
GPU-BASED PARALLEL COMPUTING METHODS FOR
CONSTRUCTING COVERING ARRAYS

by

Hanefi Mercan

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August 2015

GPU-BASED PARALLEL COMPUTING METHODS FOR
CONSTRUCTING COVERING ARRAYS

Approved by:

Assist. Prof. Dr. Cemal Yılmaz

(Thesis Supervisor)

Assist. Prof. Dr. Kamer Kaya

(Thesis Co-Supervisor)

Assoc. Prof. Dr. Hüsnü Yenigün

Prof. Dr. Bülent Çatay

Assist. Prof. Dr. Hasan Sözer

Date of Approval: 03/08/2015

© Hanefi Mercan 2015

All Rights Reserved

GPU-BASED PARALLEL COMPUTING METHODS FOR
CONSTRUCTING COVERING ARRAYS

Hanefi Mercan

Computer Science and Engineering, MS Thesis, 2015

Thesis Supervisor: Asst. Prof. Cemal Yılmaz

Keywords: Combinatorial interaction testing, covering array, simulated

annealing, cuda, parallel computing, combinatorial coverage

measurement

Abstract

As software systems becomes more complex, demand for efficient approaches to test

these kind of systems with a lower cost is increased highly, too. One example of such

applications can be given highly configurable software systems such as web servers (e.g.

Apache) and databases (e.g. MySQL). They have many configurable options which in-

teract each other and these option interactions lead having exponential growth of option

configurations. Hence, these software systems become more prone to bugs which are

caused by the interaction of options.

A solution to this problem can be combinatorial interaction testing which systematically

samples the configuration space and tests each of these samples, individually. Combina-

torial interaction testing computes a small set of option configurations to be used as test

suites, called covering arrays. A t-way covering array aims to cover all t-length option

iv

interactions of system under test with a minimum number of configurations where t is a

small number in practical cases. Applications of covering arrays are especially encour-

aged after many researches empirically pointed out that substantial number of faults are

caused by smaller value of option interaction.

Nevertheless, computing covering arrays with a minimal number of configurations in a

reasonable time is not easy task, especially when the configuration space is large and sys-

tem has inter-option constraints that invalidate some configurations. Therefore, this study

field attracts various researchers. Although most of approaches suffer in scalability issue,

many successful attempts have been also done to construct covering arrays. However, as

the configuration scape gets larger, most of the approaches start to suffer.

Combinatorial problems e.g., in our case constructing covering arrays, are mainly solved

by using efficient counting techniques. Based on this assumption, we conjecture that

covering arrays can be computed using parallel algorithms efficiently since counting is

an easy task which can be carried out with parallel programming strategies. Although

different architectures are effective in different researches, we choose to use GPU-based

parallel computing techniques since GPUs have hundreds even sometimes thousands of

cores however with small arithmetic logic units. Despite the fact that these cores are ex-

ceptionally constrained and limited, they serve our purpose very well since all we need to

do is basic counting, repeatedly. We apply this idea in order to decrease the computation

time on a meta-heuristic, search method simulated annealing, which is well studied in

construction of covering arrays and, in general, gives the smallest size results in previ-

ous studies. Moreover, we present a technique to generate multiple neighbour states in

each step of simulated annealing in parallel. Finally, we propose a novel hybrid approach

using SAT solver with parallel computing techniques to decrease the negative effect of

pure random search and decrease the covering array size further. Our results prove our

assumption that parallel computing is an effective and efficient way to compute combina-

torial objects.

v

GPU TABANLI PARALEL HESAPLAMA YÖNTEMLERİ
İLE KAPSAYAN DİZİLER OLUŞTURMA

Hanefi Mercan

Bilgisayar Bilimleri ve Mühendisliği, Yükseklisans Tezi, 2015

Tez Danışmanı: Yar. Doç. Cemal Yılmaz

Özet

Yazılım sistemleri daha karmaşık hale geldikçe, bu tip sistemleri düşük maliyetli test et-

mek için etkili tekniklere olan talep de artmaktadır. Bunlara örnek olarak web sunucuları

(Apache vb.) ve veritabanları (MsSQL vb.) gibi yapılandırılabilirliği yüksek yazılım

sistemleri verilebilir. Bu sistemler birbiriyle etkileşim içinde olan birçok yapılandırabilir

parametrelere sahiptir ve bu etkileşimler üstel büyüme hızıyla parametre konfigürasyonla-

rının sayısının artmasına yol açar. Bundan dolayı, bu tip yazılım sistemleri parametrelerin

etkileşimlerinden dolayı oluşabilecek hatalara karşı daha çok eğilimlidir.

Bu soruna bir çözüm olarak konfigürasyon uzayını sistematik şekilde kümeleyip ve bu

kümeleri ayrı ayrı test eden kombinatoryal etkileşim testi (combinatorial interaction test-

ing) verilebilir. Kombinatoryal etkileşim testi, az sayıda parametre konfigürasyonları

içeren test senaryoları olarak kullanılması için kapsayan diziler adı verilen objeleri üretir.

Bir t-yollu kapsayan dizisi (t-way covering array) test edilecek sistemin bütün t-yollu

parametrelerinin değer kombinasyonlarını en küçük sayıda konfigürasyon kullanarak kap-

samayı hedefler. Yapılan birçok araştırmanın kayda değer çoklukta hataların küçük sayıda

parametre etkileşimlerinden kaynaklandıgını göstermesinin ardından, kapsayan dizinin

uygulamalarına özellikle teşvik edilmiştir.

vi

Yine de, özellikle de konfigürasyon uzayı büyük olduğunda ve sistem içinde parame-

treler arasında bazı konfigürasyonları geçersiz kılan kısıtlamalar olduğunda, minimum

sayıda konfigürasyon içeren kapsayan diziler oluşturmak kolay bir iş değildir. Bundan

ötürü, bu çalışma alanı farklı alandan birçok araştırmacıların ilgisini çekmektedir. Çoğu

çalışma ölçeklendirme konusunda sorun yaşamasına rağmen, kapsayan dizi oluşturma

konusunda bazı başarılı çalışmalarda yapılmıştır. Fakat, konfigürasyon uzayı büyüdükçe,

çoğu yaklaşım zorlanmaya başlar.

Kombinatorik problemler, bizim durumda kapsayan dizi oluşturmak, çoğunlukla etkili

sayma teknikleri kullanılarak çözülür. Bu varsayımı baz alarak, sayma problemlerinin

kolay bir iş olmasından ve paralel programlama teknikleri kullanılarak verimli bir şekilde

çözülebileceğinden dolayı, kapsayan dizilerin paralel algoritmalar kullanılarak etkili bir

şekilde oluşturulabileceğine dair öngörüde bulunuyoruz. Farklı mimariler farklı araştır-

ma alanlarında daha etkili olabileceğinden dolayı, biz GPU tabanlı paralel programlama

teknikleri kullanmaya karar verdik. Çünkü GPU’ların aritmetik hesaplama birimleri küçük

olmasına karşın, yüzlerce çekirdekleri, hatta bazen binlerce çekirdekleri olabilir. Bu

çekirdeklerin kapasiteleri kısıtlı ve sınırlı olmalarına rağmen, bizim tek yapmak istedi-

ğimiz defalarca basit sayma işlemleri olduğu için bizim çalışmamızda amacımıza çok iyi

hizmet ederler. Bu fikrimizi hesaplama zamanını azaltmak için daha önce birçok defa kap-

sayan dizi oluşturmada kullanılmış ve çoğu zaman en küçük boyutlarda sonuçlar vermiş

olan benzetilmiş tavlama algoritması (simulated annealing) üzerinde uyguladık. Bunlara

ek olarak, benzetilmiş tavlama algoritmasının her adımında paralel olarak çoklu sayıda

komşu durumları üretebilen bir teknik geliştirdik. Son olarak da, uzayı tamamen rastgele

aramanın kötü etkisini düşürmek ve kapsayan dizilerin boyutunu daha da azaltmak için

SAT (SATisfiability) algoritması ve paralel programlama teknikleri kullanarak melez bir

yaklaşım öne sürdük.

vii

To my Family

viii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Prof.

Cemal Yılmaz whose expertise, understanding, and patience, added considerably to my

graduate experience. During my master education, he gave me the moral support and the

freedom I needed to move on. It has been great honor to work under his guidance.

My co-advisor, Prof. Kamer Kaya, was always there to listen and give advice. I am deeply

grateful to him for the long discussions that helped me sort out the technical details of my

work. I also would like to thank the other members of my thesis committee, Prof. Hüsnü

Yenigün, Prof. Bülent Çatay, and Prof. Hasan Sözer for their insightful comments.

A special thanks goes to Gülşen Demiröz for her great research cooperation in thesis

project, insightful comments and support of my master study. I am indebted to my lab-

mates: Arsalan Javeed, Rahim Dehkharghani, and Uğur Koç for the inspiring discussions,

and research cooperations. Also, I would like to convey very special thanks to my friends

Ercan Kalalı, Zhenishbek Zhakypov, Erkan Duman and Kağan Aksoydan for all the fun

we have had.

Moreover, I would like to acknowledge Sabancı Universtiy and Scientific Technologi-

cal Research Council of Turkey (TUBITAK) for supporting me throughout my graduate

education.

Most importantly, none of this would have been possible without the love and patience

of my parents Hatice Mercan and Ahmet Remzi Mercan, my sisters and brother Neslihan

Doğan, Perihan Mercan and Faruk Mercan for supporting spiritually me throughout my

life. Lastly, my heartiest thanks to my dear fiancée Sevinç Göğebakan for being in my

life and empowering me with her great love.

ix

TABLE OF CONTENTS

1 Introduction 1

2 Background 5

2.1 Combinatorial Interaction Testing . 5

2.2 Covering Arrays . 7

2.3 Simulated Annealing . 8

2.4 CUDA . 10

2.5 Boolean Satisfiability Problem . 13

3 Related Work 14

4 Method 17

4.1 Method Overview . 18

4.2 Outer Search . 18

4.3 Initial State Generation . 21

4.4 Combinatorial Coverage Measurement 22

4.4.1 Sequential combinatorial coverage measurement 23

4.4.2 Parallel combinatorial coverage measurement 25

4.5 Simulated Annealing For Constructing Covering Arrays 29

4.5.1 Inner search . 31

4.5.2 Neighbour state generation . 32

4.5.2.1 Sequential NS generation 32

4.5.2.2 Parallel NS generation 34

4.5.3 Fitness function . 35

x

4.5.3.1 Sequential fitness function 37

4.5.3.2 Parallel fitness function 38

4.6 Multiple Neighbour States Generation in Parallel 42

4.7 Hybrid Approach . 43

5 Experiments 48

5.1 Experiments on Combinatorial Coverage Measurement 48

5.1.1 Experimental setup . 49

5.1.2 Evaluation framework . 49

5.1.3 Results and analysis . 49

5.1.4 Discussions . 51

5.2 Experiments on Simulated Annealing 51

5.2.1 Experimental setup . 52

5.2.2 Evaluation framework . 52

5.2.3 Results and analysis . 53

5.2.4 Discussions . 56

5.3 Experiments on Multiple Neighbour States Generation Strategy 56

5.3.1 Experimental setup . 56

5.3.2 Evaluation framework . 57

5.3.3 Results and analysis . 57

5.3.4 Discussions . 64

5.4 Experiments on Hybrid Approach . 64

5.4.1 Experimental setup . 65

5.4.2 Evaluation framework . 65

5.4.3 Results and analysis . 65

5.4.4 Discussions . 68

5.5 Experiments on Existing Tools . 68

5.5.1 Experimental setup . 69

5.5.2 Evaluation framework . 69

5.5.3 Results and analysis . 69

5.5.4 Discussions . 75

6 Conclusion and Future Work 80

xi

Appendices 82

xii

LIST OF FIGURES

2.1 Four phases of CIT . 6

2.2 A binary 2-way Covering Array with 5 options. 8

2.3 Heterogeneous structure . 11

4.1 A configuration space model (a) and a covering array (b) for this model. . 23

4.2 All possible binary 2-tuples for the option combination of oi and o j 23

4.3 2-way option combination distribution between warps 25

4.4 A 2-way CA state and a neighbour state 36

4.5 Multiple NSs generation strategy in parallel 42

5.1 Comparing execution time results of parallel and sequential CCM algo-

rithms for t=2, 3, 4 and 5 . 50

5.2 Comparing execution times of parallel and sequential SA algorithms for

t=2 and t=3 . 53

5.3 Comparing execution times of parallel and sequential SA algorithms for

t=2 and t=3 when number of options is fixed 54

5.4 Comparing execution times of parallel and sequential SA algorithms for

t=2 and t=3 when number of constraints (Qi) is fixed 55

5.5 Comparing execution times and size results of 2x16, 4x8, 8x4, 16x2 and

32x1 systems . 58

5.6 Comparing size results of 1x32 and 4x8 systems for t=2 and t=3 59

5.7 Comparing execution time results of 1x32 and 4x8 systems for t=2 and t=3 59

5.8 Comparing execution time and size results of 1x32 and 4x8 systems for

t=2 when number of constraints is fixed 60

xiii

5.9 Comparing execution time and size results of 1x32 and 4x8 systems for

t=3 when number of constraints is fixed 61

5.10 Comparing execution time and size results of 1x32 and 4x8 systems for

t=2 when number of options is fixed . 62

5.11 Comparing execution time and size results of 1x32 and 4x8 systems for

t=3 when number of options is fixed . 63

5.12 Comparing size results of multiple NSs generation and hybrid approach

for t=2 and t=3 . 66

5.13 Comparing execution time results of multiple NSs generation and hybrid

approach for t=2 and t=3 . 66

5.14 Comparison of hybrid approach and multiple NSs generation (4x8) algo-

rithm (a) for t=2 and (b) t=3 . 67

5.15 Comparing size and execution time results where t=2 for hybrid approach,

Jenny, CASA, PICT and ACTS . 70

5.16 Comparing size and execution time results where t=2 for hybrid approach,

Jenny and PICT . 71

5.17 Comparing size and execution time results where t=3 for hybrid approach,

Jenny, PICT and ACTS . 72

5.18 Comparing size and execution time results where t=3 for hybrid approach,

PICT and ACTS . 73

5.19 Comparing size and execution time results where t=3 for hybrid approach

and PICT . 74

xiv

LIST OF TABLES

5.1 Experimental results for all tools where t=2 and k ∈ {20, 40, 60, 80, 100} . 76

5.2 Experimental results for all tools where t=2 and k ∈ {120, 140, 160, 180, 200} 77

5.3 Experimental results for all tools where t=3 and k ∈ {20, 40, 60, 80, 100} . 78

5.4 Experimental results for all tools where t=3 and k ∈ {120, 140, 160, 180, 200} 79

xv

LIST OF SYMBOLS

M System model
O Set of system options
V Set of option settings
Q Set of system-wide inter-option constraints
k Number of options
N Size of covering array
t Strength of covering array
R Set of t-tuples
si j option-value pair
S State in an inner search process
S u Upper boundary state
S l Lower boundary state
B Number of blocks in a grid
T Number of threads in a block
w Warp
Nu Number of uncovered t-tuples

xvi

LIST OF ABBREVIATIONS

CS Computer Science.
SUT System Under Test.
CIT Combinatorial Interaction Testing.
CA Covering Array.
GPU Graphics Processing Unit.
SA Simulated Annealing.
NS Neighbour State.
CCM Combinatorial Coverage Measurement.
CUDA Compute Unified Device Architecture.
SAT Boolean satisfiability testing.
CNF Conjunctive Normal Form.
ACTS Advanced Combinatorial Testing System.
NIST National Institute Standards and Technology.
IS Initial State.
SA Hamming Distance.

xvii

1

INTRODUCTION

Software testing plays an important role in software development cycle. It helps to pro-

duce more reliable systems and improves the quality. Defects and errors are identified and

located in the testing phase so that they can be fixed before the product is released. There-

fore, the testing part aims to eliminate the inconsistencies in the software development

process.

In testing phase, getting a full coverage of the System Under Test (SUT) needs to be

satisfied if one desires to identify and locate the all the existing defects i.e., all possible

scenarios (requirements) of the system behaviours needs to be included in the test cases.

However, testing all possible scenarios (exhaustive testing) may not be feasible or afford-

able most of the time. One example of such applications can be highly configurable soft-

ware systems such as web servers (e.g. Apache) and databases (e.g. MySQL). They have

many configurable options which interact with each other. These option interactions lead

to having exponential growth of possible configurations. Hence, these software systems

become more prone to bugs which are caused by the interaction of options. For example,

a software system having 50 options with binary settings (values) may lead to having 250

different configurations. Therefore, a full coverage of all possible configurations is not

feasible in general, even if exhaustive testing is desirable.

1

One solution for this problem can be Combinatorial Interaction Testing (CIT) [59] which

is used widely to test software systems. CIT takes a configuration space model of SUT

as an input which includes a set of configurable options, their possible settings, and a

set of system-wide inter-option constraints that invalidate some configurations. Then,

CIT samples the configuration space based on a coverage criteria and tests each of these

samples individually.

An important part of CIT is to generate a test suite in a way that it both contains a small

number of configurations and covers all requirements without violating any constraints if

there exists any. In CIT, mostly, Covering Arrays are used as test suites. A t-way Covering

Array (CA) is a mathematical object which has N (size) rows and k (number of options)

columns ensuring every t-tuple (length of t) is covered by some row at least once where

t is called the strength of the CA. Each column of CA keeps the corresponding option

settings and each row is referred as a configuration option where the test case is executed

on (or test cases [57]).

In general, main goal of CA is to get full coverage based on some criteria so that every

desired requirement is satisfied. Once t-way CA is constructed, every test case is executed

by configuring the option values of SUT as suggested by the configurations of CA. There-

fore, it is important that keeping CA construction time shorter to start testing earlier and

keeping CA size smaller to finish testing sooner (under certain assumptions). CAs are of

great practical importance as also apparent from more than 50 papers published only for

construction of CAs [41].

CAs have been extensively used for configuration testing, product line testing, systematic

testing of multi-threaded applications, input parameter testing, etc. [4, 20, 34, 37, 44, 58].

In these researches, many empirical results suggest that most of the failures are occurred

by a small number of option interaction. Therefore, a t-way CA where t is a small number

(2 ≤ t ≤ 6) becomes an efficient test suite in identifying and locating bugs with small

number of configurations.

Various methods have been proposed for constructing CAs in a smaller size and a reason-

able time as Nie et al suggested [41]. However, some of them suffers as the configuration

space gets larger since it affects the number of t-tuples exponentially. Having large num-

ber of t-tuples may make the problem even harder. Furthermore, in practical scenarios,

2

not all t-tuples are valid i.e., there may be system-wide constraints between some option

settings which make constructing a CA even harder without violating any of them. De-

spite these facts, we believe that this problem is indeed a simple counting task and if the

objects can be counted in an efficient way, and a great improvement may be achieved

both in time and size. Considering the suitability of counting for parallelization, we claim

that such combinatorial problems can be solved with parallel computing techniques more

effectively. As different architectures can be more suitable for different methods, in this

case, we choose to move forward with Graphics Processing Unit (GPU). Modern GPUs

have thousands of cores however with a relatively less powerful arithmetic logic unit. This

speciality of GPUs motivates us to employ them since all we need to do is a simple task

of counting but as possible as concurrently.

Simulated Annealing (SA) is a metaheuristic search algorithm which is used for CA con-

struction very often [11, 15, 50, 51]. Even though it is a local search algorithm, its prob-

abilistic decision function saves us getting trapped in a local minima, so that, a smaller

size CA can be constructed. SA consists of 2 main steps; generating a Neighbour State

(NS) and calculating the gain (fitness function) of accepting NS. NS is simply generated

by changing a part of current state and the gain measures how good the NS is compared

to current state. In our case, the NS is same as current state with only one change in one

of the option value. On the other hand, the gain is the difference between the number of

t-tuples covered by the NS and current state. The main issue in SA is that one may need

to repeat these steps for thousands of times or even sometimes millions of times to obtain

better solutions. Therefore, counting the number of t-tuples in a shorter time carries big

importance in SA.

For the reasons that we mention above, we propose parallel methods for SA in order to

construct CAs in a reasonable time and with a smaller number of configurations compared

to the existing approaches. Moreover, we also give an approach to generate multiple

neighbour states in parallel. Finally, we combine all the described methods and propose a

novel hybrid approach to construct CAs using a SAT solver.

3

Our contributions can be summarized as follows: (1) We give an efficient algorithm to

measure combinatorial coverage of a CA. (2) We present a novel parallel algorithm for

fitness function computing technique without enumerating all possible t-tuples. (3) Sev-

eral parallel computing techniques are described to increase the efficiency both in time and

size. (4) A novel hybrid approach is proposed for faster convergence and better quality,

especially for the large and dense constraint spaces.

The rest of the thesis is structured as follows: in Chapter 2, a brief background information

is given. Chapter 3 points out the strengths and weaknesses of the existing methods and

tools which are used in CIT. Both sequential and parallel approaches for constructing CAs

are explained in Chapter 4 in detail. We present our experimental results and analysis in

Chapter 5. Chapter 6 states the concluding remarks and ideas for the future work.

4

2

BACKGROUND

In this chapter, we give background information about Combinatorial Interaction Test-

ing, Covering Arrays, Simulated Annealing, CUDA Parallel Programming Platform and

Satisfiability Problem.

2.1. Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) is widely used to sample program inputs and,

also to test highly configurable software systems, multithreaded applications, Graphical

User Interface (GUI) applications, etc. Main goal of the CIT is to identify the faults which

are triggered by the interaction of options. Yilmaz et al. [59] argue that CIT can be divided

into four phases as shown in Figure 2.1.

5

1

WHAT?
(static)

HOW?
(dynamic)

2

3 4

Parameter
Modeling

CIT
Sampling

Testing Analyzing

Figure 2.1: Four phases of CIT

The first phase is to model the characteristics of the System Under Test (SUT) such as

inputs, configurations, and sequences of operations. The second phase is to sample the

requirements of the model which are generated in the first phase to cover all the expec-

tations from testing, e.g., two pair of all options. The third and fourth phases are testing

and analysing. In testing phase, generated test cases from sampling phase are tested either

in a batch mode, incrementally, or adaptively. As last, the test results are examined and

causes of failures are revealed in the analysing phase.

In this thesis, we are interested in the second phase of CIT which is generating the test

suites with the given requirements. System specifications are fed into our algorithm and

we construct test suites, i.e., Covering Arrays.

6

2.2. Covering Arrays

In every software testing strategy, there are some requirements which has to be covered

with respect to characteristics of SUT in order to reveal the bugs. In our system model

M =< O,V,Q > O = {o1, o2, . . . , ok} stands for the options (factors) of SUT and Vi’s

∈ V = {V1,V2, . . . ,Vk} are the corresponding settings (values) sets for each option oi,

where 1 ≤ i ≤ k. Additionally, Q = {q1, q2, . . . , qm} is the set of system-wide inter-option

constraints if there exist any for the SUT.

In CIT, the requirements are the t-tuple set R = {R1,R2, ...,Rn} , where each t-tuple Ri =

{si j1 , si j2 , . . . , si jt} has t distinct option-values si j =< oi, v j > pairs, where v j ∈ Vi and

1 ≤ t ≤ n.

Definition 1 A t-tuple Ri = {si j1 , si j2 , ..., si jt} is a set of option-value pairs si j =< oi, v j >

for all 1 ≤ t ≤ n, where all options are distinct, oi ∈ O for i = 1, 2, . . . , n and v j ∈ Vi,

j = 1, 2, . . . , n

For given any system model M =< O,V,Q >, the requirements list can be constructed by

enumerating every possible t-length option-value pair. However, in some cases, there may

be some specific option-value pairs which may not be allowed in any configuration. These

t-tuples are called invalid t-tuples or constraints qi ∈ Q. Every t-tuple which contains or

is equal to any constraint, has to be excluded from requirements list.

Definition 2 A configuration is a n-tuple option-value pairs si j =< oi, v j >, where every

option is included in one of the option-value pairs exactly once. A valid configuration is

a configuration where none of the invalid t-tuples are included in the configuration.

As we described in Section 2.1, after SUT is modeled, in the second phase of CIT all

t-tuples are sampled into small number of groups such that from each group a valid con-

figuration can be constructed. These sampled requirements form a test suite for the SUT

and t is called the strength of the test suite.

Definition 3 A t-way Covering Array is CA(N; k, t,M =< O,V,Q >) an N×k array with

N valid configurations and k columns (number of options) where each valid t-tuple re-

quirement Ri ∈ R is covered at least once by any configuration.

7

An example of 2-way Covering Array with 5 options each having binary values is given

in Figure 2.2. Every possible 2-tuple of option combinations is present in the array.

o0 o1 o2 o3 o4

0 1 0 0 0
1 0 0 1 0
1 1 0 1 1
0 0 1 1 1
1 1 1 0 1
1 0 1 0 0

Figure 2.2: A binary 2-way Covering Array with 5 options.

In this thesis, we propose several methods to construct t-way CAs in the presence of

constraints in a smaller size and a reasonable time.

2.3. Simulated Annealing

Simulated Annealing (SA) is a generic probabilistic method for the global optimization

first introduced by Kirkpatrick et al. [35] and Cerny [9]. Originally, SA concept was

influenced by a correlation between the physical annealing process of solids as a thermal

process and the problem of solving large combinatorial optimization problems.

The annealing process consists of two steps [35]. In the first step, the temperature of heat

bath is increased to a maximum value T0 at which the solid melts and in the second phase

the temperature of the heat bath is decreased with a cooling rate Cr until the molten metal

gets frozen or reached to a desired temperature Ts.

In annealing process, it is very important to keep the potential energy state at minimum of

solid in a heat bath. Because, at high temperatures particles arrange themselves randomly,

on the other hand, particles are arranged to be highly structured when the corresponding

energy is minimal. Hence, as the SA process continues, particles get stabilized more and

it becomes difficult to make big structural changes. The annealing process is terminated

8

if the temperature reaches to stopping temperature Ts or potential energy becomes 0. In

annealing, it is very important to chose Cr carefully because if Cr is not small enough

frozen metal will contain imperfections caused by unreleased energy and if the cooling

rate is small then the frozen metal will be too softened to work with.

SA uses the same idea of annealing thermal process to solve the global optimization prob-

lems. Energy and the state of minimum potential energy in annealing process correspond

to the gain and optimal solution with maximum gain in SA, respectively. The anneal-

ing parameters T0, Cr, and Ts are chosen with respect to problem domain to control the

search process. The local minima optimization heuristic search methods choose the best

available option in the current state to find the optimal solution. These techniques may

be quite efficient while global optimal solution is not needed. However, SA differs from

other local minima heuristic search methods in accepting or declining the state using a

probabilistic method called Boltzmann Distribution function (2.1).

B(T) = −kb
∆E
T

(2.1)

In the decision step, if the gain is not negative, it is accepted in any case. However, if it is

smaller than 0, the decision is carried out by the truth value of (2.2). The right side of the

inequality decreases as the T value goes down so it becomes difficult to accept a state as

the state cools down more.

Rand(0, 1) < eB(T) (2.2)

The main reason of why we choose SA in our proposed approach is that CA is a combi-

natorial object and combinatorial problems are indeed counting problems. We conjecture

that counting is a simple task, so that it can be done in parallel to decrease the execu-

tion time. Moreover, we believe that the SA algorithm is suitable to be implemented

with parallel computing techniques. That’s why we adapt SA to our work. The complete

algorithm is explained and discussed more extensively in Section 4.5.

9

2.4. CUDA

CUDA (Compute Unified Device Architecture) is a parallel programming model created

by NVIDIA. CUDA allows programmers to increase the computing performance with

thousands of CUDA-enabled graphics processing units (GPUs). GPUs can be used via

CUDA-accelerated libraries, compiler directives (such as OpenACC), and extensions to

industry-standard programming languages, including C, C++ and Fortran. In this thesis

we use C/C++ programming language with NVIDIA’s LLVM-based C/C++ compiler

(nvcc).

In CUDA programming model, programs are structured in such a way that some functions

are executed on the CPU which is called host, while some functions are executed on the

GPU which is referred as the device in the context of CUDA. The code to be executed

by the CPU, schedules kernels (GPU functions) to be executed on the device. Therefore,

CUDA programming paradigm is a combination of sequential and parallel executions,

and is called heterogeneous type of programming.

CUDA manages parallel computations using the abstractions of threads, blocks and grids.

A thread is just an execution of a kernel with its unique index. A block is a set of threads.

Threads within the same block can be synchronized using syncthreads() which makes

threads wait at a certain point in the kernel until all the other threads within the same

block reach the same point. A grid is a group of blocks where no synchronization exists

at all between the blocks in device level.

The heterogeneous architecture of CUDA is given in Figure 2.3. Sequential code invokes

the kernel function from CPU with specifying number of threads in a thread block and

number of blocks in a grid. Grid and block variables are written in three angular brackets

<<< grid, block >>> before providing inputs to the kernel as shown in Figure 2.3. In this

invocation, grid and thread blocks are created and scheduled dynamically in the hardware

level. The value of this grid and block variables must be less than the allowed sizes.

10

Figure 2.3: Heterogeneous structure

Once a block is initialized, it is divided into groups having 32 threads. These units of 32

threads form warps. All threads within a same warp must execute the same instruction at

the same time, i.e., instructions are handled per warp. This issue arises a problem called

branch divergence. It happens when threads inside warps branches to different execution

paths and this forces the paths to be executed sequentially. In other words, every thread

in a warp has to execute the same line of code. Hence, it is important to assign the same

jobs to the threads within the same warp.

A kernel can be launched using thousands or even millions of lightweight threads that

are to be run on the device. CUDA threads are thought of as lightweight because of that

they have almost no creation overhead, meaning that thousands can be created quickly.

The scheduling of the thread execution and thread blocks is also handled on the hard-

ware.

11

There are several types of memories on GPUs; global memory, shared memory and reg-

isters. Global memory is used to copy data from CPU to GPU or GPU to CPU. It has

the largest memory among the others, however the slowest on reading and writing data.

On the other hand, shared memory can be thought as a cache memory of the blocks in

GPU. Every block has its own shared memory and it is not accessible by other threads in

other blocks. Shared memory can be read and written only from the device part. Registers

are sometimes referred as local memories of threads. They are the fastest ones on data

reading and writing but have less memory, too.

We give an example of a simple code to understand the need for CUDA. Consider a

normal sequential C program performing vector addition given below. Every addition is

done sequentially.

float vectorA [3] = {1.3, -1.3, -1.0};

float vectorB [3] = {1.4, 3.5, 11.2};

float vectorC [3];

for(int i; i < 3; i++)

vectorC[i] = vectorA[i] + vectorB[i];

On the other hand, in efficient CUDA programs, data is arranged well organized so that

each thread can share the work to be done. An example of CUDA code that does the same

job as the above sequential C program is given below.

float vectorA [3] = {1.3, -1.3, -1.0};

float vectorB [3] = {1.4, 3.5, 11.2};

float vectorC [3];

int i = threadIdx.x; # threadIdx: thread index

vectorC[i] = vectorA[i] + vectorB[i];

Each position in vectorA and vectorB is added to vectorC in parallel by different threads,

i.e., the same code is executed by each tread but different positions.

12

More detailed information about CUDA architecture and memory management are given

in [32].

2.5. Boolean Satisfiability Problem

Boolean satisfiability testing (SAT) is a problem to decide whether a given Boolean for-

mula has any satisfying truth assignment. SAT is the first problem that is proven as NP-

complete by Cook [17]. Nowadays, there are many efficient SAT solvers. They try to

replace the variables of the given Boolean formula with true or f alse values in a way that

the formula is evaluated as true. If any such values can be found which makes formula

true, then the formula is considered as satis f iable i.e., there exist at least one solution for

the problem. On the other hand, if no values can be found in order to make formula true,

then it is called as unsatis f iable. As an example, the formula ”¬x1 ∨ x2” is satisfiable

because when x1 = f alse and x2 = f alse, ”¬x1 ∨ x2” becomes true. However, no solu-

tion exists for the formula ”¬x1 ∧ x1”, since every assignment makes the formula f alse.

Hence, the formula ”¬x1 ∧ x1” is called unsatis f iable

In SAT solvers, formulas are represented in conjunctive normal form (CNF) which is

conjunction of clauses. A clause is a disjunction of literals and a literal is either a variable,

or the negation of a variable. Basically, the main goal of SAT is to find values for all

variables which makes each of these clauses true.

SAT solvers have been also studied commonly to construct CAs [3, 12, 13, 30, 40, 56].

However, their scalability issue is a hard problem that makes these approaches mostly

impractical. In our study, to avoid scalability issue and benefit from SAT solver, we

use it to generate a valid configuration which covers only the provided t-tuples. This

functionality is used to add the missing t-tuples of CA in order to make it complete. More

detailed explanation is given in Section 4.7.

13

3

RELATED WORK

Nie et al. [41] points out that CA construction is an NP-hard problem, so it attracts many

researchers attention from various fields. Much research has been done to develop ef-

ficient techniques and tools for constructing CAs with small size in a reasonable time.

They collect more than 50 work on CA construction and classify those proposed tech-

niques into 4 groups: greedy algorithms [5, 7, 10, 19, 38, 49, 52], heuristic search algo-

rithms [8,11,15,24,46], mathematical methods [29,36,53,54], and random search-based

methods [27, 45].

Greedy algorithms [5, 7, 10, 19, 38, 49, 52], as the name suggests, perform in a greedy

way, i.e., they construct CAs iteratively by choosing the best case scenario to cover more

uncovered t-tuples among all possible choices in each iteration. In general, these type of

algorithms choose the best available configuration or generate a new configuration which

covers most of the uncovered t-tuples until no t-tuple is left uncovered. Greedy algorithms

have been the most widely used approach for test suite generation in CIT.

Moreover, heuristic search techniques such as hill climbing [15], great flood [8], tabu

search [8,25], particle swarm optimization [55] and simulated annealing [11,51] as we did

in our research, have been used in many work. In addition to these techniques, some AI-

based approaches have been also employed to constrcut CAs, e.g., genetic algorithm [24]

and ant colony algorithm [46]. In general, heuristic search methods start from a non-

14

complete CA state and apply some operations on the state iteratively until no t-tuple left

uncovered or reach to a threshold. One of the main advantages of these techniques is

that they do not require searching the whole space. Nonetheless, they are poor in finding

optimal values, but, they show great efficiency both in time and size in many work.

Random based search method is also used in CA construction [27, 45]. These techniques

randomly select configurations from a complete larger set until all t-tuples are covered.

In some of special cases, random search may produce better results than other meth-

ods.

Besides these techniques, several mathematical approaches [29, 36, 53, 54] are also pro-

posed for CA construction. These techniques have been studied by researchers mainly

from mathematical fields. These approaches are mostly extended versions of methods for

constructing orthogonal arrays [43].

In practical scenarios, many SUTs have system-wide inter-option constraints and exis-

tence of these constraints makes even harder to construct smaller size CAs in a reasonable

time. Therefore, constraint handling is another problem which is extensively studied in

CIT. Bryce et al. [6] presented an approach to handle with ”soft constraints” and then,

Hinc et al. [30] proposed a technique for ”hard constraints”, even though they only pro-

vided small scale of inputs and their approach was not scalable. Cohen et al. [13, 14]

introduced new techniques to deal with constraints. They described several types of con-

straints which may be present in highly configurable systems. They presented an approach

to encode the constraints into SAT problem. Mats et al. [26] provided four techniques to

handle constraints as well as giving the weaknesses of techniques in order to choose the

best one when needed. In our study, we consider constraints as invalid t-tuples and try to

construct CAs excluding these t-tuples.

Recently, several parallel computing approaches have been also proposed to construct

CAs. One example of that is studied by Avila [1]. The author presents a new improved SA

algorithm for CA construction and various ways to employ multiple SA in parallel using

grid computing. The author does not really parallelize the SA algorithm, but gives several

approaches to run SA algorithms in parallel. Another work is done by Younis et al. [60].

They present a new parallel strategy based on earlier method IPOG, called multicore

modified input parameter order (MC-MIPOG). Unlike IPOG, MC-MIPOG apply a novel

15

approach by eliminating control and data dependency to let the utilizing of multicore

systems. Lopez [39] presents a parallel algorithm for the software product line testing.

The author uses a parallel genetic algorithm in order to construct CAs and evaluates the

algorithm with comparing similar approaches. In our approach, we propose our algorithm

for GPU-based parallel computing techniques to make it easier for any user who has a

computer with GPU. Moreover, since constructing a CA is a simple counting problem,

we believe that rather than having less number of cores with high capability, having more

cores with less capability can be more effective. That’s why we propose our algorithms

for GPUs.

Due to the fact that CIT is getting used more widely in practical cases, several tools are

developed to construct CAs effectively [18]. We investigate and make comparisons with

4 well known tools: ACTS, CASA, PICT, Jenny. Advanced Combinatorial Testing Sys-

tem (ACTS) is developed jointly by the US National Institute Standards and Technology

(NIST) and the University of Texas at Arlington. It can generate CAs with strengths 2-

way through 6-way and also supports for constraints and variable-strength tests as well.

CASA is developed by Garvin et al. [22, 23]. They use the same heuristic search method

SA as we did in our work but with sequential algorithms. CASA can deal with logi-

cal constraints explicitly. Another tool to construct CA is PICT developed by Microsoft.

They claim that PICT was designed with three principles: (1) speed of CA generation, (2)

ease of use, and (3) extensibility of the core engine. The ability to generate the smallest

size CA is given less emphasis. Jenny [33] is another well known tool in this area. It also

supports constraint handling and constructing variable strength CAs. Our proposed ap-

proach supports constraint handling too, but not variable strength. Nonetheless, due to the

nature of heuristic methods, they suffer in time as the space get larger. We try to overcome

this problem using parallel computing. Moreover, we combine heuristic searh and SAT

solver to improve the quality further, especially for larger configuration spaces. We show

that our proposed algorithm can construct smaller size CAs in a reasonable time.

16

4

METHOD

This chapter discusses the details of the proposed approach to measure the combinato-

rial coverage of any given array and steps to construct CAs in the presence of system

constraints within option interactions both with sequential and parallel algorithms. More-

over, we give an approach to generate multiple neighbour states in parallel and a hybrid

approach to increase the time efficiency and size quality.

In Section 4.1, an overview of simulated annealing for construction of CAs is described.

Section 4.2 explains the outer search algorithm. An initial strategy is presented in Sec-

tion 4.3. In the following sections, sequential and parallel algorithms are explained for

Combinatorial Coverage Measurement (Section 4.4) and Simulated Annealing (Section

4.5). Moreover, we also present a method to generate multiple neighbour states in parallel

(Section 4.6) and propose a novel hybrid approach to construct CAs using a SAT solver

(Section 4.7).

17

4.1. Method Overview

In our SA definition, a state refers to a set of N valid configurations where N is the size

(number of rows) of the state. NS is a next state of current state whose one option value

in one configuration is changed to another value. Furthermore, the fitness function (gain

function) counts the difference between number of uncovered t-tuples for the current state

and the NS.

SA can not modify the size of the state while trying to cool down the current state from

initial temperature to final temperature. In other words, SA can neither add extra config-

urations nor remove any of them from the state. This cooling down process is sometimes

called as inner search, as well.

Besides that, deciding a size for an inner search is also a difficult problem. However,

finding tight lower and upper bounds is not an easy task. Many work has been done to

determine good upper and lower bounds for the CA size [16,21,31,42,48,61] in order to

converge to the optimal size faster. However, especially when the option values are not

binary, the gap between bound estimations is not good enough to approximate the optimal

size. Therefore, we need an outer search algorithm which calls the inner search algorithm

repeatedly while choosing the next state size more systematically. This next state size

decision process has to decrease the gap between the bounds in each iteration as much as

possible in order to avoid calling inner search many times.

In the following sections, we explain the outer search and inner search algorithms in

detail.

4.2. Outer Search

As we described above, in this section, we present an outer search algorithm to construct

CAs as given in Algorithm 1.

18

Algorithm 1 Covering Array Generation 1
Input: M =< O,V,Q >: SUT Model, t: strength, P0: initial temperature,
P f : final temperature
Output: CA(N; k, t,M =< O,V,Q >): t-way Covering Array

1: Bl ← 0, Bu ← INT MAX
2: isLowBoundFound ← f alse
3: isU pBoundFound ← f alse
4: N ← estimateS izeO fCA(t,M) # Number of rows (confgurations)
5: S 0 ← generateInitialS tate(N,M)
6: S l ← NULL, S u ← NULL # lower and upper boundary states
7: Nu ← combinatorialCoverageMeasurement(S 0, t,M)
8: S ← S 0

9: while (true) do
10: S ,Nu ← simulatedAnnealing(S ,N,Nu, t,M, P0, P f)
11: if (Nu > 0) then
12: Bl ← N
13: isU pBoundFound ← true
14: S l ← updateBoundaryS tate(Bl, S)
15: else if (Nu = 0) then
16: Bu ← N
17: isLowBoundFound ← true
18: S u ← updateBoundaryS tate(Bu, S)
19: end if
20: if (Bu − Bl < 2) then # Minimal size is found, Bu

21: break
22: end if
23: N ← nextS tateS ize(Nu, Bu, Bl, isLowBoundFound, isU pBoundFound)
24: S ← updateCurrentS tate(S l,N,Nu, isLowBoundFound)
25: end while
26: return S u

In Algorithm 1, we provide the specifications of SUT and strength t as inputs to the

algorithm. As the first step, the algorithm marks the lower and upper bounds as not

found (line 2-3). Then, since the inner search needs N configurations to start the search

algorithm, an initial state (IS) has to be provided to the system. Algorithm determines a

size for the IS using ACTS. Based on our experiments, we observed that ACTS constructs

CAs very fast when system has no constraint. Hence, first, we run ACTS experiment on

the same M but without constraint version, and then, assign 80% of ACTS result to initial

size of CA. After that, M and N are provided to the IS generation phase (lines 4-5). IS

generation phase uses the hamming distance (HD) approach to generate an initial state

(Section 4.3). HD aims to keep the number of uncovered t-tuples of the IS as small as

19

possible while constructing the state. In the next step, using Combinatorial Coverage

Measurement (CCM) algorithm (Section 4.4), the number of missing (uncovered by any

configuration) t-tuples of the IS is counted (line 7). For the inner search algorithm, SA

attempts to construct a t-way CA with the given inputs (Section 4.5). If SA succeeds

to construct a complete t-way CA, then this size is marked as upper bound and upper

boundary state S u is updated otherwise, i.e., cannot cover all t-tuples, the size is marked

as a lower bound and lower boundary state S l is updated (line 10-19). Outer search loop

(line 9-25) continues until the minimal CA size is found, i.e., the difference between upper

and lower bounds is smaller than 2.

Algorithm 2 is used to determine the next state size of CA. If an upper or lower bound

is not found yet, we simply return 90% or 110% of boundary size, respectively. If both

of the bounds are found, we estimate 4 different sizes and choose the minimum one. N1

mimics simple binary search technique and N4 assumes that each configuration covers

(Nu/((k/t) + 1)) t-tuples at most.

The following sections give detailed explanations about the functions which are used in

the proposed approach and present both sequential and parallel algorithms for them.

Algorithm 2 Next State Size for CA
Input: Nu: number of uncovered t-tuples, Bu: upper bound, Bl: lower bound,
isLowBoundFound, isU pBoundFound
Output: N : Size of the next state CA

1: if (!isLowBoundFound and isU pBoundFound) then
2: N ← Bu × 0.90
3: else if (isLowBoundFound and !isU pBoundFound) then
4: N ← Bl × 1.10
5: else if (isLowBoundFound and isU pBoundFound) then
6: N1 ← (Bu + Bl)/2
7: N2 ← Bl × 1.10
8: N3 ← Bu × 0.90
9: N4 ← (Nu/((k/t) + 1)) + 2

10: N ← min(N1,N2,N3,N4)
11: end if
12: return N

20

4.3. Initial State Generation

The main idea in the SA algorithm is to decrease the number of missing t-tuples until no

t-tuple is left uncovered. Therefore, starting with a better IS which covers more t-tuples

will probably decrease the search time to construct a complete CA if it exists with the

given size.

In the literature, HD is widely used for this purpose [47, 51]. We also use HD in our

proposed work but with a different technique based on an observation: in complete CAs,

every setting values in each option column is distributed to along the column equally

sized as much as possible. Actually, HD performs in a similar way, i.e., it keeps the

similarity between each configuration large and leads having an equally size settings dis-

tribution along the columns. Therefore, in order to construct a similar structure initially,

we developed 2 strategies for different cases of SUT e.g., with constraints and without

constraints.

While the system has no constraint, we generate an IS in such a way that every option

values are distributed randomly to the corresponding column almost equally sized. The

procedure is given as follows:

For each option column;

1. Find the number of possible values

2. Generate columns consisting of equally sized option values

3. Randomize the order of values in the columns

In the presence of constraints, it not possible to use the same idea since not every config-

uration becomes valid. Therefore, we use a similar modified approach. The procedure is

given as follows:

1. Generate 2 times more valid configurations than needed

2. Pick the first configuration

3. Iterate over other configurations and pick the one which makes the option columns

settings distribution equally sized

21

Since this phase is done only once and the given sequential strategies perform well enough,

we did not parallelize this phase.

4.4. Combinatorial Coverage Measurement

CCM is employed in the outer search algorithm to count the number of uncovered t-

tuples of IS to proceed with the inner search. It can also be used while checking any CA

is whether complete or not. If CA is not complete, it returns the coverage percentage of

the given CA. Moreover, it may also be required in some cases during the computation

not just before the computation. Because of these facts, faster CCM calculation carries

big importance in CA construction.

Before describing the algorithms for CCM, we try to explain how CCM calculation is

done indeed.

In CCM, every possible t-way option combination is investigated to measure the combi-

natorial coverage of CA i.e., the number of covered t-tuples of each option combination

has to be counted. For example, consider the 2-way binary CA given in Figure 4.1.(b) for

the configuration space model Figure 4.1.(a) without any constraints between any option

interactions. There exists 6 possible 2-way option combinations {< o1, o2 >, < o1, o3 >,

< o1, o4 >, < o2, o3 >, < o2, o4 >, < o3, o4 >} for this configuration space model and

since every option takes 2 values {0, 1}, for each option combination, there are 4 possi-

ble 2-tuples as shown in Figure 4.2. These all 2-tuples have to be covered in each option

combination for CA to be complete. Therefore, in general, in order to measure the combi-

natorial coverage, i.e., count the number of covered t-tuples (or uncovered t-tuples), every

possible t-tuple of every option combination is checked whether it is present in the CA or

not.

In the following subsections, we give both sequential and parallel algorithms which are

inspired from [2] to find the number of uncovered t-tuples of the CA.

22

Configuration Space Model
option settings

o1 {0, 1}
o2 {0, 1}
o3 {0, 1}
o4 {0, 1}

(a)

2-way CA
o1 o2 o3 o4

1 1 0 0
1 0 1 1
0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0

(b)

Figure 4.1: A configuration space model (a) and a covering array (b) for this model.

2-tuple
oi o j

0 1
1 0
1 1
0 0

Figure 4.2: All possible binary 2-tuples for the option combination of oi and o j

4.4.1. Sequential combinatorial coverage measurement

The sequential approach given in Algorithm 3 is described as follows. As initial, the

number of t-way option combinations is found by calculating the number of all different

ways to choose t options out of k (4.1). Then, the number of all valid t-tuples is counted by

excluding the invalid t-tuples from all t-tuples and it is assigned as number of uncovered

t-tuples Nu (line 2). Afterwards, the number of maximum settings among all option’s

settings is marked (line 3).

C(k, t) =
k!

t!(k − t)!
where t 6 k and t > 0 (4.1)

Iterating over option combination indices, every t-length option combination < oi1 , oi2 ,

. . . , oit > is generated one by one (line 5) and number of covered t-tuples for each option

combination is assigned to 0 (line 6). Then, all entries of the lookup table is initialized

to f alse indicating that no t-tuple is covered for the corresponding option combination,

yet.

23

Algorithm 3 Sequential Combinatorial Coverage Measurement
Input: S : CA state, M =< O,V,Q >: System Model, N: size of CA, t: strength
Output: Nu: number of uncovered t-tuples

1: NoptComb ← numberO fCombinations(k, t) # choose t out of k
2: Nu ← f indNumberO f ValidTuples(t,M)
3: Nmax|Vi | ← maxi∈[0,k−1]|Vi|

4: for (i← [0, . . . ,NoptComb − 1]) do
5: optCombi ← generateOptCombFromIndex(k, t, i)
6: Nu

′ ← 0
7: lookupTable← initializeLookupTable(Nmax|Vi |)
8: for (r ← [0, . . . ,N − 1]) do # r: row id
9: Rr ← S [r][∀o j ∈ optCombi]

10: Hr ← convertTupleToNumber(Rr)
11: if (!lookupTable[Hr]) then
12: lookupTable[Hr]← true
13: Nu

′ ← Nu
′ + 1

14: end if
15: end for
16: Nu ← Nu − Nu

′

17: end for
18: return Nu

The lookup table keeps track of which t-tuples are covered in the array. Size of lookup

table is calculated as follows;

sizeo f (lookupTable) =

t∏
j=1

Nmax|Vi | (4.2)

In this way, we ensure that the size of lookup table is greater or equal to number of all

valid t-tuples for each option combination.

After an option combination is generated and the lookup table is initialized, the corre-

sponding columns to the generated option combination < oi1 , oi2 , . . . , oit > are picked

from CA and an N × t table is constructed, virtually. Every t-tuple (lines in N × t) is

scanned in this table and is mapped into a unique index using a hash function (4.3) (line

10).

H(Ri) =

t∑
i=1

v j × (Nmax|Vi |)
i−1 (4.3)

24

Figure 4.3: 2-way option combination distribution between warps

This hash function basically considers the t-tuple Ri in the base of Nmax|Vi |, and converts it

to the base of 10. Since Nmax|Vi | is greater or equal to all options’ settings, uniqueness of

this conversion is guaranteed.

Once the hash index of t-tuple is computed, this index entry in the lookup table is checked.

If it is assigned to true, then it is already covered by another configuration. On the other

hand, if the corresponding t-tuple is assigned to f alse, then this t-tuple is not covered

by any configuration before. Therefore, the number of covered t-tuples is increased by 1

and this index entry in the lookup table is assigned to true (lines 11-14). After scanning

each line of N × t table, the number of covered t-tuples for the corresponding option

combination is subtracted from the number of uncovered t-tuples (line 16). This procedure

is repeated for every option combination. Finally, the algorithm returns the number of

uncovered t-tuples Nu for the given CA.

4.4.2. Parallel combinatorial coverage measurement

In the parallel approach of the CCM, we use the same idea with the sequential algorithm

only with a difference. We observe that counting missing t-tuples of any option combi-

nation is independent of another, i.e., measuring the coverage of any option combination

does not affect the other option combinations coverage. Hence, investigation of uncovered

t-tuples for every option combination can be done separately.

25

We use this idea to parallelize the approach to improve the time efficiency. To do so, we

distribute every option combination to different warps with respect to their warp indices.

In the above example (Figure 4.1), option combinations {< o1, o2 >, < o1, o3 >, < o1, o4 >

, < o2, o3 >, < o2, o4 >, < o3, o4 >} are sent to w0, w1, w2, w3, w4 and w5, respectively as

shown in Figure 4.3.

In the first step of the approach (Algorithm 4), we collect all needed information such as

maximum number of blocks Bmax and threads Tmax of the available GPU device in order

to get full performance (lines 1-2). Tmax is 1024 for almost all new GPU devices and

Bmax changes with respect to device capability. In our case, Tmax is also 1024 and Bmax is

32. So, we have 32 warps in each block and 1024 warps (Nw) in the entire grid. Using

Nw information, every warp generates its option combinations as in (4.4) and counts the

missing t-tuples of these option combinations iteratively.

optCombswi = {optComb j | j ≡ i mod(Nw), where 0 ≤ j < NoptComb} (4.4)

Before the kernel is launched, we specify the size of shared variables for a single block.

Since 32 option combinations are investigated in a single block at the same time, size of

lookup table is increased by 32 (4.5).

sizeo f (lookupTable) = 32 ×
t∏

j=1

Nmax|Vi | (4.5)

Algorithm 4 Parallel Coverage Measurement of CA
Input: S : CA state, M =< O,V,Q >: System Model, N: size of CA, t: strength
Output: Nu: number of uncovered t-tuples

1: Bmax ← getMaxNumberO f Block()
2: Tmax ← getMaxNumberO f ThreadEachBlock()
3: Nu ← 0
4: NoptComb ← numCombinations(k, t)
5: Nmax|Vi | ← maxi∈[0,k−1]|Vi|

6: sizeLookup← Nmax|Vi |
t

7: CCMKernel <<< B,T >>> (CA, t,M,Nu, sizeLookup)
8: cudaDeviceS ynchronize()
9: return Nu

26

The CCMKernel function is given in Algorithm 5. This algorithm is executed for every

block and every thread.

In Algorithm 5, as the first step, warp id across all blocks (wGridId) and warp id within

the block (wBlockId) are calculated for all warps. Also, the thread id within the warp

(TwarpId) is calculated for all threads. wGridId is used for option combination dis-

tribution: every warp knows which option combinations they are responsible for, by

their wGridId. The parameter wBlockId is used to change or check the lookup table.

Since lookup table is defined as shared variable, i.e., only visible and modifiable by the

threads within the same block, an indexing method is needed for warps within the same

block.

We initialize a local variable named Nu
TId to 0 for every thread (line 5). This variable

counts the number of uncovered t-tuples only for the corresponding thread. Finally, all

Nu
TId variables are added to Nu. Keeping this Nu

TId variable as local for each thread helps

us to avoid writing it to global variable Nu in each iteration.

At the beginning, combId is initialized to wGridId. Then, counting process for the option

combination whose index is combId, is started for every warp. After counting uncovered

t-tuples of the first option combination, combId is incremented by Nw in each iteration as

in (4.4) (line 31).

In the counting process of any option combination, the first thread in the warp generates

the corresponding option combination (lines 9-11) and then, threads within the same warp

initialize the part of the lookup table which is specified for them, to f alse (lines 13-16).

An N × t table is constructed with columns of options in option combination, virtually

same as with sequential algorithm. Each line (t-tuple) of the N × t table is checked by the

thread with the corresponding TwarpId in parallel. Every thread converts the correspond-

ing t-tuple into a hash index using (4.3) and assign the hash index position in the lookup

table as true. If the number of rows are greater than 32, then each thread checks more

than 1 row until every row is scanned (lines 18-23).

27

Algorithm 5 CCM Kernel
Input S : CA state, M =< O,V,Q >: System Model, N: size of CA, t: strength
Nu: number of uncovered t-tuples, sizeLookup: size of lookup table
Output Nu: number of uncovered t-tuples

1: wGridId ← TId/32 # wGridId: warp id in grid
2: wBlockId ← (TId%1024)/32 # wBlockId: warp id in block
3: TwarpId ← TId%32 # TwarpId: thread id in warp
4: combId ← wGridId

5: Nu
TId ← 0

6: NoptComb ← numberO fCombinations(k, t) # choose t out of k
7: shared bool lookupTable[Nw ∗ sizeLookup]
8: while (combId < NoptComb) do
9: if (TwarpId = 0) then

10: optCombwId ← generateOptCombFromIndex(combId)
11: end if
12: i← TwarpId

13: while (i < sizeLookup) do
14: lookupTable[wBlockId × sizeLookup + i]← f alse
15: i← i + 32
16: end while
17: r ← TwarpId

18: while (r < N) do
19: Rr ← S [r][∀o j ∈ optCombwId]
20: Hr ← convertTupleToNumber(Rr)
21: lookupTable[wBlockId × sizeLookup + Hr]← true
22: r ← r + 32
23: end while
24: i← TwarpId

25: while (i < sizeLookup) do
26: if (lookupTable[wBlockId × sizeLookup + i] = true) then
27: Nu

TId ← Nu
TId + 1

28: end if
29: i← i + 32
30: end while
31: combId ← combId + Nw

32: end while
33: Nu ← Nu + Nu

TId

28

After scanning all t-tuples of the option combination, every thread checks different po-

sition in the lookup table to identify the missing t-tuples. If the position is false, i.e.,

the corresponding t-tuple is not covered by any option combination, so Nu
TId variable in-

creased by 1 (lines 25-30). Once every option combination is processed, each thread adds

its Nu
TId variable to Nu using atomic operations of CUDA. The algorithm finally returns

the variable Nu.

4.5. Simulated Annealing For Constructing Covering Arrays

We use SA to construct a CA with the given size by applying several random changes

on a given state. It attempts to decrease the number of uncovered t-tuples of the given

state without counting them in each iteration. Therefore, CCM algorithm is called only

once before we begin the outer search to measure the combinatorial coverage of the given

state.

SA takes SUT specifications, number of configurations, current state, number of uncov-

ered t-tuples as inputs and aims to construct a complete CA. If the algorithm cannot

construct a complete CA, it returns the state whose temperature is the final temperature.

Otherwise, the algorithm returns a complete CA.

As the temperature values of SA process, 1 and 0.0001 are assigned to P0 (initial temper-

ature) and P f (final temperature), respectively. On the other hand, due to the fact that our

scale of experiments varies from strength 2 with 20 options to strength 3 with 200 options

choosing a fixed value for the cooling rate R does not serve our propose well. There-

fore, we come up with a new R formula depending on the configuration space variables

as follows:

R =
1 − 0.001

0.15 × (10t × k × t)
(4.6)

29

Since determining an optimal value for R is beyond the scope of this work, we just made

a set of small-scale experiments to come up with this formula. We believe that based on

our experiments, the number of inner loop needs to close to the number (10t × k × t). In

order to approximate to this number, we develop the formula given in (4.6) for R.

There are 2 main phases in the SA algorithm, called neighbour state (NS) generation and

fitness function. In NS generation phase, we generate randomly NSs choosing a random

position in CA and a random new value for this position. Then, using fitness function,

we count the change (gain) in the number of uncovered t-tuples between the current state

and NS. Then, the gain is provided to a decision function to accept or reject the NS.

We describe NS generation phase and fitness function in detail with both sequential and

parallel algorithms in Section 4.5.2 and Section 4.5.3.

In the decision step (Algorithm 6), if the gain is not negative i.e., the number of uncov-

ered t-tuples of NS is lower than or equal to the current state’s, NS is accepted in any

case. However, if accepting NS increases the number of uncovered t-tuples, we use a

probabilistic function given in (4.7) to decide whether to accept the NS or not. Since de-

cision function also cares about the current temperature, as the temperature of SA cools

down, the probValue decreases and accepting a costly state becomes difficult. This step

saves SA to get trapped in local minima or maxima.

B(C, P) = −kb
C
P

(4.7)

Algorithm 6 Neighbour State Decision
Input: C : gain, P : current temperature
Output: true or f alse

1: if (C > 0) then
2: return true
3: end if
4: randNumber ← generateRandomNumber(0, 1)
5: probValue← B(C, P)
6: if (eprobValue > randNumber) then
7: return true
8: end if
9: return f alse

30

4.5.1. Inner search

The sequential SA algorithm is given in Algorithm 7. As we describe in the previous

section, first, the temperature values are assigned and cooling rate is calculated. Then, NS

generation phase and gain calculation are repeated until either all t-tuples are covered or

reach to final temperature.

Algorithm 7 Simulated Annealing
Input: S : CA state, N: size of CA, Nu: number of uncovered t-tuples, t: strength,
M =< O,V,Q >: System Model, P0: initial temperature, P f : final temperature
Output: S : CA state, Nu: number of uncovered t-tuple

1: P← P0

2: R = calculateCoolingRate(k, t,N)
3: while (Nu > 0 and P > P f) do
4: S NS ← generateNeighbourS tate(M, S)
5: C ← f itnessFunction(S NS , S , k, t) # C is gain
6: if (isAccepted(C, P)) then
7: S ← S NS

8: Nu ← Nu −C
9: end if

10: P← P − (P × R)
11: end while
12: return S ,Nu

Algorithm 8 Parallel Simulated Annealing
Input: S : CA state, N: size of CA, Nu: number of uncovered t-tuples, t: strength,
M =< O,V,Q >: System Model, P0: initial temperature, P f : final temperature
Output: S : CA state, Nu: number of uncovered t-tuple

1: P← P0

2: R = calculateCoolingRate(k, t,N)
3: S NS ← generateNeighbourS tate(M, S)
4: while (Nu > 0 and P > P f) do
5: NS decisionAndGenerateNewNS KERNEL <<< B,T >>> (M, S)
6: cudaDeviceS ynchronize()
7: f itnessKERNEL <<< B,T >>> (S NS , S , k, t)
8: cudaDeviceS ynchronize()
9: P = P − (PxR)

10: end while
11: return S ,Nu

31

We propose a novel approach for parallelizing SA algorithm on GPU. In contrast to par-

allel CCM algorithm, we need to provide a synchronization across blocks for all threads

to calculate the gain. In order to decide acceptance of neighbour state, all threads has

to know that counting procedure for every option combination is done , i.e., they have

to be synchronized at the same point to move on the decision step. For this purpose,

cudaDeviceS ynchronize() function is used for synchronizing the GPU device with CPU

i.e., every alive thread in the device is done for computing. The parallel inner search

approach is given in Algorithm 7.

In the following sections how we generate neighbour state and a method to calculate gain

are explained in detail.

4.5.2. Neighbour state generation

Neighbour state generation phase is done virtually, i.e., the state is not generated indeed,

only the change to be done is stored in the memory. The following sections explain how

sequential and parallel approaches are implemented for the NS generation.

4.5.2.1. Sequential NS generation

We provide 2 algorithms for different cases of system model e.g., SUT without constraints

(Algorithm 9) and with constraints (Algorithm 10).

In Algorithm 9, we simply choose a random position in the array (lines 1-2) and find the

number of settings which the corresponding option can take (line 3). Then, we find the

value in that position (line 4) and choose a new value for the position (line 5). In order

to prevent choosing the same value, we decrease the number of possible values by 1 and

if the chosen value is equal to the position itself, we change the chosen value with the

decreased value (lines 6-8).

32

Algorithm 9 Neighbour State Generation without Constraints
Input: M =< O,V,Q >: System Model, S : CA state, N : size of CA
Output: Pc : Chosen position column (option), Pr : Chosen position row,
Ps : Chosen position setting, Pns : Chosen position next setting (neighbour state)

1: Pc ← random(0, k − 1)
2: Pr ← random(0,N − 1)
3: Nv ← |Vi|

4: Ps ← S [Pr][Pc]
5: Pns ← random(0,Nv − 2)
6: if (Pns = Ps) then
7: Pns = Nv − 1
8: end if
9: return Pc, Pr, Ps, Pns

The function returns the column (option) index Pc, row index Pr, position value Ps and

the next position value Pns.

On the other hand, if there exists any constraints between options of SUT, the new value

for the randomly chosen position may violate some configurations. In Algorithm 10, after

choosing a random position and a value for that position as in Algorithm 9, we also check

whether the change violates any constraints (line 10). Until a valid configuration is found,

new value is searched for the chosen position without cooling down the temperature (lines

2-11).

Algorithm 10 Neighbour State Generation with Constraints
Input: M =< O,V,Q >: System Model, S : CA state, N : size of CA
Output: Pc : Chosen position column (option), Pr : Chosen position row,
Ps : Chosen position setting, Pns : Chosen position next setting (neighbour state)

1: isViolated ← True
2: while isViolated do
3: Pc ← random(0, k − 1)
4: Pr ← random(0,N − 1)
5: Nv ← |Vi|

6: Pns ← random(0,Nv − 2)
7: if (Pns = Ps) then
8: Pns = Nv − 1
9: end if

10: isViolated ← isConstraintViolated(S , Pc, Pr, Pns,Q)
11: end while
12: Ps ← S [Pr][Pc]
13: return Pc, Pr, Ps, Pns

33

4.5.2.2. Parallel NS generation

Parallel approach of neighbour state generation is very similar to sequential algorithm

(Section 4.5.2.1). The only difference is that in parallel approach, every thread checks

different constraint in the validation of NS. Even if only one thread can not validate its

constraint, a new NS is generated and these steps are repeated until a valid configuration

is found. This concurrency saves us iterating over each constraint in every SA inner loop

iterations.

We do not give the parallel version of the system without constraints since it is same as

sequential. The complete algorithm for the constrained systems is given as follows.

Algorithm 11 Parallel Neighbour State Generation with Constraints
Input: M =< O,V,Q >: System Model, S : CA state, N : size of CA
Output: Pc : Chosen position column (option), Pr : Chosen position row,
Ps : Chosen position setting, Pns : Chosen position next setting (neighbour state)

1: shared int Pc, Pr, Ps, Pns

2: shared bool isViolated
3: isViolated ← True
4: while isViolated do
5: if TId = 0 then
6: Pc ← random(0, k − 1)
7: Pr ← random(0,N − 1)
8: Nv ← maxi∈[0,k−1]|Vi|

9: Pns ← random(0,Nv − 2)
10: if (Pns = Ps) then
11: Pns = Nv − 1
12: end if
13: end if
14: syncthreads()
15: isViolated ← isConstraintViolated(S , Pc, Pr, Pns,Q)
16: syncthreads()
17: end while
18: Ps ← S [Pr][Pc]
19: return Pc, Pr, Ps, Pns

34

4.5.3. Fitness function

In the previous sections, we explained how we generate an NS. Now, we explain our novel

approach to calculate the gain of accepting the NS.

The key point of the SA algorithm is calculating the gain of NS in shorter time, since it

is used in each iteration of inner search and the number of iterations is dependent on the

number of t-tuples exponentially.

While calculating the gain, it is not necessary to find the number of uncovered t-tuples

of both current state and NS. Because, in the NS generation phase (Section 4.5.2), only a

single random position and a new value for that position are chosen. If the NS is accepted,

it affects only the option combinations whose one of option is the chosen position column

(fixed column or option). Based on this observation, we suggest that not all t-tuples are

needed to be checked whether they are covered or not in each iteration i.e., checking only

the t-tuples of those option combinations is enough for calculating gain of NS. This idea

helps us to decrease the search space (number of option combinations) from
(

k
t

)
to

(
k−1
t−1

)
when one option is fixed in option combinations.

Moreover, we make further improvements by eliminating the unnecessary rows which do

not affect the gain calculation. In NS generation (Section 4.5.2), we choose a single value

for the position can take. Therefore, in that specific chosen row (configuration), we loose

one covered t-tuple and generate a new one instead. However, If there is another same

t-tuple in one of other configurations, while changing value of the chosen position, we

actually do not loose any t-tuple since it is already covered by another configuration as

well. In the same perspective, if the t-tuple which is generated by accepting the neighbour

state, already exists in one of other configurations, we do not cover any new uncovered t-

tuple by accepting the NS. Based on these observations, we claim that the gain is affected

only from those rows which has either the chosen position value or the next value of this

position in the fixed column. We only need to iterate over those rows and number of rows

to be investigated decreases, significantly.

We illustrate these procedures in the following example.

35

Example 1 Consider the 2-way incomplete ternary CA (each option takes 3 values {0, 1, 2})

without any constraints given in Figure 4.4. Assuming this state is generated in one of the

SA iterations and for the NS, second row of o0’s position is chosen. Since each options’

column takes 3 values {0, 1, 2}, there are 2 remaining possible values that can be chosen

for the NS generation {1, 2}. Let’s assume that this number is 1.

o0 o1 o2 o3 o4

r0 1 2 2 0 1
r1 0 0 0 2 1
r2 2 1 2 0 1
r3 0 2 0 1 2
r4 0 1 0 0 2
r5 1 0 1 0 0

(a)

o0 o1 o2 o3 o4

r0 1 2 2 0 1
r1 1 0 0 2 1
r2 2 1 2 0 1
r3 0 2 0 1 2
r4 0 1 0 0 2
r5 1 0 1 0 0

(b)

Figure 4.4: A 2-way CA state and a neighbour state

The current state is as given in Figure 4.4.(a) and NS is the same as current state only

second row of o0’s column is 1 instead of 0 (Figure 4.4.(b)). In order to calculate the

gain of NS, first, we generate all 2-way option combinations which contain o0 {< o0, o1 >

, < o0, o2 >, < o0, o3 >, < o0, o4 >}. Then, we iterate over first column o0 (randomly

chosen column) values and store the row indices which has either 0 or 1 except the chosen

row {r0, r3, r4, r5}. After that, existence of every 2-tuple of chosen row r1 which interacts

directly to the chosen position is investigated in current state and NS {(o0 = 0, o1 =

0), (o0 = 0, o2 = 0), (o0 = 0, o3 = 2), (o0 = 0, o4 = 1), (o0 = 1, o1 = 0), (o0 = 1, o2 =

0), (o0 = 1, o3 = 2), (o0 = 1, o4 = 1)}.

In the first iteration, all rows {r0, r3, r4, r5} of (o0, o1) are scanned and 2-tuples are checked

for the current state (o0 = 0, o1 = 0) and for the NS (o0 = 1, o1 = 0). There can be 4 cases

for this situation by accepting NS;

1. They may both (o0 = 0, o1 = 0) and (o0 = 1, o1 = 0) exist in another row. So, the

number of uncovered 2-tuples is not changed since both of them already exist. We

neither loose any covered 2-tuple nor cover any uncovered 2-tuple.

2. They may both (o0 = 0, o1 = 0) and (o0 = 1, o1 = 0) not exist in another row. So the

number of uncovered 2-tuples is not changed since one 2-tuple is gone missing but

instead of it, a new uncovered 2-tuple is covered.

36

3. (o0 = 0, o1 = 0) may exist but (o0 = 1, o1 = 0) may not exist in another row. 2-tuple

of current state already exist so changing o0 = 0 to o0 = 1 does not the decrease

the number of uncovered 2-tuples. However, 2-tuple of NS does not exist, so by

changing the value, we cover one more 2-tuple. The number of uncovered 2-tuples

decreases by 1.

4. (o0 = 0, o1 = 0) may not exist but (o0 = 1, o1 = 0) may exist in another row. 2-tuple

of current state does not exist so changing o0 = 0 to o0 = 1 increases the number of

uncovered 2-tuples since we loose one of the covered 2-tuples. However, 2-tuple of

NS already exist, so we do not cover a new 2-tuple.

In our example, case 4 is valid for the option combination < o0, o1 >. If we change the

value o0 = 0 to o0 = 1, the 2-tuple (o0 = 0, o1 = 0) goes missing i.e., this t-tuple is not

covered by any other rows. However, (o0 = 1, o1 = 0) is already covered by last row, so

we do not cover any uncovered 2-tuple. The number of 2-tuples is increased by 1 for the

option combination < o0, o1 >. Same procedure is done for every option combination.

4.5.3.1. Sequential fitness function

In the previous section, we explained the general idea of how fitness function is operated.

In this section, we describe the sequential implementation of fitness function to calculate

the gain.

The complete algorithm for fitness function is given in Algorithm 12. In the first loop

(lines 3-7), necessary rows are collected in a set as we describe in the previous section. In

the next loop (lines 9-26), option combinations which contain the fixed option are gener-

ated iteratively and for each option combination number of uncovered t-tuples is counted.

The variables existBe f ore and existA f ter stand for whether the t-tuple of current state

and NS of the corresponding option combination in the chosen row exist in another row

or not. 4 cases that we describe in the Example 1 occur with respect to these variables.

Since only 2 of the cases affect the gain, we only check these cases (lines 21-25).

37

Algorithm 12 Fitness Function
Input: N: size of CA, Pc: Chosen position column (option), Pr: Chosen position row,
Ps: Chosen position setting, Pns: Chosen position next setting (neighbour state),
S : CA state, k : Number of options, t : strength
Output: C : gain

1: C ← 0
2: rowIndices← {}
3: for (r ← [0, . . . ,N − 1]) do
4: if ((S [r][Pc] = Ps or S [r][Pc] = Pns) and (Pr , r)) then
5: rowIndices.append(r)
6: end if
7: end for
8:
9: for (i← [0, . . . ,NoptComb − 1]) do

10: optCombi ← generateOptCombFromIndex(k, t, i)
11: for (r in rowIndices) do
12: if (S [r][∀o j ∈ optCombi] = S [Pr][∀o j ∈ optCombi]) then
13: existBe f ore← true
14: else
15: existA f ter ← true
16: end if
17: if (existA f ter and existBe f ore) then
18: break
19: end if
20: end for
21: if (!existA f ter and existBe f ore) then
22: C ← C + 1
23: else if (existA f ter and !existBe f ore) then
24: C ← C − 1
25: end if
26: end for
27: return C

4.5.3.2. Parallel fitness function

As we mentioned in Section 4.5.3, the crucial part of the SA algorithm is the fitness

function where the gain of the NS is calculated. Calculating the gain is actually counting

the number of t-tuples over and over again. That’s why parallel computing techniques

carry big importance in this part.

38

Before describing the algorithm in detail, we explain how we manage the resources of

GPU. As in CCM, we use 32 blocks and 1024 threads for each block. In Section 4.5.3,

we explained how to remove the unnecessary rows to avoid iterating them. Based on this

idea, we claim that sometimes, |VPc | can be high for randomly chosen option Pc in NS.

Since option values from VPc are distributed to the column almost equally sized, number

of unnecessary rows may become high. Because, we only concern about the rows which

have either the chosen column setting Ps or the next setting Pns. Depending on this idea,

threads within the same warps are divided into 4 groups to get full performance of GPU

and all groups across blocks are indexed using (4.8). Otherwise, in the cases of having less

number of necessary rows may cause some of the threads in a warp (sometimes more than

half) waited i.e., they do not execute any row since there are more than enough threads

for the rows.

GId =
(1024 × NB) + TId

8
(4.8)

Number of groups becomes 4 × Nw. However, if this number is not enough, then each

group takes more than 1 option combination and process them iteratively.

Nw =
1024
32
× NB (4.9)

After that, each option combination is assigned to a group with respect to group index.

In order to use warp synchronization, it is important that number of uncovered t-tuples of

any option combination is counted only by the threads within the same warp.

The complete algorithm is given as follows (Algorithm 13)

39

Algorithm 13 Parallel Fitness Function
Input: N: size of CA, Pc: Chosen position column (option), Pr: Chosen position row,
Ps: Chosen position setting, Pns: Chosen position next setting (neighbour state),
S : CA state
Output: C : gain

1: C ← 0
2: rowIndicesTemp← { f alse}
3: r ← TId

4: while r < N do
5: if ((S [r][Pc] = Ps or S [r][Pc] = Pns) and (Pr , r)) then
6: rowIndicesTemp[r]← true
7: end if
8: r ← r + blockDim.x
9: end while

10: synchronize()
11: rowIndices← pre f ixS um(rowIndicesTemp,N)
12: synchronize()
13:
14: existBe f ore← { f alse}
15: existA f ter ← { f alse}
16: while (Id < NoptComb − 1) do
17: optCombId ← generateOptCombFromIndex(GId)
18: ind ← TId (mod 8)
19: while (ind < length(rowIndices)) do
20: r ← rowIndices[ind]
21: if (S [r][∀o j ∈ optCombId] = S [Pr][∀o j ∈ optCombId]) then
22: existBe f ore[GId]← true
23: else
24: existA f ter[GId]← true
25: end if
26: if (existA f ter[GId] and existBe f ore[GId]) then
27: break
28: end if
29: ind ← ind + 8
30: end while
31: if (!existA f ter[GId] and existBe f ore[GId]) then
32: C ← C + 1
33: else if (existA f ter[GId] and !existBe f ore[GId]) then
34: C ← C − 1
35: end if
36: Id ← Id + (4 × Nw)
37: end while
38: return C

40

There are some improvements in parallel fitness function (Algorithm 13) compared to se-

quential one (Algorithm 12) in calculation time. Necessary rows are identified in parallel

and their indices are stored in an array (rowIndicesTemp). Every thread checks a single

element in the chosen option column Pc of CA state whether the value is equal to either

Ps or Pns as well as ensuring that the chosen row Pr is not included in the necessary row

list (line 5). Every thread marks its position true in rowIndicesTemp if the corresponding

row is a necessary row, otherwise it remains as f alse (line 6). If the number of threads in a

block is not enough to scan all of the values in the column Pc, some (or all) of the threads

are sent to do the same procedures again until all values are checked (line 8). Then, we

use prefix sum algorithm [28] which simply puts in a order the index of the true values in

rowIndicesTemp array (line 11).

Another improvement is done in counting the missing t-tuples of option combinations i.e.,

counting procedure is carried out in parallel. Every group of threads generate their own

option combinations based on their GId (line 17) and if the number of group is less than

number of option combinations, then every group takes more than 1 option combination

iteratively (line 36). Every thread within the same group is indexed to a number between

0 and 7 since there are 8 threads in each group (line 18). These 8 threads scan the option

combination columns of CA to check whether the t-tuple already exists before accepting

NS or after accepting NS (lines 21-25). Rows are distributed to the threads based on their

ind values (line 29).

The rest of the algorithm is same as the sequential algorithm. There are 4 cases that needs

to be considered but only 2 of them make difference in gain (lines 31-35).

41

4.6. Multiple Neighbour States Generation in Parallel

So far, we give algorithms explaining how to parallelize SA functions for GPU-based

parallel computing techniques. These algorithms improve the efficiency in time but not

in quality. They actually do the same things with sequential algorithm however, with

improved methods. In this section, we present an algorithm to generate multiple NSs in

parallel in order to decrease the CA construction time further, and to improve the quality,

i.e., decrease the number of configurations as well.

SA1

NS1

C1

synchronize()

C1 . . .C2 Ci

SA2

NS2

C2

SAi

NSi

Ci

synchronize()

Sk

bestGain = Cr

if (isAccepted(bestGain))
Sk+1 = NSr

else
Sk+1 = Sk

S0

. . .
SAi

Phase 1:
Generate a Neighbour
State (NSi)

Phase 2:
Calculate the gain of NSi (Ci)

Sk

NSi

Ci

Device

Device

Figure 4.5: Multiple NSs generation strategy in parallel

The procedure to generate multiple NSs is given in Figure 4.5. First, the initial state S 0 is

generated (Section 4.3) and provided to the system. Then, every SA algorithm takes the

same S 0 as an input and generate different NSs. Each SA calculates gain of its own NS.

After all SA algorithms are done with NS generation and gain calculation (synchronize),

42

they return the NSs and gains as outputs. Then, maximum gain is chosen among all gains

and assigned to bestGain. This bestGain is fed into decision function to accept or reject

the corresponding NS. If NS is accepted, then it is assigned to next state S k+1, otherwise,

S k is assigned. This steps are repeated until reaching the final temperature or constructing

a complete CA.

The outer search algorithm is same as with Algorithm 1, only the simulated annealing

function is as Figure 4.5.

4.7. Hybrid Approach

While conducting experiments, we realize that, sometimes inner search algorithms may

return very small number of uncovered t-tuples. Only for those t-tuples, size of CA is

increased and extra 1 or 2 more SA runs are executed. Even though, sometimes, additional

configurations (size increment) may not be enough to construct a complete CA and the

number of SA runs are increased more than enough. Especially, when the configuration

space is large and constraints are very dense, this situation is more prone to occur. Only

for small number of remaining t-tuples, these extra SA runs may not be affordable since

SA takes more time when the configuration space is large and approach may suffer both in

time and size. Hence, decreasing number of SA runs as much as possible while keeping

the quality same or further improving, is very important. Based on these observations,

we propose a novel hybrid approach using GPU-based parallel computing techniques and

SAT solver. We claim that when the number of t-tuples is small enough, SAT solver

can be a very efficient way to cover those remaining t-tuples by generating additional

configurations. This technique may help us constructing CAs faster and cheaper.

43

Algorithm 14 Generating Additional Configurations
Input M =< O,V,Q >: SUT Model, uncoveredTuples : uncovered t-tuples,
Output Configurations which cover given uncovered t-tuples

1: Nrextra ← estimate(uncoveredTuples)
2: isS atis f ied ← f alse
3: while !isS atis f ied do
4: isS atis f ied = isS atis f iable(M,Nrextra , uncoveredTuples)
5: Nrextra ← Nrextra + 1
6: end while

In Algorithm 14, first we estimate the minimum number of configurations Nrextra by iden-

tifying the option whose different settings exist more in the remaining t-tuples. Since a

single row can take only a single value for a specific option, there needs to be at least

1 different row for each different option values. After that, we simply pass uncovered

t-tuples and Nrextra value to the SAT solver and leave it to decide whether those remain-

ing t-tuples can be covered by Nrextra rows or not. If it returns as unsatis f iable, Nrextra is

increased by 1 and pass to SAT solver again. These steps are repeated until SAT solver

returns a satis f iable solution.

We use a simple encoding technique for SAT solver [3]. First, we define the domain

values for each cell arc in the array Nrextra × k where r is the row (configuration) index

and c is the column (option) index of arc. Then, we define rules for each constraint to

make sure that each configuration is valid. In order to do that, we simply add negation of

constraints for each row. In the final step, we define rules to cover remaining uncovered

t-tuples. We illustrate these procedures in the following example;

Example 2 Consider that a SUT has 5 options {o0, o1, o2, o3, o4} and these options take

3, 4, 3, 4 and 2 values, respectively. Also, 2 invalid t-tuples exists within the system;

{(o0 = 0, o1 = 0), (o2 = 2, o4 = 1)}. Assume that the inner search approach is operated

on this configuration space model and these remaining t-tuples are left uncovered: {(o3 =

0, o4 = 1), (o2 = 1, o3 = 0)}. We try to cover these t-tuples with 2 configurations.

To do so, we need to define all possible values for each cell of the 2× 5 additional config-

uration array. For instance, as in the example, first row and first column of the array a00

can take 3 values {0, 1, 2}.

44

After defining all cells in this format, each constraint is needed to be introduced to the

SAT solver to ensure that each row is a valid configuration. For example, the invalid t-

tuple !(o0 = 0 and o1 = 0) is defined for each row separately, using the conjunction ”and”.

Then, invalid t-tuple rule is simply defined by making at least one of the option value is

different than invalid t-tuple.

Uncovered t-tuples is defined similarly with constraints. In the constraint definition, we

change the ”and” statement with ”or”, since it is enough for the t-tuple to be covered at

least one row. Also, we change all ”or” statements to ”and” statement and change the

non-equal statement ”ne” to equality ”eq” statement to make sure of that each option

take the right value.

The complete procedure for the proposed approach is given in Algorithm 15.

SAT Solver Encoding Example

Option values
(int a00 0 2)
(int a10 0 2)
(int a01 0 3)
(int a11 0 3)
(int a02 0 2)
(int a12 0 2)
(int a03 0 3)
(int a13 0 3)
(int a04 0 1)
(int a14 0 1)

Constraints
(and (or (ne a00 0) (ne a01 0)) (or (ne a10 0) (ne a11 0))) # !(o0 = 0 and o1 = 0)
(and (or (ne a02 2) (ne a04 1)) (or (ne a12 2) (ne a14 1))) # !(o2 = 2 and o4 = 1)

Uncovered t-tuples
(or (and (eq a03 0) (eq a04 1)) (and (eq a13 0) (eq a14 1))) # (o3 = 0 and o4 = 1)
(or (and (eq a02 1) (eq a03 0)) (and (eq a12 1) (eq a13 0))) # (o2 = 1 and o3 =
0)

45

Algorithm 15 Covering Array Generation (hybrid approach)
Input: M =< O,V,Q >: SUT Model, t: strength, P0: initial temperature,
P f : final temperature
Output: CA(N; k, t,M =< O,V,Q >): t-way Covering Array

1: Bl ← 0, Bu ← INT MAX
2: isLowBoundFound ← f alse
3: isU pBoundFound ← f alse
4: T ← k
5: N ← estimateLowerBound(t,M)
6: S 0 ← generateInitialS tate(N,M)
7: Nu ← combinatorialCoverageMeasurement(S 0, t,M)
8: S ← S 0

9: while (true) do # part1
10: S ,Nu ← simulatedAnnealing(S ,N,Nu, t,M, P0, P f)
11: if (Nu > 0 and Nu < T) then
12: isLowBoundFound ← true
13: Bl ← N
14: S l ← updateBoundaryS tate(Bl, S)
15: S extra ← generateExtraOptionCon f igs(S ,Nu,M)
16: if (!isU pBoundFound or Bu > N + sizeo f (S extra)) then
17: S ← S + S extra

18: N ← sizeo f (S)
19: isU pBoundFound ← true
20: Bu ← N
21: S u ← updateBoundaryS tate(Bu, S)
22: Nu ← 0
23: end if
24: break
25: else
26: if (Nu = 0) then
27: Bu ← N
28: S u ← updateBoundaryS tate(Bu, S)
29: isU pBoundFound ← true
30: else
31: Bl ← N
32: S l ← updateBoundaryS tate(Bl, S)
33: isLowBoundFound ← true
34: end if
35: end if
36: if (Nu ≥ threshold or Nu = 0) then
37: N ← nextS izePart1(N, Bu, Bl,Nu)
38: S ← updateCurrentS tate(S l,N,Nu, isLowBoundFound)
39: end if
40: end while

46

41: while (Bu − Bl > 1) do # part2
42: sizeCA← nextS izePart2(Bu, Bl)
43: S ← updateCurrentS tate(S l,N, isLowBoundFound)
44: Nu ← calculateNumberO f UncoveredTuples(S , t,M)
45: S ,Nu ← simulatedAnnealing(S ,N,Nu, t,M, P0, P f)
46: if (Nu = 0) then
47: Bu ← sizeCA
48: S u ← updateBoundaryS tate(Bu, S)
49: else
50: Bl ← sizeCA
51: S l ← updateBoundaryS tate(Bl, S)
52: end if
53: end while
54: return S u

Additional to the previously described methods, in this approach (Algorithm 15), we de-

cide a threshold for the number of uncovered t-tuples returned from SA algorithm. If it

is smaller than this threshold, we use the SAT solver approach to cover these remaining

t-tuples with additional configurations.

We divide the outer search into two parts. In the first part (lines 9-40), approach tries

to generate a good lower boundary state whose number of uncovered t-tuples is smaller

than threshold. Once the lower bound is found, additional configurations are generated to

cover remaining t-tuples and are appended to CA. Assumption in here is that, the number

of additional configurations is very small. So that the complete CA which is constructed

by appending newly generated configurations, is an upper boundary state whose size is

closer to size of lower boundary state. Therefore, the gap between lower and upper bounds

becomes very small.

In the second part (lines 41-53), outer search proceeds with a binary search until a com-

plete CA is constructed. The difference between first and second part is that first part tries

to compute a good lower boundary state and chose its NS state with respect to this idea

(line 37). However, in second part, only goal is to decrease the gap between upper and

lower bound more until reaching to minimal CA size. So, NS size is decided according to

binary search (line 42).

47

5

EXPERIMENTS

This chapter presents the experimental results to evaluate all proposed parallel algorithms

and to make comparisons with well known existing tools.

The sequential codes are executed on a CentOS 6.5 high performance computing machine

with Intel(R) Xeon(R) CPU 2.80GHz having total 252 GB ram. Parallel algorithms were

employed on an NVIDIA Tesla K40 graphics accelerator with 2880 CUDA cores.

Different types of experiments have been conducted in this chapter, therefore the details

of each experimental setup, evaluation framework, data analysis and discussions of ex-

periments are given separately in different sections.

5.1. Experiments on Combinatorial Coverage Measurement

In this set of experiments, we present experimental results of both sequential (Section

4.4.1) and parallel (Section 4.4.2) implementations of CCM algorithm. We provided ran-

domly generated CAs to the algorithms and measure the execution times of the experi-

ments.

48

5.1.1. Experimental setup

We generated 20 non-complete CAs randomly for each configuration space with t ∈

{2, 3, 4, 5} and k ∈ {40, 80, 120, 160, 200, 400, 600, 800, 1000, 1500} each option having

either 2, 3, or 4 settings since they are mostly small numbers in practical scenarios. We

chose the size of CAs close to their approximated sizes as 32, 128, 1280 and 8096 for

strength 2, 3, 4 and 5, respectively. In total, 1080 experiments have been conducted in

this section.

Since these comparisons are not dependent on the number of constraints, we assumed

that all configuration spaces are constraint free. Because, in both parallel and sequential

CCM algorithms, we count the number of all invalid t-tuples in the beginning of the

algorithm using same sequential method, and after that we proceed with the counting

approach like no constraint exists in the system, i.e., we count every t-tuple including

invalid t-tuples.

5.1.2. Evaluation framework

We evaluated the parallel CCM algorithm’s execution time by changing the number of

options and keeping the strength fixed.

5.1.3. Results and analysis

All presented execution time results are averages of 20 experiments which were conducted

on different configuration spaces but with the same system specification.

49

40 200 400 600 800 1000 1500

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
t = 2 t = 3

t = 4 t = 5

parallel CCM
sequential CCM

40 200 400 600 800 1000
E

xe
cu

tio
n

tim
e

(s
ec

s)

0

20

40

60

80

100

120

140

160

Number of options
40 80 120 160 200

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

50

100

150

200

250

300

350

Number of options
40 80 120

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

500

1000

1500

2000

2500

3000

3500

Figure 5.1: Comparing execution time results of parallel and sequential CCM algorithms
for t=2, 3, 4 and 5

Figure 5.1 makes comparisons between parallel and sequential algorithms of CCM. The

sequential algorithm does better only when t=2 but not more than 0.5 secs. However,

as the strength value increases, the parallel algorithm surpass the sequential algorithm,

significantly. Based on these results, we can claim that as the strength value increases,

efficiency of parallel approach gets more dominant.

50

5.1.4. Discussions

We previously argued that combinatorial problems were actually simple counting tech-

niques. In here, this conjecture can be justified.

When t=2, since the configuration space is not large and the size of CA is small, the

number of t-tuples to be counted is small, too. As the strength value and the size increases,

the number of t-tuples increases, exponentially. Therefore, our conjecture holds in these

cases and encourages us to move forward with this work further to construct CAs using

GPU-based algorithms.

5.2. Experiments on Simulated Annealing

In this section, we present experimental results of both sequential and parallel SA algo-

rithms (Section 4.5) to construct CAs. In these experiments, a single SA algorithm was

executed to see the time efficiency of the parallel algorithm over the sequential one.

We provided the size of CA to the algorithm and made sure that no complete CA exists

with the given size. Because, it is important that SA cools down from initial temperature

to final temperature without constructing a complete CA, i.e., without breaking the loop.

For that purpose, we simply assign 75% of the ACTS results as CA sizes.

51

5.2.1. Experimental setup

In these experiments, we generated 5 different configuration spaces for each system speci-

fications with t ∈ {2, 3}, k ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} and 0 ≤ |Qi| ≤ 9.

Each settings of options was assigned to 2, 3, or 4 randomly. For each number of options,

10 level constraint sizes were calculated using (5.1) and all constraints were generated

randomly. We assumed that all constraints are invalid t-tuples with length 2 or 3 and no

more invalid t-tuple exists beside them.

|Qi| = b2i
√

kc, 0 ≤ i ≤ 9 (5.1)

In total, we have conducted 2000 experiments for this section.

{2 × algos} × {2 × t} × {10 × k} × {10 × Qi} × {5 × con f . space} = 2000 experiments

In order to keep the decrement of number of valid configurations as linear as possible in

the increasing number of constraints, we chose to use a logarithmic incremental method

proportional to k for constraint sizes. The number of all valid configurations decreases

exponentially with the number of constraints |Qi|.

5.2.2. Evaluation framework

We evaluated our proposed algorithm over sequential one in execution time. We investi-

gated the effectiveness of parallelism on this algorithm in 3 ways by keeping the strength

always fixed and: (1) making overall comparisons, (2) keeping number of option fixed

and (3) keeping constraint size fixed.

52

5.2.3. Results and analysis

All given results in this section are the averages of 5 experiments which were conducted

on different configuration spaces having the same system specification.

Figure 5.2 illustrates all results including all constraint levels and the number of options

together. For better visualization to distinguish the efficiency of parallel algorithms for

different strength values, Figure 5.2.(a) shows results only for t=2 and Figure 5.2.(b)

shows for t=3.

For t=2, sequential algorithm is faster in execution time in all the experiments but not

more than 2 seconds. Since there are not much t-tuples to be counted when t=2, we can

not benefit from GPU device with full capacity. Therefore, this result is not surprising.

On the other hand, when t=3, number of t-tuples increases exponentially and the power of

parallelism shows its effectiveness clearly as it can be seen in Figure 5.2.(b). The parallel

SA algorithm completed the cooling down process for all experiments under 25 seconds

but sequential SA algorithm reaches almost 4000 seconds in some of experiments when

t=3.

Execution time of Parallel SA (secs)
0 0.5 1 1.5 2 2.5 3 3.5

E
xe

cu
tio

n
tim

e
of

 S
eq

ue
nt

ia
l S

A
 (

se
cs

)

0

0.5

1

1.5

2

2.5

3

3.5

(a) (b)

t = 2 t = 3

y
1
 = kx

1
,

(x
1
: parallel SA, y

1
: sequential SA)

y
2
 = x

2

Execution time of Parallel SA (secs)
0 1000 2000 3000 4000

E
xe

cu
tio

n
tim

e
of

 S
eq

ue
nt

ia
l S

A
 (

se
cs

)

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.2: Comparing execution times of parallel and sequential SA algorithms for t=2
and t=3

53

Figure 5.3 illustrates the same results by keeping number of options fixed to analyse the

effect of number of constraints on algorithms execution time. We presents the results for

k ∈ {20, 80, 140, 200} and t ∈ {2, 3}.

While the number of options increases for t=2 in Figure 5.3.(a), the gap between execution

times of algorithms decreases as well. On the other hand, the effect of constraints is not

obvious for t=3 in Figure 5.3.(b) since overall speed up is not good enough for both

algorithms except when k=20.

0

0.1

0.2

0.3

0.4
t = 2 t = 3

sequential SA
parallel SA

3

4

5

6

7

k
=

 2
0

0

0.5

1

1.5

0

100

200

300

k
=

 8
0

0

1

2

3

E
xe

cu
tio

n
T

im
e

(s
ec

s)

0

500

1000

1500

E
xe

cu
tio

n
T

im
e

(s
ec

s)

k
=

 1
40

Constraint Levels
0 2 4 6 8 10

1

2

3

4

(a) (b)

Constraint Levels
0 2 4 6 8 10

0

1000

2000

3000

4000

k
=

 2
00

Figure 5.3: Comparing execution times of parallel and sequential SA algorithms for t=2
and t=3 when number of options is fixed

54

In Figure 5.4, results are presented by keeping the number of constraints fixed in order

to observe the behaviours of algorithms while the number of options changes. As it can

be seen in Figure 5.4.(a), when t=2, the trends of algorithms are close to each other.

However, when t=3 in Figure 5.4.(b), the efficiency of the parallel algorithm dominates

the sequential algorithm, noticeably. Therefore, we may comment out that increment of

number of options effects the sequential algorithm in a negative way more than parallel

algorithm when t=3.

0

1

2

3
t = 2 t = 3

sequential SA
parallel SA

0

1000

2000

3000

4000

Q
0

0

1

2

3

4

0

1000

2000

3000

4000

Q
3

0

1

2

3

4

E
xe

cu
tio

n
T

im
e

(s
ec

s)

E
xe

cu
tio

n
T

im
e

(s
ec

s)

0

1000

2000

3000

4000

Q
6

Number of options
0 50 100 150 200

0

1

2

3

4

(a) (b)

Number of options
0 50 100 150 200

0

1000

2000

3000

4000

Q
9

Figure 5.4: Comparing execution times of parallel and sequential SA algorithms for t=2
and t=3 when number of constraints (Qi) is fixed

55

5.2.4. Discussions

Even though sequential algorithm is better than parallel algorithm when t=2, the time

difference between algorithms is not more than 2 seconds. Besides that, the dominance

of parallel algorithm is obvious in all Figures. There is no clear behaviours of number of

constraint effects, but increment of number of options effects sequential algorithm, sig-

nificantly. Therefore, we conclude that parallel SA algorithm is better than the sequential

SA algorithm in execution time since the case for t=2 is negligible.

5.3. Experiments on Multiple Neighbour States Generation Strategy

In these experiments, we executed our proposed approach that is to generate multiple NSs

in parallel with different number of NSs to find out the best scenario. In total, we had 32

blocks which can be used fully parallel. We used 5 different combinations, r × s where

r is the number of NSs and s is the number of blocks for each gain calculation of NS:

2x16, 4x8, 8x4, 16x2, and 32x1. Then, we compare the best combination with single NS

technique algorithm (1x32). Every algorithm attempted to construct a complete CA with

minimal size and all procedures are included in the execution time. The algorithms used

same outer search (Algorithm 4.2) for the experiments.

5.3.1. Experimental setup

In this part of experiments, we used the same configuration space with the previous section

(Section 5.2.1) but with k ∈ {20, 40, 60, 80, 100}. In total, 2000 experiments have been

conducted for this comparison.

56

For finding the best combination of r × s:

{5 × combs} × {2 × t} × {5 × k} × {4 × Qi} × {5 × con f . space} = 1000 experiments

Comparing the best combination with single NS generation technique:

{2 × combs} × {2 × t} × {5 × k} × {10 × Qi} × {5 × con f . space} = 1000 experiments

5.3.2. Evaluation framework

First, we compared all r× s combinations to see how much trade off can be made between

time and size. Then, we evaluated the efficiency of using multiple NSs strategy both in

time and size. To do so, results are presented in several ways e.g., all results together,

keeping the number of constraints or options fixed.

5.3.3. Results and analysis

Each result presented in this section is the average of 5 experimental results.

Figure 5.5 gives the experimental results of using multiple NSs strategy with different

r × s combinations. As the graphs suggest that there is no combination which is the best

both in time and size. If one needs the minimal size of CA, the combination of 32x1

seems the most appropriate one, however it is the worst one in execution time. On the

other hand, if one needs a faster algorithm, 2x16 seems the most appropriate one among

all those combinations. To sum up, there is no superior combination which is the best

both in time and size. Therefore, in this case, we leave the choice for the number of NSs

to the developer and choose the 4x8 system for our next experiments since the execution

time results are very close to minimal one and size results are acceptable.

57

E
xe

cu
tio

n
tim

es

0

5

10

15

20

25

30

35

40

t =
 2

t =
 3

2x16
4x8
8x4
16x2
32x1

N
um

be
r

of
 c

on
fig

ur
at

io
ns

20

25

30

35

40

45

50

Experiments
20 40 60 80 100 120

E
xe

cu
tio

n
tim

es

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Experiments
20 40 60 80 100 120

N
um

be
r

of
 c

on
fig

ur
at

io
ns

120

140

160

180

200

220

240

260

280

300

Figure 5.5: Comparing execution times and size results of 2x16, 4x8, 8x4, 16x2 and 32x1
systems

In the next part of experiments, we compare using multiple NSs strategy (4x8) with single

NS strategy (1x32). Figure 5.6 illustrates the number of configuration results of the algo-

rithms. Both strength, for t=2 in Figure 5.6.(a) and t=3 in Figure 5.6.(b), clearly indicate

that multiple NSs technique constructs CAs better in size.

Figure 5.7 illustrates the execution times of the algorithms. When t=2 in Figure 5.7.(a),

multiple NSs algorithm produces CAs faster than single NS algorithm. On the contrary,

when t=3 in Figure 5.7.(b), single NS algorithm is much faster than multiple NSs algo-

rithm. In this comparison, we believe that single NS algorithm dominates multiple NSs

algorithm since the case for t=2 is negligible.

58

Number of configurations for 1x32 system
(a)

20 25 30 35 40 45

N
um

be
r

of
 c

on
fig

ur
at

io
ns

 fo
r

4x
8

sy
st

em

20

25

30

35

40

45
t = 2 t = 3

Number of configurations for 1x32 system
(b)

120 140 160 180 200 220 240 260 280

N
um

be
r

of
 c

on
fig

ur
at

io
ns

 fo
r

4x
8

sy
st

em

120

140

160

180

200

220

240

260

280

Figure 5.6: Comparing size results of 1x32 and 4x8 systems for t=2 and t=3

Execution times for 1x32 system (secs)
(a)

0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

es
 fo

r
4x

8
sy

st
em

 (
se

cs
)

0

2

4

6

8

10

12
t = 2 t = 3

Execution times for 1x32 system (secs)
(b)

0 200 400 600 800 1000 1200

E
xe

cu
tio

n
tim

es
 fo

r
4x

8
sy

st
em

 (
se

cs
)

0

200

400

600

800

1000

1200

Figure 5.7: Comparing execution time results of 1x32 and 4x8 systems for t=2 and t=3

Figure 5.8 and Figure 5.9 give results of both approaches while keeping number of con-

straints fixed where the t=2 and t=3, respectively. Each line of graphics represents dif-

ferent 5 constraint levels starting form 0 to 8. Left column of figures gives the execution

times of algorithms and right column presents the number of configurations of CA.

59

There are no obvious superiority for an algorithm over another in the increasing number

of options as it can be seen from figures. The behaviours are almost same in all the

cases.

0

5

10

4 x 8
1 x 32

20

30

40

50

Q
0

0

5

10

15

20

30

40

50

Q
2

E
xe

cu
tio

n
T

im
e

0

5

10

15

N
um

be
r

of
 c

on
fig

ur
at

io
ns

20

30

40

50

Q
4

0

5

10

15

20

30

40

50

Q
6

Number of options
20 40 60 80 100

0

5

10

15

Number of options
20 40 60 80 100

20

30

40

50

Q
8

Figure 5.8: Comparing execution time and size results of 1x32 and 4x8 systems for t=2
when number of constraints is fixed

60

0

500

1000

4 x 8
1 x 32

100

200

300

Q
0

0

500

1000

100

200

300

Q
2

E
xe

cu
tio

n
T

im
e

0

500

1000

N
um

be
r

of
 c

on
fig

ur
at

io
ns

100

200

300

Q
4

0

500

1000

100

200

300

Q
6

Number of options
20 40 60 80 100

0

500

1000

Number of options
20 40 60 80 100

100

200

300

Q
8

Figure 5.9: Comparing execution time and size results of 1x32 and 4x8 systems for t=3
when number of constraints is fixed

Figure 5.10 and Figure 5.11 present the results by keeping number of option fixed to

observe the effect of change in number of constraints. However, for both t=2 and t=3,

there are no clear dominance again, when the number of options is fixed.

61

1

2

3

4 x 8
1 x 32

20

25

30

k
=

 2
0

2

3

4

5

30

32

34

36

k
=

 4
0

E
xe

cu
tio

n
T

im
e

2

4

6

8

N
um

be
r

of
 c

on
fig

ur
at

io
ns

30

35

40

k
=

 6
0

4

6

8

10

36

38

40

42

k
=

 8
0

Constraint Levels
0 2 4 6 8 10

6

8

10

12

Constraint Levels
0 2 4 6 8 10

35

40

45

k
=

 1
00

Figure 5.10: Comparing execution time and size results of 1x32 and 4x8 systems for t=2
when number of options is fixed

62

20

40

60

80

4 x 8
1 x 32

120

130

140

150

k
=

 2
0

100

120

140

160

180

190

200

210

k
=

 4
0

E
xe

cu
tio

n
T

im
e

200

250

300

350

N
um

be
r

of
 c

on
fig

ur
at

io
ns

210

220

230

240

k
=

 6
0

200

400

600

800

230

240

250

260

k
=

 8
0

Constraint Levels
0 2 4 6 8 10

500

1000

1500

Constraint Levels
0 2 4 6 8 10

250

260

270

280

k
=

 1
00

Figure 5.11: Comparing execution time and size results of 1x32 and 4x8 systems for t=3
when number of options is fixed

63

5.3.4. Discussions

In these experiments, we observed that multiple NSs generation algorithm constructed

smaller size CAs than single NS approach for both t=2 and t=3. Additionally, multi-

ple NSs technique constructed CAs in a shorter time when t=2 but not when t=3. We

believe that this happened because of that single NS algorithm used 32 blocks and the

computations were carried out much faster. On the other hand, multiple NSs generation

algorithm used 8 blocks for each gain calculation of NS which increased the computation

time.

In multiple NSs strategy, more than one NS were generated in each iteration and choosing

the best one assisted us to converge the solution faster if it exists with the given size.

Moreover, generating multiple NSs helped us to cover the corner cases of t-tuples faster

which were not easy to cover due to the dense constraint distribution. Therefore, the

idea of multiple NSs technique increased the quality of accepted NS in each iteration and

decreased the negative effect of pure random approach. We believe that these were the

reasons that multiple NSs approach constructed smaller size CAs compared to single NS

generation algorithm.

Since both algorithms are better in some cases, no algorithm is superior over another one.

Hence, we leave the choice of deciding number of NSs to the user.

5.4. Experiments on Hybrid Approach

Finally, in this section we present the experimental results of our final proposed approach,

called hybrid algorithm (Section 4.7). In the previous part of experiments (Section 5.3),

results for multiple NSs generation algorithm were already given. We used these same

results to compare with hybrid approach. In the experiments, both algorithms tried to

construct a complete CA with the minimal size and all procedures are included in the

execution time. Hybrid approach also used 4 SAs with 8 blocks each.

64

5.4.1. Experimental setup

In this set of experimentations, we conducted our experiments on the same configuration

space with previous part of experiments (Section 5.3). There are 2000 experiments for this

comparison but only hybrid part (1000 experiments) were performed in this section.

{2 × algos} × {2 × t} × {5 × k} × {10 × Qi} × {5 × con f . space} = 1000 experiments

5.4.2. Evaluation framework

We believe that hybrid approach decreases the size of CA and the execution time further

compared to multiple NSs generation algorithm. Therefore, we evaluated our proposed

approach both in time and size.

5.4.3. Results and analysis

Figure 5.12.(a) and Figure 5.12.(b) illustrates the number of configuration results for t=2

and t=3. When t=2, no algorithm can dominate each other i.e., they both construct smaller

size CAs in some of the experiments. However, when t=3, hybrid approach mostly con-

structs smaller size CAs than multiple NSs generation algorithm especially as the size

grows.

65

Number of configurations for hybrid approach
(a)

20 25 30 35 40 45

N
um

be
r

of
 c

on
fig

ur
at

io
ns

 fo
r

4x
8

sy
st

em

20

25

30

35

40

45
t = 2 t = 3

Number of configurations for hybrid approach
(b)

120 140 160 180 200 220 240 260 280

N
um

be
r

of
 c

on
fig

ur
at

io
ns

 fo
r

4x
8

sy
st

em

120

140

160

180

200

220

240

260

280

Figure 5.12: Comparing size results of multiple NSs generation and hybrid approach for
t=2 and t=3

Figure 5.13.(a) and Figure 5.13.(b) illustrates the execution time results for t=2 and t=3.

In these results, it is more clear that hybrid approach performs better in time for both

strength values.

Execution times for hybrid approach
(a)

0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

es
 fo

r
4x

8
sy

st
em

0

2

4

6

8

10

12
t = 2 t = 3

Execution times for hybrid approach
(b)

0 200 400 600 800 1000 1200

E
xe

cu
tio

n
tim

es
 fo

r
4x

8
sy

st
em

0

200

400

600

800

1000

1200

Figure 5.13: Comparing execution time results of multiple NSs generation and hybrid
approach for t=2 and t=3

66

Time Size
k t |Qi| hybrid 4x8 hybrid 4x8
20 2 0 1.20* 1.45 22* 22.2
20 2 8 1.05* 1.56 22.2 21.6*
20 2 17 1.17* 1.56 22.2 21.8*
20 2 26 1.15* 1.87 22.2* 22.4
20 2 35 1.44* 2.00 22* 22.2
20 2 44 1.65* 2.26 22.6* 23
20 2 53 1.43* 2.22 23.2 22.8*
20 2 62 1.56* 2.38 22.8* 23
20 2 71 1.87* 2.57 23.4 23.6*
20 2 80 1.87* 2.73 23.4* 24
40 2 0 2.07* 2.40 31.8* 32
40 2 12 2.17* 2.55 31.8 31.6*
40 2 25 1.64* 2.91 31.6* 31.6*
40 2 37 2.46* 2.92 31.6 31.4*
40 2 50 2.52* 3.16 32.2 31.8*
40 2 63 2.77* 3.09 32* 32*
40 2 75 2.74* 3.30 31.8* 32
40 2 88 3.00* 3.54 31.4* 32.4
40 2 101 1.85* 3.30 33.2 32.4*
40 2 113 2.17* 3.48 32.4* 32.4*
60 2 0 3.11* 3.91 33.8* 34.2
60 2 15 2.95* 3.96 34.2 33.8*
60 2 30 2.77* 4.77 34.2 34*
60 2 46 3.49* 4.54 34.4 33.8*
60 2 61 3.49* 5.10 34.2 34*
60 2 77 3.48* 4.78 34.4* 34.8
60 2 92 3.08* 5.37 34.6 34.2*
60 2 108 2.80* 5.41 34.6* 34.8
60 2 123 2.62* 5.51 35 34.8*
60 2 139 3.71* 5.95 34.8 34.2*
80 2 0 4.16* 5.09 36.4* 37.4
80 2 17 5.21* 6.13 36.8* 37
80 2 35 4.08* 5.83 37.4 37.2*
80 2 53 3.98* 5.89 37.4* 37.4*
80 2 71 2.72* 6.74 38 37*
80 2 89 5.73* 6.92 37.4 37.2*
80 2 107 4.81* 6.34 37* 37.4
80 2 125 5.84* 7.43 37.2* 37.2*
80 2 143 4.95* 7.37 37.4 37.2*
80 2 160 4.41* 7.44 37.8 37*

100 2 0 4.38* 6.07 38.8* 39.2
100 2 20 5.20* 7.10 38.8* 38.8*
100 2 40 3.60* 7.71 39.6 39.4*
100 2 60 6.35* 7.72 38.6* 38.8
100 2 80 5.11* 8.26 39.2* 39.2*
100 2 100 6.04* 8.46 38.8* 39
100 2 120 4.22* 8.38 39.6 39.2*
100 2 140 5.88* 8.84 39.4 39*
100 2 160 5.71* 9.61 39.4* 39.8
100 2 180 4.62* 9.40 39.6* 39.6*

(a)

Time Size
k t |Qi| hybrid 4x8 hybrid 4x8
20 3 0 12.32* 35.56 127.8 127.6*
20 3 8 18.79* 40.89 128.4* 129.4
20 3 17 19.66* 40.59 127.2* 128.2
20 3 26 18.84* 45.56 128.8* 130.2
20 3 35 17.87* 45.76 129.4* 130.4
20 3 44 21.49* 50.61 129* 130.2
20 3 53 25.56* 51.90 131* 132.6
20 3 62 27.58* 54.50 131.4* 132.8
20 3 71 28.45* 59.92 135.2* 135.8
20 3 80 34.99* 62.07 134.6* 137.4
40 3 0 59.93* 109.63 178.8* 181.8
40 3 12 65.70* 123.13 178.6* 182.6
40 3 25 67.39* 127.34 179* 182.8
40 3 37 69.58* 132.18 179.4* 184.6
40 3 50 75.81* 136.11 180.4* 185.2
40 3 63 77.58* 144.99 181* 184.8
40 3 75 83.69* 144.41 181* 185
40 3 88 77.07* 148.37 181.4* 185.8
40 3 101 79.40* 153.51 182.6* 186.4
40 3 113 84.22* 156.74 184.6* 188.8
60 3 0 122.46* 250.69 210.6* 216
60 3 15 136.84* 272.81 210.8* 216.4
60 3 30 141.54* 273.99 210.2* 215.6
60 3 46 143.95* 278.22 210.4* 215.4
60 3 61 146.05* 289.14 211.2* 216.4
60 3 77 156.14* 318.01 211.4* 218.6
60 3 92 153.03* 310.02 212* 218.2
60 3 108 145.98* 319.65 211.8* 219.8
60 3 123 149.83* 325.13 212.6* 218.8
60 3 139 153.96* 334.75 213.8* 220.2
80 3 0 263.48* 510.08 230.4* 234.4
80 3 17 262.03* 553.74 230.6* 236
80 3 35 277.48* 561.91 230.6* 236
80 3 53 283.10* 579.98 231* 237.2
80 3 71 287.71* 606.66 231* 237.6
80 3 89 293.64* 608.38 231.2* 238.2
80 3 107 296.37* 613.21 232* 238
80 3 125 297.91* 628.40 231.6* 238.4
80 3 143 305.37* 675.96 232.6* 241
80 3 160 333.76* 676.37 233.2* 241.6
100 3 0 414.07* 811.97 248.4* 253.6
100 3 20 454.67* 881.37 249.2* 255.6
100 3 40 439.18* 896.77 249.6* 253.8
100 3 60 463.84* 895.21 249.6* 254
100 3 80 449.41* 964.56 249.6* 257
100 3 100 472.82* 931.90 249.8* 255.4
100 3 120 497.09* 968.98 250.2* 256
100 3 140 509.03* 1043.84 250.4* 259.8
100 3 160 489.03* 982.54 250.6* 256.6
100 3 180 471.49* 1103.46 250.6* 260.6

(b)

Figure 5.14: Comparison of hybrid approach and multiple NSs generation (4x8) algorithm
(a) for t=2 and (b) t=3

67

Figure 5.14 presents all the results for multiple NSs generation and hybrid approach in

separate tables for t=2 and t=3. When we analyse the execution times for both t=2 and

t=3 results, hybrid approach is always better as we already give in Figure 5.13. On the

other hand, when t=2, sizes of CAs for both algorithms almost equal to each other. No

algorithm can obviously surpass the other one. However, when t=3, hybrid approach

constructs CAs in smaller size except 1 configuration space.

5.4.4. Discussions

Especially in the large configuration spaces, the inner search takes more time due to the

fact that fitness function operates in a longer time and the cooling rate gets smaller. There-

fore, decreasing the number of inner searches may reduce the overall execution time,

significantly.

Since all we did in hybrid approach is to add a new functionality to multiple NSs gen-

eration algorithm that is to cover remaining uncovered t-tuples with SAT solver without

altering any part of inner search, we can comment that SAT solver indeed decreases the

number of performed inner searches. Using SAT solver clearly affects both CA sizes and

construction times in most of the experiments.

5.5. Experiments on Existing Tools

In these final set of experiments, we compared our novel hybrid approach with the well

known existing tools e.g., ACTS, CASA, Jenny and PICT.

68

5.5.1. Experimental setup

The experiments for every tool are conducted on the same configuration space with Sec-

tion 5.2.1. There are total 5000 experiments for this comparisons.

{5 × tools} × {2 × t} × {10 × k} × {10 × Qi} × {5 × con f . space} = 5000 experiments

5.5.2. Evaluation framework

We evaluated our algorithm in both size and time with several aspects e.g., keeping the

number of constraints or options fixed.

5.5.3. Results and analysis

In this section, all results for every tool are presented in several ways to observe the

best part of algorithms and compare with the hybrid approach. First of all, Figure 5.15

illustrates the execution time and size results for t=2. The execution times for algorithms

are not very clear since ACTS and CASA took more time to construct CAs compared to

other ones. Even though CASA is the best one in number of configurations, it is also the

worst one in execution time among all tool results. Since size results of hybrid approach

are very close to CASA’s and the gap between execution times of algorithms reaches up

to 500 seconds in some of the experiments, we remove CASA’s results from the graphics.

Moreover, ACTS is better than us in neither time nor size. Therefore, in order to scale the

time in graphic for better visualisation, we remove ACTS results, too. New graphics are

given in Figure 5.16.

69

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

100

200

300

400

500

600

700

800

hybrid
jenny
casa
pict
acts

Experiments
20 40 60 80 100 120 140 160 180 200 220

N
um

be
r

of
 c

on
fig

ur
at

io
ns

20

25

30

35

40

45

50

55

60

65

70

Figure 5.15: Comparing size and execution time results where t=2 for hybrid approach,
Jenny, CASA, PICT and ACTS

In Figure 5.16, the execution times of Jenny and PICT are almost equal to each other and

they are both under 2 seconds. However, hybrid approach reaches almost 15 seconds in

some of the experiments. On the other hand, our algorithm results are better in number of

configurations by 18% on average.

70

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

2

4

6

8

10

12

14

hybrid
jenny
pict

Experiments
20 40 60 80 100 120 140 160 180 200 220

N
um

be
r

of
 c

on
fig

ur
at

io
ns

20

25

30

35

40

45

50

55

60

65

70

Figure 5.16: Comparing size and execution time results where t=2 for hybrid approach,
Jenny and PICT

In the following figures, the results for the case of t=3 are given. We do not give CASA

results for t=3 due to the time limitations.

71

E
xe

cu
tio

n
tim

e
(s

ec
s)

×105

-0.5

0

0.5

1

1.5

2

2.5

hybrid
jenny
pict
acts

Experiments
20 40 60 80 100 120 140 160 180 200 220

N
um

be
r

of
 c

on
fig

ur
at

io
ns

100

150

200

250

300

350

400

450

Figure 5.17: Comparing size and execution time results where t=3 for hybrid approach,
Jenny, PICT and ACTS

As number of configurations increases, in general, hybrid approach is the best one among

others and the closest one to our algorithm is Jenny, even sometimes better. However, in

the execution time, Jenny’s results is the worst one among all tools. So that we remove

Jenny results form Figure 5.17 to scale the remaining tool results and observe them clearly.

We illustrate the new results in Figure 5.18

72

E
xe

cu
tio

n
tim

e
(s

ec
s)

×104

0

0.5

1

1.5

2

2.5

3

3.5

hybrid
pict
acts

Experiments
20 40 60 80 100 120 140 160 180 200 220

N
um

be
r

of
 c

on
fig

ur
at

io
ns

100

150

200

250

300

350

400

450

Figure 5.18: Comparing size and execution time results where t=3 for hybrid approach,
PICT and ACTS

In these results, it is clear that hybrid algorithm is the best one in number of configurations

however PICT results are better than our algorithm results in execution time. In order to

see the relation between these two algorithms, we give results of only PICT and our

algorithm with box plot graphics in Figure 5.19

73

Tools
hybrid PICT

E
xe

cu
tio

n
tim

e
(s

ec
s)

0

500

1000

1500

2000

2500

Tools
hybrid PICT

N
um

be
r

of
 c

on
fig

ur
at

io
ns

150

200

250

300

350

400

Figure 5.19: Comparing size and execution time results where t=3 for hybrid approach
and PICT

Figure 5.19 indicates that both algorithms are better in one part. PICT dominates our

algorithm in time, on the other hand, our algorithm constructs smaller size CAs than

PICT. This conclusion is expected as we mentioned in Section 3. PICT was designed for

considering three principles and one of them was constructing CAs faster. Smaller size

CAs were their least priority after other three principles.

As final, we present all the experimental results of tools in Table 5.1, Table 5.2, Table 5.3

and Table 5.4.

74

5.5.4. Discussions

When we compare all tools in size of constructed CA, we can conclude that our proposed

approach is the best one when t=3, and the second best one when t=2, in general. How-

ever, the best tool in t=2 CASA, is the worst one in execution time far from all tool results.

Therefore, we believe that it is not practical to spend too much time only for t=2. As we

compare our results in execution time, even though our results are not the best one, they

are reasonable times compared to other tools.

Moreover, we also observe in tables that our algorithm is among the least effected ones by

the number of constraints. We conjecture that this speciality of us carries big importance

especially in the practical scenarios.

Based on all these observations, we conclude that our proposed algorithm is the best one

as pareto optimal.

75

Time Size
k t |Qi| hybrid Jenny CASA PICT ACTS hybrid Jenny CASA PICT ACTS
20 2 0 1.20 0.00 0.79 0.02 0.04 22.0 28.6 21.4 26.8 24.4
20 2 8 1.05 0.00 0.95 0.02 1.51 22.2 28.6 21.2 26.6 24.6
20 2 17 1.17 0.00 0.65 0.02 2.09 22.2 28.0 22.4 27.4 24.8
20 2 26 1.15 0.00 1.46 0.02 2.34 22.2 29.2 22.2 29.2 25.6
20 2 35 1.44 0.00 1.92 0.03 2.43 22.0 28.2 21.4 30.8 25.0
20 2 44 1.65 0.00 1.08 0.03 2.67 22.6 27.8 21.6 32.4 26.2
20 2 53 1.43 0.00 3.70 0.03 3.01 23.2 28.0 22.4 32.8 28.0
20 2 62 1.56 0.00 1.99 0.04 3.24 22.8 29.0 23.0 34.0 28.8
20 2 71 1.87 0.00 0.70 0.04 3.52 23.4 29.4 23.2 36.4 29.2
20 2 80 1.87 0.00 1.50 0.04 4.06 23.4 30.6 24.6 37.2 32.2
40 2 0 2.07 0.01 5.75 0.03 0.07 31.8 38.6 30.2 38.0 37.8
40 2 12 2.17 0.02 5.55 0.03 2.06 31.8 39.4 30.2 38.6 36.4
40 2 25 1.64 0.02 15.52 0.04 3.14 31.6 37.8 30.2 38.6 37.0
40 2 37 2.46 0.02 3.86 0.03 3.95 31.6 38.0 30.4 39.8 36.8
40 2 50 2.52 0.02 19.11 0.04 4.69 32.2 38.4 30.8 41.0 36.8
40 2 63 2.77 0.02 37.33 0.04 5.46 32.0 37.6 30.2 40.6 36.8
40 2 75 2.74 0.02 3.40 0.05 6.21 31.8 37.6 30.8 43.2 37.6
40 2 88 3.00 0.02 4.49 0.06 6.94 31.4 37.4 35.2 44.8 37.4
40 2 101 1.85 0.03 24.04 0.06 7.96 33.2 38.4 32.8 44.6 37.8
40 2 113 2.17 0.03 24.56 0.06 8.78 32.4 38.2 32.2 48.2 38.0
60 2 0 3.11 0.03 28.62 0.05 0.08 33.8 42.6 32.2 41.2 39.0
60 2 15 2.95 0.04 25.79 0.05 2.12 34.2 41.8 32.0 41.6 39.0
60 2 30 2.77 0.05 45.64 0.06 3.64 34.2 41.0 32.2 42.4 38.2
60 2 46 3.49 0.05 28.10 0.05 5.50 34.4 41.4 33.0 42.8 39.0
60 2 61 3.49 0.05 47.17 0.06 7.69 34.2 40.8 32.6 44.2 38.8
60 2 77 3.48 0.06 38.22 0.06 9.25 34.4 40.2 34.2 43.2 38.6
60 2 92 3.08 0.06 22.86 0.06 11.14 34.6 41.8 33.8 45.8 39.8
60 2 108 2.80 0.06 35.50 0.08 12.74 34.6 40.8 34.0 46.6 39.2
60 2 123 2.62 0.07 18.41 0.08 14.61 35.0 39.8 34.6 49.8 38.8
60 2 139 3.71 0.07 13.62 0.09 17.92 34.8 41.0 39.4 51.0 40.2
80 2 0 4.16 0.07 50.84 0.07 0.10 36.4 45.8 34.8 45.0 42.6
80 2 17 5.21 0.07 16.14 0.07 2.24 36.8 44.6 35.2 45.4 42.2
80 2 35 4.08 0.09 53.34 0.07 4.58 37.4 45.6 35.0 46.2 41.6
80 2 53 3.98 0.10 26.96 0.14 7.67 37.4 44.2 35.4 46.6 42.2
80 2 71 2.72 0.10 13.06 0.09 12.60 38.0 44.0 37.4 47.2 42.6
80 2 89 5.73 0.11 20.15 0.09 17.47 37.4 44.2 35.8 47.8 42.6
80 2 107 4.81 0.12 14.50 0.09 21.78 37.0 43.2 37.0 49.0 42.6
80 2 125 5.84 0.12 24.41 0.10 28.17 37.2 44.0 37.6 52.2 43.0
80 2 143 4.95 0.13 62.56 0.11 33.56 37.4 43.6 36.0 52.0 42.8
80 2 160 4.41 0.13 14.58 0.12 39.55 37.8 43.8 44.0 56.2 43.2
100 2 0 4.38 0.11 59.41 0.11 0.11 38.8 47.6 36.8 47.2 44.0
100 2 20 5.20 0.12 51.99 0.10 2.26 38.8 47.2 37.0 47.2 44.0
100 2 40 3.60 0.14 20.96 0.10 5.12 39.6 46.8 37.0 48.4 44.0
100 2 60 6.35 0.15 42.86 0.11 11.92 38.6 48.4 37.0 48.8 43.6
100 2 80 5.11 0.16 30.84 0.11 20.88 39.2 46.4 37.2 50.8 44.6
100 2 100 6.04 0.18 57.84 0.12 32.14 38.8 46.4 39.2 49.4 43.6
100 2 120 4.22 0.18 55.67 0.12 39.17 39.6 45.8 37.4 51.8 44.0
100 2 140 5.88 0.19 44.62 0.13 48.53 39.4 45.6 41.0 52.4 43.8
100 2 160 5.71 0.21 50.43 0.14 58.86 39.4 45.4 39.0 55.2 44.2
100 2 180 4.62 0.21 121.01 0.16 68.77 39.6 45.8 39.0 55.6 43.8

Table 5.1: Experimental results for all tools where t=2 and k ∈ {20, 40, 60, 80, 100}

76

Time Size
k t |Qi| hybrid Jenny CASA PICT ACTS hybrid Jenny CASA PICT ACTS
120 2 0 6,80 0,16 150,53 0,14 0,13 40,8 49,6 38,8 49,2 46,6
120 2 21 4,79 0,18 96,72 0,14 2,42 41,6 50,0 39,0 49,6 46,2
120 2 43 6,35 0,20 151,89 0,14 5,41 41,4 49,0 39,0 50,2 46,2
120 2 65 3,82 0,23 53,06 0,15 14,77 42,0 48,6 39,2 51,2 45,4
120 2 87 5,12 0,25 123,53 0,16 32,57 41,6 48,8 39,2 51,0 45,6
120 2 109 6,87 0,26 230,08 0,16 45,21 41,2 48,6 39,6 52,6 46,0
120 2 131 7,22 0,28 18,87 0,17 66,14 41,4 48,4 41,8 53,6 46,4
120 2 153 5,79 0,30 22,59 0,19 79,03 41,4 49,0 49,8 54,8 46,6
120 2 175 8,20 0,31 256,07 0,21 101,36 41,6 47,6 44,4 57,4 47,0
120 2 197 4,65 0,33 45,02 0,21 110,08 42,0 47,4 47,6 58,2 46,0
140 2 0 7,47 0,22 39,92 0,19 0,16 42,8 51,6 40,2 52,2 49,4
140 2 23 9,32 0,26 103,46 0,20 2,60 42,6 51,0 40,6 51,8 49,4
140 2 47 8,93 0,29 56,31 0,19 5,68 42,6 50,4 41,0 52,2 49,0
140 2 70 8,51 0,32 160,37 0,21 22,46 42,6 50,4 41,6 52,8 48,4
140 2 94 6,92 0,35 44,23 0,20 47,85 43,8 50,6 40,8 52,4 48,4
140 2 118 9,44 0,37 230,53 0,22 73,39 42,6 50,8 44,2 54,8 48,2
140 2 141 8,83 0,40 48,23 0,24 98,56 42,4 50,4 45,6 56,2 48,8
140 2 165 8,56 0,42 226,63 0,24 120,36 43,2 50,4 41,4 57,0 48,0
140 2 189 6,89 0,44 47,47 0,25 144,77 43,6 50,0 50,2 56,8 48,2
140 2 212 6,61 0,47 28,15 0,27 173,41 44,2 49,4 48,0 60,8 48,2
160 2 0 7,41 0,29 132,78 0,25 0,18 44,4 52,8 41,6 53,2 50,2
160 2 25 9,14 0,33 220,81 0,25 2,69 43,8 52,8 41,8 52,8 50,0
160 2 50 9,68 0,39 105,93 0,25 5,29 44,0 52,4 42,2 53,0 49,4
160 2 75 7,65 0,43 160,98 0,26 29,57 45,0 52,4 41,8 54,4 49,8
160 2 101 11,48 0,46 297,62 0,28 62,33 43,4 52,2 41,8 54,6 49,2
160 2 126 3,97 0,50 139,84 0,28 99,19 45,8 52,2 42,2 56,0 49,2
160 2 151 9,39 0,53 44,45 0,31 132,58 44,6 51,8 49,2 56,0 49,4
160 2 177 6,16 0,57 121,21 0,31 171,24 45,4 51,2 43,8 57,8 49,0
160 2 202 8,28 0,60 372,80 0,32 204,85 44,8 51,0 49,4 61,0 49,6
160 2 227 7,63 0,63 77,38 0,33 238,53 44,8 50,2 48,6 63,6 49,4
180 2 0 6,68 0,39 435,49 0,32 0,20 46,4 54,4 43,4 55,2 52,4
180 2 26 6,42 0,45 433,30 0,33 2,79 46,4 54,0 43,6 55,6 51,8
180 2 53 9,03 0,51 239,58 0,34 5,22 46,0 54,2 43,4 55,8 51,6
180 2 80 11,18 0,57 359,03 0,34 35,83 45,4 53,6 43,8 55,8 51,0
180 2 107 10,75 0,63 419,38 0,36 86,28 45,6 53,8 44,0 57,2 52,0
180 2 134 6,93 0,67 425,39 0,36 129,29 46,4 53,0 44,0 56,8 51,0
180 2 160 12,23 0,71 409,82 0,39 180,66 45,8 52,8 44,0 58,4 51,2
180 2 187 11,43 0,76 516,80 0,39 226,60 46,2 53,8 51,0 58,2 50,8
180 2 214 12,66 0,81 242,98 0,41 281,84 45,6 53,0 45,6 60,6 50,8
180 2 241 10,77 0,85 205,12 0,44 327,40 46,0 52,8 53,8 65,6 51,2
200 2 0 6,23 0,48 439,55 0,40 0,24 47,2 55,2 44,0 55,8 52,4
200 2 28 8,48 0,56 509,66 0,41 2,58 46,8 55,0 44,0 56,0 52,0
200 2 56 10,55 0,63 500,69 0,41 5,00 46,2 55,6 44,0 56,8 52,4
200 2 84 8,85 0,71 323,07 0,40 29,09 46,6 54,8 45,4 56,6 52,2
200 2 113 9,20 0,78 437,17 0,42 96,28 46,8 54,8 44,2 56,4 51,4
200 2 141 5,35 0,82 726,25 0,45 162,84 47,6 55,0 44,4 57,4 51,6
200 2 169 7,81 0,88 255,51 0,46 217,09 47,2 53,6 44,6 58,4 51,4
200 2 197 6,24 0,93 241,75 0,48 274,80 47,6 53,6 51,6 60,4 51,0
200 2 226 8,68 1,03 514,13 0,50 354,82 47,2 53,8 44,8 60,4 51,4
200 2 254 7,26 1,07 333,06 0,52 429,18 47,0 53,8 53,8 64,4 51,8

Table 5.2: Experimental results for all tools where t=2 and k ∈ {120, 140, 160, 180, 200}

77

Time Size
k t |Qi| hybrid Jenny CASA PICT ACTS hybrid Jenny CASA PICT ACTS
20 3 0 12.32 0.17 2900.65 0.15 0.08 127.8 143.2 124.4 147.6 139.8
20 3 8 18.79 0.16 1214.09 9.22 2.57 128.4 144.2 126.0 150.0 140.2
20 3 17 19.66 0.15 49.90 0.16 4.72 127.2 145.6 129.6 155.4 142.0
20 3 26 18.84 0.15 277.57 0.16 6.86 128.8 146.0 127.0 159.4 147.4
20 3 35 17.87 0.15 125.28 0.17 9.10 129.4 147.2 129.0 169.0 151.0
20 3 44 21.49 0.15 195.81 0.17 11.51 129.0 149.4 131.0 168.6 153.2
20 3 53 25.56 0.15 1243.29 0.18 17.72 131.0 151.6 132.0 175.0 166.4
20 3 62 27.58 0.15 174.38 0.18 20.98 131.4 153.4 134.2 185.4 162.8
20 3 71 28.45 0.16 452.88 0.20 33.01 135.2 158.2 136.2 200.4 177.2
20 3 80 34.99 0.15 39.95 0.21 49.04 134.6 159.0 139.2 207.0 180.6
40 3 0 59.93 2.50 21514.33 1.61 0.22 178.8 192.0 169.0 206.8 182.0
40 3 12 65.70 2.32 - 9.01 3.55 178.6 190.6 - 207.2 186.4
40 3 25 67.39 2.17 6896.67 1.65 13.28 179.0 192.2 178.5 209.4 191.0
40 3 37 69.58 2.09 1356.80 1.58 29.08 179.4 193.0 183.2 217.4 191.4
40 3 50 75.81 2.02 1801.15 1.67 63.30 180.4 193.6 182.6 223.6 197.4
40 3 63 77.58 1.94 2541.76 1.64 89.14 181.0 196.0 187.0 228.8 198.4
40 3 75 83.69 1.97 3056.12 1.76 129.80 181.0 197.2 185.0 229.0 204.2
40 3 88 77.07 1.93 484.79 1.79 230.93 181.4 199.0 188.6 242.8 213.4
40 3 101 79.40 1.89 1513.62 1.91 295.08 182.6 200.0 188.2 254.4 219.2
40 3 113 84.22 1.94 637.01 1.97 595.55 184.6 203.4 193.6 262.6 243.8
60 3 0 122.46 14.18 - 6.64 0.50 210.6 219.0 - 237.8 211.2
60 3 15 136.84 12.33 - 15.38 4.27 210.8 221.2 - 242.2 216.2
60 3 30 141.54 10.09 - 6.69 29.66 210.2 220.8 - 244.8 221.2
60 3 46 143.95 9.38 - 6.87 125.85 210.4 222.0 - 252.2 222.2
60 3 61 146.05 9.26 - 6.70 193.51 211.2 221.6 - 249.2 223.4
60 3 77 156.14 8.65 - 6.74 384.78 211.4 224.2 - 254.0 234.4
60 3 92 153.03 8.21 19496.63 6.95 496.70 212.0 225.6 217.6 263.4 231.0
60 3 108 145.98 7.97 3655.34 7.33 681.72 211.8 226.2 224.2 278.6 237.8
60 3 123 149.83 7.79 4219.94 7.33 924.26 212.6 226.8 221.8 279.6 243.2
60 3 139 153.96 7.91 17344.14 7.68 1729.18 213.8 229.4 223.2 298.0 261.4
80 3 0 263.48 55.45 - 16.14 0.97 230.4 238.6 - 259.4 235.0
80 3 17 262.03 45.37 - 25.05 4.98 230.6 238.6 - 262.2 240.8
80 3 35 277.48 29.84 - 16.12 49.01 230.6 240.4 - 263.4 245.4
80 3 53 283.10 25.23 - 16.60 262.34 231.0 240.4 - 272.6 240.4
80 3 71 287.71 21.83 - 16.47 505.27 231.0 240.8 - 273.0 248.4
80 3 89 293.64 20.27 - 17.02 857.00 231.2 241.8 - 281.4 249.0
80 3 107 296.37 18.84 - 17.31 1103.06 232.0 243.0 - 291.0 248.4
80 3 125 297.91 18.96 - 17.68 1888.72 231.6 244.4 - 297.4 257.4
80 3 143 305.37 18.68 - 18.25 1808.36 232.6 243.2 - 310.4 257.6
80 3 160 333.76 18.38 - 18.55 2903.37 233.2 246.8 - 317.6 270.4
100 3 0 414.07 634.02 - 36.13 1.96 248.4 255.2 - 281.2 255.2
100 3 20 454.67 226.42 - 45.29 5.79 249.2 256.6 - 283.8 256.0
100 3 40 439.18 176.22 - 36.28 70.75 249.6 257.0 - 286.4 259.6
100 3 60 463.84 81.49 - 36.50 379.90 249.6 257.4 - 291.8 259.2
100 3 80 449.41 63.55 - 36.95 708.01 249.6 257.8 - 295.0 262.0
100 3 100 472.82 52.22 - 37.74 1242.08 249.8 258.4 - 301.0 263.6
100 3 120 497.09 47.77 - 38.58 1812.76 250.2 259.8 - 313.4 266.4
100 3 140 509.03 46.11 - 38.63 2375.59 250.4 260.0 - 311.4 269.8
100 3 160 489.03 43.36 - 40.87 3282.93 250.6 261.4 - 335.6 274.8
100 3 180 471.49 41.69 - 41.40 4394.43 250.6 262.2 - 342.8 281.6

Table 5.3: Experimental results for all tools where t=3 and k ∈ {20, 40, 60, 80, 100}

78

Time Size
k t |Qi| hybrid Jenny CASA PICT ACTS hybrid Jenny CASA PICT ACTS
120 3 0 664.12 9947.21 - 76.02 3.74 284.2 286.2 - 316.2 296.2
120 3 21 681.31 2005.56 - 80.33 9.29 283.6 287.2 - 318.0 298.4
120 3 43 690.76 496.70 - 75.72 92.56 284.2 287.8 - 319.8 300.0
120 3 65 691.10 260.58 - 76.24 541.00 284.4 288.0 - 324.8 301.2
120 3 87 701.37 212.23 - 77.05 1245.27 284.2 289.0 - 329.6 303.0
120 3 109 704.82 150.25 - 78.47 1890.28 284.8 289.0 - 333.6 304.8
120 3 131 711.48 138.89 - 79.04 3138.15 285.2 289.6 - 339.0 304.6
120 3 153 719.33 121.30 - 80.12 4290.01 285.0 290.0 - 342.4 305.8
120 3 175 726.14 114.12 - 81.09 7551.46 285.4 291.2 - 355.2 317.6
120 3 197 736.71 104.47 - 82.40 6604.20 285.6 292.6 - 361.4 307.4
140 3 0 1015.31 25013.03 - 126.03 6.02 294.8 297.4 - 327.8 306.8
140 3 23 1036.67 7407.34 - 125.45 11.93 294.4 298.0 - 329.0 309.0
140 3 47 1049.68 3493.25 - 125.00 70.45 295.2 298.4 - 331.2 310.6
140 3 70 1051.53 1746.47 - 126.17 806.37 295.2 297.6 - 332.4 310.2
140 3 94 1063.95 661.84 - 127.48 1705.30 294.8 298.4 - 340.6 311.2
140 3 118 1066.42 376.80 - 129.07 3259.33 295.0 298.2 - 341.8 312.8
140 3 141 1069.43 328.65 - 132.74 4282.14 295.4 299.2 - 348.4 312.2
140 3 165 1088.30 234.72 - 133.10 5762.59 295.6 299.8 - 360.0 313.0
140 3 189 1094.67 246.65 - 134.53 8496.18 295.8 300.8 - 362.8 316.8
140 3 212 1097.54 205.06 - 139.92 10282.93 296.2 302.0 - 382.4 316.4
160 3 0 1379.81 210370.80 - 191.50 8.87 306.6 309.0 - 340.4 320.2
160 3 25 1402.54 39526.43 - 192.05 15.85 306.6 308.0 - 341.2 323.2
160 3 50 1474.16 12367.26 - 191.66 80.77 307.0 309.4 - 342.8 324.0
160 3 75 1409.58 10621.97 - 194.05 904.70 306.4 309.0 - 348.0 324.4
160 3 101 1429.96 2482.68 - 196.73 2284.33 307.0 309.0 - 353.2 324.0
160 3 126 1427.07 1198.34 - 198.05 4115.47 306.6 310.8 - 354.8 326.4
160 3 151 1514.31 879.03 - 198.48 6647.35 306.8 310.0 - 356.2 325.4
160 3 177 1453.60 535.39 - 202.28 8770.18 306.8 310.6 - 369.4 325.6
160 3 202 1469.60 376.14 - 204.86 12867.99 306.6 311.4 - 378.0 329.0
160 3 227 1471.38 359.13 - 209.02 15995.89 307.4 312.6 - 383.2 328.4
180 3 0 1908.00 - - 320.65 14.59 328.4 - - 362.6 344.0
180 3 26 1931.19 - - 308.40 23.08 328.4 - - 365.0 345.6
180 3 53 1932.54 85186.06 - 311.68 99.75 328.6 328.6 - 367.4 346.0
180 3 80 1943.12 11731.54 - 312.00 1157.33 328.8 329.6 - 369.6 346.6
180 3 107 1957.20 14431.12 - 315.43 3389.61 328.6 328.2 - 371.0 346.8
180 3 134 1967.65 5319.23 - 319.60 6331.94 329.0 328.8 - 377.6 347.4
180 3 160 1974.40 7301.05 - 317.01 8740.97 328.4 329.0 - 381.2 347.4
180 3 187 1995.25 7359.87 - 322.57 13783.6 329.0 329.6 - 385.4 348.0
180 3 214 2092.69 2992.40 - 323.14 16075.7 329.2 330.8 - 386.6 348.6
180 3 241 2017.93 2059.96 - 331.49 21906.5 329.0 332.6 - 400.8 348.2
200 3 0 2561.37 - - 454.17 20.1 340.0 - - 373.4 355.4
200 3 28 2598.18 - - 444.61 29.4 339.4 - - 376.0 357.6
200 3 56 2592.78 - - 443.13 81.0 339.4 - - 377.8 357.6
200 3 84 2624.31 59940.28 - 452.99 1400.5 339.8 339.0 - 379.2 358.8
200 3 113 2624.47 92246.15 - 448.71 3646.3 340.0 339.4 - 383.8 358.4
200 3 141 2625.34 22408.84 - 449.71 8541.3 340.0 339.8 - 385.6 358.4
200 3 169 2671.23 11024.89 - 448.05 13023.5 339.6 340.2 - 393.2 360.2
200 3 197 2658.30 7218.87 - 459.37 19284.8 339.6 340.8 - 397.0 360.2
200 3 226 2676.16 3444.02 - 461.06 26152.8 340.0 341.0 - 399.2 361.8
200 3 254 2841.59 2262.05 - 462.69 32295.5 340.4 341.6 - 407.6 362.0

Table 5.4: Experimental results for all tools where t=3 and k ∈ {120, 140, 160, 180, 200}

79

6

CONCLUSION AND FUTURE WORK

In this thesis, we have focused on constructing test suites generation problem for combina-

torial software interaction testing. We have developed a GPU-based parallel implementa-

tion of simulated annealing, a technique to run multiple simulated annealing concurrently

and a novel hybrid approach with SAT solver to construct covering arrays in the presence

of constraints. In addition to these, we have described a method to measure combinato-

rial coverage of any given covering array, i.e., count the number of covered t-tuples by

covering array.

We conducted large scale experiments including with well-known existing tools to eval-

uate the efficiency of our parallel algorithms and hybrid approach. Experimental results

point out that our parallel implementation of simulated annealing decreases the search

time significantly, especially when the configuration space is large, and our final pro-

posed hybrid approach mostly construct smaller size covering arrays comparing to other

tools in a reasonable time. Moreover, the empirical studies suggest that our hybrid al-

gorithm is the best approach to construct covering arrays among other presented tools as

pareto optimal with respect to time and size.

Towards computing combinatorial objects, we described a parallel algorithm to measure

the combinatorial coverage of any given covering array in the first part of this thesis.

Based on our empirical results, parallel computing techniques carries big importance in

counting missing t-tuples especially in higher strength values.

80

One of the main problem in metaheuristic search algorithms is need of efficient calculation

techniques for the inner search. In the second part of this study, we tried to overcome this

problem by developing novel parallel algorithms for the simulated annealing functions:

neighbour state generation and fitness function. We presented an efficient technique to

calculate the gain of neighbour state without measuring combinatorial coverage and also a

parallel algorithm to generate valid neighbour states in the presence of constraints. These

functions decreased the search time of simulated annealing, notably.

Besides parallelizing simulated annealing, we also described a way to run multiple sim-

ulated annealing concurrently in a way that, in each step of the inner search, several

neighbour states are generated and the best of them which has the highest gain is chosen

to move on with the next iteration. With this strategy, we decreased the negative effect of

pure random search and increased the quality of accepted neighbour states in each iter-

ation. This technique especially helped us to construct smaller size covering arrays and

to cover the corner case t-tuples which are not easy to cover in the the presence of dense

constraint structure.

Our novel hybrid approach reduces the size of covering arrays and search time further by

decreasing the number of inner searches. Even though, our algorithm was not the best

one in the empirical studies for both time and size, we can conclude that hybrid approach

is pareto optimal.

In future work, we intend to modify these algorithms for other types of covering arrays

such as cost & test-case aware covering arrays whose each configuration is associated with

a set of test cases and testing cost can be specified at the granularity of option settings and

test cases. Also, we plan to use a cloud of GPUs for the computations rather than a single

one.

81

BIBLIOGRAPHY

[1] H. Avila George. Constructing Covering Arrays using Parallel Computing and Grid

Computing. PhD thesis, 2012.

[2] H. Avila-George, J. Torres-Jimenez, V. Hernández, and N. Rangel-Valdez. A parallel

algorithm for the verification of covering arrays. In Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications-

PDPTA 2011, pages 879–885, 2011.

[3] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue. Generating combinatorial test

cases by efficient sat encodings suitable for cdcl sat solvers. In Logic for Program-

ming, Artificial Intelligence, and Reasoning, pages 112–126. Springer, 2010.

[4] T. Berling and P. Runeson. Efficient evaluation of multifactor dependent system

performance using fractional factorial design. Software Engineering, IEEE Trans-

actions on, 29(9):769–781, 2003.

[5] R. C. Bryce and C. J. Colbourn. Constructing interaction test suites with greedy

algorithms. In Proceedings of the 20th IEEE/ACM international Conference on Au-

tomated software engineering, pages 440–443. ACM, 2005.

[6] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-wise coverage

with seeding and constraints. Information and Software Technology, 48(10):960–

970, 2006.

[7] R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise interaction

testing. Software Testing, Verification and Reliability, 17(3):159–182, 2007.

82

[8] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic search for interaction

test suites. In Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pages 1082–1089. ACM, 2007.

[9] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of optimization theory and applications,

45(1):41–51, 1985.

[10] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system: An

approach to testing based on combinatorial design. Software Engineering, IEEE

Transactions on, 23(7):437–444, 1997.

[11] M. B. Cohen, C. J. Colbourn, and A. C. Ling. Augmenting simulated annealing to

build interaction test suites. In Software Reliability Engineering, 2003. ISSRE 2003.

14th International Symposium on, pages 394–405. IEEE, 2003.

[12] M. B. Cohen, M. B. Dwyer, and J. Shi. Exploiting constraint solving history

to construct interaction test suites. In Testing: Academic and Industrial Confer-

ence Practice and Research Techniques-MUTATION, 2007. TAICPART-MUTATION

2007, pages 121–132. IEEE, 2007.

[13] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable

systems in the presence of constraints. In Proceedings of the 2007 international

symposium on Software testing and analysis, pages 129–139. ACM, 2007.

[14] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for

highly-configurable systems in the presence of constraints: A greedy approach. Soft-

ware Engineering, IEEE Transactions on, 34(5):633–650, 2008.

[15] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Constructing

test suites for interaction testing. In Software Engineering, 2003. Proceedings. 25th

International Conference on, pages 38–48. IEEE, 2003.

[16] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche (Cata-

nia), 58(121-167):0–10, 2004.

[17] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

83

[18] J. Czerwonka. Pairwise testing: Available tools. http://www.pairwise.org/

tools.asp.

[19] J. Czerwonka. Pairwise testing in the real world: Practical extensions to test-case

scenarios. In Proceedings of 24th Pacific Northwest Software Quality Conference,

Citeseer, pages 419–430, 2006.

[20] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton, and B. M.

Horowitz. Model-based testing in practice. In Proceedings of the 21st international

conference on Software engineering, pages 285–294. ACM, 1999.

[21] N. Francetić and B. Stevens. Asymptotic size of covering arrays: an application of

entropy compression. arXiv preprint arXiv:1503.08876, 2015.

[22] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic search

for constrained interaction testing. In Search Based Software Engineering, 2009 1st

International Symposium on, pages 13–22. IEEE, 2009.

[23] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements to a meta-

heuristic search for constrained interaction testing. Empirical Software Engineering,

16(1):61–102, 2011.

[24] S. Ghazi, M. Ahmed, et al. Pair-wise test coverage using genetic algorithms. In

Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, volume 2, pages

1420–1424. IEEE, 2003.

[25] L. Gonzalez-Hernandez, N. Rangel-Valdez, and J. Torres-Jimenez. Construction of

mixed covering arrays of variable strength using a tabu search approach. In Combi-

natorial Optimization and Applications, pages 51–64. Springer, 2010.

[26] M. Grindal, J. Offutt, and J. Mellin. Handling constraints in the input space when

using combination strategies for software testing. 2006.

[27] M. Harman. The current state and future of search based software engineering.

In 2007 Future of Software Engineering, pages 342–357. IEEE Computer Society,

2007.

[28] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with cuda. GPU

gems, 3(39):851–876, 2007.

84

http://www.pairwise.org/tools.asp
http://www.pairwise.org/tools.asp

[29] A. Hartman. Software and hardware testing using combinatorial covering suites. In

Graph Theory, Combinatorics and Algorithms, pages 237–266. Springer, 2005.

[30] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith. Constraint models for the

covering test problem. Constraints, 11(2-3):199–219, 2006.

[31] N. Ido and T. Kikuno. Lower bounds estimation of factor-covering design sizes.

Journal of Combinatorial Designs, 11(2):89–99, 2003.

[32] R. Inam. An introduction to gpgpu programming-cuda architecture. Mälardalen

University, Mälardalen Real-Time Research Centre, 2011.

[33] B. Jenkins. jenny: A pairwise testing tool. http://www.burtleburtle.net/

bob/index.html, 2005.

[34] M. F. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for generating t-wise

covering arrays from large feature models. In Proceedings of the 16th International

Software Product Line Conference-Volume 1, pages 46–55. ACM, 2012.

[35] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simmulated an-

nealing. science, 220(4598):671–680, 1983.

[36] N. Kobayashi. Design and evaluation of automatic test generation strategies for

functional testing of software. Osaka, Japan, Osaka Univ, 2002.

[37] D. R. Kuhn and M. J. Reilly. An investigation of the applicability of design of exper-

iments to software testing. In Software Engineering Workshop, 2002. Proceedings.

27th Annual NASA Goddard/IEEE, pages 91–95. IEEE, 2002.

[38] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog/ipog-d: efficient test

generation for multi-way combinatorial testing. Software Testing, Verification and

Reliability, 18(3):125–148, 2008.

[39] R. E. Lopez-Herrejon, J. Javier Ferrer, F. Chicano, E. N. Haslinger, A. Egyed, and

E. Alba. A parallel evolutionary algorithm for prioritized pairwise testing of soft-

ware product lines. In Proceedings of the 2014 conference on Genetic and evolu-

tionary computation, pages 1255–1262. ACM, 2014.

85

http://www.burtleburtle.net/bob/index.html
http://www.burtleburtle.net/bob/index.html

[40] T. Nanba, T. Tsuchiya, and T. Kikuno. Using satisfiability solving for pairwise

testing in the presence of constraints. IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer Sciences, 95(9):1501–1505, 2012.

[41] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys

(CSUR), 43(2):11, 2011.

[42] K. J. Nurmela. Upper bounds for covering arrays by tabu search. Discrete applied

mathematics, 138(1):143–152, 2004.

[43] C. R. Rao. Factorial experiments derivable from combinatorial arrangements of

arrays. Supplement to the Journal of the Royal Statistical Society, pages 128–139,

1947.

[44] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu. On test suite

composition and cost-effective regression testing. ACM Transactions on Software

Engineering and Methodology (TOSEM), 13(3):277–331, 2004.

[45] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault detection effectiveness

of n-way and random test suites. In Empirical Software Engineering, 2004. IS-

ESE’04. Proceedings. 2004 International Symposium on, pages 49–59. IEEE, 2004.

[46] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate test

cases for combinatorial testing. In Computer Software and Applications Conference,

2004. COMPSAC 2004. Proceedings of the 28th Annual International, pages 72–77.

IEEE, 2004.

[47] N. J. Sloane. Covering arrays and intersecting codes. Journal of combinatorial

designs, 1(1):51–63, 1993.

[48] B. Stevens, L. Moura, and E. Mendelsohn. Lower bounds for transversal covers.

Designs, codes and cryptography, 15(3):279–299, 1998.

[49] K.-C. Tai and Y. Lie. A test generation strategy for pairwise testing. IEEE Transac-

tions on Software Engineering, (1):109–111, 2002.

[50] J. Torres-Jimenez and E. Rodriguez-Tello. Simulated annealing for constructing

binary covering arrays of variable strength. In Evolutionary Computation (CEC),

2010 IEEE Congress on, pages 1–8. IEEE, 2010.

86

[51] J. Torres-Jimenez and E. Rodriguez-Tello. New bounds for binary covering arrays

using simulated annealing. Information Sciences, 185(1):137–152, 2012.

[52] Y.-W. Tung and W. S. Aldiwan. Automating test case generation for the new gener-

ation mission software system. In Aerospace Conference Proceedings, 2000 IEEE,

volume 1, pages 431–437. IEEE, 2000.

[53] A. W. Williams. Determination of test configurations for pair-wise interaction cov-

erage. In Testing of Communicating Systems, pages 59–74. Springer, 2000.

[54] A. W. Williams and R. L. Probert. Formulation of the interaction test coverage

problem as an integer program. In Testing of Communicating Systems XIV, pages

283–298. Springer, 2002.

[55] H. Wu, C. Nie, F.-C. Kuo, H. Leung, and C. Colbourn. A discrete particle swarm

optimization for covering array generation. 2012.

[56] J. Yan and J. Zhang. Backtracking algorithms and search heuristics to generate test

suites for combinatorial testing. In Computer Software and Applications Conference,

2006. COMPSAC’06. 30th Annual International, volume 1, pages 385–394. IEEE.

[57] C. Yilmaz. Test case-aware combinatorial interaction testing. Software Engineering,

IEEE Transactions on, 39(5):684–706, 2013.

[58] C. Yilmaz, M. B. Cohen, A. Porter, et al. Covering arrays for efficient fault character-

ization in complex configuration spaces. Software Engineering, IEEE Transactions

on, 32(1):20–34, 2006.

[59] C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc. Moving

forward with combinatorial interaction testing. Computer, (2):37–45, 2014.

[60] M. I. Younis and K. Z. Zamli. Mc-mipog: a parallel t-way test generation strategy

for multicore systems. ETRI journal, 32(1):73–83, 2010.

[61] R. Yuan, Z. Koch, and A. Godbole. Covering array bounds using analytical tech-

niques. arXiv preprint arXiv:1405.2844, 2014.

87

	Introduction
	Background
	Combinatorial Interaction Testing
	Covering Arrays
	Simulated Annealing
	CUDA
	Boolean Satisfiability Problem

	Related Work
	Method
	Method Overview
	Outer Search
	Initial State Generation
	Combinatorial Coverage Measurement
	Sequential combinatorial coverage measurement
	Parallel combinatorial coverage measurement

	Simulated Annealing For Constructing Covering Arrays
	Inner search
	Neighbour state generation
	Sequential NS generation
	Parallel NS generation

	Fitness function
	Sequential fitness function
	Parallel fitness function

	Multiple Neighbour States Generation in Parallel
	Hybrid Approach

	Experiments
	Experiments on Combinatorial Coverage Measurement
	Experimental setup
	Evaluation framework
	Results and analysis
	Discussions

	Experiments on Simulated Annealing
	Experimental setup
	Evaluation framework
	Results and analysis
	Discussions

	Experiments on Multiple Neighbour States Generation Strategy
	Experimental setup
	Evaluation framework
	Results and analysis
	Discussions

	Experiments on Hybrid Approach
	Experimental setup
	Evaluation framework
	Results and analysis
	Discussions

	Experiments on Existing Tools
	Experimental setup
	Evaluation framework
	Results and analysis
	Discussions

	Conclusion and Future Work
	Appendices

