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1 � INTRODUCTION
Malnutrition is one of the major causes of human mortality worldwide, accounting for >20 million 
people per year (WHO, 2007). Malnutrition is also a prominent factor in increasing illness, disabil-
ity, and underdeveloped mental and physical growth (WHO and FAO, 2002). An appropriate diet 
composed of fruits, vegetables, and animal products is required to meet micronutrient and energy re-
quirements. However, these products are out of reach for most of the global population. While almost 
all plants can synthesize and accumulate micronutrients, the edible parts of some staple crop plants 
contain inadequate quantities of micronutrients, such as iron (Fe), zinc (Zn), vitamin A, folate, etc. 
(DellaPenna, 2007). Biofortification of staple crops with micronutrients has therefore been proposed 
as a potential strategy to combat the problem of malnutrition through the enrichment of target food 
crops to fill the gap in micronutrient ingestion by humans and animals (Welch and Graham, 1999, 
2004; Nestel et al., 2006).

Micronutrient deficiency is increasing due to an ever-increasing global population. Iron and Zn 
deficiency can cause serious health problems such as impaired cognitive and mental development, 
decreased growth, anemia, immune system impairment, and increased death rate (Black, 2003). 
Micronutrient malnutrition not only increases disease burden, but also deteriorates social welfare and 
economic productivity on a global scale (Stein, 2010). Currently, micronutrient malnutrition evolving 
from Zn and Fe deficiencies is affecting 3 billion people worldwide with serious health effects. The ma-
jor reason for increased prevalence of Zn and Fe deficiencies has been traced back to staple food-based 
diets that are low in nutrition, for example, Zn and Fe. In developing countries, mineral deficiency 
causes low work productivity that leads to a decrease in gross national product. In the United Kingdom 
for instance, 11%–38% of the children are reported to suffer anemia before reaching 2 years of age. In 
Canada and America, 10% of the population is at risk of Zn deficiency.

Micronutrient malnutrition evolving from Zn and Fe deficiency is now affecting 3 billion people 
worldwide and has serious health effects. The WHO reported that roughly 25% of the world’s population 
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experience anemia (Table 1). An expected 17.3% of individuals worldwide are at the risk of Zn defi-
ciency (Wessells et al., 2012). In South Asia, 95% of the population consume a rice-pulse diet and have 
serious health issues. In developing countries, Zn is ranked 5th among the 10 main micronutrients defi-
ciency, whereas on a worldwide scale, Zn deficiency is ranked 11th among 20 micronutrients deficiencies 
(Shekari et al., 2015).

The basic reason for Fe and Zn deficiency is high consumption of food with little diversity, mainly 
consuming one or two staples in developing countries. In developing countries, people mostly depend 
upon cereal and animal-based food due to acute poverty. Zn and Fe concentrations are low in cereal 
crops, and most is lost during processing (Frano et al., 2014; Welch and Graham, 1999). The major 
staple crops in these countries are wheat, maize, and rice. Wheat fulfills 60% of the daily energy re-
quirement. In wheat grain, Zn and Fe are found in the aleurone layer, which is lost during milling and 
processing, and this issue is further aggravated due to the presence of phytate that limit the bioavail-
ability of nutrient. There are numerous ways to enhance micronutrient levels in the human diet’s dietary 
diversity, including supplementation, food fortification, and biofortification.

Biofortification mitigates micronutrient malnutrition by enhancing micronutrient levels and bio-
availability in edible parts of staple crops through breeding and fertilization. Among the scientific 
community, biofortification is widely accepted as a better strategy compared to supplementation and/
or food fortification due to the fact that it is more cost-effective and sustainable.

2 � HUNGER AND “HIDDEN HUNGER”
Malnutrition is a broad term to indicate the conditions that may arise from both undernutrition and 
overnutrition. Undernutrition is associated with stunting (low height for age), wasting (low weight for 
height), being underweight (low weight for age) and micronutrient deficiencies, whereas overnutrition 

Table 1  Micronutrient Deficiencies in Humans Living World-Wide and Their Effect 
on Human Health

Micronutrient Effects Deficient Number of People

Iron Anemia, impaired motor and cognitive development, 
increased risk of maternal mortality, premature births, low 
birthweight, low energy

~1.6 billion

Zinc Weakened immune system, more frequent infections, 
stunting

~1.2 billion

Iodine Brain damage in newborns, reduced mental capacity, 
goiter

~1.8 billion

Vitamin A Severe visual impairment, blindness, increased risk of 
severe illness and death from common infections such 
as diarrhea and measles in preschool age children; (in 
pregnant women) night blindness, increased risk of death

209 million preschool going 
children and pregnant women

Data from Karumbunathan, V., Zimmermann, M.B., 2012. Global iodine status in 2011 and trends over the past decade. J. Nutr. 142, 
744–750, Micronutrient Initiative. 2009. Vitamin A: The Scope of the Problem, MI, Ottawa (www.micronutrient.org/English/View.
asp?x=577&id=440), and WHO. 2009. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 
World Health Organization, Geneva.

http://www.micronutrient.org/English/View.asp?x=577&id=440
http://www.micronutrient.org/English/View.asp?x=577&id=440
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is associated with obesity, diet-related noncommunicable diseases (e.g., heart disease, stroke, diabetes 
and cancer) and being overweight (WHO, 2016a,b). Undernutrition is defined as the provision of an 
insufficient quantity of food (hunger) or the provision of a sufficient quantity of food but with low 
levels of essential food elements (i.e., hidden hunger). Hunger is usually understood to refer to the suf-
fering associated with lack of food, but can also refers to conditions when a sufficient quantity of food 
is provided with low levels of minerals and vitamins.

Developing countries have made substantial improvements in reducing hunger, and the global hun-
ger index (GHI) has been significantly reduced from 1992 to 2016. Since 2000, a 29% decrease in GHI 
has been observed in developing countries (Anon., 2016). Although conditions are improving, efforts 
are still needed to achieve a zero-hunger rate throughout the world, as about 50 countries (including 
some highly populated countries like India, Pakistan, Bangladesh, and Indonesia) have serious threats 
of hunger (Fig. 1).

Hidden hunger is of more concern due to deficiency of essential food elements such as vitamin A, Zn, 
Fe, and iodine. The prevalence and consequences of “hidden hunger” can be more insidious as it signi-
fies deficiencies of protein, essential vitamins, and minerals. It may be due to inadequate intake of food 
in terms of either quantity and/or quality, poor utilization of nutrients due to infections or other illnesses, 
and/or a combination of these factors. Increased micronutrient requirements during specific periods of 
life, such as pregnancy and lactation, also cause micronutrient deficiencies in humans and animals.

The most commonly recognized micronutrient deficiencies across all ages, in order of prevalence, 
are caused by a lack of iodine, Fe, or Zn. Less common, but significant from a public health standpoint, 

FIG. 1

Global map presenting hidden hunger index based on the prevalence estimates (HHI-PD) in 149 countries 
and prevalence of low urinary iodine concentration in 90 countries with 2007 Human Development Index 
(Muthayya et al., 2013).
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is vitamin A deficiency, with an estimated 190 million preschool children and 19 million pregnant 
women affected (WHO, 2009). Low intakes of other essential micronutrients, such as calcium, vitamin 
D, and B vitamins such as folate, are also common (Allen et al., 2006). Pregnant women and children 
are generally more affected by hidden hunger, as it impairs their health throughout the lifecycle and 
increases the mortality rate due to micronutrient deficiencies (Fig. 2).

3 � REMEDIES OF MICRONUTRIENT MALNUTRITION
Several strategies including food diversity, food supplements, food fortification, and biofortification 
can be adopted to reduce micronutrient malnutrition. These strategies have their own advantages and 
weaknesses as discussed below.

3.1 � DIETARY DIVERSIFICATION
A single food cannot provide all the nutrients required for the human body. A balanced food intake is 
required to fulfill all the human body’s nutritional requirements. A combination of natural foods that 
can provide all the nutrients required for growth and development of the human body is called balanced 
nutrition. Micronutrients are even more critical as their concentration in foods is dependent on soil re-
sources, genetic diversity, micronutrient application, and the husbandry of food crops. Long-term dietary 

FIG. 2

Effect of micronutrient deficiencies in diet on babies, adolescents, adults, and pregnant women.
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diversification ensures a healthy diet containing an adequate combination of macronutrients such as 
carbohydrates, fats, and proteins, essential micronutrients, and dietary fiber content. Although dietary 
diversity is an effective way to prevent hidden hunger in a sustainable way (Thompson and Amoroso, 
2010), micronutrient concentration in the same food product may vary depending upon the husbandry 
practices. While legumes, cereals, vegetables, fruits, and other animal-sourced foods provide adequate 
nutrition for most of the population, some population groups such as pregnant women may need supple-
ments due to higher requirements (FAO, 2013). Children at different growth stages may also require 
varying amounts of nutrients. Therefore, a combination of diverse types of healthy foods is required 
for normal human nutrition and health. However, it is difficult to overcome micronutrient malnutrition 
in large populations through dietary diversification alone, as the majority of these people are living in 
developing countries where access to a healthy food is not possible for everyone at all times.

3.2 � FOOD SUPPLEMENTS
Here the term “supplementation” is referred to as adding micronutrient(s) into a person’s diet to remedy 
deficiencies. Use of supplements to fulfill nutritional requirements may be effective in developed parts 
of the world where supplements are relatively inexpensive compared to available government resources 
and individual incomes. However, in poor/developing countries supplementation programs can be ex-
pensive and difficult to sustain because the people live in remote, rural areas where access is not easy. 
One of the most cost-effective interventions was vitamin A supplementation to improve child survival 
in various parts of world (Edejer et al., 2005). The efforts to provide food supplements to more people 
increased significantly in near past (UNICEF, 2013). Over 70% of children aged 6–59 months old need 
vitamin A supplements at least once in every 6 months to significantly reduce vitamin A deficiency-
related mortality. However, it is often challenging to supply continuous funding for such programs due 
to fluctuations in these fragile economies (UNICEF, 2007). Vitamin A supplementation is often inte-
grated into national health policies because it is associated with a reduced risk of all-causes of mortality 
(Imdad et al., 2010). Vitamin A supplements were typically targeted to susceptible populations between 
6  months and 5  years of age (UNICEF, 2007). Supplementation for other deficient micronutrients 
such as amino acids, folic acid, Zn, Fe, etc., is less common. In some countries, Fe-folate supplements 
are prescribed to pregnant women, however, this is not common in developing countries due to inad-
equate resources. Nevertheless, the WHO recommends an oral Fe and folic acid supplementation with 
30–60 mg of elemental Fe (or equivalent) and 400 μg folic acid for pregnant women on a daily basis 
to prevent maternal anemia, puerperal sepsis, low birth weights, and preterm births (WHO, 2016a,b). 
The WHO recommendation also states that folic acid supplements should be commenced as early as 
possible (ideally before conception) to prevent neural tube defects. In a randomized controlled trial by 
WHO held in Bangladesh, weekly Zn supplements protected against episodes of pneumonia, diarrhea, 
and suppurative otitis media, and also prevented deaths (WHO, 2013). The results of this study led to 
the inclusion of Zn supplements in the UNICEF/WHO management recommendations for diarrhea and 
also revealed additional benefits in the management of respiratory diseases.

3.3 � FOOD FORTIFICATION
Food fortification is the process whereby nutrients are added to food to maintain or improve the quality 
of the diet of a group, community, or population. Food fortification is required due to insufficient intake 
of vitamins and minerals, due to the consumption of predominantly processed foods.
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Commercial food fortification adds trace amounts of micronutrients to foods during processing, 
which helps consumers achieve the required levels of micronutrients in their diet. Fortification of table 
salt with iodine is an example of a sustainable and relatively cost-effective public health strategy. 
About 71% of the world’s population has access to iodized salt, and the number of iodine-deficient 
countries has decreased from 54 to 32 since 2003 (Andersson et al., 2012). Other examples of fortifica-
tion include B-group vitamins, Fe, and Zn in wheat flour and cooking oil fortification with vitamin A. 
However, fortification may be more effective for urban consumers, who frequently buy commercially 
processed and fortified foods, but for rural consumers, it is difficult to access the value of fortified 
foods. Several shortcomings can be attributed to food fortification. People may resist fortified foods, 
cooking properties may be lowered, it can be difficult to determine the appropriate concentrations of 
micronutrients, and the bioavailability of nutrients may be reduced. Thus, active coordination among 
stakeholders such as policy makers, researchers, economists, etc., is required for efficient and sustain-
able use of food fortification strategies.

3.4 � BIOFORTIFICATION
Biofortification is a relatively new intervention to improve human nutrition worldwide, with a special 
emphasis on the populations of poor and developing countries. There are several ways to improve the 
nutritional value of food crops, and these are discussed in the following sections. The basic goal of 
biofortification is to reduce mortality and morbidity rates related to micronutrient malnutrition and to 
increase food security, productivity, and the quality of life for poor populations in developing countries. 
As biofortification is very cost-effective and easy to disseminate to the masses, its importance is greater 
for developing countries. Several biofortified crops have been released so far including orange sweet 
potatoes, maize, cassava, and squash, Fe-enriched beans, sorghum, lentils, and pearl millet, and Zn-
enriched rice, wheat, lentils, sorghum, and cowpeas. Biofortification could provide a range of certain 
micronutrients for people who don’t have access to other interventions. As staple foods are compara-
tively cheap and accessible to the majority of people, the biofortification of staple crops is a primary 
target. Although the efficiency of biofortification is not comparable to food supplementation, it can 
still help reduce the micronutrient intake gap and increase the daily intake of vitamins and minerals 
throughout a person’s life, and this may have significant impact on human health by reducing mal-
nutrition (Bouis et al., 2011). Indeed, improved micronutrient concentrations in several crops (beans, 
maize, pearl millet, rice, sweet potato, and vitamin A-fortified cassava) have significantly improved the 
micronutrient levels in humans (Tanumihardjo, 2013; Talsma, 2014). Biofortification of orange sweet 
potato for vitamin A has significantly improved vitamin A intake of mothers and young children (Hotz 
et al., 2012).

4 � BIOFORTIFICATION APPROACHES
Biofortification can be agronomic and/or genetic. Genetic biofortification can be accomplished either 
through conventional breeding or through genetic engineering to enhance micronutrient levels in edible 
plant parts.

Mineral elements deficiencies in food crops may be due to different factors, such as soils which 
are deficient in one or more minerals, lowered availability of minerals to plants due to different factors 
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such as alkaline soils, reduced distribution/translocation of minerals, and accumulation of minerals in 
nonedible parts of food crops. Thus, it is extremely important to address these issues to increase the 
mineral levels in the edible parts of the crop plants.

4.1 � AGRONOMIC INTERVENTIONS
Nongenetic measures to improve the micronutrient concentrations of food plants could be more ef-
ficient, and several strategies and measures can be adopted to increase micronutrient concentrations in 
the edible parts of food plants. These include management practices, fertilization of target elements, 
and improving soil organic matter to increase nutrient availability in soil, and its uptake by roots.

There is evidence that agronomic biofortification not only increases yields but also the nutritional 
quality of staple crops (Valença et al., 2017). Micronutrient fertilization is most effective when using a 
combination of inorganic and organic fertilizers, highlighting the importance of integrated soil fertil-
ity management. Fertilizer application is an immediate and effective route to enhance trace elements 
concentrations in crops; nevertheless, genetic biofortification may be more cost effective in the long 
term. Selenium fertilization in Finland has already been adopted, and its impact on increasing selenium 
concentrations in Finnish foods and optimum dietary intake by humans has been reported (Broadley 
et al., 2006). The biofortification of crops with vitamins through agronomic measures is not feasible; 
however, agronomic measures have shown enormous potential to increase mineral concentrations.

4.2 � GENETIC BIOFORTIFICATION
Soil or foliar applications of minerals can increase their concentrations in phloem-fed tissues, such 
as fruits, seeds, and tubers (White et al., 2009; Cakmak et al., 2010a,b). However, limited mobility of 
minerals in phloem restricts the impact of agronomic biofortification. For example, low mobility of Zn 
in the phloem restricts the Zn accumulation in the edible parts of the food crops (Broadley et al., 2007; 
Cakmak et al., 2010a). Genetic variation for grain mineral-element concentration can be exploited by 
genetic strategies to increase Zn concentrations in edible portions. Furthermore, genetic variation for 
nutrient acquisition, uptake, and translocation to shoot through xylem may also be exploited (White 
and Broadley, 2009). The Consultative Group on International Agricultural Research (CGIAR) has 
explored genetic variability, for mineral concentrations and stability over different environments to 
enhance the mineral content of major staple crops such as wheat, maize, rice, cassava, and beans. There 
is considerable genetic variation for Zn and Fe concentrations in most edible crops. Significant varia-
tion for mineral elements in edible roots has been reported; for example, a 2.2-fold variation among 20 
carrot genotypes (Nicolle et al., 2004), and >14-fold variation in root Zn concentrations among 600 
cassava genotypes (Chávez et al., 2005) have been reported.

Genetic biofortification refers to the breeding of plants (both conventional breeding and using ge-
netic engineering technologies) to develop food crops with improved micronutrient concentrations, 
lower levels of antinutrients, and increased levels of compounds that enhance the bioavailability of 
nutrients (Bouis, 2003). Agronomic interventions and conventional breeding have the potential to de-
liver the required targets; nevertheless, when genotypic variation for any specific nutrient is low, then 
conventional breeding is unable to achieve the target (Beyer, 2010). Under such conditions, genetic 
engineering can contribute to increase the micronutrient content in staple crops, and its potential has 
been successfully demonstrated. Genetically modified (GM) tomato crops have been developed with 
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increased provitamin A concentrations (De Steur et al., 2015). Enhanced uptake from soil, improved 
transport of micronutrients to shoot and grains, augmented sequestration of minerals to endosperm, 
and reduction in antinutritional factors in grains are the major targets of biofortification research, and 
genetic biofortification can target these aspects for mineral biofortification. Despite the potential of 
GM technology to improve human health, problems in approval of GM-biofortified crops caused by 
regulatory barriers significantly hinder the effectiveness of GM technology for biofortification. On the 
other hand, conventionally biofortified crops are significantly contributing to the amelioration of min-
eral deficiencies (Finkelstein, 2015).

5 � REDUCTION IN MALNUTRITION THROUGH BIOFORTIFICATION
Malnutrition is a concern all over the world and 60%, 30% and 15% of the world’s population has been 
assessed as being Zn, Fe, or iodine (I) deficient, respectively (Yang et al., 2007). Biofortification fo-
cuses on improving the nutritional characteristics of crops, enhancing both their mineral concentrations 
and mineral bioavailability in the edible parts of crop plants, and can be accomplished by agronomic 
mediation, plant development and production, and utilizing hereditary characteristics. Breeding crops 
that are high in vitamins and minerals is a cost effective, relatively simple, and easy approach to combat 
micronutrient deprivation. The efficient utilization of conventional breeding approaches, application of 
micronutrients to crop plants, and the utilization of biotechnology to enhance micronutrient values of 
staple crops could ameliorate deficiencies of Zn, Fe, vitamin A, I, and some other minerals and proteins 
as well. Moreover, mineral-enriched plants can be more resistant to biotic and abiotic stresses and can 
produce higher yields under some circumstances (Frossard et al., 2000; Nestel et al., 2006).

5.1 � ZINC DEFICIENCY
Zinc is an essential element for plants and animals, including humans, and is a component of thousands 
of functional proteins. >2 billion people are suffering from Zn deficiency (Myers et al., 2014). The 
breeding of crop varieties mainly focuses on the accumulation of high Zn contents in grains and the uti-
lization of Zn fertilizers to enhance Zn levels (Bouis et al., 2011). Although a plant breeding approach 
is probably going to be the most economically viable approach over an extended period, utilization of 
fertilizers is the quickest method to enhance Zn concentration in the diet.

The Zn Nutrient Initiative (ZNI) is a program of the International Zn Association (IZA), which 
reports Zn scarcity in soils, crops, and ultimately, in humans over expanded utilization of Zn fertilizers, 
with the aim to promote consciousness of improved crop yield, enhanced nutritive quality of crops, 
enhanced human nutrition, and enhanced grower income, and to secure both quantity and quality of 
food (Das and Green, 2011).

Biofortification Challenge Program in 2003 through the Consultative Group on International 
Agricultural Research (CGIAR), has provided a stage from which to investigate genetic range for 
micronutrients prevailing in germplasm worldwide and to use this diversity for growing high-Zn geno-
types. In Pakistan, the Zn-rich wheat variety “Zincole 2015” has been released by Pakistan Agricultural 
Research Council (PARC) to reduce Zn deficiency in humans. In recent studies, about 30% of the 
estimated average requirement of Zn in the human diet was achieved by genetic modification of rice 
(Kurniawan et al., 2016).
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Recently, an advance has been made through the foliar application of Zn to improve Zn concentra-
tions in cereals, especially in wheat (Cakmak, 2008, 2009). Foliar application of Zn not only improves 
grain yield, but also increases grain Zn concentrations. Shivay et al. (2008) reported that Zn application 
to soil, as Zn-coated urea or ZnSO4, improved yield as well as the Zn content in wheat grain. Shivay 
and Prasad (2012) demonstrated that the use of Zn (ZnSO4⋅7H2O) in Zn-deficient soils significantly 
enhanced rice grain yield and Zn content in grain of rice.

In wheat, foliar application of Zn, particularly at advanced stages of plant development, was effec-
tive at improving the Zn content of both the entire grain and endosperm alone, while soil applications 
of Zn were not so effective (Cakmak et al., 2010b). In contrast, application of Zn fertilization to soil 
significantly increased wheat grain Zn content in Australia (Graham et al., 1992) and India (Shivay 
et al., 2008). In Turkey, the combination of soil and foliar Zn fertilization to cereals remains a useful 
option for increasing grain Zn contents (Yilmaz et al., 1998).

Foliar Zn application can greatly improve Zn concentrations in the cereal grains; furthermore, soil 
application and foliar spraying of either ZnSO4 or Zn-chelates can increase grain Zn concentrations in 
plants with satisfactory Zn translocation through the phloem. Correspondingly, soil or foliar applica-
tion of Zn can improve Zn accumulation in the leaves, tubers, and fruit (Broadley et al., 2007). The 
microbial metabolite secretions due to increased microbial action could also significantly contribute 
to Zn biofortification (Neumann and Romheld, 2000). Utilization of Zn solubilizing bacteria signifi-
cantly improved Zn concentrations in the roots and shoots of wheat and soybean plants (Madhaiyan 
et al., 2010).

The molecular mechanisms of Zn uptake and distribution have been well studied in crop plants 
(Bashir et al., 2012; Yamaguchi et al., 2012; Suzuki et al., 2012). Several groups have also attempted 
to increase the Zn content of edible parts through transgenic technology (Palmgren et al., 2008; Jou 
et al., 2012; Takahashi et al., 2012; Bashir et al., 2012; Masuda et al., 2013; Yamaji et al., 2013; Slamet-
Loedin et al., 2015; Tiong et al., 2015). The strategies for Zn biofortification significantly overlap with 
Fe biofortification, and hence are discussed together in the section of Fe biofortification.

5.2 � IRON DEFICIENCY
Fe deficiency causes anemia in more than 2 billion people worldwide, and increasing the Fe content 
in the human diet could address this in most cases. Cereal grains contain very low levels of Fe, but 
Fe levels can be increased, and the concentration of antinutritional compounds such as phytate can be 
reduced, to increase the bioavailability of Fe (Zimmermann and Qaimm, 2004).

Inorganic Fe fertilization of soils is generally impractical as the Fe in many s inorganic Fe fertilizers 
are quickly converted to unavailable or less-available forms of Fe through oxidation and precipita-
tion reactions. However, the use of Fe-chelates as Fe fertilizers in soils can be effective and practical 
as well (Rengel et al., 1999), and the accessibility of Fe can be improved in the rhizosphere by soil 
acidification.

The uptake and distribution of Fe is well understood, particularly in cereals, and different approaches 
could be utilized to increase the Fe content of crop plants (Vigani et al., 2013; Bashir et al., 2013; Bashir 
et al., 2016; Masuda et al., 2013; Slamet-Loedin et al., 2015). These approaches include (1) increasing 
uptake of Fe by regulating the expression of Fe transporters, (2) increasing synthesis and/or secretion 
of metal chelators, (3) increasing Fe storage capacity of plant cells through expression of the Fe storage 
protein ferritin, and (4) regulating cellular metal homeostasis to increase Fe translocation to seeds.
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The proteins responsible for mineral uptake (transporters) often transport more than one metal; 
thus, Fe and Zn share their routes of uptake from the soil through the root, root-to-shoot translocation, 
and loading to seeds. Transgenic rice plants overexpressing OsIRT1 (Rice iron-regulated transporter-
like protein, 1) exhibited enhanced accumulation of Fe and Zn in their grains (Lee et al., 2009). Rice 
lines overexpressing rice yellow stripe like 15 (OsYSL15) also accumulate more Fe in their seeds. 
Overexpressing rice YSL2 (OsYSL2) resulted in a decrease in the root-to-shoot translocation of met-
als; however, restricting the expression of OsYSL2 to phloem through sucrose transporter promoter 
(OsSUT1) significantly increased Fe and Mn concentrations in rice seeds (Ishimaru et al. 2010), sug-
gesting that regulation of metal transporters in terms of spatial and temporal expression is important 
to significantly increase Fe levels in rice grains. Regulating the expression of MAs efflux transporter 
TOM1also slightly increases seed Fe, Zn, and Cu concentrations (Nozoye et al., 2011).

Furthermore, increasing the synthesis and/or secretion of Fe and Zn chelators could also sig-
nificantly enhance metal accumulation in seeds. Nicotianamine (NA) and mugineic acids (MAs) are 
important metal chelators in plants (Beneš et al., 1983; Takagi, 1976). Biofortification through regu-
lating NA synthesis to increase Fe and Zn concentration in edible parts has been reported by several 
groups (Johnson et al., 2011; Slamet-Loedin et al., 2015; Masuda et al., 2013; Aung et al., 2013; Wirth 
et al., 2009).

Ferritin, is a soluble and nontoxic form of Fe, thus increasing ferritin production could be effec-
tively utilized for Fe biofortification (Harrison and Arosio, 1996; Briat et al., 2010). Several groups 
have successfully demonstrated that rice lines overexpressing ferritin encoding genes could accumulate 
up to three times more Fe in seed endosperms (Paul et al., 2012; Goto et al., 1999; Lucca et al., 2001; 
Qu et al., 2005). Attempts to increase the availability of Fe through regulating the expression of phytase 
to degrade phytic acid have also been reported (Wirth et al., 2009).

Regulating the expression of transporters controlling the distribution of metals within plant cells 
could significantly improve metal homeostasis and could lead to increased metal accumulation in seeds 
(Bashir et al., 2016). In this regard, the vacuolar transporters are of particular interest, as changes in 
the expression of vacuolar iron transporter 1 (VIT1) significantly alters Fe localization in Arabidopsis 
seeds (Kim et al., 2006). In rice, VIT1 and VIT2 are functional vacuolar transporters that contribute to 
Fe, Mn, and Zn homeostasis. Disrupting the expression of OsVIT1 and/or OsVIT2 leads to increased 
metal accumulation in rice seeds (Zhang et al., 2012). In contrast, changing the expression of a mito-
chondrial Fe transporter negatively affects Fe localization in rice seeds (Bashir et al., 2013).

Combining different approaches could produce better results than a single approach to enhance 
metal concentrations in edible plant parts (Masuda et al., 2012). Several other candidates could also 
be utilized for Fe and Zn biofortification (Bashir et al. 2012). For example, MAs, play a role in metal 
uptake and homeostasis (Bashir and Nishizawa, 2006; Bashir et al., 2006; Bashir et al., 2017), and the 
regulation of MAs by manipulating deoxymugineic acid synthase (DMAS) genes, although not tested, 
could significantly enhance metal accumulation in seeds.

5.3 � VITAMIN A DEFICIENCY
Vitamin A (VA) influences visual function, direction of distinction of epithelial tissues, and embryonic 
advancement, combats sicknesses, and contributes to cell development and skin fitness, including gene 
translation (Ross et al., 2011). Its deficiency can cause blindness and increase the risk of disease and 
death for small children. According to an estimate, 140 million children and 7 million pregnant women 
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are vitamin A deficient, primarily in Africa and South and Southeast Asia (Sommer and Davidson, 
2002). Dependence on rice has prompted vitamin A deficiency that specifically affects about 0.2–0.5 
million youngsters consistently.

One of the methodologies to ameliorate vitamin A deficiency is the utilization of diet high in vita-
min A or a type of vitamin A such as β-carotene, food supplements, etc. Humans can convert β-carotene 
(a vitamin A precursor) into vitamin A; however, cereals do not provide β-carotene, thus transgenic rice 
was developed (Ye et al., 2000; Paine et al., 2005). This transgenic rice is called golden rice because of 
the yellowish color of its grains, and it can provide β-carotene that can be easily converted to vitamin 
A (Grune et al., 2006; IRRI, 2013). It was suggested that a cup of golden rice could provide up to 50% 
of the Recommended Dietary Allowance (RDA) of vitamin A (Tang et al., 2009).

A newly released variety of potato expressing three bacterial genes (Erwinia herbicola), encoding 
the enzymes phytoene synthase, lycopene β-cyclase, and phytoene desaturase, contains up to 114 mg 
of carotenoids and 47 mg of β-carotene per gram dry weight (Diretto et al., 2007). Maize grains have 
also been biofortified with β-carotene and other basic micronutrients important to maintaining one’s 
well-being.

5.4 � IODINE DEFICIENCY
Iodine is an essential component of the thyroid hormones thyroxine and triiodothyronine, which regu-
late growth and development and maintain a basal metabolic rate. However, only 30% of the body’s 
iodine is stored in the thyroid gland, and the precise role of the 70% distributed in other tissues is 
unknown. Goiter is an important symptom of iodine deficiency and results from the lack of thyroxine, 
inducing the production of thyroid-stimulating hormone, which in turn, causes inflammation in thyroid 
gland (Dunn, 2003). Contrary to other micronutrient deficiencies, I deficiency is common not only in 
the developing world, but also in well-developed countries (Landini et al., 2011). Urinary I survey data 
collected from school-aged children on a global basis revealed that 29.8% (241 million children) had 
insufficient iodine intake (Andersson et al., 2012). According to the same survey study, the highest 
proportions of low dietary I intake among school-aged children were in regions of Europe (43.9%) and 
Africa (39.3%), whereas the largest number of children with low dietary I intake were in Southeast Asia 
(76 million) and Africa (58 million). India is one of the worst affected countries in the world, with >50 
million cases of goiter and more than 2 million cases of cretinism. Fortification of salt with iodine has 
resulted in a considerable reduction in iodine-deficient people worldwide. Raising the iodine content 
of the edible portion of crop plants could significantly reduce iodine inadequacy. Fertilization with dis-
solvable iodide as well as iodate salts has been used in agriculture, and iodinization of irrigation water 
is a good method for effective enhancement of iodine levels in crops, hence adding additional iodine to 
human diets (Lyons et al., 2004).

In leafy vegetables and root crops, iodine concentrations can be enhanced by fertilization; however, 
iodine is not readily transportable in the phloem, so the levels in tubers, fruits, and seeds are often not 
greatly increased. Nevertheless, the iodine content of plant produce can be enhanced by I fertilization 
to nutritionally acceptable levels (Dai et al., 2004). Since humans require I in trace amounts, iodine 
fertilization to agricultural land using aeroplanes could enhance the iodine concentration of the edible 
parts of crop plants and fulfill nutritional requirements in the human diet (Graham et al., 2007). Weng 
et al. (2013) suggested a creative way to deal with I supplementation via vegetables on soils growing 
with organic fertilizers containing iodine.



236 CHAPTER 13  MICRONUTRIENT MALNUTRITION AND BIOFORTIFICATION

Recently, Cakmak et al. (2017) reported on the opportunities in I biofortification of wheat, rice, and 
maize through fertilizer strategy. It was shown that foliar I application is highly effective in increasing 
grain I concentrations in these three main staple crops. Among different forms of I, KIO3 is the optimal 
form and can be used up to 0.05% (w/v) in foliar spray solutions for the purpose of agronomic biofor-
tification of cereal crops with I. In this study, iodine concentration of polished rice was increased from 
6 to 220 μg kg−1 by foliar I application. It was suggested that such an enhancement in grain I concentra-
tion can help mitigate human I deficiency caused by low dietary I intake. In general, foliar I application 
had superior effect on grain I concentration as compared to soil applications. It was suggested that 
root-absorbed iodine may not be readily available for grain deposition, whereas foliar-applied I prior 
to grain filling could be translocated at higher rates through phloem towards the grain tissue (Cakmak 
et al., 2017).

6 � CLIMATE CHANGE AND BIOFORTIFICATION
Climate change could negatively influence food security, affecting numerous crops and regions, with 
the most serious impacts anticipated for South Asia and Southern Africa (Lobell et al., 2008). Climate 
change could reverse the recent achievements regarding the reducing malnutrition and up to 1 billion 
people may suffer (WFP, 2009). The environment has a considerable impact on the up take of micro-
nutrients in common bean, field pea, lentils, and chickpea (Hidoto et al., 2017); for example, the Fe 
content is influenced by genotype and environment interactions (Chandel et al., 2010; Suwarto, 2011).

It is evident that rising temperatures and changing precipitation patterns will negatively influence 
crop yields worldwide (Funk and Brown, 2009; Godfrey et al., 2010), therefore, biofortification efforts 
will be adversely influenced with such seasonal variations. Smallholder growers who rely on rain-fed 
agriculture for their livelihood are dependent upon rain and its timing, and intra-seasonal precipitation 
patterns can determine the success or failure of their crops, especially in sub-Saharan Africa where 
rain-fed farming is used on 96% of all arable land (FAO, 2007).

The International Food Policy Research Institute (IFPRI) has evaluated climate change conse-
quences for food security and human prosperity utilizing two markers: per capita calorie utilization and 
number of malnourished children. It is expected that by 2050, the decrease in calorie accessibility will 
enhance child malnutrition by 20% worldwide without climate change, and with climate change, child 
malnourishment levels could be much greater.

Plant growth and development are temperature related, and high temperatures combined with low 
rainfalls can negatively influence crop yields (Easterling et al., 2007). Higher temperatures can shorten 
the growing season, speed the evaporation of water from soil, and stress plants, all of which tend to re-
duce yields and the nutritional value of crops. Protein and micronutrient levels are reduced when crops 
are grown at elevated CO2 concentrations (Myers et al., 2014).

Crop production would be significantly affected by a progressively warming planet (Easterling 
et al., 2007), increasing malnutrition and making humans more susceptible to infectious diseases. 
The net outcomes could be a decrease in labor efficiency and an expansion of poverty and mortal-
ity (Schmidhuber and Tubiello, 2007). Fischer et al. (2005) stated that climate change will increase 
the number of undernourished individuals in 2080 by 5%–26%, or by between 5 and 10 million 
people under a moderate impact scenario, or 120–170 million people under a more severe impact 
scenario.
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Increases in population and food demand require the development of crop cultivars with higher 
yields, and this can reduce micronutrient concentrations in edible plant parts. Therefore, under cli-
mate change, there is a need to develop more efficient cultivars that maintain adequate micronutrient 
concentrations.

7 � CONCLUSION AND FUTURE RESEARCH THRUSTS
Recent reports and developments conclude that increase in concentration of micronutrients can be re-
tained in the edible parts during processing, and after consumption by humans, the nutrients are bioavail-
able. Biofortification is offering proven technology to combat malnutrition, especially for those living in 
poor and developing countries where most people rely on staple food crops which are inherently low in 
micronutrient concentrations. Biofortification of crops is being introduced in many countries as a strat-
egy to eradicate micronutrient deficiencies and thus improve human health. Enhanced fertilization with 
micronutrients, conventional plant breeding, and genetic engineering are used to develop biofortified 
cultivars. To date maize, rice, wheat, beans, pearl millet, sweet potato, and cassava have been bioforti-
fied with increased concentrations of Fe, Zn, and provitamin A. To increase micronutrient concentra-
tions in edible crops, future research should focus on (i) integration of agronomic and genetic strategies 
to increase mineral transport to phloem-fed tissues and (ii) identification of the mechanisms effecting 
mineral-homeostasis in plant cells. Confidently, using a combination of strategies (e.g., enhancing ef-
ficiency of crops to take up mineral nutrients and/or enhanced production of vitamins/proteins using 
conventional breeding and genetic engineering tools) followed by enhanced fertilization of targeted 
nutrients should be considered. There is a need to refine planning, and monitor and evaluate biofortifica-
tion programs, considering the available biofortification technologies and stakeholders who fund bio-
fortification programs. Although the HarvestPlus consortium is performing a decent job, nevertheless, it 
is required to set indicators to evaluate the performance of biofortification programs and set priorities. 
Regarding production and consumption of biofortified staples, there is a need to develop communication 
and marketing strategies considering ethical values. The same strategies may not be effective to all coun-
tries to make it acceptable and to convince the people to pay for micronutrient-enriched food; therefore, 
countries should be guided to follow favorable strategies for their people.

Food safety and quality assurance are vital, and assessment of possible risks for excessive intake 
must be addressed. Bearing environmental changes in mind, possible allergies and toxicities related to 
enhanced micronutrient intake still require intensive work. International standards and national policies 
on food content information and health claims must be highlighted. Biofortification strategy should be 
adapted for living with the regulatory framework for a specific country. Measures should be taken to 
balance biofortification approaches, and harmonization with other public strategies must be empha-
sized. Though improvements by conventional breeding have not been subjected to regulations, the 
transgenic approach requires an appropriate regulatory framework for its adaptation.
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