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ABSTRACT

CONVECTIVE HEAT TRANSFER TO NON-NEWTONIAN FLUIDS

MOSTAFA SHOJAEIAN

MSc. Thesis, July 2015

Supervisor: Assoc. Prof. Ali Koşar

Keywords: Heat transfer, Non-Newtonian fluids, Slip flow,
Microchannel, Nucleate pool boiling

In this thesis, the perturbation method was implemented to analytically solve the
governing equations relevant to both hydrodynamically and thermally fully developed
power-law fluid and plug flows through parallel-plates and circular microchannels
under constant isoflux thermal and slip boundary condition. The temperature-dependent
properties, being viscosity and thermal conductivity, were considered along with non-
linear slip condition in the analysis in addition to viscous dissipation. The velocity,
temperature and constant property Nusselt number closed form expressions were
derived and then the Nusselt number corresponding to temperature-dependent
thermophysical properties was numerically obtained due to their complexity nature.
Numerical simulations were also performed for verifying the analytical results. The
results indicated that the property variations and slip condition significantly affected
thermo-fluid characteristics. The second law analysis was further performed for both
constant and variable properties.
Furthermore, an experimental study was performed on nucleate pool boiling of
polymeric solutions (aqueous Xanthan gum solutions) by the dissolution of Xanthan
gum powder in different amounts into deionized water. Their advantage over new
generation fluids such as nanofluids is that they have no side effects such as
agglomeration and sedimentation of particles, which is common for nanofluids. The
results revealed that heat transfer coefficients of prepared polymeric solutions were
lower than those of pure water, while concentration played a significant role in the
performance of the heat transfer. In visualization studies, different pool boiling patterns
were recorded particularly for high concentrations, which bolsters the heat transfer
results.
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ÖZET

NEWTONYEN OLMAYAN AKIŞKANLARIN TAŞINIMLI ISI TRANSFERİ

MOSTAFA SHOJAEIAN

Yüksek Lisans Tezi, July 2015

Danışman: Assoc. Prof. Ali Koşar

Keywords: Isı Transferi, Newtonyen olmayan akışkanlar,
Kaymalı akış, Mikrokanal, Havuz kaynaması

Bu tezde, hidrodinamik ve termal açıdan tam gelişmiş Newtonyen olmayan
akışkanların, piston akışı şeklinde (plug flow), paralel iki düzlem plaka arasından ve
dairesel mikrokanallardan geçirilmesinin pertürbasyon metoduyla analitik olarak
çözümü  icra edilmiştir. Sınır koşulları olarak sabit ısı akısı ve kayma sınır koşulu
kullanılmıştır. Viskoz yayılmaya ek olarak, viskozite ve termal iletkenlik gibi sıcaklığa
bağlı olan özellikler göz önünde bulundurulmasının yanı sıra lineer olmayan kayma
koşulu dikkate alınmıştır. Hız, sıcaklık ve sabit özellikli Nusselt sayısı kapalı form
ifadeleri elde edilmiştir. Daha sonra, nümerik olarak Nusselt sayısı, sıcaklığa bağlı
termofiziksel özellikler ile ilişkili şekliyle bulunmuştur. Analitik sonuçları doğrulamak
için nümerik simülasyonlar da yapılmıştır. Sonuçlar, özellik değişimlerinin ve kayma
koşulunun önemli ölçüde termo-akışkan özelliklerini etkilemiş olduğunu
göstermektedir. İkinci termodinamik yasa analizi, sabit ve değişken özellikler için de
ayrı ayrı incelenmiştir.
Buna ek olarak, polimerik solüsyonların (Su bazlı Xanthan Gum solüsyonları)
çekirdekli havuz kaynaması deneysel olarak incelenmiştir. Deneyler, Xantham gum
tozunun farklı miktarlarda de-iyonize su içerisinde çözünmesiyle gerçekleştirilmiştir.
Nanoakışkanlar gibi yeni jenerasyon akışkanlara göre bu solüsyonların avantajı,
nanoakışkanlarda sıkça karşılaşılan partiküllerin topaklanması ve sedimantasyonu gibi
problemleriyle karşılaşılmamasıdır.  Sonuçlar, polimerik solüsyonların ısı transferi
katsayılarının saf sudan daha düşük olduğunu ve konsantrasyonun ısı transferi üzerinde
önemli bir etkisi olduğunu göstermiştir. Görüntüleme çalışmalarında, özellikle yüksek
konsantrasyonlarda, ısı transferi sonuçlarını destekleyen orijinal havuz kaynama
görüntüleri elde edilmiştir.
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CHAPTER 1

INTRODUCTION

Rapid progress in microfabrication techniques has resulted in micro devices involving

heat and fluid flow. Experimental and analytical studies investigating parametric effects

on convective heat transfer and entropy generation rate are of cardinal significance to

successfully assess heat and fluid flow characteristics in micro- and nano-scale and to

identify their differences from conventional scale. One of the most important

parameters in micro and nano flows is the slip effect, which strongly influences fluid

motion at the fluid-solid interface. Under certain conditions such as very low pressure,

hydrophobic surfaces, and small-size channels with characteristic lengths between 1 µm

and 1 mm, the continuum assumption may not be accurate, particularly in micro

devices, which find applications in medicine, fuel cells, biomedical reaction chambers,

Lab-On-a-Chip technology and heat exchangers for electronics cooling. Therefore, it is

important to investigate slip flows in order to provide useful prediction tools for

convective heat transfer in micro devices.

When the characteristic length (or size of channel) is reduced down to micro-and nano

scale, the slip effect becomes apparent, which leads to discontinuities in velocity and

temperature (only for gases) profiles at the fluid-solid interface. For flows of polymers,

this effect may even occur in macro scale [1,2]. Knudsen number (Kn), the ratio of the

mean free path to the characteristic length of the channel, is a benchmark to classify

flow regimes of gases. Kn in the range of 0.001<Kn<0.1 is in the slip flow regime,

where fluid velocity at wall is non-zero (velocity slip condition), and wall temperature

and adjacent fluid temperature are not the same (temperature jump condition). Heat and

fluid flow characteristics for gas microflows have been investigated in many
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experimental studies [3–6] as well as in numerical and theoretical studies taking

temperature-jump and velocity-slip effects into account [7–15].

For liquid flows in macro scale, no-slip boundary condition on solid surface is widely

assumed, which may not be always correct in micro and nano fluidic systems. Recent

experimental studies of microflows revealed that boundary conditions at the channel

wall depend on both flow length scale and surface properties. Hydrophobic smooth

surfaces such as in polydimethylsiloxane (PDMS materials) made channels [16–18] or

hydrophobic liquids could lead to slip conditions at the channel wall [19] for liquid

flows, while  slip conditions in liquid flows may also occur when liquid moves over

surfaces with microscopic roughnesses [20]. Studies reporting slip lengths for liquid

microflows are already present in the literature. Joseph and Tabeling [21] reported slip

lengths below 100 nm in water flowing inside 10 μm×100 μm×1 cm microchannels in

velocity profiles obtained using the particle image velocimetry (PIV) technique.

According to the numerical predictions given by El-Genk and Yang [22], slip lengths in

the experiments on water flows through microchannels conducted by Celata et al. [23]

and Rands et al. [24] were estimated as 1µm and 0.7 µm, respectively. Tretheway and

Meinhart [25] reported that the slip length in water flow in a 30×300 µm2 channel

coated with a monolayer of hydrophobic octadecyltrichlorosilane was approximately 1

µm. Slip lengths ranging from 6 µm to 8 µm were measured by Chun and Lee [18] in

their experimental study on 1 mM KCl electrolyte flow with fluorescent polystyrene

latex of radius 1.05 µm and dilute concentration of 0.48 ppm in a slit-like channel of 3

cm length, 90 µm width and 1000 µm depth. For Newtonian fluids, such as air and

water, the wall slip happens when the scale of channel reduces to the order of molecular

dimensions or fractions of a micrometer. However, there exist some investigations on

thermal and fluid characteristics of Newtonian liquid in microchannels, considering

both slip [13,26–28] and no-slip [29–31] conditions at the surface interface. It has been

also observed that slip conditions existed at the channel walls for non-Newtonian fluids,

such as polymer solutions and extrusions of polymer melts in capillary tubes because of

instabilities induced at sufficiently high stress levels [1,32]. These instabilities were

attributed to chain polymer disentanglement [33] and debonding at the interface of wall

and polymer [34] and resulted in wall slips for these types of fluids. Bhagavatula and

Castro [35] proposed a mathematical model, which used linear Navier slip boundary

condition at wall and Carreau viscosity for explaining the rheological behavior

corresponding to the coating material. They employed a micro slit rheometer to measure
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rheological and slip parameters corresponding to the coating material and found that

their predictions of pressure and coating thicknesses agreed well with the experimental

results.

Being interdisciplinary and having a wide range of application in industry, non-

Newtonian fluid flows require a thorough study in terms of experimental, numerical and

analytical aspects to find applications in emerging fields. In contrast to Newtonian

fluids, the viscosity of non-Newtonian fluids, which are typically involved in complex

material structures such as foams, polymer melts, emulsions, slurries, and solutions,

shows a different trend when exposed to variations in shear rate. Therefore, an

appropriate viscosity model should be implemented for their analysis. Non-Newtonian

fluids offer an attractive subject for scientists and engineers from different disciplines to

explore mathematical models for relating stress, deformation and heat transfer behaviors

[36–39].
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CHAPTER 2

LITERATURE SURVEY

2.1 Single-phase flow in duct

Since there are many practical applications related to non-Newtonian fluids, the

assessment of their heat transfer characteristics is vital for accomplishing successful

thermal designs. A large number of experimental and numerical studies regarding non-

Newtonian fluids have been reported in the literature. However, few experimental

studies have been conducted to investigate convective heat transfer characteristics of

non-Newtonian fluids [40–45]. On the other hand, many numerical investigations on

heat transfer of non-Newtonian fluids have been reported in the literature including a

wide range of different cases such as forced convection [46–50], natural convection

[51–54] and mixed convection [55–58] in addition to the consideration of fluids

exposed to external fields such as magnetic field (known as MHD flow [59–61])  and

electric field (electroosmosis [62–64]).

Babaie et al. [62] performed a numerical study on heat transfer characteristics of hybrid

electroosmotic and pressure driven power-law fluid flows in a microchannel. Their
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findings revealed that the thermal characteristics were strongly affected by governing

parameters such as flow behavior index, zeta potential, and viscous dissipation. Hung

[65] provided an analytical solution for entropy generation rate of fluid flows through

circular microchannels under power law assumption. The author reported that viscous

dissipation is significant and should be taken into consideration in the entropy

generation analysis.

Chen et al. [66] studied heat transfer characteristics of power-law fluid flow in a

microchannel and presented dimensionless temperature distributions and fully

developed Nusselt numbers for different parameters such as flow behavior index, ratio

of Debye length to half channel height, ratio of Joule heating to surface heat flux, and

Brinkman number. Sunarso et al. [67] performed numerical simulations to examine wall

slip effects on Newtonian and non-Newtonian fluid flows in microchannels. They found

that different vortex growth could be observed in micro scale due to the inclusion of

wall slip, which qualitatively matched with experimental results. Barkhordari and

Etemad [68] conducted a numerical study on convective heat transfer of non-Newtonian

fluid flows in microchannels at both constant temperature and constant heat flux

boundary conditions. Their computational results showed that a change in the slip

coefficient decreased Poiseuille number while increasing local Nusselt number.

Many researchers concentrated on an analytical approach to examine heat and fluid flow

characteristics of non-Newtonian fluids for internal convection, which is important for

giving an insight into a better design for devices involving non-Newtonian fluids. As a

result of such efforts, many studies are present in the literature. For example, Chiba et

al. [69] analytically studied convective heat transfer in a pipe exposed to non-

axisymmetric heat loads with constant properties including the  viscous heating term.

Their analysis of the heat transfer was performed by using an integral transform

technique, ‘Vodicka's method’, at which Brinkman number and rheological properties

effects on local Nusselt number were exhibited. Pinho and Coelho [70] presented an

analytical solution for thermally and hydrodynamically fully developed viscoelastic

fluid flows inside a concentric annulus by simplification of the Phan-Thien-Tanner

constitutive equation subject to both constant wall heat fluxes and constant wall

temperatures under the consideration of viscous dissipation term. They obtained some

expressions for the inner and outer Nusselt number in terms of appropriate

dimensionless parameters. Manglik and Ding [71] analytically solved the fully

developed laminar power-law fluid flows based on the Galerkin integral method in
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double-sine shaped channels for constant temperature and heat flux thermal boundary

conditions and obtained results for friction factor and Nusselt number. Thayalan and

Hung [72] presented a theoretical solution based on the Brinkman-extended Darcy

model for power-law fluid flows in porous media. They derived an expression for the

overall Nusselt number based on a proposed parabolic model and did their analysis on

convective heat transfer characteristics relevant to porous media. Chen [73] presented

an analytical solution for convective heat transfer in  electroosmotic power-law fluid

flows between two parallel-plates by obtaining some expressions for velocity and

temperature distributions, and fully developed Nusselt number. Similar studies for a

circular channel, based on the linearized Poisson–Boltzmann distribution equation, and

for viscoelastic fluids related to Phan-Thien-Tanner (PTT) and Finitely-Extensible-

Nonlinear-Elastic (FENE-P) models were also carried out [74,75]. Tso et al. [76] did a

theoretical analysis on heat transfer of hydrodynamically and thermally fully developed

laminar non-Newtonian fluids between parallel-plates while considering viscous

dissipation effects for asymmetric heating and presented a Nusselt number expression in

terms of Brinkman number and power-law index.

Semi-analytical solutions of flows inside parallel-plates was performed by Sheela-

Francisca et al. [77] for power-law fluids under asymmetric heating conditions, which

had a significant effect on Nusselt number in addition to other parameters. Monteiro et

al. [78] used the Generalized Integral Transform Technique to derive a hybrid

numerical–analytical solution for hydrodynamically fully developed and thermally

developing power-law fluid flows within coaxial channels of arbitrary geometric

configuration. Siginer and Letelier [79] used asymptotic series in terms of the

Weissenberg number, Wi, to examine heat transfer of a class of non-linear viscoelastic

fluids flowing in non-circular channels, where Nusselt number was a function of Wi.

Mahmud and Fraser [80,81] presented asymptotic Nusselt number and entropy

generation expressions for power-law fluid flows inside circular channels and parallel-

plates with the use of first and second laws of thermodynamics, while neglecting

viscous dissipation.

Considering thermophysical properties as constant like in above mentioned references is

not always appropriate, since these properties are a strong function of temperature.

Therefore, taking thermophysical properties as temperature-dependent would certainly

lead to more accurate results. There exist only few investigations in the literature
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considering convective heat transfer of non-Newtonian fluids with temperature-

dependent properties [81–85].

There are some experimental evidences confirming the possibility of slippage in non-

Newtonian fluids [86–91]. Only few studies including the slip effect in their analysis to

obtain heat transfer characteristics of non-Newtonian fluids exist [67,68,92–95].  Slip

effects could also play a significant role in heat transfer.

For this aim, the current study provides analytical solutions to governing equations

pertinent to both hydrodynamically and thermally fully developed laminar Newtonian

and power-law fluid flows as well as plug flows through parallel-plates and circular

microchannels under constant heat flux, while viscous dissipation is included, and

effects of slip condition of different types, and properties with temperature-dependency

are taken into consideration.

To the authors’ best knowledge, few analytical studies on forced convection heat

transfer of non-Newtonian fluid in microchannels with slip conditions exist in literature.

The first chapter aims at proving an analytical solution for non-Newtonian fluid flows

between parallel-plates in micro scale subject to isoflux and isothermal thermal wall

boundary conditions, while taking the effects of wall slip and viscous dissipation into

consideration. This analytical solution has the potential of serving as a prediction tool in

convective heat transfer of non-Newtonian fluid flows in micro scale. In all the above

mentioned studies, the constant thermophysical property assumption was used.

However, this assumption may not be reasonable if there is a significant variation in

thermophysical properties with temperature. To the authors’ best knowledge, there are

only a few studies in the literature related to convective heat transfer of non-Newtonian

fluids, which considers the change in thermophysical properties as a function of

temperature [82–84]. Molaei-Dehkordi and Memari [96] also carried out a numerical

investigation on the transient, hydrodynamically fully developed, laminar power-law

fluids flow in the thermally developing entrance region of circular tube, while taking the

viscous dissipation, axial conduction, and temperature-dependent viscosity into account.

To address the gap in the literature, the second chapter presents an analytical model for

convective heat transfer of power-law fluids in circular channels subjected to isoflux

thermal wall boundary conditions, while accounting the effect of viscous dissipation.

The presented analysis, based on perturbation method, focuses on Nusselt number and

global entropy generation in the case of the presence of thermophysical property

variations in both the viscosity and thermal conductivity. In order to get more accurate
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results and better modeling  non-Newtonian fluid flows in microchannels, in the third

chapter, the slip and the variable properties parameters have been simultaneously

considered along with a modified slip boundary condition consistent with experimental

observations [89], which has nonlinear wall shear stress dependency.

2.2 Pool boiling

Boiling heat transfer has a wide range of applications spanning from traditional to

emerging industries such as heat exchangers, cooling and heating systems, microfluidic

systems and chemical and bioengineering reactors and attracted the attention of many

researchers. Nucleate boiling as a common mode of heat transfer appears in almost all

boiling phenomena. Pool boiling as a subcategory of boiling happens in the absence of

an external flow, and nucleate boiling is one of its basic mechanisms.

During last decades, a large number of investigations have been carried out for

understanding physics of boiling and bubble formation and for proposing engineering

design guidelines [97–100]. Kim [101] reviewed the mechanisms in nucleate pool

boiling and reported enhanced convection, transient conduction, microlayer

evaporation, and contact line heat transfer as fundamental mechanisms. Dhir et al. [102]

presented a review on numerical simulations of pool boiling.  In these reviews, single

bubble dynamics and bubble coalescence were examined, and the effects of various

parameters such as wall superheat, liquid subcooling, contact angle, gravity were

discussed.

One method for nucleate pool boiling heat transfer enhancement is to the integration of

micro/nano structures to surfaces [103–106]. Instead of changing the surface area,

another effective method to alter heat transfer characteristics is  tuning liquid properties

through the addition of nanoparticles [107]. Among the characterization studies on

nanofluids, the majority of the published work reported their Newtonian behaviour

[108–111], and some of the studies emphasized on non-Newtonian trends in the

viscosity [112–115]. Nevertheless, one of the serious issues in the use of nanofluids is

their tendency for instability, which appears as agglomeration and deposition of

nanoparticles leading to decreased functionality in thermofluidic applications.
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An alternative method to improve the performance is the inclusion of additives such as

polymeric additives, reagents and surfactants into a base fluid such as water (aqueous

surfactant and polymeric solutions)[116], which offers more stability compared to

nanofluids.

Many polymeric additives in a pure base fluid (polymeric solutions) generate a shear

dependent viscosity, which deviates from Newtonian fluid characteristics. The presence

and amount of the additives (e.g. reagent or surfactants) basically change contact angle

and interfacial tension of the solution. Interaction between rheological properties of

solution with interfacial behavior determines how effective they are on heat transfer and

bubble dynamics in boiling. Potchaphakdee and Williams [117] firstly reported the

positive effect of polymer additives dissolved in water on boiling heat transfer. They

had a minor effect on surface tension and major effect on viscosity, which also

significantly influenced heat transfer. The experimental study of Manglik et al. [118],

which presented measurements of dynamic and equilibrium surface tension of aqueous

surfactant and polymeric solutions, showed that the surfactant and polymer additives in

distilled water gave rise to the reduction in surface tension. As Cheng et al. [119]

pointed out in their review, the enhancement of nucleate boiling heat transfer of

polymeric solutions is mainly controlled by their viscosity, where an optimum viscosity,

which is a function of the concentration and the molecular weight of the polymer, could

be obtained [120,121]. In this regard, in work of Zhang and Manglik [122], the reduced

dynamic surface tension accompanied with adsorption of macromolecules on a heating

surface, which probably formed new nucleation sites, was believed to be the primary

reason for heat transfer enhancement for  hydroxyethyl cellulose (HEC) (with

concentration, c, less than critical polymer concentration, c*). Heat transfer deteriorated

with concentration for HEC solutions for c> c*.  There was also a decreasing trend for

Carbopol 934 solutions compared to pure water because of higher viscosity.

Recently, Zhang et al. [123] conducted experiments on boiling heat transfer of

(non)ionic liquid polymers for hydrophilic/hydrophobic Alumina Sponge-like nano-

porous surfaces (ASNPS) and realized that there is an optimal concentration, beyond

which heat transfer performance decreases because of instantaneous liquid impingement

and high density small bubbles, while the opposite is valid for concentrations smaller

than this optimal one.

The aim of using polymeric solutions as an alternative of pure liquids, especially in

dilute form, is to adjust heat transfer characteristics. The results reported in literature are
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in contradiction to each other as stated in the review of Wasekar and Manglik [116]. For

example, while the results of Kotchaphakdee and Williams [117] demonstrate

enhancements in boiling heat transfer on plate heaters submerged in hydroxyl ethyl

cellulose (HEC-H) and PA-30 solutions, the results of Wang and Hartnett [124], Hu

[125], and Paul and Abdel-Khalik [121] degradation in heat transfer from platinum wire

heaters in very dilute aqueous polymeric solutions compared to water. Few studies

[126,127] reported that there was not any change in nucleate boiling heat transfer when

polymeric additives were used.

The difference in boiling heat transfer of polymeric solutions from pure liquids can be

associated with different bubble characteristics such as bubble size, shape, growth rate

and release frequency. When compared to water, the bubbles detach from the surface

with larger frequencies while having smaller sizes and more regular shapes

[125,128,129]. Therefore, some polymeric solutions offer nucleate pool boiling

enhancement.
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CHAPTER 3

SINGLE-PHASE SLIP FLOW THROUGH PARALLEL-PLATE
MICROCHANNELS

3.1 Analysis:

In this study, hydrodynamically and thermally fully developed, steady state,

incompressible and laminar flows of non-Newtonian fluids with constant properties and

power law assumption were analyzed for two-dimensional parallel-plates. Both isoflux

and isothermal boundary conditions were applied to the parallel-plates configuration

(Fig. 3.1).

Fig. 3.1 A schematic of the geometry
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Axial heat conduction effect in the fluid and wall was neglected, while viscous

dissipation and wall slip were taken into account.

For non-Newtonian fluids, the following shear-stress power-law relationship is valid:


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U
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U n 1

 (3.1)

where ϕ is the consistency factor and n is the power-law index.

The governing equations for fluid flow are continuity, x-momentum, and energy

equations and are expressed as:
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where ρ is the density, P is the pressure, T is the temperature, cp is the specific heat at

constant pressure, k is the thermal conductivity, and U and V are velocity components

in X and Y directions.

Linear Navier slip condition is a general boundary condition at the wall introducing the

possibility of fluid slip at the interface of solid and fluid in micro scale and is stated as:

wall
ws Y

UlUU 










 (3.5)

where l is the slip length.

Another slip boundary condition applicable to non-Newtonian fluids is the non-linear

Navier slip boundary condition, at which the wall velocity is proportional to the velocity

gradient power to the power-law index [130,131].

A general slip boundary condition at wall applicable to every type of slip flow,

regardless of Newtonian and non-Newtonian fluid flows, is the consideration of a slip
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velocity, Us, at wall (i.e. U(at wall)=Us). This type of slip velocity is taken in this study as

the slip boundary condition, which can be then easily transformed into the linear slip

boundary condition. It should be also noted that temperature-jump condition occurring

in gas flows does not exist for liquid flows.

To facilitate an analytical solution, the governing equations are non-dimensionalized by

using the following non-dimensional parameters as:

mU
Uu 

mU
Vv 

D
Yy 

D
Xx  2

mU
Pp




In addition, the following dimensionless numbers are introduced in the analysis:


 n

h
n

m DURe



2

m

s

U
U
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D
lL 

where Re is Reynolds number, L is dimensionless slip length, and β is slip coefficient.

The dimensionless governing equations with slip-boundary condition and no

temperature jump condition are analytically solved to obtain the Poiseuille number (Po)

and the Nusselt number (Nu), as well as the velocity and temperature distributions. The

closed form expressions for Nu and Po corresponding to Newtonian liquid flow

characteristics are also presented by letting n=1 while the results for the no-slip

boundary condition correspond to the case of β=0, which is mostly valid for macro

scale.

The non-dimensionalized x-momentum equation and slip-boundary condition

expressions for Non-Newtonian fluid flows between parallel-plates become:
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Subscripts s and w in all equations stand for the fluid properties at the surface and the

wall, respectively.

The momentum equation stated in Eq. (6) can be analytically solved by imposing slip-

boundary condition at the wall given in Eq. (7) along with the symmetry condition (via

setting the axial velocity gradient at the middle to zero (i.e., ∂u/∂y (at y=0) =0)).
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Accordingly, the corresponding dimensionless fully developed axial velocity profile, u,

is obtained as:
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Poiseuille number, Po = f Re, is defined as:
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By substituting Eq. (9) into Eq. (10), Poiseuille number is derived as:
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The next step is solving the energy equation with viscous dissipation term for the two

cases, namely, isoflux and isothermal boundary conditions.

For the constant heat flux case, the energy equation containing viscous heating term

(viscous dissipation term) should be solved under no temperature-jump condition, while

a constant heat flux is applied to the walls. In the energy equation, the longitudinal

temperature gradient, ∂T/∂X, can be obtained with the application of the first law of

thermodynamics to an elemental control volume as:
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For a parallel plate channel cross-section, it can be written as:
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The above equation can be solved by introducing Brinkman number, defined

as n
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where the parameter A is expressed as:
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Brinkman number, Br, is a dimensionless parameter representing viscous dissipation

term.  Its positive and negative values refer to wall heating (fluid is being heated) and

wall cooling (fluid is being cooled), respectively.

With the introduction of the dimensionless temperature defined as
kqD

TT w
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energy equation takes the following dimensionless form:
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After the substitution of the velocity expression, Eq. (16) becomes:
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The above expression has the following boundary conditions:
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θ (y = 1/4) = 0, ∂θ/∂y (y = 0) = 0 (3.18)

Accordingly, an analytical solution for dimensionless temperature distribution can be

derived as:
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The dimensionless bulk or mean temperature is given as:
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After several manipulations, the following expression is obtained:
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Nusselt number is defined as
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dimensionless temperature as:
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Finally, Nusselt number can be expressed in the following form as:
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It can be noted that the above expression is valid for Newtonian flows when n=1 and

reduces to 140/(17+108Br), which agrees with the Nusselt number corresponding to the

flow between parallel-plates given in the literature [12].

For the case of the linear Navier slip condition, it is sufficient to use the following

expression for β:
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Second law analysis becomes significant in designing and improving the performance

of thermal systems. This analysis in terms of entropy generation and Bejan number,

which is based on irrevesibilities in fluid friction and heat transfer, is more significant in

thermal systems, where there are high gradients in velocity and temperature, particularly

in micro flows. Minimizing entropy generation would help to improve the efficiency of

a system [132]. Accordingly, entropy generation rate and Bejan number are presented in

this study to provide some insight to the second law analysis.

The volumetric rate of entropy generation can be expressed as [133]:
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where the first and second terms on the right side are (volumetric) Heat Transfer

Irreversibility (HTI) and Fluid Friction Irreversibility (FFI), respectively.

For the case of non-Newtonian fluids, entropy generation rate is derived as:
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In non-dimensional form, it can be expressed as:
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The main aim of second law analysis is to find parameters minimizing global entropy

generation rate, denoted by <Ns>, which is related to whole dissipations generated by

irreversibilities in the channel, which affect the performance of the system. Therefore, it

is required to integrate Ns across the cross-sectional area occupied by the fluid

through SdSNN ss  . After performing the integral, one could express <Ns> as

follows:
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The Bejan number, Be, is defined as the ratio of entropy generated due to heat transfer,

SHTI, to the total entropy generation rate S(HTI+FFI), and is expressed as:
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When the heat transfer irreversibility dominates, the value of Be converges to unity,

while the irreversibility is solely caused by to fluid friction when Be goes to 0.
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For the isothermal wall boundary condition and fully developed flows, the axial

gradient temperature is zero, and Brinkman number does not appear in the energy

equation. The dimensionless temperature is then written as:
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Accordingly, the dimensionless energy equation becomes:
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The above equation is also a second-order linear equation, where the convective term is

not present. Applying the proper thermal boundary conditions, a solution for

temperature distribution is obtained as:

)31)(21(16

)4(14

/

311
2

11 nn

y
n

n

kDU
TT

n
nn

nn
w




































(3.37)

Using the above expression, the mean temperature is deduced as:
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Then, Nu can be obtained from the following expression:
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Accordingly, the following expression for Nu can be found:
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For Newtonian fluids (n=1), it reduces to:
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The results of Eq. (3.41) agree with the results reported in the literature [12].

The entropy generation rate for non-Newtonian fluids and the case of isothermal wall

boundary condition is written as:
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Its dimensionless form takes the following form:
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where the dimensionless heat flux ,Ψ, and ∂θ/∂y are as follows:

Ψ = ϕUn+1/ Ti kDn-1 (3.45)
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Global entropy generation rate, <Ns>, is found as:
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Finally, Bejan number is obtained as:
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3.2 Results and Discussion

This section includes the influence of slip coefficient and viscous dissipation on heat

transfer characteristics of hydrodynamically and thermally fully developed non-

Newtonian fluid flows between parallel-plates at both constant heat flux and constant

wall temperature boundary conditions. First, constant heat flux boundary condition is

considered.  Thereafter, the results corresponding to constant wall temperature

boundary condition are presented.

Shear thinning (or pseudoplastic) fluids with 0≤n<1 are non-Newtonian fluids, whose

viscosity decreases with increasing shear rate, while the opposite is true for shear

thickening (or dilatants) fluids with n>1. Figure 3.2 shows the dimensionless velocity

distribution at different power-law indices, n, for the no-slip condition. It can be seen

that the core velocity of the fluid increases with n, while its velocity gradient decreases.

In other words, the velocity profile of shear-thinning fluids becomes more uniform with

the decrease in n. It should be noted that a parabolic profile is obtained for Newtonian
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fluids (n=1). On the other hand, the profile becomes more non-uniform for shear-

thickening fluids (n>1).

Fig. 3.2 Dimensionless fully developed velocity profiles for different values of n at
β = 0

The effect of slip coefficient on the velocity distribution is displayed in Fig. 3.3 for a

shear-thinning fluid (pseudoplastic) with n=0.5. As can be seen, in contrast to no-slip

condition, there is a decrease in velocity gradient at both the wall and the core velocity

with the increase of the slip velocity (increase in β) for maintaining constant flow rate in

the channel. For large values of β, the flow converges to “Plug flow”, where the liquid

acts like a solid slipping in the channel.

Figure 3.4 displays Nusselt number as a function of power-law index, n, at various slip

coefficients in the absence of viscous heating (Br=0) for the constant heat flux case. It

can be clearly observed that Nusselt number decreases with power-law index, which is

due to the fact that the velocity gradients are greater near the wall for lower power-law

index values (Fig. 3.2).
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Fig. 3.3 Dimensionless fully developed velocity profiles for different values of β at
n = 0.5

Furthermore, an increase in slip coefficient gives rise to the enhancement in heat

transfer. This is in contrast to the results on slip flow for gas flows [134], where a

temperature jump condition exists at the wall resulting in lower temperature gradients.

However, no temperature jump condition exists for this case (liquid flow). In addition,

the existence of slip condition in velocity increases convection by increasing streamwise

velocity near walls leading to higher Nusselt number values. The effect of slip

coefficient on Nusselt number is more dominant for shear-thickening fluids (n>1) than

shear-thinning fluids (n<1). For example, the Nusselt number increase is around 26.6%

for a shear-thickening fluid (n=1.5) for a slip coefficient of 0.6, while it is 20.3% for a

shear-thinning fluid (n=0.5). Velocity profiles are more uniform for shear thinning

fluids compared to shear thickening fluids. When a velocity slip condition exists at the

wall, enhanced convection effects near the wall are therefore not as pronounced as in

shear thickening fluids. As a result, a larger increase in heat transfer is apparent for

shear thickening fluids for slip flows.
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Fig. 3.4 Variation of Nusselt number versus n for different values of β at Br=0

Figures 3.5 and 3.6 illustrate Nusselt number as a function of slip coefficient at different

Br for two n values, namely n=0.5 (Shear-thinning fluid), and n=1.5 (Shear-thickening

fluid), respectively. As can be seen from these figures, Nusselt number increases

dramatically with slip coefficient for these two n values. The increase in Br also leads to

considerably lower Nusselt numbers due to increasing viscous dissipation effects.

Indeed, viscous dissipation contributes to internal heating of the fluid and increases the

mean temperature of the fluid. As a result, it increases the temperature difference

between the wall and the mean fluid and therefore has a negative effect on convective

heat transfer. Furthermore, the reduction in Nusselt number with Brinkman number for

shear-thickening fluids is higher than that of shear-thinning fluids, which arises from the

fact that viscous dissipation increases the mean temperature of shear-thickening fluids

more. For instance, Nusselt number is decreased by 94.6% when Br goes from zero to

0.1 for n=1.5, whereas the decrease is 70.4% for n=0.5. Again, the decreasing trend in

Nusselt number with n is observed in these figures, where viscous heating is also

present.
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Fig. 3.5 Variation of Nusselt number versus β for different values of Br at n=0.5

Fig. 3.6 Variation of Nusselt number versus β for different values of Br at n=1.5
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Figures 3.7 and 3.8 display Nusselt number as a function of Br at different slip

coefficient values for n=0.5 and n=1.5. One can observe the existence of some

singularity points in Nusselt number for each β. At these singular points, where the

mean temperature reaches the wall temperature, the heat transfer between the fluid and

wall cannot be expressed in terms of Nu. It is clear that by going away from

singularities the absolute value of the Nusselt number asymptotically converges to zero,

as expected from Nusselt number expression. Under slip flow conditions, the

singularities occur at larger Br absolute values, while for shear-thickening fluids, they

are close to each other.

Fig. 3.7 The effect of Br on Nusselt number for different β at n=0.5
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Fig. 3.8 The effect of Br on Nusselt number for different β at n=1.5

Tables 3.1 and 3.2 provide the values of global entropy generation rate <Ns> at the wall

isoflux case, while axial heat conduction is absent (i.e. Pe→∞). Based on the results,

either existence of slip condition or increasing slip coefficient causes the decrease in

global entropy generation rate since slip condition leads to smaller velocity and

temperature gradients particularly at the solid surface, which improves the performance

of the system. On the other hand, the results show that an increase in Brinkman number

leads to an increase in <Ns>. Therefore, the fluidic system with less Br would result in

better working performance. It is known from the Brinkman number definition that it is

directly proportional to the magnitude of velocity and has an inverse relationship with

both heat flux and diameter of the channel. In other words, in order to minimize global

entropy generation rate (i.e. irreversibility), lower magnitude of velocity with higher

heat flux and larger channel height should be considered.

Moreover, shear-thickening fluids have larger <Ns> values compared to shear-thinning

fluids, which is due to larger gradients in velocity and temperature at walls, which are

more influential regions in the domain for entropy generation distributions. The channel

wall is a location, where maximum velocity and temperature gradients exist, while they

are zero at the center. Accordingly, entropy generation rate, Ns, reaches its maximum
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and minimum values at the wall and center, respectively. Consequently, Brinkman

number and slip coefficient have a significant effect on entropy generation near the

walls.

Table 3.1 The values of global entropy generation rate at ψ=0.1, β=0.2 and Pe→∞

Br

0 0.001 0.01 0.1

n

0.2 0.396 0.456 1.000 6.443

0.3 0.411 0.487 1.171 8.013

0.4 0.422 0.516 1.364 9.851

0.5 0.430 0.546 1.589 12.036

0.6 0.436 0.578 1.856 14.650

0.7 0.442 0.615 2.174 17.789

0.8 0.446 0.657 2.554 21.567

0.9 0.449 0.705 3.011 26.121

1 0.452 0.763 3.560 31.613

1.1 0.455 0.831 4.222 38.239

1.2 0.457 0.913 5.019 46.238

1.3 0.459 1.011 5.979 55.896

1.4 0.461 1.128 7.137 67.562

1.5 0.462 1.269 8.532 81.656

1.6 0.463 1.438 10.215 98.691

1.7 0.465 1.642 12.245 119.288

1.8 0.466 1.887 14.692 144.206

1.9 0.467 2.182 17.643 174.367

2 0.468 2.538 21.203 210.902
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Table 3.2 The values of global entropy generation rate at ψ=0.1, Br=0.01 and Pe→∞

β

0 0.2 0.4 0.6

n

0.2 1.203 1.000 0.807 0.626

0.3 1.448 1.171 0.913 0.679

0.4 1.735 1.364 1.028 0.732

0.5 2.079 1.589 1.157 0.789

0.6 2.496 1.856 1.304 0.850

0.7 3.006 2.174 1.473 0.917

0.8 3.632 2.554 1.670 0.991

0.9 4.402 3.011 1.899 1.073

1 5.350 3.560 2.166 1.165

1.1 6.518 4.222 2.478 1.267

1.2 7.958 5.019 2.842 1.382

1.3 9.734 5.979 3.269 1.510

1.4 11.925 7.137 3.767 1.654

1.5 14.628 8.532 4.351 1.816

1.6 17.962 10.215 5.035 1.998

1.7 22.076 12.245 5.836 2.202

1.8 27.154 14.692 6.773 2.431

1.9 33.420 17.643 7.871 2.688

2 41.154 21.203 9.157 2.977

Figures 3.9 and 3.10 demonstrate the distribution of Bejan number for different values

of Br at β=0, Ω =0.1 in the cases of shear-thinning and shear-thickening fluids,

respectively. For Br =0 (no viscous dissipation), Bejan number has the value of one

regardless of transverse coordinate and power-law index, which means that the fluid

friction irreversibility does not play a role in generation of the entropy, as expected from

Eq. (34). As can be deduced from Eq. (34), Be is maximum at the center and has the

value of one. There is a sharp drop in Bejan number from unity to smaller values for

shear-thickening fluids by moving for a very small distance away from the center
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particularly at higher Br. Small values of Be (Be<0.5) for these fluids indicate that the

fluid friction irreversibility mainly dominates the heat transfer irreversibility. For shear-

thinning fluids, the values of Be gradually decrease from unity at centerline, where there

is zero velocity gradient, to relatively smaller values at the wall, where the velocity

gradient is the largest. Be values are mostly lower than 0.5, beyond which heat transfer

irreversibility exceeds fluid friction irreversibility. Accordingly, for shear thinning

fluids (except for low Br) the contribution to the total entropy generation is mainly

attributed to heat transfer irreversibility, while for shear-thickening fluids, irreversibility

is mainly due to the fluid friction.

Fig. 3.9 Bejan number distribution for different Br at n=0.5, Ω=0.1 and β=0
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Fig. 3.10 Bejan number distribution for different Br at n=1.5, Ω=0.1 and β=0

The dependence of Bejan number distribution on slip coefficient at Br=0.01 and Ω =0.1

is displayed in Figs. 3.11 and 3.12 for the cases of n=0.5 and n=1.5, respectively. An

increase in β from 0 to 0.615 for n=0.5 and from 0 to 0.516 for n=1.5 results in a

reduction of the velocity gradient and a rise in the rate of heat transfer irreversibility (in

terms of Be) up to 193% and 442% at the wall, respectively. However, irreversibilities

due to fluid friction are still pronounced for shear-thickening fluids. Again, sharp drop

from one to small values of Be in these figures indicates the dominance of fluid friction

in irreversibility.

As mentioned before, the axial temperature gradient and Brinkman number do not

appear in the energy equation for the isothermal wall boundary condition. Figure 3.13

displays the effect of slip coefficient on Nusselt number as a function of power-law

index. The results indicate that similar to isoflux wall boundary condition, the increase

in power-law index results in a decrease in Nusselt number. Furthermore, Nusselt

number also increases when there is velocity slip on the surface, but this increase is

more at higher n, similar to the constant heat flux boundary condition.
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Fig. 3.11 Bejan number distribution for different β at n=0.5, Ω=0.1 and Br=0.01

Fig. 3.12 Bejan number distribution for different β at n=1.5, Ω=0.1 and Br=0.01
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Fig. 3.13 Variation of Nusselt number versus n for different values of β

The trends in Ns and Be for the isothermal wall condition and the corresponding

discussion are relatively the same as those for the isoflux wall condition case and will

not bring any additional insight. Therefore, their Ns and Be plots are not included.

3.3 Conclusions

An analysis on convective heat transfer and entropy generation was performed to

examine the effects of slip coefficient, power-law index and viscous heating on heat

transfer characteristics of hydrodynamically and thermally fully developed slip flows of

non-Newtonian fluids between parallel-plates at isoflux and isothermal thermal

boundary conditions. The effects of key parameters such as slip coefficient, β, power-

law index, n, and Brinkman number, Br, on Nusselt number, entropy generation rate
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and Bejan number have been assessed. Major conclusions drawn from this study are as

follows:

 Nusselt number and Bejan number decrease with the increase in either power-

law index or Brinkman number, while they increase with slip coefficient.

 The global entropy generation rate increases with increasing both power-law

index and Brinkman number, whereas a reduction in the global entropy

generation rate is observed with the existence of slip condition and an increase

in slip coefficient.

 The effect of key parameters on Nusselt number and the rate of entropy

generation is more pronounced for shear-thickening fluids.
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CHAPTER 4

SINGLE-PHASE NON-SLIP FLOW THROUGH MICROTUBE WITH
TEMPERATURE-DEPENDENT PROPERTIES

4.1 Analysis:

In this study, hydrodynamically and thermally fully developed, steady state,

incompressible and laminar flows of power-law fluids with constant and variable

thermophysical properties are analyzed for circular channels under the isoflux thermal

boundary condition applied to the tube wall (Fig. 4.1).

Fig. 4.1 Isoflux heating applied to a circular channel
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For a power-law fluid, the following shear-stress power-law relationship is valid:
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the power-law index, n. The governing equations are x-momentum and energy
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where ρ is the density, P is the pressure, T is the temperature, cp is the specific heat at

constant pressure, k is the thermal conductivity, and U is velocity component in X

direction.

In order to proceed with a solution, viscosity and thermal conductivity must be defined

as a function of temperature. Reynolds [135] proposed an exponential model for the

temperature-dependence of viscosity as:

)exp( Tbref   (4.4)

where T is temperature, and μs and b′ are coefficients. Using a truncated Taylor series

for exp(-bT) similar to Hooman and Ejlali [136], viscosity is expressed as:

1

)1()1(1




















n

refref
w

ref
ref R

U
T
TT

dT
dT





 (4.5)

where
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Here
T
TT w


 is the dimensionless temperature, θ. k is defined to be a coefficient of , i.e.

k=, in which  will be obtained for water as a working case through computational

simulation.

The governing equations for x-momentum and energy equations can be stated as:
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To facilitate an analytical solution, the governing equations are non-dimensionalized by

using the following non-dimensional parameters and Reynolds number, Re, as:
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The dimensionless governing equations are analytically solved to obtain Nusselt

number (Nu), as well as the velocity and temperature distributions. The closed form

expressions for Nu corresponding to Newtonian liquid flow characteristics can also

obtained by setting n=1.

The first step is to derive the velocity distribution. With the introduction of Reynolds

number, the non-dimensionalized x-momentum equation becomes:
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The above equation can be solved using the no-slip boundary condition at wall along

with the symmetry condition at the center (via setting the axial velocity gradient at the

center to zero (i.e., ∂u/∂r (at r=0) =0)).

After implementing the symmetry condition, and using Taylor series with the first order

approximation, one can write:
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For most practical cases, the viscosity variation number is small compared to unity, i.e.

ε << 1. This allows for a regular asymptotic expansion assumption (for dependent

variables u and θ) in the following form
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As a result, Eq. (13) takes following form:
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Splitting the above equation into two following equations
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the dimensionless fully developed axial velocity profile, u0, under the no-slip boundary

condition (i.e., u (at r=1) =0) is obtained as:
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In order to find u1, it is required to proceed with θ0. For the constant heat flux case, the

energy equation containing viscous heating term (viscous dissipation term) should be

solved under the no temperature-jump condition, while a constant heat flux is applied at

the walls. In the energy equation, the longitudinal temperature gradient, ∂T/∂X, can be

obtained with the application of the first law of thermodynamics to an elemental control

volume as [12,137]:
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For a circular cross-section, it can be written as:
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The above equation can be solved by introducing Brinkman number, defined

as n
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where the parameter A is expressed as:
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Brinkman number, Br, is a dimensionless parameter representing viscous dissipation

term.  Its positive and negative values refer to wall heating (fluid is being heated) and

wall cooling (fluid is being cooled), respectively.

Upon using the dimensionless temperature defined as
kqr
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 , the energy equation

takes the following dimensionless form:
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Splitting the above equation, the following equations are obtained:
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These equations must be solved subject to the following boundary conditions

At r=1 θ0=θ1=0 (4.30)
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By substituting u0, the dimensionless temperature distribution θ0 is derived as:
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Accordingly, the dimensionless fully developed axial velocity profile, u1, is obtained as:
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After substituting u0, u1, and θ0 into Eq. (4.29) and performing several tedious

manipulations, a long and complex expression is derived for θ1 as follows:
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Determined velocities (u0, u1) and temperatures (θ0 and θ1) are utilized to find the

dimensionless bulk or mean temperature given as:
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Nusselt number is defined as
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In the case of constant properties, Nusselt number can be expressed in the following

form as:
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To the authors’ best knowledge, there are no other studies in the literature, in which the

viscous dissipation term is present. However, the results of Eq. (4.37) are in excellent

agreement with those of Barkhordari and Etemad [68] in the absence of viscous heating

and with those of Hooman [12] in the presence of viscous heating and n=1.

For the variable property case, it is not possible to give an explicit expression for

Nusselt number. Therefore, a numerical analysis is needed.

In order to have a better design and improvement in thermo-fluidic systems, the second

law analysis constitutes an important part of analysis. In this point of view, the entropy
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generation, which is dependent on irreversibilities in fluid friction and heat transfer due

to existence of gradients in velocity and temperature, plays a significant role in such

systems. Therefore, minimization of entropy generation through reducing the

irreversibilities would be a desirable goal for thermo-fluid researchers to augment the

system efficiency. In this regard, the second law analysis is investigated in the current

study to provide some insight on how the governing parameters affect the entropy

generation rate. The volumetric rate of entropy generation can be expressed as [133]:
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where the first and second terms on the right side are (volumetric) Heat Transfer

Irreversibility and Fluid Friction Irreversibility, respectively.

For the case of non-Newtonian fluids, entropy generation rate is derived as:
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In non-dimensional form, it can be expressed as:
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After simplifications and rearrangements, and neglecting higher-order terms o(2), it

becomes:
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where Ω = kTrq i/0
" and Pe is Peclet number. The temperature and velocity gradients are

as follows:
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The main aim of second law analysis is to find parameters minimizing global entropy

generation rate, denoted by <Ns>, which is related to the whole dissipations generated

by irreversibilities in the channel. Therefore, it is required to integrate Ns across the

cross-sectional area occupied by the fluid through SdSNN ss  , and can be

written as:


1

0
2 rdrNN ss (4.43)
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Again, it is needed to perform numerical analysis to obtain the global entropy

generation.

4.2 Results and Discussion

As pointed out earlier, viscosity and thermal conductivity vary with temperature so that

a rise in temperature leads to a decrease in viscosity and an increase in thermal

conductivity. This section includes the effect of variable properties and viscous

dissipation on the entropy generation rate and heat transfer characteristics of

hydrodynamically and thermally fully developed non-Newtonian flows in tubes at

isoflux boundary condition while assuming a power-law fluid model.

Shear thinning (or pseudoplastic) fluids having power-law index in the range 0 < n < 1

behaves in such a way that their viscosity decreases with shear rate, while this behavior

is otherwise for shear thickening (or dilatants) fluids having power-law index larger

than unity (n > 1).

In order to verify the analytical results in the case of variable property, a numerical

simulation was carried out by employing ANSYS FLUENT 14.0 software that

compares the numerical and analytical results of fully developed dimensionless velocity

profile. The temperature-dependent viscosity equation based on the experimental data

expression given in Ref. [138] was implemented in the software through a User-Defined

Function (UDF) as following

140
8.247

1000002414.0)(  TT (4.44)

where T has units of Kelvin, and μ has units of N·s/m².

Fig. 4.2 demonstrates the comparison between numerical (at Re=10) and analytical

solutions, which shows a good agreement. It is notable that analytical results correspond

to ε=0.064, which was acquired by Eq. (4.7) from the numerical analysis. The value of

Γ can be also obtained by the numerical simulation, which is dependent on the heat flux
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applied. For the sake of simplicity and consistency, throughout this study it is taken to

be Γ=0.2.

Fig. 4.2 Comparison between numerical results of temperature-dependent viscosity of
water given in Ref. [138] and analytical result corresponding to ε=0.064

Fig. 4.3 illustrates the dimensionless velocity distribution at various power-law

indices, n, for both constant and variable properties at Br=0.01. As seen, regardless of

the property, the core velocity of the flow moves faster when the power-law index

increases, while its velocity near the walls takes the smaller values to keep the flow rate

constant. Generally, the parabolic profile regarding to Newtonian fluid (n = 1) deforms

to a more uniform profile compared to shear-thinning fluids and to a more non-uniform

profile compared to shear-thickening fluids. Furthermore, the consideration of

temperature-dependent properties slightly decreases the velocity values at the core

region. This trend is due to the decreasing viscosity with temperature hence giving rise

to lower pressure drop and accordingly lower velocities.
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Fig. 4.3 Dimensionless fully developed velocity profiles for different values of n for
constant and variable property case at Br=0.01

Figure 4.4 shows the dimensionless temperature distribution of the flow for different

values of n in the cases of =0 and =0.1 at Br=0.01. Similar to velocity profiles, the

temperature develops in the core region for increasing power-law index. It was also

observed that a slight increase in the fluid temperature exists for all types of the fluids,

but more effectively for shear-thinning fluid, at the core region by taking the variable

properties. The temperature increment may be ascribed to the enhancing effect of

thermal conductivity of the fluid owing to temperature variation.

Figure 4.5 shows the variation of Nusselt number as a function of power-law index for

different Brinkman numbers in the case of both constant (ε=0) and variable property

(ε=0.1) cases. It can be observed that Nusselt number decreases with both the power-

law index and Brinkman number, regardless of the property. However, this decreasing

trend is more significantly seen at higher Brinkman numbers, which is because of

Brinkman number appearing as a coefficient in the viscous dissipation term leads to

viscous heating, and accordingly, it gives rise to an increase in the mean temperature of

the fluid through the internal heating and ultimately to the decrease in Nusselt number.
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Fig. 4.4 Dimensionless fully developed temperature profiles for different values of n for
constant and variable property cases at Br=0.01

It is also noticeable that the effect of Brinkman number on Nu becomes more significant

for shear-thickening fluids, which is attributed to higher mean temperatures. In the case

of the variable thermophysical property case, the values of Nusselt number are larger

compared to the constant property case. However, the effect of property variation on the

heat transfer rate becomes less significant when the power law index goes higher in the

shear-thickening fluid range for low Br. For example, for n=2 and Br=0.1, the change in

Nusselt number is about 8% due to the consideration of the variable properties. On the

other hand, for shear-thinning fluid, the values of Nusselt number are significantly

underestimated by neglecting the temperature-variation effect. For instance, at n=0.2

and Br=0.1, the deviation becomes more and reaches about 13%. Indeed, the viscosity

decreases with temperature, which causes an increase in Reynolds number and

consequently has a positive effect on heat transfer and Nusselt number. On the other

hand, the thermal conductivity has an increasing trend with temperature, and has a

negative effect on Nusselt number (Nu=hd/k). As a result, there is an interplay between

viscosity and thermal conductivity effects, where the viscosity dominates giving rise to

an increase in Nusselt number.
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Fig. 4.5 Nusselt number as a function of n for different values of Br at the constant (at
ε=0) and variable property (at ε=0.1) cases

The effect of property variation (perturbation parameter) on the heat transfer rate for

different n and Br=0.01 is displayed in Fig. 6. As mentioned earlier, heat transfer is

reduced when the power-law index is increased. It can be seen that heat transfer rate

(Nusselt number value) increases for the variable thermophysical property case with ε at

which the deviation from constant properties might reach about 21%. However, the

effect of property diminishes as the power-law index becomes more, in particular for

shear-thickening fluids where a very small change is observed for n=2.

Table 4.1 presents global entropy generation rate, <Ns>, versus power-law index at

ε=0.1 and various Brinkman numbers in absence of axial heat conduction term

corresponding to Pe → ∞. As can be seen from the table, except for Br=0.01 which will

be depicted in the next figure, the global entropy generation rate increases with power-

law index for both constant property and variable property cases particularly for higher

Br. Since lower value of entropy generation would imply a better working performance,

the fluidic system with smaller Br (or smaller viscous heating) is desirable, which leads

to a more efficient convective heat transfer as well.
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Fig. 4.6 Nusselt number as a function of n for different values of ε at Br=0.01

Furthermore, lower values of global entropy generation rate are obtained for lower n

(i.e. shear-thining fluids), which is due to smaller velocity and temperature gradients at

the walls, where the entropy generation is more pronounced. Entropy generation rate

reaches its maximum and minimum values at the wall and center, respectively, where

the maximum and minimum (zero for this case) velocity and temperature gradients are

present.

From this table, it can be also understood that the property variation with temperature

causes an increase in <Ns> for low values of Br, while the opposite remains valid for

higher Br. In this case, the perturbed term contributes to the global entropy generation

by increasing the irreversibility caused by viscous heating through the velocity gradient

portion. However, the table reports a reduction in <Ns> for larger Brinkman number

when the properties are varied with temperature.
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Table 4.1 The values of global entropy generation rate
at Ω = 0.1, Pe = ∞ for different Br and n

constant property variable property (ε=0.1)

Br Br

0 0.01 0.05 0.1 0 0.01 0.05 0.1

n

0.2 0.725 0.526 0.986 2.373 0.636 0.45 0.954 2.273

0.4 0.815 0.806 1.906 3.767 0.745 0.739 1.82 3.61

0.6 0.864 1.15 2.982 5.5 0.808 1.085 2.861 5.286

0.8 0.895 1.49 4.09 7.41 0.849 1.426 3.945 7.148

1 0.917 1.757 5.13 9.37 0.877 1.696 4.971 9.07

1.2 0.932 1.889 6.031 11.293 0.898 1.833 5.871 10.974

1.4 0.944 1.837 6.789 13.181 0.914 1.791 6.643 12.874

1.6 0.954 1.591 7.537 15.214 0.927 1.561 7.422 14.96

1.8 0.961 1.267 8.619 17.847 0.938 1.259 8.545 17.679

2 0.968 1.355 10.551 21.83 0.947 1.361 10.497 21.724

The variation in the global entropy generation as a function of power-law index at

Br=0.01, Ω=0.1, and different values of ε is depicted in Fig. 4.7.  The global entropy

generation increases with n to its maximum value around n=1.2 and then starts

decreasing until n=1.8. An unexpected trend after this point is seen where the value of

<Ns> again increases with n, except for ε =0.1 and 0.2. Additionally, one can observe

that an increment in ε leads to an increase in <Ns>, except for very high values of n.

Table 4.2 exhibits the values of the global entropy generation rate, <Ns>, as a function

of power-law index at Br=0.01, Ω=0.1 and different values of Peclet number, Pe, which

represents axial heat conduction effect on entropy generation. It is worthwhile noting

that Peclet number does not play any role in the heat transfer analysis of fully developed

flows due to the constant axial temperature gradient. The results in the table also reveal

that the increase of Pe (axial heat conduction portion) generally decreases the values of

<Ns>. For very low values of Pe (here Pe=0.1) the global entropy generation rate

increases with n, which means that shear-thickening fluids generate more

irreversibilities compared to shear-thinning ones. However, for other Pe values, the

trend is very similar to that of Fig. 4.7.
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Fig. 4.7 Global entropy generation rate as a function of  n for different values of ε at
Ω=0.1and Br=0.01

Furthermore, the values of <Ns> increase with inclusion of temperature-dependent

properties, except for very high values of n, even though the viscosity has a decreasing

trend with temperature in contrast to the thermal conductivity. This means that

irreversibility due to heat transfer dominates over fluid friction. Therefore, the results

suggest that if thermophysical properties are not considered as variable there will be an

underestimation of <Ns>.

Table 4.2 The values of global entropy generation rate at Ω = 0.1, Br = 0.01 for
different n and ε

n ε =0, Pe=0.1 ε =0, Pe=10 ε =0, Pe=100 ε =0.1, Pe=0.1 ε =0.1, Pe=10 ε =0.1, Pe=100

0.2 412.713 0.565 0.526 410.834 0.489 0.451

0.4 416.69 0.843 0.806 414.599 0.776 0.739

0.6 421.46 1.188 1.15 419.259 1.123 1.086

0.8 427.304 1.531 1.49 425.041 1.467 1.426

1 434.397 1.8 1.758 432.098 1.739 1.696

1.2 442.923 1.931 1.89 440.607 1.875 1.834

1.4 453.199 1.872 1.838 450.881 1.826 1.792

1.6 465.82 1.608 1.591 463.51 1.577 1.561

1.8 481.799 1.248 1.267 479.5 1.239 1.259

2 502.647 1.305 1.355 500.356 1.311 1.36
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4.3 Conclusion

Convective heat transfer analysis and second law analysis were performed to reveal the

effects of variable thermophysical properties, namely viscosity and thermal

conductivity, power-law index and viscous dissipation on heat transfer characteristics of

hydrodynamically and thermally fully developed power-law fluid flows in tubes under

uniform heat flux thermal boundary conditions. Aside from deriving the velocity and

temperature distributions, Nusselt number and entropy generation rate have been

examined along with their trends with key parameters being power-law index,

Brinkman number, and property variation. Major conclusions of this study are as

follows:

 Nusselt number decreases with increasing both power-law index and Brinkman

number, regardless of the change in thermophysical properties with temperature,

while this trend is more pronounced for variable properties.

 The variation in thermophysical properties with temperature has an increasing

effect on Nusselt number compared to the constant property case.

 Except for few cases, the rate of global entropy generation, <Ns>, increases with

power-law index, Brinkman number, whereas thermophysical property variation

effect causes the augmentation of <Ns> only for lower values of Brinkman

number.
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CHAPTER 5

SINGLE-PHASE SLIP FLOW AND PLUG FLOW WITH VARIABLE
THERMOPHYSICAL PROPERTIES IN PARALLEL-PLATES AND
CIRCULAR MICROCHANNELS

5. Analysis:

5.1 Power-law fluid flow

In this section, the analytical solutions are derived to obtain velocity and temperature

distributions and heat transfer characteristics of power-law fluid flows inside parallel-

plate and circular microchannels. To achieve this, it is assumed that the flow is

hydrodynamically and thermally fully developed, steady state, incompressible and

laminar with constant and variable thermophysical properties under wall uniform heat

flux thermal boundary condition (Fig. 5.1). The viscous dissipation term is also included

in the analysis to examine the viscous heating effect.
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Fig. 5.1 Isoflux heating applied to circular and parallel-plates channels

The following shear-stress power-law relationship is applicable for a power-law fluid:
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where ρ is the density, P is the pressure, T is the temperature, cp is the specific heat at

constant pressure, k is the thermal conductivity, U is velocity component in X direction,

and m takes values between 0 and 1 for parallel-plate and circular channels,

respectively.
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In order to proceed with a solution, viscosity, thermal conductivity and density must be

defined as a function of temperature. Reynolds [135] proposed an exponential model for

the temperature-dependence of viscosity as:

)exp( Tbref   (5.4)

where T is temperature, and μs and b′ are coefficients. Using a truncated Taylor series

for exp(-bT) similar to our previous work [85], viscosity is expressed as:
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Here
T
TT w


 is the dimensionless temperature, θ. It should be noted that the effects of

density and heat capacity as variable properties cancel out in the analytical solution, and

therefore, the viscosity and the thermal conductivity temperature-dependent properties

appear in the analysis.

The governing equations for x-momentum and energy equations can be stated as:

0)1(1




















X
P

Y
UY

YY
m

sm  (5.10)



59

or

0)1(1 1































 

X
P

Y
U

Y
UY

YY

n

ref
m

m  (5.11)

21

)1()1(1











































 

Y
U

Y
U

Y
TYk

YYX
TUc

n
m

ksmp  (5.12)

To facilitate an analytical solution, the governing equations are non-dimensionalized by

using the following non-dimensional parameters and Reynolds number, Re, as:
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The dimensionless governing equations are analytically solved to obtain Nusselt

number (Nu), as well as the velocity and temperature distributions. The closed form

expressions for Nu corresponding to Newtonian liquid flow characteristics can also

obtained by setting n=1.

The first step is to derive the velocity distribution. With the introduction of Reynolds

number, the non-dimensionalized x-momentum equation becomes:
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Using the above equation subject to the symmetry condition at the center (via setting the

axial velocity gradient at the center to zero (i.e., ∂u/∂y (at y=0) =0)) and using Taylor

series with the first order approximation, the following expression can be derived:
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For most practical cases, the viscosity variation number is small compared to unity, i.e.

ε << 1. This allows for a regular asymptotic expansion assumption (for dependent

variables u and θ) in the following form
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10 uuu  (5.15)
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As a result, Eq. (5.14) takes the following form:
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Splitting the above equation into two equations:
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As shown by the experimental observations for molten polymers, polymer solutions

[89,139,140] and pastes [141], an adopted nonlinear slip boundary condition relating the

velocity slip to shear stress can reasonably approximate the slip behavior of several non-

Newtonian fluids, which is in the following form:

G
wws fu  (5.19)

where f is slip-friction coefficient (with SI unit Pa-Gm/s), τw is the wall shear stress and

G is a power-law exponent.

The dimensionless form of Eq. (5.19) for power law fluids is expressed as:
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where β is the relative wall slip velocity to mean velocity, Uws/Um, and F is

dimensionless slip-friction coefficient defined as  nG
m

G DUf .

The quadratic and cubic power-law exponents were reported by Ramamurthy [140] and

Hatzikiriakos and Dealy (relevant to a power-law fluid) [89], respectively, for molten

polymers as well as the linear slip boundary for Newtonian fluids [25] and non-

Newtonian fluids [141].

Another suitable wall boundary condition for non-Newtonian fluids, which is an easy

condition for obtaining an analytical solution, is taking the relative wall slip velocity as

mean velocity, i.e. β. Due to cumbersome nature of non-linear slip boundary condition

for achieving an analytical solution, first the relative wall slip velocity is applied at the

solid boundary. Then the inverse solution is used to obtain corresponding dimensionless

friction coefficient in the non-linear slip boundary equation.

The dimensionless fully developed axial velocity profile, u0, under the slip boundary

condition (i.e., u (at y=1) =β) is obtained as:
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In order to find u1, it is required to proceed with θ0. For the constant heat flux case, the

energy equation containing viscous heating term (viscous dissipation term) should be

solved under the no temperature-jump condition, while a constant heat flux is applied at

the walls. In the energy equation, the longitudinal temperature gradient, ∂T/∂X, can be

obtained with the application of the first law of thermodynamics to an elemental control

volume as [12,137]:
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The above equation can be written as:
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The above equation can be solved by introducing Brinkman number, defined

as n
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where the parameter A is expressed as:
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Brinkman number, Br, is a dimensionless parameter representing viscous dissipation

term.  Its positive and negative values refer to wall heating (fluid is being heated) and

wall cooling (fluid is being cooled), respectively.
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Upon using the dimensionless temperature defined as
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Splitting the above equation, the following equations are obtained:
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These equations must be solved subject to the following boundary conditions

At y=1 θ0=θ1=0 (5.34)
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By substituting u0, the dimensionless temperature distribution θ0 is derived as:
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Accordingly, the dimensionless fully developed axial velocity profile, u1, is obtained as:
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After substituting u0, u1, and θ0 into Eq. (5.33) and performing several tedious

manipulations, a long and complex expression is derived for θ1 as follows:
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Determined velocities (u0, u1) and temperatures (θ0 and θ1) are utilized to find the

dimensionless bulk or mean temperature given as:
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Nusselt number is defined as
)( mw TTk

qDNu



 , which can be written in terms of the

dimensionless temperature as:
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In the case of constant properties and no-slip condition, Nusselt number for circular

channel (m=1) can be expressed in the following form as:
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Nusselt number is obtained from the following relation for constant properties and slip

condition as:
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The results of Eq. (5.42) are in excellent agreement with those of Barkhordari and

Etemad [68] in the absence of viscous dissipation (for m=1) and our previous study

[142] (for m=0).

For the variable property case, an explicit expression for Nusselt number cannot be

obtained, and therefore, a numerical calculation was employed to calculate the results.
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5.2 Plug flow

For plug flows, as known, the velocity has a uniform velocity profile [143]. The

longitudinal temperature gradient for plug flows is written as:

 

2

1"

DUc

mq
X
T

p







(5.43)

For plug flows, the velocity gradient term vanishe,s and the type of fluid (being

Newtonian or non-Newtonian liquids) is not important. The energy equation in

dimensional form is  as follows:
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Substituting Eq. (5.43) into Eq. (5.44) along with dimensionalization, the two parts of

the energy equation corresponding to the plug flow are derived as:
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These equations under the implementation of boundary conditions given in Eq. (5.34),

one obtains the solution (θ=θ0+εk θ1) as follows:
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The mean temperature becomes
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Nusselt number, Nu=-4/(θm(1+m)), reads
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The values of Nusselt number calculated from this expression for circular (m=1) and

Parallel-plates (m=0) channels in the constant property case converges to that of

reported in [143].

5.3 Numerical Simulations

Numerical simulations were performed by using the ANSYS FLUENT 14.0 software at

which the thermal conductivity and the viscosity were taken to be variable with

temperature through integrated User-defined Functions (UDFs). A microchannel of

100×1000 μm2 (Height×length) was modeled (having mesh size 100×500 with double

sided ratio of 1.15) under a constant heat flux of 50000 W/m2 and different slip

velocities at the walls, while the Reynolds number was fixed at 10. Water (i.e.

Newtonian fluid with n=1) was considered as the working fluid, whose thermal

conductivity and viscosity expressions exist as a function of temperature in the literature

[138,144] as follows:
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where T has the unit of Kelvin.

It should be noted that water was taken as the working fluid for numerical simulations

since for the power-law fluids (non-Newtonian fluids) it is required to have the

thermophysical properties of the fluids as a function of temperature while there are no

such expressions in literature.

The simulations provide a comparison between the numerical and analytical results,

verifying the analytical results in the case of variable properties as well as constant

properties.

5.4 Results and Discussion

An increase in temperature along the channel during the wall heating process causes

simultaneous variations in both the viscosity and the thermal conductivity. These

property variations lead to a change in the convective heat transfer rate of the fluid flow.

Therefore, this section displays how the temperature dependent properties affect Nusselt

number in the hydrodynamically and thermally fully developed non-Newtonian power-

law fluid flows in circular and parallel-plates microchannels at constant heat flux

thermal boundary condition applied to the walls.

As known, a fluid is considered as shear thinning (or pseudoplastic) if its viscosity

decreases with shear rate, and the corresponding power-law index is less than unity

(n<1) for this type of fluid. Contrarily, shear thickening (or dilatant) fluids show

opposite behavior and have the power-law index higher than 1 (i.e. n>1). In our

previous study [142], the effects of power-law index and slip coefficient on the velocity

profile for  parallel- plates microchannels for constant thermophysical properties were

discussed.

Figures 5.2 and 5.3 depict dimensionless velocity distributions of non-Newtonian fluid

cases with n=0.5 and 1.5 for both constant and variable properties (ε=0.1) at different

slip coefficients, β, m=1 and Br=0.01. Unlike the constant property case, Brinkman

number appears in the velocity distribution as well. As expected, an increase in β

decelerates the velocity core to keep the flow rate constant, which also implies that slip
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velocity becomes more at the walls. In addition, there is a considerable decrease in

values of core velocity, when the properties are considered as temperature-dependent,

which is ascribed to the decreased viscosity, resulting in smaller shear stresses. It can be

also observed that the property variation effect on the velocity profile is more influential

for shear-thinning fluids. For example, for β=0, the deviation of the center velocity of

the variable property case from the constant property case is about 5.3% for n=0.5,

while it is nearly 2.7% for n=1.5.

Fig. 5.2 Dimensionless fully developed velocity profiles of n =0.5for constant and
variable property cases at different slip coefficients, m=1 and Br=0.01

Figure 5.4 compares the numerical (at Re=10) and analytical velocity distributions of

fully developed velocities in the case of constant property and shows an excellent

agreement.  The results also match with analytical expressions available in the

literature.

Figure 5.5 presents the deviation of numerical velocity profiles from the analytical ones

for both constant and variable properties. As seen from the figure, for the case of

constant property the deviation is nearly close to zero. The deviations become visible as

the properties are varied with the temperature.
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Fig. 5.3 Dimensionless fully developed velocity profiles of n =1.5for constant and
variable property cases at different slip coefficients, m=1 and Br=0.01

Fig. 5.4 Dimensionless fully developed velocity profiles of n =1 for constant property
case at different slip coefficients and Br=0
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However, this does not go beyond 0.011, which is acceptable and can be due to the use

of first order perturbation method for analytical solution or the dependency of the

numerical solution to heat flux, since the values of ε and Г change with heat flux. The

deviation decreases, as the slip coefficient increases. It is worthwhile to note that the

heat flux in numerical simulation must be applied so that obtained values of ε and εk

meet the assumption of ε<<1. Otherwise, the comparison with the analytical solution

based on the perturbation method (with criterion of ε <<1) is not accurate.

Fig. 5.5 Deviation of numerical from analytical normalized velocity values of n =1 for
constant and variable property cases at different slip coefficients and Br=0

The dimensionless temperature distributions of cases n=0.5 and n=1.5 for different

values of β are displayed at =0 and =0.1 at m=1, Br=0.01 and Г=0.2 in Figures 5.6

and 5.7. Besides the fact that the shear-thickening fluid has higher temperature values

across the channel than those of the shear-thinning one, in particular at core region, it

can be seen that the dimensionless temperature in the core region is suppressed with

either the increase in slip coefficient or inclusion of property variation. Similar to the

velocity trend, the variable property effect on the dimensionless temperature of shear-

thinning fluids is more than that of shear-thickening fluids. But in contrast to the

velocity trend, there is no discontinuity between the temperature of wall and fluid

particle adjacent to the wall (means there is no jump temperature at the walls) as it
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exists in the gaseous slip flow case (see Refs [13,14,143,145,146]). The decreased

temperatures with β and ε are associated to the decreased velocity at core region

because of the slip effect on the walls and to the property variation, respectively. When

the slip velocity exists near wall, the fluid motion at that region takes contributes more

to convection, and less heat is transferred into the core region, leading to smaller

temperature values at the centerline. For the property variation case, the thermal

conductivity and viscosity, which have no longer a constant profile, change in

accordance to the temperature profile. These changes in the properties as well as

affected velocity distributions have an interplay in the generation of the temperature

profile such that the temperatures become smaller compared to the constant property

case, especially at the core region. Further numerical investigation for water discloses

that the dimensionless temperature at the center is decreased by either implementing

temperature-dependent properties individually or both properties together.

Fig. 5.6 Dimensionless fully developed temperature profiles of n =0.5for constant and
variable property cases at different slip coefficients, m=1, Г=0.2 and Br=0.01
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Fig. 5.7 Dimensionless fully developed temperature profiles of n =1.5for constant and
variable property cases at different slip coefficients, m=1, Г=0.2 and Br=0.01

Table 5.1 provides the values of Nusselt number for different slip coefficients at

constant and variable properties along with the calculated ε and Г by Eqs. (7-9). The

percentage errors between the computational and numerical results are in the range of

0.08-0.56%, which indicates an excellent agreement.

Figures 5.8 and 5.9 illustrate Nusselt number as a function of the power-law index for

various slip coefficients in the cases of constant (ε=0) and variable properties (ε=0.1) at

Br=0 for m=0 (parallel-plates channel) and m=1 (circular channel). As can be observed,

there is a sharp decrease in Nusselt number with the power-law index for shear thinning

fluids. However, the decreasing trend becomes smaller for shear thickening fluids

(n>1). The results indicate that an increase in the slip coefficient at the wall enhances

heat transfer, as the slip velocity intensifies the fluid motion near the wall leading to

enhanced advection effects. The difference between mean and wall temperatures due to

inclusion of the wall slip condition reduces, which results in an increase in Nusselt

number. It can be further seen that the consideration of temperature-dependency for

properties increases the values of Nusselt number, which is mostly effective for the

lower power-law index (i.e. shear-thinning fluid) and is the consequence of the same
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trend in the velocity and temperature distributions. This suggests that if the property

variation with temperature is neglected the heat transfer rate will be underestimated.

The deviation can be as much as 8.8% (for β=0 and n=0.2) and 1.4% (for β=0 and n=2)

in the case of m=0, while it can be as much as 12.2% (for β=0 and n=0.2) and 2.2% (for

β=0 and n=2) in the case of m=1. For the slip flow case, the percentages become a bit

lower.

Additionally, compared to shear-thickening fluids, Nusselt number is less sensitive to

the slip coefficient at the lower power-law index (shear-thinning fluids) for the variable

properties case. For example, Nusselt number for m=1 is increased nearly for 4.4%

when β goes from 0 to 0.2 for n=0.2, whereas it becomes about 12.3% for n=2.

Table 5.1 The analytical and computational values of Nusselt number
for constant and variable properties at different β for Br =0 and n=1

β

0 0.1 0.2 0.3

CV

by Eqs.

(7-9)

ε=0.037

Г=0.1369

ε=0.0365

Г=0.1368

ε=0.0353

Г=0.1366

ε=0.0341

Г=0.1364

Computional values of Nu

CP 8.248 8.551 8.870 9.205

CV 8.284 8.585 8.901 9.234

Analytical values of Nu

CP 8.235 8.533 8.846 9.174

CV 8.331 8.621 8.923 9.241

The error percentage (%) of numeric from analytic results

CP 0.16 0.21 0.27 0.34

CV 0.56 0.42 0.25 0.08
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Fig. 5.8 Nusselt number as a function of n for different values of β at constant (at ε=0)
and variable property (at ε=0.1) cases for m=0, Br=0 and Г=0.2

Fig. 5.9 Nusselt number as a function of n for different values of β at constant (at ε=0)
and variable property (at ε=0.1) cases for m=1, Br=0 and Г=0.2
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Figures 5.10 and 5.11 exhibit Nusselt number as a function of the power-law index for

different Brinkman number at β=0 for m=0 and m=1 in the cases of constant (ε=0) and

variable properties (ε=0.1). The variation trend is similar to those of Figures 8 and 9

with the difference that an increase in Brinkman number causes a decrease in Nusselt

number since the Brinkman number, as a representative of viscous heating and

contributing to the internal heating of the fluid, increases the dimensionless mean

temperature, which leads to the decrease in Nusselt number.

Fig. 5.10 Nusselt number as a function of n for different values of Br at constant (at
ε=0) and variable property (at ε=0.1) cases for m=0, β =0 and Г=0.2

Figure 5.12 shows how Nusselt number varies with the slip coefficient at different

values of ε for n=1, m=1, Br=0.01 and Г=0.2. It can be observe that larger ε would

result in higher Nusselt number, particularly for lower slip coefficients. This implies

that the heat transfer rate corresponding to the constant property case deviates more

from the temperature dependent case, when the rate of change in thermal conductivity

and viscosity with temperature increases. In addition, the slip coefficient has an

enhancing effect on Nusselt number, as mentioned earlier.
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Fig. 5.11 Nusselt number as a function of n for different values of Br at constant (at
ε=0) and variable property (at ε=0.1) cases for m=1, β =0 and Г=0.2

Fig. 5.12 Nusselt number as a function of β for different values of ε at n=1, m=1,
Br=0.01 and Г=0.2
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Figures 5.13 and 5.14 display Nusselt number as a function of the power-law-index

(β=0.1) and slip coefficient (n=1) for different values of Г at Br=0.01, ε=0.1 and m=1.

As seen from these figures heat transfer decreases with the increase in the power-law

index and increases with the slip coefficient. One can observe that convective heat

transfer (Nusselt number) decreases with the ratio of change in thermal conductivity

with temperature to that of viscosity. Taking ε equal to εk (i.e. Г=1) is a poor

assumption in both physical and mathematical aspects. However, its effect on the heat

transfer rate for single-phase fluid flows studied here is not highly remarkable. For

example, the value of Nusselt number changes for an amount of maximum 2.3%, when

Г varies from 0.2 to 1, which means that even if this ratio is unknown for a liquid,

whose viscosity complies with the power-law fluid, it is acceptable to take any value in

the range 0.2< Г <1, while the deviation from the exact value will not exceed 2.3%.

Since the heat transfer behavior associated with the parallel-plates case (m=0) is very

similar to the circular channel case (m=1), the results are not included here to avoid

repetition.

Fig. 5.13 Nusselt number as a function of n for different values of Г at m=1, β=0.1,
Br=0.01 and ε=0.1
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Fig. 5.14 Nusselt number as a function of β for different values of Г at m=1, n=1,
Br=0.01 and ε=0.1

As mentioned earlier, the dimensionless non-linear slip boundary condition is

β=F(∂u/∂y)nG, and accordingly, the dimensionless friction coefficient, F, for power-law

fluids is expressed as:

  nG

n
mnn

F





 


21)1( 



(5.53)

which is tabulated in Table 5.2. In the case of n=1 and G=1, the values of F correspond

to the dimensionless slip length pertinent to Newtonian liquids defined as the ratio of

slip length to hydraulic diameter.
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Table 5.2 The slip-friction coefficient values at different n for circular channel (m=1)

G=1 G=2 G=3

β 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

n

0.2 0.0333 0.0674 0.138 0.2126 0.0222 0.0454 0.0952 0.1506 0.0148 0.0306 0.0657 0.1067

0.4 0.0258 0.0527 0.1106 0.175 0.0133 0.0278 0.0611 0.102 0.0069 0.0147 0.0338 0.0595

0.6 0.0205 0.0423 0.0907 0.1475 0.0084 0.0179 0.0412 0.0725 0.0034 0.0076 0.0187 0.0356

0.8 0.0164 0.0342 0.0751 0.1254 0.0054 0.0117 0.0282 0.0524 0.0018 0.004 0.0106 0.0219

1 0.0132 0.0278 0.0625 0.1071 0.0035 0.0077 0.0195 0.0383 0.00091 0.0021 0.0061 0.0137

1.2 0.0106 0.0226 0.0521 0.0918 0.0022 0.0051 0.0136 0.0281 0.00048 0.0012 0.0035 0.0086

1.4 0.0086 0.0185 0.0435 0.0787 0.0015 0.0034 0.0095 0.0207 0.00025 0.00063 0.0021 0.0054

1.6 0.0069 0.0151 0.0364 0.0676 0.001 0.0023 0.0066 0.0152 0.00013 0.00034 0.0012 0.0034

1.8 0.0056 0.0123 0.0305 0.0581 0.00063 0.0015 0.0046 0.0113 0.00007 0.00019 0.00071 0.0022

2 0.0045 0.0101 0.0255 0.05 0.00041 0.00102 0.0033 0.0083 0.000037 0.0001 0.00042 0.0014

The wall shear stress is independent of temperature, i.e. independent of ε, and

dimensionless slip-friction coefficient, F, is not a function of temperature. However, the

experimental observations of Hatzikiriakos and Dealy [89] revealed that the slip-friction

coefficient, F, changes with temperature, while G is practically independent of it.

Figure 5.15 displays Nusselt number for plug flow in the case of the temperature-

dependent case for both circular and parallel-plates channels. As can be observed, the

values of Nusselt number for the constant property case are constant (8 and 12 for

circular channels and parallel-plates channels, respectively), similar to [143]. The

temperature profile remains the same for both geometries, nevertheless, the values of

Nusselt number are different. For plug flow, the viscosity variation does not play any

role in heat transfer since the velocity gradient is zero in this case. On the other hand,

the thermal conductivity variation with temperature comes into play. The results reveal

that neglecting this variation would lead to an underestimation in heat transfer.
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Fig. 5.15 Nusselt number of plug flow as a function of εk for circular (m=1) and
parallel-plates (m=0) channels for constant and variable property cases

5.5 Conclusion

Convective heat transfer of hydrodynamically and thermally fully developed non-

Newtonian power-law fluid flows inside parallel-plates and circular microchannels was

analytically and numerically investigated under constant isoflux thermal condition,

while the viscous heating, the wall slip condition and the thermophysical properties

were taken into account as a function of temperature. Aside from the numerical

simulations performed with the ANSYS FLUENT software, the expressions of velocity

and temperature profiles and the constant property Nusselt number as a funcion of

governing parameters were derived from governing equations, and variable property

Nusselt numbers were obtained with numerical calculations.

For power-law fluids, it was found that regardless of temperature-dependent properties,

Nusselt number has a decreasing trend with both the power-law index and Brinkman
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number, where the Brinkman number effect becomes stronger for shear thickening

fluids (i.e. higher power-law index). Nusselt number is underestimated by either

neglecting slip condition or dependency of thermophysical properties on temperature,

which is more pronounced for shear-thinning fluids. For plug flows, temperature

dependent thermal conductivity significantly affects convective heat transfer.
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CAPTER 6

NUCLEATE POOL BOILING OF POLYMERIC SOLUTIONS

6.1 Experimental Setup and Procedure

The schematic of the experimental setup is displayed in Fig. 6.1. The setup consists of

different components such as Plexiglass block, Aluminium heater plate, holder plates,

cartridge heaters, thermocouples, gasket sealers and a reflux condenser. The rectangular

Plexiglass block has a dimension of 50×50×50 mm3 with a thickness of 6 mm. The

heater plate with dimensions of 62×62×25 mm3 has four holes for inserting the cartridge

heaters covering the whole heating surface region 18 mm below the surface. It also has

three holes for thermocouples located about 0.8 mm below the surface. The cartridge

heaters are press-fitted into cylindrical holes, while high quality conductive grease is

utilized to fill the air gap between the cartridge heaters and inner areas of the holes. The

holder plates are used to sandwich the Plexiglass block and the heater plate together.

The upper plate has three holes, which are used for the connection with the condenser,

introducing working fluid, and inserting a T-type thermocouple to measure the bulk

fluid temperature. Plastic gasket sealing elements, which are resistant to high

temperatures, are used between Plexiglass block edges and the plates (both heater and

cap plates) to prevent any leakage as well as between the heater and holder plates to

prevent heat dissipation. The reflux condenser is composed of concentric glass tubes of
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22 mm and 40 mm (inner and outer diameters) of a length of 40 cm. The gap between

the outer and inner tubes is filled with water to condense the vapor escaping through the

inner tube, which is open to atmosphere to maintain the tests at atmospheric pressure.

Fig. 6.1 Schematic of the experimental set-up

The mass of liquid were measured before and after of rests were measured to check for

the change in the liquid amount. It was found that the mass of liquid remains nearly the

same, which indicates effective operation of the reflux condenser. The cartridge heaters

were connected to a power supply with high-precision digital multimeters, and voltage

and current could be tuned and recorded. The power and bulk and surface temperatures

were recorded under steady state conditions. Every liquid sample tested for several

times to make sure the repeatability, and the averaged values were taken into

consideration.
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6.2 Data Reduction and Uncertainties

The net heat flux value of power input was calculated as:

A
QVIq loss

 (6.1)

where A is the heated surface area. To account for heat losses, natural convection

analysis was done for surrounding areas of the heater, which are in contact with

ambient. After the assessment of heat losses, the net power was deduced. The heat

losses were between 2.5-5% relative the electrical power.

The boiling heat transfer coefficient, h, was then found as:

)T-(T sats

qh


 (6.2)

where Ts is the surface temperature and Tsat is the saturation temperature of the fluid.

The surface temperatures were obtained by considering thermal contact resistance from

the thermocouple to the surface Rc and the average of the thermocouple measurements

Tth, as:

Ts = Tth – q" Rc (6.3)

The wall superheat, ΔTsat, is defined as the difference of saturation temperature, Tsat,

and the average surface temperature, Ts.

The uncertainties in the measured values given in Table 6.1 were taken from the

manufacturer’s specification sheet, while the propagation of error method [147] was

used to calculate the uncertainties in the derived parameters as seen in the Table 1.
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Table 6.1 Uncertainty in experimental parameters

Uncertainty Parameter Error %

ΔTsuperheat 0.27

q" 1.1

h 2.7

6.3 Material Preparation and Property Measurements

Aqueous polymeric solutions were prepared by adding Xanthan gum E415 powder in

small amounts, which was measured by an electronic high precision weighing scale,

into deionized water with different concentrations (100, 500, 1000, 4000 and 6000

mg/L). To achieve the desirable solutions in terms of homogeneity, each sample was

treated in a pool of silicon while keeping the temperature at 55 ͦC, and magnetically

stirring at 1000 rpm was performed for several hours.

In order to measure the contact angle and equilibrium surface tension (or equilibrium

gas-liquid interfacial tension) of the polymeric solutions, Theta Lite Optical

Tensiometer TL100 device was employed. The device contains a USB2 digital camera

(160 frames/sec max) or a FireWire video camera (60 frames/sec), an adjustable sample

stage and a LED light source. Each of prepared aqueous solutions was examined to find

equilibrium surface tension and contact angle, which were used to explain the

experimental results. For visualization studies, a camera having a digital resolution of

3264×2448 pixels was utilized at 240 frames/sec to capture images during boiling

process.

Raman is one of the vibrational spectroscopy techniques, in particular used for

determining fine alterations in the chemical structures of materials owing to its abilities

of providing spectral information with high lateral resolution. Raman can identify

substances from characteristic spectral patterns (fingerprints), as each chemical bonding

in the sample, which has Raman mode, gives a characteristic band in the spectrum. In

this study, Raman spectroscopy enabled tracking the changes in the chemical stability of

aqueous Xanthan gum solutions with different solid contents, before and after
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performing heat transfer experiments. For the measurements, a Raman Renishaw InVia

Microscope and Spectroscope with 532 nm green laser, 2400 lines/mm and 50x

objective were used.

6.4 Results and Discussion

Non-Newtonian fluids are prepared by adding polymeric additives or surfactants to a

base fluid (e.g. water). As a result, viscosity of the fluid becomes shear-dependent, and

interfacial fluid properties such as dynamic and equilibrium surface tension and contact

angle change. The variation in liquid properties such as surface tension, rheology (i.e.

viscosity) and wettability (related to contact angle) strongly affect bubble dynamics and

nucleation. For polymeric solutions, the surface wettability is influential in controlling

the nucleation sites, and bubble dynamics is dominated by the variations in the

equilibrium and dynamic surface tension and shear rate-dependent viscosity [122,148–

150].

The viscosities of polymeric solutions compared to the solvent (i.e. water) are shear

rate-dependent behavior, which show non-Newtonian behavior. Figure 6.2 exhibits the

variations of the viscosity as a function of shear rate at different concentrations. As

seen, the viscosity of the solution decreases with shear rate and converges to infinite

shear viscosity, which is represented by Carreau model [151] as
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where µ0 is zero shear rate viscosity, µinf is infinite shear rate viscosity, λ relaxation

time and n is power index. The viscosities of the solutions are higher than that of the

solvent, and the increase in concentration results in higher the viscosities.

Figure 6.3 and 6.4 display the equilibrium liquid-vapor interfacial tension and contact

angle. It can be observed that the equilibrium surface tension decreases with the

addition of polymeric additives into solvent and the increase in concentration, which
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was also reported in the literature [118,122,148]. Surface tension values are close to that

of water at low concentrations, whereas surface tension dramatically drops beyond

concentrations higher than 1000 mg/L. Contrarily, the contact angle exhibits an

increasing trend from 44.9 ͦ (for pure water) up to around 74.4 ͦ for the solution with

concentration of 1000 mg/L. Beyond this concentration, contact angle remains almost

constant. From this trend, it is clear that the wettability is less of prepared polymeric

solutions than that of water.

Fig. 6.2 The viscosity as a function of shear rate for Xanthan gum solutions with
different concentrations
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Fig. 6.3 The equilibrium surface tension as a function of solution concentration

Fig. 6.4 The contact angle as a function of solution concentration

The initial boiling heat transfer tests were done with distilled water to provide validation

for the experimental setup via comparisons with available nucleate pool boiling

correlations, such as Rohsenow [152], Mostinski [153], and Gorenflo [154]. The
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experimental data corresponding to pure water offer a base for comparison with boiling

heat transfer performance of prepared polymeric solutions. Fig. 6.5 displays the data of

pure water as a function of wall superheat along with the predictions of widely used

Rohsenow [152], Mostinski [153], and Gorenflo [154] correlations. As seen, the results

are in good agreement with predictions of Mostinski and Gorenflo correlations. At

lower heat flux, Gorenflo correlation’s prediction is better, while Mostinski correlation

provides a better prediction for high heat flux.

Fig. 6.5 Boiling curve of pure water data along with the predictions
of correlations

Boiling curves for Xanthan gum polymeric solutions are shown in Fig. 6.6 at different

concentrations along with that of water. As can be seen, the boiling curve shifts to the

right hand side with the increase in concentration, which indicates deterioration in the

heat transfer performance. The properties of working fluid change when the polymeric

additives are introduced, which is reflected in its heat transfer performance relative to

the pure fluid. For a fixed heat flux, as the concentration of the solution increases up to

500 mg/L, the wall superheat increase rises up to 27%. When the concentration is raised

from 500 to 1000 mg/L, there is an only slight change in the wall superheat. However,

for high concentrations (i.e. 4000 and 6000 mg/L), a different trend is apparent. For this
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case, a nearly linear relationship with a relatively small slope exists between heat flux

and wall superheat, implying a large rise in wall superheat with a moderate increase in

heat flux. In contrast, the boiling curves corresponding to water and polymeric solutions

with c≤1000 mg/L are steep, in particular at the upper range of the heat fluxes. The

change in heat flux different aqueous polymeric solutions is accompanied with different

wall superheats. For instance, as the heat flux is changed about from 70 to114 kW/m2,

the wall superheat increase is 34.5 % for the solution with a concentration of 100 mg/L,

while it is about 177.5 % for the solution with a concentration of 6000 mg/L.

Fig. 6.6 Boiling curves Xanthan gum polymeric solutions
at different concentrations

Boiling heat transfer coefficients of the polymeric solutions with different

concentrations are depicted in Fig. 6.7. The variation of the heat transfer coefficients

(defined as h=q″/ΔTsat) as a function of the heat flux, presented in the figure, illustrates

that HTC increases with heat flux except for the solution with concentrations of 4000

and 6000 mg/L, for which a monotonically decreasing trend in the heat transfer

coefficient with the heat flux is present. Furthermore, the heat transfer deteriorates with

the increase in concentration until a specific value of c=500 mg/L. Worsening in boiling

heat transfer was already reported in the previous studies such as  the study of Zhang
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and Manglik [122] on Carbopol solutions, the study of Wang and Hartnett [124] and the

study of Paul and Abdel-Khalik [127], who considered on aqueous polyacrylamide

solutions. A further increase in concentration (by up to 1000 mg/L) does not result in

any significant change in heat transfer performance. However, a different trend is

observed for highly viscous aqueous Xanthan gum solutions with high concentrations

(e.g. 4000 and 6000 mg/L). In the study of Bakhru and Lienhard [155] on the boiling

heat transfer of water and four organic liquids on small horizontal wires, patchy boiling

to full blanketing (film boiling) patterns were recorded for most of the experimental

data, and the slope of boiling curve was small at high wall superheats. A similar trend

exists for the concentration of 4000 and 6000 mg/L in this study, at lower wall

superheats. This could be due to bubble crowding, which occurs just after the onset of

nucleate boiling. As a result, the nucleate region for these concentrations is rather short,

and a shift to patchy boiling pattern occurs. Suppression of  micro-convection within the

boundary layer as a consequence of high viscosities at high concentrations could be

another reason [122]. The concentration of polymeric solutions might be higher than

that of the critical polymer concentration or overlap concentration. As known, as

concentration of a polymeric solution goes beyond these concentrations, polymer chains

agglomerate and coil entanglements would eventually start forming in solution so that a

transition happens from dilute to semi dilute regime [156].

Fig. 6.7 Heat transfer coefficient of Xanthan gum solutions
at different concentrations
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Fig. 6.8 exhibits the decrease in heat transfer coefficient in prepared solutions relative to

the case of pure water at different concentrations. The dependence profiles on heat flux

and thus the relative decrease in heat transfer coefficient remains almost the same for

concentrations less than 4000 mg/L.  Even though smaller surface tension and larger

contact angle promote emergence of smaller and more bubbles from the surface, the

effect of increasing viscosity (with concentration) plays an important role.  This effect

suppresses bulk fluid motion during nucleation and relative motion of emerging bubbles

thereby limiting convective heat transfer. For the solutions with concentrations of 4000

and 6000 mg/L, the profiles are monotonically decreasing, and the deterioration in heat

transfer reaches more than 65%.

Fig. 6.8 The variation in the heat transfer coefficient deterioration for the Xanthan gum
solutions of different concentrations versus heat flux

Pool boiling heat transfer performance is dependent on the bubble formation, bubble

distribution on the surface and bubble dynamics (shape, size, frequency, coalescence).

Ebullient activity of the polymeric solutions assists shedding light to boiling

characteristics. To have more insight to pool boiling of the polymeric solutions, images



95

of pool boiling are recorded for different concentrations at heat fluxes of 46.5, 55.7,

70.1, 106.5 kW/m2 (Fig. 6.9).

As can be seen from the images, patterns pertinent to the solutions are clearly different

from those of water. This is attributed to the change in the rheological and interfacial

properties of the polymeric solutions, whose concentration is a significant parameter.

From the images of pool boiling of water, it can be seen that few nucleation sites

(isolated bubbles) exist at low heat flux. With the increase in heat flux, more bubbles

form on the surface. At higher heat fluxes, bubbles emerging from the surface coalesce

and generate slugs, mushroom shapes and columns. All these patterns are consistent

with the literature on pool boiling of water [157]. On the contrary, images of polymeric

solutions show different features. Due to smaller surface tension and larger contact

angle, the size of emerging bubbles becomes smaller with concentration, and more

bubbles are generated on the surface. It is also a result of molecular physisorption (or

adsorption of macromolecules) of the polymeric solutions on the heating surface

[122,128]. The higher heat fluxes, more bubbles form on the surfaces similar to the case

of water.  However, the bubbles do not show much tendency to coalesce. Their shapes

are more regular, and bubble crowding on the surface is visible for high concentrations,

which makes liquid replenishment to the surface more difficult. This effect is further

amplified with higher viscosities at high concentrations so that bulk fluid motion and

relative bubble motion are hindered. As a result, dry spots on the surface start to form

even at small wall heat fluxes for high concentrations, which lead to a decreasing trend

in heat transfer coefficient with heat flux.

Two different heat transfer coefficient correlations for low (c≤1000mg/L) and high

concentrations (c≥4000mg/L) are developed using the Least Squares Method [158] to

represent the experimental data:

 cqh 55.0 1028.5exp21.23  for c≤1000mg/L (6.5)

 cqh 406.19 1023.1exp1056.1   for c≥4000mg/L

The units of q″ and c in these correlations are W/m2 and mg/L, respectively. Both of

them are based on a typical nucleate boiling heat transfer correlation (h~q″n). The

exponential function for the concentration accounts for the asymptotic behavior at low

concentrations and successfully captures the trends in the experimental data.
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Fig. 6.9 Images of pool boiling over heated plate for pure water and Xanthan gum
solutions at different concentrations and heat fluxes

The heat transfer correlations provide an excellent prediction of the experimental data as

shown in Fig. 10, and the resulting Mean Absolute Errors (MAE) for experimental data

corresponding to the data of low (c≤1000mg/L) and high concentrations (c≥4000mg/L)

are 2.7% and 3%, respectively.

Raman spectra allowed for tracking the alterations in the chemical stability of aqueous

Xanthan gum solutions with different solid contents, before and after performing heat

transfer experiments (Figs. 11a-d). Raman band observed around 2330 cm-1 can be

attributed to hydrated hydronium (H3O+) cluster ions, which is due to aqueous solution.

Hydronium is the hydrogen ion bonded to a molecule of water, the form in which

hydrogen ions are found in aqueous solution. As the intensity of this band decreases in
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the solution after heating experiments, it can be suggested that the amount of water

decreased due to evaporation of water.

Fig. 6.10 The comparison between the experimental data and predictions of the
proposed correlations

Another band observed for the samples before heating experiments is at 1557 cm-1

which is correlated to ν(C=O )bonding in glucose, since one of the main

monosaccharides present in Xanthan gum is  beta-D-glucose. The decrease in the

intensity of this band after heat transfer experiments might be explained by the partial

chemical decomposition of the polymeric material in the solution. Also, the band at

1080 cm-1 belonging to C-O stretching mode ν(C-O) vibrations in glucose loses

intensity after heating due to partial chemical decomposition of Xanthan gum. As the

concentration of the solution becomes more, the chemical stability of the suspension

increases with its viscosity. Hence, it can be tracked from the Raman spectra that of the

solution with the highest concentration after heat transfer experiments, the

corresponding bands lose less intensity than the others. This is also in good correlation

with other measurements when the behavior of samples with a concentration of 4000

mg/L is considered.
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(a)

(b)
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(c)

(d)
Fig. 6.11 The Raman spectrum taken from samples

a) 100 mg/L b) 500 mg/L c) 1000 mg/L d) 4000 mg/L
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6.5 Conclusion

The different amounts of Xanthan gum were dissolved into deionized water to produce

the polymeric solutions. The measurements of the viscosity, contact angle and

equilibrium surface tension showed that the rheology and the interfacial properties of

the solution would differ from the solvent, affecting on the formation of the behavior of

bubbles in terms of their size, number and shape. The stability of the solutions was also

examined by doing RAMAN tests. The nucleate boiling heat transfer performance of

polymeric solutions over a flat plate was experimentally investigated to give more

insight how effective they are for cooling application. The major conclusions from

measurements, experimental results, and photographs can be summarized as follows

 The viscosity corresponding to the solutions displays a shear rate-dependency

for which the larger values are related to higher concentrations. The

measurements illustrate that the contact angle increases with concentration up to

1000 mg/L and after it, the contact angle remain nearly constant. The

equilibrium surface tension remains roughly constant until 1000 mg/L and

thereafter it starts decreasing.

 The addition of Xanthan gum powder into DI water generally deteriorates the

performance of the heat transfer. The increment of concentration first reduces

the heat transfer coefficient up to the solution with the concentration of 500

mg/L. A more increase in concentration by up to 1000 mg/L does not further

degrade the HTC. At high concentrations (4000 and 6000 mg/L), it was realized

that the heat transfer coefficient was decreased with heat flux, which was in

opposite trend of those in pure water and other lower concentrations.

 The photographic images demonstrates that as compared to solvent (i.e. water)

the number of bubbles increases while they are in more regular shaped with

smaller sizes and in less tendency to coalescence.
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7. FUTURE WORK AND CONTRIBUTIONS

In this thesis, the non-Newtonian fluids flow and heat transfer characteristics were

investigated.  Non-Newtonian fluids constitute a prominent research area in engineering

science and relevant subjects. In order to assess the heat transfer performance of non-

Newtonian fluids, it is essential to consider them in different aspects such as analytical,

numerical and experimental approaches. In this regard, heat transfer to non-Newtonian

fluids was studied both experimentally and analytically.

In pool boiling experiments, polymeric solutions as a subcategory of them, which were

prepared from dissolution of Xanthan gum powder at different amounts into de-ionized

water, were examined in terms of their heat transfer performance. It was found that the

type of liquid has a profound role in convective heat transfer. In the future, different

types of fluids will be studied for improvement of heat transfer performance. Moreover,

a second law analysis on pool boiling of such fluids will be performed. Thus, a

connection between analytical and experimental approaches will be made, and design

guidelines for thermal-fluid systems involving non-Newtonian fluids will be proposed.

In an analytical point of view, internal flows of non-Newtonian fluids in both micro-and

macro scale were investigated, where the power-law model was taken into consideration

due to its viability and simplicity. The effects of slip, viscous dissipation and

temperature-dependent thermophysical properties were included, and some closed form

expressions were obtained for velocity, temperature, Nusselt number and entropy

generation rate. In future, the heat transfer performance of polymeric solutions in

microchannels will be assessed both analytically and experimentally under single-phase

and two-phase conditions in order to provide more understanding in convective heat

transfer of non-Newtonian fluid flows.
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