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ABSTRACT

CONVECTIVE HEAT TRANSFER TO NON-NEWTONIAN FLUIDS

MOSTAFA SHOJAEIAN

MSc. Thesis, July 2015

Supervisor: Assoc. Prof. Ali Kosar

Keywords: Heat transfer, Non-Newtonian fluids, Slip flow,
Microchannel, Nucleate pool boiling

In this thesis, the perturbation method was implemented to analytically solve the
governing equations relevant to both hydrodynamically and thermally fully developed
power-law fluid and plug flows through parallel-plates and circular microchannels
under constant isoflux thermal and slip boundary condition. The temperature-dependent
properties, being viscosity and thermal conductivity, were considered along with non-
linear slip condition in the analysis in addition to viscous dissipation. The velocity,
temperature and constant property Nusselt number closed form expressions were
derived and then the Nusselt number corresponding to temperature-dependent
thermophysical properties was numerically obtained due to their complexity nature.
Numerical simulations were also performed for verifying the analytical results. The
results indicated that the property variations and slip condition significantly affected
thermo-fluid characteristics. The second law analysis was further performed for both
constant and variable properties.

Furthermore, an experimental study was performed on nucleate pool boiling of
polymeric solutions (aqueous Xanthan gum solutions) by the dissolution of Xanthan
gum powder in different amounts into deionized water. Their advantage over new
generation fluids such as nanofluids is that they have no side effects such as
agglomeration and sedimentation of particles, which is common for nanofluids. The
results revealed that heat transfer coefficients of prepared polymeric solutions were
lower than those of pure water, while concentration played a significant role in the
performance of the heat transfer. In visualization studies, different pool boiling patterns
were recorded particularly for high concentrations, which bolsters the heat transfer
results.



OZET

NEWTONYEN OLMAYAN AKISKANLARIN TASINIMLI ISI TRANSFERI

MOSTAFA SHOJAEIAN

Yuksek Lisans Tezi, July 2015

Danisman: Assoc. Prof. Ali Kosar

Keywords: IsI Transferi, Newtonyen olmayan akiskanlar,
Kaymali akis, Mikrokanal, Havuz kaynamasi

Bu tezde, hidrodinamik ve termal agidan tam gelismis Newtonyen olmayan
akiskanlarin, piston akisi seklinde (plug flow), paralel iki dizlem plaka arasindan ve
dairesel mikrokanallardan gecirilmesinin pertiirbasyon metoduyla analitik olarak
¢6zimil icra edilmistir. Sinir kosullar1 olarak sabit Is1 akisi ve kayma sinir kosulu
kullaniimistir. Viskoz yayilmaya ek olarak, viskozite ve termal iletkenlik gibi sicakliga
bagl olan 6zellikler g6z 6nunde bulundurulmasinin yani sira lineer olmayan kayma
kosulu dikkate alinmistir. Hiz, sicaklik ve sabit 0zellikli Nusselt sayisi kapali form
ifadeleri elde edilmistir. Daha sonra, nimerik olarak Nusselt sayisi, sicakliga bagl
termofiziksel 6zellikler ile iliskili sekliyle bulunmustur. Analitik sonuclari dogrulamak
icin nimerik similasyonlar da yapilmistir. Sonugclar, 6zellik degisimlerinin ve kayma
kosulunun  6nemli  dlclide termo-akiskan  Ozelliklerini  etkilemis  oldugunu
gostermektedir. ikinci termodinamik yasa analizi, sabit ve degisken 6zellikler icin de
ayri ayri incelenmistir.

Buna ek olarak, polimerik sollsyonlarin (Su bazli Xanthan Gum solusyonlarr)
cekirdekli havuz kaynamasi deneysel olarak incelenmistir. Deneyler, Xantham gum
tozunun farkh miktarlarda de-iyonize su igerisinde ¢ozinmesiyle gerceklestirilmistir.
Nanoakiskanlar gibi yeni jenerasyon akiskanlara goére bu solusyonlarin avantaji,
nanoakiskanlarda sikca Kkarsilasilan partikillerin topaklanmasi ve sedimantasyonu gibi
problemleriyle karsilasiimamasidir.  Sonuglar, polimerik sollsyonlarin 1si1 transferi
katsayilarinin saf sudan daha distik oldugunu ve konsantrasyonun isi transferi Uzerinde
onemli bir etkisi oldugunu gostermistir. Gorlinttileme calismalarinda, 6zellikle yiiksek
konsantrasyonlarda, 1si transferi sonuclarini destekleyen orijinal havuz kaynama
gorintuleri elde edilmistir.
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CHAPTER 1

INTRODUCTION

Rapid progress in microfabrication techniques has resulted in micro devices involving
heat and fluid flow. Experimental and analytical studies investigating parametric effects
on convective heat transfer and entropy generation rate are of cardinal significance to
successfully assess heat and fluid flow characteristics in micro- and nano-scale and to
identify their differences from conventional scale. One of the most important
parameters in micro and nano flows is the slip effect, which strongly influences fluid
motion at the fluid-solid interface. Under certain conditions such as very low pressure,
hydrophobic surfaces, and small-size channels with characteristic lengths between 1 pm
and 1 mm, the continuum assumption may not be accurate, particularly in micro
devices, which find applications in medicine, fuel cells, biomedical reaction chambers,
Lab-On-a-Chip technology and heat exchangers for electronics cooling. Therefore, it is
important to investigate slip flows in order to provide useful prediction tools for
convective heat transfer in micro devices.

When the characteristic length (or size of channel) is reduced down to micro-and nano
scale, the slip effect becomes apparent, which leads to discontinuities in velocity and
temperature (only for gases) profiles at the fluid-solid interface. For flows of polymers,
this effect may even occur in macro scale [1,2]. Knudsen number (Kn), the ratio of the
mean free path to the characteristic length of the channel, is a benchmark to classify
flow regimes of gases. Kn in the range of 0.001<Kn<0.1 is in the slip flow regime,
where fluid velocity at wall is non-zero (velocity slip condition), and wall temperature
and adjacent fluid temperature are not the same (temperature jump condition). Heat and
fluid flow characteristics for gas microflows have been investigated in many



experimental studies [3-6] as well as in numerical and theoretical studies taking
temperature-jump and velocity-slip effects into account [7-15].

For liquid flows in macro scale, no-slip boundary condition on solid surface is widely
assumed, which may not be always correct in micro and nano fluidic systems. Recent
experimental studies of microflows revealed that boundary conditions at the channel
wall depend on both flow length scale and surface properties. Hydrophobic smooth
surfaces such as in polydimethylsiloxane (PDMS materials) made channels [16-18] or
hydrophobic liquids could lead to slip conditions at the channel wall [19] for liquid
flows, while slip conditions in liquid flows may also occur when liquid moves over
surfaces with microscopic roughnesses [20]. Studies reporting slip lengths for liquid
microflows are already present in the literature. Joseph and Tabeling [21] reported slip
lengths below 100 nm in water flowing inside 10 pmx100 pmx1 cm microchannels in
velocity profiles obtained using the particle image velocimetry (PIV) technique.
According to the numerical predictions given by El-Genk and Yang [22], slip lengths in
the experiments on water flows through microchannels conducted by Celata et al. [23]
and Rands et al. [24] were estimated as 1um and 0.7 pm, respectively. Tretheway and
Meinhart [25] reported that the slip length in water flow in a 30x300 um? channel
coated with a monolayer of hydrophobic octadecyltrichlorosilane was approximately 1
pum. Slip lengths ranging from 6 um to 8 um were measured by Chun and Lee [18] in
their experimental study on 1 mM KCI electrolyte flow with fluorescent polystyrene
latex of radius 1.05 um and dilute concentration of 0.48 ppm in a slit-like channel of 3
cm length, 90 pum width and 1000 um depth. For Newtonian fluids, such as air and
water, the wall slip happens when the scale of channel reduces to the order of molecular
dimensions or fractions of a micrometer. However, there exist some investigations on
thermal and fluid characteristics of Newtonian liquid in microchannels, considering
both slip [13,26-28] and no-slip [29-31] conditions at the surface interface. It has been
also observed that slip conditions existed at the channel walls for non-Newtonian fluids,
such as polymer solutions and extrusions of polymer melts in capillary tubes because of
instabilities induced at sufficiently high stress levels [1,32]. These instabilities were
attributed to chain polymer disentanglement [33] and debonding at the interface of wall
and polymer [34] and resulted in wall slips for these types of fluids. Bhagavatula and
Castro [35] proposed a mathematical model, which used linear Navier slip boundary
condition at wall and Carreau viscosity for explaining the rheological behavior

corresponding to the coating material. They employed a micro slit rheometer to measure
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rheological and slip parameters corresponding to the coating material and found that
their predictions of pressure and coating thicknesses agreed well with the experimental
results.

Being interdisciplinary and having a wide range of application in industry, non-
Newtonian fluid flows require a thorough study in terms of experimental, numerical and
analytical aspects to find applications in emerging fields. In contrast to Newtonian
fluids, the viscosity of non-Newtonian fluids, which are typically involved in complex
material structures such as foams, polymer melts, emulsions, slurries, and solutions,
shows a different trend when exposed to variations in shear rate. Therefore, an
appropriate viscosity model should be implemented for their analysis. Non-Newtonian
fluids offer an attractive subject for scientists and engineers from different disciplines to
explore mathematical models for relating stress, deformation and heat transfer behaviors
[36-39].



CHAPTER 2

LITERATURE SURVEY

2.1 Single-phase flow in duct

Since there are many practical applications related to non-Newtonian fluids, the
assessment of their heat transfer characteristics is vital for accomplishing successful
thermal designs. A large number of experimental and numerical studies regarding non-
Newtonian fluids have been reported in the literature. However, few experimental
studies have been conducted to investigate convective heat transfer characteristics of
non-Newtonian fluids [40-45]. On the other hand, many numerical investigations on
heat transfer of non-Newtonian fluids have been reported in the literature including a
wide range of different cases such as forced convection [46-50], natural convection
[51-54] and mixed convection [55-58] in addition to the consideration of fluids
exposed to external fields such as magnetic field (known as MHD flow [59-61]) and
electric field (electroosmosis [62—-64]).

Babaie et al. [62] performed a numerical study on heat transfer characteristics of hybrid

electroosmotic and pressure driven power-law fluid flows in a microchannel. Their



findings revealed that the thermal characteristics were strongly affected by governing
parameters such as flow behavior index, zeta potential, and viscous dissipation. Hung
[65] provided an analytical solution for entropy generation rate of fluid flows through
circular microchannels under power law assumption. The author reported that viscous
dissipation is significant and should be taken into consideration in the entropy
generation analysis.

Chen et al. [66] studied heat transfer characteristics of power-law fluid flow in a
microchannel and presented dimensionless temperature distributions and fully
developed Nusselt numbers for different parameters such as flow behavior index, ratio
of Debye length to half channel height, ratio of Joule heating to surface heat flux, and
Brinkman number. Sunarso et al. [67] performed numerical simulations to examine wall
slip effects on Newtonian and non-Newtonian fluid flows in microchannels. They found
that different vortex growth could be observed in micro scale due to the inclusion of
wall slip, which qualitatively matched with experimental results. Barkhordari and
Etemad [68] conducted a numerical study on convective heat transfer of non-Newtonian
fluid flows in microchannels at both constant temperature and constant heat flux
boundary conditions. Their computational results showed that a change in the slip
coefficient decreased Poiseuille number while increasing local Nusselt number.

Many researchers concentrated on an analytical approach to examine heat and fluid flow
characteristics of non-Newtonian fluids for internal convection, which is important for
giving an insight into a better design for devices involving non-Newtonian fluids. As a
result of such efforts, many studies are present in the literature. For example, Chiba et
al. [69] analytically studied convective heat transfer in a pipe exposed to non-
axisymmetric heat loads with constant properties including the viscous heating term.
Their analysis of the heat transfer was performed by using an integral transform
technique, ‘Vodicka's method’, at which Brinkman number and rheological properties
effects on local Nusselt number were exhibited. Pinho and Coelho [70] presented an
analytical solution for thermally and hydrodynamically fully developed viscoelastic
fluid flows inside a concentric annulus by simplification of the Phan-Thien-Tanner
constitutive equation subject to both constant wall heat fluxes and constant wall
temperatures under the consideration of viscous dissipation term. They obtained some
expressions for the inner and outer Nusselt number in terms of appropriate
dimensionless parameters. Manglik and Ding [71] analytically solved the fully

developed laminar power-law fluid flows based on the Galerkin integral method in
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double-sine shaped channels for constant temperature and heat flux thermal boundary
conditions and obtained results for friction factor and Nusselt number. Thayalan and
Hung [72] presented a theoretical solution based on the Brinkman-extended Darcy
model for power-law fluid flows in porous media. They derived an expression for the
overall Nusselt number based on a proposed parabolic model and did their analysis on
convective heat transfer characteristics relevant to porous media. Chen [73] presented
an analytical solution for convective heat transfer in electroosmotic power-law fluid
flows between two parallel-plates by obtaining some expressions for velocity and
temperature distributions, and fully developed Nusselt number. Similar studies for a
circular channel, based on the linearized Poisson—-Boltzmann distribution equation, and
for viscoelastic fluids related to Phan-Thien-Tanner (PTT) and Finitely-Extensible-
Nonlinear-Elastic (FENE-P) models were also carried out [74,75]. Tso et al. [76] did a
theoretical analysis on heat transfer of hydrodynamically and thermally fully developed
laminar non-Newtonian fluids between parallel-plates while considering viscous
dissipation effects for asymmetric heating and presented a Nusselt number expression in
terms of Brinkman number and power-law index.

Semi-analytical solutions of flows inside parallel-plates was performed by Sheela-
Francisca et al. [77] for power-law fluids under asymmetric heating conditions, which
had a significant effect on Nusselt number in addition to other parameters. Monteiro et
al. [78] used the Generalized Integral Transform Technique to derive a hybrid
numerical-analytical solution for hydrodynamically fully developed and thermally
developing power-law fluid flows within coaxial channels of arbitrary geometric
configuration. Siginer and Letelier [79] used asymptotic series in terms of the
Weissenberg number, Wi, to examine heat transfer of a class of non-linear viscoelastic
fluids flowing in non-circular channels, where Nusselt number was a function of Wi.
Mahmud and Fraser [80,81] presented asymptotic Nusselt number and entropy
generation expressions for power-law fluid flows inside circular channels and parallel-
plates with the use of first and second laws of thermodynamics, while neglecting
viscous dissipation.

Considering thermophysical properties as constant like in above mentioned references is
not always appropriate, since these properties are a strong function of temperature.
Therefore, taking thermophysical properties as temperature-dependent would certainly

lead to more accurate results. There exist only few investigations in the literature



considering convective heat transfer of non-Newtonian fluids with temperature-
dependent properties [81-85].

There are some experimental evidences confirming the possibility of slippage in non-
Newtonian fluids [86-91]. Only few studies including the slip effect in their analysis to
obtain heat transfer characteristics of non-Newtonian fluids exist [67,68,92-95]. Slip
effects could also play a significant role in heat transfer.

For this aim, the current study provides analytical solutions to governing equations
pertinent to both hydrodynamically and thermally fully developed laminar Newtonian
and power-law fluid flows as well as plug flows through parallel-plates and circular
microchannels under constant heat flux, while viscous dissipation is included, and
effects of slip condition of different types, and properties with temperature-dependency
are taken into consideration.

To the authors’ best knowledge, few analytical studies on forced convection heat
transfer of non-Newtonian fluid in microchannels with slip conditions exist in literature.
The first chapter aims at proving an analytical solution for non-Newtonian fluid flows
between parallel-plates in micro scale subject to isoflux and isothermal thermal wall
boundary conditions, while taking the effects of wall slip and viscous dissipation into
consideration. This analytical solution has the potential of serving as a prediction tool in
convective heat transfer of non-Newtonian fluid flows in micro scale. In all the above
mentioned studies, the constant thermophysical property assumption was used.
However, this assumption may not be reasonable if there is a significant variation in
thermophysical properties with temperature. To the authors’ best knowledge, there are
only a few studies in the literature related to convective heat transfer of non-Newtonian
fluids, which considers the change in thermophysical properties as a function of
temperature [82-84]. Molaei-Dehkordi and Memari [96] also carried out a numerical
investigation on the transient, hydrodynamically fully developed, laminar power-law
fluids flow in the thermally developing entrance region of circular tube, while taking the
viscous dissipation, axial conduction, and temperature-dependent viscosity into account.
To address the gap in the literature, the second chapter presents an analytical model for
convective heat transfer of power-law fluids in circular channels subjected to isoflux
thermal wall boundary conditions, while accounting the effect of viscous dissipation.
The presented analysis, based on perturbation method, focuses on Nusselt number and
global entropy generation in the case of the presence of thermophysical property

variations in both the viscosity and thermal conductivity. In order to get more accurate
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results and better modeling non-Newtonian fluid flows in microchannels, in the third
chapter, the slip and the variable properties parameters have been simultaneously
considered along with a modified slip boundary condition consistent with experimental

observations [89], which has nonlinear wall shear stress dependency.

2.2 Pool boiling

Boiling heat transfer has a wide range of applications spanning from traditional to
emerging industries such as heat exchangers, cooling and heating systems, microfluidic
systems and chemical and bioengineering reactors and attracted the attention of many
researchers. Nucleate boiling as a common mode of heat transfer appears in almost all
boiling phenomena. Pool boiling as a subcategory of boiling happens in the absence of
an external flow, and nucleate boiling is one of its basic mechanisms.

During last decades, a large number of investigations have been carried out for
understanding physics of boiling and bubble formation and for proposing engineering
design guidelines [97-100]. Kim [101] reviewed the mechanisms in nucleate pool
boiling and reported enhanced convection, transient conduction, microlayer
evaporation, and contact line heat transfer as fundamental mechanisms. Dhir et al. [102]
presented a review on numerical simulations of pool boiling. In these reviews, single
bubble dynamics and bubble coalescence were examined, and the effects of various
parameters such as wall superheat, liquid subcooling, contact angle, gravity were
discussed.

One method for nucleate pool boiling heat transfer enhancement is to the integration of
micro/nano structures to surfaces [103-106]. Instead of changing the surface area,
another effective method to alter heat transfer characteristics is tuning liquid properties
through the addition of nanoparticles [107]. Among the characterization studies on
nanofluids, the majority of the published work reported their Newtonian behaviour
[108-111], and some of the studies emphasized on non-Newtonian trends in the
viscosity [112-115]. Nevertheless, one of the serious issues in the use of nanofluids is
their tendency for instability, which appears as agglomeration and deposition of

nanoparticles leading to decreased functionality in thermofluidic applications.
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An alternative method to improve the performance is the inclusion of additives such as
polymeric additives, reagents and surfactants into a base fluid such as water (aqueous
surfactant and polymeric solutions)[116], which offers more stability compared to
nanofluids.

Many polymeric additives in a pure base fluid (polymeric solutions) generate a shear
dependent viscosity, which deviates from Newtonian fluid characteristics. The presence
and amount of the additives (e.g. reagent or surfactants) basically change contact angle
and interfacial tension of the solution. Interaction between rheological properties of
solution with interfacial behavior determines how effective they are on heat transfer and
bubble dynamics in boiling. Potchaphakdee and Williams [117] firstly reported the
positive effect of polymer additives dissolved in water on boiling heat transfer. They
had a minor effect on surface tension and major effect on viscosity, which also
significantly influenced heat transfer. The experimental study of Manglik et al. [118],
which presented measurements of dynamic and equilibrium surface tension of aqueous
surfactant and polymeric solutions, showed that the surfactant and polymer additives in
distilled water gave rise to the reduction in surface tension. As Cheng et al. [119]
pointed out in their review, the enhancement of nucleate boiling heat transfer of
polymeric solutions is mainly controlled by their viscosity, where an optimum viscosity,
which is a function of the concentration and the molecular weight of the polymer, could
be obtained [120,121]. In this regard, in work of Zhang and Manglik [122], the reduced
dynamic surface tension accompanied with adsorption of macromolecules on a heating
surface, which probably formed new nucleation sites, was believed to be the primary
reason for heat transfer enhancement for hydroxyethyl cellulose (HEC) (with
concentration, c, less than critical polymer concentration, c*). Heat transfer deteriorated
with concentration for HEC solutions for ¢> c¢*. There was also a decreasing trend for
Carbopol 934 solutions compared to pure water because of higher viscosity.

Recently, Zhang et al. [123] conducted experiments on boiling heat transfer of
(non)ionic liquid polymers for hydrophilic/hydrophobic Alumina Sponge-like nano-
porous surfaces (ASNPS) and realized that there is an optimal concentration, beyond
which heat transfer performance decreases because of instantaneous liquid impingement
and high density small bubbles, while the opposite is valid for concentrations smaller
than this optimal one.

The aim of using polymeric solutions as an alternative of pure liquids, especially in

dilute form, is to adjust heat transfer characteristics. The results reported in literature are
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in contradiction to each other as stated in the review of Wasekar and Manglik [116]. For
example, while the results of Kotchaphakdee and Williams [117] demonstrate
enhancements in boiling heat transfer on plate heaters submerged in hydroxyl ethyl
cellulose (HEC-H) and PA-30 solutions, the results of Wang and Hartnett [124], Hu
[125], and Paul and Abdel-Khalik [121] degradation in heat transfer from platinum wire
heaters in very dilute aqueous polymeric solutions compared to water. Few studies
[126,127] reported that there was not any change in nucleate boiling heat transfer when
polymeric additives were used.

The difference in boiling heat transfer of polymeric solutions from pure liquids can be
associated with different bubble characteristics such as bubble size, shape, growth rate
and release frequency. When compared to water, the bubbles detach from the surface
with larger frequencies while having smaller sizes and more regular shapes
[125,128,129]. Therefore, some polymeric solutions offer nucleate pool boiling

enhancement.
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CHAPTER 3

SINGLE-PHASE SLIP FLOW THROUGH PARALLEL-PLATE
MICROCHANNELS

3.1 Analysis:

In this study, hydrodynamically and thermally fully developed, steady state,
incompressible and laminar flows of non-Newtonian fluids with constant properties and
power law assumption were analyzed for two-dimensional parallel-plates. Both isoflux
and isothermal boundary conditions were applied to the parallel-plates configuration
(Fig. 3.1).

q" or |
| | 1 ' {
Y Y Y Y |
Y A
Flow T . o4
%4
Y
4 A A A ]
| | | a
q or T

Fig. 3.1 A schematic of the geometry
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Axial heat conduction effect in the fluid and wall was neglected, while viscous
dissipation and wall slip were taken into account.

For non-Newtonian fluids, the following shear-stress power-law relationship is valid:

ﬂU adTU 0
t =f|— ——: 3.1

where ¢ is the consistency factor and n is the power-law index.
The governing equations for fluid flow are continuity, x-momentum, and energy

equations and are expressed as:

—+—=0
X 9qv (3.2
1 3eaéTU ﬂUO P
=0 33
ﬂYée‘ﬂYﬂ ™5 X (3.3)
T.T 5 3.4
re U Dk L+ I D)+ F Sy 4Ty ¢4

P IX x> 2" & I’ g1

where p is the density, P is the pressure, T is the temperature, c, is the specific heat at
constant pressure, Kk is the thermal conductivity, and U and V are velocity components
in X and Y directions.

Linear Navier slip condition is a general boundary condition at the wall introducing the

possibility of fluid slip at the interface of solid and fluid in micro scale and is stated as:
U,-U, =lgc—= (3.5)

where | is the slip length.

Another slip boundary condition applicable to non-Newtonian fluids is the non-linear
Navier slip boundary condition, at which the wall velocity is proportional to the velocity
gradient power to the power-law index [130,131].

A general slip boundary condition at wall applicable to every type of slip flow,

regardless of Newtonian and non-Newtonian fluid flows, is the consideration of a slip
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velocity, Us, at wall (i.e. Ugrway=Us). This type of slip velocity is taken in this study as
the slip boundary condition, which can be then easily transformed into the linear slip
boundary condition. It should be also noted that temperature-jump condition occurring
in gas flows does not exist for liquid flows.
To facilitate an analytical solution, the governing equations are non-dimensionalized by
using the following non-dimensional parameters as:

U \Y Y X P

= V=—— = — X=— =
"Tu, u, b D SR

In addition, the following dimensionless numbers are introduced in the analysis:

2-nMn
Re:—rum Dh b:US |_:I_
f U D

m
where Re is Reynolds number, L is dimensionless slip length, and 8 is slip coefficient.
The dimensionless governing equations with slip-boundary condition and no
temperature jJump condition are analytically solved to obtain the Poiseuille number (Po)
and the Nusselt number (Nu), as well as the velocity and temperature distributions. The
closed form expressions for Nu and Po corresponding to Newtonian liquid flow
characteristics are also presented by letting n=1 while the results for the no-slip
boundary condition correspond to the case of (=0, which is mostly valid for macro
scale.

The non-dimensionalized x-momentum equation and slip-boundary condition

expressions for Non-Newtonian fluid flows between parallel-plates become:

ﬂa%aiuo Tqud T _

—7- Re— 3.6
Ty gg'ﬂYﬂ 'ﬂy,a 'ﬂX (3:6)
u,=b (3.7)
3.8
0 u, = L?u o) (3.8)
Ty ¢ B=w

Subscripts s and w in all equations stand for the fluid properties at the surface and the
wall, respectively.

The momentum equation stated in Eq. (6) can be analytically solved by imposing slip-
boundary condition at the wall given in Eq. (7) along with the symmetry condition (via
setting the axial velocity gradient at the middle to zero (i.e., 0u/0y (x y=0) =0)).
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Accordingly, the corresponding dimensionless fully developed axial velocity profile, u,
is obtained as:

1 e ]
u= (g‘(4y)n -1-x(n+1)

-1-x(n+1)

[7] (3.9

42
n

where

b
X=—
(- b){L+2n) (3.92)
Poiseuille number, Po = f Re, is defined as:
Po = 2 5 = 2m‘"—u (3.10)
ru iy
By substituting Eq. (9) into Eq. (10), Poiseuille number is derived as:
po = of @ +20A- D)0 (3.11)

e n 1]

The next step is solving the energy equation with viscous dissipation term for the two
cases, namely, isoflux and isothermal boundary conditions.

For the constant heat flux case, the energy equation containing viscous heating term
(viscous dissipation term) should be solved under no temperature-jump condition, while
a constant heat flux is applied to the walls. In the energy equation, the longitudinal
temperature gradient, 0T/0X, can be obtained with the application of the first law of

thermodynamics to an elemental control volume as:

mcpﬂﬂxzq"d + gyrfds (3.12)
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For a parallel plate channel cross-section, it can be written as:

m f U

ru,Hc, "IX ——=q (1+q_Q(W)n+1dY) (3.13)

The above equation can be solved by introducing Brinkman number, defined

n+l

asBr = , as well as by performing the integral on the right-side as:

Ir__qA
X ru,He,

(3.14)

where the parameter A is expressed as:

N+l

nBr ab §
4(1+ 2n) gxn a9

(3.15)

Brinkman number, Br, is a dimensionless parameter representing viscous dissipation
term. Its positive and negative values refer to wall heating (fluid is being heated) and

wall cooling (fluid is being cooled), respectively.

With the introduction of the dimensionless temperature defined as q = 5 % the

energy equation takes the following dimensionless form:

fup Juye (3.16)

iyl Ty

T°q

[

4Au =

After the substitution of the velocity expression, Eq. (16) becomes:

n+1 n+1

TG, @00 4y (3.17)

+Br —
nx

4Au =

QIIO

The above expression has the following boundary conditions:
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e(y 1/4) = =0, aelay (y=0) = =0 (3.18)

Accordingly, an analytical solution for dimensionless temperature distribution can be

derived as:

a&&[x(lGn +12807 +368LN° +448n“ +102°) + (160 +1120° +2561° +192°)y?
(; A[Zn +4n ](4y) & +Br§ : (2n +6n* +4n )+ (n*+n )—(1 (4y) +”n);
¢ N (3.19)
T-T, _g- A[x(n+8n +23° +28n* +12n )+n+7n +14n° +8n ] p
Dadk 8(L+n)(L+ 2n)(1+3n)(ﬁ)
The dimensionless bulk or mean temperature is given as:
Fyq,dS
=L (3.20)
oyds
After several manipulations, the following expression is obtained:
q = T~ Ty _8xn® +Cyn+Cyn® +Cyyn® +Cyn* + BrF
" D@k (3.21)
where
C,, =84x°n* +16xn
C,, =320x°n* +152xn +8
C,, =528x°n’ +440xn + 68
(3.22)
C,, =320x°n* +400xn +128
E - adb 6" @n® +7n* +x2(2n® +11n* +19n° +10n° )0
gxn g &Hx(4n®+18n* +17n°) 5
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Nusselt number is defined as Nu:k(FD—q(‘t and can also be written in terms of the

w o m)

dimensionless temperature as:
-1
Nu=— (3.23)

Finally, Nusselt number can be expressed in the following form as:

Ny
1- b (3.24)
8x’n*+Cn+C,n° +C,n* +C,n* + BrF

48(5n +2)(4n +1)(

Nu =

It can be noted that the above expression is valid for Newtonian flows when n=1 and
reduces to 140/(17+108Br), which agrees with the Nusselt number corresponding to the
flow between parallel-plates given in the literature [12].

For the case of the linear Navier slip condition, it is sufficient to use the following
expression for 3:

b= 4L(1+2n) 3.95
n+4L(1+2n) (3.25)

Second law analysis becomes significant in designing and improving the performance
of thermal systems. This analysis in terms of entropy generation and Bejan number,
which is based on irrevesibilities in fluid friction and heat transfer, is more significant in
thermal systems, where there are high gradients in velocity and temperature, particularly
in micro flows. Minimizing entropy generation would help to improve the efficiency of
a system [132]. Accordingly, entropy generation rate and Bejan number are presented in
this study to provide some insight to the second law analysis.

The volumetric rate of entropy generation can be expressed as [133]:

K

= (NT.NT)+1 (3.26)

T

S =
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where the first and second terms on the right side are (volumetric) Heat Transfer
Irreversibility (HTI) and Fluid Friction Irreversibility (FFI), respectively.

For the case of non-Newtonian fluids, entropy generation rate is derived as:

. _ ke T 2 20, f ‘ITU aéTU o
S=—cl— ) (3.27)
? gi r T 1Y ﬂY 2
In non-dimensional form, it can be expressed as:
D? o Br|fu ™
N, =S ) T (3.28)
kW2 ‘Hy fa Y
or
D? _ ,6, Bragbg”
N, =S + (922 = (4y)n (3.29)
W W & ngn p
where Q =q D /T,k and 86/dy is as follows:
@ [x(4n +28n° +72n° +80n* +32n°) +4n +24n* +48n° +32n4]y+ 0
9 1+2n b Oﬂ+1(; (n +5n% +8n* +4n ) ) 1+2n __
(;[n +4n® +4n ](4y) n +Brg :§(4y) no- 4y (3.30)
) xn g + n +n®+n* gz '
2 9_ 5

0
T @2 ")

The main aim of second law analysis is to find parameters minimizing global entropy
generation rate, denoted by <Ns>, which is related to whole dissipations generated by
irreversibilities in the channel, which affect the performance of the system. Therefore, it
IS required to integrate Ns across the cross-sectional area occupied by the fluid

through< N, >= d\lSdS/S. After performing the integral, one could express <Ng> as

follows:
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The Bejan number, Be, is defined as the ratio of entropy generated due to heat transfer,

Swmi, to the total entropy generation rate Sqri+rrr), and is expressed as:

(2 )+(“q)
Be — (3.33)
5?4A 'ﬂq) 0. Br ‘ﬂu
Epe) *lay) 2 Wity
or
(o) + (g
3 e
Be = (3.34)

— (4y) n

4A,, Br adlb n+l
g 2 +(‘ﬂq) o Br 8
T 5 WExn g

When the heat transfer irreversibility dominates, the value of Be converges to unity,

while the irreversibility is solely caused by to fluid friction when Be goes to 0.
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For the isothermal wall boundary condition and fully developed flows, the axial
gradient temperature is zero, and Brinkman number does not appear in the energy

equation. The dimensionless temperature is then written as:

T-T,

“IUT kDT (3:39)
Accordingly, the dimensionless energy equation becomes:
2 n+l
'”_Cj _ o (3.36)
Ty Ty

The above equation is also a second-order linear equation, where the convective term is
not present. Applying the proper thermal boundary conditions, a solution for

temperature distribution is obtained as:

|oj

“’“B?B

(0]
T-T, _ &xn B E, (3.37)

“fU™ kD™ 16(1+2n)(1+3n)

Using the above expression, the mean temperature is deduced as:

+1

b &

g "0 2 & (an®+18n* +20n°)+ 0 +3n*2

- n

Q=MW = 2 (3.38)
fU™/kD

QoL
X%

-b
Then, Nu can be obtained from the following expression:
a
y|,- 3.39
Ny =Y (339)
Un

Accordingly, the following expression for Nu can be found:
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NU = b (3.40)

n*+3n° +4(4n +18n° +20n)

For Newtonian fluids (n=1), it reduces to:
Nu=—— (3.41)

The results of Eq. (3.41) agree with the results reported in the literature [12].
The entropy generation rate for non-Newtonian fluids and the case of isothermal wall

boundary condition is written as:

aﬁ(‘ﬂzo f|u|” adTUo

(3.42)
eflY g T[TV 'ITYz
Or
n+l
a?ﬂT 20, ﬂU (3.43)
e g T
Its dimensionless form takes the following form:
D? lagb @, \n
.= s:( +=g—= (4y)n (3.44)
ky * Yy &g
where the dimensionless heat flux ,%, and 06/dy are as follows:
Y= ¢U”+1/ T; kD™! (3.49)
l+2nt') (346)
@2 Glay) v 2
T é ;
Ty 4(1+ 2n)

Global entropy generation rate, <Ng>, is found as:
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Finally, Bejan number is obtained as:
(g
Be = i (3.48)
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3.2 Results and Discussion

This section includes the influence of slip coefficient and viscous dissipation on heat
transfer characteristics of hydrodynamically and thermally fully developed non-
Newtonian fluid flows between parallel-plates at both constant heat flux and constant
wall temperature boundary conditions. First, constant heat flux boundary condition is
considered.  Thereafter, the results corresponding to constant wall temperature
boundary condition are presented.

Shear thinning (or pseudoplastic) fluids with 0<n<1 are non-Newtonian fluids, whose
viscosity decreases with increasing shear rate, while the opposite is true for shear
thickening (or dilatants) fluids with n>1. Figure 3.2 shows the dimensionless velocity
distribution at different power-law indices, n, for the no-slip condition. It can be seen
that the core velocity of the fluid increases with n, while its velocity gradient decreases.
In other words, the velocity profile of shear-thinning fluids becomes more uniform with

the decrease in n. It should be noted that a parabolic profile is obtained for Newtonian
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fluids (n=1). On the other hand, the profile becomes more non-uniform for shear-
thickening fluids (n>1).
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Fig. 3.2 Dimensionless fully developed velocity profiles for different values of n at

B=0

The effect of slip coefficient on the velocity distribution is displayed in Fig. 3.3 for a
shear-thinning fluid (pseudoplastic) with n=0.5. As can be seen, in contrast to no-slip
condition, there is a decrease in velocity gradient at both the wall and the core velocity
with the increase of the slip velocity (increase in ) for maintaining constant flow rate in
the channel. For large values of B, the flow converges to “Plug flow”, where the liquid
acts like a solid slipping in the channel.

Figure 3.4 displays Nusselt number as a function of power-law index, n, at various slip
coefficients in the absence of viscous heating (Br=0) for the constant heat flux case. It
can be clearly observed that Nusselt number decreases with power-law index, which is
due to the fact that the velocity gradients are greater near the wall for lower power-law

index values (Fig. 3.2).
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Fig. 3.3 Dimensionless fully developed velocity profiles for different values of 3 at
n=0.5

Furthermore, an increase in slip coefficient gives rise to the enhancement in heat
transfer. This is in contrast to the results on slip flow for gas flows [134], where a
temperature jump condition exists at the wall resulting in lower temperature gradients.
However, no temperature jump condition exists for this case (liquid flow). In addition,
the existence of slip condition in velocity increases convection by increasing streamwise
velocity near walls leading to higher Nusselt number values. The effect of slip
coefficient on Nusselt number is more dominant for shear-thickening fluids (n>1) than
shear-thinning fluids (n<1). For example, the Nusselt number increase is around 26.6%
for a shear-thickening fluid (n=1.5) for a slip coefficient of 0.6, while it is 20.3% for a
shear-thinning fluid (n=0.5). Velocity profiles are more uniform for shear thinning
fluids compared to shear thickening fluids. When a velocity slip condition exists at the
wall, enhanced convection effects near the wall are therefore not as pronounced as in
shear thickening fluids. As a result, a larger increase in heat transfer is apparent for
shear thickening fluids for slip flows.
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Fig. 3.4 Variation of Nusselt number versus n for different values of B at Br=0

Figures 3.5 and 3.6 illustrate Nusselt number as a function of slip coefficient at different
Br for two n values, namely n=0.5 (Shear-thinning fluid), and n=1.5 (Shear-thickening
fluid), respectively. As can be seen from these figures, Nusselt number increases
dramatically with slip coefficient for these two n values. The increase in Br also leads to
considerably lower Nusselt numbers due to increasing viscous dissipation effects.
Indeed, viscous dissipation contributes to internal heating of the fluid and increases the
mean temperature of the fluid. As a result, it increases the temperature difference
between the wall and the mean fluid and therefore has a negative effect on convective
heat transfer. Furthermore, the reduction in Nusselt number with Brinkman number for
shear-thickening fluids is higher than that of shear-thinning fluids, which arises from the
fact that viscous dissipation increases the mean temperature of shear-thickening fluids
more. For instance, Nusselt number is decreased by 94.6% when Br goes from zero to
0.1 for n=1.5, whereas the decrease is 70.4% for n=0.5. Again, the decreasing trend in
Nusselt number with n is observed in these figures, where viscous heating is also

present.
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Fig. 3.5 Variation of Nusselt number versus 3 for different values of Br at n=0.5
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Fig. 3.6 Variation of Nusselt number versus 3 for different values of Br at n=1.5
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Figures 3.7 and 3.8 display Nusselt number as a function of Br at different slip
coefficient values for n=0.5 and n=1.5. One can observe the existence of some
singularity points in Nusselt number for each . At these singular points, where the
mean temperature reaches the wall temperature, the heat transfer between the fluid and
wall cannot be expressed in terms of Nu. It is clear that by going away from
singularities the absolute value of the Nusselt number asymptotically converges to zero,
as expected from Nusselt number expression. Under slip flow conditions, the
singularities occur at larger Br absolute values, while for shear-thickening fluids, they

are close to each other.
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Fig. 3.7 The effect of Br on Nusselt number for different  at n=0.5
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Tables 3.1 and 3.2 provide the values of global entropy generation rate <N¢> at the wall
isoflux case, while axial heat conduction is absent (i.e. Pe - «). Based on the results,
either existence of slip condition or increasing slip coefficient causes the decrease in
global entropy generation rate since slip condition leads to smaller velocity and
temperature gradients particularly at the solid surface, which improves the performance
of the system. On the other hand, the results show that an increase in Brinkman number
leads to an increase in <Ng>. Therefore, the fluidic system with less Br would result in
better working performance. It is known from the Brinkman number definition that it is
directly proportional to the magnitude of velocity and has an inverse relationship with
both heat flux and diameter of the channel. In other words, in order to minimize global
entropy generation rate (i.e. irreversibility), lower magnitude of velocity with higher
heat flux and larger channel height should be considered.

Moreover, shear-thickening fluids have larger <Ns> values compared to shear-thinning
fluids, which is due to larger gradients in velocity and temperature at walls, which are
more influential regions in the domain for entropy generation distributions. The channel
wall is a location, where maximum velocity and temperature gradients exist, while they

are zero at the center. Accordingly, entropy generation rate, N, reaches its maximum
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and minimum values at the wall and center, respectively. Consequently, Brinkman
number and slip coefficient have a significant effect on entropy generation near the

walls.

Table 3.1 The values of global entropy generation rate at {)=0.1, f=0.2 and Pe -

Br
0 0.001 0.01 0.1

0.2 0.396 | 0.456 1.000 6.443

0.3 0.411 | 0.487 1.171 8.013

0.4 0.422 | 0.516 1.364 9.851

0.5 0.430 | 0.546 1.589 12.036
0.6 0.436 | 0.578 1.856 14.650
0.7 0.442 | 0.615 2.174 17.789
0.8 0.446 | 0.657 2.554 21.567
0.9 0.449 | 0.705 3.011 26.121
1 0.452 | 0.763 3.560 31.613
11 0.455 | 0.831 4.222 38.239
1.2 0.457 | 0.913 5.019 46.238
1.3 0.459 | 1.011 5.979 55.896
1.4 0.461 | 1.128 7.137 67.562
1.5 0.462 | 1.269 8.532 81.656
1.6 0.463 | 1.438 | 10.215 98.691
1.7 0.465 | 1.642 | 12.245 119.288
1.8 0.466 | 1.887 | 14.692 144.206
1.9 0.467 | 2.182 | 17.643 174.367
2 0.468 | 2538 | 21.203 210.902
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Table 3.2 The values of global entropy generation rate at $=0.1, Br=0.01 and Pe - o

B
0 0.2 0.4 0.6
n
0.2 1.203 1.000 0.807 | 0.626
0.3 1.448 1.171 0.913 | 0.679

0.4 1.735 1.364 1.028 | 0.732
0.5 2.079 1.589 1.157 | 0.789
0.6 2.496 1.856 1.304 | 0.850
0.7 3.006 2.174 1.473 | 0.917
0.8 3.632 2.554 1.670 | 0.991
0.9 4.402 3.011 1.899 | 1.073
1 5.350 3.560 2.166 | 1.165
11 6.518 4.222 2478 | 1.267
1.2 7.958 5.019 2.842 | 1.382
1.3 9.734 5.979 3.269 | 1.510
1.4 11.925 7.137 3.767 | 1.654
1.5 14.628 8.532 4351 | 1.816
1.6 17.962 10.215 5.035 | 1.998
1.7 22.076 12.245 5.836 | 2.202
1.8 27.154 14.692 6.773 | 2431
1.9 33.420 17.643 7.871 | 2.688
2 41.154 21.203 9.157 | 2.977

Figures 3.9 and 3.10 demonstrate the distribution of Bejan number for different values
of Br at =0, Q =0.1 in the cases of shear-thinning and shear-thickening fluids,
respectively. For Br =0 (no viscous dissipation), Bejan number has the value of one
regardless of transverse coordinate and power-law index, which means that the fluid
friction irreversibility does not play a role in generation of the entropy, as expected from
Eq. (34). As can be deduced from Eq. (34), Be is maximum at the center and has the
value of one. There is a sharp drop in Bejan number from unity to smaller values for

shear-thickening fluids by moving for a very small distance away from the center

30



particularly at higher Br. Small values of Be (Be<0.5) for these fluids indicate that the
fluid friction irreversibility mainly dominates the heat transfer irreversibility. For shear-
thinning fluids, the values of Be gradually decrease from unity at centerline, where there
is zero velocity gradient, to relatively smaller values at the wall, where the velocity
gradient is the largest. Be values are mostly lower than 0.5, beyond which heat transfer
irreversibility exceeds fluid friction irreversibility. Accordingly, for shear thinning
fluids (except for low Br) the contribution to the total entropy generation is mainly
attributed to heat transfer irreversibility, while for shear-thickening fluids, irreversibility

is mainly due to the fluid friction.
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Fig. 3.9 Bejan number distribution for different Br at n=0.5, Q=0.1 and =0
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Fig. 3.10 Bejan number distribution for different Br at n=1.5, Q=0.1 and =0

The dependence of Bejan number distribution on slip coefficient at Br=0.01 and Q =0.1
is displayed in Figs. 3.11 and 3.12 for the cases of n=0.5 and n=1.5, respectively. An
increase in B from 0 to 0.615 for n=0.5 and from 0 to 0.516 for n=1.5 results in a
reduction of the velocity gradient and a rise in the rate of heat transfer irreversibility (in
terms of Be) up to 193% and 442% at the wall, respectively. However, irreversibilities
due to fluid friction are still pronounced for shear-thickening fluids. Again, sharp drop
from one to small values of Be in these figures indicates the dominance of fluid friction
in irreversibility.

As mentioned before, the axial temperature gradient and Brinkman number do not
appear in the energy equation for the isothermal wall boundary condition. Figure 3.13
displays the effect of slip coefficient on Nusselt number as a function of power-law
index. The results indicate that similar to isoflux wall boundary condition, the increase
in power-law index results in a decrease in Nusselt number. Furthermore, Nusselt
number also increases when there is velocity slip on the surface, but this increase is
more at higher n, similar to the constant heat flux boundary condition.
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Fig. 3.12 Bejan number distribution for different § at n=1.5, Q=0.1 and Br=0.01
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Fig. 3.13 Variation of Nusselt number versus n for different values of (3

The trends in Ns and Be for the isothermal wall condition and the corresponding
discussion are relatively the same as those for the isoflux wall condition case and will

not bring any additional insight. Therefore, their Ns and Be plots are not included.

3.3 Conclusions

An analysis on convective heat transfer and entropy generation was performed to
examine the effects of slip coefficient, power-law index and viscous heating on heat
transfer characteristics of hydrodynamically and thermally fully developed slip flows of
non-Newtonian fluids between parallel-plates at isoflux and isothermal thermal
boundary conditions. The effects of key parameters such as slip coefficient, [, power-

law index, n, and Brinkman number, Br, on Nusselt number, entropy generation rate
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and Bejan number have been assessed. Major conclusions drawn from this study are as
follows:
Nusselt number and Bejan number decrease with the increase in either power-
law index or Brinkman number, while they increase with slip coefficient.
The global entropy generation rate increases with increasing both power-law
index and Brinkman number, whereas a reduction in the global entropy
generation rate is observed with the existence of slip condition and an increase
in slip coefficient.
The effect of key parameters on Nusselt number and the rate of entropy

generation is more pronounced for shear-thickening fluids.
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CHAPTER 4

SINGLE-PHASE NON-SLIP FLOW THROUGH MICROTUBE WITH
TEMPERATURE-DEPENDENT PROPERTIES

4.1 Analysis:

In this study, hydrodynamically and thermally fully developed, steady state,
incompressible and laminar flows of power-law fluids with constant and variable
thermophysical properties are analyzed for circular channels under the isoflux thermal
boundary condition applied to the tube wall (Fig. 4.1).
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Fig. 4.1 Isoflux heating applied to a circular channel
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For a power-law fluid, the following shear-stress power-law relationship is valid:

ﬂU

ﬂR el g (4.1)

SR

u

where f is viscosity with the consistency factor at room temperature, ¢y, and

the power-law index, n. The governing equations are x-momentum and energy

equations, which can be formulated respectively as

l1 T U TP
iR 0P g
RIRE fRg TX (42)

m_19x% 1o, AU &
X RIRS TRp &R 2 #3)

where p is the density, P is the pressure, T is the temperature, c, is the specific heat at
constant pressure, k is the thermal conductivity, and U is velocity component in X
direction.

In order to proceed with a solution, viscosity and thermal conductivity must be defined
as a function of temperature. Reynolds [135] proposed an exponential model for the

temperature-dependence of viscosity as:
m=m,; exp(- b@r) (4.9)

where T is temperature, and s and b are coefficients. Using a truncated Taylor series

for exp(-bT) similar to Hooman and Ejlali [136], viscosity is expressed as:

DI dmT - T
dT DT

(4.5)

__mef(l eq) fref(l GQ)‘

&
m= mefél -

where
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& DI dkT-
k =k + W—-k 1+e ,

refél dT DT B ref( kq) (4 6)

d DT
e=— — 4.7)

dT Ts rnef

o _dk| DT
<TAT], ke (4.8)

T-T,. . . i . . i
Here ¥ is the dimensionless temperature, 6. e is defined to be a coefficient of g, i.e.

e=Ge, in which G will be obtained for water as a working case through computational
simulation.

The governing equations for x-momentum and energy equations can be stated as:

117

Eﬂ—Rgrﬂ(l' eCI)Rﬂ—R*' ‘H_X:O (4.9)
or
- U TP
~_GRf, o =0 4.10
RiRg IR &R g, X (419
m_11 Mo, & [u™ %Uo
rchﬂ—X—RﬂRgis(Hekq)RﬂR;gm wl DR, (4.11)

To facilitate an analytical solution, the governing equations are non-dimensionalized by

using the following non-dimensional parameters and Reynolds number, Re, as:

X P ruz"D"
u=—o =— X=— p= > Re=—-"™m"
m r r ru, f

ref

The dimensionless governing equations are analytically solved to obtain Nusselt
number (Nu), as well as the velocity and temperature distributions. The closed form
expressions for Nu corresponding to Newtonian liquid flow characteristics can also
obtained by setting n=1.

The first step is to derive the velocity distribution. With the introduction of Reynolds

number, the non-dimensionalized x-momentum equation becomes:
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(4.12)

The above equation can be solved using the no-slip boundary condition at wall along
with the symmetry condition at the center (via setting the axial velocity gradient at the
center to zero (i.e., 0U/Or (at =0y =0)).

After implementing the symmetry condition, and using Taylor series with the first order

approximation, one can write:

1

E?a Torog,t qe) (4.13)

‘ﬂr X 2g

For most practical cases, the viscosity variation number is small compared to unity, i.e.
€ << 1. This allows for a regular asymptotic expansion assumption (for dependent

variables u and 8) in the following form

U= U, +eu, (4.14)

gq=q, +eq,

As a result, Eq. (13) takes following form:

1

Tug , Tuy, 22 pro 415
ey E%ﬂ 2 ey Loe) (4.15)

Splitting the above equation into two following equations

1
Tu, _gRefpor o (4.16)
qr 2 IXg

el _ Refp 1, )n (4.17)

qr %2 IXg n
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the dimensionless fully developed axial velocity profile, ug, under the no-slip boundary
condition (i.e., U at r=1) =0) is obtained as:

_1+3n
0 1+n

- 1) (4.18)

In order to find uy, it is required to proceed with 6,. For the constant heat flux case, the
energy equation containing viscous heating term (viscous dissipation term) should be
solved under the no temperature-jump condition, while a constant heat flux is applied at
the walls. In the energy equation, the longitudinal temperature gradient, dT/0X, can be
obtained with the application of the first law of thermodynamics to an elemental control
volume as [12,137]:

M _ga+ O ds (4.19)

mc, —=
pﬂx

For a circular cross-section, it can be written as:

TlT f f o i

2 o ref 0| U
I’UmR Cpﬂ—x—Zq (R+ q Q

RdR) (4.20)

The above equation can be solved by introducing Brinkman number, defined

n+l
ref ~'m
n 1

asBr =

and by performing the integral on the right side as:

T _ g (A+eAg

X rU.Rc, (421)
where the parameter A is expressed as:
& ™ 0
A=2 +Bra{» rdr (4.22)
fir P

or
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g§2+8n+Br- 1+3n nT~
n n -
ac=prl- 1430 c 2. (4.25)
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Brinkman number, Br, is a dimensionless parameter representing viscous dissipation
term. Its positive and negative values refer to wall heating (fluid is being heated) and
wall cooling (fluid is being cooled), respectively.

Upon using the dimensionless temperature defined asq = -rrq
0

% the energy equation

takes the following dimensionless form:

u,A+e(u,Attu A)———a(?‘”qo +Br ‘Huo +
r 'ITI’e Iro I
. ey (4.26)
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Splitting the above equation, the following equations are obtained:
1+n 1+7n
uA=11 &0, 5 ‘ 1+3nr 5 (4.28)
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e 1+n 1110
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These equations must be solved subject to the following boundary conditions

Atr=1 00=0:=0
At r=0 % = & =
fr 9

By substituting uo, the dimensionless temperature distribution 6, is derived as:

& (1+3n)A Br‘_ 1+3n[ "¢
é 1+n n v SETER
- G LAy
(3+1)2 ﬂ 4(1+n)
n
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(4.30)

(4.31)

Accordingly, the dimensionless fully developed axial velocity profile, us, is obtained as:
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After substituting up, u;, and 6y into Eqg. (4.29) and performing several tedious

manipulations, a long and complex expression is derived for 6, as follows:

2l 0 ®st 0 22 0
q, = C41(r2 ) l)+C42 (I’4 ) 1)+C43§I’ "- 1Z+ C44§r "- 1Z+ C45§r -1z (433)
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Determined velocities (uo, u;) and temperatures (6o and 6,) are utilized to find the

dimensionless bulk or mean temperature given as:

glads _ 4
On =~ = Zéuoqo +e(ug, + ulqo)]rdr (4.35)
OJdS
Nusselt number is defined as Nu = " _qut and can be also written in terms of the
dimensionless temperature as:
-2
Nu=— (4.36)

In the case of constant properties, Nusselt number can be expressed in the following

form as:

NU = - 8(1+3n)(1+5n)

1+3n|'0
n

5
-1-12n- 31n* + Br‘g‘- an- 16n° +(1+12n +31n21- (4.37)

2

To the authors’ best knowledge, there are no other studies in the literature, in which the
viscous dissipation term is present. However, the results of Eq. (4.37) are in excellent
agreement with those of Barkhordari and Etemad [68] in the absence of viscous heating
and with those of Hooman [12] in the presence of viscous heating and n=1.

For the variable property case, it is not possible to give an explicit expression for
Nusselt number. Therefore, a numerical analysis is needed.

In order to have a better design and improvement in thermo-fluidic systems, the second

law analysis constitutes an important part of analysis. In this point of view, the entropy
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generation, which is dependent on irreversibilities in fluid friction and heat transfer due
to existence of gradients in velocity and temperature, plays a significant role in such
systems. Therefore, minimization of entropy generation through reducing the
irreversibilities would be a desirable goal for thermo-fluid researchers to augment the
system efficiency. In this regard, the second law analysis is investigated in the current
study to provide some insight on how the governing parameters affect the entropy

generation rate. The volumetric rate of entropy generation can be expressed as [133]:
.k e nj
S = _I_—(NT.NT)+— (4.38)

where the first and second terms on the right side are (volumetric) Heat Transfer
Irreversibility and Fluid Friction Irreversibility, respectively.

For the case of non-Newtonian fluids, entropy generation rate is derived as:
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= ) )2 )‘ (4.39)
In non-dimensional form, it can be expressed as:
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After simplifications and rearrangements, and neglecting higher-order terms o(&?), it

becomes:
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where Q =q'r, / T,k and Pe is Peclet number. The temperature and velocity gradients are

as follows:
1
T _ _1+3n 5
Ir n
) ) . ;
%@, M9 +17n +116n7 +406n° + 765 +729n° +270n° )" a
en g ‘
é 0 1+2n a
& 8é+ N 9(1+15n +92n? +294n® +513n* +459n° +162n6)r n U
éenN g d
¢ ) 2+3n u
@¢ﬁ+4n 9(2n2 +20n® +72n* +108n° +54n6)r - G
e e n %) i
e L L
é & hd+ng 00
: 3 &, . G
e . g(n +12n2 +56n°% +126n* +135n° +54n6)g3 e o ﬂ_u
é +n o 120 7]
éBr_1+3n C §8é+3n9r "
é n ¢ Bén o
: g &2 +4ng U 4
¢ + (n2 +10n® +36n* +54n° + 2706)@_(;74 "G Y
r 2n(L+n)*(L +2n)(L+3n)?
2 A+3nA_ Br‘_ 1+3n["'9
1d, _é 1+n n Er2+%+(1+3n)Ar
r 341 2(1+n)
n
L+2n L+4n 2+5n
+ + +
%:2C1r+4czr3+csl 3nr n +C41 5nr n +CSZ 6nr n
r n n n

written as:

<N, >= Ql?Nsrdr
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The main aim of second law analysis is to find parameters minimizing global entropy
generation rate, denoted by <Ns>, which is related to the whole dissipations generated

by irreversibilities in the channel. Therefore, it is required to integrate Ns across the

cross-sectional area occupied by the fluid through< N, >:5\ISdS/S, and can be

(4.43)



Again, it is needed to perform numerical analysis to obtain the global entropy

generation.

4.2 Results and Discussion

As pointed out earlier, viscosity and thermal conductivity vary with temperature so that
a rise in temperature leads to a decrease in viscosity and an increase in thermal
conductivity. This section includes the effect of variable properties and viscous
dissipation on the entropy generation rate and heat transfer characteristics of
hydrodynamically and thermally fully developed non-Newtonian flows in tubes at
isoflux boundary condition while assuming a power-law fluid model.

Shear thinning (or pseudoplastic) fluids having power-law index in the range 0 <n<1
behaves in such a way that their viscosity decreases with shear rate, while this behavior
is otherwise for shear thickening (or dilatants) fluids having power-law index larger
than unity (n > 1).

In order to verify the analytical results in the case of variable property, a numerical
simulation was carried out by employing ANSYS FLUENT 14.0 software that
compares the numerical and analytical results of fully developed dimensionless velocity
profile. The temperature-dependent viscosity equation based on the experimental data
expression given in Ref. [138] was implemented in the software through a User-Defined

Function (UDF) as following

247.8

m(T) = 0.00002414" 10714 (4.44)

where T has units of Kelvin, and p has units of N-s/m2,

Fig. 4.2 demonstrates the comparison between numerical (at Re=10) and analytical
solutions, which shows a good agreement. It is notable that analytical results correspond
to €=0.064, which was acquired by Eq. (4.7) from the numerical analysis. The value of

I" can be also obtained by the numerical simulation, which is dependent on the heat flux
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applied. For the sake of simplicity and consistency, throughout this study it is taken to

be [=0.2.
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Fig. 4.2 Comparison between numerical results of temperature-dependent viscosity of
water given in Ref. [138] and analytical result corresponding to €=0.064

Fig. 4.3 illustrates the dimensionless velocity distribution at various power-law
indices, n, for both constant and variable properties at Br=0.01. As seen, regardless of
the property, the core velocity of the flow moves faster when the power-law index
increases, while its velocity near the walls takes the smaller values to keep the flow rate
constant. Generally, the parabolic profile regarding to Newtonian fluid (n = 1) deforms
to a more uniform profile compared to shear-thinning fluids and to a more non-uniform
profile compared to shear-thickening fluids. Furthermore, the consideration of
temperature-dependent properties slightly decreases the velocity values at the core
region. This trend is due to the decreasing viscosity with temperature hence giving rise

to lower pressure drop and accordingly lower velocities.
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Fig. 4.3 Dimensionless fully developed velocity profiles for different values of n for
constant and variable property case at Br=0.01

Figure 4.4 shows the dimensionless temperature distribution of the flow for different
values of n in the cases of e=0 and e=0.1 at Br=0.01. Similar to velocity profiles, the
temperature develops in the core region for increasing power-law index. It was also
observed that a slight increase in the fluid temperature exists for all types of the fluids,
but more effectively for shear-thinning fluid, at the core region by taking the variable
properties. The temperature increment may be ascribed to the enhancing effect of
thermal conductivity of the fluid owing to temperature variation.

Figure 4.5 shows the variation of Nusselt number as a function of power-law index for
different Brinkman numbers in the case of both constant (¢€=0) and variable property
(€=0.1) cases. It can be observed that Nusselt number decreases with both the power-
law index and Brinkman number, regardless of the property. However, this decreasing
trend is more significantly seen at higher Brinkman numbers, which is because of
Brinkman number appearing as a coefficient in the viscous dissipation term leads to
viscous heating, and accordingly, it gives rise to an increase in the mean temperature of
the fluid through the internal heating and ultimately to the decrease in Nusselt number.
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Fig. 4.4 Dimensionless fully developed temperature profiles for different values of n for
constant and variable property cases at Br=0.01

It is also noticeable that the effect of Brinkman number on Nu becomes more significant
for shear-thickening fluids, which is attributed to higher mean temperatures. In the case
of the variable thermophysical property case, the values of Nusselt number are larger
compared to the constant property case. However, the effect of property variation on the
heat transfer rate becomes less significant when the power law index goes higher in the
shear-thickening fluid range for low Br. For example, for n=2 and Br=0.1, the change in
Nusselt number is about 8% due to the consideration of the variable properties. On the
other hand, for shear-thinning fluid, the values of Nusselt number are significantly
underestimated by neglecting the temperature-variation effect. For instance, at n=0.2
and Br=0.1, the deviation becomes more and reaches about 13%. Indeed, the viscosity
decreases with temperature, which causes an increase in Reynolds number and
consequently has a positive effect on heat transfer and Nusselt number. On the other
hand, the thermal conductivity has an increasing trend with temperature, and has a
negative effect on Nusselt number (Nu=hd/k). As a result, there is an interplay between
viscosity and thermal conductivity effects, where the viscosity dominates giving rise to

an increase in Nusselt number.
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Fig. 4.5 Nusselt number as a function of n for different values of Br at the constant (at
€=0) and variable property (at €=0.1) cases

The effect of property variation (perturbation parameter) on the heat transfer rate for
different n and Br=0.01 is displayed in Fig. 6. As mentioned earlier, heat transfer is
reduced when the power-law index is increased. It can be seen that heat transfer rate
(Nusselt number value) increases for the variable thermophysical property case with € at
which the deviation from constant properties might reach about 21%. However, the
effect of property diminishes as the power-law index becomes more, in particular for
shear-thickening fluids where a very small change is observed for n=2.

Table 4.1 presents global entropy generation rate, <Ns>, versus power-law index at
€=0.1 and various Brinkman numbers in absence of axial heat conduction term
corresponding to Pe — oo. As can be seen from the table, except for Br=0.01 which will
be depicted in the next figure, the global entropy generation rate increases with power-
law index for both constant property and variable property cases particularly for higher
Br. Since lower value of entropy generation would imply a better working performance,
the fluidic system with smaller Br (or smaller viscous heating) is desirable, which leads

to a more efficient convective heat transfer as well.
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Fig. 4.6 Nusselt number as a function of n for different values of € at Br=0.01

Furthermore, lower values of global entropy generation rate are obtained for lower n
(i.e. shear-thining fluids), which is due to smaller velocity and temperature gradients at
the walls, where the entropy generation is more pronounced. Entropy generation rate
reaches its maximum and minimum values at the wall and center, respectively, where
the maximum and minimum (zero for this case) velocity and temperature gradients are
present.

From this table, it can be also understood that the property variation with temperature
causes an increase in <Ns> for low values of Br, while the opposite remains valid for
higher Br. In this case, the perturbed term contributes to the global entropy generation
by increasing the irreversibility caused by viscous heating through the velocity gradient
portion. However, the table reports a reduction in <Ns> for larger Brinkman number

when the properties are varied with temperature.
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Table 4.1 The values of global entropy generation rate
at Q = 0.1, Pe = oo for different Brand n

constant property variable property (¢=0.1)
Br Br

0 0.01 0.05 0.1 0 0.01 0.05 0.1
n
0.2 0.725 0.526 0.986 2.373 0.636 0.45 0.954 2.273
0.4 0.815 0.806 1.906 3.767 0.745 0.739 1.82 3.61
0.6 0.864 1.15 2.982 5.5 0.808 1.085 2.861 5.286
0.8 0.895 1.49 4.09 7.41 0.849 1.426 3.945 7.148
1 0.917 1.757 5.13 9.37 0.877 1.696 4971 9.07
1.2 0.932 1.889 6.031 11.293 0.898 1.833 5.871 10.974
14 0.944 1.837 6.789 13.181 0.914 1.791 6.643 12.874
1.6 0.954 1.591 7.537 15.214 0.927 1.561 7.422 14.96
1.8 0.961 1.267 8.619 17.847 0.938 1.259 8.545 17.679
2 0.968 1.355 10.551 21.83 0.947 1.361 10.497 21.724

The variation in the global entropy generation as a function of power-law index at
Br=0.01, Q=0.1, and different values of € is depicted in Fig. 4.7. The global entropy
generation increases with n to its maximum value around n=1.2 and then starts
decreasing until n=1.8. An unexpected trend after this point is seen where the value of
<Ns> again increases with n, except for € =0.1 and 0.2. Additionally, one can observe
that an increment in € leads to an increase in <Ns>, except for very high values of n.
Table 4.2 exhibits the values of the global entropy generation rate, <Ns>, as a function
of power-law index at Br=0.01, Q=0.1 and different values of Peclet number, Pe, which
represents axial heat conduction effect on entropy generation. It is worthwhile noting
that Peclet number does not play any role in the heat transfer analysis of fully developed
flows due to the constant axial temperature gradient. The results in the table also reveal
that the increase of Pe (axial heat conduction portion) generally decreases the values of
<Ng>. For very low values of Pe (here Pe=0.1) the global entropy generation rate
increases with n, which means that shear-thickening fluids generate more
irreversibilities compared to shear-thinning ones. However, for other Pe values, the
trend is very similar to that of Fig. 4.7.
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Fig. 4.7 Global entropy generation rate as a function of n for different values of € at

0=0.1and Br=0.01

Furthermore, the values of <Ng> increase with inclusion of temperature-dependent

properties, except for very high values of n, even though the viscosity has a decreasing

trend with temperature in contrast to the thermal conductivity. This means that

irreversibility due to heat transfer dominates over fluid friction. Therefore, the results

suggest that if thermophysical properties are not considered as variable there will be an

underestimation of <Ng>.

Table 4.2 The values of global entropy generation rate at Q = 0.1, Br = 0.01 for
different nand ¢

n €=0,Pe=0.1 € =0, Pe=10 €=0,Pe=100 | €=0.1,Pe=0.1 | €=0.1, Pe=10 | €=0.1, Pe=100
0.2 412.713 0.565 0.526 410.834 0.489 0.451
0.4 416.69 0.843 0.806 414.599 0.776 0.739
0.6 421.46 1.188 1.15 419.259 1.123 1.086
0.8 427.304 1.531 1.49 425.041 1.467 1.426

1 434.397 1.8 1.758 432.098 1.739 1.696
1.2 442.923 1.931 1.89 440.607 1.875 1.834
1.4 453.199 1.872 1.838 450.881 1.826 1.792
1.6 465.82 1.608 1.591 463.51 1.577 1.561
1.8 481.799 1.248 1.267 479.5 1.239 1.259

2 502.647 1.305 1.355 500.356 1.311 1.36
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4.3 Conclusion

Convective heat transfer analysis and second law analysis were performed to reveal the
effects of variable thermophysical properties, namely viscosity and thermal
conductivity, power-law index and viscous dissipation on heat transfer characteristics of
hydrodynamically and thermally fully developed power-law fluid flows in tubes under
uniform heat flux thermal boundary conditions. Aside from deriving the velocity and
temperature distributions, Nusselt number and entropy generation rate have been
examined along with their trends with key parameters being power-law index,
Brinkman number, and property variation. Major conclusions of this study are as
follows:

Nusselt number decreases with increasing both power-law index and Brinkman

number, regardless of the change in thermophysical properties with temperature,

while this trend is more pronounced for variable properties.

The variation in thermophysical properties with temperature has an increasing

effect on Nusselt number compared to the constant property case.

Except for few cases, the rate of global entropy generation, <Ns>, increases with

power-law index, Brinkman number, whereas thermophysical property variation

effect causes the augmentation of <N¢> only for lower values of Brinkman

number.
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CHAPTER 5

SINGLE-PHASE SLIP FLOW AND PLUG FLOW WITH VARIABLE
THERMOPHYSICAL PROPERTIES IN PARALLEL-PLATES AND
CIRCULAR MICROCHANNELS

5. Analysis:

5.1 Power-law fluid flow

In this section, the analytical solutions are derived to obtain velocity and temperature
distributions and heat transfer characteristics of power-law fluid flows inside parallel-
plate and circular microchannels. To achieve this, it is assumed that the flow is
hydrodynamically and thermally fully developed, steady state, incompressible and
laminar with constant and variable thermophysical properties under wall uniform heat
flux thermal boundary condition (Fig. 5.1). The viscous dissipation term is also included

in the analysis to examine the viscous heating effect.
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Fig. 5.1 Isoflux heating applied to circular and parallel-plates channels

The following shear-stress power-law relationship is applicable for a power-law fluid:

t:f&
Y

"l 6

= 5.1
S o 1)

n-1

where f is viscosity the consistency factor at room temperature, ¢, and the

power-law index, n. The governing equations, being x-momentum and energy

equations, are formulated respectively as

1 9@ Mo P
YTV E . g TX (:2)
. .2
rc UEzil mﬂ9+npaé£9 (5.3

P YTV E Mg 6T o

where p is the density, P is the pressure, T is the temperature, c, is the specific heat at
constant pressure, k is the thermal conductivity, U is velocity component in X direction,
and m takes values between O and 1 for parallel-plate and circular channels,

respectively.
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In order to proceed with a solution, viscosity, thermal conductivity and density must be
defined as a function of temperature. Reynolds [135] proposed an exponential model for

the temperature-dependence of viscosity as:

m= m,, exp(- baT) (5.4)

where T is temperature, and psand b are coefficients. Using a truncated Taylor series

for exp(-bT) similar to our previous work [85], viscosity is expressed as:

& DI dmT-T,0 ul™
m=m exp(-bT) = ”lg' Ed_T?W:: m(- eq)=f . @- SQ)“ET—R (5.5)
7}
and
& DrdkT-T,0
k=kgl+—— rr=k(1+eq) (5.6)
§1 k, dT DT 5 ‘
where
_dmDrT
_dk DT
T (5.8)
and
e
G==2k 5.9
o (5.9)

HereTDTTW is the dimensionless temperature, 6. It should be noted that the effects of

density and heat capacity as variable properties cancel out in the analytical solution, and
therefore, the viscosity and the thermal conductivity temperature-dependent properties
appear in the analysis.

The governing equations for x-momentum and energy equations can be stated as:

&M (1- GQ)Y'“EE- P o (5.10)



or

1 & | aéTUo 1P
= ey (1- e ey, 5.11
e ] = (5.11)
m_119 |l %TUO
Ul =L V& areqym O, & 12
rcﬂXYﬂY<ekq>ﬂY§ﬂY<eq>ﬂY 6.12)

To facilitate an analytical solution, the governing equations are non-dimensionalized by

using the following non-dimensional parameters and Reynolds number, Re, as:

U Y Y X X P

u=—o y=—ory=— X=—o0r X=— p= 5

U, R I Iy H ru,
_ruzmr” _rUz"H"
Re|pp = F2e|CC =

ref ref

The dimensionless governing equations are analytically solved to obtain Nusselt
number (Nu), as well as the velocity and temperature distributions. The closed form
expressions for Nu corresponding to Newtonian liquid flow characteristics can also
obtained by setting n=1.

The first step is to derive the velocity distribution. With the introduction of Reynolds

number, the non-dimensionalized x-momentum equation becomes:

y1 ﬂg<1 eq)y”“‘ﬂ“ Re P (5.13)

y§ gﬂgg fix

Using the above equation subject to the symmetry condition at the center (via setting the
axial velocity gradient at the center to zero (i.e., 0u/dy ( y=0) =0)) and using Taylor
series with the first order approximation, the following expression can be derived:

1

( _qe) (5.14)

g ﬂx (1+m)

For most practical cases, the viscosity variation number is small compared to unity, i.e.
€ << 1. This allows for a regular asymptotic expansion assumption (for dependent
variables u and 8) in the following form
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u=u, +eu (5.15)

gq=q, +eq,
As a result, Eq. (5.14) takes the following form:

1

T o y 5.16
Ty ﬂy % ‘HX(1+ )‘(1+ ) (619

Splitting the above equation into two equations:

1

flu, _2e Re ‘Hpo“ya (5.17)
By "G I

1

el - & Re ﬂp@ Loy (5.18)

Ty - g(1+m) ﬂXg n

As shown by the experimental observations for molten polymers, polymer solutions
[89,139,140] and pastes [141], an adopted nonlinear slip boundary condition relating the
velocity slip to shear stress can reasonably approximate the slip behavior of several non-

Newtonian fluids, which is in the following form:
ws w (5.19)

where f is slip-friction coefficient (with SI unit Pa®m/s), 1., is the wall shear stress and
G is a power-law exponent.

The dimensionless form of Eq. (5.19) for power law fluids is expressed as:

3%

O
- (5.20)
8'"y oy
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where B is the relative wall slip velocity to mean velocity, Uys/Un, and F is

dimensionless slip-friction coefficient defined as ff G(Um/D)nG :

The quadratic and cubic power-law exponents were reported by Ramamurthy [140] and
Hatzikiriakos and Dealy (relevant to a power-law fluid) [89], respectively, for molten
polymers as well as the linear slip boundary for Newtonian fluids [25] and non-
Newtonian fluids [141].

Another suitable wall boundary condition for non-Newtonian fluids, which is an easy
condition for obtaining an analytical solution, is taking the relative wall slip velocity as
mean velocity, i.e. B. Due to cumbersome nature of non-linear slip boundary condition
for achieving an analytical solution, first the relative wall slip velocity is applied at the
solid boundary. Then the inverse solution is used to obtain corresponding dimensionless
friction coefficient in the non-linear slip boundary equation.

The dimensionless fully developed axial velocity profile, up, under the slip boundary

condition (i.e., U ary=1) =P) is obtained as:

1

u,=b+h(y " - 1) (5.21)
where n is
] _(-1+b)@+2n+mn) (5.22)
1+n

In order to find u, it is required to proceed with 6,. For the constant heat flux case, the
energy equation containing viscous heating term (viscous dissipation term) should be
solved under the no temperature-jump condition, while a constant heat flux is applied at
the walls. In the energy equation, the longitudinal temperature gradient, dT/0X, can be
obtained with the application of the first law of thermodynamics to an elemental control
volume as [12,137]:

mcpﬂﬂx:q"wm‘ ds (5.23)

The above equation can be written as:
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The above equation can be solved by introducing Brinkman number, defined

n+l

asBr = dt;” , and by performing the integral on the right side as:
q
M _q'(A+erd
X D (5.25)
ru.c, E)

where the parameter A is expressed as:

n+l

A=(1+m)%+ Bréf y"dy~ (5.26)
& Ty 5
or
@ n 1+n1+n('.j
A=(1 B T
( +m)§1+ r1+2n+mn}—‘ " | B (5.27)
+n 1+mn+n
AC=Br(L+m r éq ly (5.28)
or
geA(- 2n +2b)n+A(- & +9b - 2hm+3bm)n* &
¢+ Al 6n +10b - 2hm+7bm + bm? n? *
v i _
1*“8' Brh$+1§ (n2 +mn’® +4n° +5mn® + m2n3):
Al= - Br}». Leng [€ n i + (5.29)
n | ¢ (1+2n+mn) (1+4n+mn)(2+5n+mn) -
C =
o =
¢ i
: ;

Brinkman number, Br, is a dimensionless parameter representing viscous dissipation
term. Its positive and negative values refer to wall heating (fluid is being heated) and

wall cooling (fluid is being cooled), respectively.
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Upon using the dimensionless temperature defined asq = =Ty
Dg® 2k

, the energy equation

takes the following dimensionless form:

1 J2,9,0
UyA+e(u,AttuA) = —— —0 =+ Br|—%
( ) y" ﬂygy 'ﬂyﬂ

é ) n Suly (5:30)
éim 1 gi,m 99, 4 yng, T Q4 grer+ ) MMo| T gy (Mo
" yE Ty o Tyl Ty W

[eoxy ey e

or

UyA+e(u,AttuA)=— gy’“ ﬂ%o g+ Brh

TH

n
ym ﬂql +y qo ﬂqO + Br(1+ n)rg.k_j %gy: (5.31)

Ty W o
1
n

0
g 0

0

N 24n l;

- qu0%§+—j yo u
e H

s
" Ty

<

e

D D> D> P> D

D>

Splitting the above equation, the following equations are obtained:

4N 14n
1 'ﬂae ‘ﬂq 0, 1g "
UA=—— =+ Brhcel+ == n (5.32)
Cyn ‘ﬂg Y o }We j g
e(u,At+u,A) =

e
1 T & m ‘M +y"q, ‘IIqO =+ Br(l+n)h

gy Ty gy Ve
€e

g Brq,

Bl

Y & (5.33)

N 14n

h§+li :

e Y e en Y en Y enly enig

These equations must be solved subject to the following boundary conditions

Aty=1 00=0,=0 (5.34)

At y:O %:&:
vy Ty

By substituting uo, the dimensionless temperature distribution 6 is derived as:
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W e zne ) ol m) ,%(y 3
h(L+n)™ , (5.35)
) n n 5 S] 3+% i 19
(1+3n)L+2n+mn) gy p

Accordingly, the dimensionless fully developed axial velocity profile, u;, is obtained as:
_a@h( - b) Ah’n e 0
= - Cy " - 17
ul E 2(n+mn)  (1+3n)1+2n+ mn)éy p
_@hh - b)a+ n)oee el 8
2(n +mn) (1+3n)é 5
.\ Ah?(n+n?) 85§IZ+:”_1
20+ 2n)i+3n)i+ 2n+ mn)§
é u
e (1+3n )L+ 2n +mn) 3
wan LU
(h+n ) aeyf L&
20+ 2n)fL+ an)L+ 2n + mn)§ pi

+ (5.36)

Q-0

1

.

+
>

h(1+n)

Brh

DD D> D D

After substituting up, u;, and 6y into Eq. (5.33) and performing several tedious

manipulations, a long and complex expression is derived for 6, as follows:

1 A 2

2 4 Ea 9 049 5.0
q, =Cy (y : 1)+C52 (y } 1)+C53§y -1z+C,, gy -1z+ Csséy - 1% (5.37)
7] 7] 2
where
140 3
AhngAh _gifn+n) 2
_ h(A%h - b)+ AL+ m+3n+3mn)) n 2
C51 - +
4(1+m)1+3n) 8(L+2n)(1+ 2n +mn)
S 0
¢ Ah - b)gAh _peh@en)” % T (5.38)
¢A%(h - b) n g -
+ GG - -
¢ 4(1+m) 20+m)L+3n)L+2n+mn) =
& 5
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Determined velocities (ug, u;) and temperatures (8o and 6;) are utilized to find the

dimensionless bulk or mean temperature given as:

0/qdS
0O'ds

d, = = é{l"' m)(uoqo +e(ug, + ulqo))ymdy (5.39)

Nusselt number is defined as Nu= _un , Which can be written in terms of the

w™ 'm

dimensionless temperature as:
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In the case of constant properties and no-slip condition, Nusselt number for circular

channel (m=1) can be expressed in the following form as:

NU = 8(1+3n)(L+5n)

B+3n¢ (5.41)

1+12n+31n° + Br(1+3n)(L+5n)¢ :
e n g

Nusselt number is obtained from the following relation for constant properties and slip

condition as:
NU = 4(3+m)(1+2n+mn)(1+4n+mn)(2+5n+mn)
g2 +(17+7mn)n + (32 + 25m +5m*Jn*  ©
(L+2n+mn)c+ b[(— 4- 4m)n+(— 14- 20m- 6m2)n2]f
§+b2(2+4m+2m2)n2 5
1+n
fem] +Br|(1+ b)(L+ 2n+mn)| (- 24(- 7- 3m)n+b(2+2m)n) (5.42)

(— n- (2+m)n® +b(1+ m)nz)

The results of Eq. (5.42) are in excellent agreement with those of Barkhordari and
Etemad [68] in the absence of viscous dissipation (for m=1) and our previous study
[142] (for m=0).

For the variable property case, an explicit expression for Nusselt number cannot be

obtained, and therefore, a numerical calculation was employed to calculate the results.
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5.2 Plug flow

For plug flows, as known, the velocity has a uniform velocity profile [143]. The

longitudinal temperature gradient for plug flows is written as:

M _q'{t+m)
X rUCpB (5.43)

For plug flows, the velocity gradient term vanishe,s and the type of fluid (being
Newtonian or non-Newtonian liquids) is not important. The energy equation in

dimensional form is as follows:

m_1 ‘ITTo
U—-——% 1T+eq)Y ™ 5.44
re X oyr .”Y J(l+eq) o (5.44)

Substituting Eq. (5.43) into Eq. (5.44) along with dimensionalization, the two parts of

the energy equation corresponding to the plug flow are derived as:

1 e, q,0_
y" =1+m 5.45
y™ Ty Ty (Zi (5.45)
m ﬂql 1-[CIO
y +y"q =0 5.46
ﬂyg “y 5 (5.48)

These equations under the implementation of boundary conditions given in Eq. (5.34),
one obtains the solution (6=0y+¢ 8;) as follows:

2
-1
0o =~ (5.47)
2
and
-2yi+41
q =2 8y (5.48)

The mean temperature becomes
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oqdS -5-m+e
= =Al md - k
I =" S gL+ m)a, +eq,)y"dy Gemloan) (5.49)
Nusselt number, Nu=-4/(8,,(1+m)), reads
nu =~ 4B rmis ) (5.50)

1+m)-5-m+e,)

The values of Nusselt number calculated from this expression for circular (m=1) and
Parallel-plates (m=0) channels in the constant property case converges to that of
reported in [143].

5.3 Numerical Simulations

Numerical simulations were performed by using the ANSYS FLUENT 14.0 software at
which the thermal conductivity and the viscosity were taken to be variable with
temperature through integrated User-defined Functions (UDFs). A microchannel of
100x1000 um? (Heightxlength) was modeled (having mesh size 100x500 with double
sided ratio of 1.15) under a constant heat flux of 50000 W/m? and different slip
velocities at the walls, while the Reynolds number was fixed at 10. Water (i.e.
Newtonian fluid with n=1) was considered as the working fluid, whose thermal
conductivity and viscosity expressions exist as a function of temperature in the literature
[138,144] as follows:

247.8

m(T) = 0.00002414" 107-14 (5.51)
el o eT 0
k(T) =0.6065" & 1.48445 + 412292 Coone 1.63866 C—— (5.52)
8o e298ﬂ Q,
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where T has the unit of Kelvin.

It should be noted that water was taken as the working fluid for numerical simulations
since for the power-law fluids (non-Newtonian fluids) it is required to have the
thermophysical properties of the fluids as a function of temperature while there are no
such expressions in literature.

The simulations provide a comparison between the numerical and analytical results,
verifying the analytical results in the case of variable properties as well as constant

properties.

5.4 Results and Discussion

An increase in temperature along the channel during the wall heating process causes
simultaneous variations in both the viscosity and the thermal conductivity. These
property variations lead to a change in the convective heat transfer rate of the fluid flow.
Therefore, this section displays how the temperature dependent properties affect Nusselt
number in the hydrodynamically and thermally fully developed non-Newtonian power-
law fluid flows in circular and parallel-plates microchannels at constant heat flux
thermal boundary condition applied to the walls.

As known, a fluid is considered as shear thinning (or pseudoplastic) if its viscosity
decreases with shear rate, and the corresponding power-law index is less than unity
(n<1) for this type of fluid. Contrarily, shear thickening (or dilatant) fluids show
opposite behavior and have the power-law index higher than 1 (i.e. n>1). In our
previous study [142], the effects of power-law index and slip coefficient on the velocity
profile for parallel- plates microchannels for constant thermophysical properties were
discussed.

Figures 5.2 and 5.3 depict dimensionless velocity distributions of non-Newtonian fluid
cases with n=0.5 and 1.5 for both constant and variable properties (¢=0.1) at different
slip coefficients, B, m=1 and Br=0.01. Unlike the constant property case, Brinkman
number appears in the velocity distribution as well. As expected, an increase in (3
decelerates the velocity core to keep the flow rate constant, which also implies that slip
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velocity becomes more at the walls. In addition, there is a considerable decrease in
values of core velocity, when the properties are considered as temperature-dependent,
which is ascribed to the decreased viscosity, resulting in smaller shear stresses. It can be
also observed that the property variation effect on the velocity profile is more influential
for shear-thinning fluids. For example, for =0, the deviation of the center velocity of
the variable property case from the constant property case is about 5.3% for n=0.5,

while it is nearly 2.7% for n=1.5.
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Fig. 5.2 Dimensionless fully developed velocity profiles of n =0.5for constant and
variable property cases at different slip coefficients, m=1 and Br=0.01

Figure 5.4 compares the numerical (at Re=10) and analytical velocity distributions of
fully developed velocities in the case of constant property and shows an excellent
agreement. The results also match with analytical expressions available in the
literature.

Figure 5.5 presents the deviation of numerical velocity profiles from the analytical ones
for both constant and variable properties. As seen from the figure, for the case of
constant property the deviation is nearly close to zero. The deviations become visible as

the properties are varied with the temperature.
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Fig. 5.3 Dimensionless fully developed velocity profiles of n =1.5for constant and
variable property cases at different slip coefficients, m=1 and Br=0.01
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However, this does not go beyond 0.011, which is acceptable and can be due to the use
of first order perturbation method for analytical solution or the dependency of the
numerical solution to heat flux, since the values of € and I' change with heat flux. The
deviation decreases, as the slip coefficient increases. It is worthwhile to note that the
heat flux in numerical simulation must be applied so that obtained values of € and &
meet the assumption of €<<1. Otherwise, the comparison with the analytical solution

based on the perturbation method (with criterion of € <<1) is not accurate.
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Fig. 5.5 Deviation of numerical from analytical normalized velocity values of n =1 for
constant and variable property cases at different slip coefficients and Br=0

The dimensionless temperature distributions of cases n=0.5 and n=1.5 for different
values of 3 are displayed at e=0 and e=0.1 at m=1, Br=0.01 and '=0.2 in Figures 5.6
and 5.7. Besides the fact that the shear-thickening fluid has higher temperature values
across the channel than those of the shear-thinning one, in particular at core region, it
can be seen that the dimensionless temperature in the core region is suppressed with
either the increase in slip coefficient or inclusion of property variation. Similar to the
velocity trend, the variable property effect on the dimensionless temperature of shear-
thinning fluids is more than that of shear-thickening fluids. But in contrast to the
velocity trend, there is no discontinuity between the temperature of wall and fluid
particle adjacent to the wall (means there is no jump temperature at the walls) as it
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exists in the gaseous slip flow case (see Refs [13,14,143,145,146]). The decreased
temperatures with 3 and € are associated to the decreased velocity at core region
because of the slip effect on the walls and to the property variation, respectively. When
the slip velocity exists near wall, the fluid motion at that region takes contributes more
to convection, and less heat is transferred into the core region, leading to smaller
temperature values at the centerline. For the property variation case, the thermal
conductivity and viscosity, which have no longer a constant profile, change in
accordance to the temperature profile. These changes in the properties as well as
affected velocity distributions have an interplay in the generation of the temperature
profile such that the temperatures become smaller compared to the constant property
case, especially at the core region. Further numerical investigation for water discloses
that the dimensionless temperature at the center is decreased by either implementing

temperature-dependent properties individually or both properties together.
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Fig. 5.6 Dimensionless fully developed temperature profiles of n =0.5for constant and
variable property cases at different slip coefficients, m=1, '=0.2 and Br=0.01
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Fig. 5.7 Dimensionless fully developed temperature profiles of n =1.5for constant and
variable property cases at different slip coefficients, m=1, '=0.2 and Br=0.01

Table 5.1 provides the values of Nusselt number for different slip coefficients at
constant and variable properties along with the calculated € and " by Egs. (7-9). The
percentage errors between the computational and numerical results are in the range of
0.08-0.56%, which indicates an excellent agreement.

Figures 5.8 and 5.9 illustrate Nusselt number as a function of the power-law index for
various slip coefficients in the cases of constant (¢€=0) and variable properties (¢=0.1) at
Br=0 for m=0 (parallel-plates channel) and m=1 (circular channel). As can be observed,
there is a sharp decrease in Nusselt number with the power-law index for shear thinning
fluids. However, the decreasing trend becomes smaller for shear thickening fluids
(n>1). The results indicate that an increase in the slip coefficient at the wall enhances
heat transfer, as the slip velocity intensifies the fluid motion near the wall leading to
enhanced advection effects. The difference between mean and wall temperatures due to
inclusion of the wall slip condition reduces, which results in an increase in Nusselt
number. It can be further seen that the consideration of temperature-dependency for
properties increases the values of Nusselt number, which is mostly effective for the

lower power-law index (i.e. shear-thinning fluid) and is the consequence of the same
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trend in the velocity and temperature distributions. This suggests that if the property
variation with temperature is neglected the heat transfer rate will be underestimated.
The deviation can be as much as 8.8% (for f=0 and n=0.2) and 1.4% (for =0 and n=2)
in the case of m=0, while it can be as much as 12.2% (for =0 and n=0.2) and 2.2% (for
B=0 and n=2) in the case of m=1. For the slip flow case, the percentages become a bit
lower.

Additionally, compared to shear-thickening fluids, Nusselt number is less sensitive to
the slip coefficient at the lower power-law index (shear-thinning fluids) for the variable
properties case. For example, Nusselt number for m=1 is increased nearly for 4.4%
when 3 goes from 0 to 0.2 for n=0.2, whereas it becomes about 12.3% for n=2.

Table 5.1 The analytical and computational values of Nusselt number
for constant and variable properties at different § for Br =0 and n=1

0.1 0.2 0.3
Cv
€=0.037 | €=0.0365 | £=0.0353 | €=0.0341
by EQs.
M'=0.1369 | '=0.1368 | '=0.1366 | =0.1364
(7-9)
Computional values of Nu
CP 8.248 8.551 8.870 9.205
Ccv 8.284 8.585 8.901 9.234
Analytical values of Nu
CP 8.235 8.533 8.846 9.174
Ccv 8.331 8.621 8.923 9.241
The error percentage (%) of numeric from analytic results
CP 0.16 0.21 0.27 0.34
Ccv 0.56 0.42 0.25 0.08
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Fig. 5.8 Nusselt number as a function of n for different values of B at constant (at €=0)
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Fig. 5.9 Nusselt number as a function of n for different values of 8 at constant (at €=0)
and variable property (at €=0.1) cases for m=1, Br=0 and '=0.2
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Figures 5.10 and 5.11 exhibit Nusselt number as a function of the power-law index for
different Brinkman number at =0 for m=0 and m=L1 in the cases of constant (¢=0) and
variable properties (¢=0.1). The variation trend is similar to those of Figures 8 and 9
with the difference that an increase in Brinkman number causes a decrease in Nusselt
number since the Brinkman number, as a representative of viscous heating and
contributing to the internal heating of the fluid, increases the dimensionless mean

temperature, which leads to the decrease in Nusselt number.
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Fig. 5.10 Nusselt number as a function of n for different values of Br at constant (at
€=0) and variable property (at €=0.1) cases for m=0, =0 and '=0.2

Figure 5.12 shows how Nusselt number varies with the slip coefficient at different
values of ¢ for n=1, m=1, Br=0.01 and '=0.2. It can be observe that larger € would
result in higher Nusselt number, particularly for lower slip coefficients. This implies
that the heat transfer rate corresponding to the constant property case deviates more
from the temperature dependent case, when the rate of change in thermal conductivity
and viscosity with temperature increases. In addition, the slip coefficient has an

enhancing effect on Nusselt number, as mentioned earlier.
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Fig. 5.11 Nusselt number as a function of n for different values of Br at constant (at
€=0) and variable property (at €=0.1) cases for m=1, § =0 and '=0.2
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Figures 5.13 and 5.14 display Nusselt number as a function of the power-law-index
(B=0.1) and slip coefficient (n=1) for different values of I" at Br=0.01, £¢=0.1 and m=1.
As seen from these figures heat transfer decreases with the increase in the power-law
index and increases with the slip coefficient. One can observe that convective heat
transfer (Nusselt number) decreases with the ratio of change in thermal conductivity
with temperature to that of viscosity. Taking € equal to g (i.e. '=1) is a poor
assumption in both physical and mathematical aspects. However, its effect on the heat
transfer rate for single-phase fluid flows studied here is not highly remarkable. For
example, the value of Nusselt number changes for an amount of maximum 2.3%, when
I varies from 0.2 to 1, which means that even if this ratio is unknown for a liquid,
whose viscosity complies with the power-law fluid, it is acceptable to take any value in
the range 0.2< I <1, while the deviation from the exact value will not exceed 2.3%.
Since the heat transfer behavior associated with the parallel-plates case (m=0) is very
similar to the circular channel case (m=1), the results are not included here to avoid

repetition.
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Fig. 5.13 Nusselt number as a function of n for different values of I at m=1, $=0.1,
Br=0.01 and €=0.1
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Fig. 5.14 Nusselt number as a function of (3 for different values of I at m=1, n=1,
Br=0.01 and €=0.1

As mentioned earlier, the dimensionless non-linear slip boundary condition is
B=F(Au/dy)"®, and accordingly, the dimensionless friction coefficient, F, for power-law

fluids is expressed as:

F = b nG
é1- b)L+2n+mn)u (5.53)

s

8 n H

which is tabulated in Table 5.2. In the case of n=1 and G=1, the values of F correspond
to the dimensionless slip length pertinent to Newtonian liquids defined as the ratio of

slip length to hydraulic diameter.
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Table 5.2 The slip-friction coefficient values at different n for circular channel (m=1)

0.2 | 0.0333 0.0674 0.138 0.2126 0.0222 0.0454 0.0952 0.1506 0.0148 0.0306 0.0657 0.1067

0.4 0.0258 0.0527 0.1106 0.175 0.0133 0.0278 0.0611 0.102 0.0069 0.0147 0.0338 0.0595

0.6 | 0.0205 0.0423 0.0907 0.1475 0.0084 0.0179 0.0412 0.0725 0.0034 0.0076 0.0187 0.0356

0.8 | 0.0164 0.0342 0.0751 0.1254 0.0054 0.0117 0.0282 0.0524 0.0018 0.004 0.0106 0.0219

1 0.0132 0.0278 0.0625 0.1071 0.0035 0.0077 0.0195 0.0383 0.00091 0.0021 0.0061 0.0137

1.2 | 0.0106 0.0226 0.0521 0.0918 0.0022 0.0051 0.0136 0.0281 0.00048 0.0012 0.0035 0.0086

1.4 0.0086 0.0185 0.0435 0.0787 0.0015 0.0034 0.0095 0.0207 0.00025 0.00063 0.0021 0.0054

1.6 | 0.0069 0.0151 0.0364 | 0.0676 0.001 0.0023 0.0066 0.0152 0.00013 0.00034 0.0012 0.0034

1.8 0.0056 0.0123 0.0305 0.0581 0.00063 0.0015 0.0046 0.0113 0.00007 0.00019 0.00071 0.0022

2 0.0045 0.0101 0.0255 0.05 0.00041 0.00102 0.0033 0.0083 0.000037 0.0001 0.00042 0.0014

The wall shear stress is independent of temperature, i.e. independent of ¢, and
dimensionless slip-friction coefficient, F, is not a function of temperature. However, the
experimental observations of Hatzikiriakos and Dealy [89] revealed that the slip-friction
coefficient, F, changes with temperature, while G is practically independent of it.

Figure 5.15 displays Nusselt number for plug flow in the case of the temperature-
dependent case for both circular and parallel-plates channels. As can be observed, the
values of Nusselt number for the constant property case are constant (8 and 12 for
circular channels and parallel-plates channels, respectively), similar to [143]. The
temperature profile remains the same for both geometries, nevertheless, the values of
Nusselt number are different. For plug flow, the viscosity variation does not play any
role in heat transfer since the velocity gradient is zero in this case. On the other hand,
the thermal conductivity variation with temperature comes into play. The results reveal
that neglecting this variation would lead to an underestimation in heat transfer.
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Fig. 5.15 Nusselt number of plug flow as a function of g for circular (m=1) and
parallel-plates (m=0) channels for constant and variable property cases

5.5 Conclusion

Convective heat transfer of hydrodynamically and thermally fully developed non-
Newtonian power-law fluid flows inside parallel-plates and circular microchannels was
analytically and numerically investigated under constant isoflux thermal condition,
while the viscous heating, the wall slip condition and the thermophysical properties
were taken into account as a function of temperature. Aside from the numerical
simulations performed with the ANSYS FLUENT software, the expressions of velocity
and temperature profiles and the constant property Nusselt number as a funcion of
governing parameters were derived from governing equations, and variable property
Nusselt numbers were obtained with numerical calculations.

For power-law fluids, it was found that regardless of temperature-dependent properties,

Nusselt number has a decreasing trend with both the power-law index and Brinkman
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number, where the Brinkman number effect becomes stronger for shear thickening
fluids (i.e. higher power-law index). Nusselt number is underestimated by either
neglecting slip condition or dependency of thermophysical properties on temperature,
which is more pronounced for shear-thinning fluids. For plug flows, temperature

dependent thermal conductivity significantly affects convective heat transfer.
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CAPTER 6

NUCLEATE POOL BOILING OF POLYMERIC SOLUTIONS

6.1 Experimental Setup and Procedure

The schematic of the experimental setup is displayed in Fig. 6.1. The setup consists of
different components such as Plexiglass block, Aluminium heater plate, holder plates,
cartridge heaters, thermocouples, gasket sealers and a reflux condenser. The rectangular
Plexiglass block has a dimension of 50x50x50 mm?® with a thickness of 6 mm. The
heater plate with dimensions of 62x62x25 mm® has four holes for inserting the cartridge
heaters covering the whole heating surface region 18 mm below the surface. It also has
three holes for thermocouples located about 0.8 mm below the surface. The cartridge
heaters are press-fitted into cylindrical holes, while high quality conductive grease is
utilized to fill the air gap between the cartridge heaters and inner areas of the holes. The
holder plates are used to sandwich the Plexiglass block and the heater plate together.
The upper plate has three holes, which are used for the connection with the condenser,
introducing working fluid, and inserting a T-type thermocouple to measure the bulk
fluid temperature. Plastic gasket sealing elements, which are resistant to high
temperatures, are used between Plexiglass block edges and the plates (both heater and
cap plates) to prevent any leakage as well as between the heater and holder plates to

prevent heat dissipation. The reflux condenser is composed of concentric glass tubes of
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22 mm and 40 mm (inner and outer diameters) of a length of 40 cm. The gap between
the outer and inner tubes is filled with water to condense the vapor escaping through the

inner tube, which is open to atmosphere to maintain the tests at atmospheric pressure.

=== waterm

T-type thermocouple
\ === Water out

. 0 Refhux condenser
I 1| : " JI ; I = TOP plate
Plexiglass vessel >
: - ——
Sealing stuff 0 0 O Thermocouple
Heater plate > O { :. O .: ju & Cartridge heater

e _______________-]
u U |<— Bottom plate

Fig. 6.1 Schematic of the experimental set-up

The mass of liquid were measured before and after of rests were measured to check for
the change in the liquid amount. It was found that the mass of liquid remains nearly the
same, which indicates effective operation of the reflux condenser. The cartridge heaters
were connected to a power supply with high-precision digital multimeters, and voltage
and current could be tuned and recorded. The power and bulk and surface temperatures
were recorded under steady state conditions. Every liquid sample tested for several

times to make sure the repeatability, and the averaged values were taken into
consideration.
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6.2 Data Reduction and Uncertainties

The net heat flux value of power input was calculated as:
VI - Q
@Z loss 61
qe=—— == (6.1)

where A is the heated surface area. To account for heat losses, natural convection
analysis was done for surrounding areas of the heater, which are in contact with
ambient. After the assessment of heat losses, the net power was deduced. The heat
losses were between 2.5-5% relative the electrical power.

The boiling heat transfer coefficient, h, was then found as:

___ Q¢
"= (Ts _Tsat) (62)

where Ts is the surface temperature and Ty Is the saturation temperature of the fluid.
The surface temperatures were obtained by considering thermal contact resistance from
the thermocouple to the surface R, and the average of the thermocouple measurements
T, as:

Ts=Tn—-9"Rc (6.3)

The wall superheat, AT, is defined as the difference of saturation temperature, T,
and the average surface temperature, T..

The uncertainties in the measured values given in Table 6.1 were taken from the
manufacturer’s specification sheet, while the propagation of error method [147] was
used to calculate the uncertainties in the derived parameters as seen in the Table 1.
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Table 6.1 Uncertainty in experimental parameters

Uncertainty Parameter Error %
AT superheat 0.27

q" 1.1

h 2.7

6.3 Material Preparation and Property Measurements

Aqueous polymeric solutions were prepared by adding Xanthan gum E415 powder in
small amounts, which was measured by an electronic high precision weighing scale,
into deionized water with different concentrations (100, 500, 1000, 4000 and 6000
mg/L). To achieve the desirable solutions in terms of homogeneity, each sample was
treated in a pool of silicon while keeping the temperature at 55 C, and magnetically
stirring at 1000 rpm was performed for several hours.

In order to measure the contact angle and equilibrium surface tension (or equilibrium
gas-liquid interfacial tension) of the polymeric solutions, Theta Lite Optical
Tensiometer TL100 device was employed. The device contains a USB2 digital camera
(160 frames/sec max) or a FireWire video camera (60 frames/sec), an adjustable sample
stage and a LED light source. Each of prepared aqueous solutions was examined to find
equilibrium surface tension and contact angle, which were used to explain the
experimental results. For visualization studies, a camera having a digital resolution of
3264x2448 pixels was utilized at 240 frames/sec to capture images during boiling
process.

Raman is one of the vibrational spectroscopy techniques, in particular used for
determining fine alterations in the chemical structures of materials owing to its abilities
of providing spectral information with high lateral resolution. Raman can identify
substances from characteristic spectral patterns (fingerprints), as each chemical bonding
in the sample, which has Raman mode, gives a characteristic band in the spectrum. In
this study, Raman spectroscopy enabled tracking the changes in the chemical stability of

aqueous Xanthan gum solutions with different solid contents, before and after
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performing heat transfer experiments. For the measurements, a Raman Renishaw InVia
Microscope and Spectroscope with 532 nm green laser, 2400 lines/mm and 50x

objective were used.

6.4 Results and Discussion

Non-Newtonian fluids are prepared by adding polymeric additives or surfactants to a
base fluid (e.g. water). As a result, viscosity of the fluid becomes shear-dependent, and
interfacial fluid properties such as dynamic and equilibrium surface tension and contact
angle change. The variation in liquid properties such as surface tension, rheology (i.e.
viscosity) and wettability (related to contact angle) strongly affect bubble dynamics and
nucleation. For polymeric solutions, the surface wettability is influential in controlling
the nucleation sites, and bubble dynamics is dominated by the variations in the
equilibrium and dynamic surface tension and shear rate-dependent viscosity [122,148—
150].

The viscosities of polymeric solutions compared to the solvent (i.e. water) are shear
rate-dependent behavior, which show non-Newtonian behavior. Figure 6.2 exhibits the
variations of the viscosity as a function of shear rate at different concentrations. As
seen, the viscosity of the solution decreases with shear rate and converges to infinite

shear viscosity, which is represented by Carreau model [151] as

o) L2

0_ ] 6.4
My o7 m, +(m mnf)§1+§fg (6.4)

where Lo is zero shear rate viscosity, Wins iS infinite shear rate viscosity, A relaxation
time and n is power index. The viscosities of the solutions are higher than that of the
solvent, and the increase in concentration results in higher the viscosities.

Figure 6.3 and 6.4 display the equilibrium liquid-vapor interfacial tension and contact
angle. It can be observed that the equilibrium surface tension decreases with the

addition of polymeric additives into solvent and the increase in concentration, which

88



was also reported in the literature [118,122,148]. Surface tension values are close to that
of water at low concentrations, whereas surface tension dramatically drops beyond
concentrations higher than 1000 mg/L. Contrarily, the contact angle exhibits an
increasing trend from 44.9° (for pure water) up to around 74.4°for the solution with
concentration of 1000 mg/L. Beyond this concentration, contact angle remains almost
constant. From this trend, it is clear that the wettability is less of prepared polymeric

solutions than that of water.
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Fig. 6.2 The viscosity as a function of shear rate for Xanthan gum solutions with
different concentrations
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Fig. 6.3 The equilibrium surface tension as a function of solution concentration
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Fig. 6.4 The contact angle as a function of solution concentration

The initial boiling heat transfer tests were done with distilled water to provide validation
for the experimental setup via comparisons with available nucleate pool boiling
correlations, such as Rohsenow [152], Mostinski [153], and Gorenflo [154]. The
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experimental data corresponding to pure water offer a base for comparison with boiling

heat transfer performance of prepared polymeric solutions. Fig. 6.5 displays the data of
pure water as a function of wall superheat along with the predictions of widely used

Rohsenow [152], Mostinski [153], and Gorenflo [154] correlations. As seen, the results
are in good agreement with predictions of Mostinski and Gorenflo correlations. At

lower heat flux, Gorenflo correlation’s prediction is better, while Mostinski correlation

provides a better prediction for high heat flux.
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Fig. 6.5 Boiling curve of pure water data along with the predictions
of correlations

Boiling curves for Xanthan gum polymeric solutions are shown in Fig. 6.6 at different
concentrations along with that of water. As can be seen, the boiling curve shifts to the
right hand side with the increase in concentration, which indicates deterioration in the
heat transfer performance. The properties of working fluid change when the polymeric
additives are introduced, which is reflected in its heat transfer performance relative to
the pure fluid. For a fixed heat flux, as the concentration of the solution increases up to
500 mg/L, the wall superheat increase rises up to 27%. When the concentration is raised
from 500 to 1000 mg/L, there is an only slight change in the wall superheat. However,
for high concentrations (i.e. 4000 and 6000 mg/L), a different trend is apparent. For this
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case, a nearly linear relationship with a relatively small slope exists between heat flux
and wall superheat, implying a large rise in wall superheat with a moderate increase in
heat flux. In contrast, the boiling curves corresponding to water and polymeric solutions
with ¢<1000 mg/L are steep, in particular at the upper range of the heat fluxes. The
change in heat flux different aqueous polymeric solutions is accompanied with different
wall superheats. For instance, as the heat flux is changed about from 70 to114 kW/m?,
the wall superheat increase is 34.5 % for the solution with a concentration of 100 mg/L,

while it is about 177.5 % for the solution with a concentration of 6000 mg/L.
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Fig. 6.6 Boiling curves Xanthan gum polymeric solutions
at different concentrations

Boiling heat transfer coefficients of the polymeric solutions with different
concentrations are depicted in Fig. 6.7. The variation of the heat transfer coefficients
(defined as h=q"/ATsy) as a function of the heat flux, presented in the figure, illustrates
that HTC increases with heat flux except for the solution with concentrations of 4000
and 6000 mg/L, for which a monotonically decreasing trend in the heat transfer
coefficient with the heat flux is present. Furthermore, the heat transfer deteriorates with
the increase in concentration until a specific value of c=500 mg/L. Worsening in boiling

heat transfer was already reported in the previous studies such as the study of Zhang
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and Manglik [122] on Carbopol solutions, the study of Wang and Hartnett [124] and the
study of Paul and Abdel-Khalik [127], who considered on aqueous polyacrylamide
solutions. A further increase in concentration (by up to 1000 mg/L) does not result in
any significant change in heat transfer performance. However, a different trend is
observed for highly viscous aqueous Xanthan gum solutions with high concentrations
(e.g. 4000 and 6000 mg/L). In the study of Bakhru and Lienhard [155] on the boiling
heat transfer of water and four organic liquids on small horizontal wires, patchy boiling
to full blanketing (film boiling) patterns were recorded for most of the experimental
data, and the slope of boiling curve was small at high wall superheats. A similar trend
exists for the concentration of 4000 and 6000 mg/L in this study, at lower wall
superheats. This could be due to bubble crowding, which occurs just after the onset of
nucleate boiling. As a result, the nucleate region for these concentrations is rather short,
and a shift to patchy boiling pattern occurs. Suppression of micro-convection within the
boundary layer as a consequence of high viscosities at high concentrations could be
another reason [122]. The concentration of polymeric solutions might be higher than
that of the critical polymer concentration or overlap concentration. As known, as
concentration of a polymeric solution goes beyond these concentrations, polymer chains
agglomerate and coil entanglements would eventually start forming in solution so that a

transition happens from dilute to semi dilute regime [156].
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Fig. 6.7 Heat transfer coefficient of Xanthan gum solutions
at different concentrations
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Fig. 6.8 exhibits the decrease in heat transfer coefficient in prepared solutions relative to
the case of pure water at different concentrations. The dependence profiles on heat flux
and thus the relative decrease in heat transfer coefficient remains almost the same for
concentrations less than 4000 mg/L. Even though smaller surface tension and larger
contact angle promote emergence of smaller and more bubbles from the surface, the
effect of increasing viscosity (with concentration) plays an important role. This effect
suppresses bulk fluid motion during nucleation and relative motion of emerging bubbles
thereby limiting convective heat transfer. For the solutions with concentrations of 4000
and 6000 mg/L, the profiles are monotonically decreasing, and the deterioration in heat

transfer reaches more than 65%.
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Fig. 6.8 The variation in the heat transfer coefficient deterioration for the Xanthan gum
solutions of different concentrations versus heat flux

Pool boiling heat transfer performance is dependent on the bubble formation, bubble
distribution on the surface and bubble dynamics (shape, size, frequency, coalescence).
Ebullient activity of the polymeric solutions assists shedding light to boiling
characteristics. To have more insight to pool boiling of the polymeric solutions, images
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of pool boiling are recorded for different concentrations at heat fluxes of 46.5, 55.7,
70.1, 106.5 kW/m? (Fig. 6.9).

As can be seen from the images, patterns pertinent to the solutions are clearly different
from those of water. This is attributed to the change in the rheological and interfacial
properties of the polymeric solutions, whose concentration is a significant parameter.
From the images of pool boiling of water, it can be seen that few nucleation sites
(isolated bubbles) exist at low heat flux. With the increase in heat flux, more bubbles
form on the surface. At higher heat fluxes, bubbles emerging from the surface coalesce
and generate slugs, mushroom shapes and columns. All these patterns are consistent
with the literature on pool boiling of water [157]. On the contrary, images of polymeric
solutions show different features. Due to smaller surface tension and larger contact
angle, the size of emerging bubbles becomes smaller with concentration, and more
bubbles are generated on the surface. It is also a result of molecular physisorption (or
adsorption of macromolecules) of the polymeric solutions on the heating surface
[122,128]. The higher heat fluxes, more bubbles form on the surfaces similar to the case
of water. However, the bubbles do not show much tendency to coalesce. Their shapes
are more regular, and bubble crowding on the surface is visible for high concentrations,
which makes liquid replenishment to the surface more difficult. This effect is further
amplified with higher viscosities at high concentrations so that bulk fluid motion and
relative bubble motion are hindered. As a result, dry spots on the surface start to form
even at small wall heat fluxes for high concentrations, which lead to a decreasing trend
in heat transfer coefficient with heat flux.

Two different heat transfer coefficient correlations for low (c<1000mg/L) and high
concentrations (c=4000mg/L) are developed using the Least Squares Method [158] to

represent the experimental data:

h=23.21q¢° exp(- 5.28" 10°°¢) for c<1000mg/L (6.5)
h=156"10°q¢*®exp(- 123 10*c)  for c24000mg/L

The units of g” and ¢ in these correlations are W/m? and mg/L, respectively. Both of
them are based on a typical nucleate boiling heat transfer correlation (h~q""). The
exponential function for the concentration accounts for the asymptotic behavior at low

concentrations and successfully captures the trends in the experimental data.
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Fig. 6.9 Images of pool boiling over heated plate for pure water and Xanthan gum
solutions at different concentrations and heat fluxes

The heat transfer correlations provide an excellent prediction of the experimental data as
shown in Fig. 10, and the resulting Mean Absolute Errors (MAE) for experimental data
corresponding to the data of low (c<1000mg/L) and high concentrations (c=4000mg/L)
are 2.7% and 3%, respectively.

Raman spectra allowed for tracking the alterations in the chemical stability of aqueous
Xanthan gum solutions with different solid contents, before and after performing heat
transfer experiments (Figs. 11a-d). Raman band observed around 2330 cm™ can be
attributed to hydrated hydronium (H3O+) cluster ions, which is due to aqueous solution.
Hydronium is the hydrogen ion bonded to a molecule of water, the form in which
hydrogen ions are found in aqueous solution. As the intensity of this band decreases in
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the solution after heating experiments, it can be suggested that the amount of water
decreased due to evaporation of water.
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Fig. 6.10 The comparison between the experimental data and predictions of the
proposed correlations

Another band observed for the samples before heating experiments is at 1557 cm™
which is correlated to v(C=0 )bonding in glucose, since one of the main
monosaccharides present in Xanthan gum is beta-D-glucose. The decrease in the
intensity of this band after heat transfer experiments might be explained by the partial
chemical decomposition of the polymeric material in the solution. Also, the band at
1080 cm™ belonging to C-O stretching mode v(C-O) vibrations in glucose loses
intensity after heating due to partial chemical decomposition of Xanthan gum. As the
concentration of the solution becomes more, the chemical stability of the suspension
increases with its viscosity. Hence, it can be tracked from the Raman spectra that of the
solution with the highest concentration after heat transfer experiments, the
corresponding bands lose less intensity than the others. This is also in good correlation
with other measurements when the behavior of samples with a concentration of 4000
mg/L is considered.
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6.5 Conclusion

The different amounts of Xanthan gum were dissolved into deionized water to produce
the polymeric solutions. The measurements of the viscosity, contact angle and
equilibrium surface tension showed that the rheology and the interfacial properties of
the solution would differ from the solvent, affecting on the formation of the behavior of
bubbles in terms of their size, number and shape. The stability of the solutions was also
examined by doing RAMAN tests. The nucleate boiling heat transfer performance of
polymeric solutions over a flat plate was experimentally investigated to give more
insight how effective they are for cooling application. The major conclusions from
measurements, experimental results, and photographs can be summarized as follows
The viscosity corresponding to the solutions displays a shear rate-dependency
for which the larger values are related to higher concentrations. The
measurements illustrate that the contact angle increases with concentration up to
1000 mg/L and after it, the contact angle remain nearly constant. The
equilibrium surface tension remains roughly constant until 1000 mg/L and
thereafter it starts decreasing.
The addition of Xanthan gum powder into DI water generally deteriorates the
performance of the heat transfer. The increment of concentration first reduces
the heat transfer coefficient up to the solution with the concentration of 500
mg/L. A more increase in concentration by up to 1000 mg/L does not further
degrade the HTC. At high concentrations (4000 and 6000 mg/L), it was realized
that the heat transfer coefficient was decreased with heat flux, which was in
opposite trend of those in pure water and other lower concentrations.
The photographic images demonstrates that as compared to solvent (i.e. water)
the number of bubbles increases while they are in more regular shaped with

smaller sizes and in less tendency to coalescence.
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7. FUTURE WORK AND CONTRIBUTIONS

In this thesis, the non-Newtonian fluids flow and heat transfer characteristics were
investigated. Non-Newtonian fluids constitute a prominent research area in engineering
science and relevant subjects. In order to assess the heat transfer performance of non-
Newtonian fluids, it is essential to consider them in different aspects such as analytical,
numerical and experimental approaches. In this regard, heat transfer to non-Newtonian
fluids was studied both experimentally and analytically.

In pool boiling experiments, polymeric solutions as a subcategory of them, which were
prepared from dissolution of Xanthan gum powder at different amounts into de-ionized
water, were examined in terms of their heat transfer performance. It was found that the
type of liquid has a profound role in convective heat transfer. In the future, different
types of fluids will be studied for improvement of heat transfer performance. Moreover,
a second law analysis on pool boiling of such fluids will be performed. Thus, a
connection between analytical and experimental approaches will be made, and design
guidelines for thermal-fluid systems involving non-Newtonian fluids will be proposed.
In an analytical point of view, internal flows of non-Newtonian fluids in both micro-and
macro scale were investigated, where the power-law model was taken into consideration
due to its viability and simplicity. The effects of slip, viscous dissipation and
temperature-dependent thermophysical properties were included, and some closed form
expressions were obtained for velocity, temperature, Nusselt number and entropy
generation rate. In future, the heat transfer performance of polymeric solutions in
microchannels will be assessed both analytically and experimentally under single-phase
and two-phase conditions in order to provide more understanding in convective heat

transfer of non-Newtonian fluid flows.
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