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ABSTRACT

SECURE MULTIMEDIA COMMUNICATION

IN SMART DEVICES

REINFORCED BY USING ONE-TIME KEYS

ÖMER MERT CANDAN

M.Sc. Thesis, July 2017

Supervisor: Prof. Albert Levi

Co-supervisor: Asst. Prof. Cengiz Toğay

Keywords: one-time key, multimedia communication, smart card, hash chain, security

Recently, smart devices have become more and more prevalent in the daily life. The

spread of these devices introduced various use cases; however, communication has al-

ways been their primary functionality. With the development of WebRTC (Web Real-

Time Communication) and the availability of this technology on smart devices, applica-

tions offering real-time multimedia communication features will become more pervasive.

Though WebRTC presents a promising set of standards and interfaces for the task of car-

rying data from one end to another, there are security issues that are left in the hands of

the application developers. In this thesis, we aim to achieve secure multimedia commu-

nication by tackling the key generation and distribution issue of WebRTC platform using

a smart card for secure storage and operations. We tested different cryptographic algo-

rithms on smart cards, and resultantly we designed a mechanism based on hash chains.
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This mechanism allowed synchronous generation of keys at both sides. The mechanism

was implemented and tested on different brands of Java Cards. The results of the tests

indicate that it is possible to produce a key under one-second time. In addition, the re-

sults were analyzed to optimize generation times of particular keys by adjusting chain

length parameter of the mechanism. Consequently, the key generation method was inte-

grated into Media Security Platform of Netaş Telecommunications A.Ş., which is based

on WebRTC. The integration was performed under the guidance of a signaling scheme

drafted for the message traffic for the key agreement. In conclusion, the successful in-

tegration and better results indicate an improvement over a previously used public key

system.
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ÖZET

Akıllı Cihazlarda Tek Kullanımlık Anahatar

ile Güçlendirilmiş

Güvenli Çoklu Ortam İletişimi

ÖMER MERT CANDAN

Master Tezi, Temmuz 2017

Danışman: Prof. Dr. Albert Levi

Eş-danışman: Asst. Cengiz Toğay

Anahtar Sözcükler: tek kullanımlık anahatar, multimedya iletişim, akıllı kart, özet

zinciri, güvenlik

Son yıllarda akıllı cihazlar günlük hayatta önemli bir yer edindi. Bu cihazların yaygınlaşması,

onlara birçok yeni işlev kazandırmakla beraber, yine de temel amaçları iletişim olarak

kaldı. WebRTC (İnternet Tabanlı Gerçek Zamanlı İletişim) teknolojisinin ortaya çıkması

ve akıllı cihazlarda kullanılabilir olması, gerçek zamanlı multimedya iletişimine olanak

veren uygulamaların artmasına neden olacaktır. WebRTC’nin amacı uçtan uca bilgi taşınması

için standartlar ve programcı arayüzleri belirlemek olsa da, işin güvenlik kısmı uygu-

lama geliştiricilere bırakılmıştır. Bu tezde, akıllı kartların sağladığı güvenli depolama

ve işlem özelliklerinin yardımı ile, WebRTC için güvenli anahtar üretilmesi ve dağıtımı

sorunları ele alınarak güvenli çoklu ortam iletişimi kurulumu hedeflenmektedir. Değişik

kriptografik algoritmalar akıllı kartlar üzerinde denenmiş ve sonuç olarak özet zinciri
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üzerine bir yöntem kullanılmasina karar verilmiştir. Tasarlanan mekanizma değişik marka

Java kartlar üzerinde calıştırılmış ve testlerin sonucları 1 saniyenin altında bir sürede

anahtar üretiminin mümkün olduğunu göstermiştir. Buna ek olarak, özet zinciri uzunluğu

değiştirilerek çeşitli analizler yapılmış ve bunun sonucunda hedeflenen bir anahtarın mümkün

olan en iyi sürede üretilebilmesi için gerekli olan zincir uzunlukları hesaplanmıştır. De-

vamında, anahtar üretim mekanizmasının WebRTC teknolojisine dayanan Medya Güvenlik

Platformu ile entegrasyonuna yer verilmiştir. Mekanizmanın sisteme uyumu için tasar-

lanan sinyalleşme trafiği göz önüne alınarak, entegrasyon başarı ile tamamlanmıştır. Sonuçlar,

daha önce kullanılan açık anahtarlı sisteme göre daha iyi performans alındığına işaret et-

mektedir.
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Chapter 1

Introduction

The technology of mobile devices has shown a great deal of improvement over the

past decade. While this fast paced trend continued, the devices became more powerful

and smaller in size. The transformation from brick-like phones to pocket sized phones,

from room-sized computers to handheld tablets led these devices invade daily life. All

the mobile devices, ranging from a smart watch to a portable personal computer have one

aspect in common, that is Internet connectivity. The major demand of Internet access

provoked the rapid development of the infrastructure of Internet as well as the services

that rely on it. One of these services, namely WebRTC (Web Real-Time Communication),

aims to allow audio and video communication over the Internet [23]. Since the Internet

is publicly accessible and therefore insecure, WebRTC is designed to provide security by

end-to-end encryption. What WebRTC does not provide is a standard for generation and

distribution of the keys required for the security of the communication.

Media Security Platform (MSP) developed by Netaş Telecommunication A.Ş., tack-

les the problem of key generation for multimedia communication in WebRTC environ-

ment. The platform utilizes a public key cryptography based setting, each participating

user having a public/private key pair. The mobile environment is not the ideal place to

store private keys [20]; therefore they are stored in smart cards which also provide secure

cryptographic functions. In the existing MSP of Netaş, before establishing a secure com-

munication channel, parties generate a session key and encrypt it with the public key of
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the other party. The encrypted key is sent after being signed with the sender’s private key.

Four modular exponentiation operations are needed in this setup, two of them performed

in the smart card environment, which slows the initiation process before call. Our main

purpose is to devise a mechanism that will shorten the time required by the initial signal-

ing process. The proposed scheme will allow remote users to create a unique and common

key in a secure and an efficient way. To eliminate the cost of communication spent for

key exchange, we came up with a structure based on the idea of hash chains. The users

will create their keys by applying hash functions in a chain-wise manner to some initial

data. Since this is a deterministic process, applying hash chain on the same data would

yield the same result for different users. In order to generate the same key at both ends,

both parties need to share a secret information beforehand. The security of the protocol

we design depends solely on the shared secret, namely the “seed”. Therefore, the seeds

will be stored inside smart cards and any computations on them will also be performed in

the card. The whole key generation operation begins and ends inside the card, only the

result is visible at the end of the operation. This way, the seeds or the intermediate values

generated from the seeds never leave the card. The possible security threats existing in

the mobile environment are circumvented with this approach.

We have set out to design a new key generation system that produces one-time keys

in a type of smart card called Java Card. Java Cards provide secure storage and atomic

transactions on a Java-based environment [3]. The product of our design had to meet strict

security requirements. One of these requirements was the security of the future and past

keys generated by the users of the platform. We had to keep in mind that, in the event of

a key compromise, none of the past keys should be revealed. In addition, when a key is

captured, our mechanism must keep on producing consequent keys not guessable by any

means. The other requirement was that two separate parties must have been able to pro-

duce the same key without exchange of information. Another requirement was to produce

these keys in a timely manner. To achieve these requirements, we knew that the involving

parties should share some information ahead of time. However, this shared information

is the most vulnerable part of the whole setting. Therefore, we have made the decision
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to choose an external device that will store this information, process this information and

display an output when needed. The choice of smart cards, especially Java Cards for our

case brought upon its challenges. We have noticed that the smart card platform is indeed

very limited in the aspect of memory and computing power. These restrictions made us

realize that we are not free in our decisions while we are designing our system. As a

result of this, we have moved to perform tests with different cryptographic algorithms.

As soon as we received the results of our tests, we observed significant performance dis-

parity between them. Some of the algorithms have performed considerably slow or did

not work at all on the smart cards. After a brief analysis of these preliminary results, we

determined the main component of our design by the process of elimination. Therefore,

we attained to design a scheme that does not only work in theory, but is feasible, im-

plemented and tested on real devices. Our main contribution can be attained to the fact

that our mechanism is designed carefully to perform well in the current restricted state of

smart card technology. We have performed necessary tests on smart cards and shown that

the mechanism does work successfully under one-second threshold, which is acceptable

in the context of real-time applications.

The rest of this thesis is organized as follows. In Chapter 2, we provide some back-

ground information necessary for understanding the basis of the work. In Chapter 3, we

explain our design and how it works in detail. The reasons behind the choices made in

the design will be revealed. We will provide steps for generating a single key. Chapter 4

consists of the performance evaluation of the provided scheme. We disclose the tests and

their results. In Chapter 5, we provide a conclusion to wrap up.
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Chapter 2

Background

2.1 WebRTC (Web Real-Time Communication)

WebRTC (Web Real-Time Communication) is a collection of APIs for modern browsers,

such as Google Chrome and Mozilla Firefox, that enable peer-to-peer Real-Time Commu-

nication (RTC) without plugins or other requirements [22]. The components of WebRTC

technology provide infrastructure for high quality audio, video and other data transfer be-

tween browsers or any application that implement the WebRTC API. The aim of WebRTC

project is to provide a set of standards that will define the future of web based communica-

tion. WebRTC is an open source project, which makes it an important move for web based

technology in a sense that relieves developers from relying on proprietary solutions. The

media transfer between clients happens in a peer-to-peer fashion; however, this transfer

of information is preceded by an initiation process that requires a server in between. With

the help of an intermediary server, the clients have to exchange information to establish

the channel with the help of Session Description Protocol (SDP) [8]. These initialization

events are part of the signaling process which is designed to overcome the difficulties in-

troduced by Network Address Translation (NAT) [19]. Translation of dynamic addresses

to private addresses and vice versa puts a hold on the possibility of creating an immedi-

ate peer-to-peer connection[1]. Interactive Connectivity Establishment (ICE) framework

comes into action at this point; it helps to initialize the connection by trying out different
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connection methods, when the channel cannot be established with convenience [18]. The

key agreement part of the signaling phase is relevant for the scope of our work.

Figure 2.1: Key Agreement in WebRTC

In Netaş’s Media Security Platform, key agreement happens at the signaling phase,

shown in Figure 2.1. The key generated by the caller’s smart card is encrypted with the

public key of the other party and transferred to the demanding application. The encrypted

key is signed by the application and sent to the intermediary Media Security Server, which

then transfers the key to the receiver of the call. The callee verifies the signature and

passes the encrypted key to the smart card for decryption. The plain key returned from the

smart card is used to establish a secure multimedia communication channel. An overview

of this public key based scheme is shown in Figure 2.2.
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Figure 2.2: Overview of Public Key Setting in Media Security Platform

2.2 Java Card

Smart cards are widely used in areas such as banking, security systems, personal

identification and so on. A smart card is a plastic card that houses a chip containing a

Central Processing Unit (CPU), Read-Only Memory (ROM), Electrically Erasable Pro-

grammable Read-Only Memory (EEPROM), Random Access Memory (RAM) and a unit

for input/output operations, simply presented in Figure 2.3. For the time being, smart

cards carry approximately 1KB of RAM and 64KBs of flash memory space (EEPROM).

The ROM section of the smart card is used to store the operating system of the smart card

and is not accessible by developers. The contents of RAM is lost when the smart card is

unpowered, while EEPROM provides persistent but very slow storage compared to RAM.

Smart cards are operated by a card reader or sometimes called Card Acceptance Device

(CAD) that is connected to a computer, a terminal or as in our case a smart device. The

card operators provide power and clock signals to the chip embedded in the card.

Smart cards are assumed to securely store its contents, however, this assumption may

not always hold true. While current smart cards are marketed with the promise of tamper-

resistance, there have been various tampering techniques introduced in the past [10]. In

our case, the smart card environment is a far better alternative to implement our key

generation mechanism into than the operating system environment of a smart device.

Java Card is a specific type of smart card that utilizes a restricted subset of Java Envi-

ronment. Java Cards are initialized in the manufacturing process with Java Card Runtime
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Figure 2.3: Smart Card Chip

Environment (JCRE) written in their ROMs. EEPROM stores the applications on Java

Card - or applets - and static data related to those applets, while the RAM is used by the

applets as temporary storage during runtime. JCRE holds Java Card Virtual Machine and

Java Card API on top of which the applets operate, as illustrated in Figure 2.4. Contrary

to the earlier smart card applications, Java Card applets work on any card that runs JCRE,

independent of the brand of the chip. A Java Card can hold multiple applets and provides

a firewall to restrict access between said applets.
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Figure 2.4: Java Card Architecture (taken from [9])

2.3 Cryptographic Hash Functions

A hash function produces a fixed size of output, also called hash value or digest,

from inputs of any length. Hash functions are very fast and utilized for various purposes

in security. An example usage might be to produce the hash of a long document and

securely store this hash for future verification that the document is not modified. If there

is a modification in the document, then applying the hash function on the modified version

will create a digest that does not match with the original hash. Since the input space is

often larger than the output space, the outputs of the hash functions are not in one-to-one

correspondence with the inputs. This means that the hash function might map different

inputs to the same hash value. The case where two different inputs give the same hash
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result is called a collision.

Cryptographic hash functions are a sub-type of hash functions that satisfy some se-

curity properties. The security of hash functions depends on preimage resistance, second

preimage resistance and collision resistance [17].

2.3.1 Preimage Resistance

From the output of the hash function, it must be difficult to find the input that produces

the hash value. The hash value should not reveal any information about the input.

Figure 2.5: Preimage Resistance

2.3.2 Second Preimage Resistance

For an input and its hash, it must be difficult to find a different input that produces the

same hash value.

Figure 2.6: Second Preimage Resistance
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2.3.3 Collision Resistance

It must be difficult to find any input pairs that produce the same hash output.

Figure 2.7: Collision Resistance

2.4 HMAC

HMAC (Hash-based Message Authentication Code) is a cryptographic mechanism

providing integrity check by validating messages using a secret key [11]. It involves a

cryptographic hash function and a secret key. The hash function should be an iterative

function that operates on blocks, such as a hash function from SHA family [7][6]. The

name of the HMAC scheme is correlated with the underlying hash function, for example

if SHA-256 is being used the scheme is called HMAC-SHA-256. In addition, the security

of HMAC depends heavily on the quality of the hash function. With this in mind, crypto-

graphically secure hash functions such as SHA-256 and beyond are often the choice for

HMAC operations. Calculation of HMAC of message M using key K and hash function

h is as follows.

HMAC(K,M) = h(K � opadkh(K � ipadkM)) (2.1)

HMAC consists of two hash operations involving the message, the key and constant

values called ipad and opad. Let us assume that the hash function operates on blocks of

size b and produces a hash output of size n. The ipad and opad constants are 64 bytes

long byte strings and are repetition of the bytes 0x36 and 0x5C, respectively. As the first
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step of HMAC process, if needed, the key is padded with zeroes until it is of length b.

Padded key is XOR’ed with the ipad, then concatenated with the message which forms

the inner part. The first hash operation is applied on this inner part. As the next step, the

padded key is XOR’ed with the opad, then concatenated with the digest coming from the

previous step to form the outer part. The second hash operation is applied on the outer

part to produce the result of the HMAC operation as seen in Equation 2.1.

2.5 One-Time Password

As its name suggests, one-time password algorithms are designed to produce pass-

words that are supposed to be used only once. The main advantage of this scheme is to

prevent attack scenarios where the adversary captures a previously used password. Imple-

menting one-time password systems usually are not as straightforward as implementing a

system that depends on a single (master) password. Therefore, other devices come to help

in the one-time password settings in the creation of one-time passwords. This is known

as two factor authentication and its security depends on not only what the user knows

but also on what the user possesses. There are different algorithms to produce single use

passwords. We will discuss two of them, one is based on HMAC and the other one uses

the time as a source of input.

2.5.1 HOTP

HMAC-based One-Time Password Algorithm (HOTP) [13], uses a key, a counter and

HMAC-SHA-1. Obviously the key must be kept secret and should be of adequate length

which is at least 160 bits suggested in the RFC document [13]. After a run of HOTP,

the counter value is incremented. This scheme guarantees that for every iteration of the

algorithm, the outcome will be different than the previous one. By sharing a secret key, K,

and a synchronized counter, C, two remote parties can successfully generate a one-time

password as shown below.
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HOTP (K,C) = Truncate(HMAC -SHA-1 (K,C)) (2.2)

Let us assume that we want to have a result with d digits after the execution of HOTP

algorithm. HOTP algorithm applies HMAC-SHA-1 on counter with the key, then selects

specific bits of the result and shortens it to d digits as in Equation 2.2. The truncation

process looks at the low-order 4 bits of the last byte of the HMAC output. This becomes

the index to the bytes that will be selected again from the HMAC result. The bytes that

are in the range of [index, index + 3] will make up a 32 bit number. As a final step,

modulo operation is applied with modulus being 10

d, to get the result in the expected

range.

2.5.2 TOTP

TOTP (Time-based One-Time Password Algorithm) is very similar to HOTP [14].

The only difference is that TOTP uses Unix time as its counter value.

TOTP = HOTP (K,T ) (2.3)

Here in equation 2.3, T is the number that represents how many time steps have been

taken from a determined initial time. Assuming that the initial time is determined as T0,

and a time step is defined as X , we calculate the number of time steps in Equation 2.4

below.

T =

�
CurrentT ime� T0

X

⌫
(2.4)

2.6 Hash Chain

A hash chain is produced by applying hash operation on a given data successively.

When hash functions are chained, the result of one hash becomes the input of the upcom-

ing hash function. If we represent the hash function with h and the length of the hash
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chain with L, then the hash chain F is:

hL

(m) = h...h(h(h(m))...)| {z }
L times.

(2.5)

The idea of chaining hash functions first appears in the seminal work of Lamport [12].

In the context of remote authentication, a password is used for identification. Instead

of choosing a single password and sending this to the server for every access, a scheme

based on chaining hash functions is proposed. The user chooses an initial value x and

applies hash chain operation on this value. Let us assume that, the length of the hash

chain is 1000, which indicates that the hash is taken 1000 consecutive times. The user

shares the result of the hash chain with the server, so the server has F 1000
(x). When the

user wants to identify to the server, the previous hash in the chain is sent. Thus, the user

calculates F 999
(x) and sends it to the server. For verification, the server takes the hash of

the incoming message from the user and compares it with F 1000
(x). If the authentication

is successful, the server keeps F 999 and expects to receive F 998 the next time the user

wants to access.

Figure 2.8: Lamport’s Password Authentication Scheme

The security of the hash chain method depends on the one-way property of the un-

derlying hash function. This guarantees that, it is very difficult to find F y�1 from F y.

Therefore, capturing previously used passwords will not allow to produce future pass-

words to be used later on. However, obtaining an intermediate hash from a hash chain

structure does give away the forward part of the chain since moving forward is simply ap-
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plying a hash function. In our proposed scheme, this problem is taken into consideration

and dealt with.
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Chapter 3

Proposed Method

3.1 Introduction

In this section, we explain our new key generation structure in detail. We will intro-

duce the smart card environment and demonstrate the preliminary test results. The results

of test implementations on the cards will reveal the resolution process behind the choices

we have made. Then, we will present our two-way hash mechanism step by step.

Our aim, as we have pointed out before, is to generate one-time encryption keys on

remote parties for voice/video communication. However, this does not come naturally.

Being able to reach the same key requires some pre-shared knowledge. This shared se-

cret, however, is the most essential element concerning the security of the key generation

process. Therefore, it is of utmost importance that the shared values must never be dis-

closed to the outside world. The applications on smart phones are able to store these

mentioned secrets, but they do not provide a secure storage. However, the smart cards do

make the promise of secure data storage.

We have chosen to work with Java Cards, a type of smart card that runs Java ap-

plets. Like other Java applications, Java Card applets run on a virtual machine called Java

Card Virtual Machine [3]. This provides separation between the applet and the underly-

ing structure of the card and allows for an applet to be run on different Java Card brands

without an issue. There may be more than one applet on the same card. With the applet
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Table 3.1: Unit Times on Different Cards (ms)

Algorithm Variant Feitian
A22

Feitian
A40 NXP JCOP G&D Java

Card

HMAC SHA1 35.7 29.5 45.3 36.8

HMAC SHA256 55.3 48.4 55.5 39.8

HOTP HMAC-
SHA-1 42.6 36.3 50.2 44.0

RSA
2048 Encrypt 59.0 49.0 205.0 289.7

RSA
2048 Decrypt 677.0 607.0 742.0 767.1

firewall in Java Cards, the applets have no access to each other’s data, if not explicitly

allowed. The data in an applet is stored in persistent memory (ROM). There is a small

non-persistent memory (RAM) to store temporary results of operations. Java Cards are

inserted into card reader devices and they are powered through them. When the card is

unpowered, the RAM is reset and the data residing in RAM is lost. Overall memory in

Java Cards are very limited and usually do not exceed 64 KB. There are different versions

Java Card Platform Specifications, and the cards are designed according to one of these

specifications. Although the cards are supposed to perform the specified operations in the

documents, the cards usually have documented and undocumented missing functionali-

ties. In addition, the performance of the cards are highly varying. While one operation

on a card is performed fast, the same operation takes noticeably longer on another brand

of Java Card. Since the environment have such restrictions and quirks, initial tests were

performed to measure the performance of basic operations. Table 3.1 shows the timing

results of some operations tested on different cards.

We have also tested hash chain operations with different chain lengths. Figures 3.1

and 3.2 show how timings vary with different chain lengths and hashing algorithms.
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Figure 3.1: Hash Chain Tests Using SHA-1
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Figure 3.2: Hash Chain Tests Using SHA-256
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3.2 Proposed Structure

After a brief analysis of the preliminary tests, we have selected hash chain to be the

main component of our key generation method. One-time password scheme proposed

by Lamport which is shown in Figure 2.8, utilizes the hash chain in a straight forward

manner. The one-way property of the hash function used in the chain guarantees that even

if one of the keys are compromised, none of the future keys can be generated. However,

previously generated keys until the captured key are easily produced. For our case, the

secrecy of the communication depends on the cryptographic key used in that session.

Therefore, if any of the past keys are discovered, then the encrypted communication can

be deciphered. With this in mind, we set out to draft a scheme that will not only provide

security of future conversations, but the past conversations as well. In an event of a key

compromise, our scheme should withstand attacks on both past and future keys. The

property of backward secrecy requires that if a key is compromised, this must not allow

discovery of the keys used in the past. For the other way around, if a system satisfies

forward secrecy, then previously captured keys must not lead to prediction of any future

keys. As these definitions imply, an important requirement of our system is to ensure both

backward and forward secrecy [16]. As a result of this requirement, we have decided to

use two separate hash chains. This way, we would be generating keys that would be

combination of the results of two hash chain operations, preventing the discovery of past

keys.

The purpose of our mechanism is to generate the same keys on two different ends.

This is only possible using some secret information that is being known by the involving

parties. This secret information, or master seed, will be the only factor that the security

of our mechanism depends on. The seeds will be written in secured area of smart cards

and in no circumstances the seeds will leave that secured area.

Our decision to use two way hash chains requires two separate seeds and we have

named these seeds as MasterSeed1 and MasterSeed2. In addition, we have decided

to follow a two-dimensional approach. Therefore, our mechanism needs to keep two

different counters for each dimension. These counters are both set to one when the cards
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are initialized. We have named these counters simply i and j for the first dimension and

the second dimension respectively. The second dimension constitutes the two way hash

chain part of our method. We have limited the number of keys generated for each value

of the counter (i) in the first dimension. We call this the chain length of our mechanism

and represent it with L shortly. Then, the first operation of our mechanism is performing

hash chain operation of length i on these seeds as shown in Figures 3.3 and 3.4.

Figure 3.3: Hash Chaining MS1

Figure 3.4: Hash Chaining MS2

The intermediate results of chain hashing MasterSeed1 (MS1) and MasterSeed2

(MS2) is represented by R1 and R2 respectively. This concludes the first step of the

mechanism. The second phase of the mechanism involves applying hash chain operations

on R1 and R2. R1 is chained j times whereas R2 is chained L� j times, thus, in total L

hash operations are performed. Then, the results obtained from the hash chain operations

in the second dimension are XOR’ed together to generate a key, shown in Figure 3.5.

Figure 3.5: Second Phase of the Mechanism
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Figure 3.6: Two Way Hash Chain Mechanism

The complete picture of the mechanism is shown in Figure 3.6. Whenever a key is

generated, the counter j is incremented. If j reaches the chain length value L, then it is

set back to one and the counter i is incremented. This means, for each i, we produce L

keys in total, before moving on to the next value of i.

3.3 Call Establishment Protocol

The hash chain mechanism provides a secure way to generate one-time keys. This

mechanism can be set up on different ends with the same parameters to generate synchro-

nized keys. In our case, we plan to provide keys to Media Security Platform which is a

real world application developed by Netaş Telecommunications A.Ş. Since it is quite pos-

sible that the synchronization might be lost in a real life scenario, we devised a protocol

to remedy that.

Let us define a limit to the number of tries when generating keys to match a given
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Figure 3.7: Signalling Protocol for Media Security Platform.

key. From here on, we represent this number with ✏. We set ✏ at the initialization process

where we load and install our mechanism to the smart cards.

Assuming that SmartPhone1 initiates the call, the protocol follows these steps:

1. SmartPhone1 requests a key from SmartCard1.

2. SmartCard1 produces the next key and returns it back to SmartPhone1, Smart-

Phone1 generates the hash of the received key, by performing hashed key1 =

h(key1).

3. SmartPhone1 generates a call request using the WebRTC library. The call request
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and the hashed key1 is sent to SmartPhone2.

4. SmartPhone2 transfers the hashed key1 to SmartCard2, requesting a key to be

generated.

5. At this point, SmartCard2 keeps producing keys until ✏ number of keys have been

produced or until it produces a key with the hash that matches with hashed key1. If

the same key on both ends are generated, SmartCard2 returns this key and produces

an error code of 0. If the keys do not match after ✏ keys, SmartCard2 returns the

first key it generated along with an error code of -1.

6. SmartPhone2 hashes the key returned from SmartCard2, by hashed key2 = h(key2)

operation and transfers call response and hashed key2 to SmartPhone1.

7. If the received hashed key2 is a match with hashed key1, SmartCard1 moves

to step 9. If not, hashed key2 is transferred to SmartCard1 and another key is

requested.

8. SmartCard1 keeps producing keys until ✏ keys have been produced or until it pro-

duces a key with the hash that matches with hashed key2. If a matching key is

found, this key along with an error code of 0 is returned back to SmartPhone1. If

not, SmartCard returns an error code of -2, then moves to step 10.

9. Both parties possesses the same key and the call begins.

10. The parties have not established a key, the call is dropped. Resynchronization is

needed.

11. The call is terminated by one of the parties.

The error codes produced by the cards are defined in table 3.2

3.3.1 Possible Scenarios During Key Establishment

We will shortly refer to the client initiating the call as client A, and the client at the

receiving end as client B. The most common case is both clients’ cards stay synchronized,
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Table 3.2: Error Codes of the Protocol

Error Code Description

0 The key is generated successfully.

�1 The key generation failed. The first available key is re-
turned.

�2 The key generation failed. Resynchronization required.

if the protocol and the mechanism produces keys without any mishap. In this situation,

client A’s smart card is ready to produce the next key; likewise the smart card of client B is

going to produce the exact same key. When client A begins the call, hashed key1 will be

received by client B and subsequently sent to the smart card of B. At this point, B’s card

will produce a key identical to the one on the caller’s side. Client B sends hashed key2

across and upon receiving the hash value client A verifies that a common key is created.

Client A will initiate necessary operations to begin the call.

One alternative scenario to the one mentioned above is the clients’ cards might be out

of synchronization within the specified limit ✏. Assuming client A (caller) has produced

more keys than client B, therefore is forward in the mechanism compared to client B

(callee). When client A initiates the call, hashed key1 sent to B will not match the first

key generated by smart card of B. However, since the synchronization is not broken out

of the boundary of ✏, B’s card will eventually find the matching key and return this key

along with 00 error code. The rest of the call setup will progress in the same manner as

the synchronized scenario.

A similar scenario is the reverse of this situation where client B (callee) is in forward

position in the mechanism. When this happens, hashed key1 received from client A

cannot be matched by client B’s smart card, because the mechanism only moves in the

forward direction. Upon not being able to find a matching key after trying ✏ keys in

the sequence, smart card of B returns the first key it tried. Then, this key is hashed

(hashed key2) and transferred back to client A. When hashed key2 is received by client

A’s smart phone, it will discover that a common key has not been established. Next,
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another key generation command is sent to A’s smart card, this time requesting a key to

be matched with hashed key2. Since the synchronization is still intact within ✏, the smart

card of A will catch up to the key produced on client B’s card. Consequently, the common

key will be established and the call will begin afterwards.

The last possible scenario is the cards being more than ✏ away from each other. When

this is the case, all the events mentioned in the paragraph above will take place. The only

difference is that, A’s smart card will not be able to find a matching key, therefore returning

error code of �2. This error code is an indicator to the fact that the synchronization is

broken beyond (✏) the usual flow of the protocol and needs to be established externally.

In this condition, the call is aborted and the intermediary server is notified.

3.3.2 Distribution of Seed Values into Smart Cards

Although it is not in the scope of project and thesis, we offer methods for the gener-

ation and distribution of seed values. If the clients are in physically separated environ-

ments, then the seeds can be generated and shared in a Diffie-Hellman setting [5] using

the application interface. A second suggestion for the remote client scenario is using an

alternative secure channel to share the seed values This secure channel is only needed

during the exchange of seeds. After the seeds are exchanged, they are stored in the secure

area of the smart cards and never leave the card afterwards.

If the clients are in the same environment, then the seeds can be shared by the Blue-

tooth interface of the devices. Another possible method is relying on QR codes to display

the seeds created by one party and then detect them by the other party. It might also be

possible to transfer seed values between clients by simply inputting them as hexadecimal

characters in the application.

3.4 Integration with Media Security Platform

In this section, we provide details on the integration of our key generation method

with the ongoing Android application side of the Media Security Platform. The process of
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integration consists of two steps. The first being the preparation work before introducing

our code into the platform and the second step is the actual merging of the mechanism

into the call establishment phase.

3.4.1 Pre-integration Preparation Work

The motivation behind the design of the key generation mechanism was providing

keys to an application running on smart devices, especially those that run Android Oper-

ating System. Therefore, we have developed an application on the Android platform using

a library that provides support for communication between the application and the smart

card reader [2]. With this application, we are able to send commands to the smart card

and receive the responses produced by the card, illustrated in Figures 3.8 and 3.9. We

have performed our preliminary tests using the Android application, and discovered no

discrepancy between these tests and the previous test run on a laptop computer. In Figues

3.10 and 3.11, we present tests on different chain lengths, which are the most relevant

ones in the context of our mechanism.

We have designed an Application Programming Interface (API) for the interaction

between Java Card and the Android application. Encapsulating the details of command

execution in Java Card, the API offers simple functions to ease the integration process.

In addition, when the smart card side of the project requires modification, the application

does not need to be modified as well. This avoid the necessity of repeating the whole

integration phase in the likely event of a minor change in our mechanism. We have defined

three separate classes for the API which are overviewed in the following part of this

section.

JavaCardApi class

In this class, as represented in Figure 3.12, we define all of the data members and method

necessary to communicate with the Java Card. The card is connected to the smart device

via a card reader attached to the one of the USB ports. The first step of reaching the

card is to be able to control the USB interface through an UsbManager object defined.

Then, the card reader device is stored in a UsbDevice object, after the manager connects
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Figure 3.8: Test Application on Android

to the reader. Following that, communication with the actual reader interface requires a

definition of a Reader variable provided by the external library. In addition, the generated

key is stored in a byte array along with another byte array for the error code produced.

The constructor of this class needs two parameters, one UsbManager and one UsbDe-

vice. When an object of this class is created, the parameters are provided by the applica-

tion and set into the corresponding member variables. The initialize method defines the

Reader object and starts the reader that is linked to the UsbDevice. The presence of a

card in the reader is being queried with the checkCard method, which returns true when

the card is inserted and false otherwise. Actually connecting to the card and providing

power is possible by connectCard class method.

When the caller is in need of a key, generateKey method is called. This method,

firstly, selects the applet on the smart card that is responsible for key generation. If the

applet is selected and the PIN verification process is successfully completed, a command
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Figure 3.9: Result of a Test Run on Android

for key generation is sent to the card. The card is expected to return a key and an error

code to this method, and this method itself returns an object (JavaCardKey) to its caller.

In our signaling scheme, the parties hash their keys before transmitting them across

the channel. When the hashed key is received, the recipient produces a key of its own. For

this, generateKeyWithLimit method is called with the received hashed key supplied as

a parameter. The smart card then produces a series of keys until a match is found or the

preset number of tries has been reached. If a matching key is found, the key is returned

alongside with an error code of 0x00. If not, the first tried key is returned with an error

code of either 0x01 or 0x02, depending on the side performing the operation. If the callee

does not successfully create a matching key, then the error code is 1, in the caller’s case

the error code is output as 0x02. The result of this method is collected in a JavaCardKey

object and returned, as it happens in the generateKey method.

Media Security Platform requires 96 bytes long keys in order to establish a call be-
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Figure 3.10: SHA1 Chain Length with Android
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Figure 3.11: SHA256 Chain Length with Android
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Figure 3.12: JavaCardApi Class

tween its clients. We performed our tests by using hash chains with SHA-1 algorithm. The

output of SHA-1 hash is only 20 bytes long, leaving us short of 76 bytes when compared

to the actual key length in need. We lengthen our key by using a known data expansion

method called P hash [4]. The final method in this class, createSrtpKey gets 20 a bytes

key and returns a 96 bytes long key created using P SHA1 method.

Figure 3.13: JavaCardKey Class
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JavaCardKey class

This class is a simple container for a key and related information about the key as seen

in Figure 3.13. The first member variable, success is set to false if an error occurred

during the generation of the key. This variable is an indicates that whether the key is

available or not. The second variable holds the error code returned from the card. The

error variable may take following values: 0x00, 0x01 or 0x02. The key variable stores

the key generated and returned by the smart card. The last member variable, hashedKey

is used to store the hashed version of the key.

Figure 3.14: JavaCardApiIml Class

JavaCardApiIml class

This class encapsulates the previously defined JavaCardKey and JavaCardApi classes,

and provides singular methods. The purpose of the design of this class is to further ease

the integration by gathering multi-line commands under one operation. A UML represen-

tation of this class is presented in Figure 3.14.

3.4.2 The Integration

As the first step, we merged our Java Card interface with the Media Security Plat-

form’s code base. From the Android application, appropriate API functions are called in

the signaling phase. In Figure 3.15, which functions are supposed to be called at what

point are shown.

The first task of the integration was to create a listener for USB permission in the

Android application of the platform. This listener is required, because without an external
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Figure 3.15: API Calls After Integration with the Media Security Platform

USB device permission, the card reader does not work at all. When the card reader is

plugged into the USB port of the smart device, the listener catches this event and creates

a prompt displaying a permission request to use the USB device. After the permission is

granted, the card reader is powered up, and subsequently the application connects to the

smart card.

The following events take place when a client (the caller) decides to call another client

(the callee). The application on the smart device of the caller, inside its RtcManager

class, prompts the first key to be generated. The key returned from the smart card is

stored inside a srtpKey variable, and at the same time a hashed version of the key signed

and placed inside a call request. The call request is sent to the intermediary server which

then transfers it to the application of the callee. On the callee’s side, the call request is

captured in a method named onCallOfferCatched inside WebSocketManagerHelper

class. The hashed version of the key contained in the call request is extracted and provided
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to the callee’s smart card. As expected the smart card generates a key and an error code.

If the callee chooses to answer the call, the key returned from the smart card is hashed

and sent back to the caller in the positive response. Otherwise, the the call is cancelled

and the caller’s notified of the termination.

When the callee accepts the call, the caller receives a hashed key produced and sent

by the callee. At this point, the caller has two hashed keys, one of which produced by the

other party. The caller compares these hashes, if the hashes are found out to be the same

the call is started with the established key. If the hashes turn out to be different, then the

caller sends another key generation command to its smart card with the received hashed

key. This second key generation is placed inside the method onCallAnswerNotify

inside CallFragment class. The smart card tries to generate a matching key, returning

0x00 if a matching key is found and 0x02 if the matching key cannot be found. The call

starts after the application verifies the error code to be 0x00. Receiving an error code of

0x02 indicates that the call cannot be started, furthermore the synchronization between

the clients are broken exceeding the limits defined by the mechanism.

Here, we present a flow of a call establishment process in the Android application of

MSP. In Figure 3.16, the caller is displaying the key generated in the smart card.

Figure 3.16: The Caller Initiating in Android Application

The call request has been sent to the receiver of the call, as indicated in Figure 3.17.
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Figure 3.17: Caller Sends the Call Request

Then, the callee’s application prompts its smart card to generate a key and displays that

key. The callee can either accept or reject the call at this time, as shown in Figure 3.18.

Figure 3.18: The Callee’s Screen After Receiving the Call Request

The callee accepts the call, shown in Figure 3.19
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Figure 3.19: The Call is Accepted

The call establishment is completed and the secure communication begins. Figures

3.20 and 3.21 display the screens of both caller and callee, respectively.

Figure 3.20: The Call has Started on Caller’s Application
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Figure 3.21: The Call has Started on Callee’s Application
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Chapter 4

Performance Evaluation

4.1 Key Generation Timings

While the production of the keys, our mechanism performs certain number of hash

operations. As we produce more and more keys, the time it takes to produce future keys

increases. Though, this increase can be controlled by adjusting the chain length of our

mechanism. However, the adjustment cannot be done dynamically, in other words, the

chain length of our mechanism does not change after initialization. Therefore, we need

to determine the chain length at the beginning while considering the key generation per-

formance it entails. Measuring key generation times for different chain length setups, we

have produced a graph shown in Figure 4.1. We have tested our mechanism by setting its

chain length to 100, 200, 300, 400 and 500.

Our mechanism works in two phases. In the first phase, there are two separate hash

chains, each of length i. Thus, the number of hash chain operations in the first part sums

up to 2⇥ i. In the second phase, there are again two hash chains, one of length j and one

of length L�j. The number of hash operations done in the second phase always add up to

L no matter the value of the counter j. Then, we can conclude that for a key, the required

number of hash operations depends on the value of the counter i and the value of L at the

time of production. As a matter of fact, the number of hash operations is equal to 2⇥i+L.

As we produce keys, the value of the counter i will naturally increase and this will result
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Figure 4.1: Tests with Different Chain Lengths (ms)

in longer times to produce new keys. If we set a relatively small chain length L for our

mechanism, then we ensure that the initial keys will be produced faster, because L will be

relatively low. Similarly, in a longer chain length setting, the initial keys will require more

hash operations, and more time because of the large L. This situation is reversed when

the number of keys generated increase. For later keys, the small chain length setups do

require more time than the longer chain length ones. This is due to the fact that for each

value of counter i, the number of keys produced is exactly L. Therefore, the i counter

increases rapidly when the value of L is relatively smaller, which then causes late keys to

be generated at a slower rate.
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4.2 Calculating the Optimal Chain Length for a Target

Key

As mentioned earlier, the completion time of a hash chain operation is directly pro-

portional to the number of hash operations it entails. For a key, our mechanism performs

four different hash chains along with an XOR operation. The XOR operation takes neg-

ligible amount of time, when compared with the rest of the key generation process. This

allows us to make an estimate about the performance of our mechanism by calculating the

total number of hash operations. As we have pointed out in Section 4.1, each key requires

2 ⇥ i + L hash operations. Now, we want to adjust the chain length L for the kth key,

so that it is generated in the shortest time possible. The kth key is produced after k � 1

keys have already been produced, so the values of the counters i and j for the kth key are

shown below.

i =

⇠
k

L

⇡
(4.1)

j = k mod L (4.2)

We have shown that the total number of hash operations n is,

n = 2i+ L (4.3)

If we replace i with k

L

, then we get the total number of hash operations in terms of k

and L.

n =

2k

L
+ L =

L2
+ 2k

L
(4.4)

Since we want to optimize the number of hash operations, we take the first derivative

of the Equation 4.4 and then set it to zero. This gives us an optimal chain length L for the

kth key in the production as shown in Equations 4.5, 4.6 and 4.7.
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= 1� 2k

L2
(4.5)

1� 2k

L2
opt

= 0 (4.6)

L
opt

=

p
2k (4.7)

We have experimented with different chain lengths and with different keys and recorded

the production times. For an iteration of our experiment, we have set the chain length

value to an integer in the range [50, 700]. Then, we produced the 10000

th, 25000

th,

50000

th and 75000

th key for each chain length. As expected, each key is associated with

a chain length that minimizes its production time, as can be seen in Figure 4.2.
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Figure 4.2: Generation Time of Different Keys (ms)

Analytically, the optimal chain length is calculated as
p
2k (Equation 4.7). We present

a comparison between analytical values and the results from our experiments with varying
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chain lengths. As shown in Table 4.1, analytically expected optimal chain lengths and the

actual optimal chain lengths do have significantly close values.

Table 4.1: The Optimal Chain Lengths for Selected Keys

Production Number of
Key

Expected Optimal Chain
Length (Analytical)

Actual Optimal Chain
Length (Experimental)

10000 141 137

15000 173 177

20000 200 200

25000 224 228

50000 316 311

75000 387 389

4.3 Post-integration Timings

After we successfully integrated our mechanism to the Media Security Platform, we

found the opportunity to test the integrated application inside the company’s network.

The results of these tests with using SHA-1 and SHA-256 algorithms are shown in Tables

4.2 and 4.3, respectively. Each test measures the time it takes for both clients to be ready

to establish call. In the testing process, the flow of events happen as introduced in our

signaling protocol presented in Figure 3.7. The caller party creates a key, introducing

the first delay. Then, this key is sent inside a call request to the recipient party which

introduces a network delay while in transfer and processing delays by the applications.

Finally, the recipient party generates a key which increases the overall time to establish

end-to-end encryption. Therefore, the timing measurements are higher when compared to

timings of a single key generation operation, due to delays introduced by the the network

and the applications.

The results reveal a performance gap between the hash algorithms used by the mecha-

nism. SHA-1 performs better than SHA-256 as expected. Though, our tests with a specific
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Table 4.2: Tests with MSP Application Using SHA-1 in Netaş’s intranetwork

Brand of Card Chain Length (L) Time (ms)

Feitian A22
100 1580
200 1890

Feitian A40
100 1630
200 1780

G&D
100 1570
200 1790

Table 4.3: Tests with MSP Application Using SHA-256 in Netaş’s intranetwork

Brand of Card Chain Length (L) Time (ms)

Feitian A22
100 2490
200 3400

Feitian A40
100 2200
200 3860

G&D
100 1590
200 1880

Table 4.4: Tests with MSP Application Using SHA-256 outside Netaş network

Brand of Card Chain Length (L) Time (ms)

Feitian A22
100 2540
200 3820

Feitian A40
100 2640
200 4010

G&D
100 1850
200 2150

brand of Java Card, namely G&D, indicate the possibility of using SHA-256 without too

much performance degradation. We have also tested the MSP application with SHA-256
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on a network outside of Netaş’s, and discovered results close to ones found in tests done

inside Netaş network. The results, displayed in Table 4.4, show that SHA-256 is feasible

when run on an efficient card, even in outside networks where the delay is higher.

4.4 Memory Usage on Java Card

It is not possible to detect memory usage of an applet on Java Card. However, there is

an alternative method to estimate the memory usage. The Java Card displays the amount

of free memory when probed. We developed the following approach in this context.

Firstly, we inquire the free memory from the card, then we load our applet and perform

another query to obtain the free memory on the card. By calculating the difference be-

tween our inquiries, we are able to find out how much memory our applet consumes on

the card. We present the memory consumptions of the tested applets in Table 4.5. Our

hash chain mechanism applet consumes around 1000 bytes of memory, which is minimum

among other mechanisms.

Table 4.5: Memory Usage of Applets on Java Card

Name of the Applet Memory Usage (Bytes)

HMAC 1220

HOTP 1048

RSA 2048 2570

Hash Chain
Mechanism

1006
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Chapter 5

Conclusion

WebRTC is a developing technology that allows development of multimedia commu-

nication applications with ease. Still an ongoing project to offer neat interfaces for the

future of software, WebRTC does not provide a standard method for key management.

In this thesis, we delve on the issue of key generation and key distribution for the Media

Security Platform being built by Netaş Telecommunications A.Ş. We founded a method

to generate synchronous keys on remote ends with the help of embedded security of smart

cards, our scheme depends on fast hash operations. Our key generation mechanism per-

forms better than previously used approach of generating keys relying on a public key

setting. We have implemented and tested our solution on different brand of smart cards

and then integrated our mechanism to the Android application offered by Media Security

Platform. After the integration, we have achieved to establish audio and/or video calls

with the keys generated by our key generation algorithm.

The clients in the Media Security Platform communicate with other clients after they

mutually agree on a friendship relation. Our solution for key management currently does

not address this situation. We provide the actual seeds of friends manually into each of

the smart cards while we initialize the applet that runs the mechanism. For future work, a

secure method to establish friendships for the clients can be proposed and implemented.

For this, the seeds of the clients should be generated privately and transferred into the

cards. The same approach can also be used when previously bonded clients lose synchro-
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nization beyond the limits set before. When two clients need to be resynchronized, they

should be provided with brand new set of seeds on their cards.
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