
DYNAMICS OF ARTIFICIAL HELICAL MICROSWIMMERS UNDER CONFINEMENT 

Hakan Osman Caldag 
Sabanci University 

Istanbul, Turkey 

Serhat Yesilyurt 
Sabanci University 

Istanbul, Turkey 

ABSTRACT 
Understanding trajectories of natural and artificial helical 

swimmers under confinement is important in biology and for 

controlled swimming in potential medical applications. 

Swimmers follow helical or straight trajectories depending on 

whether the helical tail is pushing or pulling the swimmer. To 

investigate swimming dynamics of helical swimmers further, we 

present a Computational Fluid Dynamics (CFD) model for 

simulation of an artificial microswimmer in cylindrical 

channels. The microswimmer has a cylindrical head and a left-

handed helical tail.  The kinematic model solves for the position 

and rotation of the swimmer based on the linear and angular 

velocities of the force-free swimmer from a CFD model. Third-

order Adams-Bashforth solver is used to obtain the orientation 

and the position of the swimmer. Viscous, gravitational, 

magnetic and contact forces and torques are considered in the 

model. The model is validated with experimental results. 3D 

trajectories, propulsion and tangential velocities are reported. 

INTRODUCTION 
Artificial micro swimmers have huge potential in targeted 

drug delivery, non-invasive surgery and cell manipulation. 

Magnetized artificial swimmers with helical tails, inspired by 

bacteria such as Escheria coli, can be externally actuated using 

a rotating magnetic field, eliminating the need for on-board 

apparatus to generate propulsion (1,2). Developments in 

microfabrication methods have made it possible to produce 

microswimmers on the order of nanometers (3). 

Understanding the trajectories of the swimmers is 

important in controlled swimming applications. Lauga et al. (4) 

report that bacteria swim in circular trajectories under force-free 

and torque-free swimming conditions. For artificial swimmers 

under confinement, two distinct trajectories stand out, one of 

which is a helical trajectory close to the channel boundaries 

when the tail is pushing the head (called pusher-mode) and a 

straight trajectory close to the center of the channel when the 

tail pulls the head (called puller-mode) (5). Another factor 

affecting the trajectories of artificial swimmers is the step-out 

behavior in which the magnetically actuated swimmer loses its 

synchronization with the rotating magnetic field due to high 

viscous torque (5). 

Computational analysis tools are helpful in understanding 

microswimmer motion. Zhu et al. (6) obtain trajectories for low-

Reynolds number swimming of squirmers in circular channels 

using boundary element method (BEM). Regularity of the 

motion of spherical swimmers in a cylindrical Poiseuille flow 

are shown to be dependent on small finite periodic oscillations 

that vary with the position and orientation of the swimmer in the 

channel and also efficient upstream (downstream) swimming 

takes place at (away from) the center. Zöttl and Stark (7) use a 

dipole approximation to study the stability of a pointlike 

swimmer. They find a pusher tends to follow a circular 

trajectory around the centerline of the channel, close to channel 

boundaries. Pullers, on the other hand, follow a straight path at 

the center of the channel (7). Another study by the same authors 

reveal that changing the aspect ratio of a spheroidal swimmer 

only changes the frequency of oscillatory trajectory (8). Studies 

on helical swimmers explain wobbling by the imbalance of drag 

forces on the tail and head which create a torque that pushes the 

swimmer to follow a circular path (4). Wobbling is related with 

low Mason number (Ma) which is the ratio of hydrodynamic 

torque to magnetic torque (9).  

In our previous work, we used steady Stokes equations and 

demonstrated the effects of geometric parameters on forward 

and lateral instantaneous velocities and also wobbling rates of 

microswimmers composed of a magnetic head and a helical tail 

(10). The ideal geometry of singly flagellated bacteria and 

critical channel radius were investigated for the maximum 
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swimming velocity and efficiency (10). Experimental 

trajectories of mm-sized artificial helical swimmers inside 

circular channels are reported with respect to amount of 

confinement, tail length, magnetic field rotation rate and fluid 

flowrate (5). 

This paper presents a kinematic model that uses 

computational fluid dynamics (CFD) for the simulation of a 

helical microswimmer inside cylindrical channels. Swimmer 

position and orientation are evaluated from integration of linear 

and angular velocities which are calculated from CFD using 

force-free and torque-free swimming conditions. Viscous, 

magnetic, gravitational and contact forces are represented in the 

model. The model is validated with previous experimental 

results, discussing swimmer velocity and trajectories in pusher 

and puller modes. Results confirm our experimental 

observations. The model will be used to investigate swimming 

dynamics under confinement. 

NOMENCLATURE 
Dh Diameter of the cylindrical head 

B Amplitude of the helical wave 

Lh Length of the head 

Dt Diameter of the tail 

L Length of the tail 

Lo Total length of the swimmer 

Dch Channel diameter 

x Position vector of a point on the swimmer 

u Velocity vector 

ei Local coordinate system unit vectors for i=1, 2 ,3 

ω Angular velocity vector 

Fv Viscous force on the swimmer 

Fw Swimmer weight 

Fc Contact force 

τv Viscous torque on the swimmer 

τm Magnetic torque on the swimmer 

τw Torque on the swimmer due to its weight 

τc Torque on the swimmer due to contact with channel 

M Magnetization vector [A·m2] 

B Magnetic field vector [T] 

B0 Magnitude of rotating magnetic field [T] 

ω Rotation rate of magnetic field [rad/s] 

t Time [s] 

m Magnetic moment [A/m] 

V Magnet volume [m3] 

BR Remanence vector of the magnet [T] 

μ0 Permeability of vacuum [H/m] 

σiy Cartesian components of stress in y- direction 

σiz Cartesian components of stress in z- direction 

ni Components of surface normal vectors 

θ Angular position of a point on swimmer in cylindrical 

coordinates 

r
ê  Unit vector in r- direction 

S Swimmer surface 

Fr Total radial force acting on the swimmer 

rt Radius of tail filament 

Rch Channel radius 

r Radial position of a point on the swimmer 

δw Threshold value of distance between a point on 

swimmer and channel wall which indicates there is contact 

σwall Contact stress on swimmer  

Re Reynolds number 

p Pressure 

ρ Fluid density [kg/m3] 

Lscale Length scale for nondimensionalization [m] 

f Rotation frequency of the magnetic field [Hz] 

μ Fluid viscosity [Pa·s] 

tscale Time scale [s] 

V Swimmer velocity vector (without rotation) 

U Swimmer velocity in x- direction (without rotation) 

V Swimmer velocity in y- direction (without rotation) 

W Swimmer velocity in z- direction (without rotation) 

ωx Angular velocity in x- direction 

ωy Angular velocity in y- direction 

ωz Angular velocity in z- direction 

xc Center-of-mass coordinates of the swimmer 

β Non-dimensional radial position 

Rh Swimmer head radius 

usw Non-dimensional x- direction velocity of the swimmer 

vθ,sw Non-dimensional lateral velocity of the swimmer 

vsw Non-dimensional swimmer velocity in y- direction 

wsw Non-dimensional swimmer velocity in z- direction 

METHODOLOGY 
The geometric model is shown in Fig. 1 where a swimmer 

with a helical tail and cylindrical head is placed inside a circular 

channel of diameter Dch. Swimmer tail length is L, overall 

length of the swimmer is Lo, the wavelength and amplitude of 

the tail are λ and B, and the diameter of the filament tail is Dt.  

The cylindrical head has a length of Lh and a diameter of Dh. 

The values for these parameters are the same as the values of 

swimmers used in experiments in our previous work and listed 

in Table 1 (11,5). Pusher and puller-mode swimming are 

depicted in the negative and positive x- directions respectively 

in Fig. 1. 
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Figure 1: Forward (head direction) and backward (tail 

direction) motion of the swimmer and geometric parameters of 

the swimmer model. 

 

Table 1. Geometric parameters of the swimmer. 

Parameter Values 

Diameter of the cylindrical head, Dh 0.8 mm 

Amplitude of the helical wave, B 0.4 mm 

Length of the head, Lh 1.5 mm 

Diameter of the tail, Dt 0.2 mm 

Length of the tail, L 4 mm 

Total length of the swimmer, Lo 5.5 mm 

Channel diameter, Dch 1.6 mm 

 

Swimmer motion can be expressed by two basic equations 

of motion: 

x
u

d

dt
  (1) 

e
ω ei

i

d

dt
   (2) 

where u and ω are linear and angular velocity vectors of the 

swimmer, ei for i=1, 2, 3 denotes the local coordinate system 

placed at the center of mass of the swimmer. Coordinate frames 

are shown at Fig. 2. Low Reynolds number swimming means 

inertial effects are negligibly small, and forces and torques 

acting on the swimmer can be taken as zero. This condition, 

known as force-free and torque-free swimming, is used to 

evaluate u and ω: 

0F F F
v w c
    (3) 

0τ τ τ τ
v m w c
     (4) 

where subscript v stands for viscous, m for magnetic, w for 

gravity and c for contact. Viscous force on the swimmer can be 

obtained by the integration of fluid stress on the swimmer. A 

magnetic field rotating on the y-z plane is applied to rotate the 

swimmer in the experiments to generate the torque that will 

rotate the swimmer around x- axis. As the magnetic field 

rotates, a magnetic torque applies to the swimmer: 

Figure 2: Placement of local and global coordinate system.   

          
m
τ M B  (5) 

where B=[0 B0cos(ωt) B0sin(ωt)]’ and M is the magnetization 

vector of the swimmer in A·m2. Sign of ω, rotation rate, implies 

the rotation direction of the swimmer (positive for pusher-mode 

and negative for puller-mode), t is time. Magnetization is 

calculated from VM m where m is the magnetic moment 

(A/m) and V is the magnet volume. Magnetic moment is 

calculated from
0

/
R

m B  where BR is the remanence of the 

magnet (with a magnitude of around 1 T for NdFeB magnets) 

and μ0 is permeability of free space in H/m (12). 

Head and tail weights are calculated separately because 

neodymium magnet is denser than the plastic polymer making 

up the tail. Buoyancy force is subtracted from the weights. 

Weights are taken as point forces acting at the center-of-mass of 

the head and tail in torque calculations. 

Swimmer is assumed to be in contact with the channel wall 

when the distance between the surface of the swimmer body to 

the channel wall is less than rt, radius of tail filament. In the 

simulation results to be discussed, tail radius is 10% of the 

channel radius, so the swimmer motion is not restricted 

significantly. Contact force is applied in the normal direction to 

the channel wall at an amount of the radial force applied by the 

swimmer onto the fluid. Radial stress σr is obtained from the 

stresses in y- and z- directions: 

( cos( ) sin( ))
r

σ n n ê
r iy i iz i
       (6) 

where σiy and σiz for i=x, y, z are the stress components in y- and 

z- directions, respectively,  θ = atan2 ,z y  where z and y 

denote y- and z- coordinates of a point on swimmer surface, ni 

for i=1,2,3 are surface normals and 
r

ê  is the unit vector in 

radial direction in the channel and summation over the repeated 

indices is implied. Integration of stress over swimmer surface S 

gives net radial force: 

 

= - σ n
r r

S

F dS  (7) 

where n is the surface normal. The integration is multiplied with 

a minus sign to find the force on the swimmer. Contact force is 
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applied on the parts where the radial position is beyond the 

threshold and if the radial force is towards the channel wall. 

These two conditions are satisfied with the following Boolean 

checks in contact force per unit area formulation: 

      , , ,
0

r ch wwall y z y z
F R r        (8) 

where Rch is channel radius and r is the radial position of a point 

on the swimmer in the y-z plane. δw is the threshold value that 

constitutes the distance of the contact region from the channel 

wall, which is equal to rt. Wall contact force will be applied if 

Fr is towards channel wall, i.e., the swimmer is moving towards 

the wall, meaning Fr should be positive. 

Fluid motion around the swimmer is governed by 

incompressible Stokes equations as the Reynolds number is 

much less than unity: 

       21
0, 0p

Re
     u u    (9) 

Here, u and p are the nondimensional velocity vector and the 

pressure, respectively, and Re is the Reynolds number defined 

as Re =
2

ρ /μ
scale

L f  where Lscale is an appropriate length scale 

of the non-dimensional model, 1 mm, | | | 2 |f    is the 

rotation frequency of the magnetic field, ρ and μ are density and 

viscosity of the fluid, respectively. Its reciprocal, 1/ | |f  , is the 

time scale of the model, tscale, μ is fluid viscosity, pressure is 

nondimensionalized with the group 2 2
ρ /

scale scale
L t  and u is 

nondimensionalized with /
scale scale

L t .The forces are 

nondimensionalized with the group 4 2
/

scale scale
L t  and torques are 

nondimensionalized with the group 5 2
ρ /

scale scale
L t . 

Channel wall and swimmer surface have no-slip boundary 

conditions. Swimmer surface moves with a velocity of V = [U, 

V, W]' and rotates with the angular velocity vector, ω  = [ωx, ωy, 

ωz]'. Velocity of a point on swimmer surface is specified as: 

 u = V ω x x
c

    (10)  

where xc is the position of center of mass. Both ends of the 

cylinder are closed. Commercial finite-element software 

COMSOL is used to solve the Stokes equations numerically to 

obtain for u and ω under the torques and forces that act on the 

swimmer (13). Fluid domain is discretized with tetrahedral 

elements and triangular elements are used for the swimmer 

surface in meshing. Meshing on swimmer body is denser than 

the meshing on the fluid. Overall mesh consists of 75090 

elements with 69784 degrees of freedom for a swimmer with a 

tail length of 4 mm. A convergence test is carried out with 

results shown in Table 2. Error in vsw and wsw, y- and z- 

direction velocities, are high on coarse meshing but the values 

are close to the densest mesh results in the chosen mesh density 

while solving ten times faster.  

Table 2. Convergence test for the CFD model. The line in bold 

is the meshing density used for simulations. 

 

Linear and angular velocities are obtained from the CFD 

simulation for given position and orientation of the swimmer 

and used to update position and orientation at the next time step 

according to (1) and (2) with the Adams-Bashforth integration. 

RESULTS 
Swimmer trajectories and velocities are compared with 

experimental results from our previous work (5). Initial position 

of the swimmer is set closer to the bottom of the channel to 

mimic the swimmer that rests on the wall due to its weight. The 

swimmer orientation is assumed to be along the channel’s long 

axis. Rotation frequency of the magnetic field is set to 15 Hz 

where we observe synchronous rotation of the swimmer with 

the magnetic field and differences in pusher and puller-mode 

swimming. Figs. 3a and 3b shows 3D trajectory and radial 

position of the swimmer in pusher-mode simulation (displayed 

in red). Here, we use non-dimensional radial position, defined 

as: 

sw

ch h

r

R R
 


  (11) 

where Rh is the radius of the head. Non-dimensional β is plotted 

with respect to non-dimensional time, ωt/2π. The swimmer is 

following a helical path, just as in the experiments, whose 

results are shown in blue. The swimmers have a left-handed 

helical tail and follow a right-handed helical trajectory as the 

magnetic field rotates in counter-clockwise direction. The 

trajectory converges to a constant β value. Oscillations in β 

value in experiments are because of the swimmer circulating 

slightly off-center (5). 

Puller-mode simulation results also agree with experiments, 

shown in Figs. 3c and 3d. An important observation from 

puller-mode simulation is that even though the puller starts its 

motion off-center, it moves towards the centerline of the 

channel agreeing with the puller’s trajectory from the 

experiment. The match between the simulations and 

experiments confirms the distinction between pusher and puller-

mode swimming. 

Number 

of domain 

elements 

Degrees 

of 

freedom 

Computation 

Time [s] 

Error in 

usw [%] 

Error in 

vsw [%] 

Error in 

wsw [%] 

45830 44996 8 -4.14 -5.2 -13.7 

75090 69784 11 -0.07 0.6 -2 

172749 147584 21 -0.02 0.1 -0.3 

306077 247213 43 -0.02 0.2 -0.1 

520218 404733 97 -* -* -* 

*Error is defined with respect to the results from simulations 

with the densest meshing. 
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Several aspects of swimmer instability are studied in the 

literature. Wobbling is observed in biological swimmers, but it 

is attributed to opposite rotation directions of head and the tail 

(4). Another study explains wobbling of artificial helical 

swimmers nearby a surface with the imbalance in local drag 

forces acting on the helix but there is no discussion on 

swimming modes and swimming under confinement (14). Man 

& Lauga’s (9) analytical solution for rotating helices show that 

wobbling is irrespective of the presence of a head under free 

swimming conditions. However, the dynamics of the head play 

an important role in wobbling when the swimmer is under 

confinement. It was observed in experiments that the tail 

remains closer to the center of the channel than the swimmer 

head in the pusher-mode and the simulation results agree with 

this observation as well, indicating that the suppression of tail 

wobbling is more pronounced than the viscous shear on the 

head (5). On the other hand, the puller remains aligned with the 

long axis of the channel after it moves sufficiently close to the 

centerline of the channel and it remains close to the center. The 

distinction is similar to what Zöttl and Stark (7) observe which 

is explained by swimmer-wall interactions. Vorticity induced by 

the wall pushes puller towards the center of the channel but in 

pusher-mode the swimmer is attracted by the wall when it is 

close to the center and repelled when it is close to the wall, 

resulting in swinging motion (7). 

Fig. 4 shows non-dimensional swimming and lateral 

velocities for pusher and puller modes. Non-dimensional 

swimming velocity, usw, is taken as the velocity in x- direction. 

0
sw

u   for downstream puller-mode swimming and 0
sw

u  for 

upstream pusher-mode swimming. Lateral swimming velocity, 

vθ,sw, is defined as: 

,
sin cos

sw sw sw x sw
v v w r


        (12) 

vθ,sw is positive in counter-clockwise direction when looked 

from the head side of the swimmer. vθ,sw tends to 0 in puller-

mode both in experiment and simulation since the swimmer is 

nearly following a straight trajectory at the center of the channel 

(not shown). usw is overestimated in simulations with a relative 

error of around 40% for both cases. Experimental imperfections 

such as roughness on the tail, shape of the head, collisions with 

the channel wall may have contributed to slower swimming in 

experiments. It was observed in previous studies that higher usw 

can be achieved when the swimmer is swimming close to the 

channel wall rather than swimming at the center (5,10). This 

observation explains the decrease in usw in puller-mode as the 

swimmer moves towards the center. Furthermore, the variation 

in usw is much less in the puller-mode compared to the pusher-

mode swimming due to better alignment of the swimmer and 

smaller variation of the radial position of the swimmer. vθ,sw 

values from simulations are much closer to experiment values 

but with higher oscillations.  

Figure 3: (a) 3D trajectories of pushers in experiment (in blue) and simulation (in red). (b) Change of β for pushers in simulation 

and experiment. (c) 3D trajectories of pullers in experiment and simulation. (d) Change of β for pushers in simulation and 

experiment. 
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CONCLUSION 
Low Reynolds swimming dynamics of an artificial 

microswimmer with a helical tail and a cylindrical head inside a 

cylindrical channel is reported here. A kinematic model is used 

to obtain the position based on linear and angular velocities 

from CFD simulations. 3D trajectory of a helical swimmer 

inside a channel is obtained. Force-free and torque-free 

swimming conditions are applied in solving Stokes equations. 

Viscous, gravitational, magnetic and wall contact forces are 

included in the model. Helical trajectories are observed for the 

pusher-mode while pullers follow straight trajectories at the 

center as observed in our previous experiments. Pullers move 

towards the center of the channel even if they start away from 

the center. The tail remains closer to the center than the head in 

the pusher-mode indicating that the tail may be more stable than 

the head. Comparison of swimming and lateral velocities show 

the simulation model overpredicts the swimming velocity 

probably due to imperfections in experiments while tangential 

velocity is very close. Swimmer is observed to swim slower at 

the center compared to swimming near wall. It is aimed to use 

this computational tool to investigate the differences in 

swimming dynamics to explain the distinction between the 

modes. 
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Figure 4: (a) Simulation and experiment results for non-

dimensional propulsion velocity, usw. (b) Simulation and 

experiment results for non-dimensional tangential velocity, 

vθ,sw. 
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