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Abstract

In this thesis we consider two problems related to additive cyclic codes. In

the first part, we obtain a lower bound on the minimum distance of additive cyclic

codes via the number of rational points on certain algebraic curves over finite fields.

This is an extension of the analogous bound for classical cyclic codes. Our result

is the only general bound on such codes aside from Bierbrauer’s BCH bound. We

compare our bound’s performance against the BCH bound for additive cyclic codes

in a special case and provide examples where it yields better results. In the second

part, we study complementary dual additive cyclic codes. We give a sufficient

condition for a special class of additive cyclic codes to be complementary dual.



TOPLAMSAL DEVİRSEL KODLAR ÜZERİNE

Funda Özdemir
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Tez Danışmanı: Doç. Dr. Cem Güneri

Tez Eş Danışmanı: Prof. Dr. Ferruh Özbudak

Anahtar Kelimeler: Toplamsal devirsel kod, sonlu bir cisim üzerinde cebirsel eǧri,

Hasse-Weil sınırı, BCH sınırı, bütünleyici dual kod.

Özet

Bu tez çalışmasında, toplamsal devirsel kodlara ilişkin iki ayrı problem ele

alınmıştır. İlk bölümde, sonlu cisimler üzerinde tanımlı bazı cebirsel eǧrilerin

rasyonel nokta sayısı üzerinden toplamsal devirsel kodların minimum uzaklıǧına

bir alt sınır elde edilmiştir. Bu sınır, klasik devirsel kodlar için yazılmış benzer

bir sınırın genellemesidir. Bu sonuç, Bierbrauer’in BCH sınırı dışında bu kodlar

üzerine yazılmış tek genel sınırdır. Özel bir durumda, toplamsal devirsel kodlar

üzerindeki bu sınırın BCH sınırına karşı performans kıyaslaması yapılmıştır ve daha

iyi sonuç verdiǧi örnekler sunulmuştur. İkinci bölümde, bütünleyici dual toplam-

sal devirsel kodlar çalışılmıştır. Toplamsal devirsel kodların özel bir alt sınıfının

bütünleyici dual olabilmesi için yeter şart verilmiştir.
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Introduction

Coding theory is concerned with improving reliability of communication over

noisy channels. This is done by adding redundancy to information messages so

that the transmission errors can be detected or even corrected. Linear codes are

the most important classes of codes and widely studied because of their algebraic

structure, which provides easier implementation. Cyclic codes form a fundamental

subclass of linear codes. They are closed under all cyclic shifts. This extra combi-

natorial structure yields a richer algebraic structure for cyclic codes as they can be

represented as ideals of certain rings. The most important parameter of a cyclic

code is its minimum distance which is difficult to find in general. Therefore it is

important to find general bounds for the minimum distance of a cyclic code. We

will be interested in two such bounds in this dissertation. The first one is the BCH

bound (Bose- Ray-Chaudhuri- Hocquenghem), which depends on the information

given by the zero set of the code. The second bound is due to Wolfmann who

used algebraic curves over finite fields and the Hasse-Weil bound on their number

of rational points [17]. Main tools in relating the weights in cyclic codes and the

number of rational points on certain algebraic curves are the trace representation

of the codes and the additive version of Hilberts Theorem 90.

In this thesis, we focus on additive cyclic codes, introduced by Bierbrauer

[2], which are nonlinear generalizations of cyclic codes. The alphabet of these

codes is not a finite field but a vector space E over a ground field Fq. Bierbrauer

computed the dimension and proved a BCH type bound for the minimum distance

of additive cyclic codes. In the first part of this dissertation, we obtain a Hasse-

Weil type bound on additive cyclic codes, hence extend the analogous result from

cyclic codes. Our bound is much easier to compute compared to the BCH bound.

Moreover, we compare our bound’s performance against the BCH bound in a

special case and present examples where it yields better results.
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Linear complementary dual (LCD) codes are linear codes that meet their dual

trivially. These codes were introduced by Massey in [14]. In the same paper,

Massey also showed that asymptotically good LCD codes exist and they provide

an optimum linear coding solution for the two-user binary adder channel. He left

open the question of whether these codes achieve the Gilbert-Varshamov bound,

which is proved later by Sendrier ([15]). LCD codes were rediscovered recently for

their applications to cryptography in the context of side channel attacks ([5]). So

far, cyclic LCD codes were characterized completely by Yang and Massey in [18],

and quasi-cyclic LCD codes were partially studied in [6] and characterized by using

their concatenated structure in [11]. The second part of this dissertation is devoted

to the study of complementary dual subclass of additive cyclic codes. We give a

sufficient condition for a special class of additive cyclic codes to be complementary

dual.
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Chapter 1

Background on Coding Theory

1.1 Linear Codes

Let Fq be the finite field with q elements, where q is a prime power. A q-ary

linear code of length n and dimension k is a k-dimensional vector subspace of Fnq .

The elements of the code are called codewords. The minimum distance of the code

is minimum weight of its nonzero codewords, where the weight of a codeword is

the number of coordinates that are not zero. A linear code of length n, dimension

k and minimum distance d is referred to as [n, k, d] code. The dual of the code C,

denoted as C⊥, is the orthogonal complement of C in Fnq , where the dual is usually

taken with respect to Euclidean inner product on Fnq . One can also consider the

dual with respect to other inner products.

Since a linear code is a vector space, it admits a basis. Any codeword can be

expressed as the linear combination of these basis vectors. A generator matrix G

of an [n, k, d] code C is a k×n matrix whose rows form a basis for C. If G has the

form [Ik|A], where Ik is the k× k identity matrix, then G is said to be in standard

form. There are many generator matrices for a linear code, but there is a unique

one in standard form.

Consider the extension F = Fqr of degree r over Fq. One can construct linear

codes over Fq by starting with a linear code over F . Let

Tr : F −→ Fq
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denote the trace mapping, which is defined by

Tr(a) = a+ aq + · · ·+ aq
r−1

, for a ∈ F.

Definition 1.1.1. Let C be an F -linear code of length n. Then

• C|Fq := C ∩ Fnq is called the subfield subcode of C.

• Tr(C) := {(Tr(c1), . . . ,Tr(cn)) : (c1, . . . , cn) ∈ C} is called the trace code of

C.

It is obvious that C|Fq and Tr(C) are q-ary linear codes of lenth n. The following

famous theorem due to Delsarte is important to see the relation between trace code

and subfield subcode.

Theorem 1.1.2. (Delsarte) [3, Theorem 12.14] For any F -linear code C of length

n, the following holds: (
Tr(C)

)⊥
= (C⊥)|Fq .

Definition 1.1.3. An F -linear code C is called Galois closed with respect to Fq
if it is invariant under the Frobenius automorphism x 7→ xq of F over Fq, i.e. if

C = Cq. The Galois closure of C is the smallest Galois closed code containing C

and it is denoted by C̄.

Theorem 1.1.4. Let C be an F -linear code of length n.

i. Tr(C̄) = Tr(C)

ii. If C is Galois closed, then

a. Tr(C) = C|Fq

b. dimFq
(
Tr(C)

)
= dimF (C)

Proof. See Theorems 12.16 and 12.17 in [3].

1.2 Cyclic Codes

1.2.1 Basic Definitions and the BCH Bound

Cyclic codes form an important subclass of linear codes and they have been

widely studied in the literature. Cyclic codes have been generalized in various ways
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and the topic of this thesis is one of these generalizations in nonlinear setting.

Definition 1.2.1. A linear code C is called cyclic if (cn−1, c0, . . . , cn−2) is in C

whenever (c0, c1, . . . , cn−1) is in C.

In other words a linear code that is closed under cyclic shift is called a cyclic

code. It is easy to verify that the dual code of a cyclic code is also cyclic.

A cyclic code can be viewed as an ideal in a polynomial ring. Hence, they

have richer algebraic structure than ordinary linear codes. Consider the following

Fq-vector space isomorphism:

Fnq −→ Fq[x]/〈xn − 1〉

(a0, a1, . . . , an−1) → a0 + a1x+ · · ·+ an−1x
n−1.

Due to this correspondence, any codeword c = (c0, c1, . . . , cn−1) ∈ C can be iden-

tified with the polynomial c(x) =
∑n−1

i=0 cix
i. Since multiplication by x in the ring

Fq[x]/〈xn − 1〉 corresponds to a cyclic shift, if c(x) is in C then xc(x) mod xn − 1

is also in C. This observation makes the following characterization obvious.

Proposition 1.2.2. [13, Theorem 6.1.3] A linear code C in Fnq is cyclic if and

only if C is an ideal in Fq[x]/〈xn − 1〉.

Since Fq[x]/〈xn−1〉 is a principal ideal ring, an ideal C is generated by a nonzero

unique monic polynomial g(x) of the least degree, which is called the generator

polynomial of C. We write C = 〈g(x)〉. Note that g(x) divides xn − 1. If the

dimension of C is k, then the degree of g(x) is n−k and {g(x), xg(x), . . . , xk−1g(x)}
forms a basis for C. Vice versa, each monic divisor g(x) ∈ Fq[x] of xn − 1 is

the generator polynomial of some cyclic code of dimension k = n − deg(g) in

Fq[x]/〈xn − 1〉.
For a polynomial f(x) ∈ Fq[x], its monic reciprocal polynomial is defined as

f ∗(x) = f−1
0 xdeg(f)f(x−1)

where f0 is the nonzero constant term of f(x). If f(x) = f ∗(x), then f(x) is said

to be self-reciprocal. Note that if f(x) divides xn − 1, then so does f ∗(x).

Proposition 1.2.3. [13, Section 6.2] Let C = 〈g(x)〉 be a cyclic code of length n
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and dimension k. Then the dual code C⊥ is cyclic of dimenison n − k with the

generator polynomial h∗(x), where h(x) = (xn − 1)/g(x).

Definition 1.2.4. The q-cyclotomic coset mod n containing i is the subset of

Z/nZ defined by

Ci = {i, qi, . . . , qb−1i},

where b is the smallest nonnegative integer such that qbi ≡ i mod n.

It is easy to see that two cyclotomic cosets are either equal or disjoint, so the

cyclotomic cosets partition Z/nZ.

In the rest of this chapter, assume that gcd(n, q) = 1 by which we guarantee

that xn−1 has distinct roots in its splitting field over Fq. Let r be the multiplicative

order of q mod n. Then F = Fqr is the splitting field of xn−1. Let α be a primitive

nth root of unity in F over Fq. We have

xn − 1 =
t∏

j=1

fj(x) =
n−1∏
i=0

(x− αi),

where fj’s are distinct irreducible polynomials over Fq. If αi is a root of fj(x), then

αqi is also its root. So there is a one-to-one correspondence between irreducible

factors of xn − 1 and q-cyclotomic cosets mod n.

Definition 1.2.5. Let C be a q-ary cyclic code of length n with the generator

polynomial g(x) =
∏s

j=1 fij(x) and {i1, . . . , is} be a set of representatives of the

cyclotomic cosets corresponding to {fij}sj=1. Then

• the set {i1, . . . , is} is called a basic zero set of C.

• the collection of q-cyclotomic cosets
⋃s
j=1 Cij is called the zero set of C.

Theorem 1.2.6. (BCH bound) [13, Theorem 6.6.2] If the zero set of a cyclic code

C of length n contains t consecutive integers mod n, then the minimum distance

d(C) of C is at least t+ 1.

This well-known result can be generalized. The underlying reason is that if α

is a primitive nth root of unity then αj, for any j with gcd(j, n) = 1, is also a

primitive nth root of unity. Before stating the generalized BCH bound, we need

the following definition.
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Definition 1.2.7. A ⊆ Z/nZ is called an interval of length u if there is an integer

j, which is relatively prime to n, such that A = {jl, j(l + 1), . . . , j(l + u − 1)} (

mod n) for some integer l ∈ Z/nZ.

Theorem 1.2.8. [2, Theorem 8] If the zero set of a cyclic code C contains an

interval of size t, then d(C) ≥ t+ 1.

1.2.2 Algebraic Geometric Bound

Besides the BCH bound, there exists another lower bound on the minimum

distance of cyclic codes which is obtained by relating the weights of codewords

and the number of rational points on certain algebraic curves (see [17]). For this

relation we need the trace description of cyclic codes via the basic zero sets of their

duals, and the additive form of Hilbert’s Theorem 90.

Proposition 1.2.9. [17, Proposition 2.1] Let C be a q-ary cyclic code of length

n = qr − 1 and {j1, . . . , jν} ⊆ Z/nZ be a basic zero set of C⊥. For a primitive

element α of Fqr , we have the following trace representation for C:

C =

{(
Tr(f(α0)), . . . ,Tr(f(αn−1))

)
: f(x) =

ν∑
k=1

akx
jk ∈ Fqr [x]

}
.

Theorem 1.2.10. (Hilbert’s Theorem 90) For x ∈ F = Fqr , Tr(x) = 0 if and only

if yq − y = x for some y ∈ F .

Note that if yq − y = x, then for any y0 ∈ Fq, the element y + y0 also satisfies

the same equation. Now let C be a q-ary cyclic code of length n = qr−1 (primitive

case) with dual’s basic zero set {ji}νi=1 ⊆ Z/nZ where ji ≥ 1 for all i. Then the

weight of the codeword cf ∈ C is determined by f ∈ F [x] as follows (by Hilbert’s

Theorem 90):

wt(cf ) = n− |{x ∈ F : Tr(f(x)) = 0}|+ 1

= qr −
|X af

f (F )|
q

.

Here, |X af
f (F )| denotes the number of affine F -rational points of the Artin-Schreier

type curve

Xf : yq − y = f(x).

7



To write a lower bound on the minimum distance of C, we need an upper bound

on the number of affine F -rational points of each curve in the family

F = {yq − y = f(x) : f(x) =
ν∑
k=1

akx
jk ∈ F [x]}.

If deg f is relatively prime to q, then the corresponding curve in F is irreducible.

For the number |Xf (F )| of F -rational points of any curve Xf in F with genus g(Xf )
and gcd(deg(f), q) = 1, Serre’s improvement on the celebrated Hasse-Weil bound

([16, Theorem 5.3.1]) states that

|Xf (F )| ≤ qr + 1 + g(Xf )b2
√
qrc. (1.2.1)

Since each curve in F has only one F -rational point at infinity, we have

|X af
f (F )| ≤ qr + g(Xf )b2

√
qrc.

Proposition 1.2.11. [16, Proposition 6.4.1] The genus of the curve Xf ∈ F with

gcd(deg(f), q) = 1 is

g(Xf ) =
1

2
(q − 1)(deg(f)− 1).

Following the observations above, we are ready to state the following algebraic

geometric bound on the minimum distance of cyclic codes.

Theorem 1.2.12. [17, Theorem 4.3] Let C be a cyclic code of legnth n = qr−1 over

Fq such that {j1, . . . , jν} ⊆ Z/nZ is a basic zero set of its dual, where gcd(ji, q) = 1

for al i. Let j = max{ji : 1 ≤ i ≤ ν}. Then

d(C) ≥ qr − qr−1 − (q − 1)(j − 1)b2
√
qrc

2q
.

Remark 1.2.13. It is possible to generalize the bound above to the imprimitive

case (i.e. to the case where n properly divides qr−1). See [17] for details. Moreover,

the Hasse-Weil bound on reducible curves (i.e. curves with gcd(deg(f), q) 6= 1) was

obtained in [8] to extend Wolfmann’s minimum distance bound on cyclic codes to

a more general class of cyclic codes.

8



1.3 Linear Complementary Dual Codes

A linear complementary dual (LCD) code is a linear code C satisfying C∩C⊥ =

{0}. The next characterization is due to Massey [14].

Proposition 1.3.1. Let C be a linear code of length n and dimension k with a

generator matrix G. Then C is an LCD code if and only if the matrix GGT is

invertible, where GT denotes the transpose of G.

The complete characterization for LCD subclass of cyclic codes is given by Yang

and Massey ([18]).

Theorem 1.3.2. Let C be a q-ary cyclic code of length n with the generator poly-

nomial g(x). Then C is an LCD code if and only if g(x) is self-reciprocal and all

monic irreducible factors of g(x) have the same multiplicity in g(x) and in xn− 1.

Recall that if gcd(n, q) = 1, then xn − 1 has no repeated factors in Fq[x]. We

have thus the following corollary.

Corollary 1.3.3. If g(x) is the generator polynomial of a q-ary cyclic code C of

length n with gcd(n, q) = 1, then C is an LCD code if and only if g(x) is self-

reciprocal.

Other than Proposition 1.3.1 and Theorem 1.3.2, there are two more general

results on LCD codes. Firstly, Sendrier showed that LCD codes meet the Gilbert-

Varshamov bound ([15]). Secondly, Güneri-Özkaya-Solé characterized quasi-cyclic

LCD codes in [11] and studied further properties in this code class, which is another

generalization of classical cyclic codes.
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Chapter 2

Additive Cyclic Codes

Additive cyclic codes were introduced by Bierbrauer as nonlinear generaliza-

tions of cyclic codes ([2]). Results presented in Sections 2.2, 2.3 and 2.4 appeared

in [10].

2.1 Notation and Definition

Let q be a prime power, F = Fqr and E = Fmq throughout this chapter, where

m ≤ r are positive integers. Let n | (qr − 1) be a positive integer, W be the

multiplicative subgroup of F ∗ of order n and α be a generator of W . Fix A =

{i1, ..., is} ⊂ Z/nZ. Let

P(A) := {a1x
i1 + ...+ asx

is : a1, . . . , as ∈ F},

which is an F -linear space of polynomials and set

B(A) := {(f(α0), . . . , f(αn−1)) : f(x) ∈ P(A)} ⊂ F n.

Let Γ = {γ1, . . . , γm} ⊂ F be a linearly independent set over Fq. Define an F -linear

code of length mn

(B(A),Γ) : = {
(
γ1f(α0), . . . , γmf(α0); . . .

. . . ; γ1f(αn−1), . . . , γmf(αn−1)
)

: f(x) ∈ P(A)}.

10



Consider the Fq-linear mapping

φΓ : F −→ E

x 7−→ (Tr(γ1x), . . . ,Tr(γmx)) ,

where Tr denotes the trace map from F to Fq. Note that φΓ is surjective since Γ

is linearly independent. Extend φΓ naturally as follows:

φΓ : F n −→ En

(x1, . . . , xn) 7−→ (φΓ(x1), . . . , φΓ(xn)).

Definition 2.1.1. An additive cyclic code of length n over E is defined as

φΓ

(
B(A)

)
=
{
φΓ

((
f(α0), . . . , f(αn−1)

))
: f(x) ∈ P(A)

}
.

The set A is called the defining set of the code.

Remark 2.1.2. The code φΓ

(
B(A)

)
is an additive subgroup of En and it is closed

under cyclic shift. Consider the codeword

cf = (φΓ(f(α0)), ..., φΓ(f(αn−1)))

in φΓ

(
B(A)

)
determined by f(x) =

s∑
j=1

λjx
ij ∈ P(A). For g(x) =

s∑
j=1

λjα
−ijxij ∈

P(A), we have

(φΓ(f(αn−1)), φΓ(f(α0)), ..., φΓ(f(αn−2))) = (φΓ(g(α0)), φΓ(g(α)), ..., φΓ(g(αn−1))),

which is also a codeword in φΓ

(
B(A)

)
. Hence, the name additive cyclic is justified.

If we view the code in Fmnq as

φΓ

(
B(A)

)
=
{(

Tr(γ1f(α0)), . . . ,Tr(γmf(α0)); . . .

. . . ; Tr(γ1f(αn−1)), ...,Tr(γmf(αn−1))
)

: f(x) ∈ P(A)
}
,

then it is an Fq-linear code of length mn over Fq, which is equal to Tr
(
(B(A),Γ)

)
.

Moreover, as a length mn code over Fq, it is closed under shift by m coordinates.

Hence, over Fq, φΓ

(
B(A)

)
is a quasi-cyclic code of length mn and index m.

11



Remark 2.1.3. Classical cyclic codes correspond to the special case m = 1. In

this case φΓ

(
B(A)

)
is the cyclic code of length n over Fq whose dual’s basic zero

set is contained in {i1, . . . , is} (cf. Proposition 1.2.9).

2.2 Algebraic Geometric Bound on the Minimum

Distance

In this section, we obtain a Hasse-Weil type bound on the minimum distance

of additive cyclic codes.

Let n = qr − 1 and assume that ij > 0 for all j in this section. Then we

have f(0) = 0 for any f(x) ∈ P(A). Hence, the weight of the codeword cf =

(φΓ(f(α0)), ..., φΓ(f(αn−1))) in φΓ

(
B(A)

)
is

wt(cf ) = n− |{x ∈ F : φΓ(f(x)) = 0}|+ 1

= qr − |{x ∈ F : Tr(γif(x)) = 0 for all 1 ≤ i ≤ m}|. (2.2.1)

Let us define the following Fq-linear subspace in F :

V := {x ∈ F : Tr(γ1x) = · · · = Tr(γmx) = 0} . (2.2.2)

Since {γ1, ..., γm} is linearly independent over Fq, V is an Fq-subspace of codimen-

sion m in F ([7, Proposition 2.1]).

A polynomial A(T ) ∈ F [T ] is called q-additive, if it is of the form

A(T ) = amT
qm + am−1T

qm−1

+ · · ·+ a0T.

We will use the following result.

Lemma 2.2.1. [7, Corollary 2.5] For every Fq-linear subspace U in F of codimen-

sion m, there exists a uniquely determined monic q-additive polynomial A(T ) ∈
F [T ] of degree qm, which splits in F and satisfies

U = Im(A) = {A(y) : y ∈ F}.

The following is now easy to observe.
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Proposition 2.2.2. Let U be an Fq-subspace of codimension m in F and let

A(T ) ∈ F [T ] be the monic q-additive polynomial attached to U as in Lemma 2.2.1.

Define

B(T ) :=
∏
u∈U

(T − u) ∈ F [T ],

which is another q-additive polynomial. Then

U = Im(A) = Ker(B) and B(A(T )) = T q
r − T.

Proof. B(T ) is q-additive by Theorem 3.52 in [12]. From the definition of B(T ),

it is clear that Ker(B) = U . Since U = Im(A) by Lemma 2.2.1, we have

B(T ) =
∏

u∈Im(A)

(T − u) =
∏
y∈F

(T − A(y)).

Then we have the following composition

B(A(T )) =
∏
y∈F

(A(T )− A(y)) =
∏
y∈F

A(T − y),

where the last equality is due to A(T ) being q-additive. Since B(A(x)) = 0 for

all x in F , T q
r − T divides B(A(T )). We also have degB(A(T )) = qr−mqm = qr.

Therefore, B(A(T )) = T q
r − T.

Remark 2.2.3. Let U = {x ∈ F : Tr(x) = 0} be a codimension 1 Fq-subspace

of F . Then it is easily seen that B(T ) = Tr(T ) and A(T ) = T q − T so that

Im(A) = U = Ker(B). This, in fact, is the well-known Hilbert’s Theorem 90

(cf. Theorem 1.2.10). So, Proposition 2.2.2 can be viewed as a generalization of

Hilbert’s Theorem 90.

By (2.2.1) and (2.2.2), computing the weight of the codeword cf ∈ φΓ

(
B(A)

)
requires the determination of the number of x ∈ F such that f(x) ∈ V . Let A(T )

and B(T ) be the q-additive polynomials of degree qm and qr−m, respectively, that

are attached to V as in Proposition 2.2.2. By the same proposition, we have

f(x) ∈ V for x ∈ F if and only if A(y) = f(x) for some y ∈ F .

13



Moreover, if A(y) = f(x) then A(y + y0) = A(y) = f(x) for all y0 ∈ Ker(A). Note

that there are degA = qm such y0’s and all lie in F since A splits in F (cf. Lemma

2.2.1). Hence,

wt(cf ) = qr −
|X af

f (F )|
qm

, (2.2.3)

where |X af
f (F )| denotes the number of affine F -rational points on the curve Xf

defined by

A(Y ) = f(X). (2.2.4)

These observations lead to the following, which is an extension of the algebraic

geometric bound on the distance of classical cyclic codes to additive cyclic codes.

Theorem 2.2.4. Consider the additive cyclic code φΓ

(
B(A)

)
of length n = qr − 1

over E, where A = {i1, ..., is} ⊂ Z/nZ. Assume that gcd(ij, q) = 1 for all j and

let i = max{ij : 1 ≤ j ≤ s}. Then,

d
(
φΓ

(
B(A)

))
≥ qr − qr−m − (qm − 1)(i− 1)b2

√
qrc

2qm
.

Proof. Since the weights of all codewords are related to F -rational affine points

on the family F = {A(Y ) = f(X) : f(X) ∈ P(A)}, writing an upper bound

on the number of affine F -rational points that applies to all members of F will

yield a lower bound on the minimum distance of φΓ

(
B(A)

)
. The assumption on

ij’s guarantee that any curve in F (except for the one with f(X) = 0, which

corresponds to the zero codeword) is irreducible. Moreover, any such curve has

one F -rational point at infinity. The number (qm − 1)(i− 1)/2 is an upper bound

on the genera of the curves in F (see the proof of Corollary 2.11 in [8]). Therefore,

Serre’s improvement on the Hasse-Weil bound (1.2.1) yields

|X af (F )| ≤ qr +
(qm − 1)(i− 1)

2
b2
√
qrc,

for any X ∈ F . The result follows by (2.2.3).

Remark 2.2.5. Wolfmann’s bound for classical cyclic codes corresponds to m = 1

in the above result (cf. Remark 2.1.3). In that case, curves (2.2.4) related to

codewords are Artin-Schreier type curves, i.e. A(T ) = T q − T in (2.2.4) (cf.

Remark 2.2.3).
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Remark 2.2.6. We can generalize our bound in Theorem 2.2.4 to the imprim-

itive case. For a proper divisor n of qr − 1, the weight of the codeword cf =

(φΓ(f(α0)), ..., φΓ(f(αn−1))) ∈ φΓ

(
B(A)

)
where α is a generator of the multiplica-

tive subgroup W of F ∗ of order n is

wt(cf ) = n− |{x ∈ W : φΓ(f(x)) = 0}|

= n− |{x
qr−1
n ∈ F : φΓ(f(x

qr−1
n )) = 0}|+ 1

= n+ 1− |{x
qr−1
n ∈ F : Tr(γif(x

qr−1
n )) = 0 for all 1 ≤ i ≤ m}|.

By (2.2.2) and the argument following Remark 2.2.3, we get

wt(cf ) = n+ 1− |{x
qr−1
n ∈ F : f(x

qr−1
n ) ∈ V }|

=
n

qr − 1

(
qr −

|X af
f (F )|
qm

)

where |X af
f (F )| denotes the number of affine F -rational points on the curve Xf

defined by

A(Y ) = f(X
qr−1
n ).

Hence, we obtain the following minimum distance bound

d
(
φΓ

(
B(A)

))
≥ n

qr − 1

(
qr − qr−m − (qm − 1)(i− 1)b2

√
qrc

2qm
)

where i = max{ qr−1
n
ij mod qr − 1 : 1 ≤ j ≤ s}.

A Hasse-Weil type bound for additive cyclic codes in Theorem 2.2.4 can be

optimized in the following way.

Corollary 2.2.7. Let S be the set of positive integers ν which are relatively prime

to n = qr − 1 and (νij mod n) is relatively prime to q for all 1 ≤ j ≤ s. Let

iν = max{νij mod n : 1 ≤ j ≤ s} and ι = min{iν : ν ∈ S}. The following bound

holds for the code φΓ

(
B(A)

)
in Theorem 2.2.4:

d
(
φΓ

(
B(A)

))
≥ qr − qr−m − (qm − 1)(ι− 1)b2

√
qrc

2qm
.

Proof. Since gcd(ν, n) = 1, the mapping x → xν is a permutation of F ∗. Hence,

the number of affine F -rational points of the curve defined by A(Y ) = f(Xν mod n)
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is the same as that of the curve defined by A(Y ) = f(X). Note that on the code’s

side, this change amounts to considering an additive cyclic code which is equivalent

to φΓ

(
B(A)

)
. Therefore, one can estimate the weights in φΓ

(
B(A)

)
by all such

curves (i.e. any ν ∈ S). Moreover, the assumption that gcd(q, νij mod n) = 1

(for all j) guarantees that A(Y ) = f(Xν mod n) defines an irreducible curve again.

Hence, the bound of Theorem 2.2.4 holds for any ν ∈ S, replacing i by iν . The

best lower bound is obtained by ι.

Remark 2.2.8. Note that the assumption gcd(ij, q) = 1 (for all j) in Theorem

2.2.4 is made to guarantee that the equation

A(Y ) = λ1X
i1 + · · ·+ λsX

is (2.2.5)

defines an irreducible curve over F whose genus and hence the Hasse-Weil bound on

the number of its F -rational points are known. The Hasse-Weil bound on reducible

curves was obtained in [8] to extend Wolfmann’s minimum distance bound on cyclic

codes (cf. Remark 1.2.13). The same result can also be used for extending Theorem

2.2.4. This involves determining degrees of the so-called left greatest common

divisors for corresponding additive polynomials. For the purpose of determining

such possible degrees, the notion of LGCD trees are used (see [8] for details).

2.3 The Dual and the BCH Bound on the Mini-

mum Distance

Our purpose in this section is to introduce the BCH bound due to Bierbrauer

which is a generalization of the BCH bound for cyclic codes and compute it for

φΓ(B(A)). We will continue to use the notation introduced above. Bierbrauer

proved the following BCH type bound for additive cyclic codes.

Theorem 2.3.1. [2, Theorem 8] If A contains an interval of length t mod n, then

d(φΓ(B(A))⊥) ≥ t+ 1.

Our goal is to compare the bound in Theorem 2.2.4 for φΓ(B(A)) with the bound

above. For this, we need to find B ⊂ Z/nZ and a set Γ′ such that φΓ(B(A)) =

φΓ′(B(B))⊥. Here the dual is taken with respect to the Euclidean dot product on
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En: (u1, ..., un) · (v1, ..., vn) =
∑n

i=1 ui · vi, for ui, vi ∈ E = Fmq , where ui · vi is the

Euclidean product.

Lemma 2.3.2. Let A,B be subsets of Z/nZ and Γ,Γ′ be Fq-linearly independent

subsets of F . If (B(A),Γ)
⊥

= (B(B),Γ′), then Tr(B(A),Γ) =
(
Tr((B(B),Γ′))

)⊥
.

Proof. By Theorem 1.1.4 i and the assumption, we have

Tr(B(A),Γ) = Tr((B(A),Γ)) = Tr
(
(B(B),Γ′)⊥

)
.

Theorem 1.1.2 and 1.1.4 ii imply that

Tr
(
(B(B),Γ′)⊥

)
=
(
(B(B),Γ′)|Fq

)⊥
=
(
Tr((B(B),Γ′))

)⊥
.

The result follows from Theorem 1.1.4 i.

From the above Lemma, our problem reduces to finding B ⊂ Z/nZ and an

Fq-independent set Γ′ = {γ′1, ..., γ′m} ⊂ F such that

(B(A),Γ)
⊥

= (B(B),Γ′).

In other words, we can work with codes over the extension F . The following useful

fact will be needed.

Lemma 2.3.3. If k is not a multiple of n, then

n−1∑
t=0

(αt)k = 0.

Proof. Since k is not a multiple of n, αk 6= 1. Then we have

n−1∑
t=0

(αt)k =
1− (αk)n

1− αk
=

1− (αn)k

1− αk
=

1− 1

1− αk
= 0.

Definition 2.3.4. Let Z ⊂ Z/nZ be a q-cyclotomic coset mod n. Define

VF (Z) : = {
(
p1(α0), . . . , pm(α0); . . .

. . . ; p1(αn−1), . . . , pm(αn−1)
)

: pi(x) ∈ P(Z)}.
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To simplify notation, we will denote the codeword in VF (Z) determined by

pi(x) ∈ P(Z) as (p1(x), . . . , pm(x)). Using this notation, we state the following

fact on the Euclidean inner product of two vectors which will be referred to several

times in the rest of this chapter.

Lemma 2.3.5. If a and b are integers such that a + b 6≡ 0 mod n, and c1, . . . , cm

are elements of F , then

(c1x
a, c2x

a, . . . , cmx
a) ·
(
c1x

b, c2x
b, . . . , cmx

b
)

= 0.

Proof. With our notation, the inner product above is the Euclidean product of the

following vectors in Fmn:

c1α
0a · · · cmα

0a

c1α
a · · · cmα

a

c1α
2a · · · cmα

2a

...
...

...

c1α
(n−1)a · · · cmα

(n−1)a


·



c1α
0b · · · cmα

0b

c1α
b · · · cmα

b

c1α
2b · · · cmα

2b

...
...

...

c1α
(n−1)b · · · cmα

(n−1)b


.

For every i ∈ {1, . . . ,m}, the ith column contributes the following to the product:

c2
i

n−1∑
t=0

αt(a+b).

By Lemma 2.3.3, this sum is 0 since a+ b 6≡ 0 mod n.

In the following, by a Galois closure of a codeword (p1(x), . . . , pm(x)) ∈ VF (Z),

we mean the F -space spanned by the vectors

(p1(x), . . . , pm(x)), (p1(x)q, . . . , pm(x)q), . . . , (p1(x)q
r−1

, . . . , pm(x)q
r−1

).

This space will be denoted by (p1(x), . . . , pm(x)). The Galois closure of a set of

codewords is similarly defined and denoted.

Lemma 2.3.6. Let Z be a q-cyclotomic coset mod n. Then

i. dimVF (Z) = m|Z|.
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ii.
⊕

Z VF (Z) =
⊕

Z VF (−Z) = Fmn, where Z runs through all q-cyclotomic

cosets mod n.

iii. VF (Z)⊥ =
⊕

Z′ 6=−Z VF (Z ′), where Z ′ runs through all q-cyclotomic cosets

mod n.

iv. If p(x) ∈ P(Z), then the Galois closure of
(
γ1p(x), · · · , γmp(x)

)
is contained

in VF (Z). Therefore (B(Z),Γ) ⊆ VF (Z).

Proof. i. Consider the F -linear evaluation map

Ev : P(Z) −→ F n

p(x) 7−→ (p(α0), ..., p(αn−1)),

whose kernel is {0}, since any polynomial p(x) ∈ P(Z) has degree < n. Extend

this map as

Ev : P(Z)m −→ Fmn

(p1(x), ..., pm(x)) 7−→
(
Ev(p1(x)), ..., Ev(pm(x))

)
.

Note that the image of this map is VF (Z). Hence the F -dimension of VF (Z) is

m dimP(Z) = m|Z|.
ii. Note that the sum is indeed direct since (p1(x), . . . , pm(x)) ∈ VF (Z) is the

same as (q1(x), . . . , qm(x)) ∈ VF (Z ′) if and only if pi(x) = qi(x) for all 1 ≤ i ≤ m

(by a degree argument). This is impossible since Z and Z ′ are distinct cosets.

By part i, dimension of the direct sum is m
∑

Z |Z| = mn. Since each VF (Z) is

contained in Fmn, the result follows.

iii. By Lemma 2.3.5, for a q-cyclotomic coset Z ′ 6= −Z, VF (Z ′) ⊂ VF (Z)⊥.

Hence the direct sum is contained in VF (Z)⊥. These two spaces have the same

dimension by part i.

iv. This is clear since
(
γ1p(x), · · · , γmp(x)

)
is an F -space and p(x)q

i ∈ P(Z)

for any i. The last assertion follows from the definition of (B(Z),Γ).

Corollary 2.3.7. i. (B(A),Γ) =
⊕

Z

[
(B(A),Γ)∩VF (Z)

]
=
⊕

Z (B(A ∩ Z),Γ).

ii. (B(A),Γ)
⊥

=
⊕

Z

[
(B(A ∩ Z),Γ)

⊥
∩ VF (−Z)

]
.

Proof.
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i. Immediate from Lemma 2.3.6.

ii. Since (B(A),Γ)
⊥
⊆ Fmn and Fmn =

⊕
Z VF (−Z) by Lemma 2.3.6 ii, we have

the following decomposition

(B(A),Γ)
⊥

=
⊕
Z

[
(B(A),Γ)

⊥
∩ VF (−Z)

]
=
⊕
Z

[[⊕
Z′

(B(A ∩ Z ′),Γ)
]⊥ ∩ VF (−Z)

]
=
⊕
Z

[[⋂
Z′

(B(A ∩ Z ′),Γ)
⊥]
∩ VF (−Z)

]

where the second equality follows from part i and the third equality follows from

the fact that (U
⊕

V )⊥ = U⊥
⋂
V ⊥ for any two subspaces U and V of the same

space.

Fix a cyclotomic coset Z = Z0. Then the corresponding summand of (B(A),Γ)
⊥

is

[⋂
Z′

(B(A ∩ Z ′),Γ)
⊥]
∩ VF (−Z0) =

⋂
Z′

[
(B(A ∩ Z ′),Γ)

⊥
∩ VF (−Z0)

]
= (B(A ∩ Z0),Γ)

⊥
∩ VF (−Z0)

where the last equality follows from the fact that (B(A ∩ Z ′),Γ)
⊥
∩ VF (−Z0) =

VF (−Z0) when Z ′ 6= Z0, since
⊕

Z 6=Z′ VF (−Z) ⊆ (B(A ∩ Z ′),Γ)
⊥

by Lemma 2.3.6.

Hence the result follows.

Recalling our goal, decomposition of the dual code in Corollary 2.3.7 reduces

our task to finding Γ′ ⊂ F and BZ ⊂ Z/nZ for each summand such that

(B(A ∩ Z),Γ)
⊥
∩ VF (−Z) = (B(BZ),Γ′).

It then follows that B =
⋃
Z BZ .

The following result will yield the set B, hence the dual code, explicitly in the

case m = 2. In fact, Theorem 2.3.8 provides an algorithm for determining the set

B, which will be used for Magma computations in Section 2.4. We will denote

the dimension of (B(BZ),Γ′) by kZ below. Note that this implies dimφΓ(B(A)) =

mn−
∑

Z kZ (cf. Theorem 1.1.4 ii).
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Theorem 2.3.8. Let m = 2, Γ = (1, γ) and b = [Fq(γ) : Fq] > 1. Let Z =

{i, iq, ..., iqs−1} be a q-cyclotomic coset mod n of length s. For Γ′ = (−γ, 1), we

have the following:

i. If A ∩ Z = ∅, then BZ = −Z and kZ = 2s.

ii. If A ∩ Z = {iqu1 , iqu2 , ..., iqut} for some 0 ≤ u1 < u2 < · · · < ut ≤ s− 1 and

b does not divide s, then BZ = ∅ and kZ = 0.

iii. If A∩Z = {iqu1 , iqu2 , ..., iqut} for some 0 ≤ u1 < u2 < · · · < ut ≤ s−1 and b

divides s, set ÂZ = {iqua+`b mod n : 0 ≤ ` ≤ r − 1} for some a ∈ {1, . . . , t}.
Then

• BZ = ∅ and kZ = 0 if A ∩ Z * ÂZ.

• BZ = −ÂZ and kZ = s if A ∩ Z ⊆ ÂZ.

Proof. i. If A ∩ Z = ∅, then (B(A ∩ Z),Γ) = {0} which yields

(B(A ∩ Z),Γ)
⊥
∩ VF (−Z) = VF (−Z).

Note that dim VF (−Z) = 2s and (B(−Z),Γ′) ⊆ VF (−Z). By definition,

(B(−Z),Γ′) = Span {(−γx−i, x−i), (−γx−iq, x−iq), . . . , (−γx−iqs−1 , x−iqs−1)}.

Codewords above, spanning (B(−Z),Γ′), are F -linearly independent by Lemma

2.3.5, since orthogonality implies linear independence. Moreover, for every a =

0, 1, . . . , s − 1, both (−γx−iqa , x−iqa) and (−γqx−iqa , x−iqa) are in the Galois clo-

sure. These two codewords are linearly independent since γq 6= γ (this would

contradict b > 1). Hence, dim (B(−Z),Γ′) = 2s and (B(−Z),Γ′) = VF (−Z).

Therefore BZ = −Z.

ii. We have

(B(A ∩ Z),Γ) = Span{(xiqu1 , γxiqu1 ), (xiq
u2 , γxiq

u2 ), ..., (xiqut , γxiqut )}.

Note that for any 1 ≤ a ≤ t,

(
(xiq

ua
)q
s

, (γxiq
ua

)q
s)

=
(
xiq

ua
, γq

s

xiq
ua)
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since |Z| = s. Hence,
(
xiq

ua
, γq

s
xiq

ua
)

is also an element of the Galois closure.

Moreover,
(
xiq

ua
, γxiq

ua
)

and
(
xiq

ua
, γq

s
xiq

ua
)

are linearly independent since γq
s 6=

γ by the assumption that b - s.

Suppose u ∈ {0, 1, . . . , s− 1} \ {u1, . . . , ut}. Then,

(
(xiq

u1 )q
u−u1 , (γxiq

u1 )q
u−u1

)
=
(
xiq

u

, γq
u−u1xiq

u
)
∈ (B(A ∩ Z),Γ).

Moreover, due to the length of Z again, we have

(
(xiq

u

)q
s

, (γq
u−u1xiq

u

)q
s
)

=
(
xiq

u

, γq
u+s−u1xiq

u
)
∈ (B(A ∩ Z),Γ).

If γq
u+s−u1 = γq

u−u1 , then γq
u−u1 (qs−1) = 1. The order of γ is a divisor of qb − 1,

hence it cannot divide a power of q. This means the order divides qs − 1, which

yields γq
s−1 = 1. This contradicts the fact that b - s. Hence,

(
xiq

u
, γq

u−u1xiq
u
)

and(
xiq

u
, γq

u+s−u1xiq
u
)

are linearly independent.

Arguing as in part i, we have dim (B(A ∩ Z),Γ) = 2s and (B(A ∩ Z),Γ) =

VF (Z). Note that VF (Z)⊥ ∩ VF (−Z) = {0} by Lemma 2.3.6 (iii). Therefore

BZ = ∅ and kz = 0.

iii. Assume that A ∩ Z * ÂZ . Let j ∈ {1, ..., t} be such that iquj /∈ ÂZ . Then

(
(xiq

ua
)q
uj−ua

, (γxiq
ua

)q
uj−ua

)
=
(
xiq

uj
, γq

uj−ua
xiq

uj
)
∈ (B(A ∩ Z),Γ).

Note that
(
xiq

uj
, γxiq

uj
)

and
(
xiq

uj
, γq

uj−ua
xiq

uj
)

are linearly independent elements

of (B(A ∩ Z),Γ), since otherwise γq
uj−ua

= γ. This would yield b|(uj − ua), which

would contradict the assumption that iquj /∈ ÂZ .

Let v ∈ {1, ..., t} be such that iquv ∈ ÂZ . Then iqv = iqua+`b for some `. For

j ∈ {1, ..., t} with iquj /∈ ÂZ , we have

(
(xiq

uj
)q
uv−uj

, (γxiq
uj

)q
uv−uj

)
=
(
xiq

uv
, γq

uv−uj
xiq

uv
)
∈ (B(A ∩ Z),Γ).

If γq
uv−uj

= γ, then b|(ua− uj) which contradicts iquj /∈ ÂZ . Hence,
(
xiq

uv
, γxiq

uv
)

and
(
xiq

uv
, γq

uv−uj
xiq

uv
)

are two independent elements of (B(A ∩ Z),Γ).

Finally, let u ∈ {0, 1, . . . , s − 1} \ {u1, . . . , ut}. Then, for j as above and a as
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in the definition of ÂZ , we have

(
(xiq

uj
)q
u−uj

, (γxiq
uj

)q
u−uj

)
=
(
xiq

u

, γq
u−uj

xiq
u
)
∈ (B(A ∩ Z),Γ),(

(xiq
ua

)q
u−ua

, (γxiq
ua

)q
u−ua

)
=
(
xiq

u

, γq
u−ua

xiq
u
)
∈ (B(A ∩ Z),Γ).

If γq
u−uj

= γq
u−ua

, then γq
u−uj (1−quj−ua ) = 1. Multiplicative order of γ divides

qb − 1, hence it cannot divide qu−uj . Therefore γq
uj−ua−1 = 1, which yields

γ ∈ Fquj−ua . This implies b|(uj − ua) which yields a contradiction as above.

Hence
(
xiq

u
, γq

u−uj
xiq

u
)

and
(
xiq

u
, γq

u−ua
xiq

u
)

are two independent elements of

(B(A ∩ Z),Γ). Now the claim follows as in part ii.

If A∩Z ⊆ ÂZ , let uν = ua + `νb for 1 ≤ ν ≤ t. It is clear that (B(A ∩ Z),Γ) ⊆
(B(ÂZ),Γ). Let ` be such that iqua+`b ∈ ÂZ \A∩Z. Then, for any ν ∈ {1, . . . , t},
we have

(
(xiq

ua+`νb

)q
(`−`ν )b

, (γxiq
uν

)q
(`−`ν )b

)
=
(
xiq

ua+`b

, γq
(`−`ν )b

xiq
ua+`b

)
=
(
xiq

ua+`b

, γxiq
ua+`b

)
∈ (B(A ∩ Z),Γ),

where the last equality holds since γ ∈ Fqb . Hence, (B(A ∩ Z),Γ) = (B(ÂZ),Γ).

Above discussion yields

(B(ÂZ),Γ) = Span{(xiqua , γxiqua ), (xiqua+b , γxiqua+b), (xiqua+2b , γxiqua+2b), . . .}

= Span{(xiqua , γxiqua )}

= Span{(xiqua+c , γqcxiqua+c) : 0 ≤ c ≤ s− 1},

where the last equality follows from |Z| = s. Hence, dim (B(AZ),Γ) = s. Moreover,

dim

(
(B(ÂZ),Γ)

⊥
∩ VF (−Z)

)
= dim

(
(B(ÂZ),Γ)⊕ VF (−Z)⊥

)⊥
= 2n− (dim(B(ÂZ),Γ) + (2n− dimVF (−Z)))

= 2n− (s+ 2n− 2s)

= s.
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Observe that the codewords

(−γx−iqua , x−iqua ), (−γqx−iqua+1
, xiq

ua+1
), . . .

. . . , (−γqs−1
x−iq

ua+(s−1)
, x−iq

ua+(s−1)
) ∈ VF (−Z)

are all orthogonal to the generators of (B(ÂZ),Γ). Arguing as above, we have

(B(ÂZ),Γ)
⊥
∩ VF (−Z) = Span{(−γqcx−iqua+c , x−iqua+c) : 0 ≤ c ≤ s− 1}

= Span{(−γx−iqua , x−iqua )}

= Span{(−γx−iqua+cb , x−iqua+cb) : c = 0, 1, 2, . . .}

= (B(−ÂZ),Γ′)

Therefore BZ = −ÂZ .

2.4 Comparison of the Bounds

In this section we will present some examples to illustrate instances where our

Hasse-Weil type bound performs better than the BCH bound. To optimize the

bound in Theorem 2.2.4 for φΓ(B(A)), we choose the set j0A whose maximum

element is the smallest among the maximum elements of jA for every j relatively

prime to n (cf. Corollary 2.2.7). In this respect, we always start with the optimum

defining set A for the code φΓ(B(A)) in the examples below.

Furthermore, to obtain the best BCH bound for the code, we will take the

longest interval in the defining set B of dual code. Say this interval is {j0l, j0(l +

1), . . . , j0(l+u−1)} for some j0 relatively prime to n and for some integer l ∈ Z/nZ.

The length of this longest interval in B is the same as the length of the longest

consecutive integer sequence in jB. In other words, to optimize the BCH bound

for φΓ(B(A)), we collect the lengths of longest consecutive integer sequence in jB

for every j relatively prime to n, and take the maximum one.

Let m = 2, Γ = (1, γ) and b = [Fq(γ) : Fq] > 1 . In Tables 2.1 and 2.2, we

present examples of codes where the Hasse-Weil type bound performs better than

the BCH bound. Our bound is easy to compute but the BCH bound requires long

computations in Magma [1] to determine the set B (cf. Theorem 2.3.8) and the

longest interval for this bound.
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In the next example, we give details for one of the codes in Table 2.1 to describe

the computations involved in the results presented in this table.

Example 2.4.1. Consider the codes corresponding to the rows with q = 2, r = 8

and A = {5, 7, 9} ⊂ Z/255Z in Table 2.1. From Theorem 2.2.4, we have the

following:

d (φΓ(B(A))) ≥ 28 − 26 − (4− 1)(9− 1)b2
√

28c
23

= 96.

i. First consider the code with b = 2. We can find B using the algorithm in

Theorem 2.3.8. The cyclotomic cosets containing 5, 7 and 9 are

Z(5) = {5, 10, 20, 40, 65, 80, 130, 160}

Z(7) = {7, 14, 28, 56, 112, 131, 193, 224}

Z(9) = {9, 18, 33, 36, 66, 72, 132, 144}

Since b divides the cardinalities of these cyclotomic cosets, we fall in the case

(iii) of Theorem 2.3.8. We have ÂZ(5) = {5, 20, 80} , ÂZ(7) = {7, 28, 112} and

ÂZ(9) = {9, 36, 144}. They give a contribution of −ÂZ(5)∪−ÂZ(7)∪−ÂZ(9) =

{111, 143, 175, 219, 227, 235, 246, 248, 250} to B. The cyclotomic cosets not

intersecting A yield a contribution of
⋃
i 6=5,7,9−Z(i) to B (Theorem 2.3.8 i).
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We optimize the BCH bound for φΓ(B(A)) when j = 133 and obtain

jB = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46,

47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,

108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141,

142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158,

159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175,

176, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,

193, 194, 195, 196, 197, 198, 199, 203, 204, 205, 206, 207, 208, 209, 210, 211,

212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,

228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,

244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254},

which contains maximum 87 consecutive integers (the underlined sequence

in the set). Hence by Theorem 2.3.1 the BCH bound is 88, which is worse

than the Hasse-Weil type bound.

ii. Consider the codes with b = 4 and b = 8. By applying the same procedure

as in part i, we obtain that BCH bound is 78 in both cases, which is again

worse than the Hasse-Weil type bound.

Again, details for one of the codes in Table 2.2 is given in the next example.

Example 2.4.2. Consider the codes corresponding to the rows with q = 3, r = 4

and A = {1, 2, 4, 5} ⊂ Z/80Z in Table 2.2. The Hasse-Weil type bound for these

codes is 40 by Theorem 2.2.4.

First consider the code with b = 2. We can find B using the algorithm in
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q r A b HW-bound BCH-bound

2 7 {1,3,5} 7 63 48
2 7 {1,3,5,7} 7 47 32
2 8 {5,7,9} 8 96 78
2 8 {5,7,9} 4 96 78
2 8 {5,7,9} 2 96 88
2 8 {3,7,9,11} 8 72 64
2 8 {3,7,9,11} 4 72 64
2 9 {5,9,11} 9 216 164
2 9 {5,9,11} 3 216 175
2 9 {1,3,5,7,9,11,13} 9 182 96
2 9 {1,3,5,7,9,11,13} 3 182 112
2 9 {3,5,11,15} 9 148 116
2 9 {3,5,11,15} 3 148 138
2 9 {3,5,11,15,17} 9 114 107
2 9 {3,5,11,15,17} 3 114 108
2 10 {3,5,11,13,19} 10 336 254
2 10 {3,5,11,13,19} 5 336 254
2 10 {1,9,15,17,19,23} 10 240 195
2 10 {1,9,15,17,19,23} 5 240 195
2 10 {1,9,15,17,19,23} 2 240 224
2 10 {3,5,7,15,17,21,25} 10 192 160
2 10 {3,5,7,15,17,21,25} 5 192 160
2 10 {3,5,7,15,17,21,25} 2 192 191
2 10 {1,7,13,15,19,23,25,27} 10 144 126
2 10 {1,7,13,15,19,23,25,27} 5 144 129

Table 2.1: Codes for q = 2

Theorem 2.3.8. The cyclotomic cosets containing 1, 2, 4 and 5 are

Z(1) = {1, 3, 9, 27}

Z(2) = {2, 6, 18, 54}

Z(4) = {4, 12, 28, 36}

Z(5) = {5, 15, 45, 55}

Since b divides the cardinalities of these cyclotomic cosets, we fall in the case (iii)

of Theorem 2.3.8. We have ÂZ(1) = {1, 9}, ÂZ(2) = {2, 18}, ÂZ(4) = {4, 36} and

ÂZ(5) = {5, 45}. They give a contribution of −ÂZ(1)∪−ÂZ(2)∪−ÂZ(4)∪−ÂZ(5) =

{35, 44, 62, 71, 75, 76, 78, 79} to B. The cyclotomic cosets not intersecting A yield

a contribution of
⋃
i 6=1,2,4,5−Z(i) to B (Theorem 2.3.8 i). We optimize the BCH
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bound for φΓ(B(A)) when j = 3 and obtain

jB = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68,

69, 70, 72, 73, 74, 77},

which contains maximum 35 consecutive integers (the underlined sequence in

the set). Hence, by Theorem 2.3.1 the BCH bound is 36, which is worse than the

Hasse-Weil type bound.

For the code with b = 4, the same procedure again yields 36 for the BCH

bound.

q r A b HW-bound BCH-bound

3 4 {1,2,4,5} 4 40 36
3 4 {1,2,4,5} 2 40 36
3 5 {1,5,8} 5 120 102
3 5 {1,2,5,7,8} 5 120 79
3 5 {2,4,5,7,10} 5 92 81
3 6 {4,5,8,10,11,13,14} 6 336 242
3 6 {4,5,8,10,11,13,14} 3 336 242
3 6 {4,5,8,10,11,13,14} 2 336 250
3 6 {7,10,11,14,16,17} 6 264 244
3 6 {7,10,11,14,16,17} 3 264 244
3 6 {7,10,11,14,16,17} 2 264 258
3 6 {2,4,7,8,11,13,14,17,19,20,22} 6 144 136
3 6 {2,4,7,8,11,13,14,17,19,20,22} 3 144 136

Table 2.2: Codes for q = 3
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Chapter 3

Complementary Dual Additive

Cyclic Codes

3.1 A Condition for Complementary Dual Codes

We will continue to use the notation introduced in the previous chapter. Let

n = qr − 1 and m = 2 throughout this chapter. For Γ = (1, γ), the dual of

φΓ

(
B(A)

)
is φΓ′(B(B)), where Γ′ = (−γ, 1) and the set B is determined explicitly

in Theorem 2.3.8. Elements of φΓ

(
B(A)

)
and its dual φΓ′(B(B)) are of the form

cf =
(
Tr(f(x)),Tr(γf(x))

)
for f(x) ∈ P(A) and cg =

(
Tr(−γg(x)),Tr(g(x))

)
for

g(x) ∈ P(B), respectively. Recall that
(
Tr(f(x)),Tr(γf(x))

)
denotes the code-

word
(
Tr(f(α0)),Tr(γf(α0)); . . . ; Tr(f(αn−1)),Tr(γf(αn−1))

)
. Then φΓ

(
B(A)

)
is

not complementary dual if and only if there exist f(x) ∈ P(A) and g(x) ∈ P(B)

such that cf 6= ~0 6= cg and cf = cg. We will use the following result.

Lemma 3.1.1. [9, Proposition 2.3] Let λj ∈ Fqr and ij be positive integers, for

j = 1, 2, . . . , s. Assume that the q-cyclotomic cosets containing ij’s are distinct.

Then Tr(λ1x
i1 +λ2x

i2 + · · ·+λsx
is) = 0 for all x in Fqr if and only if Tr(λjx

ij) = 0

for all x in Fqr and for all j = 1, 2, . . . , s.

A slight modification of Lemma 3.1.1 is needed for our purposes.

Lemma 3.1.2. Let λ0, λj ∈ F and ij be positive integers, for j = 1, 2, . . . , s.

Assume that the q-cyclotomic cosets mod n containing ij’s are distinct. Then

Tr(λ0 + λ1x
i1 + λ2x

i2 + · · · + λsx
is) = 0 for all x in F ∗ if and only if Tr(λ0) = 0

and Tr(λjx
ij) = 0 for all x in F ∗ and for all j = 1, 2, . . . , s.
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Proof. Assume Tr(λ0 +λ1x
i1 +λ2x

i2 + · · ·+λsx
is) = 0 for all x in F ∗. By linearity

of the trace map, Tr(λ1x
i1 + λ2x

i2 + · · · + λsx
is) = −Tr(λ0) =: c for all x in F ∗.

Then

(qr − 1)c =
∑
x∈F ∗

Tr(λ1x
i1 + · · ·+ λsx

is)

= Tr
(∑
x∈F ∗

(λ1x
i1 + · · ·+ λsx

is)
)

= Tr
(
λ1

∑
x∈F ∗

xi1 + · · ·+ λs
∑
x∈F ∗

xis
)

= 0

where the last equality follows from the fact that if i is not a multiple of qr − 1,

then
∑

x∈F ∗ x
i = 0 by Lemma 2.3.3. Therefore c = 0, i.e. Tr(λ0) = 0 and

Tr(λ1x
i1 + λ2x

i2 + · · · + λsx
is) = 0 for all x in F ∗. By Lemma 3.1.1 , Tr(λ0) = 0

and Tr(λjx
ij) = 0 for all x in F ∗ and for all j = 1, 2, . . . , s.

The converse is immediate from linearity of the trace map.

For A ⊆ Z/nZ, denote by A the union of all q-cyclotomic cosets mod n inter-

secting A nontrivially.

Proposition 3.1.3. Let A and B be defining sets for the additive cyclic code and

its dual as before. If A ∩B = ∅, then φΓ

(
B(A)

)
is complementary dual.

Proof. Let f(x) ∈ P(A) and g(x) ∈ P(B), and suppose cf = cg. Then Tr(f(x) +

γg(x)) = 0 and Tr(γf(x)−g(x)) = 0 for all x ∈ F ∗. By the assumption A∩B = ∅,
exponents of f and g cannot lie in the same cyclotomic coset. Some exponents

that appear in f (or in g) may be from the same cyclotomic coset. This is no

harm for concluding Tr(f(x)) = 0 = Tr(γg(x)) and Tr(γf(x)) = 0 = Tr(g(x)) for

all x in F ∗ (by Lemma 3.1.2), since Tr(axj + bxjq) = Tr((a + b1/q)xj). Therefore,

cf = ~0 = cg, i.e. anything in the intersection φΓ

(
B(A)

)
∩ φΓ′

(
B(B)

)
has to be

~0.

Theorem 3.1.4. Let b = [Fq(γ) : Fq] > 1. Then φΓ

(
B(A)

)
is complementary dual

if the following conditions are satisfied by every q-cyclotomic coset Z mod n:

i. A ∩ Z = ∅ if and only if A ∩ (−Z) = ∅.
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ii. If A ∩ Z 6= ∅, then A ∩ Z is not contained in the qb-cyclotomic coset mod n

of some element in A ∩ Z.

Proof. If a cyclotomic coset Z does not intersect A, then we also have A ∩ Z = ∅.
Therefore, such a cyclotomic coset cannot contribute to A ∩B.

Now assume that a cyclotomic coset Z intersects A. By assumption i, we have

A∩ (−Z) 6= ∅ too. If b does not divide |Z| = |−Z|, then by Theorem 2.3.8 part ii,

we have B−Z = B∩Z = ∅ and such Z cannot contribute to A∩B. So assume that

b divides |Z| = | − Z|. Note that Â−Z is nothing but the qb-cyclotomic coset mod

n of some element in A∩ (−Z). Hence assumption ii implies that A∩ (−Z) 6⊆ Â−Z

and therefore (by Theorem 2.3.8), we have B−Z = B ∩ Z = ∅. Therefore such a

coset Z cannot contribute to A ∩ B even if b divides |Z|. The result follows from

Proposition 3.1.3.

Corollary 3.1.5. Let b = [Fq(γ) : Fq] = r. Then φΓ

(
B(A)

)
is complementary dual

if the following conditions are satisfied by every q-cyclotomic coset Z mod n:

i. A ∩ Z = ∅ if and only if A ∩ (−Z) = ∅.

ii. If A ∩ Z 6= ∅, then there exists at least two elements from Z in A.

Proof. Since b = r, qb-cyclotomic coset mod n of any element in A ∩ Z consists of

a single element. Hence, by ii, A ∩ Z satisfies condition ii in Theorem 3.1.4 and

the result follows.

3.2 Examples

In this section, by using our results we present examples of additive cyclic

complementary dual codes over E = F2
2. In Table 3.1, M and d stand for the

size and minimum distance of the code, respectively. The computational algebra

system Magma [1] is used for computations.

In the following examples, we describe the computations briefly for some of the

codes presented in Table 3.1.

Example 3.2.1. Let r = 5 = b. Then n = qr − 1 = 31 and 2-cyclotomic cosets
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mod 31 are

Z0 = {0}

Z1 = {1, 2, 4, 8, 16}

Z3 = {3, 6, 12, 17, 24}

Z5 = {5, 9, 10, 18, 20}

Z7 = {7, 14, 19, 25, 28}

Z11 = {11, 13, 21, 22, 26}

Z15 = {15, 23, 27, 29, 30}.

Consider the additive cyclic code of length 31 over E = F2
2 with defining set

A = {1, 2, 15, 23} where {1, 2} ⊂ Z1 and {15, 23} ⊂ Z15 = −Z1. Then

A = Z1 ∪ Z15.

The cyclotomic cosets not intersecting A yield a contribution of
⋃
j 6=1,15−Zj to B

(Theorem 2.3.8 i). Since A∩Z1 * ÂZ1 = {1} and A∩Z15 * ÂZ15 = {15}, there is

no contribution from Z1 and −Z1 = Z15 to B (Theorem 2.3.8 iii). Therefore the

defining set of the dual code is

B =
⋃

j 6=1,15

−Zj.

For this code we satisfy the condition that A∩B = ∅. Indeed this code is nonlinear

complementary dual over F2
2 of length n = 31, size M = 410 and minimum distance

d = 10.

Note that the best minimum distance of LCD cyclic codes over F4 with length

31 and dimension 10 is d = 10 as well. For instance, the one which is generated

by the self-reciprocal polynomial

g(x) = x21 + x17 + x16 + x15 + x13 + x8 + x6 + x5 + x4 + 1

has minimum distance 10.

Example 3.2.2. Consider the code corresponding to the row with r = 6, b = 6
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and

A = {1, 4, 31, 47, 21, 42},

where {1, 4}, {31, 47} and {21, 42} are contained in the 2-cyclotomic cosets mod

63 Z1, Z31 = −Z1 and Z21 = −Z21, respectively. Then

A = Z1 ∪ Z31 ∪ Z21.

From the algorithm provided in Theorem 2.3.8, the defining set of the dual code is

B =
⋃

j 6=1,31,21

−Zj.

For this code we satisfy the condition that A∩B = ∅. Indeed this code is nonlinear

complementary dual over F2
2 of length n = 63, size M = 414 and minimum distance

d = 22.

Moreover, for b = 3 the code is still complementary dual with the same pa-

rameters as in the case b = 6. On the other hand, if b = 2, then the code is

not complementary dual since A ∩ Z1 is contained in the qb-cyclotomic coset of 1

(Theorem 3.1.4 ii).

r b A M d

4 4, 2 {1, 2, 7, 11} 48 4
4 4 {1, 4, 7, 11} 48 4
4 4, 2 {3, 6, 5, 10} 46 6
5 5 {1, 2, 15, 23} 410 10
6 6, 3 {1, 4, 31, 47} 412 24
6 6, 3, 2 {1, 2, 31, 47} 412 24
6 6, 3 {1, 4, 31, 47, 21, 42} 414 22
7 7 {1, 2, 63, 126} 414 54
8 8, 4, 2 {4, 8, 127, 191} 416 112
8 8, 2 {1, 16, 127, 191} 416 112

Table 3.1: Codes over F2
2
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