the delivery

amounts to the demand nodes while considering the equity and accessibility issues and incorporating the inherent

uncertainties. The studies that consider decisions related to the locations of the last mile facilities are scarce, and

as emphasized in Noyan et al. (2016), the majority of these studies either assume a deterministic setting and/or

do not incorporate the concepts of accessibility and equity. Our study contributes to the humanitarian relief

literature by introducing a new hybrid supply allocation policy and developing a new risk-averse optimization

model, which is well-solved with the proposed MIP formulations. We delay the relevant literature review on

relief network design until Section 4.

The rest of the paper is organized as follows. In Section 2, we present two effective alternate MIP formulations

of (MICC) with adjustable/variable reliability levels. In Section 3, we extend these formulations to a related

class of models that focus on balancing the trade-off between the cost/return and the reliability levels. Section

4 is dedicated to the new stochastic last mile distribution network design problem discussed above. This is

followed in Section 5 by the computational study, while Section 6 contains the concluding remarks.

2. Optimization Models with Individual Chance Constraints In this section, we first present the

classical mathematical programming reformulation of (MICC) with fixed reliability levels, and then delve into

the extensions of (MICC) with variable risk tolerances. Before we proceed, some of the conventions used

throughout the paper are due here. FX designates the cumulative distribution function of a random variable

X . The set of the first n positive integers is denoted by [n] = {1, . . . , n}, while [a]+ = max(a, 0) indicates the

positive part of a number a ∈ R.

Quantiles play a major part in the reformulations of chance-constrained optimization models, where the first

quantile function F
(−1)
X : (0, 1] → R of a random variable X is the generalized inverse of the cumulative

distribution FX given by F
(−1)
X (α) = inf{η ∈ R : FX(η) ≥ α}. This quantity is also known as the value-at-risk

(VaR) of the random variable X at confidence level α ∈ (0, 1] and denoted by VaRα(X). Observing that the
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equivalence relation

P(Tkx ≥ ξk) ≥ 1− ǫk ⇔ Tkx ≥ F
(−1)
ξk

(1− ǫk), (4)

holds for any k ∈ [m] yields the following LP as the deterministic equivalent formulation of (MICC) with fixed

risk tolerances ǫk, k ∈ [m]:

(MICC−DEF) min
x

cTx (5)

s.t. Tkx ≥ F
(−1)
ξk

(1 − ǫk), ∀ k ∈ [m] (6)

x ∈ X . (7)

The inequalities in (6) are linear because the quantile values F
(−1)
ξk

(1 − ǫk), k ∈ [m], are input parameters

calculated a priori for the given set of scenarios representing the distribution of the random vector ξ. For

instance, in our humanitarian relief network design problem of Section 4, ξk designates the random demand at

some location k and the value VaR1−ǫk(ξk) specifies a lower bound on the total supply delivered to this location

that is exceeded with a large probability 1 − ǫk. Since we enforce individual chance constraints, without loss

of generality we can assume that the realizations of ξk are relabeled so that ξ1k ≥ · · · ≥ ξNk holds with the

corresponding probabilities pik, i = 1, . . . , N , for all k ∈ [m]. Then, it is easy to see that we have F
(−1)
ξk

(α) = ξ
i′k
k

for all k ∈ [m], where

i′k : = max{i ∈ [N ] :

i∑

l=1

plk ≤ 1− α} + 1 = max{i ∈ [N ] :

N∑

l=i

plk ≥ α}. (8)

As discussed in Section 1, one may prefer to allow the reliability levels to be decision variables in some decision

making problems. Consequently, the quantile values are also incorporated as decision variables into this version

of (MICC) – referred to as (MICC−VR−DEF) in this paper. It turns out that optimizing over a set of

individual chance constraints with variable reliability levels is strongly NP−hard (Theorem 8, Xie et al., 2017).

In this case, we cannot preserve an LP structure and have to resort to the binary variables βki, k ∈ [m], i ∈ [N ],

so that βki is set to one if Tkx < ξik – as ensured by the constraints (9b) in the formulation below:

(MICC−VR −DEF) min
x,ǫ,β

cTx (9a)

s.t. Tkx ≥ ξik −Mβki, ∀ k ∈ [m], i ∈ [N ] (9b)
∑

i∈[N ]

pikβki ≤ ǫk, ∀ k ∈ [m] (9c)

Aǫ ≤ b, (9d)

0 ≤ ǫk ≤ ǭk, ∀ k ∈ [m] (9e)

x ∈ X , (9f)

β ∈ {0, 1}m×N . (9g)

The constraints (9b)-(9c), where M is a large number, collectively mandate that P(Tkx ≥ ξk) ≥ 1− ǫk. Given

an optimal solution
(

x̂, β̂, ǫ̂

)

, we have Tkx̂ ≥ max{ξik : i ∈ [N ], β̂ki = 0} for k ∈ [m]. It is easy to see that

the right-hand side of this expression is the quantile value in (6) for the risk tolerance ǫk =
∑

i∈[N ]:β̂ki=1 p
i
k. Two

types of constraints are imposed on the variable risk tolerances ǫk, k ∈ [m]. The reliability level of an individual

chance constraint k ∈ [m] can be no less than 1− ǭk as ensured by the simple upper bound constraints (9e). In

addition, we include a general set of constraints (9d) with ǫ = (ǫ1, . . . , ǫm)T on the variable risk tolerances. In

applications – say in a production planning problem or in a humanitarian relief context such as that in Section

4, constraints (9d) may reflect the relative importance of an individual chance constraint with respect to the

others. To illustrate, if the population center 1 (node 1) in a humanitarian relief network design problem is

deemed to be more critical than population center 2 (node 2) based on its characteristics, then the constraint

a12ǫ1 ≤ ǫ2 with a12 > 1 would be included in the formulation. This would mandate a higher level of demand
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satisfaction at population center 1 compared to that at population center 2. A similar interpretation equally

applies to a production planning problem by substituting customers for population centers. On the other hand,

if (MICC−VR−DEF) is employed as an approximation of a corresponding optimization model with an

embedded joint chance constraint of the form P(Tkx ≥ ξk, k ∈ [m]) ≥ α as discussed in the introduction,

then (9d) consists of a single constraint
∑

k∈[m] ǫk ≤ 1 − α and also implies that ǭk = 1 − α for all k ∈ [m]

in (9e). In contrast, the traditional Bonferroni approximation sets ǫk = (1 − α)/m for all k ∈ [m]. Here,

allowing variable reliability levels is of essence to improve the effectiveness of the Bonferroni approximation.

Such an approximation can for instance be used in order to solve a humanitarian relief network design model

incorporating a joint chance constraint with the goal of satisfying the demand across the network with a specified

high probability. This probability may be labeled as the minimum required level of “network-wide reliability”

(see, e.g., Hong et al., 2015).

A MIP formulation of the form (MICC−VR−DEF) quickly becomes computationally intractable as the

number of scenarios increases due to the presence of the big-M type of constraints – such as (9b). The key result,

which enables stronger and computationally effective formulations based on recent methodological progress, is

that for a given k ∈ [m], the set of constraints Tkx ≥ ξik − Mβki, i ∈ [N ], can be substituted by a single

constraint

Tkx ≥ zk, (10)

where zk is a quantile expressed purely through the realizations ξik, i = 1, . . . , N , and a set of binary variables.

This result rests on the equivalence relation (4) and the fact that the realizations of ξ can be sorted independently

for each component k ∈ [m] because we deal with individual chance constraints. These two observations together

imply the existence of a threshold index i′k for any fixed set of decisions x̄ such that Tkx̄ < ξik for i = 1, . . . i′k−1,

and Tkx̄ ≥ ξik for i = i′k, . . .N . Correspondingly, the values of the associated β-variables are set as βki = 1 for

i = 1, . . . i′k − 1, and βki = 0 for i = i′k, . . . N . Exploiting this structure and detecting the correct value of i′k
is the central theme in the development of the valid inequalities and variable reduction techniques summarized

in the next lemma. The proofs are omitted either because they are simple to derive or exist in the references

provided.

Lemma 2.1

i. Preprocessing – variable reduction (see, e.g., Luedtke et al., 2010; Lejeune and Noyan, 2010). Let

i∗k := max{i ∈ [N ] :
∑i

l=1 p
l
k ≤ ǭk} + 1 for k ∈ [m]. Then, the necessary condition for any x ∈ X to

satisfy (2) with ǫk ≤ ǭk, k ∈ [m], is that the following quantile-based inequalities hold:

Tkx ≥ ξ
i∗k
k ∀ k ∈ [m].

Consequently, βki = 0 for all k ∈ [m], i ∈ {i∗k, . . . , N}, in any feasible solution of (MICC−VR−DEF),

and these variables can be omitted from the formulation. Note that ǭk is an input parameter while ǫk is a

decision variable, and by the definition of i∗k we have F
(−1)
k (1− ǭk) = ξ

i∗k
k ≥ ξik for all i ∈ {i∗k, . . . , N}. Then,

by the monotonicity of the first quantile function, F
(−1)
k (1 − ǫk) ≥ F

(−1)
k (1 − ǭk) holds, and the assertion

follows from (4).

ii. Valid inequalities (see, e.g., Ruszczyński, 2002; Luedtke et al., 2010). The following inequalities are valid

for (MICC−VR −DEF):

βki ≥ βk,i+1 ∀ k ∈ [m], i ∈ [N − 1].

iii. For a discrete random variable ξk with realizations ξ1k ≥ · · · ≥ ξNk and corresponding probabilities pik, i ∈ [N ],

VaRλ(ξk) = VaRα(ξk) holds for any λ ∈ (α−, α+], where α− = P(ξk < VaRα(ξk)) and α+ = P(ξk ≤

VaRα(ξk)). In other words, the quantile function F
(−1)
k in (4) is constant on the following intervals:

F
(−1)
k (α) = ξik ∀ α ∈

(
N∑

l=i+1

plk,

N∑

l=i

plk

]

, k ∈ [m]. (11)
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iv. Valid equalities. Based on item (iii), there exists an optimal solution to (MICC−VR−DEF) for

finite probability spaces such that the variable ǫk is set to one of the values
{

p̃
i∗k−1
k , p̃

i∗k−2
k , · · · , p̃1k, p̃

0
k

}

,

where p̃ik = P(ξk ≥ ξik) =
∑

l∈[i] p
l
k for i ∈ [i∗k − 1] and p̃0k = 0. Then, the following constraints are valid for

(MICC−VR−DEF):

ǫk =
∑

i∈[i∗
k
−1]

p̃ik(βki − βk,i+1) with βk,i∗
k
= 0 ∀ k ∈ [m].

A similar set of constraints featuring a different type of binary variables is used in Shen (2014).

v. Strengthened star (mixing) inequalities (Luedtke et al., 2010). The big-M constraints (9b) in

(MICC−VR−DEF) can be substituted by

Tkx ≥ ξ1k −
∑

i∈[i∗
k
−1]

(ξik − ξi+1
k )βki, ∀ k ∈ [m]. (12)

Starting from the structure of the β−variables discussed preceding Lemma 2.1, it is straightforward to attach

an intuitive meaning to the inequalities (12). In order to explain the theoretical basis of these valid inequalities,

observe that the random vector ξ ∈ Rm can be assumed to be non-negative without loss of generality – see

Section 2 in Luedtke et al. (2010). This trivially implies that Tkx ≥ 0 for every feasible solution given any set

of reasonable reliability values (i.e, ǫk < 1, k ∈ [m]), and we can replace (9b) by Tkx ≥ ξik(1 − βki), ∀ k ∈

[m], i ∈ [N ]. This new form of the big-M constraints exposes the connection with the mixing set – a well-known

concept in integer programming. This connection is exploited by Luedtke et al. (2010), who focus on a single

chance constraint indexed by k ∈ [m] with a fixed risk tolerance level ǭk as a means of developing strong MIP

formulations for joint chance-constrained LPs. The authors first leverage the knapsack inequality (9c) to obtain

a strengthening of the set Gk = {(y,βk) ∈ R+ × {0, 1}N :
∑

i∈[N ] p
i
kβki ≤ ǭk, y + ξikβki ≥ ξik, i ∈ [N ]}

associated with the inequalities Tkx ≥ ξik(1 − βki), ∀ i ∈ [N ]. Then, they apply the mixing inequalities of

Günlük and Pochet (2001) to establish that (12) are facet-defining for Gk; however, (12) does not characterize

the convex hull. The validity of these inequalities for (MICC−VR −DEF) can be argued from the necessary

condition (6) and the relation F
(−1)
ξk

(1 − ǫk) ≥ F
(−1)
ξk

(1 − ǭk) implied by the upper bounding constraints (9e).

Embedding facet-defining inequalities into MIP formulations yields tighter LP relaxations and quicker solution

times. Such enhanced formulations are commonly labeled as “strong” formulations, and we follow suit by

marking the strong formulations presented in the rest of the paper with the letter “S” appended to the head of

the formulation titles.

At the fundamental level, all enhancements that enable the strong formulations in this paper rely on sorting

the realizations of the random right-hand side vector in the goal constraints independently for each k ∈ [m].

Therefore, it is essential for us that randomness is restricted to the right-hand side of the goal constraints.

However, if randomness is present in the technology matrix T on the left-hand side – as in the setting of

Lejeune and Shen (2016), then we can resort to a generalization and extension of the mixing set concepts

developed in Luedtke (2014).

Recall that the end goal in our endeavor to arrive at a stronger alternative to (MICC−VR−DEF) is

to replace the set of constraints Tkx ≥ ξik − Mβki, i ∈ [N ], by a single constraint (10). The main challenge

we face in this task is to express zk = F
(−1)
ξk

(1 − ǫk) = VaR(1−ǫk)(ξk) via linear constraints, where ǫk is a

decision variable. To this end, we can build upon Lemma 2.1 and use one of the linear representations of VaR

provided in the next lemma, which – to the best of our knowledge – have not appeared in the literature before.

An alternate representation of VaR has been proposed in Küçükyavuz and Noyan (2016); however, that one

is more general and is also valid when the realizations cannot be sorted in advance, e.g., when the outcomes

depend on the decisions. Ultimately, formulations incorporating this more general representation of VaR are

more complicated. In this paper, we can enjoy the simpler representations of Lemma 2.2 for the special case

when the realizations can be ordered a priori.



Elci, Noyan, Bulbul: Chance-constraints with variable reliability 7

Lemma 2.2 Suppose that V is a random variable with realizations v1 ≥ . . . ≥ vN and corresponding probabilities

pi > 0, i ∈ [N ]. Let p̃i = P(V ≥ vi) =
∑

l∈[i] p
l and i∗ := max{i ∈ [N ] : p̃i ≤ ǭ} + 1, where ǭ is a positive

constant in (0, 1]. Then, for a given risk tolerance ǫ′ such that 0 ≤ ǫ′ ≤ ǭ, the equality VaR(1−ǫ′)(V ) = z′ holds

if and only if

(i) there exists a vector (z, ǫ, β0,β) satisfying

z = v1 −
∑

i∈[i∗−1]

(vi − vi+1)βi, (13a)

∑

i∈[i∗−1]

piβi ≤ ǫ, (13b)

∑

i∈[i∗−1]

piβi +
∑

i∈[i∗]

(βi−1 − βi)p
i ≥ ǫ + λ, (13c)

β0 = 1, (13d)

βi∗ = 0, (13e)

βi ≥ βi+1, ∀ i ∈ [i∗ − 2] (13f)

βi ∈ {0, 1}, ∀ i ∈ [i∗], (13g)

0 ≤ ǫ ≤ ǭ, (13h)

where β ∈ {0, 1}i
∗

, z = z′, and λ is a sufficiently small positive constant to ensure that the constraint

(13c) is equivalent to the strict inequality
∑

i∈[i∗−1] p
iβi +

∑

i∈[i∗](βi−1 − βi)p
i > ǫ.

(ii) there exists a vector (z, ǫ,β) satisfying
∑

i∈[i∗−1]

(βi − βi+1)p̃
i = ǫ, (14a)

(13a), (13e)− (13h), (14b)

where β ∈ {0, 1}i
∗

and z = z′.

Proof. We distinguish between two cases. First, assume that 0 ≤ ǫ′ < p1 which implies VaR(1−ǫ′)(V ) =

v1. In this case, it is a simple matter to verify that (z, ǫ, β0,β) =
(

v1, ǫ′, 1,
(

0, . . . , 0
))

and (z, ǫ,β) =
(

v1, 0,
(

0, . . . , 0
))

are feasible with respect to (13) and (14), respectively. Conversely, the existence of a feasible

solution (z, ǫ, β0,β) =
(

v1, ǫ′, 1,
(

0, . . . , 0
))

with 0 ≤ ǫ′ < p1 for (13) correctly implies that VaR(1−ǫ′)(V ) = v1.

On the other hand, a feasible solution (z, ǫ,β) =
(

v1, 0,
(

0, . . . , 0
))

of (14) maps back to VaR(1−ǫ′)(V ) = v1

for any 0 ≤ ǫ′ < p1 by Lemma 2.1-(iii).

If p1 ≤ ǫ′ ≤ ǭ, then VaR(1−ǫ′)(V ) = vℓ+1 for some ℓ ∈ [i∗ − 1]. For this case, we can construct two feasible

solutions (z, ǫ, β0,β) =
(

vℓ+1, ǫ′, 1,
(

1, 1, . . . , 1, 0, . . . , 0
))

and (z, ǫ,β) =
(

vℓ+1, p̃ℓ,
(

1, 1, . . . , 1, 0, . . . , 0
))

for

(13) and (14), respectively. In both cases, β is composed of ones in the first ℓ positions, followed by all

zeros for the remaining components. To check the feasibility of these solutions, note that β fulfills (13e)-

(13g) and inserting it into (13a) yields z = vℓ+1. In addition, the constraints (13b)-(13d) prescribe that
∑

i∈[ℓ] p
i ≤ ǫ′ <

∑

i∈[ℓ+1] p
i. This must hold when VaR(1−ǫ′)(V ) = vℓ+1, and therefore, the first solution is

feasible for (13). To establish the feasibility of the second solution for (14), observe that ǫ = p̃ℓ satisfies (14a),

and (13h) is ensured by ℓ ≤ i∗ − 1 and the definition of i∗. Starting from the same feasible solutions, we can

show the converse of these statements and complete the proof through arguments analogous to those in the first

part of the proof. �

The illustration in the example below helps explain how the system (13) expresses VaR(1−ǫ′).
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Example 2.1 Suppose that for a given confidence level 1 − ǫ′ such that 0 ≤ ǫ′ ≤ ǭ, VaR(1−ǫ′)(V ) = vℓ+1 for

some ℓ ∈ [i∗ − 1] and VaR(1−ǭ)(V ) = vi
∗

.

∑
i∈[ℓ+1] p

i>ǫ′

︷ ︸︸ ︷

v1 ≥ · · · ≥ vℓ ≥ vℓ+1 ≥ · · · ≥ vi
∗

≥ · · · ≥ vN

︸ ︷︷ ︸
∑

i∈[ℓ] p
i≤ǫ′

︸︷︷︸

VaR(1−ǫ′)(V )

According to (13b)-(13g), βi = 1 for i ≤ ℓ (realizations in red) and βi = 0 for i ≥ ℓ + 1 (realizations in blue).

Then, (13a) takes the following form:

z = v1 − (v1 − v2)β1 − (v2 − v3)β2 − · · · − (vℓ − vℓ+1)βℓ

= v1 − (v1 − v2)− (v2 − v3)− · · · − (vℓ − vℓ+1) = vℓ+1

Thus, as desired, we ensure that z = VaR(1−ǫ′)(V ) = vℓ+1.

As is also evident from the proof of Lemma 2.2, (13) is developed starting from the first expression

in (8). On the other hand, the underlying premise of (14) is Lemma 2.1-(iii), which allows us to sub-

stitute (13b)-(13d) with (14a) to obtain (14) from (13). This observation further asserts that (14) is a

stronger representation of VaR(1−ǫ)(V ) compared to (13) because all feasible solutions of (13) of the form

(z, ǫ, β0,β) =
(

vℓ+1, ǫ′, 1,
(

1, 1, . . . , 1, 0, . . . , 0
))

with p̃ℓ ≤ ǫ′ < p̃ℓ+1 correspond to a single feasible solution

(z, ǫ,β) =
(

vℓ+1, p̃ℓ,
(

1, 1, . . . , 1, 0, . . . , 0
))

of (14). Finally, employing the enhancements of Lemma 2.1 and the

VaR representation (14), we arrive at a stronger MIP formulation of individual chance-constrained LPs with

variable reliability levels given below. An alternate formulation based on the VaR representation (13) can be

obtained in a very similar fashion.

(SMICC−VR− β) min
x,z,ǫ,β

cTx (15a)

s.t. Tkx ≥ zk, ∀ k ∈ [m] (15b)

zk = ξ1k −
∑

i∈[i∗
k
−1]

(ξik − ξi+1
k )βki, ∀ k ∈ [m] (15c)

βki ≥ βk,i+1, ∀ k ∈ [m], i ∈ [i∗k − 2] (15d)

βk,i∗
k
= 0, ∀ k ∈ [m] (15e)

ǫk =
∑

i∈[i∗
k
−1]

p̃ik(βki − βk,i+1), ∀ k ∈ [m] (15f)

(9d)− (9f), (15g)

βki ∈ {0, 1}, ∀ k ∈ [m], i ∈ [i∗k]. (15h)

For risk-averse decision makers, the typical values for the risk tolerances are small values such as 0.05 and

implies that the reasonable choices for the values of the corresponding upper bounds ǭk would also be small.

Therefore, the variable reduction-based preprocessing methods are very effective in reducing the number of

binary variables and constraints. However, in general, even the reduced form of (MICC−VR−DEF) may not

scale well with increasing problem size. The proposed formulations featuring the quantile-based representation

in the form of (10) have a huge positive impact on the solution times and the maximum instance size that can

be handled effectively. These claims will be substantiated in Section 5.2.

We conclude this section by providing an alternate equivalent formulation of (SMICC−VR− β) based on

a different set of binary variables. To this end, we define yki ∈ {0, 1}, k ∈ [m], i ∈ [N ], so that yki takes the

value of 1 if Tkx < ξi−1
k and Tkx ≥ ξik hold together. Clearly, we have yki = βk,i−1−βki with the understanding

that βk0 = 1. In this notation, exactly one of the variables yki, i ∈ [i∗k], – say yki′ – assumes the value 1 for
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each k ∈ [m] as mandated by the constraints (16e) below. Accordingly, the variable risk tolerance ǫk and the

corresponding quantile zk are set to p̃i
′−1
k =

∑

l∈[i′−1] p
l
k and ξi

′

k by the constraints (16d) and (16c), respectively.

This VaR representation (16c)-(16f) expressed via the y−variables provides us with the formulation stated next:

(SMICC−VR− y) min
x,z,ǫ,y

cTx (16a)

s.t. Tkx ≥ zk, ∀ k ∈ [m] (16b)

zk =
∑

i∈[i∗
k
]

ξikyki, ∀ k ∈ [m] (16c)

ǫk =
∑

i∈[i∗
k
]

p̃i−1
k yki, ∀ k ∈ [m] (16d)

∑

i∈[i∗
k
]

yki = 1, ∀ k ∈ [m] (16e)

yki ∈ {0, 1}, ∀ k ∈ [m], i ∈ [i∗k] (16f)

(9d)− (9f). (16g)

Shen (2014) bases her formulations on these y−variables – as will be explained in more depth in the next

section. Our motivation for providing this alternate formulation is to form a unified framework for the models

introduced in the rest of the paper and a foundation for discussing Shen (2014)’s model in the next section.

Finally, we point out that the LP relaxations of (SMICC−VR− β) and (SMICC−VR− y) are equivalent;

however, these two formulations do not necessarily perform similarly in our computational experiments because

the different cuts generated by the solver based on the β− and y−variables lead to different search trees.

3. Balancing the Actual Return/Cost and Risk In this section, we focus on a class of optimization

models with variable reliability levels, where the objective function also features a cost term associated with the

variable risk tolerances. The aim is to make decisions by taking into account the trade-off between the actual

cost/return and risk. We first present such an existing model proposed by Shen (2014) and provide associated

strong MIP formulations based on the modeling constructs of Section 2, which prove to be effective in solving

large problem instances in Section 5. In the second part of this section, we take a different stance from Shen

(2014) in capturing the trade-off between the variable reliability levels and the actual cost/return and introduce

an alternate way of quantifying the cost of reliability in the objective. A corresponding new class of optimization

models with effective MIP formulations are presented.

3.1 Underlying Optimization Model A general form of the extended version of

(MICC−VR−DEF), which incorporates the trade-off between the actual cost/return and risk is

given by

(MICC−VRT) min
x,ǫ

cTx+
∑

k∈[m]

hk(ǫk) (17)

s.t. (2), (9d)− (9f). (18)

In this modeling approach, the characterization of the cost function hk : [0, ǭk] → R plays a fundamental

role. Shen (2014) considers a monotonically increasing linear function of the form hk(ǫk) = akǫk with ak > 0 for

all k ∈ [m]. The author justifies her model by pointing out several problem settings with conflicting individual

chance constraints, where it may make sense to enable the decision maker to adjust the individual reliability

levels within their respective allowable intervals by solving (MICC−VRT). In a way, this model is akin

to multi-criteria methods, which form a single composite objective function by taking a weighted sum of the

individual conflicting objectives, and presents an alternative to exploring the Pareto frontier by iteratively

solving one of appropriate formulations from Section 2 with manually adjusted reliability levels. The issue
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whether a linear function of the risk tolerances incorporated directly into the objective – as in (17) – serves the

intended purpose is taken up in the next section. We first present the deterministic equivalent formulation of

(MICC−VRT) proposed by Shen (2014), which employs the y− variables introduced at the end of Section

2. Compared to Shen (2014)’s original formulation, the version below is slightly enhanced by incorporating the

preprocessing technique of Lemma 2.1-(i).

(MICC−VRT−DEF) min
x,ǫ,y

cTx+
∑

k∈[m]

akǫk (19a)

subject to Tkx ≥ ξikyki −M(1− yki), ∀ k ∈ [m], i ∈ [i∗k] (19b)
∑

k∈[m]

ǫk ≤ Γ (19c)

(9f), (16d)− (16f). (19d)

Obviously, the underlying premise of this formulation is the well-known quantile-based inequality (4) and the

observation formalized in Lemma 2.1-(iii). The simple upper bounds on the variable risk tolerances – see (9e)

– are excluded and the generic restrictions (9d) are replaced by a single constraint (19c) in this formulation,

where Γ is a given budget of risk shared by all chance constraints. The big-M constraints (19b) enforce that

Tkx ≥ ξikyki whenever yki = 1 and can be substituted by the enhanced form Tkx ≥ ξikyki by relying on the

non-negativity of the random right-hand side vector ξ ∈ Rm without loss of generality – see the discussion

immediately following Lemma 2.1. This latter form is also recognized – but not put to use – by Shen (2014)

and is utilized in our computational study, but it turns out that even the pre-processed reduced formulation

(MICC−VRT−DEF) does not scale well as the problem size increases. In particular, Shen (2014) employs

(MICC−VRT−DEF) to solve a multi-commodity flow network capacity design problem with a pretty limited

number of – three or six – individual chance constraints. The number of scenarios is kept constant throughout,

and the results indicate that the computational effort expended tends to grow sharply with increasing network

size and larger values of Γ. In her concluding remarks, Shen (2014) points out that iterative methods relying

on repeatedly solving (MICC) with fixed reliability levels is so far not promising for tackling (MICC−VRT)

and emphasizes the need for good MIP formulations to this end. We take up this issue in this paper and develop

substantially more effective and scalable MIP formulations for (MICC−VRT) by drawing upon the modeling

tools of Section 2. We illustrate our claims in Section 5 by performing computational tests on two classes of

problems: a transportation problem (Luedtke et al., 2010) and the stochastic network design problem described

in Section 4.

Compared to (SMICC−VR− y) in the previous section, the drawback of the formulation

(MICC−VRT−DEF) is that it fails to insert sufficiently large quantile values into the right-hand sides of the

constraints (19b). The crucial factor here is calculating the quantile values correctly as a function of the variable

risk levels ǫk, k ∈ [m], and representing the inequalities (19b) compactly. This issue is also of essential signifi-

cance in Section 3.2, where we devise an alternate expression for capturing the cost of reliability in the objective

function. Ultimately, we obtain a strong formulation of (MICC−VRT) by appending the term
∑

k∈[m] akǫk

to the objective function of (SMICC−VR − y). This formulation is referred to as (SMICC−VRT− y) in

the rest of the paper. In a similar vein, incorporating the same term
∑

k∈[m] akǫk into the objective function of

(SMICC−VR− β) yields an alternate strong formulation (SMICC−VRT− β) based on the β−variables.

The numerical results in Section 5 attest to the significant computational edge of (SMICC−VRT− y) and

(SMICC−VRT− β) over (MICC−VRT−DEF) – with gains of up to two orders of magnitude in solution

times for some instances. These experimental outcomes highlight the recent advances in the field of stochastic

programming (see, e.g., Luedtke et al., 2010; Küçükyavuz, 2012) and confirm their potential applicability to

practical problems, in which the uncertainty is captured with a large number of scenarios.

3.2 A New Approach to Quantifying the Cost of Reliability Chance constraints are based on a

qualitative risk concept and measure the probabilities of violating the stochastic constraints, irrespective of
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the magnitude of violation. Shen (2014)’s approach of incorporating the term
∑

k∈[m] akǫk into the objective

function may be considered as an attempt at constructing a hybrid stochastic model with both qualitative and

quantitative aspects. We concur with this perspective and also quote from Prékopa (1995), who notes that “the

best model construction is the one which combines the use of a probabilistic constraint and penalties in the

objective function,” as a further motivating support from the literature. However, we find that a linear function

of the risk tolerances directly appended to the objective function falls short of properly capturing the cost of

reliability for two reasons. First, the two components of the objective function (19a) are not commensurate; i.e.,

they are not on the same scale. Second, and more importantly, the structure of (19a) implies that decreasing the

value of ǫk from 0.10 to 0.09 and from 0.05 to 0.04 have the same impact of 0.01ak on the reliability component

of the objective function value. This is hardly justifiable as the first quantile function is not linear in the risk

tolerance. To provide a concrete example, suppose that decreasing the risk tolerance from 0.10 to 0.09 requires

supplying an additional 50 units of a particular product, while decreasing the risk tolerance from 0.05 to 0.04

may require an additional supply of 200 items. Clearly, the cost function associated with reliability should not

treat these two cases identically. Ultimately, we contend that in order to account for the nonlinear structure

of the first quantile function, the cost coefficient ak in (19a) should be specified according to the level of the

quantity-based service associated with a particular risk tolerance. Observe that according to the relation (4),

changing the value of the risk tolerance ǫk is equivalent to changing the right-hand side of the corresponding

constraint in the deterministic equivalent formulation – see, e.g., (16b)-(16d). From this viewpoint, it is more

natural to define the cost function associated with reliability explicitly in terms of the associated VaR values.

More specifically, we suggest to quantify the cost of reliability with a function of the form hk

(
VaR(1−ǫk)(ξk)

)
,

which leads to the problem statement:

(MICC−VRTQ) min
x,ǫ

cTx+
∑

k∈[m]

hk

(
VaR(1−ǫk)(ξk)

)
(20)

(2), (9d)− (9f).

In this context, larger VaR values – equivalently, smaller ǫk values – are preferred in terms of the reliability levels

of the chance constraints. Consequently, we consider monotonically decreasing cost functions hk() in order to

incorporate the cost of compromising from the reliability levels. The particular focus is on functions that can

be represented by linear objective terms and constraints.

Due to the variability of the reliability levels, the main task in reformulating (MICC−VRTQ) as a MIP is

to express F
(−1)
ξk

(1 − ǫk) = VaR(1−ǫk)(ξk) via linear constraints and can be accomplished by drawing upon the

modeling tools of Section 2. A MIP formulation of (MICC−VRTQ) is obtained from (SMICC−VRT− y)

in a straightforward way:

(SMICC−VRTQ− y) min
x,z,ǫ,y

cTx+
∑

k∈[m]

hk(zk) (21a)

s.t. (16b)− (16g). (21b)

We can also develop alternate MIP formulations employing the β− variables in the spirit of Sections 2 and 3.1.

As underlined previously at the end of Section 2, equivalent formulations based on the y− and β−variables are

closely related, but they may still exhibit different computational behavior. From this perspective, it makes

sense to extend (SMICC−VRT− β) by integrating the new cost functions hk

(
VaR(1−ǫk)(ξk)

)
, k ∈ [m]. To

this end, we can put either one of the VaR representations in Lemma 2.2 to use. The presentation (14) was

previously demonstrated in (SMICC−VR− β). To illustrate the use of (13), here we only present the MIP

formulation of (MICC−VRTQ) obtained from (SMICC−VRT− β) by incorporating (13):

(SMICC−VRTQ− β) min
x,z,ǫ,β

cTx+
∑

k∈[m]

hk(zk) (22a)

s.t. (15b)− (15e), (15g)− (15h), (22b)
∑

i∈[i∗
k
−1]

pikβki ≤ ǫk, ∀ k ∈ [m] (22c)
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∑

i∈[i∗
k
−1]

pikβki +
∑

i∈[i∗
k
]

(βk,i−1 − βki)p
i
k ≥ ǫk + λ, ∀ k ∈ [m] (22d)

βk0 = 1, ∀ k ∈ [m]. (22e)

An important aspect of the VaR representations in Lemma 2.2 is that they capture the value of VaR(1−ǫ)

precisely without relying on the structure of the objective function. This is essential given that the second

component of the objective function of (MICC−VRTQ) related to the cost of reliability favors larger values

of VaR. Otherwise, if smaller quantile values would be preferred by the objective, then (13c) could safely be

omitted from the representation (13).

We next elaborate on our particular choice of the cost function hk

(
VaR(1−ǫk)(ξk)

)
. One option is to set

hk

(
VaR(1−ǫk)(ξk)

)
= −ak VaR(1−ǫk)(ξk) with ak > 0. Alternatively, we define it based on the random outcome

[
ξk −VaR(1−ǫk)(ξk)

]

+
, which allows us to incorporate a quantitative measure on the potential violation of the

corresponding stochastic goal constraint. As noted at the start of this section, such hybrid approaches are

promoted in the literature as good modeling practice (Prékopa, 1995). In this spirit, we intend to determine

the optimal risk tolerance ǫk by also taking into account the realizations of ξk in excess of the lower threshold

value VaR(1−ǫk)(ξk). In particular, we focus on the expected violation and set hk

(
VaR(1−ǫk)(ξk)

)
= akE([ξk −

VaR(1−ǫk)(ξk)]+). If scenario-dependent cost coefficients are required or preferred, then the cost function takes

the form of

hk

(
VaR(1−ǫk)(ξk)

)
=

∑

i∈[i∗
k
−1]

akip
i
k[ξ

i
k − VaR(1−ǫk)(ξk)]+. (23)

For this choice of quantifying the cost of reliability, we define wki to represent [ξik − VaR(1−ǫk)(ξk)]+. Then,

it is sufficient to substitute the term
∑

k∈[m]

∑

i∈[i∗
k
−1] akip

i
kwki for

∑

k∈[m] hk(zk) in the objective functions

of (SMICC−VRTQ− y) and (SMICC−VRTQ− β) and append the following two constraints to the

formulation in either case:

wki ≥ ξik − zk, ∀ k ∈ [m], i ∈ [i∗k − 1] (24)

wki ≥ 0, ∀ k ∈ [m], i ∈ [i∗k − 1]. (25)

The proposed approach is a flexible modeling tool to balance the trade-off between the actual cost/return and

the cost of reliability and accounts for the violation of the stochastic goal constraints both qualitatively and

quantitatively.

For ease of reference, we provide a summary of the compact MIP formulations of the presented chance-

constrained optimization models in Table 1. These models are not domain-specific and may be applied to a

wide spectrum of problems, where factoring in the probability of uncertain unfavorable events is essential to

meet the reliability requirements of the system under design – see the first paragraph of Section 1. Incorporating

this concern into an optimization model has primarily been accomplished through chance-constraints with fixed

reliability levels up until recently. Along with recent research, we take this modeling approach one notch further

in this paper and provide the reader with an enhanced modeling construct that can explicitly account for the

trade-off between the cost of reliability and the reliability levels selected for different stochastic goal constraints.

Ultimately, however, we emphasize that the particular type of chance-constrained model to be used – with either

fixed or variable reliability levels – depends on the specific application and is up to the decision maker. Our

purpose here is to expose the availability of advanced formulation concepts in chance-constrained optimization

and enhance the modeling toolbox of the decision maker without necessarily expressing a strong preference for

one particular type of model. The next section puts some of the proposed models with variable reliability levels

into use for humanitarian relief network design; however, the applicability of our modeling framework certainly

extends to other domains. Specific existing relevant examples include multi-commodity flow network capacity

design (Shen, 2014) and multi-portfolio financial optimization (Lejeune and Shen, 2016).

On the one hand, the appropriate model is application- and context-dependent, and it is the decision maker’s

prerogative to select the model to apply – as underlined above. On the other hand, a couple of high-level
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fundamental considerations weigh into the choice of the correct chance-constrained optimization model with

variable reliability levels and its associated parameters. For instance, in the approximation of a joint chance-

constrained problem – see Section 1, the cost of reliability is irrelevant, and one of the formulations with

variable reliability levels in Section 2 must be used. In contrast, in our humanitarian relief network design

problem in Section 4, demand shortages matter, and therefore, we follow the modeling approach of Section 3.2

to explicitly penalize the violations of the goal constraints in the objective. Another principal issue is identified

as a consequence of the insights gleaned from the computational study in Section 5.3: the results are sensitive to

the values of ǭk, ∀ k ∈ [m], in the constraints (9e) as well as to the values of the set of parameters a, which appear

in the objective function of the models presented in Section 3 as part of the cost of reliability. A decision maker

not comfortable with identifying the values of these central parameters may resort to a Pareto-type approach as

outlined at the end of Section 5.3. Regardless of the domain of application, such key factors and considerations

should be integrated into the modeling process of chance-constraints with variable reliability levels.

Model MIP Formulation

(SMICC−VR− β)
min

x,z,ǫ,β
{cTx : (15b)− (15h)}, or simply, (15)

Based on β-variables

(SMICC−VR− y)
min

x,z,ǫ,y
{cTx : (16b)− (16g)}, or simply, (16)

Based on y-variables

(MICC−VRT−DEF)
min
x,ǫ,y

{cTx+
∑

k∈[m] akǫk : (19b)− (19d)}, or simply, (19)
Shen (2014)’s model

(SMICC−VRT− y)
min

x,z,ǫ,y
{cTx+

∑
k∈[m] akǫk : (16b)− (16g)},

(SMICC−VR− y) with trade-off

(SMICC−VRT− β)
min

x,z,ǫ,β
{cTx+

∑
k∈[m] akǫk : (15b)− (15h)},

(SMICC−VR− β) with trade-off

(SMICC−VRTQ− y)
min

x,z,ǫ,y
{cTx+

∑
k∈[m] hk(zk) : (16b)− (16g)}, or simply, (21)

(SMICC−VR− y) with VaR-based trade-off

(SMICC−VRTQ− β)
min

x,z,ǫ,β
{cTx+

∑
k∈[m] hk(zk) : (22b)− (22e)}, or simply, (22)

(SMICC−VR− β) with VaR-based trade-off

(SMICC−VRTQA− y) min
x,z,ǫ,y,w

{cTx+
∑

k∈[m], i∈[i∗
k
−1]

akip
i
kwki : (16b)− (16g), (24)− (25)}

(SMICC−VRTQ− y) with (23)

(SMICC−VRTQA− β) min
x,z,ǫ,β,w

{cTx+
∑

k∈[m], i∈[i∗
k
−1]

akip
i
kwki : (22b)− (22e), (24)− (25)}

(SMICC−VRTQ− β) with (23)
1: The big-M constraints (19b) in Shen (2014) are substituted by the enhanced form Tkx ≥ ξikyki,∀ k ∈ [m], i ∈ [i∗k].
2: size(x) = n, size(z) = size(ǫ) = m, size(y) = size(β) =

∑

k∈[m]

i∗k, size(w) =
∑

k∈[m]

(i∗k − 1);

i∗k = ⌊Nǭk⌋ + 1, ∀ k ∈ [m] for equal scenario probabilities.
3: y, β: binary; z, ǫ, w: continuous; x: binary/continuous.
4: (SMICC−VR− y), (SMICC−VRT− y), (SMICC−VRTQ− y) contain O(m+ q + r) constraints, where

q and r denote the number of constraints in (9d) and (9f), respectively. The corresponding figure for the remaining

formulations is O(mN + q + r), except that (MICC−VRT−DEF) includes O(mN + r) constraints.

Table 1: Summary of the MIP formulations of the chance-constrained optimization models.

4. A Stochastic Optimization Model for Designing Last Mile Relief Networks We introduce a

new stochastic last mile distribution network design problem and develop an associated stochastic optimization

model that incorporates the concepts of accessibility and equity while capturing the uncertainty in post-disaster

demands and transportation network conditions. The proposed model showcases the generic chance-constrained

stochastic programming formulations with variable reliability levels of the previous sections.

4.1 Literature Review There is a growing body of literature devoted to the development of stochas-

tic programming models for humanitarian relief logistics (see, e.g., Liberatore et al., 2013). The majority of
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these studies involving facility location decisions are dedicated to the pre-disaster management context (see,

e.g., Balcik and Beamon, 2008; Rawls and Turnquist, 2010; Salmerón and Apte, 2010; Mete and Zabinsky, 2010;

Döyen et al., 2012). Moreover, most of the existing studies – with the exception of a few (e.g., Beraldi and Bruni,

2009; Rawls and Turnquist, 2011; Noyan, 2012; Hong et al., 2015; Elçi and Noyan, 2018) – propose risk-neutral

stochastic programming models. However, making decisions based on the expected values may not be good

enough for rarely occurring disaster events, and it may be essential to take into consideration the random vari-

ability inherent in chaotic disaster relief systems. To the best of our knowledge, risk-averse stochastic models

for post-disaster relief network design are at best scarce, and models with chance constraints are absent. Even

the more extensive literature on pre-disaster relief network design includes only a few studies that provide

chance-constrained optimization models (Rawls and Turnquist, 2011; Hong et al., 2015; Elçi and Noyan, 2018).

The majority of the studies related to post-disaster humanitarian operations assume that the locations

of the last mile facilities are known and focus on distribution problems addressing vehicle routing and/or

supply allocation decisions. Only a few studies are concerned with last mile network design decisions such as

the locations and capacities of the Points of Distribution (PODs) of the relief supplies. Moreover, most of

the studies taking into account the decisions related to the locations of the last mile facilities either assume

a deterministic setting and/or do not incorporate the concepts of accessibility and equity. Based on these

reflections, Noyan et al. (2016) contribute to the literature by introducing a last mile distribution network

design problem and presenting a mathematical model that incorporates accessibility and equity while capturing

the uncertain aspects of the post-disaster environment. We refer to their study and the references therein for

the relevant literature on last mile humanitarian relief logistics and a detailed discussion on the significance of

considering the equity and accessibility issues and the inherent uncertainties in the context of last mile relief

network design. Kahvecioglu (2014) extends the study of Noyan et al. (2016) by studying a more elaborate

integrated last mile network design problem, which relaxes the assumption that there exists a single Local

Distribution Center (LDC) with a pre-determined location, and assumes that there already exist some resources

located before a disaster occurs and integrates the decisions on the reallocation of pre-stocked relief supplies.

At a high level, several aspects differentiate the current work from these previous studies. Noyan et al. (2016)

propose a hybrid allocation policy that can balance the trade-off between equity and accessibility and develop

a risk-neutral two-stage stochastic programming model with this hybrid supply allocation policy embedded.

The current study introduces a new post-disaster relief network design problem and devises a different hybrid

supply allocation policy that leverages the chance-constrained framework in focus in order to provide accessible

and equitable service to the beneficiaries. Consequently, we move away from the risk-neutral paradigm and

construct a novel risk-averse optimization model for post-disaster management following the modeling approach

presented in Section 3. We elaborate more on the differences in the problem descriptions and model settings in

the next section.

4.2 Problem Description We aim to design a two-echelon system, where the relief supplies arriving at an

LDC are sent to PODs in the first echelon, and the relief supplies are delivered from PODs to the beneficiaries

in the second echelon. We assume that there is a single LDC with a pre-determined location, and consider a

single type of relief item that can be a bundle (standard kit) of critical relief supplies, such as prepackaged food,

medical kits, and water.

Last mile relief networks must be set up quickly before the relief organizations can collect accurate information

about the post-disaster conditions. This essentially implies that the relief organizations need to make the design

decisions before the uncertainties related to the post-disaster conditions are resolved. In line with this viewpoint,

Noyan et al. (2016) develop a two-stage model, where the first-stage decisions are for locating the PODs and the

second-stage decisions are related to the allocation of supplies to the PODs and the assignments of the demand

points to the PODs. Alternatively, we consider the situations where the relief organizations need to make all

network design decisions immediately in order to start delivering the relief supplies to the affected areas. To this
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end, we propose a single-stage stochastic programming model, which jointly determines the decisions related to

the following: i) the locations of the PODs, ii) the assignments of the demand points to the PODs, and iii) the

distribution of the supplies to the PODs and the demand points.

Following suit with Noyan et al. (2016), we develop an optimization model incorporating the accessibility

and equity issues critical to the design of the last mile networks. We follow their approach of characterizing

accessibility, defined as the ease of access to the relief supplies. In particular, the accessibility in the first

echelon of the last mile network is affected by the physical factors only (e.g., geographical, topographical), while

accessibility in the second echelon is affected both by the physical and demographical/socio-economical factors

(e.g., age, gender, disability). Noyan et al. (2016) consider an accessibility metric based on the sum of the

expected total accessibility of the PODs from the LDC and the expected total accessibility of the PODs from

the demand locations. We alternatively design a delivery amount-weighted version of this accessibility metric.

Considering more detailed supply distribution decisions (in addition to the decisions on the deliveries from the

LDC to the PODs we also determine the amounts of supplies delivered from the PODs to the demand points)

allows us to obtain this finer accessibility metric. In order to be consistent with our cost minimization setup,

we use the convention that lower accessibility scores indicate higher accessibility and define the accessibility

scores as the weighted travel times. These accessibility scores correspond to the reciprocals of those used in

Noyan et al. (2016).

We consider two types of equity: equitable accessibility and equitable supply allocation. As in Noyan et al.

(2016), we ensure equitable accessibility to the PODs from the demand locations by defining the coverage sets

according to a maximum threshold requirement in terms of the accessibility scores associated with the links.

However, we take a different approach to modeling equity in supply allocation. Noyan et al. (2016) hybridize

two supply allocation policies based on quantitative measures: a strict proportional allocation policy referred

to as the PD Policy, which divides the available supply among the PODs in proportion to the total demands

assigned to the PODs under each scenario, and the TD policy, which ensures that the shortage amount at

each POD does not exceed a specified proportion of the corresponding total demand under each scenario. In

particular, their hybrid approach enforces the TD policy and a relaxed version of the PD policy, and penalizes

the deviations from the strict PD policy in the objective function in order to distribute the supplies among the

PODs in proportion to their total demands as much as possible without compromising from the expected total

accessibility. In contrast, in this study, we consider the supply allocations at the demand level instead of the

POD level due to the focus on more detailed supply distribution decisions. This property of our model renders

the existing TD and PD policies not directly applicable to our setup because the targeted demand levels in our

demand satisfaction constraints are the individual demands at each location. These demand values are input

parameters while the total demands assigned to the PODs are decision variables implied by the assignment

decisions. In our setting, we incorporate both a qualitative and a quantitative measure regarding the stochastic

demand satisfaction constraints. As the qualitative measure, we introduce individual chance constraints on

satisfying the demands at each location, where the lower bound on the reliability level is set to be equal for

each demand location. The quantitative measure is in the form of (23) and closely related to the proportion of

unsatisfied demand at each point. Focusing on such a proportional measure is in itself promising in terms of

serving the population groups equitably. These approaches lead to a new hybrid supply allocation policy which

enforces a set of individual chance constraints on satisfying the demands at each node and penalizes the cost of

reliability associated with these demand satisfaction constraints.

4.3 Stochastic Optimization Model We consider a network where each node represents a geographical

area (a settlement such as a village and a town) according to the size of the affected region. We denote the

set of demand nodes by I and the set of candidate PODs by J , where we assume that J ⊆ I without loss of

generality. The randomness in the node demands and the accessibility scores associated with the links of the

network are represented by a finite set of scenarios. Taking a conservative approach, a POD can cover (serve)
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a demand node only if the worst (largest) accessibility score to the POD from the demand location under any

scenario is no larger than a maximum threshold τ̄ . Next, we provide the list of the additional input parameters:

pi: probability of scenario i, i ∈ S,

ξk: the random variable associated with the demand at node k, k ∈ I,

ξik: demand at node k under scenario i with the corresponding probability pik, k ∈ I, i ∈ S; ξ1k ≥ · · · ≥ ξNk
holds without loss of generality for all k ∈ I,

νi0j : score for accessibility to candidate POD j from the LDC under scenario i, j ∈ J , i ∈ S,

νikj : score for accessibility to candidate POD j from demand node k under scenario i, k ∈ I, j ∈ J, i ∈ S with

νijj = 0 for all j ∈ J, i ∈ S,

Hk = {j ∈ J | maxi∈S νikj ≤ τ̄}: set of candidate PODs that can cover demand node k, k ∈ I,

Lj = {k ∈ I | maxi∈S νikj ≤ τ̄}: set of demand nodes that can be covered by the candidate POD j, j ∈ J ,

κ: maximum number of PODs to be opened (κ ≤ |J |),

Θ: the total amount of available supplies,

Kj: an upper bound on the amount of supplies that can be delivered to POD j, j ∈ J .

In our modeling framework, the network design decisions are made before the uncertainty in the parameters

is resolved. We use the notation below for the network design decisions of interest:

� γj = 1 if a POD is located at node j ∈ J , and γj = 0 otherwise,

� δkj = 1 if demand node k ∈ I is served by POD j ∈ Hk, and δkj = 0 otherwise,

� xkj : the amount of supplies delivered to demand node k ∈ I from POD j ∈ J .

Then, the amount of supplies delivered to POD j from the LDC is given by
∑

k∈Lj
xkj .

In our modeling approach, we ensure equitable accessibility by serving each demand point by a POD in

its coverage set defined based on a common upper bound on the accessibility scores associated with the links.

Regarding accessibility, we also design an efficiency-related objective function featuring the total accessibility.

We note that the upper bound parameter τ̄ can be used to balance the trade-off between the equity as measured

by the worst possible accessibility score and efficiency as quantified by the total accessibility. Moreover, we

additionally take into account equity in supply allocation by enforcing a set of individual chance constraints to

distribute the relief supplies to the demand points in such a way that the probability of satisfying the demand

at each node is at least equal to a common a lower bound (1 − ǭ). In addition to this qualitative measure on

the level of demand satisfaction, we incorporate a quantitative measure – based on the deviations from the

desired levels of delivery – into the objective function to control for the demand shortage amounts. Following

the modeling approach proposed in Section 3.2, we set the desired level of delivery for node k as VaR(1−ǫk)(ξk),

k ∈ I, and calculate the proportion of unsatisfied demand (PUD) based on these lower threshold VaR values.

This modeling approach based on the variable reliability levels allows us to balance the trade-off between the

total accessibility and the cost of reliability associated with the demand satisfaction in the objective function.

We next present the chance-constrained optimization model developed for our stochastic relief network design

problem:

(CCSRND) min
γ,δ,x,ǫ

∑

i∈S

∑

j∈J

piνi0j
∑

k∈Lj

xkj +
∑

i∈S

∑

k∈I

∑

j∈Hk

piνikjxkj

+
∑

k∈I

∑

i∈[i∗
k
−1]

pik

(
a

ξik

[
ξik −VaR(1−ǫk)(ξk)

]

+

)

(26a)

s.t.
∑

j∈J

γj ≤ κ, (26b)
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∑

k∈Lj

xkj ≤ Kjγj , ∀ j ∈ J (26c)

∑

j∈J

∑

k∈Lj

xkj = Θ, (26d)

∑

j∈Hk

xkj ≤ max
i∈S

ξik, ∀ k ∈ I (26e)

∑

j∈Hk

δkj = 1, ∀ k ∈ I (26f)

δkj ≤ γj , ∀ k ∈ I, j ∈ Hk (26g)

δjj ≥ γj , ∀ j ∈ J (26h)

xkj ≤ δkjUkj , ∀ k ∈ I, j ∈ Hk (26i)

P




∑

j∈Hk

xkj ≥ ξk



 ≥ 1− ǫk, ∀ k ∈ I (26j)

0 ≤ ǫk ≤ ǭ, ∀ k ∈ I (26k)

γj ∈ {0, 1}, ∀ j ∈ J (26l)

δkj ∈ {0, 1}, ∀ k ∈ I, j ∈ Hk (26m)

xkj ≥ 0, ∀ k ∈ I, j ∈ Hk. (26n)

The objective function (26a) minimizes the expected total delivery amount-weighted accessibility score

(ETWA) and the expected cost of the risk tolerances ǫk, k ∈ I, where the expected values are estimated

by sample averaging. The second cost term is based on the VaR-based PUD values referred to as V-PUD. Thus,

the expected cost of the reliability levels is specified as a linear function of the expected total V-PUD. Consid-

ering the V-PUD values and assigning a common penalty coefficient a to all demand points are consistent with

the intent of fair supply allocation. Constraint (26b) ensures that the number of established PODs is not larger

than the specified limit κ. Constraints (26c) play a dual role by imposing a maximum capacity limit on the

amount of supplies delivered to each open POD and mandating that there is a POD located at node j if there

is any delivery to that POD. According to the constraints (26d) and (26e), all available supplies are distributed

in the network while the total supply amount allocated to a demand node does not exceed its largest possible

demand realization. Here, the underlying assumption is that Θ ≤
∑

k∈I maxi∈S ξik. This relation may not hold

only in rare and uninteresting cases when the relief supplies in the last mile network are ample compared to the

total demand. Constraints (26f) and (26g) guarantee that each demand node is assigned to a single open POD

– a policy known as single sourcing and implemented commonly in practice. A demand node with an open POD

should naturally be served by this POD – as is also favored by the objective coefficients νijj = 0, j ∈ J, i ∈ S.

However, under extremely restrictive capacity limits, the optimal solution may not obey this rule. To avoid

such peculiar solutions, we embed this rule explicitly via constraints (26h). Constraints (26i) set the delivery

amounts to the demand nodes from their respective assigned PODs. The delivery amount to node k is naturally

bounded from above by the capacity of its corresponding POD and the maximum possible demand realization

at node k; that is, Ukj := min{Kj,maxi∈S ξik} for all k ∈ I and j ∈ Hk. The constraints (26j) and (26k)

collectively prescribe that the probability of satisfying demand at each demand node is at least 1− ǫk ≥ 1− ǭ.

The rest of the constraints enforce the non-negativity and binary restrictions.

Drawing upon the tools of Sections 2 and 3 in order to reformulate the individual chance constraints (26j)

and the cost of reliability in the objective function (26a) yields the MIP reformulation of (CCSRND) below:

min
γ,δ,x,z,ǫ,β

∑

i∈S

∑

j∈J

piνi0j
∑

k∈Lj

xkj +
∑

i∈S

∑

k∈I

∑

j∈Hk

piνikjxkj +
∑

k∈I

∑

i∈[i∗
k
−1]

pik

(
a

ξik
wki

)

(27a)
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subject to (26b)− (26i), (26k)− (26n), (27b)
∑

j∈Hk

xkj ≥ zk, ∀ k ∈ I (27c)

(15c)− (15e), (15h), (22c)− (22e), (24)− (25). (27d)

The formulation (27) is precisely in the form of (SMICC−VRTQA− β). The one to one relation is easily

observed by noting that [m] and [N ] in (SMICC−VRTQA− β) correspond to I and S in (CCSRND),

respectively.

Remark 4.1 As discussed in Section 2, additional constraints on the variable risk tolerance decisions may also

be included in (27). For instance, it would be natural to bound the summation of the risk tolerances as in (19c),

where the generic set [m] is replaced by I. It is easy to show that adding (19c) to the formulation (27) guarantees

that the joint chance constraint P
(
∑

j∈Hk
xkj ≥ ξk, ∀ k ∈ I

)

≥ 1 − Γ holds for any of its feasible solutions.

If the number of individual chance constraints is large, such a joint chance constraint can be very demanding

for Γ < 1. In practical applications, setting Γ ≥ 1 in (19c) may therefore be preferable – ignoring the connection

with the joint chance constraint mentioned above. We also take this path in Section 5.

For the post-disaster application in focus, the proposed modeling approach grants a flexibility to balance the

trade-off between the accessibility captured by ETWA and the level of demand satisfaction. One can impact

this trade-off by changing the values of the parameters a and ǭ. We intend to provide more insights about the

model by presenting numerical results on a case study in Section 5.3.

5. Computational Study In the computational study, we fulfill the objectives and claims set forth in

the previous sections. This is accomplished in two parts. In the first part, we demonstrate the computa-

tional effectiveness of the proposed MIP formulations for the two types of chance-constrained optimization

models of interest (MICC−VRT) and (MICC−VRTQ). For (MICC−VRT), we provide clear evi-

dence that the new formulations (SMICC−VRT− β) and (SMICC−VRT− y) outperform the formulation

(MICC−VRT−DEF) due to Shen (2014) by a significant margin. The impact of the alternate VaR repre-

sentations in Lemma 2.2 on the computational performance is investigated in the context of (MICC−VRTQ)

by benchmarking (SMICC−VRTQ− β) against its counterpart with the alternate VaR representation (14).

The runs in this part also reveal that the formulations based on the β− and y−variables may indeed exhibit

disparate performances. In the second part, we illustrate the application of the proposed stochastic relief net-

work design model (CCSRND) on a case study developed based on the real-world data from the 2011 Van

earthquake in Turkey. The takeaway from the numerical results here is that solving large practical instances to

optimality is within the reach of the proposed formulations.

All runs are executed on a personal computer with a 3.2 GHz Intel® Core� i7 960 processor and 24 GB of

memory running on Windows 7. All MIP formulations are implemented and solved in C++ using the Concert

Technology component library of IBM® ILOG® CPLEX® 12.6. CPLEX is invoked with a time limit of 3600

seconds and its default set of options and parameters. All reported times are elapsed times in seconds. If

optimality is not proven within the allotted time, we record both the best lower bound LB on the optimal

objective value retrieved from CPLEX and the objective function value associated with the incumbent at termi-

nation – denoted by UB. Then, we calculate an upper bound on the relative optimality gap of the incumbent

as ROG = (UB − LB)/LB.

As underlined in Section 1, one of the promises of this paper is to empower practitioners to solve large-scale

individual chance-constrained optimization problems by demonstrating good modeling practices put forward by

recent methodological progress. In other words, the emphasis on solving all MIP formulations by an off-the-shelf

solvers is deliberate. If more speed is desired, then the strengthened star inequalities – see Lemma 2.1-(v) –

may be handled differently in a more advanced implementation of the formulations with the β−variables. In
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the current state, we add a single strengthened star inequality for each individual chance constraint, sufficient

to yield a valid reformulation of the original problem with big-M constraints. Alternatively, we can develop

an iterative solution method based on the entire set of strengthened star inequalities, which is exponential in

size (Theorem 2, Luedtke et al., 2010). Therefore, in this case, it is natural to follow a delayed cut generation

approach, which avoids explicitly constructing exponentially many constraints in advance. A corresponding

branch-and-cut implementation would only initialize with a small subset of the strengthened star inequalities

and then add missing ones as required by solving an appropriate separation subproblem in the search tree. Such

an implementation would potentially result in quicker solution times.

5.1 Generation of the Problem Instances We performed our computational tests on two types of

problems: a probabilistic version of the classical transportation problem with random demand (Luedtke et al.,

2010) and the stochastic last mile relief network design problem with random demand and accessibility scores

presented in Section 4.

For the first problem type, we use the data sets of Luedtke et al. (2010) with “general probabilities,” as

labeled by the authors. In these instances, the scenarios may have different probabilities. The authors randomly

generated instances with the number of suppliers fixed at 40 and varying numbers of customers (n = 100, 200)

and scenarios (|S| = 1000, 2000 for instances with 100 customers and |S| = 2000, 3000 for instances with

200 customers). Further details are available in the original paper. We refer to these problem instances as

“transportation (TR) instances” and note that for some analyses we also created smaller TR instances with 100

customers by deleting scenarios from the original instances with n = 100 and |S| = 1000.

For the second problem type, we focus on the Van earthquake relief case study developed by Noyan et al.

(2016). We used the readily available instances and also generated additional larger instances by following their

data generation scheme. The network in this case study contains 94 demand points, each representing one

settlement in the main district of Van. The authors also construct networks with 30 and 60 nodes by clustering

the original set of settlements via a P -median model that minimizes the demand-weighted travel times. We refer

to these problem instances as “relief network design (RND) instances”. For the details of the data collection and

scenario generation procedures, we refer the reader to Noyan et al. (2016) and the associated online supplement.

Here, we briefly recall some parameters from Noyan et al. (2016) and comment on the parameters whose

values are specified differently from those in the original paper. The amount of available supplies Θ is set as

110% of the expected total demand. The parameter κ is selected as 6, 9, and 12 for the networks with 30, 60,

and 94 nodes, respectively. The tightness of the capacity upper bounds are varied to illustrate their impact. In

particular, we set Kj = cξ̂j , where ξ̂j denotes the estimated base value of the demand at node j ∈ J , and c is

selected from the range [1.75, 8]. Another influential parameter is the upper bound τ̄ on the accessibility scores,

which determines the size of the coverage sets, and is calculated as τ̄ = 1/τ . To avoid overly small coverage

sets, τ is selected from the range [0.01, 0.15].

5.2 Computational Performance We summarize the common elements in the design of the numerical

experiments in this section before proceeding with the performance analysis. First, recall that in general two

types of constraints are imposed on the variable risk tolerances ǫk, k ∈ [m] – the constraints (9d) and the

simple upper bound constraints (9e). Unless otherwise stated, here all formulations only include the latter, and

the parameter ǭ – the upper bound on the risk tolerances – is set as 0.3 for both types of problem instances.

In some analyses with the TR instances, the risk budget constraint (19c) is incorporated in addition to the

constraints (9e). In these experiments, the set of constraints (9d) takes the form of (19c), and Γ is set as 3

and 6 for the instances with 100 and 200 demand nodes, respectively. Second, for each combination of the

parameters in the tables in this section, three instances were generated by following the instructions in Section

5.1. All results presented in the tables are therefore averaged over three instances. Third, unless otherwise

stated, CPLEX is allowed to use up to four parallel threads as specified by its Threads parameter. Finally, note
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that the common string “MICC” is dropped from the formulation names in the column headers of the tables

for ease of presentation.

5.2.1 Evaluation of the Alternate Formulations of (MICC− VRT) In this section, we as-

sess how our proposed formulations (SMICC−VRT− β) and (SMICC−VRT− y) fare against

(MICC−VRT−DEF) presented by Shen (2014). Here, we deliberately stick with the formulation

(SMICC−VRT− β) for the β−variables because the VaR representation embedded in this formulation and

the VaR representation employed by Shen (2014) in (MICC−VRT−DEF) both rely on Lemma 2.1-(iii).

Thus, any difference in performance can mainly be attributed to how the quantiles are captured in the refor-

mulation of the chance constraints based on (4).

Time [ROG (%)]

Budget constraint (19c) omitted Budget constraint (19c) included

n |S| (VRT−DEF) (S−VRT− β) (S−VRT− y) (VRT−DEF) (S−VRT− β) (S−VRT− y)

100 50 †††[53.4] 0.1 0.1 †††[38.8] 0.1 0.1

100 †††[67.7] 0.2 0.2 †††[59.0] 0.2 0.2

200 †††[77.7] 0.2 0.3 †††[76.0] 0.2 0.2

500 †††[86.3] 0.4 0.5 †††[86.3] 0.4 0.4

1000 †††[90.6] 0.9 0.9 †††[90.6] 0.8 0.8

2000 †††[93.5] 1.9 1.7 †††[93.5] 2.0 1.5

200 2000 †††[94.6] 4.4 3.3 †††[94.5] 4.9 3.0

3000 †††[95.9] 8.7 5.2 †††[95.9] 9.0 4.4

Avg 3600 [82.5] 2.1 1.5 3600 [79.3] 2.2 1.3

†: Each dagger sign indicates one instance hitting the time limit with an integer feasible solution.

A single thread is used in these experiments.

Table 2: Computational performance of the alternate MIPs for (MICC−VRT) on the TR instances.

The computational effectiveness of all three formulations is assessed on the two benchmark sets specified in

Section 5.1. The results for the TR and RND instances are depicted in Tables 2 and 3, respectively. In these

tables, we report the average solution times and ROG values. The ROG information is skipped altogether if

all three instances associated with a cell terminate with an optimal solution. The values of the parameter a

are specified as 1,000,000 and 100,000 for the TR and RND instances, respectively. For the RND instances, the

values of the parameters (τ , c) are a major determinant of instance difficulty as demonstrated in the subsequent

sections. Here, (τ , c) are specified as (0.01, 2.00), (0.05, 2.25), and (0.09, 2.75) for the instances with |I| = 30, 60,

and 94 nodes, respectively.

The figures in Tables 2 and 3 reveal that (MICC−VRT−DEF) is outperformed drastically by our MIP

formulations (SMICC−VRT− β) and (SMICC−VRT− y), which generally perform on a par. No signif-

icant pattern is evident from a comparison of their solution times. (MICC−VRT−DEF) fails to provide

a single optimal solution within the time limit except for the RND instances with |I| = 94 and |S| = 50. In

stark contrast, all average solution times associated with (SMICC−VRT− β) and (SMICC−VRT− y)

are below 10 and 90 seconds in Tables 2 and 3, respectively, except for the large RND instances with |I| = 94

and |S| = 200. For illustrative purposes, in Table 2 we also investigate the sensitivity of the formulations to the

presence of (19c). We do not detect any effect and conclude that the results in Table 2 are robust with respect

to this type of coupling risk budget constraint.

5.2.2 Evaluation of the Alternate Formulations of (MICC − VRTQ) In this section, we rate the

performance of the formulations available for (MICC−VRTQ). For the RND instances, the cost of reliability

hk(zk) in the objective function is specified as in (23), where the coefficients aki are defined as a
ξi
k

. For diversity,
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Time [ROG (%)]

|I| = 30 |I| = 60 |I| = 94

|S| (VRT − DEF) (S − VRT − β) (S − VRT − y) (VRT − DEF) (S − VRT − β) (S − VRT − y) (VRT − DEF) (S − VRT − β) (S − VRT − y)

50 ††† [36.8] 0.6 0.6 ††† [50.2] 40.7 47.8 164.4 7.7 8.2

100 ††⋆ [68.2] 0.8 1.2 ††† [36.7] 48.7 39.0 ††† [26.7] 38.4 81.2

200 ††⋆ [70.7] 1.1 1.2 ††† [39.5] 6.8 5.7 ††⋆ [48.8] 596.8 1040.7

500 ††† [62.6] 1.7 1.5 ††† [49.8] 15.9 15.0 †⋆⋆ [78.3] 9.8 9.4

Avg 3600 [59.6] 1.0 1.1 3600 [44.1] 28.0 26.9 2742.5 [38.4] 163.2 284.9

†: Each dagger sign indicates one instance hitting the time limit with an integer feasible solution.
⋆: Each asterisk sign indicates one instance hitting the time limit with no integer feasible solution. In this case, we assume

that the associated ROG value is 100%.

Table 3: Computational performance of the alternate MIPs for (MICC−VRT) on the RND instances.

we employ the term hk(zk) = −akzk = −azk for the TR instances. We observe that the VaR values can be

significantly larger than the values of the reliability levels. Therefore, we determine the values of the parameter

a by running some preliminary tests in order to ensure that the values of the risk tolerances in the optimal

solutions are not necessarily always at the end points of the range [0, ǭ]. For the analyses with the TR and

RND instances, the parameter a assumes the values 50 and 1,000,000, respectively.

Time

n |S| VaR Rep (13) VaR Rep (14)

100 2000 13.9 78.2

200 2000 139.2 357.3

200 3000 199.3 753.1

Avg 117.5 396.2

Table 4: Computational performance of the alternate VaR representations on the TR instances.

Time

|I| = 30 |I| = 60 |I| = 94

|S| VaR Rep (13) VaR Rep (14) VaR Rep (13) VaR Rep (14) VaR Rep (13) VaR Rep (14)

1000 18.2 18.7 101.1 81.0 102.9 108.8

2000 24.6 31.6 146.3 127.9 113.7 106.1

3000 38.9 49.5 133.4 221.2 187.3 155.2

5000 58.1 60.6 217.1 218.8 311.2 296.9

Avg 35.0 40.1 149.5 162.2 178.8 166.8

τ = 0.01, 0.05, 0.09 and c = 2.00, 2.25, 2.75, for the instances with 30, 60 and 94 nodes, respectively.

Table 5: Computational performance of the alternate VaR representations on the RND instances.

Our first goal in this section is to expose the computational differences between the alternate VaR repre-

sentations listed in Lemma 2.2 for our formulations based on the β−variables and stick to one of these for the

rest of the computational study. To this end, we assess the performance of (SMICC−VRTQ− β) against

that of its counterpart with the alternate VaR representation (14). The largest TR and RND instances are all

solved to optimality with both representations, and the average solution times are presented in Tables 4 and 5,

respectively. In this analysis, the risk budget constraint (19c) is included for the runs with the TR instances. As

pointed out following the proof of Lemma 2.2, (14) is a stronger representation compared to (13) from a theoret-

ical viewpoint. However, it appears that this fact does not necessarily translate into computational gains, and
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the results in Tables 4-5 refute the expectation that the representation (14) should consistently lead to smaller

solution times. In complete contrast, the average solution times associated with (13) are substantially smaller

in comparison to those obtained with (14) on the TR instances. For the RND instances, the picture is mixed.

The presentation (13) has a slight edge over (14) on the smaller instances with I = |30|, while the reverse is true

for the larger instances with I = |94|. No definitive pattern emerges for the remaining instances with I = |60|.

We decide that the presentation (13) delivers a better performance overall, and going forward the VaR repre-

sentation (13) is incorporated into the formulations (SMICC−VRTQ− β) and (SMICC−VRTQA− β)

for the TR and RND instances, respectively.

Time

Budget constraint (19c) omitted Budget constraint (19c) included

n |S| (S−VRTQ− y) (S−VRTQ− β) (S−VRTQ− y) (S−VRTQ− β)

100 200 0.5 0.7 0.8 1.5

500 1.0 1.2 1.6 6.0

1000 1.6 0.9 3.1 26.4

2000 2.5 1.5 5.2 13.9

200 2000 5.1 5.7 20.7 139.2

3000 7.6 9.1 14.5 199.3

Avg 3.1 3.2 7.7 64.4

Table 6: Computational performance of the alternate MIPs for (MICC−VRTQ) on the TR instances.

Next, we turn our attention to whether the formulations based on the β− and y−variables act similarly

as they do in the previous section. The results for (SMICC−VRTQ− y) and (SMICC−VRTQ− β)

on the TR instances are provided in Table 6, where we distinguish between the presence and absence of the

risk budget constraint (19c). Both formulations terminate with an optimal solution within the time limit

for all instances, but there exists a marked difference in comparison to the results in Section 5.2.1 in one

important aspect. The two formulations are virtually indistinguishable in the absence of the budget constraint.

However, the detrimental effect of the inclusion of (19c) on (SMICC−VRTQ− β) is much more substantial

than on (SMICC−VRTQ− y). For the RND instances, (SMICC−VRTQA− y) is benchmarked against

(SMICC−VRTQA− β) – recall that the latter boils down to the formulation (CCSRND) presented in

Section 4.3. Table 7 depicts the outcome, where the common string “SMICC – VRT” is dropped from the

formulation names for brevity. The results in Table 7 also control for the values of the combination of the

parameters τ and c, which play a pivotal role in the design of the relief networks. Demanding values of these

parameters might lead to infeasible solutions – see Section 5.3, and they also affect the solution times, as is

evident from Table 7. In any case, all instances are solved to optimality with both formulations; however,

there is a shift in performance with increasing problem size. For |S| = 500, 1000, (SMICC−VRTQA− y) is

somewhat better; however, (SMICC−VRTQA− β) starts to dominate for larger number of scenarios.

One critical insight that needs to come across out of this computational study is that it is essential to

experiment with the different formulations and VaR representations laid out in this paper. The performance

may very much be dependent on the problem and instance settings as clearly illustrated in this section.

5.3 Analysis of (CCSRND) In this section, we first demonstrate the impact of the input parameters c,

τ , a, and ǭ on the trade-off between the accessibility and the level of demand satisfaction. This is followed by a

comparison of the solutions attained by (CCSRND) against those retrieved from a set of benchmark models

with the end goal of highlighting the value of the proposed hybrid supply allocation policy. All analyses in this

section are performed on the same base instance with |I| = 30, |S| = 50.

The parameters c and τ respectively determine the level of restrictiveness of the capacity limits and the
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τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04

c a ETWA ETV-PUD ETWA ETV-PUD ETWA ETV-PUD ETWA ETV-PUD

0× 105 716,460 0.4913 716,460 0.4913 - - - -

1× 105 726,165 0.2437 726,419 0.2408 - - - -

2 5× 105 765,978 0.0842 765,853 0.0844 - - - -

10× 105 777,922 0.0658 777,922 0.0658 - - - -

50× 105 875,154 0.0165 945,378 0.0116 - - - -

0× 105 616,128 0.4913 616,128 0.4913 616,128 0.4913 - -

1× 105 630,467 0.1557 630,461 0.1558 630,404 0.1564 - -

3 5× 105 661,667 0.0216 661,673 0.0216 661,650 0.0217 - -

10× 105 665,034 0.0165 665,424 0.0161 665,001 0.0166 - -

50× 105 668,480 0.0146 668,480 0.0146 668,480 0.0146 - -

0× 105 612,163 0.4913 612,163 0.4913 612,163 0.4913 - -

1× 105 625,590 0.1554 625,590 0.1554 625,590 0.1554 - -

4 5× 105 652,204 0.0208 652,412 0.0204 652,402 0.0205 - -

10× 105 657,747 0.0130 657,335 0.0134 657,747 0.0130 - -

50× 105 660,239 0.0116 660,239 0.0116 660,239 0.0116 - -

0× 105 581,449 0.4913 581,449 0.4913 581,449 0.4913 592,197 0.4913

1× 105 591,662 0.1944 591,739 0.1937 591,464 0.1964 604,498 0.1603

8 5× 105 627,514 0.0235 627,514 0.0235 627,514 0.0235 634,141 0.0214

10× 105 631,732 0.0165 631,746 0.0165 631,746 0.0164 640,656 0.0124

50× 105 642,051 0.0116 642,051 0.0116 642,051 0.0116 642,051 0.0116

-: No feasible solution.

Table 8: Values of the objective function terms at optimality for varying parameter settings (ǭ = 0.3).

coverage sets while the parameters a and ǭ play critical roles in controlling the trade-off between accessibility

and the cost of reliability associated with demand satisfaction. The effects of these parameters on the two

conflicting objective function criteria ETWA and the expected total V-PUD – denoted by ETV-PUD – are

highlighted in Table 8, where we specifically explore the interactions among c, τ , and a by keeping ǭ fixed

at 0.30. Larger values of c imply less restrictive capacity limits and clearly lead to reductions in the optimal

objective function value ETWA + a ETV-PUD. These improvements generally translate to reductions in both of

the objective function criteria; however, for a number of cases when c is increased from 4 to 8, the performance

degrades with respect to ETV-PUD. We also observe that the deterioration in ETWA as a is increased is more

pronounced for c = 2 in comparison to the higher values of c. Another clear insight from Table 8 is that smaller

values of c and larger values of τ can result in infeasibilities. However, when the value of τ is not large enough to

cause infeasibilities, its effect appears to be marginal. To investigate the impact of the parameter ǭ, we analyze

the attained reliability levels at each demand point under varying values of ǭ and a. The values of c and τ

are set as 2 and 0.01, respectively. In Table 9, the demand nodes are classified into six categories depending

on their attained reliability levels / risk tolerances. To clarify, those demand nodes with a minimum attained

risk tolerance of 0.95 ∗ 0.20 = 0.19 or 0.95 ∗ 0.50 = 0.475 are assigned to the row labeled as “(95%-100%)ǭ” if

ǭ = 0.20 or ǭ = 0.50, respectively. On the one hand, small values of ǭ already appear to be very effective in

ensuring lower costs of reliability. Therefore, the risk tolerance decisions are less sensitive to the changes in the

value of a if ǭ = 0.2. For ǭ = 0.35, 0.50 on the other hand, the expected trend is clearly present – as a assumes

larger values the number of demand nodes in the groups with lower risk tolerances increases. In any case, the

optimization fully exploits the flexibility in setting the risk tolerances, and the attained values are distributed

over the allowable range [0, ǭ].

We next assess the value of the proposed hybrid policy in terms of equity in supply allocation. Recall that

this policy features both quantitative and qualitative measures regarding the demand satisfaction, and the
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# of demand nodes

ǭ = 0.20 ǭ = 0.35 ǭ = 0.50

a (×105) a (×105) a (×105)

1 2.5 5 10 1 2.5 5 10 1 2.5 5 10

(0%− 5%)ǭ 0 0 0 0 0 0 2 15 1 5 9 20

(5%− 25%)ǭ 3 3 3 4 7 13 19 10 9 13 15 5

(25% − 50%)ǭ 4 3 5 4 7 6 4 0 10 7 4 3

(50% − 75%)ǭ 4 8 8 7 7 7 3 3 3 3 2 2

(75% − 95%)ǭ 5 5 4 5 2 4 2 2 2 1 0 0

(95% − 100%)ǭ 14 11 10 10 7 0 0 0 5 1 0 0

Table 9: Summary of the attained risk tolerances (τ = 0.01 and c = 2).

parameters a and ǭ are the two main levers for manipulating the reliability levels associated with the stochastic

demand satisfaction constraints. In our analysis, we consider three benchmark models: i) the quantitative

measure is excluded by setting a = 0 with ǭ = 0.3 (or ǭ = 0.5) for the qualitative measure (Benchmark 1), ii)

the qualitative measure is excluded by setting ǭ = 1 with a = 100, 000 for the quantitative measure (Benchmark

2), iii) both the quantitative and qualitative measures are excluded by setting a = 0 and ǭ = 1, respectively

(Benchmark 3). In the second benchmark model, setting ǭ = 1 requires us to resort to a more traditional

approach of accounting for the demand shortages by measuring the shortage amount at node k against the

actual delivery amount Tkx instead of VaR(1−ǫk)(ξk). For all models involved, we compute the realizations of

the maximum and average proportion of unsatisfied demand with respect to the delivery amounts – MPUD

and APUD, respectively – across all demand points under each scenario. The resulting cumulative distribution

functions (CDFs) are plotted in Figure 1. This figure illustrates that (CCSRND) outperforms all three

benchmark models with respect to both performance measures MPUD and APUD. The curves associated with

(CCSRND) always appear to the left of the rest, i.e., they are stochastically smaller than the others. For

both (CCSRND) and Benchmark 1, enforcing more restrictive chance-constraints by increasing the value of

a or decreasing the value of ǭ up to some threshold improves the reliability, and consequently, enhances the

PUD-related performance measures. The interplay between a and ǭ is delicate; an overly restrictive value of

one of these parameters may render the model insensitive to the changes in the other. This is evident from the

CDFs associated with (CCSRND) for a = 106 which are virtually identical for both values of ǭ. (CCSRND)

with this setting of a overemphasizes the quantitative measure in supply allocation and tips the trade-off in

the objective function in disfavor of accessibility – as observed previously in Table 8. While this essentially

promotes better PUD-related performance as illustrated in Figure 1, we do necessarily advocate it because it

misses the point of balancing the trade-off between the total accessibility and the cost of reliability associated

with the demand satisfaction in the objective function. The trade-off is captured much better by reducing a

to 105. Then, increasing ǭ from 0.3 to 0.5 leads to a right shift in the CDF associated with (CCSRND) for

both MPUD and APUD, and we can also rely on ǭ to strike a satisfactory performance level in terms of both

accessibility and reliability. Among the three benchmark models, Benchmark 1 is closest to (CCSRND) in

terms of MPUD. In the case of APUD, the ranking of Benchmarks 1 and 2 is determined by the value of ǭ

which impacts Benchmark 1 negatively. It is also fairly obvious that Benchmark 2 with a higher a value would

track (CCSRND) with a = 106 pretty closely as indicated by the insensitivity of (CCSRND) with a = 106 to

different values of ǭ. In summary, we can confidently state that the presented benchmarking analysis provides

sufficient evidence for the value of our proposed framework with the embedded hybrid supply allocation policy

as a flexible modeling tool to balance the trade-off between the total accessibility and the cost of reliability.

One of the recurring themes in this section is that the attained risk tolerances, the cost of reliability, and the

actual cost / return are sensitive to the values of the parameters a and ǭ – as expected. From a decision making

viewpoint, the values of these parameters are an expression of the decision maker’s qualitative and quantitative
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(a) MPUD (ǭ = 0.30)
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(b) MPUD (ǭ = 0.50)

  0%  10%  20%  30%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

m
ul

at
iv

e 
P

ro
ba

bi
lit

y

 

 

Benchmark 1, ǭ = 0.3, a = 0
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(c) APUD (ǭ = 0.30)
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CCSRND, ǭ = 0.5, a = 106
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Figure 1: Empirical cumulative distribution functions of MPUD and APUD (τ = 0.02, c = 2.0).

risk preferences, and it is completely the decision maker’s prerogative to determine the right values. However,

the decision maker may not be entirely comfortable with setting a single value for a or ǭ and need assistance. To

this end, we reckon that our models can be solved iteratively within a Pareto-type framework. More specifically,

a grid of possible values for one or several a or ǭ-parameters may be defined so that the attained reliability

levels, the cost of reliability, and the actual cost/return are explored and plotted over this grid. This rationale is

very much akin to how the Pareto frontier is constructed in multi-objective optimization by varying the scaling

parameters in the weighted objective.

6. Conclusion In this paper, we develop strong MIP formulations for two classes of individual chance-

constrained linear programs with variable reliability levels / risk tolerances by leveraging recent methodological

advances. A new type of cost function, which requires capturing VaR associated with a variable reliability level,

is an additional contribution of our work. Our computational study attests to the effectiveness of the proposed

MIP formulations in solving the problems of interest. Optimal solutions of large practical-size instances of these

formulations are within the reach of modern off-the-shelf solvers. The application of the proposed models to a

novel stochastic last mile distribution network design problem and the associated case study based on real-life

data further substantiates this claim. We hope that our work will invoke more awareness about the availability

of powerful modeling tools for individual chance-constrained optimization models with and without variable

reliability levels.
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