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ÖZET 

Sistemin kararlı davranışın karakteristiklerinin belirlenmesindeki en önemli bilgi Takım 

tezgâhı sistemlerinden elde edecek dinamik cevaptır. Pek çok çalışmada kolaylık 

açısından, takım tezgâhı sistemleri genel olarak tekil modlu sistemler olarak ele alınır. 

Fakat çoklu-mod özellikleri ve bunların çoklu-mod etkilerini hesaba katmak, talaşlı 

imalat ve ilgili takım tezgâhına yeni dinamik özellikler kazandıracaktır. Bu tez 

çalışmasında iki adet konu başlığı çoklu-mod sistemleri üzerine çalışılmıştır. İlk olarak, 

çoklu-mod sistemlerinin freze tezgahı üzerine etkisi proses sönümleme açışından 

incelenmiştir. Kararlılık lobu diyagramları frekans bazlı çözümlenmiştir ve zaman bazlı 

yeni bir model kesme takımlarının titreşim davranışını modellemek için geliştirilmiştir. 

Farklı frekanslardaki modların etkileri kararlılık diyagramlarının ön kısımlarında yer 

alan düşük kesme hızları için deneysel olarak ispatlandı. Daha sonar, yine bu 

araştırmanın bir parçası olarak bir yöntem geliştirildi, burada çoklu-mod özelliklerine 

göre sistemin dinamik davranışı modifiye edildi. Bu yöntemi kullanarak, yapının 

transfer fonksiyonu modlar arasındaki etkileşimden yararlanılarak modifiye edilebilir. 

Bir freze takımı için Takım-ucu transfer fonksiyonu bu modele göre baskılanıp istenilen 

duruma göre ayarlanmıştır ve çekiç testleri ile doğrulaması yapılmıştır. 

Anahtar Kelimeler: Çoklu-mod sistemleri, Proses sönümlemesi, Kararlılık lobu 

diyagramları, Tırlama, FRF modifikasyonu, Modların etkileşimi 
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ABSTARCT 

Dynamic response of machining systems is the primary information required for 

determining stability behavior. For the sake of simplicity, machining systems are 

normally treated as single mode systems in many researches. However, considering 

multi-mode characteristics and effects of multiple modes introduce new features to 

machining dynamics. In this thesis, two topics are studied on systems with multiple 

modes. First, the effect of process damping in multi-mode milling systems is 

investigated. Stability lobes diagrams are constructed through frequency domain 

solution and a time domain model is presented to simulate vibrations of the cutting tool. 

Effects of modes with different frequencies on stability frontier at low speeds are 

presented and verified experimentally. As the second part of this research, a 

methodology is developed to modify the dynamic response of structures with respect to 

their multi-mode characteristics. Using this methodology, the transfer function of a 

structure can be modified through interaction of structure’s modes. Tool-tip transfer 

function of a milling machine tool is suppressed and verification has been done through 

hammer impact tests. 

 

Keywords: Multi-mode systems, Process damping, Stability lobes diagram, Chatter, 

FRF modification, Modes interaction  
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Chapter 1 INTRODUCTION  

 

Machining industries are permanently required to manufacture parts considering several 

constraints such as productivity, accuracy and cost in order to fulfill the market demands. 

Many factors such as cutting techniques, measurements, cutting parameters, etc. contribute 

to efficiency of machining operations. However, chatter vibration and instability of 

processes are repeatedly reported to be the main obstacles to achieve those goals [1]  

because of several negative effects it causes, such as limiting material removal rate (MRR), 

machine damage, tool wear, poor surface finish, geometrical inaccuracy, increased costs, 

energy and time lost, etc.  Chatter causes increased scrap rate of manufactured parts and 

tools which leads to huge economic lost. Usually machine tool users are too conservative in 

selecting the cutting process parameters in order to avoid chatter. Although there have been 

strong attention to chatter problem in the last decades, it is still on the top of academic and 

industrial interests in manufacturing research due to demands for higher productivity and 

efficiency, especially in machining of complex and flexible part (such as thin-walled 

structures) or hard to cut materials (in aerospace industries). 

The primary cause of chatter is the regeneration of waviness of the workpiece surface. A 

wavy surface is left due to the vibrating tool while cutting. In the next cut, a new wavy 

surface with a phase difference is generated and, hence, the chip thickness varies, leading to 

dynamic cutting forces. If the cutting process is in unstable region, the dynamic cutting 

forces amplify the vibration which causes intensive cutting forces in return. This 

regenerative mechanism is continued and builds up chatter. Tlusty and Polacek [2] 

determined the stable cutting depth in orthogonal cutting using cutting force coefficient. 

Orthogonal stable cutting depth was also calculated by Merrit [3] through Nyquist stability 
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criterion. In another early work, Tobias [4] studied the regenerative mechanism and 

represented it as a function of depth of cut and spindle speed using the stability lobe 

diagrams. Later on, Tlusty [5] presented a stability formulation for end-milling. He adapted 

the turning formulation to end-milling by taking average number of cutting edges per 

revolution. Minis and Yanushevsky [6] provided a dynamic milling modelling using 

Floquet’s theorem and determined the stability limits using Nyquist stability criterion. A 

comprehensive analytical method to predict cutting depth stability in end-milling was 

proposed by Altintas and Budak [7]. They developed zero-order approximation (ZOA) 

method by considering only the constant coefficient in the Fourier series expansion of the 

directional factor in the dynamic formulation and showed its efficiency in obtaining 

stability lobes in frequency domain. Later, Budak [8] developed the multi-frequency 

solution to milling stability to improve the chatter predictions in low immersion cutting 

conditions. It is important to note that most of the studies have been done on prediction of 

milling stability, the system has been assumed to have a single dominant mode. However, 

when there are two or more modes with near modal stiffness, the stability limit differs 

widely from the predicted one using a single mode. Although there are plenty of researches 

on milling stability, the number of literatures which have included the effect of multiple 

modes, is limited. Mann et al. [9] employed finite element analysis to study the stability and 

surface error of a multi-mode milling system. Berglind and Ziegert [10] developed an 

analytical time-domain model for a turning system with multiple modes. Tang et al. [11] 

presented a stability prediction method for high-speed finishing end milling considering 

multi-mode dynamics. In a recent research, Wan et al. [12] studied the milling system 

stability with multiple dominant modes. It was theoretically proved the stability border for a 

multi-mode system can be effectively predicted by the lowest envelop of the stability lobes 

constructed for each single mode separately. 

Generally, researchers work on predicting, identifying, avoiding and suppressing chatter. 

Stability lobe diagram (SLD) is the common tool used to define the border between chatter 

free region and unstable region, visualized by pair of cutting speed and cutting depth as 

shown in Figure 1.1. To construct the stability lobe diagram, the frequency response 

function (FRF) of the system is required. The FRF of a machine tool is affected by the 

dynamics of all its components; spindle, axes carriage, tool holder, cutting tool, etc. Once 
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the FRF of the system has been identified, the stability diagram can be predicted for a 

specific workpiece and cutting parameters. 

 

Figure 1.1. A common stability lobes diagram. 

 

The idea is to enlarge the stable region and to compromise the cutting depth and cutting 

speed which result in maximum material removal rate and enhanced productivity. There are 

different ways and strategies for these purposes. The first strategy is to take the advantage 

of lobing effect by proper selecting of cutting parameter combinations (i.e. cutting depth 

and cutting speed) in the stable region of the SLD. As it can be seen in Figure 1.1, the lobes 

becomes large at high speeds and high stable cutting depths between the lobes are available 

which can lead to high MRR, reduced time and cost. The lobing effect can be beneficial at 

relatively high speeds and is not effective at low speeds, where the lobes get smaller and 

close to each other. However, there is a phenomenon called process damping which 

becomes dominant at low speeds. The mechanism of process damping is based on the 

contact of the flank face of cutting tool and the surface of workpiece which will be 

discussed in detail later. To benefit from process damping and lobing effects for the 

purpose improving material removal rate, accurate prediction of stability lobes diagram is 

essential which indicates the importance of researches on machining vibrations and 

stability. Constructing the stability lobe diagram and selecting the proper combination of 
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cutting parameters are done before the beginning of machining process. However, there are 

some online methods as well to prevent chatter during machining. Spindle speed variation 

is an online technique to disrupt the regenerative effects by varying chatter wave 

modulation [13]. A similar concept is utilized by using variable pitch cutters and variable 

helix milling tools in [14, 15]. 

As mentioned before, the dynamic response of the structure is of great importance in 

determining the stability frontier. Based on this, many researchers have investigated 

different ways to passively change the dynamic characteristics of the system for improving 

the stability limit. This can be done by redesigning and modifying the machine tool 

structure in order to reduce the flexibility of weak parts and components. However, once 

the structure is designed and the machine tool is manufactured, the flexible components of 

the structure can be damped using additional damping devices. Tuned mass dampers are the 

most common absorbers used to damp the flexible elements of the system. Moreover, 

active devices such as piezoelectric actuators are also able to improve effectively the 

stiffness of the weak components, which can be the cutting tool, tool-holder, spindle, or any 

other component of the machine tool. 

As discussed, accurate prediction of stability limit and enlarging the stable zone are among 

the priorities of machining research field. In this thesis, the focus is on two topics: First, 

predicting of milling stability limits under effect of process damping and second, enhancing 

the stability limit by damping the flexible mode of system. Hence, literature reviews on 

these two topics are given in the following sections, respectively. 

 

 1.1 Literature survey on process damping 

Even though the proposed methods on predicting stability limit are successful at high 

cutting speeds, many discrepancies have been reported between predicted stability limit and 

experimental observations at low cutting speeds. This is mainly due to the effect of process 

damping which suppresses vibrations at low cutting speeds, leading to increased chatter-

free cutting depth as illustrated in Figure 1.2. This effect is crucial for some cases such as 
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machining of difficult-to-cut materials e.g. nickel alloys and titanium, where on one hand 

cutting speed is inherently bounded due to low machinability, i.e. tool life issues. On the 

other hand, cutting depth has to be fixed close to the limits of stability to compensate the 

reduction of MRR due to low cutting speed.  

 

Figure 1.2. Increasing chatter free cutting depth at low speeds. 

Although the primary source of damping is known to be structural damping, damping may 

also be generated due to cutting process itself, which can be much stronger than the 

structural damping at low speeds. In an early study, Sisson and Kegg [16] tried to find an 

explanation for chatter behavior at low speeds which was consistent with published 

experimental observations. They reported that the process stability can be improved by 

using tools with worn cutting edges and reground flank. Das and Tobias [17] introduced a 

velocity term into the equations of motion to mimic the process damping effect leading to 

increased stability limits. However, Tlusty and Ismail [18] showed for the first time that 

stability frontier arises by decreasing the cutting speed which is caused by periodic contact 

between the wavy surface and the flank face of tool. Later Wu [19] reported that the 

indentation of the workpiece material by the tool’s flank face is a huge source of damping 

and developed a model in which process damping effect is described by the indentation 

forces acting in the tool-workpiece interference. He introduced a ploughing force in normal 

direction which was related to the amount of displaced material by the tool flank. Assuming 

an average coefficient of friction, a tangential force was modeled as well.  
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In [20], Wu’s approach was adapted into two degree of freedom milling system. Later, this 

indentation model was simplified by Chiou and Liang [21] to a piecewise linear viscous 

damper. This was done by assuming small amplitudes of vibration. However, their model 

and the latest models based on the vibration amplitudes assumption (Montgomery & 

Altintas [22], Clancy & Shin [23], Eynian & Altintas [24], etc.) are reliable for the utilized 

vibration amplitudes and the errors increase in predicting stability limits considering other 

amplitudes. Ahmadi and Ismail [25] studied the nonlinear effect of process damping in the 

stability lobes diagram analytically. For this purpose, they used semi-discretization and 

multi-frequency methods. They developed the linearized model while preserving the 

vibration amplitude dependence and represent a band of stability between the fully stable 

and fully unstable regions. 

In another early work, Ranganath et al. [26] added the process damping effect to stability of 

milling by calculating the indentation volume through time domain simulations. Huang and 

Wang [27] investigated mechanisms of cutting and process damping separately using time 

domain simulations and worked on peripheral milling stability modeling by developing the 

cutting force model which included process damping. In another work, Altintas et al. [28] 

presented a cutting force model including three dynamic cutting force coefficients related to 

regenerative chip thickness, velocity and acceleration terms. They used Nyquist criterion to 

solve stability of the dynamic process.  

Budak and Tunc [29] proposed an inverse stability method for experimental identification 

of the additional process damping effect, where the structural damping is deducted from the 

total damping. They used an energy dissipation principle to relate the process damping to 

the flank-wave indentation, and identified indentation force coefficients which are then 

used for estimating the amount of damping force for different cutting conditions and tool 

geometry [30]. Besides analytical and experimental approaches, Chandiramani [31] 

proposed a stability model with nonlinear process damping numerically. Furthermore, Jin 

and Altintas [32] identified the process damping coefficients utilizing the finite element 

models of micro-milling processes based on material constitutive property. In another 

identification method [33], the process damping coefficient was predicted from frequency 

domain decomposition of vibration signal in stable cutting region. 
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Predicting of stability limit in multi-mode is more complicated than single mode systems, 

where the tool mode may be the only dominant mode. Some of the researches on stability 

limit of multi-mode systems were already mentioned. Although there are more researches 

([34], [35]) on stability of multi-mode milling systems, they have not considered the effect 

process damping. On the other hand, the above mentioned researches on process damping 

have studied single mode systems and considered only the dominant mode for predicting 

the stability limit. However, the vibrations frequency is one of the most effective 

parameters in process damping effect [36] which can be very important in the stability 

behavior of the multi-mode systems. The process damping effect significantly diminishes at 

low frequency modes as compared to higher frequencies due to the decreased tool-

workpiece interaction. Thus, the amount of generated damping by well-separated modes of 

a system is expected to be different, leading to a different dynamic behavior compared to 

single mode systems. 

 

1.2. Literature review on modification of system’s dynamic response 

In machine tools, the dynamic response of the machine tool’s structure is mainly 

responsible for the overall performance of the machine. Among the strategies for avoiding 

chatter and increasing the stable cutting depth, modifying the dynamic behavior of the 

structure and damping the flexible mode of the system are among the most practical 

methods. Optimization of the machine tool structure where the objective is increasing the 

stiffness of the most flexible part of the structure is of great importance at the design stage. 

In this regard, topology optimization is widely used to target the eigen-frequencies and 

flexible modes of the structure [37]. Finite element method (FEM) is a common and strong 

tool for simulation of structures’ flexibility and stability of systems. It makes it possible to 

simulate and predict the dynamic behavior of the machine tool and its components at the 

design stage, before construction of the machine [38, 39]. In [40], an approach was 

presented to predict the machining stability through simulation of chip formation based on 

FEM. Garitaonandia et al. [41] developed a dynamic model for a grinding machine through 

finite element analysis. In [42], dynamics of thin-walled workpiece milling was 
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investigated considering variation of dynamic characteristics of the system by the tool 

position. Apart from FE models, the dynamic response of the system can be predicted 

analytically using the substructure coupling techniques. Erturk et al. [43] modeled the 

dynamics of spindle-holder-tool assembly analytically using Timoshenko beam and 

receptance coupling theories. Through this model, it is possible to simulate the effect of 

each component on the tool-point FRF and hence, redesigning the components to improve 

the machine tool’s performance against chatter. 

In cases where modifying or changing of components is not possible, the stability of system 

can be improved using vibration control devices which absorb or supply energy. The 

vibration control systems are mainly divided in two categories based on their operational 

mechanism; passive and active. Active systems are composed a control feedback system 

(sensors and controller equipment) and an actuator which applies force to the system based 

on the feedbacks, in order to counteract and suppress the vibrations caused by flexible 

elements. Since piezoelectric materials can operate as both sensors and actuators, they are 

being used in active vibration suppression systems widely and several absorbers have been 

constructed using them. In [44], embedded piezoelectric elements and shunt circuits were 

used for chatter reduction in turning. Matsubara et al. [45] successfully suppressed a boring 

bar using piezoelectric actuators and an inductor-resister (LR) circuit as a mechanical 

absorber. In [46], an active control system was implemented around the spindle and tool to 

suppress chatter in milling operation and the stability lobe diagram was actively raised. 

Browning et al [47] proposed an adaptive vibration control technique using filtered-x least 

mean square algorithm for reducing chatter in boring bars. 

Although active vibration control systems can be very effective and applicable to different 

excitation conditions, usually they require complicated setup and cost too much. On the 

other hand, passive devices are less effective and operate in a specified dynamic loading 

which they tuned for, but they are cheaper, easy to implement and inherently stable despite 

of active systems. Mechanism of passive devices is based on absorbing the vibration energy 

of the system. Tuned mass dampers (TMD) are the most used passive devices composed of 

damping elements and mass. A tuned mass damper was used in [48] to improve the length-

to-diameter ratio in boring. Saffury et al. [49] tuned an absorber to damp the vibration of an 
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external grooving tool. Tarng et al. [50] modified the frequency response function of a 

turning cutting tool using a tuned vibration absorber which improved the cutting stability. 

In [51], multiple tuned mass dampers (MTMD) were optimized to improve chatter 

resistance of machine tools. It was shown that MTMDs have more robustness to 

uncertainties in dynamic properties of the system compared single TMDs. Wang [52] 

proposed nonlinear dampers by adding series of friction-spring elements and demonstrate 

their performance in machining stability improvement. In [53], a frictional damper was 

introduced to enhance the structural damping in a slender end-mill tool. 

 

1.3. Objectives 

The focus of this study is on investigating the dynamic behaviors of systems with multiple 

modes such as the system shown in Figure 1.3. In this regard, two topics about multi-mode 

systems have been studied as mentioned in the following two paragraphs: 

As previously indicated, the process damping effect is highly influenced by vibration 

frequency and hence, contribution of multiple modes at distinct natural frequencies (such as 

modes shown in Figure 1.3) may lead to significant changes in stability of the system as 

process damping is considered. In this part of the study, the objective was to investigate the 

effect of process damping in milling with respects to the multi-mode dynamics 

characteristics of the multi-degree-of-freedom system. For this purpose, different multi-

mode systems have been realized on a milling machine tool and the stability limit for 

multiple modes has been constructed through the frequency domain solution. To have a 

deeper insight into the dynamics of multi-mode milling and better demonstrate the 

contribution of modes in the vibration of the tool, a time domain model simultaneously 

considering multi-mode interaction has been proposed. 

In the second part of the study, the focus is on enlarging the stable cutting zones by 

changing the dynamics of the structure. This can be achieved by increasing the rigidity of 

flexible components which is done through different approaches in literature as previously 

discussed. Here, the aspiration was to dampen a flexible mode of a multi-mode system 
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using the other modes of the system. The same idea of tuned mass dampers has been 

followed where the vibration modes of the main system and the absorber are close to each 

other, leading to suppression of the system’s dominant mode. In this study, a methodology 

has been proposed for damping the tool mode (which is usually the most flexible mode in 

machine tools) by tuning it to the existing modes of the rest of structure. 

The outcomes of this study are supposed to be practical guidance for machine tool 

operators in process planning of cutting parameters, i.e. spindle speeds and depth of cuts, in 

milling processes which are limited to low cutting speeds and in taking advantage of 

structure’s modes for damping the tool mode and consequently enlarging stable cutting 

zone.  

 

Figure 1.3. An example of a multi-mode system 

 

1.4. Layout of the Thesis 

The thesis is organized as follows: 

 

 In chapter two, the stability of multi-mode milling system under effect of process 

damping is studied by constructing the stability lobes diagram. Within this chapter: 
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 In section 2.1, the frequency domain solution for multi-mode milling stability 

with process damping is presented and the stability lobes diagram are predicted 

and contribution of the modes is demonstrated. 

 In section 2.2, a time domain model is developed to simulate the vibration 

behavior of the system at different points of the stability diagram.  

 In section 2.3, the experiment setup and cutting tests’ results are presented. 

 The chapter is concluded in section 2.4. 

 

 In chapter three, the proposed approach to dampen the tool mode is presented. It is 

shown how to find the proper tool dimensions according to the experimentally obtained 

FRF of the structure at the tool holder tip. Within this chapter: 

 In section 3.1, the mechanism of vibration absorbers and their function is 

discussed. 

 In section 3.2 and 3.3, the beam theory and receptance coupling method which 

are used for FRF predictions are presented. 

 In section 3.4, the method of tool-tip FRF prediction using analytical FRFs of the 

cutting tool and experimental FRF at the holder tip is given. 

 In section 3.5, the developed procedure of FRF modification and damping of tool 

mode is discussed. 

 In section 3.6, the simulation results along with experimental results are 

presented. 

 The chapter is concluded in section 3.7. 

 

 In chapter four, a summary of the thesis is presented which includes the major 

conclusions of the thesis. 
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Chapter 2 PROCESS DAMPING EFFECT ON STABILITY OF MULTI-

MODE MILLING SYSTEM 

In this chapter, the stability of multi-mode milling systems considering process damping is 

investigated. The effect of different vibration frequencies in such systems are emphasized 

and it is shown how the rigid modes of a system at low frequencies can change the dynamic 

response of the system in presence of much more flexible modes. The investigation is done 

through both frequency domain and time domain analyses. Moreover, experimental 

investigations are presented as well.  

2.1. Dynamics and stability of milling with process damping in frequency 

domain 

The stability of the multi-mode milling system in frequency domain is studied in this 

section. For this purpose, the analytical frequency domain solution discussed in [8] is used. 

The multi-mode system is considered as several single mode systems and the stability 

diagram for each mode is constructed separately. Then, the lowest envelope of the stability 

limits of all the modes is selected as the ultimate stability limit of the multi-mode system. 

This approach is valid if the modes of the system are well-separated [12]. In the following 

subsection, the dynamics of single-mode milling system with the process damping term is 

briefly presented. The equations of motion of milling system are followed by the frequency 

domain solution of the stability limits. 
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2.1.1. Equations of Motion 

The cross section of a helical end mill, which is flexible in x and y directions with N 

number of cutting flutes is illustrated in Figure 2.1. It was mentioned that the multi-mode 

system is considered as several single mode systems. Thus, the system in Figure 2.1 has 

one mode is each direction and it is considered as one of the modes in multi-mode system. 

As the cutter rotates, the cutting tooth indents into the wave left on the cut surface of the 

workpiece. Correspondingly, an indentation force arises in normal directions on the tool 

flank face, creating a damping effect. The normal force causes a tangential component as 

well, assuming a friction coefficient µ. For this system, the equations of motion with the 

effect of process damping can be written in x and y directions as: 

 

 
, , , , , ,

, , , , , ,

;
1,...,

;

t t s p

x i x i x i x x i x i x i

tt t s p

y i y i y i y y i y i y i

m x c y k x F c c c
i N

m y c y k y F c c c

    


    
 (1) 

 

where m, cs and k are the modal mass, structural damping, and stiffness of the system, and 

cp indicates the average process damping coefficient in each direction, respectively. Nt 

stands for the number of dominant modes of the system. 

 

Figure 2.1. Dynamic milling with process damping, (a) cross section of a helical end mill, 

(b) flank-workpiece interaction 

 

The cutting forces in equation 1 acting on the tool can be written in terms of dynamic 

displacements and cutting depth [8] as follows: 
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t

y yx yy

F a a x
aK

F a a y

     
    

    
 (2) 

 

where Δx and Δy are the dynamic displacement of the cutter between the current and 

previous cutting pass. In the above equation, axx, axy, ayx and ayy are the directional 

coefficients to relate the dynamic forces and dynamic displacements [8]. 

2.1.2. Milling stability 

After writing the dynamic cutting forces in terms of dynamic displacement of cutting tool 

and mathematical manipulations, the dynamic equation of the system can be written as 

follows [8]: 

  
   0

1
(1 e )[ ][G( )]

2
c c ci t i t i t

t cF e aK A i F e
  

   (3) 

 

In the above equations, tK  is tangential force coefficient, [A0] is the directional coefficient 

matrix of the milling system and [G] stands for the total transfer function of the system 

including the effect of process damping; 
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1 2
( ) ; ;
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t
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c t
n

r i r
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k r r


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

 
   

 
 (4) 

 

where ζs and ζp are the structural and process damping ratios. The stability of this system 

can be reduced to an eigenvalue problem [8]: 

 
0 0 0det[[ ] [ ]] 0; [ ] [ ][ ]I G G G A    (5) 
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The eigenvalue   in equation 5, is written in terms of process parameters and the chatter 

frequency ωc, 

 
(1 )

4
ci T

t

N
K a e




     (6) 

T is the tooth passing period. Finally, the limiting stable cutting depth can be calculated by 

rearranging equation 6: 

 2

lim

2
a 1R R

t INK

    
     
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where 2

1 1 0

0

1
( 4 )

2
a a a

a
      . 

In this solution, 1a  and 0a  are written in terms of the direct transfer functions and the 

average directional coefficients as detailed in [8]. In order to find the corresponding spindle 

speed Ω, the below equations are used: 

 
1 2 60

tan , 2 , ,R

I c

k
T

NT

 
   



   
      

 
 (8) 

2.1.3. Simulation of process damping coefficient 

In a previous study [36], the average process damping coefficients were determined 

through inverse stability solution, assuming that process damping is the only cause for the 

difference between experimentally obtained stability limit exp

lima  and analytically calculated 

stability limit 
lim

cala , which is verified at high cutting speeds. The experimentally determined 

process damping coefficients were used to identify the indentation coefficient Kd through 

damping energy analysis, to simulate process damping coefficients for different cases.  

The damping forces arising due to the flank face – workpiece indentation acts against the 

vibration direction when the tool is moving down the undulation, leading to an additional 
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damping effect (see Figure 2.1) and stabilize the cutting process by dissipating the vibration 

energy.  

The average process damping coefficients, in x and y directions, are defined through 

energy balance analysis. For such a purpose, the vibration energy dissipated by the average 

process-damping coefficients is equated to the energy dissipated by the indentation forces 

over one tool rotation period, Tsp as illustrated in Figure 2.2. 

 

 

Figure 2.2. Damping energy balance analysis 

 

The additional process damping coefficient at the expected chatter frequency, c is 

derived as follows: 

 

0

2

0

( )
, ,

Tsp
d

ip

i Tsp

F t u dt
c i x y

u dt
 



 (9) 

where,  𝑢 = Asin 𝜔𝑐𝑡 

The time varying indentation forces,  𝐹𝑖
𝑑(𝑡), acting on the tool in x, and y directions are 

calculated by orienting the indentation forces in chip thickness, 𝐹𝑟
𝑑(𝑡), and 𝐹𝑡

𝑑(𝑡), 

tangential directions, which are written as function of the indentation volume, U(t), and the 

indentation constant as follow:  

 (t) (t)

(t) (t)

d d

r

d d

t r

F K U

F F




 (10) 
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In equation 10, U(t) is the indentation volume, which is calculated according to the model 

given in [36] and  is the friction coefficient. 

2.1.4. Process damping dependence on frequency in multi-mode milling systems 

The dynamic milling system consists of several components such as machine tool axis 

carriers, spindle, tool holder and the cutting tool, each of which introduces dynamic 

flexibility in a unique frequency range. The vibration frequency significantly affects the 

process damping as it arises from the indentation between the tool flank face and the 

undulations left on the workpiece surface. The effect of vibration frequency on the process 

damping coefficients was previously emphasized by Tunc and Budak [30]. The variation of 

specific average process damping coefficient with the vibration frequency is shown in 

Figure 2.3, where it is seen that as the vibration frequency decreases the amount of process 

damping reduces substantially.  

 

Figure 2.3. Effect of vibration frequency on average process damping coefficients [30] 

 

Figure 2.4 shows how the indentation of the material is more at high frequencies compared 

to low frequencies, leading to additional damping effect. As the vibration frequency of the 

cutter decreases, the waves become smoother and their slope decreases.  
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Figure 2.4. Tool-workpiece interference at a) high frequencies b) low frequencies 

In dynamic milling, chatter is expected to occur at a single mode. For a milling system 

having multiple dominant modes at distinct frequencies such as the system shown in Figure 

1.3, even though the higher frequency mode is suppressed by process damping, the lower 

frequency mode may not be suppressed as the process damping is smaller at the lower 

vibration frequency. Thus, theoretically, the chatter frequency may shift to low or high 

frequency range depending on the amount of process damping acting on each mode. On the 

other hand, the vibration frequency dependent process damping may cause the milling 

system experience higher frequency mode vibration, while it is chattering at lower 

frequency mode. 

2.1.5. Constructing the multi-mode stability lobes with process damping 

The amount of process damping acting on a vibrating mode depends on the cutting 

depth. Thus, the stability limit at a spindle speed can be calculated in an iterative manner as 

proposed by Tunc and Budak [36]. Although it is a simplification of the nonlinear effect of 

process damping on stability, within the scope of this study, the stability lobes are 

calculated separately for each dominant mode with the process damping effect. Then, the 

lowest envelop of the stability lobes due to all dominant modes is taken as the absolute 

stability border. However, alternative solution approaches should be further investigated. 

A representative stability diagram for down milling of AL7075, including process 

damping is given in Figure 2.5. For this simulation, half immersion down milling and force 

cofficients of Ktc=1600 MPa and Krc=600 MPa are considered. The tool is an 18 mm 

diameter, four fluted, solid carbide end mill. The transfer function of the system is shown as 



19 

 

well and as it can be seen there are two dominant modes with almost the same magnitudes 

which mean the flexibility of the modes are close and comparable.  

 

Figure 2.5. Change of the mode governing the absolute stability 

 

The solid lines show the stability lobes due to the two dominant modes, i.e. at low 

frequency and high frequency, when process damping is ignored. It is seen that, the 

absolute stability limit is governed by the high frequency mode if the process damping is 

not considered. However, as the process damping is considered, the absolute stability line 

of both modes shifts up, where they cross-cut each other at point B. As a result, the high 

frequency mode governs the absolute stability limit from point A to point B. Then, from 

point B on, the low frequency mode governs the stability limit. This is due to the fact that, 
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the amount of process damping introduced by  the low frequency mode is not enough to 

increase stability at that vibration frequency. As a result, the absolute stability limit 

corresponding the low frequency mode fails to shift up as much as the high frequency 

mode.  

The system shown in Figure 2.5 had two dominant modes where their flexibilities were 

close to each other. However, a more interesting case has been presented in Figure 2.6 for a 

14 mm diameter end mill where the flexibilities of the modes are not close and one of them 

is much more rigid. The mode around 3000 Hz is much more flexible compared to the 

mode around 700 Hz and its stiffness is almost three times less. If someone calculates the 

minimum stability limit for these two modes, it can be seen that the minimum stability limit 

for the low frequency mode is about 2 mm, which is about three times higher than the 

minimum stability limit of the high frequency mode which is 0.6 mm. For such conditions, 

many people may decide to consider such a system as a single mode system and ignore the 

rigid low frequency mode. The stability diagram for this system is shown in Figure 2.6-b. 

The same cutting conditions as the previous case in Figure 2.5 are considered.  The 

vibration at lower frequency cannot be damped well because of less process damping 

generated by the low frequency mode.  Consequently, the stability limit of the low 

frequency mode at low speeds is lower than the higher frequency mode and governs the 

stability limits.  This is one of the most important conclusions about multi-mode systems 

that even though the low frequency mode is much more rigid than the higher-frequency 

mode and its absolute stability limit without effect of process damping is almost three times 

higher, the stability limit at low speeds is governed by the low frequency mode.  
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Figure 2.6. a) Frequency response function of milling system with 14mm diameter tool, and 

b) stability lobes diagram for cutting AL7075 
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2.2. Time Domain Simulation of Cutter vibration 

2.2.1 Mathematical model 

A schematic of two DOF milling system with multiple modes in x and y directions is 

illustrated in Figure 2.7. In order to simplify the dynamics of milling process and 

concentrate on the multi-modes effect, the workpiece is assumed to be rigid compared to 

the tool. The tool has N cutting teeth. Assuming that the in-cut tool length is divided in M 

elements in axial direction (z) with an infinitesimal thickness of dz, the differential cutting 

forces corresponding to ith element and jth tooth, in the tangential, dFt, and radial, dFr, 

directions (as shown in the cross sectional view of the milling process in Figure 2.7) can be 

given as: 

 

 

Figure 2.7. a 2-dof multi-mode milling system 
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where Ktc and Krc are tangential and radial force coefficients, respectively. hij is the 

instantaneous dynamic chip thickness, given as a function of θij, the immersion angle 

measured from the positive y-axis, as follows: 

 sin cos ( )ij ij ij ijh x y g        (12) 
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Note that Δx and Δy are the total tool deflections, including all the modes, in x and y 

direction. T is the tooth passing period, R is the tool radius, Ω is rotational speed of the 

cutter, θp is the cutter pitch angle, β is the helix angle of the tool, and the step function g(θij 

) defines if the corresponding tooth is in cut or not;; 
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Θst and θex are the start and exit immersion angles of the cutting tooth, respectively. 

Generally, process damping force is known to be a function of the indentation volume 

between the flank face and workpiece. Thus, it can be formulated as: 
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 damping

ij d ijF K A dz  (15) 

 

In the above equation, Kd is the material indentation constant and Aij is the indentation 

area, which is multiplied by dz to calculate the indentation volume. Once process damping 

force is added to cutting forces, the total forces in tangential and radial directions are 

expressed as: 
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where µ is friction coefficient. By resolving equation 16 the forces in equation in the x and 

y directions, and summing the forces of all cutting teeth, the total dynamic milling forces 

with process damping effect acting on the tool can be written as: 
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By substituting equations 15 and 16 in17, the total forces in x and y directions can be 

formed in a matrix form as follows: 
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In multiple modes systems, the total motion of the tool can be obtained by summing the 

modal masses’ displacements. Assuming that the modal transformation matrix is 

normalized to x, the total motion can be obtained such that x=q1+q2+…+qN, in which qn 

n=1:Nt are the modal motions of the modal masses for a system with Nt modes. The same 
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can be applied in y direction. So the total tool motion contains components of each mode, 

thus the applied force to each mode of the system is dependent on the motions of all the 

modes. Considering equation 18, the forces can be expressed as: 
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where Δqi=qi(t)-qi(t-T). In another form: 
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(20) 

 

As discussed above, the applied force to each mode results from the motions of all the 

modes. This dependency of the forces couples the equations of the modal systems in each 

direction: 

 

 

; 1:
n x n x n x

n y n y n y

q n x q n x q n x x

t

q n y q n y q n y y

m q c q k q F
n N

m q c q k q F

  


  
 (21) 

 

where mq, cq and kq are the modal mass, modal stiffness and modal damping of the modes 

of the system. Finally, the motion equation of cutting tool considering the effects process 

damping and multiple modes can be represented in the x and y directions as follows: 
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In the above representations, ‘diag’ signifies a diagonal matrix.  Substituting the cutting 

forces described in equation 20 into equation of motion yields: 
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The first-order representation of the above equation can be expressed by defining the 

state variable R(t) in terms of the modal positions and velocities,  
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 (25) 

 

where I2N⨯2N and O2N⨯2N are identity and zero matrices, respectively. The first-order 

equation 25 is solved by classic 4th order Runge-Kutta method to illustrate the vibration of 

the multi-mode system with effect of process damping.  
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2.2.2 Simulation results 

Simulations results for the system Figure 2.6 is shown in presented in Figure 2.8. The 

spindle speed is 1000 rpm and the cutting depth is 1.5 mm. As predicted in Figure 2.8, the 

system is stable and the vibration amplitude is not increasing. The vibration spectrum 

which is given in Figure 2.8-b reveals that both modes have been excited. However, the 

amplitude at the second mode is higher which was expected since this mode is more 

flexible. The cutting and damping forces are presented in Figure 2.8-c and Figure 2.8-d. 

From the displacement and damping force figures, it can be concluded that as the amplitude 

is growing up, the amount of generated damping force is also increasing and damp the 

vibration until it stabilize the cutting process and the vibration amplitude stays constant.  

 

 

 

Figure 2.8. Simulation results for cutting AL7075 at 1000 rpm with a 14 mm diameter 

endmill. a) displacement, b) frequenct spectrum of displacement, c) cutting force, d) 

damping force, (in y direction). 
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Two chatter cases have been simulated in Figure 2.9 at two different cutting speeds. The 

cutting speed in Figure 2.9-a and -b is 1000 rpm, the same speed as in Figure 2.8, but the 

cutting depth is 3 mm which is in the unstable region according to Figure 2.6. As it can be 

seen, chatter has completely developed and the system is unstable. But note that even 

though at the stable cutting depth the second mode was dominant (look at Figure 2.8-b), the 

spectrum in Figure 2.9-b reveals that chatter has occurred due to the first mode, i.e. the low-

frequency mode which has failed to damp its vibration. The second case is at 4834 rpm 

with the cutting depth of 1 mm. Despite the previous case, Figure 2.9-d indicates that 

chatter has developed at the second mode, i.e. the high-frequency mode. This verifies the 

claim that the chatter can develop at both modes depending on the cutting speed and it 

shifts from the low frequency mode to the high frequency mode as cutting speed increases. 

 

 

 

Figure 2.9. Displacement and frequency spectrum in unstable region at a,b) 1000 rpm and 

c,d) 4834 rpm for the same system of Figure 2.8. 
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2.3. Experimental investigation 

In this section, the effect of process damping on the dynamics of the multi-mode milling 

system is experimentally investigated to verify the simulation results given in the previous 

section. Two cases have been considered on a five-axis milling machine tool with two 

different tools and materials; case one: an 18 mm diameter end mill cutting AISI1050, and 

case two: an 12 mm diameter end mill cutting AL7075. Both tools are carbide end-mills 

with four cutting flutes. They were clamped to the spindle-holder assembly with the 

overhang length is 60 mm for both cases. All the experiments were conducted on DECKEL 

MAHO 5-axis milling center and the tool holder SK40 ER32C 160G has been used. 

2.3.1. FRF measurements 

The frequency response functions (FRFs) of both cases have been measured and they are 

shown in Figure 2.10. The modal parameters of both cases are also given Table 1 and Table 

2. It can be seen that there is a dominant mode which is much more flexible compared to 

others. Many may consider such cases as a single mode system and ignore the low-

magnitude modes around 700 Hz. However, it is verified experimentally in this section that 

how important and determinative the effect of such modes can be. 

 

 

Figure 2.10. Frequency responses function of a) case 1, and b) case 2. 
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Table 1. Modal parameters for the system case 1. 

 kx (N/m) fx (Hz) ζx (%) ky (N/m) fy(Hz) ζy(%) 

       1st mode 4.6e7 636 1.8 2.0e7 634 5.4 

2nd mode 3.4e7 3352 1.5 4.4e7 3353 1.1 

 

Table 2. Modal parameters for the system case 2. 

 kx (N/m) fx (Hz) ζx (%) ky (N/m) fy(Hz) ζy(%) 

1st mode 1.8e7 712 3.1 1.6e7 653 5.4 

2nd mode 1.0e7 3151 2.8 1.4e7 3065 1.2 

 

 

3.3.2. Cutting tests conditions 

In the cutting tests the spindle speeds are selected such that the effect of process 

damping on the absolute stability due to both modes can be observed. The cutting test 

conditions are given in Table 3 and Table 4 for first and second cases, respectively. The 

feed rate was set to 0.05 mm/rev/tooth and the radial immersion was 50%, i.e. half 

immersion. In none of the tests coolant was used and all of them were in dry-cutting 

condition. 

Table 3. Cutting tests conditions for case 1. 

Test number Spindle speed (rpm) Cutting speed (m/min) 

1 3730 211 

2 2585 146 

3 2060 116 

4 1245 70 

5 895 51 

6 540 31 
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Table 4. Cutting tests conditions for case 2. 

Test number Spindle speed (rpm) Cutting speed (m/min) 

1 5181 195 

2 3531 133 

3 2531 95 

4 2071 78 

5 1411 53 

6 1011 38 

 

2.3.3. Designed workpiece for experiments 

In order to perform the cutting tests effectively and save more time, the workpiece part was 

designed as a staggered part with steps as shown in Figure 2.11. The steps’ increment was 

1/2 of the absolute stability limit. Thus, the cutting depth could be increases gradually and 

capture the stability limit accurately. The length of each step was selected as 1.2 times of 

the tool diameter. So enough time could be provided for chatter to be developed. After each 

cutting level, the machine was stopped to let the tool stabilize before the next cutting level. 

This way it was insured that the vibrations of previous steps don’t affect the vibrations 

while cutting the next step. 

 

Figure 2.11. The workpiece with steps used for the cutting tests. 
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2.3.4. Chatter detection method 

The experiment setup is shown in Figure 2.12. Compared to turning, realizing chatter in 

milling can be more difficult and challenging especially for more complicated multi-mode 

systems. In this work, different data have been collected for the purpose of identifying 

chatter and the corresponding chatter frequency, ωc: vibration spectrum, sound spectrum 

and surface photo. The chatter detection methods are illustrated in Figure 2.13 and Figure 

2.14. Examining the workpiece surface after cutting can be very helpful for recognizing the 

stability limit since chatter deteriorates the cut surface and the feed marks, which can be 

seen in stable region, cannot be identified easily in unstable region. However, to recognize 

the corresponding chatter frequency, ωc, vibration or sound data are required. Relying on 

one type of data can be problematic since it may doesn’t capture ωc. As chatter happens, the 

system starts vibrating at the corresponding frequency ωc, and spectrum magnitude 

increases around the vibrating mode. This data has been collected using an accelerometer 

attached to the spindle tip (look at Figure 2.12). A directional microphone is also used to 

record the chatter sound and to capture the spikes around ωc.   

 

 

Figure 2.12. Experiment setup 
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Figure 2.13. a) cut surface in stable region, b) cut surface in unstable region. 

 

Figure 2.14. Chatter detection through sound spectrum, a) cutting in stable zone b) cutting 

in unstable zone 

2.3.5. Experimental results 

The stability diagrams with results of the cutting tests are shown in Figure 2.15. As it can 

be seen, the experimental results have good agreement with the simulated stability limits. 

At the process damping speeds, although the most flexible mode generates large ploughing 

forces and offers high stability limits, chatter has happened at very lower cutting depths. 

Note that absolute stable depth of cut without considering process damping for the first 

mode is more than twice of the absolute stable cutting depth of the second mode. It is the 

most interesting aspect of multi-mode systems that the modes with almost half of the 

measured structural stiffness of other modes can govern the stability limits at process 

damping speeds. This verifies the fact mentioned in [30] that the process damping is highly 

influenced by vibration frequency. In Figure 2.16 and Figure 2.17, the spindle vibration 

spectrum and the sound spectrum for two different spindle speeds are shown. The green 

lines show the harmonics tooth passing frequencies. From Figure 2.16 it is clearly seen that 

the chatter has been developed at the second mode of the system at 5181 rpm. However, as 
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the spindle speed is decreased to 1011 rpm, the chatter mode shifts to the first mode, which 

is shown in Figure 2.17. Note the in Figure 2.16 the spectrum doesn’t show any increase in 

magnitude around the first mode which means this mode is not responsible for the 

developed chatter, while in Figure 2.17 the second mode has been damped and no spikes 

can be seen in this frequency range. 

 

 

Figure 2.15. The stability lobes diagrams and cutting test results for a) case 1 and b) case 2. 

 

Figure 2.16. Chatter at second mode; spindle vibration spectrum (case 1) at 5181 rpm, a) 

low frequency range b) high frequency range 
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Figure 2.17 Chatter at first mode; spindle vibration spectrum (case 1) at 1011 rpm, a) low 

frequency range b) high frequency range 

 

2.4 Conclusion 

In this chapter, the process damping effect on stability limit of milling systems with 

multiple modes was investigated. To the author’s knowledge, the previous studies 

concerning process damping have studied its effect on stability of single mode systems and 

have ignored the other modes. However, process damping is highly influenced by chatter 

frequency, according to the modes of the milling system. In the presented thesis, process 

damping effect was investigated for a multi-mode milling system. The theoretical 

simulations were done in both frequency domain and time domain and they verified by 

cutting experiments. The effect of process damping on the responsible chatter modes was 

demonstrated. In general, the absolute stability limit is expected to be governed by the most 

flexible mode. However, it was shown that under the effect of process damping, the mode 

governing the absolute stability may shift to other modes at lower frequencies even if their 

rigidities are much more than the most flexible mode of the system at the higher 

frequencies. In a certain cutting speed zone, due to the high process damping caused by the 

high-frequency modes of the milling system, chatter may develop at the low-frequency 

modes at a depth of cut lower than the predicted one considering only the high frequency 

mode. Thus, the region which was expected to be stable with the assumption of single 

mode system at low cutting speeds is no more stable and chatter can develop due to the 

vibrations of the rigid low frequency mode. This shows the importance of considering 
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multiple modes when determining the stability limit, even if one of the modes is dominant 

and much more flexible than the others. This is mainly due to the fact that the amount of 

process damping generated by low frequency modes is not enough to stabilize the process. 

The high frequency mode makes waves on the workpiece surface with shorter length and 

higher slopes, leading to higher process damping effects and consequently higher stability 

limit. Such information may be used to identify the cross cutting point, where the mode 

governing the absolute stability shifts from high frequency mode to the low frequency 

mode with the effect of process damping. Such a point would show the cutting speed after 

which the absolute stability limit may not further increase with decreasing cutting speed.  

For better understanding the stability diagram of a multi-mode milling system, consider 

the schematically illustrated stability diagram in Figure 2.18. At a certain cutting speed, 

Vcutting, by increasing the depth of cut gradually from point zero to point B, the system 

experiences five different vibrating behaviours. In the first region, none of the modes are 

excited and the system is fully-stable. By increasing the cutting depth and entering the 

second region, the flexible high-frequency mode excites and starts vibrating. However, this 

vibration causes generating process damping forces which in turn damp the vibration. This 

leads to limit cycle oscillations of the system at this mode and the amplitude of the 

vibration remains almost constant. As the cutting depth goes to region 3, the other mode 

also excites, but it is damped as well due to the process damping effect and cutting in this 

region is stable, even though it is vibrating at both modes. But as the cutting depth is 

crossing from region 3 to region 4, the amount of process damping generated by the low 

frequency mode is no more enough to stabilize its vibration which leads to developing 

chatter at this mode and system becomes unstable, even though the high frequency mode is 

still producing enough damping to damp itself and prevent chatter to be developed. Finally 

in region 5, chatter can be developed at both modes resulting in fully-unstable conditions. 
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Figure 2.18. Schematic of stability lobes diagram for a multi-mode system 

 

The experimental results showed that the absolute stability limit may be governed by the 

low frequency modes rather than the high frequency modes at low cutting speeds with the 

effect of process damping. Under such circumstances if the amount of process damping 

introduced by the lower frequency mode is not enough to stabilize chatter vibration at that 

mode, it will limit the chatter-free material removal rate, leading to less productivity. This 

may be considered as a typical case when a heavy duty milling operation is aimed to be 

performed at a machine tool with flexible column, axis carriages, spindle or tool holder, 

which introduces relatively low frequency modes. The resulting stability diagram indicates 

that the low frequency mode must not be ignored even if it is too rigid compared to the high 

frequency mode and considering only the most dominant mode of the system may confuse 

the machine users as they encounter chatter at cutting depths which were expected to be 

stable. 
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Chapter 3 TOOL-TIP FRF MODIFICATION USING MULTI-MODE 

CHARACTERISTICS OF STRUCTURE 

As discussed in the first chapter, the primary information required for constructing the 

stability lobe diagram is the frequency response function of the system, including the 

machine tool’s body, spindle, tool holder and cutting tool. The stability border of a system 

is hugely influenced by its dynamic characteristics where high flexibility of the system can 

drastically decrease the process stability. Therefore, one of the machine tool manufactures’ 

objectives is to increase the rigidity of the system which results in less vibrations, enlarged 

stable cutting zone and consequently increased material removal rate. To achieve this goal, 

there are several approaches to damp the flexible modes of the system, including 

implementing vibration absorbers, as discussed in the first chapter. In this thesis, a different 

approach is followed in which the flexible tool’s mode is damped without using any 

external devices, but by the modes of the machine tool structure itself. In this regard, the 

tool is tuned in such a way that its natural frequency is the close to one of the natural 

frequencies of the rest of the structure, i.e. the FRF of the system at the tool-holder tip. This 

is similar to the idea of tuned mass dampers where the modal parameters of the system and 

the absorber are tuned to each other. The FRF of the tool which is obtained through beam 

analysis is coupled to the systems FRF at the holder tip to obtain the overall FRF of the 

system. 

This chapter is organized as follows: The mechanism of tuned mass dampers is briefly 

discussed in section 3-1. Then, the Timoshenko beam theory which is used for the beam 

analysis and obtaining the dynamic response of the tool is presented in section 3-2. It is 

followed by section 3-3 which contains the receptance coupling method. Then, in sections 
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3-4 and 3-5 the tool tip FRF prediction method used in this thesis and the developed 

methodology of tuning the tool dimensions and damping the tool mode are discussed. 

Finally, the simulation results along with experimental results are presented in section 3-6 

and the chapter is concluded in section 3-7. 

3.1. Generalities about vibration absorbers 

Tuned mass dampers (TMD) or dynamic vibration absorbers (DVA) are widely used to 

suppress vibrations and protect structures from damage and structural failure. Indeed, the 

TMD absorb the vibrating energy of the main system leading to suppressed vibrations of 

the system. A typical TMD, consist of a mass (m), spring (k) and damping (c) elements, is 

attached to the system as shown in Figure 3.1. The mass, stiffness and structural damping 

of the main system are shown as ms, ks and cs, respectively. 

 

Figure 3.1. A typical tuned mass damper (TMD) attached to a system. 

Applying a harmonic force F(t) on the system, the equations of motion can be written as: 

 ( ) ( ) 0

( ) ( ) ( )

s s

s s s s s s s s

mx c x x k x x

m x c x k x c x x k x x F t

    
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 (26) 

 

where F(t)=F0e
iωt. Thus the response of the system is in the same form as xs(t)=Xse

iωt. 

Rearranging the equation of motions, the transfer function between the displacement of the 

system and the applied force can be obtained as: 
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In general vibration problems, the objective is to minimize the displacement of system 

which means to minimize the peak of the transfer function in equation 27. For this purpose, 

the modal parameters of the absorber, i.e. the mass, stiffness and damping, have to be 

optimized. In [54], the optimum parameters which cause minimum magnitude of transfer 

function were analytically determined by Den Hartog. The optimized TMD splits the main 

system’s mode into two smaller modes with equal magnitude peaks. However, for chatter 

problem application, equal peaks cannot be the optimal solution since the critical stability 

limit is inversely proportional to negative real part of the transfer function. Later, Sims [55] 

found the optimal parameters for chatter problem in turning which lead equal troughs in the 

real part of transfer function. The performance of TMDs with both equal peaks and equal 

real troughs approaches are illustrated in Figure 3.2 through the corresponding optimal 

transfer functions. As it can be seen, the peak of transfer function has been divided to two 

smaller peaks at right and left side of the system’s natural frequency according to the equal 

peaks approach. However, based on the equal real troughs approach, the magnitude of the 

transfer function is higher but the negative real part has been improved. The amount of 

damping depends on the mass ratio of the system and the absorber, m/ms, which is usually 

limited due to the physical constraints. In practice, normally the allowable mass ratio 

cannot be higher than 0.05. 
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Figure 3.2. Transfer function of a system with and without TMD, a) magnitude b) real part 

of FRF. 

 

3.2. Beam analysis 

There are different theories for describing the dynamic behavior of a beam, such as Euler 

Bernoulli beam, Rayleigh beam and Timoshenko beam theories. The latter one is used in 

this thesis since it is found to be most accurate theory for thick beams with low length to 

diameter ratios since it takes into account the effect of shear deformations as well as rotary 

inertia which are neglected in Euler Bernoulli beam theory. Figure 3.3 shows a deformed 

Timoshenko beam element where y is the lateral displacement and φ is the bending rotation 

angle. 

 

Figure 3.3. A deformed Timoshenko beam element 
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The governing differential equations of the beam element shown in Figure 3.3 after 

mathematical manipulations can be presented in uncoupled form as follows [56]:  
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In the above equations, E is young modulus, k’ is shear coefficient, G, is shear modulus, ρ is 

density, A, is cross section area of the beam element, and I is cross-sectional area moment 

of inertia. To solve the above equations and obtain the solution of the eigenvalue problem, 

both end conditions of the beam are considered to be free since the free-free beam element 

can be later coupled to other elements and free boundaries can be modified and converted 

to other conditions easily by structural modifications. Free boundaries imply both shear 

force and moment at the ends to be zero. Assuming harmonic behavior,  

 ( , ) ( ) , ( , ) ( )i t i ty x t y x e x t x e     (30) 

 

the partial differential equations (28) and (29) can be converted to ordinary differential 

equations in frequency domain.  In [56], the characteristic equation for such a free-free 

beam was obtained as: 
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where 
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The natural frequencies of a beam element, ωr of r-th mode, can be determined using 

equation (31). Once the natural frequencies are obtained, the r-th mode eigenfunction 

expression for transverse displacement and rotation, 𝑦̃𝑟(𝑥) and 𝜑̃𝑟(𝑥), can be written as 
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In the above equations, Ar is the constant which is obtained from the mass normalization of 

the eigenfunctions in order to satisfy the orthogonality condition: 

 

0

( ) ( )0 1,

( ) ( )0 0,

T
L

s r

x
s r

y x y xA s r
dx

x xI s r



 

      
     

    
  (34) 

 

Note that since the free-free end conditions have been considered, there are two rigid body 

modes to be considered: 
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The former expression represents the translational rigid body mode and the latter one 

represents the rotational rigid body mode. Consider a beam with free end conditions at 

points 1 and 2 as shown in Figure 3.4. The receptance functions between the linear and 

rotational displacements (y and φ) and applied forces 𝑓and moments 𝑀 at the end points are 

defined as: 
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Figure 3.4. A beam element with free-free end conditions 
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Using the obtained eigenfunction expressions in (32), (33) and the rigid body modes, the 

receptance functions between the linear and rotational displacements and applied forces 

𝑓and moments 𝑀 at the end points, can be determined as the following: 
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Using the above relations, the direct and cross transfer functions at the ends of beam 

element can be obtained which are later used for calculating coupled segments’ FRF. In the 

next section, receptance coupling method is presented. 

 

3.3. Receptance coupling 

Once the receptance functions of the elements have determined through the equations (38-

41), the FRF of coupled segments can be determined through receptance coupling method 

which is based on compatibility and continuity relations. Consider Figure 3.5 in which two 

segments A and B are coupled to from a two-segment beam C. To apply the receptance 

coupling method, first the receptance functions of the elements have to be written in matrix 

form as 
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where the numbers 1 and 2 indicated the end points of each element according to Figure 

3.4. The submatrices Zij include the corresponding receptance functions. For example the 

first submatrix Z11 is defined as 

 
  11 11

11

11 11

Z Z

Z Z

H L
Z
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 
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 

 (43) 

 

 

Figure 3.5. Rigid coupling of two beam elements with free-free end conditions [43] 

 

As the receptance matrix for elements A and B are obtained according to equations (42) and 

(43), the receptance matrices of the resulting beam C are calculated through compatibility 

and continuity relations as [43]: 
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where 
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1
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
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1

22 22 21 22 11 12 .C B B A B B

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In the above equations, elements are coupled rigidly and contact stiffness and damping are 

not considered for coupling of elements. However, for elastically coupled components (e.g. 

for coupling of tool and tool holder), the dynamic parameters should be considered in the 

interface of two components. This can be done by slightly modifying the equations (45-48) 

and stiffness matrix. Considering translational stiffness ky, translational damping cy, 

rotational stiffness kφ and rotational damping cφ, the complex stiffness matrix is defined as 

 
 

0

0

y yk i c
K

k i c 




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 
 (49) 

 

Then, the modified receptance coupling relations can be expressed as 
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3.4. Semi-analytical tool point FRF prediction 

FRF at the tool tip is a combination of different components’ dynamic responses where 

each component, i.e. spindle, holder and tool, are composed of several segments and 

substructures. Moreover, the bearing dynamics and joint parameters between these 

components can also effectively change the dynamic response of system. As previously 

mentioned, the FRF of a complete spindle-holder-tool assembly including the effect of 

bearing and joints parameters can be calculated analytically as detailed in [43]. However, 

this requires accurate modeling and precise information of the each component and its 

segments. Accessing to the spindle and its internal components, identifying the exact 

bearing and joints parameters, and simplifying the complex taper structure of holder are 

tough and time-consuming tasks. In this thesis, the machine tool is considered as two 

substructures as illustrated in Figure 3.6. The assembly of spindle and holder are considered 

as one substructure (SH) and the tool is the other substructure (T). These two substructures 

are coupled using the tool-holder interface parameters to obtain the dynamic response of 

the whole structure (SHT). To avoid the modelling and contact dynamics identifying errors 

of spindle-holder assembly, the frequency response of this substructure is obtained 

experimentally through modal hammer test, while the dynamics of the tool is calculated 

analytically by modeling it as free-free beam elements.  

 

 

Figure 3.6. Modeling the structure of spindle-holder-tool assembly as two substructures 
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Once the frequency response of the spindle-holder assembly is measured at the holder tip 

(SH11) and the direct and crossed FRFs of the tool between the end-coordinates 1 and 2 

(T11, T12, T21 and T22) are calculated, the FRF of coupled system at the tool tip can be 

evaluated by the following relation: 

 1 1

11 11 12 22 11 21( )htSHT T T T K SH T      (54) 

 

As it can be seen in Figure 3.6 and in equation (54), the only contact parameters that should 

be identified are the holder-tool interface parameters which is describe by the matrix Kht. 

Meanwhile, Kht can be identified through inverse receptance coupling method. For this 

purpose, the transfer functions at tool tip and holder tip (when the tool is not clamped) 

should be measured. Then, rearranging equation (54) yields to 

 1 1 exp. 1 1 exp.

12 11 11 21 11 22( ( ) )htK T T SHT T SH T        (55) 

 

Note that in the above equation, SHT11 and SH11 are experimentally obtained. Once Kht is 

identified, SHT11 can be calculated for any other tool or different overhang lengths.  

 

3.5. Modifying tool tip FRF methodology 

In this section, the proposed procedure for damping the flexible tool mode is presented. As 

mentioned earlier, the objective is to damp the dominant tool mode utilizing the modes of 

the structure (including the spindle and holder). According to Figure 3.6, the dominant 

mode of substructure T is damped by the modes of substructure SH. The idea is similar to 

application of passive vibration absorbers which are attached to a structure to damp the 

dominant mode. However, here the dominant mode of the structure (the tool mode) is 

damped by the other modes of the structure itself without using any absorbers or external 

devices.  
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The first step of the procedure is to identify the structure’s modes which can be done by 

measuring the FRF at the holder tip, i.e. SH11. Note that the tool should not be clamped to 

the holder. Examining the experimentally obtained frequency response function, the 

operative modes that can be used for the damping purpose are identified and the most 

feasible one is selected which is called 𝑓ℎ hereafter. In the next stage, the tool overhang 

length is tuned such as the natural frequency of tool mode is close enough to the selected 

holder-tip mode 𝑓ℎ, so modes interaction occurs and the tool mode damps since its 

vibrating energy is absorbed by the holder-tip mode. For tuning the tool mode, the FRF of 

the free-free tool is calculated and elastically coupled to the holder considering the holder-

tool interface parameters to obtain the tool-tip FRF. Then the tool-tip FRF is set to be the 

objective in an optimization algorithm to find the optimum tool length Lop leading to a tool 

mode whose frequency is close to the natural frequency of the holder-tip mode 𝑓ℎ. Using 

Lop, the modified tool-tip FRF with a damped mode is obtained. The objective of the 

optimization can be obtaining equal magnitude peaks of FRF, similar to Den Hartog’s 

approach, or obtaining equal real troughs similar to Sim’s approach in tuning the 

parameters of tuned mass dampers. Once the optimum length is found, the FRF at the tool 

tip with the damped tool mode by the holder-tip mode can be obtained.  

The proposed method is presented in Figure 3.7. According to this figure, steps of the 

procedure to damp the tool mode can be summarized as follows: 

 Applying hammer impact test to at the tool tip at an arbitrary overhang length to 

measure 𝑆𝐻𝑇11
𝑒𝑥𝑝.

, 

 Disassembling the tool from the holder and applying hammer impact test to at the 

tool tip to measure 𝑆𝐻11
𝑒𝑥𝑝.

, 

 identifying Kht from equation (55), 

 Determining the operative holder-tip mode, 

 Obtaining the optimal tool overhang length Lop tuned to the determined holder 

mode, 

 Calculating free-free tool’s FRFs (T11, T12, T21 and T22) with the obtained overhang 

length, 
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 Coupling substructures T and SH elastically using the identified holder-tool 

interface parameters through equation (54) to obtain the optimal FRF at the tool-tip 

SHT11. 

 

Figure 3.7. Developed procedure of tool-tip FRF modifying 

 

3.6. Simulations and experimental results 

In this section, the tuning methodology discussed in the previous section is used to damp a 

dominant mode of a milling machine tool system. The transfer function of the tool with an 

arbitrary overhang length (56 mm) is shown in Figure 3.8-a which has been obtained 
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experimentally through hammer test. The tool is a 12 mm diameter carbide endmill. A 

dominant mode with high flexibility is visible around 3000 Hz. A simple modal shape 

analysis has been done using measured FRFs at the tool tip and the holder tip. The resulting 

mode shapes shown in Figure 3.8-b reveals that the dominant mode belongs to the tool 

since the tool deflects too much at this mode while the displacement of the tool at the first 

mode is mainly due to the deflection of the holder and they are along the same direction. 

  

 

Figure 3.8. a) Measured tool-tip FRF b) mode shapes 

 

Then, the tool has been disassembled and FRF of the structure at the holder tip (without the 

tool) is measured as given in Figure 3.9. As it can be seen, there are several operative 

modes that can be used to damp the tool mode. However, the focus is on modes which are 

close enough to the tool mode in Figure 3.8. The closest holder-tip modes to tool mode 

(which was around 3000 Hz) are around 2500 Hz and 4000 Hz, at the left and right hand 

side of the tool mode, respectively. For our case, the latter one, i.e. the mode at 4000 Hz, is 

selected. 
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Figure 3.9. Holder-tip FRF (the tool is not clamped) 

 

Once the target mode at the holder-tip is selected, the next step is to tune the tool length so 

that the tool mode is tuned to the holder-tip mode leading to modes interaction and 

damping of the tool mode. Regarding the numerical optimization, a frequency range [𝑓0 𝑓1] 

around 𝑓ℎ is set to be the range of searching for the optimized tool overhang length Lop. For 

our case, 𝑓0 and 𝑓1 were set to be 3600 Hz and 4400 Hz, respectively. The corresponding 

lengths, L0 and L1, to the frequencies 𝑓0 and 𝑓1 can be obtained from equation (31) 

numerically or can be estimated by Euler Bernouli beam relation since it provides an 

explicit formula between the natural frequency and length of the beam: 

  
2

2 1

2

nEI

A L






 
  

 
 (56) 

 

The optimized length Lop was obtained numerically in the software MATLAB using the 

function fminsearch as 43 mm, based on equal peaks approach. To avoid significant 

numerical errors, a tolerance of 1e-12 was selected. Using the calculated Lop, the modified 

FRF can be obtained by analytically calculating the tool transfer functions and coupling it 

to the experimental transfer function at the holder tip using the contact parameters. Figure 

3.10 shows the resulting FRFs where the optimization objective is obtaining equal peaks. 

The red line shows the free-free tool’s FRF when it is elastically coupled to a wall using 
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Kht. As it can be seen, there is a dominant mode around 4000 Hz with a remarkable 

flexibility. However, when it is clamped to the holder-tip FRF the dominant mode splits 

into two smaller modes at the two sides. This is due to the interaction between the tool 

mode (red) and the target mode at the holder-tip (the operative mode in Figure 3.9) which 

yields to a damping effect and suppression of the tool mode, resulting in a modified tool-tip 

FRF (the blue line).  

 

Figure 3.10. Simulated tool-tip FRF with the optimized tool length 

 

The modified tool-tip FRF using the obtained Lop is experimentally verified in Figure 3.11. 

Compared to the previously measured FRF with an arbitrary overhang length, more than 

two times reduction in the maximum magnitude of the transfer function has been obtained 

which is very effective in enlarging the stable zone. The corresponding stability lobes using 

experimental FRFs are also given in Figure 3.12 which shows noticeable improvement in 

stability limit of the system. The cutting tests are conducted for half immersion of AL7075 

with the Carbide endmill with diameter of 12 mm and arbitrary and optimized overhang 

lengths, i.e. 56 mm and 43 mm respectively. The sound spectrum and photo of surface after 

cutting are given in Figure 3.13 at axial depths of 1.3 mm and 2.3 mm. It can be seen that at 

cutting depth of 1.3 mm, cutting with arbitrary length is unstable and chatter marks are 
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visible at the cut surface (Figure 3.13-c). However, cutting at the same axial depth with the 

optimized tool overhang length is stable and chatter has not developed (Figure 3.13-b). 

 

Figure 3.11. Experimental tool-tip FRF with the optimized tool length 

 

 

Figure 3.12. Stability lobe diagrams for the arbitrary tool overhang length of 56 mm and 

optimized length of 43 mm. 
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Figure 3.13. Sound spectrum and surface photo at 6811 rpm and a) 2.3 mm axial depth with 

43 mm overhang length, b) 1.3 mm axial depth with 43 mm overhang length, c) 1.3 mm 

axial depth with 56 mm overhang length. 

For calculating the Lop and the resulting modified FRF in Figure 3.10, the objective was to 

minimize the transfer function magnitude and to obtain equal peaks. However, the objective 

function can be maximizing the most negative real part of transfer function which leads to 

equal real troughs. Thus, the simulations for the equal troughs objective have been done 

and the results are presented in Figure 3.14. The calculated Lop based on this approach was 

45.6 mm. 
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Figure 3.14. Tool-tip FRFs based on equal peaks and equal real troughs approaches. 

 

3.7. Conclusion 

Improving material removal rate is among top priorities of manufacturing industries which 

can be reached by enlarging stable cutting zone during machining. For this purpose, many 

researches have focused on modifying the dynamics of structures through different 

approaches. As mentioned in the first chapter, the main objective of the second part of this 

thesis was to take advantage of multi-mode dynamics of systems in order to enlarge the 

stable cutting zone.  

In this section, a new approach to passively modify the dynamic response of the system, i.e. 

the frequency response function, without using any external devices but by utilizing the 

structure modes was discussed. A procedure was presented to tune the tool mode such a 

way that it is damped by the modes of the structure emerged at the holder-tip. The 

developed method was based on coupling of tool’s FRF and FRF at the holder tip through 

receptance coupling method. The tool’s FRFs were calculated analytically through beam 

analysis while the FRF of the holder tip was experimentally measured through hammer test. 

It was shown that the flexibility of the tool’s dominant mode can significantly decrease if 

the tool is clamped with the optimum overhang length. Once the tool is clamped with the 

optimum overhang length, the tool mode shifts towards the target mode at the holder-tip 

and modes interaction occurs. As a result, vibrating energy of the tool mode is absorbed by 
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the holder-tip mode; the tool mode is suppressed and its magnitude decreases. Note that the 

tool mode can shifts towards the target mode by changing the other tool dimensions such as 

tool diameter instead of overhang length. However, since changing the overhang length is 

more practical, it has been selected as variable parameter. 

The simulation results were verified through hammer tests and good agreement were 

observed between predicted and experimental results. For the experimental study case, a 

reduction of more than 200% was observed in the magnitude of tool-tip FRF. Through this 

procedure, only a single impact test at the holder tip is required (to avoid complex modeling 

of holder and spindle’s segments) which makes the FRF predicting procedure for different 

tools and lengths more efficient. The effect of tool-tip FRF modifying on stability of the 

system was illustrated by constructing the corresponding stability lobes diagrams which 

showed remarkable improvement is the stable cutting depths, and consequently in material 

removal rate.  

Although the simulations and experiments were done on a milling system, the presented 

idea and procedure can be applied to other systems and implemented on different machine 

tools as well, such as a turning machine. In a structure with multiple components, once the 

vibration modes of a component are identified, the modes of the other components can be 

modified by tuning them properly. 
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Chapter 4 SUMMARY OF THESIS 

Dynamics of machining systems are the primary and most crucial information which 

determine their stability/instability behavior for specific cutting conditions. In this thesis, 

the focus was on investigating the effects of multiple modes of systems and their 

significance. In this regard, two topics have been studied about effects of multi-mode 

dynamics of system on stability. First, the stability behavior of milling systems at low 

cutting speeds where process damping is dominant has been investigated. In the second part 

of the research, FRF modification of a system through its multi-mode dynamic 

characteristics has been studied. 

The first part of thesis is concerning the process damping effect in multi-mode milling 

systems. The stability of milling systems with well separated modes at relatively low and 

high frequencies has been explored. Stability lobes diagrams have been constructed for 

each mode separately though analytical frequency domain solution. Then, the lowest 

envelopes of the diagrams are selected as the ultimate stability frontier. Moreover, 

simulations have been done for vibration of the cutting tool in time domain considering 

multiple modes simultaneously. In the time domain model, process damping effect is 

introduced as a ploughing cutting force as a function of indentation volume. 

It has been shown that the amount of generated process damping of different modes is 

different due to their frequencies. Low frequency modes produce less process damping 

while high frequency modes offer more process damping. This is due to the different wavy 

surfaces that they generate. Low frequency mode generates a smoother wavy surface with 

less slope which leads to fewer indentation and less process damping. As a result, stability 

limits corresponding to low frequency modes cannot increase as high frequency modes and 

they can cause chatter at cutting depths which were expected to be stable with the 

assumption of single mode system. 

Simulation and experimental results showed that even if low frequency modes are much 

more rigid and offer high stability limits at high cutting speeds, chatter can develop at these 

modes instead of more flexible modes at higher frequencies. Indeed, the high frequency 
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modes can suppress themselves due to high process damping and as a result, the 

corresponding stability limits shift up much more than stability limits of low frequency 

modes. Thus, the stability limits of these modes can cross out each other and chatter mode 

shifts from high frequency mode to low frequency mode as cutting speed decreases. The 

time domain simulation results showed despite the fact that flexible high frequency mode 

dominate the cutting tool vibration at stable cutting zone, chatter can develop at the rigid 

low frequency modes. 

From the resulting stability limits, it can be concluded that rigid modes at low frequencies 

must not be ignored while predicting the stability frontier. Focus of researchers and 

machine tool users should be on damping of such modes for increasing material removal 

rate even if their rigidities are much more compared to other modes at higher frequencies. 

Considering this, if someone wants to use an absorber for example, it should be tuned to the 

low frequency modes, not the most flexible ones at higher frequencies. Another way to 

increase the material removal rate is to increase the process damping effect by changing the 

tool geometry. This can be done by increasing nose radius of the cutter, decreasing the 

clearance angle, or by using a tool with cylindrical flank face rather than planar flank face. 

Other than these, the low frequency modes can be moved to higher frequencies by 

modifying the structure, which results in higher process damping effect. 

In the second part of this thesis, the focus is on modifying dynamic response of structures, 

i.e. frequency response function, in order to increase the stability limit and enlarge the 

stable cutting zone. A procedure was developed to properly suppress a dominant tool mode 

on a milling machine tool by changing the tool dimensions, i.e. the overhang length. Using 

this procedure, the optimized tool overhang length can be found considering the identified 

structure’s modes at the holder tip through hammer impact test. FRF of the tool with free-

free boundary conditions has been calculated using beam element theory and it has been 

elastically coupled to the experimentally obtained FRF at the holder tip through receptance 

coupling method. 

Using the optimized tool overhang length, the tool mode takes place close to a mode of 

structure at the holder tip which leads to modes interaction. Due to the modes interaction, 

the vibration energy of dominant tool mode is absorbed by the holder-tip mode and it is 
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suppressed. An experimental case on a milling machine tool has been conducted and it is 

observed that the tool-tip FRF of system can be reduced to less than half. This remarkable 

reduction in FRF can shifts the stability frontier up and enlarges the stable cutting zone as 

illustrated for the experimental case. 

Original contributions  

Process damping has been previously studied in several researches for single mode systems 

where the effects of other modes were ignored. However, this research emphasized the 

effect of vibration frequency on process damping by taking into account all modes of the 

system. The frequency domain solution for milling stability with process damping effect 

given in [29] is generalized to systems with multiple modes. Apart from frequency domain 

solution, a time domain milling model was developed with respect to dynamics of multiple 

modes simultaneously which includes the effect of process damping compared to other 

models for multi-mode milling systems. 

The presented tool-tip FRF suppression method was based on a new approach compared to 

other methods in the literature. To the author’s knowledge, re-designing structures 

(topology optimizations) and using passive or active vibration absorbers are the common 

methods to modify FRF of systems. However, the methodology developed in this thesis 

utilizes the multi-mode characteristics of systems and FRF modification is done by using 

the modes of the structure itself without any requirement for changing the structure design 

or using any external devices, such as TMDs. This method is based on tuning and 

interaction of the already existing structure modes. 

Recommendations for future research 

Within the scope of this study, in the frequency domain solution, the stability lobes are 

calculated separately for each dominant mode with the process damping effect. However, 

considering the nonlinear effect of process damping, further improvements of the frequency 

domain model by considering the effects of multiple modes simultaneously may increase 

the fidelity of the current model. 
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Although the dominant mode of a cutting tool on a milling machine tool was suppressed in 

this study, the presented procedure for FRF modification can be easily implemented on 

other systems and machine tools. For example in boring and turning machining, where 

there is normally a flexible mode of cutting tool, the structure modes can act as a dynamic 

vibration absorber. Moreover, application of the presented approach in robotic machining 

can be greatly rewarding as the dimensions of different components of robotic machines 

and their corresponding dynamic modes can be easily tuned and it is more feasible to 

benefit from their interaction compared to CNC machine tools. 



63 

 

BIBLIOGRAPHY  

[1] Quintana G, Ciurana J. Chatter in machining processes: a review. International 

Journal of Machine Tools and Manufacture. 2011 May 31;51(5):363-76. 

[2] J. Tlusty and M. Polacek, “The stability of machine tools against self-excited 

vibrations in machining,” Int. Res. Prod. Eng., vol. 1, no. 1, pp. 465–474, 1963. 

[3] H. E. Merritt, “Theory of self-excited machine tool chatter,” J. Eng. Ind., vol. 87, 

no. 4, pp. 447–454, 1965. 

[4] Tobias SA. Machine tool vibration. Blackie and Sons Ltd, New York; 1965. 

[5] F. Koenigsberger and J. Tlusty, Machine tool structures. Elsevier, 2016. 

[6] Minis  I. and Yanushevsky T. A New Theoretical Approach for the Prediction of 

Machine Tool Chatter in Milling, ASME Journal of Engineering for Industry; 

1993. 115, 1-8. 

[7] Altintas Y, Budak E. Analytical prediction of stability lobes in milling. Trans 

ASME J Eng Ind; 1995. 44:357–362. 

[8] Budak E, Altintas Y. Analytical prediction of chatter stability in milling—part I: 

general formulation. Journal of dynamic systems, measurement, and control. 1998 

Mar 1;120(1):22-30. 

[9] Mann BP, Young KA, Schmitz TL, Dilley DN. Simultaneous stability and surface 

location error predictions in milling. Journal of Manufacturing Science and 

Engineering. 2005 Aug 1;127(3):446-53. 

[10] Berglind, Luke, and John Ziegert. "Analytical time-domain turning model with 

multiple modes." CIRP Annals-Manufacturing Technology 64.1 (2015): 137-140. 

[11] Tang WX, Song QH, Yu SQ, Sun SS, Li BB, Du B, Ai X. Prediction of chatter 

stability in high-speed finishing end milling considering multi-mode dynamics. J 

Mater Process Technol; 2009. 209: 2585–2591. 



64 

 

[12] Wan M, Ma YC, Zhang WH, Yang Y. Study on the construction mechanism of 

stability lobes in milling process with multiple modes. Int J Adv Manuf Technol; 

2015. 79:589–603. 

[13] Takemura T, Kitamura T, Hoshi T. Active Suppression of Chatter by Programed 

Variation of Spindle Speed. Journal of the Japan Society of Precision Engineering. 

1975 May 5;41(484):489-94. 

[14] Budak E. An analytical design method for milling cutters with non-constant pitch 

to increase stability, part I: theory. Transactions-American Society of Mechanical 

Engineering Journal of Manufacturing Science and Engineering. 2003 Feb 

1;125(1):29-34. 

[15] Yusoff AR, Sims ND. Optimisation of variable helix end millings tools by 

minimising self-excited vibration. In Journal of Physics: Conference Series 2009 

(Vol. 181, No. 1, p. 012026). IOP Publishing. 

[16] Sisson, T.R. and R.L. Kegg, An explanation of low-speed chatter effects. Journal 

of Engineering for Industry, 1969. 91(4): p. 951-958. 

[17] Das, M.K, Tobias S.A., The Relation Between the Static and the Dynamic Cutting 

of Metals, International Journal of Machine Tool Design and Research, 763, 89, 

1967. 

[18] Tlusty J, Ismail F. Special aspects of chatter in milling. Journal of Vibration, 

Acoustics, Stress and Reliability in Design. 1983 Jan 1;105(1):24-32. 

[19] Wu DW. A new approach of formulating the transfer function of dynamic cutting 

processes. J. Eng. Ind. (Trans. ASME). 1989 Feb 1;111(1):37-47. 

[20] Elbestawi, M.A., Ismail, F., Du, R., Ullagaddi, B.C., Modeling Machining 

Dynamics Including Damping in the Tool-Workpiece Interface, Journal of 

Engineering for Industry, 116, 435-439, 1994. 

[21] Chiou RY, Liang SY. Chatter stability of a slender cutting tool in turning with tool 

wear effect. International Journal of Machine Tools and Manufacture. 1998 Mar 

31;38(4):315-27. 

[22] Altintas Y, Montgomery D. Mechanism of cutting force and surface generation in 

dynamic milling. Journal of Engineering for Industry. 1991 May;113(2):160-8. 



65 

 

[23] Clancy BE, Shin YC. A comprehensive chatter prediction model for face turning 

operation including tool wear effect. International Journal of Machine Tools and 

Manufacture. 2002 Jul 31;42(9):1035-44. 

[24] Eynian M, Altintas Y. Chatter stability of general turning operations with process 

damping. Journal of Manufacturing Science and Engineering. 2009 Aug 

1;131(4):041005. 

[25] Ahmadi K, Ismail F. Analytical stability lobes including nonlinear process 

damping effect on machining chatter. International Journal of Machine Tools and 

Manufacture. 2011 Apr 30;51(4):296-308. 

[26] Ranganath S, Liu D, Sutherland JW. A comprehensive model for the flank face 

interference mechanism in peripheral milling. Transactions-north American 

Manufacturing Research Institution of SME. 1998:249-54. 

[27] Huang CY, Wang JJ. Mechanistic modeling of process damping in peripheral 

milling. Journal of Manufacturing Science and Engineering. 2007 Feb 

1;129(1):12-20. 

[28] Altintas, Y., Eynian, M., Onozuka, H.  Identification of dynamic cutting force 

coefficients and chatter stability with process damping. CIRP Annals –

Manufacturing Technology; 2008. 57/1, 371-374. 

[29] Budak E, Tunc LT. Identification and modeling of process damping in turning and 

milling using a new approach. CIRP Annals-Manufacturing Technology. 2010 

Dec 31;59(1):403-8. 

[30] Tunç LT, Budak E. Effect of cutting conditions and tool geometry on process 

damping in machining. International Journal of Machine Tools and Manufacture. 

2012 Jun 30;57:10-9. 

[31] Chandiramani NK, Pothala T. Dynamics of 2-dof regenerative chatter during 

turning. Journal of sound and vibration. 2006 Feb 21;290(1):448-64. 

[32] Jin X, Altintas Y. Chatter stability model of micro-milling with process damping. 

Journal of manufacturing science and engineering. 2013 Jun 1;135(3):031011. 

[33] Ahmadi K, Altintas Y. Identification of machining process damping using output-

only modal analysis. Journal of Manufacturing Science and Engineering. 

2014;136(5):051017. 



66 

 

[34] Seguy S, Dessein G, Arnaud L. Surface roughness variation of thin wall milling, 

related to modal interactions. International Journal of Machine Tools and 

Manufacture. 2008 Mar 31;48(3):261-74. 

[35] Munoa J, Dombovari Z, Mancisidor I, Yang Y, Zatarain M. Interaction between 

multiple modes in milling processes. Machining Science and Technology, 2013. 

17(2):165-80. 

[36] Tunç LT, Budak E. Identification and modeling of process damping in milling. 

Journal of Manufacturing Science and Engineering. 2013 Apr 1;135(2):021001. 

[37] Pedersen NL. Maximization of eigenvalues using topology optimization. 

Structural and multidisciplinary optimization. 2000 Aug 1;20(1):2-11. 

[38] Law M, Altintas Y, Phani AS. Rapid evaluation and optimization of machine tools 

with position-dependent stability. International Journal of Machine Tools and 

Manufacture. 2013 May 31;68:81-90. 

[39] Altintas Y, Brecher C, Weck M, Witt S. Virtual machine tool. CIRP Annals-

manufacturing technology. 2005 Jan 1;54(2):115-38. 

[40] Mahnama M, Movahhedy MR. Prediction of machining chatter based on FEM 

simulation of chip formation under dynamic conditions. International journal of 

machine tools and manufacture. 2010 Jul 31;50(7):611-20. 

[41] Garitaonandia I, Fernandes MH, Albizuri J. Dynamic model of a centerless 

grinding machine based on an updated FE model. International Journal of Machine 

Tools and Manufacture. 2008 Jun 30;48(7):832-40. 

[42] Song QH, Wan Y, Yu SQ, Ai X, Pang JY. Stability prediction during thin-walled 

workpiece high-speed milling. InAdvanced Materials Research 2009 (Vol. 69, pp. 

428-432). Trans Tech Publications. 

[43] Ertürk A, Özgüven HN, Budak E. Analytical modeling of spindle–tool dynamics 

on machine tools using Timoshenko beam model and receptance coupling for the 

prediction of tool point FRF. International Journal of Machine Tools and 

Manufacture. 2006 Dec 31;46(15):1901-12. 

[44] Da Silva MM, Venter GS, Varoto PS, Coelho RT. Experimental results on chatter 

reduction in turning through embedded piezoelectric material and passive shunt 

circuits. Mechatronics. 2015 Aug 31;29:78-85. 



67 

 

[45] Matsubara A, Maeda M, Yamaji I. Vibration suppression of boring bar by 

piezoelectric actuators and LR circuit. CIRP Annals-Manufacturing Technology. 

2014 Dec 31;63(1):373-6. 

[46] Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge M, Kwan CM, 

Xu R, Winterbauer B, Bridger K. Mitigation of chatter instabilities in milling by 

active structural control. Journal of sound and vibration. 2004 Jan 6;269(1):197-

211. 

[47] Browning DR, Golioto I, Thompson NB. Active chatter control system for long-

overhang boring bars. In Proceedings of Smart Structures and Materials 

Conference 1997 May 23 (pp. 3044-26). 

[48] Miguelez MH, Rubio L, Loya JA, Fernández-Sáez J. Improvement of chatter 

stability in boring operations with passive vibration absorbers. International 

Journal of Mechanical Sciences. 2010 Oct 31;52(10):1376-84. 

[49] Saffury J. Chatter Suppression of External Grooving Tools. Procedia CIRP. 2017 

Dec 31;58:216-21. 

[50] Tarng YS, Kao JY, Lee EC. Chatter suppression in turning operations with a tuned 

vibration absorber. Journal of materials processing technology. 2000 Sep 

7;105(1):55-60. 

[51] Yang Y, Munoa J, Altintas Y. Optimization of multiple tuned mass dampers to 

suppress machine tool chatter. International Journal of Machine Tools and 

Manufacture. 2010 Sep 30;50(9):834-42. 

[52] Wang M. Feasibility study of nonlinear tuned mass damper for machining chatter 

suppression. Journal of Sound and Vibration. 2011 Apr 25;330(9):1917-30. 

[53] Madoliat R, Hayati S, Ghalebahman AG. Investigation of chatter suppression in 

slender endmill via a frictional damper. Scientia Iranica. 2011 Oct 31;18(5):1069-

77. 

[54] Hartog DJ. Mechanical vibrations. McGraw-Hill Book Company; 1956. 

[55] Sims ND. Vibration absorbers for chatter suppression: a new analytical tuning 

methodology. Journal of Sound and Vibration. 2007 Apr 3;301(3):592-607. 



68 

 

[56] Aristizabal-Ochoa JD. Timoshenko beam-column with generalized end conditions 

and non-classical modes of vibration of shear beams. Journal of Engineering 

Mechanics. 2004 Oct;130(10):1151-9. 

 


