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ABSTRACT 

Chitosan shows merit as a biomaterial in medical research particularly in terms of its good 

biocompatibility, but its poor solubility at physiological pH values narrows its potential scope of 

use. In this first part of this thesis, a freeze-concentrated chemical modification approach was 

developed to transform chitosan, yielding derivatives with reduced chain regularity and improved 

solubility. In confirming the generality of this approach, chitosan solutions spiked with acrylic, 

citraconic, itaconic, or maleic acid were incubated at -10 °C, transforming primary amino groups 

to the corresponding Michael type adduct. The purified derivatives were characterized via 13C-

NMR, ATR-FTIR, XRD, ninhydrin, solubility measurements, and SEM, with changes in XRD 

and ninhydrin profiles particularly correlating well with improved solubility. It follows to reason 

that this approach enhanced processability of challenging or thermally sensitive biopolymers and 

contribute to the Michael reactions in the sense our method yields the free acid directly, which is 

in fact another novelty in chitosan research. 

In the second part, a molecularly imprinted chitosan and graphene-based nanosensor was 

fabricated to selectively detect nitrotriazolone (NTO) molecules with a molecularly imprinted 

film via simple electrical measurements. Molecularly imprinted polymer comprising chitosan was 
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used as sensitive layer. Gold electrodes for electrical measurements were lithographically 

fabricated on Si/SiO2 substrate, followed by monolayer graphene transfer and polymeric film 

coating. Monolayer graphene and molecularly imprinted polymer were characterized by ATR-

FTIR, UV-Vis, SEM and Raman spectroscopy. Transfer-length measurements (TLM) indicate 

that the sensor selectively and linearly responds against aqueous NTO solutions within a wide 

range of concentration of 0.01–0.1 mg mL_1 that covers the lowest toxic level of NTO 

determined by USEPA. This nanosensor with embedded electrodes is re-usable and suitable for 

field applications, offering real-time electrical measurements unlike current techniques where 

complex analytics are required. 

Third part of the thesis deals with theoretical investigation of structure-morphology-property 

relationship in thermoplastic polyurethanes. Soft segment (SS) chain length is known to affect the 

morphologies and mechanical behavior of poly(ethylene oxide) based-segmented poly(urethane-

urea) copolymers in binary solvents. Here, a multi-scale computational study is carried out to 

determine the origins of this behavior. First, single chains of a series of poly(ethylene oxide) 

(PEO) of varying lengths are comparatively examined by molecular dynamics (MD) and 

dissipative particle dynamics (DPD) simulations in THF:DMF mixture to verify that the coarse 

graining strategy is applicable to the system at hand. In the second step, hard segment (HS) beads 

containing urethane groups are attached into PEO chains to study the effect of hard segment on 

morphology. Density fields obtained from DPD calculations results in a stable channel formation 

of soft segment molecules in the copolymers with the lower soft segment lengths. Morphologies 

of copolymers with three different soft segment lengths investigated by DPD are followed by 

reverse mapping to full atomistic detail. Monitoring the trajectories and the reverse mapped 

structures, we find that urethane-PEO interactions are significantly stronger in copolymer with 

lowest soft segment length leading to channel formation. The findings are corroborated by atomic 

force microscopy (AFM) images obtained for the corresponding copolymers. The strategy 

employed in this work lays the foundations for predicting novel morphologies and macro-

properties using designs based on HS-SS cooligomers.  
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MAKROMOLEKÜLLERİN DİZAYNI, SENTEZİ VE MODİFİKASYONUNDA DENEYSEL 

VE TEORİK YÖNTEMLER VE NANOSENSÖR UYGULAMALARI 

 

Merve Senem AVAZ 

MAT, Doktora Tezi, 2017 

Tez Danışmanı: Prof. Dr. Yusuf Ziya MENCELOĞLU 

 

Anahtar kelimeler: Kitosan Modifikasyonu, Donma derişimi, Moleküler Çapraz Bağlama, 

Grafen, Nanosensör fabrikasyonu, Moleküler dinamik simülasyonu, Orta ölçek moleküler 

dinamik, Yapı-morfoloji-fonksiyon ilişkisi 

ÖZET 

Kitosan makromolekülü özellikle yüksek biyouyumlulukta bir biyomalzeme olması sebebiyle 

biyomedikal araştırmada sıklıkla kullanılmaktadır. Kitosanın bu alanda daha geniş kullanımının 

önünde en büyük problem fizyolojik pH değerlerinde düşük çözünürlüğüdür. Bu tezin ilk 

aşamasında kitosanın donma derişimi reaksiyonlarıyla kimyasal modifikasyonu gerçekleştirilmiş 

ve zincir düzenliliği düşük ve yüksek çözünürlükte kitosan türevleri elde etmek hedeflenmiştir. 

Bu amaçla hazırlanan kitosan çözeltileri organik asitler ile karıştırılarak b -10 derecede Michael 

katılma reaksiyonu gerçekleştirilmiştir ve kitosanın yapısında bulunan ve yüksek kristalinite, 

dolayısıyla düşük çözünürlükten sorumlu olan birincil amin grupları ikincil ve üçüncül aminlere 

indirgenmiştir. Sentez sonrasında saflaştırılan türevler 13C-NMR, ATR-FTIR, XRD, ninhidrin 

testi, çözünürlük testleri, XRD ve SEM ile karakterize edilmiştir. Özellikle XRD ve ninhidrin 

testleri artan çözünürlüğü doğrulamıştır. Diğer bir taraftan, tezin bu aşamasında kullanılan donma 

derişimli kimyasal reaksiyon yöntemi ile termal olarak hassas ve zor işlenen biyomalzemelerin 

modifikasyonuna alternatif bir yöntem sunarken, reaksiyon esnasında serbest asidin doğrudan 

elde edilmesi de Michael katılması reaksiyonları literatürüne bir katkı sağlamaktadır. 
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Tezin ikinci kısmında nitrotriazolon (NTO) moleküllerini çevresel su ve toprak örneklerinden 

algılamak için  moleküler baskılama yöntemiyle hazırlanan kitosan film ve grafenden oluşan bir 

nansensör üretilmiştir. Elektriksel ölçümleri gerçekleştirebilmek için altın elektrotlar Si/SiO2 

substrat üzerine litografi yöntemiyle işlenmiş, bunu takiben elektrotlar üzerine tek tabaka grafen 

yerleştirilmiştir. Moleküler baskılanmış kitosan filmler ise sensörde en üst tabaka olan algılayıcı 

tabaka olarak kullanılmıştır. Sensör üzerindeki tek tabaka grafen ve moleküler baskılanmış film 

ATR-FTIR, UV-Vis, SEM ve Raman teknikleriyle karakterize edilmiştir. Elektriksel TLM 

ölçümleri  üretilen nanosensörün NTO moleküllerinin USEPA tarafından belirlenen toksik 

seviyelerini de kapsayan 0.01-0.1 mg/mL aralığında seçici ve lineer bir şekilde yanıt verdiğini 

göstermiştir. Yapılan çalışmalar üretilen nanosensörün çok kullanımlılık, eş zamanlı ölçüm ve 

saha uygulamalarına uygun olması nedeniyle diğer kompleks tekniklere göre daha avantajlı 

olduğunu göstermektedir. 

Tezin üçüncü kısmı termoplastik poliüretanların yapı-morfoloji-fonksiyon ilişkisinin teorik 

çalışması üzerinedir. PEO bazlı segmente termoplastik poliürethanlarda yumuşak segmentin 

zincir uzunluğunun morfoloji ve mekanik özellikleri etkilediği bilinmektedir. Bu çalışmada bu 

özelliğin temellerini belirlemek adına çok ölçekli hesaplamaya dayalı bir çalışma 

gerçekleştirilmiştir. Bu amaçla ilk aşamada uygulanacak iri taneleme (coarse graining) 

stratejisinin geçerliliğini doğrulamak adına zincir uzunlukları değişen bir dizi tek zincirli PEO 

yapıları THF:DMF çözücüleri içerisinde moleküler dinamik (MD) ve dağılımlı parçacık dinamiği 

(DPD) yöntemleriyle incelenmiştir. İkinci adımda iri taneleme yöntemiyle elde hazırlanan 

yumuşak segment (SS) PEO modellerine yine aynı yöntemle hazırlanan sert segment (HS) 

taneleri eklenerek bu segmentin morfoloji üzerindeki etkileri incelenmiştir. DPD 

hesaplamalarından elde edilen yoğunluk alanları kısa yumuşak segment zincirli kopolimerlerde 

stabil kanal yapılarının oluştuğunu göstermiştir. Üç farklı kısa segment zincir uzunluğunda 

hazırlanan kopolimerin morfolojileri DPD ile incelenmiş ve ardından “ters haritalama” 

yöntemiyle atomistik detaylar eklenmiştir. Ters harita modelleri ve DPD sonuçları üretan-PEO 

etkileşimlerinin kısa zincirli kopolimerde belirgin bir şekilde daha güçlü olduğu gözlenmiş ve bu 

etkileşimlerin yapıda oluşan kanallara yo açtığı belirlenmiştir. DPD bulguları AFM görüntüleriyle 
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de desteklenmiştir. Çalışmada kullanılan strateji HS-SS ko-oligomerleriyle dizayn edilecek yeni 

ve özgün morfolojilere ve makro-özelliklere temel oluşturmaktadır. 
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CHAPTER 1  Introduction 

 

This thesis is composed of five chapters, in which, synthetic, and theoretical approaches were 

employed to modify/process and understand the nature of the material at hand that serve in 

various applications. The first and the fifth chapter are brief descriptions of other chapters and a 

conclusion, respectively. The second chapter deals with verification of an unusual reaction 

method, which is useful to chemically modify natural materials. The method called as freeze 

concentration (FC) reactions has been known for over decades and is validity was approved with 

small organic molecules’ reactions. On the other hand, this method has not been tested on 

synthesis or modification of macromolecules especially thermosensitive macromolecules. For this 

purpose, a model macromolecule was selected to test the validity of proposed reaction tool. The 

model macromolecule chitosan is a widely used naturally occurring biopolymer with various 

advantages as a biomaterial, such as low toxicity, biocompatibility and biodegradability. On the 

other hand, its processability is lowered by low solubility in physiological pH values. Therefore 

the selected reaction pathway is aimed to increase its solubility while proving the applicability of 

FC reactions in macromolecular scale. At the end of FC reactions; the product was chemically 

characterized by spectroscopic techniques such as NMR, FTIR and with chemical indicator 

methods. In addition to this, crystallinity, thermal and morphological properties were also 

investigated by X-Ray diffraction spectroscopy (XRD), thermogravimetric analysis (TGA), and 

scanning electron microscopy (SEM) methods. With this chapter, the concept of freeze 

concentration reactions is proven to be a useful tool in chemical modification of thermosensitive 

macromolecules. 

The third chapter describes the design, fabrication and performance optimization of a chemical 

nanosensor to detect trace amount of nitroaromatics from ecological samples. The use of toxic 

nitroaromatics in military and other purposes has long been an environmental issue, which was 

reported by numerous environmental health and safety authorities. The first act in preventing a 

contamination is to detect the toxic amounts of analyte of subject. With this motive, we aimed to 

develop a chemical sensor that is able to detect the toxic levels of nitroaromatics on site. But one 
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of the main challenges in design of a sensor to detect very low concentrations of the analyte 

requires high sensitivity and selectivity. Thanks to the recent developments in nanotechnology 

and its reflections on fabrication techniques, scientific methods of today enable us to develop 

sensors to meet these criteria. The extraction of monolayer graphene did not only earned Prof. 

Geim and Novoselov a noble prize, but it also introduced the exceptional properties of this 2 

dimensional material to research world. The main advantage that comes with monolayer graphene 

was its remarkable electrical properties. As a zero-overlap semimetal with both holes and 

electrons as charge carriers, graphene has a very high electronic mobility, which directed us to the 

idea of detecting very low concentrations of analyte with high sensitivity and thus inspired us to 

use this material as the transducer layer in our nanosensor. On the other hand, selectivity of the 

designed sensor was improved by employing molecularly imprinted polymers as the active layer 

of the sensor. Molecular imprinting technique creates shape-specific recognition sites on 

polymers that interact template molecule and reject others. On the other hand, nitroaromatics are 

known to form reversible salts with amine groups. Therefore, the molecular imprinting technique 

was applied on chitosan and this biopolymer was selected as active layer due to its good film 

forming properties and vast amount of primary amine groups to ensure the interaction with 

analyte not only through shape recognition, but also through secondary interactions. Chemical 

characterizations of the analyte components were performed using FTIR and Raman 

spectroscopic techniques.  

In addition to its materials selection, advances in nanotechnology also reflected on sensor 

fabrication methods. To detect the change in electrical properties of graphene upon interaction of 

the active layer with the analyte, we needed metallic electrodes to carry out the measurements. In 

literature examples of electrical measurements of graphene, the electrodes are usually placed on 

top of graphene layer that lies on an insulated substrate. Although this approach was proven to be 

useful, we faced with severe contamination issues during fabrication and contact development 

steps. Therefore, we employed a reverse-approach in electrode placement and embedded the 

electrodes inside the substrate. This “embedded electrodes” approach is developed in Sabancı 

University Nanotechnology Research and Application Center facilities, and to our knowledge, is 

a unique design and a first in literature.  
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To detect the change in sheet resistance of graphene upon analyte interaction, electrical 

measurement were carried out using Transfer Length Measurement (TLM) method. For this 

purpose, the metallic contact lines were placed in an increased distance pattern, and a series of I-

V measurements were performed to measure the sheet resistance. TLM measurements indicated 

that the developed sensor is sensitive enough and respond selectively to toxic levels of the 

analyte. The main improvements that come with the developed sensor can be listed as the easy 

measurement technique that is suitable for on-field measurements, its wide range of response 

against the analyte in acceptable response times and low levels of noise. 

The fourth chapter deals with theoretical investigations on structure-morphology-function 

relationship of poly(ethylene oxide based poly(urethane-urea) copolymers. Thermoplastic 

polyurethanes (TPUs) are versatile copolymers possessing both flexibility that comes with its soft 

segment (SS) of poly(ethylene oxide) (PEO), and toughness comes with its hard segment (HS). 

Experimental evidences reveal that several functions such as mechanical properties of TPUs 

differ with respect to SS chain length. Although there are numerous experimental and theoretical 

studies available on explaining the change in macro properties of TPUs, the structural explanation 

on this change has not been explained in detail. The question of the effect of SS chain length on 

morphological properties of PEO based TPUs constitutes the main objective of the third chapter 

of this thesis. With the improvements in computing power over the past decades, Molecular 

Dynamics (MD) simulations enable the researchers to observe atomistic events of 

macromolecules in nanosecond time scales. But MD simulations today are only limited to model 

macromolecules up to 10000 atoms, and production of models with multiple polymer chains and 

solvent molecules requires very high computing costs. On the other hand, Dissipative particle 

Dynamics (DPD) simulations allow simulations of the dynamic of systems with multiple polymer 

chains over longer time periods. This is done by a coarse grained approach that clusters sets of 

atoms into beads. Therefore, DPD can be defined as a scale-up method for MD simulations where 

bead interactions are produced, but the atomic information is lost. A solution to atomic 

information loss during DPD is fine graining, where the atomic information can be re-introduced 

to DPD models. 
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To find an atomistic scale explanation to the change in macroscopic properties of TPUs with 

varying SS chain length, we employed a multi scale computational approach. The first step in this 

approach is the development of single chain models of PEO chains, which serves as SS, and 

comparison of all atom and coarse-grained models by MD and DPD simulations. By comparing 

all atom simulation results with DPD in terms of end-to-end distances, we aimed to assess the 

validity of DPD model. In the second step, we prepared multiple chains of copolymer by 

incorporating HS beads into the model and carry out DPD simulations of copolymer. DPD results 

were then compared to Atomic Force Microscopy (AFM) results in terms of morphology. In the 

final step, atomic information is re-introduced into DPD models by reverse mapping method. 

This chapter provided useful information on the unusual behavior of PEO based TPUs on 

atomistic level where experimental data is not available. The findings of the study are useful in 

understanding the nature of these types of copolymers and enable researchers to design of novel 

materials with fine-tuned properties in the future.  
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CHAPTER 2  Freeze-Concentrated Modification of Chitosan to Water-Soluble Derivatives 

 

2.1 Introduction 

Although its history dates back to 1850s, the interest in Chitosan has increased dramatically in the 

1970s along with the increase in natural products, and has been growing ever since [1]. Today 

Chitosan, N-deacetylated form of its precursor chitin, is a widely used biological material with its 

remarkable properties of biocompatibility, biodegradability, low toxicity and many others [2]. 

Therefore, researchers have particularly focused on its biomedical applications, mostly in the 

areas of drug delivery systems, biotechnology, tissue engineering and wound dressing materials 

[3, 4]. Figure 1 is an abstract of chitosan and its prominent properties in terms of polymeric, 

chemical, pharmacological, biomedical and environmental importance. 

 

Figure 1 Schematic representation of general overview of chitosan 
 
As alkaline solution-treated (e.g. sodium hydroxide) form of its precursor chitin, commercial 

chitosans are found in deacetylation degrees of 60-90%. Deacetylation is usually carried out by 

treating chitin with concentrated alkali solution for 6-7 h. It was shown that the reaction time has 
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more influential effect on degree of deacetylation than alkali concentration [5]. On the other 

hand, deacetylation via enzymatic degradation is an alternative to thermochemical conversion of 

chitin. For this purpose, chitin deacetylase enzyme is used to catalyse the deacetylation reaction 

of N-acetyl glucosamine residues [6]. 

In addition to degree of deacetylation, molecular weight (MW) is also another important factor 

that determine many physical properties of chitosan. High MW chitosans has a molecular weight 

range of 310-375 kDa, whereas low MW ranges between 50-190 kDa. It was shown that tensile 

strength of high molecular weight chitosans were higher that that of low molecular weight [7]. 

Moreover, aqueous solutions of high molecular weight chitosans exhibit very high viscosity, thus 

their applications are limited [8]. 

Despite the fact that Chitosan is a good candidate for biological uses with its promising 

properties, its processability is lowered by poor water solubility especially at basic pH values. 

This solubility issue of biopolymer arises from its crystalline structure [9] that is mainly 

established by high regularity of intermolecular Hydrogen bonds between the polymer chains and 

the sheets. Figure 2 shows the chemical structure of chitosan repeating unit. Chitosan biopolymer 

composes of two randomly distributed monomeric units, glucosamine and N-acetyl glucosamine, 

respectively. The amino groups and hydroxyl groups attached to D-glucosamine monomer unit 

gives the structure an intra- and intermolecular H-bonding regularity, which enhances the 

crystallinity of the structure. In addition to the basic nature of amino groups (Pka=6.5) [10], 

crystallinity is the main obstacle against water solubility. Therefore, one has to derange the 

regularity of Hydrogen bonds within/between polymer chains in order to overcome the solubility 

issue of the polysaccharide.  

Chitosan has shown to exhibit different structural behavior than its precursor chitin due to the free 

primary amino groups introduced by deacetylation. Moreover, solid-state chitosan is found in 

different conformations than hydrated form, differentiating hydrogen bond formations [11]. 
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Figure 2 Chemical Structure of chitosan. 
 

Chemical modification of amino groups gives rise to an increase in solubility of Chitosan by 

decreasing the crystallinity of the molecule. As the regularity of the structure decreases by adding 

bulkier side groups upon Michael addition, intermolecular spacing within backbone of the 

polymer chains enlarges and allows more water molecules to access. Although there are several 

synthetic routes available to modify H-bond forming groups within the monomeric units, perhaps 

the most direct approach is to modify primary amino groups of the N-deacetylated monomeric 

units. Besides, pH solubility range of the molecule also widens upon modification, due to the 

decrease in the number of amino groups, which are only soluble in acidic pH values.  

2.1.1 Literature Review 

In general, there are two synthetic approaches to soluble chitosan; N-substitution and O-

substitution of the monomeric cyclic unit via two different reaction sites. Here, the primary 

reaction site is the N-group, where the nucleophile substitution reactions are more probable. 

These types of reactions include N-alkylation [12], N-acylation [13], N-carboxyalkylation, N-

sulfation [14] and quaternization [15]. On the other hand, there are some O-substitution reactions 

reported in the literature by suppressing N-substitution via experimental conditions with [16] 

/without [17] using N-protective agents. Due to its more nucleophillic nature, N-site of the 

monomeric unit is more preferable in chitosan solubilization reactions. 
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2.1.1.1 N-Alkylation of Chitosan 

In literature, there were several attempts to improve chitosan’s solubility, or widen its 

pH-solubility range by N-alkylation reactions. In 2000, Sashiwa et. al. [18] employed N-

reductive alkylation to prepare alkyl derivatives of chitosan using p-formylphenyl α-sialoside as 

alkylating agent; NaCNBH3 as reducing agent and successfully proved the lectin binding capacity 

of the newly formed derivative. It was shown that this chitosan derivative was only soluble when 

prepared in high degrees of substitution. In another example, N-alkyl derivatives of chitosan was 

prepared with levulinic acid, and it was observed that the solubility of end products were 

dependent on degree of substitution [19]. 

In the following years, N-alkylation of chitosan with mono- and disaccharides was carried out 

and it was found out that chitosan derivatives with disaccharides are soluble around physiological 

pH [20]. This group also stated that rheological properties of chitosan derivatives were related 

with degree of substitution, e.g., aqueous solutions switched from pseudo-plastic to Newtonian as 

the degree of substitution increased. Strategically-similar, Yang et. al., prepared a set of 

N-alkylated disaccharide derivatives of chitosan and optimized the degree of substitution and its 

effect of on antibacterial activity [21]. This report stated that a degree of disaccharide substitution 

around 0.3-0.4 showed the highest antibacterial activity at physiological pH. Authors related this 

property primarily with the change in pH-solubility range. As another example of increased 

solubility with N-alkylation, polyethylene glycol (PEG) was grafted into chitosan by N-alkylation 

and drug release kinetics were studied [22]. It was shown that solubility and viscosity in 40% of 

PEG alkylation was enough to prepare an injectable solution of chitosan derivative. In addition, it 

was demonstrated that a linear release between to 5 to 70 hours was achieved with injected liquid, 

while prolonged release up to 40 days was possible with crosslinking.  

Higher degrees of substitution may not always be necessary to overcome the poor solubility issue 

of chitosan biopolymer. In a report [23], it was claimed that low degrees of substitution around 

0.03 was enough to prepare water-soluble chitosan at neutral pH without disrupting its cationic 

nature. In another study [24], where chitosan was hyper branched with chitosan side-chains, it 

was stated that chitosan derivatives with a degree of hyper branching of 0.04-0.06 exhibited good 

water-solubility. The study conducted by Ying et. al in [25] may be addressed as an extended 
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version of [24] since they also hyper branched chitosan but expanded the reaction dataset with 

various carbohydrates. They showed that reduced viscosities of the water-soluble chitosan 

derivatives were decreased with increasing degree of substitution. In addition, they quantitatively 

showed that all the derivatives prepared were soluble at neutral and basic pH values. Worth to 

mention, this study is the first in quantitative solubility testing of chitosan modification. 

Another factor that affect the solubility of chitosan derivatives is the structure of side-chain 

attached to chitosan backbone upon modification. In a recent study Buranaboripan et. al. prepared 

β-cyclodextrin aldehyde derivatives of chitosan by reductive alkylation and showed that water 

solubility was affected by residue side-chain length and flexibility [26].  

Although it is mainly employed to increase the solubility of chitosan, there are some examples of 

alkylation reactions, which put additional properties into structure and widen its applications. In 

order to take the advantage of both hydrophilicity and hydrophobicity arising from different side 

chains and thus controlling the solubility, Ramos et. al. [27] introduced insoluble alkyl branches 

into a water soluble chitosan derivative (N-methyl-) containing phosphonic groups. This way, 

they increase the water solubility in neutral conditions and moreover, integrated amphiphilic 

aspects and extended emulsifying properties of chitosan. Same group prepared another 

water-soluble chitosan derivative by adding an longer alkyl chain (N-propyl-) into chitosan 

backbone and showed that solubility was slightly increased upon addition of longer alkyl chain 

[28]. A similar approach was adapted by Ngimhuang et. al. [29], where they substituted a long 

alkyl chain and a hydrophobic residue into chitosan structure by N-alkylation and aimed to 

enhance the versatility of chitosan in terms of polymeric surfactant. They reported that the 

stability of polymeric micelles was highly dependent on the degree of substitution of hydrophobic 

side-chain.  

As another important aspect to mention, chemoselectivity becomes prominent in some 

N-substitution reactions including N-alkylation since there are available primary and secondary 

hydroxyl groups attached to both glucosamine and N-acetyl glucosamine rings that form the 

backbone of chitosan ring in random distribution. To prevent O-alkylation, protective groups may 

be used. Másson et. al. developed a chemoselective reaction strategy to prepare N,N,N-trimethyl 
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derivatives  of chitosan using an O-protector prior to N-alkylation reaction [30]. The resulting 

products were fully water-soluble with no sign of O-alkylation.  

There are alternative methods to conventional wet-preparation of N-alkyl chitosans in the 

literature, such as microwave-assisted reactions. In the study conducted by Petit et. al., 

N-alkylation was carried out by microwave irradiation and resulting derivative exhibited similar 

rheological  and surface properties without breaking biopolymer’s backbone [31]. This method 

was advantageous in terms of having shortest reaction times to amphiphilic derivatives and 

degree of conversion. In a study conducted in 2016, methylation of chitosan was carried out using 

deep eutectic solvent mixtures of urea and glycine [32]. Unlike conventional methods, which 

employ hazardous organic solvents such as DMF, this method allowed selective methylation 

using eco-friendly “green chemicals”. These very recent examples highlight that the trend in 

chitosan modification research is propagating towards alternative reaction methods.  

2.1.1.2 N-Acylation of Chitosan 

N-acyl chitosans were widely studied in the literature, frequently in terms of their solubility, 

structure-function relationships, and biomedical applications. Therefore literature survey in this 

section is divided into 3 subsections with respect to the subjects described above. 

Solubility: There are vast amount of studies in the literature that correlates solubility of N-acyl 

chitosan with degree of substitution and acyl chain length. For instance, Badawy et. al. prepared 

N- and O-acyl derivatives of chitosan and stated that derivatives exhibited higher solubility than 

native chitosan [33]. In addition, they reported that antifungal activity of the derivatives were 

significantly higher than native chitosan. Another group; Lee et. al. studied the effect of degree of 

substitution on solubility and effect of acylation on crystallinity, hence solubility [34]. They 

prepared a set of acylated chitosan and observed that degree of acylation and solubility are 

inversely proportioned. According to Lee, chitosan derivatives with a degree of acylation <0.6 

were insoluble even in acidic medium, whereas samples with degree of acylation of 0.1 and 0.2 

are fully soluble at pH 4.0. They added that, independent of the acylation degree, all samples 

were insoluble above pH 7.0. On the other hand, they stated that samples with a low acylation 

degree were soluble, because only low extents of acylation helped crystallinity to be destroyed. 
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As the substitution rate increased, hydrophobic character of the polymer became more dominate 

and resulted in lower solubility; independent of the decrease in crystallinity. From the literature 

examples it can be concluded that solubility of acyl derivatives of chitosan depend on two 

parameters; degree of substitution and acyl chain length. There’s an inverse proportion between 

acyl chain length and solubility. In addition, solubility also increases with decreasing degree of 

substitution in chitosan derivatives with short acyl chains. On the other hand, chitosan derivatives 

with high degree of acylation are insoluble in water, independent of acyl chain length. In a very 

recent study, Fujita and Sakairi synthesized water-soluble chitosan-ethylenediaminetriacetic acid 

(EDTA) by acylation [35] to remove copper ions from drinking water. They reported that the 

newly synthesized derivative acted as a very strong chelating agent due to its wide range of pH 

solubility and amphoteric nature. 

Structure & Function: In [36] it was reported that the hydrophobic character of chitosan 

increased during acylation with fatty acids which was believed to enhance the stability of 

chitosan due to “self assembly”. Jiang et. al. developed a method to prepare amphiphilic chitosan 

micelles by N-fatty acylation and obtained water-soluble N-acyl derivatives [37]. They stated that 

the derivatives prepared by N-acylation showed higher stability than a previously reported 

coupling reaction derivative of chitosan [38]. In another report on stability upon N-acylation [39], 

3-dimensional nano-matrices of different modified polycations were prepared to stabilize iron 

oxide nanoparticles. Among the polycationic matrices produced, N-acylated chitosan 

demonstrated the highest stability at physiological pH. Evaluated from a different viewpoint, 

Choi et. al. reported that, after N-acylation, chitosan derivatives with longer acyl side chain 

exhibited higher tensile strength [40]. In the same report it was also highlighted that mechanical 

properties were enhanced upon N-acylation when compared to N-acetylated chitosans. 

Biomedical: One of the first acylation reactions of chitosan was carried out in solid state with a 

series of carboxylic anhydrides. Hydrolysis rates of acylated fibers were tested with Lysozyme 

and it was shown that the length of side chain added upon acylation affects the rate of hydrolysis 

[41]. To evaluate a different biomedical property, Hu et. al. prepared two N-acyl chitosan 

derivatives of which they investigated antibacterial activities n relation with self-aggregation due 

to hydrophobic groups introduced upon N-acylation. They showed that N-acyl product with a 
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longer alkyl side chain was more hydrophobic; creating more self-aggregation, and exhibited 

better antibacterial activity than the N-acyl derivative with shorter alkyl side chain [42]. To 

examine the mucoadhesive behavior, Shelma & Sharma prepared 3 N-acyl chitosan derivatives 

(hexanoyl/ lauroyl/oleoyl chitosan) and observed that acyl chitosans exhibited better 

mucoadhesive properties than untreated chitosan and found non-toxic to human tissue cells [43]. 

In addition, they conducted release-kinetics experiments and as a result, addressed acyl chitosans 

as promising carriers for hydrophobic drugs. As a controlled delivery system of antitumor agent 

atorvastatin, N-acylated chitosan micelles encapsulated this antitumor agent reported as 

promising in terms of enhanced sustained release and cytotoxic activity compared to non-

capsulated agent [44]. This behavior of acyl chitosan was attributed to stability in aqueous 

solutions. In another study [45], an acylation reaction was developed and N-acyl chitosan 

derivative was employed as bioactive coating to increase the shelf life of strawberries. Acyl 

chitosan was reported to have antifungal agent carrier property, thus useful as an edible coating.  

2.1.2 Frozen Solutions and Their Use as Reaction Tool 

Freezing of an aqueous solution starts with the crystallization of water molecules into solid form. 

These crystallization events first take place with nucleation of solvent molecules and as the 

temperature decreases solvent molecules have been removed from the solution as in the form of 

pure ice. Thus the solute molecules are concentrated in the remaining solution and this increase in 

concentration continues ‘till the eutectic point. This phenomenon is called as freeze concentration 

(FC) and has been practiced for decades [46], especially for water separation applications and in 

food industry [47]. When applied to a reaction mixture, water content in the reactor decreases due 

to crystallization. This gives rise to a dramatic increase in both concentration and viscosity of 

reactants and thus higher reaction rates become possible even at low temperatures. In other 

words, the increase in concentration and viscosity may compensate the drawbacks of low 

temperature and allows chemical reactions to take place at sub-zero degrees.  

Frozen solutions can be considered as systems that take the advantage of increased concentration 

due to freeze-concentration effect. One of the first reported proofs of this effect is the dramatic 

difference between the rates of super cooled and frozen solutions ethylene chlorohydrin reaction 
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with sodium hydroxide. The rate of this frozen solution reaction was reported as 1000 times faster 

than that of super cooled liquid [48]. Freeze concentration (FC) has recently been experimentally 

verified in a study by Sodeau et. al. [49] in which an interhalide formation in polar regions arising 

from FC of dilute solutions was investigated and freezing  was shown to enhance the formation of  

IBr2
- and explained the chemistry behind ozone depletion events in  polar troposphere. 

So far, several FC reactions have been carried out and verified in the literature, both for small 

organic reactions [50] and at macromolecular level, especially in terms of cryogel synthesis [51]. 

Cryogel formation, or in other words, cryotropic gelation is a unique gelation process that occurs 

upon cryogenic treatment of the reaction components. Chitosan cryogels have also been received 

widespread attention of the researchers with their improved swelling properties [52].  

The purpose of this study is to verify the validity of FC method on organic reactions of 

biomacromolecules. To achieve this, Michael addition of chitosan with acrylic acid proposed by 

Sashiwa et al. [53] was selected as the model system and expanded with several organic acids 

including citraconic, maleic and itaconic acids. To verify the validity of the FC reaction, an 
13C-labeled methylation reaction was carried out based on the conclusive fact that 
13C-iodomethane can only be reacted with available primary amino side groups that remained 

unchanged after Michael addition reaction. Results showed that FC reactions were performed 

successfully, and the products obtained by FC effect showed better pH solubility ranges and 

several morphological differences than those obtained by conventional method.  

2.2 Materials & Methods 

Chitosan and 13C-iodomethane were purchased from Sigma Aldrich, Germany. Chitosan, from 

crab shells, was in practical grade with degree of deacetylation ≥ 85 and viscosity > 200. 
13C-iodomethane was 99 atom % in 13C. All the solvents, organic reagents and crosslinking 

agents were in practical grade. 

1H- and 13C-NMR spectra were recorded on Varian Inova 500MHZ NMR Spectrometer. FTIR 

spectra were recorded on Thermo Scientific Nicolet IS10 ATR-FTIR Spectrometer equipped with 

diamond Smart ATR Attenuated Total Reflectance sampling accessory. The minimum and 
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maximum range limits were 550 to 4000 cm-1 with a resolution of 0.5 cm−1. X-Ray diffraction 

patterns were collected using Bruker AXS D8 Advance XRD (Cu-Kα radiation). Zeiss LEO 

Supra 35VP Field Emission Scanning Electron Microscope was used to study the morphology of 

chitosan derivatives with SEI detector.  

D2O/CH3COOH and D2O/HCl solutions (10:1 v/v) were used to acquire 1H- and 13C-NMR 

spectra, respectively. Analyte concentrations in NMR measurements were 10mg/mL 1H- and 

60mg/mL for 13C-NMR. XRD and ATR-FTIR spectra were collected using freeze-dried chitosan 

powders. 

2.2.1 Preparation of N-Carboxy- Derivatized Chitosan 

Michael addition was carried out according to the study [53], except the temperature was fixed at 

-5°C. Briefly, 2 g of chitosan was dissolved in 100 mL of 1% acetic acid by stirring overnight and 

filtered. After the filtration, a solution of each reactant (10% wt.) was added into chitosan 

solutions. The resulting solutions were divided into two parts. First part of each chitosan reaction 

mixtures were stirred at 50°C overnight, whereas second parts were stirred at -5°C. Details of 

reaction conditions and mixtures are found in Table 1 and Table 2. After the reactions were 

completed, 0.5 M NaOH were added into mixture to adjust the pH at 6.0. The mixtures were then 

dialyzed using a dialysis membrane (MW cutoff= 3.5K) 2 times against 0.1 M NaCl and 3 times 

against d-H2O, respectively. Products were freeze dried to obtain dry N-carboxy derivatized 

chitosan powders/ lyophilizates. 

2.2.2 Verification of FC reactions 

In order to assess the success of N-carboxy derivatization, Chitosan derivatives prepared by 

freeze concetration were methylated through the procedure [54]: 1 g of chitosan was suspended in 

a mixture containing 40 mL N-methyl-2-pyrrolidone, 5.5 mL of 15 wt.% NaOH, 5.7 mL of 
13C-iodomethane and 2.4 g of NaI. Reaction was carried out at room temperature by constantly 

stirring for 24 h. Solutions were ion-exchanged using a dialysis membrane (MW cutoff=3.5K) 

against d-H2O, 0.1 M NaCl and d-H2O, respectively. The products were then freeze-dried to 

obtain methylated chitosan lyophilizates.  
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Table 1 Summary of all sample names, reactants used and reaction temperatures for reactions. 
 

Sample 

Name 

Reactant 

(10%, 1:1) 

Reaction 

Temperature 

(°C) 

A-5 Acrylic acid -5 

A50 Acrylic acid 50 

C-5 Citraconic acid -5 

C50 Citraconic acid 50 

M-5 Maleic acid -5 

M50 Maleic acid 50 

I-5 Itaconic acid -5 

I50 Itaconic acid 50 

 

Table 2 Michael addition reaction and reactants used 
 

	
  

A50,	
  A-­‐5 	
  

M50,	
  M-­‐5 	
  

	
  

I50,	
  I-­‐5	
   	
  

C50,	
  C-­‐5 	
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2.2.3 Ninhydrin Test and Color Quantification 

Cd-ninhydrin test [55] was employed to quantify and to compare the solubilities of Chitosan 

derivatives with native form. This test is a direct method to detect the amine residues resulting 

with a red and pale orange/yellow color for primary and secondary amines, respectively. 1mg/mL 

solutions of Chitosan samples were dropped on a Whatmann 3MM paper; freshly prepared 

Cd-ninhydrin reagent was sprayed on sample spots and air-dried. Cd-ninhydrin test yielded a 

range of colors from red to yellow allowing us to quantify the amount of primary and secondary 

amines depending on the red color intensities. 

A color intensity analysis method similar to Western blot quantification described by Gassmann 

et. al. [56] was employed to assess ninhydrin yields. Freshly prepared Cd-ninhydrin sprayed 

Whatman papers prepared as described above were scanned and processed with ImageJ software 

[57]. Once the background color was subtracted, the color scheme of the images was inverted to 

better quantify higher concentration samples. By this means, higher concentration bands, which 

appeared dark on the image, were assured to have high numerical values upon measuring. The 

mean color intensities were then measured by selecting the Cd-ninhydrin added bands. 

2.3 Results 

2.3.1 Evidence Supporting Michael Type Addition in Frozen Solutions 

Figure 3 (top) shows the attenuated total reflectance (ATR) FTIR spectrum of native chitosan. 

The one band at 1151 cm−1 and two bands in the range of 1069–1028 cm−1 have been attributed, 

respectively, to asymmetric C-O vibrations resulting from deacetylation and C-OH and C-O-C 

vibrations of the β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine 

(acetylated unit) rings. Moreover, the absorption bands at 1381 and 1422 cm-1 have been 

attributed to -CH2 and  -CH bending vibrations, respectively. Overlapping peaks within the range 

of 1589-1650 cm-1 correspond to the bending mode of primary amino groups and carbonyl 

stretching of native N-acetamido groups, respectively. The composite absorbance band in the 

region of about 2872-2920 cm-1 corresponded to symmetric and asymmetric stretchings of the 

aliphatic -CH2 and -CH3 groups. The broad peak centered on 3362 cm-1 originated from 

H-bonded hydroxyl and amino groups. 
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Figure 3 FTIR spectra of native chitosan (CHT) and Michael adducts with acrylic acid (A-5), 
citraconic acid (C-5), maleic acid (M-5), and itaconic acid (I-5). 
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Once incubated with acrylic, citraconic, maleic, and itaconic acids under freeze concentrated 

conditions, chitosan displayed additional bands in the IR spectra (Figure 3). The primary amine 

N-H bending signal at 1589 cm-1 in native chitosan was shrouded and unavailable for assessment, 

but a new band appearing around 1550 cm-1 lay in the region corresponding to the N–H bending 

of secondary amines. 

Figure 4 and 5 shows 1H-NMR spectra of native, FC-derivatized and 50 0C-derivatized chitosans. 

Specific to chitosan, all the spectra exhibited a chemical shift around 2.0-ppm; corresponds to 

N-acetamido hydrogens of chitosan backbone. In addition, the broad peaks centered on 5.0 ppm 

were attributed to glucosamine and N-acetyl glucosamine rings of chitosan. On the other hand, 
1H-NMR study of native and N-carboxy dervatized chitosans showed several fundamental 

differences. For instance, the newly appeared chemical shift around 2.5-3.0 ppm aroused from 

N-alkylation of glucosamine rings; while chemical shifts around 3.6-4.1 ppm were due to mono 

and dimethylation in N- alkyl chitosan. These peaks stood as a solid proof of Michael addition. It 

should be mentioned that all 1H-NMR spectra contains some sharp peaks due to solvents used in 

measurement.  
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Figure 4 1H-NMR spectra of native (top) and FC-derivatized chitosan products. 
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Figure 5 1H-NMR spectra of native (top) and 50 0C-derivatized chitosan products. 
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For 13C-NMR study, equal amounts of freeze-concentration treated and native chitosan were 

alkylated using 13C-labeled iodomethane under identical homogenous phase conditions. The 

samples were purified identically and subjected to 13C-NMR analysis. Both showed three bands 

around 30, 41 and 52 ppm. The respective values reflected mono-, di- and trimethylation of 

primary amines by 13C-iodomethane [58] (Figure 6). More importantly, however, the two spectra 

differed substantially in their signal-to-noise (S/N) ratio. Given that long interpulse delays were 

applied, and equivalent amounts of sample were dissolved in the NMR tube, the only factor 

remaining, which could explain the approximate 3-fold loss of S/N in the freeze-concentration 

treated sample, was a substantial drop in the total methyl group signal. Hence, the availability of 

reactive amino groups, for instance primary amines, must have been limited in the freeze-

concentrated sample, indicating blocked, deactivated or otherwise sterically challenged nitrogen 

nucleophiles. While it is true that secondary amines are also reactive towards iodomethane, 

reactions yielding N-13C-methylated and N,N-13C-dimethylated Michael type adducts would give 

rise to a relative loss of signal at 30 ppm, which was not the case. Moreover, Michael type 

adducts between chitosan and olefinic acids would presumably afford exceptionally unreactive 

secondary amines in the sense that a carboxyethyl inner ammonium salt would have been formed. 

For stereoelectronic reasons, such a β-amino acid derivative would likely twart the ability of the 

new secondary amine center to engage in reaction with iodomethane. Firstly, the nitrogen atom 

would acquire a near-persistent positive charge. Secondly, it would reside near a bulky carboxyl 

group. 
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Figure 6 13C-NMR spectrum of 13C-methylated N-carboxyethyl chitosan (a), overall view (b); 
13C-NMR spectrum of 13C-methylated native chitosan (c), overall view (d). 
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Figure 7 X-Ray diffraction (XRD) patterns of native (1) and FC-treated chitosan (2). 
 

Shown in Figure 7; the X-Ray diffraction pattern of native chitosan showed two broad peaks with 

2θ values centered at 10.7° and 19.8°. Chitosan incubated together with acrylic acid under freeze 

concentrated conditions (2) displayed the same peaks at a much reduced intensity, whereas 

chitosan incubated without reagent or with the near-isosteric propionic acid in place of acrylic 

acid (data not presented) showed no loss of signal. Given that all measurements reflected the 

same initial mass of chitosan, a comparative loss of overall crystallinity was apparent in 

proceeding from native to freeze concentrated chitosan, but only when acrylic acid was present in 

the medium. 

Figure 8 highlights the Cd-ninhydrin color yields of equal amounts of native and freeze-

concentration derivatized chitosan spotted onto chromatography paper. All test and control 

samples clearly lied within the linear range of the standard curve (inset). The results showed a 

significant loss of color yield in freeze-concentration treated compared to native chitosan. As the 

intrinsic color yield of secondary amines is much lower than primary amines, and as there were 
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no other foreseeable sources of artifacts, the observable color yields reflected reaction with only 

primary aliphatic amines. Assuming that all derivatizable amino groups were accessible to 

ninhydrin reagent under the staining conditions, it followed to reason that freeze-concentration 

treated chitosan samples had experienced an approximate 2/3 loss of primary amino groups 

following their incubation in the presence of any of the olefinic acids (A-5, C-5, M-5 and I-5). 

This finding was also noteworthy in the sense that it correlated well with the 13C-NMR analyses, 

which implied an approximate 3-fold reduction of methylatable amino groups following 

treatment with acrylic acid under freeze concentration conditions. To ascertain if any global 

changes to the chitosan structure under freeze concentration conditions might have inadvertently 

influenced the color yield, native chitosan was also incubated under freeze concentration 

conditions and worked-up using propionic acid in place of acrylic acid. The freeze concentration 

negative control afforded a color yield similar to native chitosan (not shown). Chitosan treated 

with acrylic acid at 50 °C (A50) also showed a drop in amino group content. 

While chitosan dissolution might appear to be a problem of intrinsic solubility, it should be 

emphasized that chemical treatment had not been employed herein to improve the interaction 

between chitosan and water. Chitosan is rich in H-bonding groups, so the dissolution of isolated 

chitosan molecules in water presumably should be thermodynamically spontaneous at all pH 

values. Rather, chemical treatment was used herein as a means to limit chitosan-chitosan 

interactions, thus weakening other favorable competing pathways such as crystallization. This 

claim was supported by XRD, which showed a notable loss of overall crystallinity, and visual 

inspection, which showed a dramatic loss of solution viscosity, indicating less inter-chain 

interaction. When considering the highly polar chemical composition of chitosan, it would stand 

to reason that native chitosan does not dissolve in alkaline media for kinetic as opposed to 

thermodynamic reasons. Indeed, native and Michael type adducts of chitosan would be expected 

to differ little in terms of polar group content. Thus, from a Gibbs energy viewpoints, any 

changes experienced during treatment with acrylic acid under freeze concentrated conditions had 

likely served to reduce kinetic barriers leading to dissolution. While it is true that secondary 

amines can normally H-bond via donor and acceptor modes, a N-carboxyethyl derivative, which 

presumably formed after freeze concentration treatment, likely existed as the inner salt. Operating 
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under such a scenario, the substantial steric bulk about nitrogen and the zwitterionic character of 

the N-carboxylethyl moiety implied a looser-packed structure in which the secondary amino 

derivatives in chitosan could not effectively H-bond. While likely improving the kinetics of 

dissolution, it is not known to what extent these stereoelectronic changes had notably altered the 

absolute solubility of freeze-concentration-treated versus native chitosan. Absolute solubility 

clearly depends on derivatization, but as more detailed solubility tests were not conducted, further 

insight was unavailable. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Ninhydrin color yields of freeze concentration treated products (A-5, C-5, I-5, M-5), a 
50 °C control (A50), and untreated native chitosan (Control) (1 mg/mL), with relative intensities 
being reported (Inset – Standard curve utilizing native chitosan dissolved in acetic acid (10%) in 
the concentration range 0-1 mg/mL). The volume used to spot samples onto paper was fixed (200 

µL). 
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Figures 9 and 10 illustrate the SEM imagery analysis of native and freeze concentrated treated, 

50 °C treated chitosan, respectively. Native chitosan displayed smooth surfaces with no fibrillar 

structure, whereas freeze concentration treated chitosan displayed a porous structure comprising 

of clustered microporous fibrils. Compared to chitosan treated with acrylic acid at 50 °C, the 

freeze concentration treated chitosan displayed finer fibril structures and a notably improved, 

regular pore structure. As all samples had been dialyzed at the onset of the work-up procedure, 

and the perfectly soluble solutions obtained were freeze-dried, it followed to conclude that the 

observed morphological differences had manifested only during the lyophilization process. 

Porosity and pore structure following lyophilization is known to be a function of ice crystal 

templating during sample freezing at the onset of lyophilization; as the pre- lyophilization water 

and salt content of each sample was equivalent, the only distinguishing feature remaining could 

be chitosan. It necessarily followed that physico-chemical changes had occurred in chitosan 

following incubation with acrylic acid, and these distinguishing changes had influenced the 

formation of ice at the onset and possibly over the course of freeze-drying. Assuming this cause-

and-effect relation applied herein, it also followed to reason that the physicochemical traits of 

freeze concentration and 50 °C-treated chitosans differed substantially. This claim was supported 

by the different ninhydrin color yields of the two samples (Figure 8; A-5 vs. A50), indicative of 

physicochemical difference.  

 
Figure 9 SEM image of native chitosan 



27 
 

 

Figure 10 SEM micrographs of (a) 50 °C and (b) freeze concentration derivatized products at 
several magnifications. 

 

Figure 11 demonstrates thermogravimetric analysis curves of untreated chitosan (a), and Michael 

addition products obtained in 50 °C (b) and -5 °C (c). Thermogravimetric curves were recorded 

between 25-500 °C with a heating rate of 10 °C/min. All three thermal curves demonstrate a 

weight loss between 25-140 °C, which can be attributed to initial dehydration of polymers. 

Comparing untreated chitosan to Michael adducts, the thermal stability of chitosan was slightly 

decreased upon modification. This can be understood from the difference in thermogravimetric 

curves, i.e. untreated chitosan decomposes around 295 °C whereas N-carboxyethyl derivatives 

decompose around 239 °C. The decrease can be attributed to weakened secondary interactions 

upon modification. On the other hand, there is no difference observed between Michael addition 
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products prepared in 50 °C and FC. This shows that freeze concentration does not lower thermal 

stability.  

 

Figure 11 TGA curves of untreated chitosan (black), Michael addition derivatives in 50 °C (blue) 
and freeze-concentration (red) of chitosan with a heating rate of 10 °C/min. The calculated total 

weight loss were placed in top-right. 
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2.4 Discussion 

Compared to the N-acetamido internal reference of untreated chitosan at about 1650 cm-1, in 

FTIR spectra of N-carboxyethyl derivatives, the emergence of higher frequency, non-amide 

carbonyl stretching bands in freeze-concentrated chitosan samples supported the formation of 

Michael adducts. The possibility of wrongly assigning carbonyl bands due to the inadvertent 

presence of trace salts formed between amino group and olefinic acid was readily discounted in 

view of the numerous dialyses performed, the ease of diffusion of acid groups away from the 

heavily hydrated samples, the presence of excess sodium chloride in the dialysis medium to 

prompt ion exchange, and the propensity of weak salt-acid systems to dissociate and volatilize 

during subsequent lyophilization. In any case, bands consistent with primary amino-olefinic 

carboxylate salts would be expected to the right of 1640 cm-1, which was not the case herein. 

Following IR analysis, 13C-NMR was used to definitively confirm the formation of Michael type 

adducts during freeze concentration. In spite of its diagnostic strengths, 13C-NMR appears to have 

escaped any attention in analyzing chitosan. While low sensitivity may have discouraged 

previous attempts, this study clearly affirmed the utility of 13C-NMR, and implied its continued 

use on chitosan-based systems. 

An increased amorphous content after the freeze-concentration treatment of chitosan with acrylic 

acid confirmed a lost propensity to crystallize. In keeping with this argument, groups mediating 

intermolecular packing of chitosan in solution appeared to have undergone stereoelectronic 

changes, which disrupted the ability of individual chitosan chains to regularly re-pack. Such a 

scenario could have reflected the formation of Michael type 1,4-adducts, as lost primary amino 

groups and newly introduced carboxyethyl moieties along the backbone would heterogenize 

individual chitosan molecules, reduce H-bonding possibilities, loosen the packing structure, and 

thereby prompt a loss of overall crystallinity. The possibility of having undergone chemical 

change was further supported given the established reactivity between primary amines and 

α,β-unsaturated carbonyl groups, and the fact that a control experiment substituting acrylic by the 

near-isosteric propionic acid had not altered the post-treatment crystallinity of chitosan. 
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In summary, various self-consistent physical and chemical analyses discussed above indicated 

that the Michael type addition products between chitosan and unsaturated acids were kinetically 

permitted under freeze concentrated conditions. This argument was further supported in view of 

the established ability of amino groups to add across a,b-unsaturated carbonyl groups, and the 

notion that high concentrations and reduced entropy per unit time can off-set the cold temperature 

effect. In light of the great importance of biomaterials, it is hoped that this initial study will attest 

to the merit and potential of derivatizing protein and other intrinsically labile biological 

substances under freeze-concentrated conditions, particularly materials, which are deemed 

thermally unstable. 

The visual inspections of solubility also showed remarkable changes following freeze 

concentration treatment (Figure 12). As solubility and speed of dissolution varies according to the 

chitin source and degree of N-deacetylation, all solubility tests were performed using chitosan 

from the same stock. Amongst the noteworthy findings, native chitosan (10 mg/mL) dissolved 

only within the pH range of 1.0-5.0 whereas freeze-concentration treated chitosan dissolved 

throughout the pH range of 1.0-10.0. Solubility differences visually highlights changes in 

reconstitutability of lyophilized chitosan samples. Each sample was previously treated under 

freeze concentration conditions with either acrylic or propionic acids, and worked-up following 

incubation. Chitosan treated with acrylic acid formed clear solutions at pH 7 and 10, whereas 

chitosan treated with propionic acid remained in suspension. In passing, the same images were 

obtained following a year’s incubation at room temperature under non-aseptic conditions, 

attesting to the long-term stability of chitosan and its derivatives.  

The analyses were noteworthy in view that all spectroscopic and colorimetric changes had 

supported one another and the theme of chemical transformation under freeze concentrated 

conditions. Physical analyses such as XRD, and dissolution tests provided vivid evidence that the 

network structure of chitosan had been substantially altered. Tests identifying aspects of chemical 

change, such as ninhydrin yields, NMR, and FTIR, highlighted evidence that samples differed in 

composition following incubation with olefinic acids under freeze concentrated conditions. 
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Figure 12 Dissolution traits of chitosan (100mg) incubated with aqueous acrylic or propionic 

acid (10%) under FC conditions (-5°C, 16h) followed by dialysis and lyophilization. 
Reconstitution conditions (right to left): Acrylic acid-treated, pH 7; propionic acid-treated, pH 7; 

acrylic acid-treated, pH 10; and propionic acid treated, pH 10. 
 

Also worthy of emphasis is that control solutions, identically prepared but left to incubate at room 

temperature for the same period, showed no changes of amino group content. A last control, 

namely, aqueous chitosan frozen together with unreactive propionic acid in place of acrylic acid, 

also showed no change of amino group content compared to untreated native chitosan. 

2.5 Conclusions 

This study aimed to improve the dissolution traits and working pH range of chitosan by using a 

unique reaction technique. So far, several synthetic routes have been developed to obtain 

chemically modified soluble chitosan derivatives, with varied results. A seldom-used and 

radically different chemical approach was adopted herein to modify the stereoelectronic attributes 

of accessible amino groups, thereby disrupting the regular network structure of chitosan. Various 
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analyses suggested that chitosan modification took place under freeze concentrated conditions. 

Overall, the facilitated dissolution and broadened pH solubility range of derivatized chitosan was 

consistent with a decrease of chitosan-chitosan interactions, and associated kinetic barriers to 

dissolution. From a physicochemical viewpoint, the reduction of crystallinity was attributed to 

stereoelectronic changes following the replacement of approximately two thirds of all primary 

amines by secondary amines. While not directly observed, heterogeneities amongst individual 

chitosan molecules necessarily existed following derivatization. Such heterogeneity also would 

have discouraged chitosan-chitosan re-association as well as high kinetic barriers to dissolution. 

On the other hand, this work is novel in the sense that Michael adducts of chitosan and ester or 

amides must be processed further to re-generate the free carboxylic acid. In our work, we 

obtained the acid directly under mild conditions different than esters and, to our knowledge; this 

is the first attempt to have the acid directly under free conditions. 

This study is also unique in that it employs the concept of freeze concentration in order to 

chemically transform macromolecules and tailor their traits. In that sense, the method herein 

showed substantial potential, affording chitosan derivatives with a finer structure and more 

regular morphology compared to conventional reactions carried out at higher temperatures.  A 

logical extension of the freeze concentration method could be to facilitate the chemical 

functionalization and tailoring of biomolecules, which are intrinsically prone to thermal 

degradation, particularly in aqueous media. 
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CHAPTER 3  Molecularly Imprinted Chitosan-Graphene Based Nanosensor for Aqueous 

Phase Detection of Nitroaromatics 

 

3.1 Introduction 

Chemical sensors have found considerable applications in fast detection of explosives for mining, 

environmental, forensic and criminal research and in improvement of explosives production [59, 

60]. There are several approaches to detection of nitroaromatic compounds from low precision 

indirect determination of metal covered explosives to high sensitive spectroscopic determination 

of trace amounts. Low precision methods are useful to detect traditional landmines and arms, but 

are inadequate in further applications such as airport scanning and flight safety. On the other 

hand, high sensitive methods require sophisticated instrumentation including gas 

chromatography-mass spectroscopy [61], Raman spectroscopy [62], energy dispersive X-Ray 

diffraction [63] and cyclic voltammetry [64], therefore incompatible with field applications. 

Along with its sensitivity in pico- to nanogram levels, ion mobility spectroscopy is a frequently 

used technique in airport safety with high cost, requiring frequent calibration and may give false 

positives liable to operator [65].  

Considering the ecological effects along with determination and location nitroaromatics [65, 66], 

analyte interferences during sampling from water and soil poses a problem for detection systems. 

As a result, determination of trace amounts of chemicals in soil samples is limited to their volatile 

components and/or side products of material [67]. Polymeric absorbers are employed to help 

increase the signal strength since the vapor pressures of explosives are relatively low. In these 

systems, volatile component is condensed on detection system and physically/chemically 

adsorbed on the polymeric material’s pores. Therefore, vapor pressure of volatile component is 

the dominant factor in determining response time of the sensor, while detection limit requires 

volatile component amount enough to be detected by the system. Along with United States 

Environmental Protection agency (USEPA) criteria for environmental health and safety [68], 

taking difficult sampling conditions, and necessity of bulk amount of analyte of vapor pressure-

based methods into consideration, it is of utmost importance to develop high-sensitivity methods 
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to detect trace amount of nitroaromatics. Although the toxicity tests resulted in low toxicity 

values for nitroaromatic compound of nitrotriazolone (NTO), the lowest observed adverse effect 

level values of 2,4,6-trinitrotoluene (TNT) and NTO are 0.5 mg/kg/day and 30mg/kg/day, 

respectively [69]. Along with USEPA criteria for explosives [70], taking environmental factors 

into consideration, efficient methods are required to detect these type of chemicals.  

Nano-scale systems provide numerous alternatives to develop detection systems with the limits 

mentioned above. Here, the prefix “nano-“ defines systems with high sensitivities that they are 

able to do detection below the limits of macro-sized materials. Therefore nanosensors enhance 

the observability of chemical and physical properties. In addition, well-developed fabrication 

techniques enable smaller fabrication sizes and an improvement in signal-transforming 

performances was observed as the fabrication size becomes smaller [71]. There are various 

nano-sized detection elements/platforms available in the literature including quantum dots [72], 

nano-wires [73], and nanotubes [74].  

Utilization of graphene in nanosensor systems in nitroaromatics detection was first reported in 

2010 [75]. As a 2D carbon material, graphene has superior electrical properties [76] arising from 

effective π-π interactions and homogenous distribution of electrochemically active sites [77, 78]. 

In addition to this, extraordinary electronic band structure enables graphene to behave as a 

zero-band gap semi-conductor [79] and the considerable surface area allows adsorbent materials 

to significantly change its electrical properties by altering carrier density. The high sensitivity of 

graphene also arises from low electrical signal noise due to its 2D crystal network structure [80]. 

All those findings indicate graphene to be available to respond electrically, even in very low 

concentrations of analyte and therefore suitable for nanosensor applications. 

Detection of nitroaromatics using graphene was first carried out by coating graphene on a glassy 

electrode [81], and followed by many others [77, 81, 82]. Majority of the studies employing 

graphene as transistor were based on electrochemical measurements. Although fabrication and 

measurement technique is relatively simple, selectivity is rather limited in electrochemical 

systems [71]. 
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Several polymeric systems were employed in detection of nitroaromatics using physical, 

structural and electronic interactions between analyte and polymeric material [83, 84]. Primary 

concern in developing new sensors is to collect adequate amount of recognition/binding element 

in the sensor probe. In this aspect, molecularly imprinted polymers possess various advantages 

such as varying selectivity and low cost.  General approach in sensor design is to utilize sensor 

probes with high specifity against analyte. Yet, in ecological samples, analyte is notably in very 

low concentrations and mostly surrounded by a matrix composes of similar molecules. Therefore, 

even systems employing high selectivity enzymes as sensor probes are prone to cross-reactivity 

and false positives [85]. As a solution to this, molecularly imprinted polymers offer specific and 

selective cavities of analyte within the polymer surface stabilized by inter-molecular crosslinking 

thus ensure several physical or chemical interactions with analyte [86-88]. In addition, 

molecularly imprinted polymers are also superior to traditional polymers in terms of high 

thermal, chemical and mechanical stability [89], therefore it is considerably reasonable to employ 

molecularly imprinted polymers as sensor probes. As a natural poly amino saccharide with 

available amino and hydroxyl functional groups chitosan is convenient to crosslinking, hence 

molecular imprinting. In addition, crosslinked chitosan act as supporting matrix due its superior 

film forming ability [90] and increased mechanical properties arising from crosslinking [91]. Vast 

amount of available amino and hydroxyl groups also provide strong secondary interactions with 

nitroaromatics and thus ensure adsorption. These advantages of chitosan make it a promising 

candidate for nanosensor applications for nitroaromatics [92] with no further need of additional 

film component.  

An approach to increase the selectivity in nanosensors is to use hybrid systems and thus to obtain 

orthogonal or enhanced signal by gathering different sensing mechanisms [91]. Hybrid systems 

comprising graphene are usually composed of a graphene layer and a polymer. Recently, several 

examples of such systems used for explosive detection are found in literature [93-95] but they 

mostly target TNT and use sophisticated instrumentation for signal transduction. 

Molecular imprinting creates binding sites in polymeric film surface that is specific to template 

molecules. In a standard molecular imprinting process, template molecules are introduced to 

polymer during crosslinking. In the meantime, crosslinked polymer assembles around template 
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molecule to create specific binding sites.  These binding sites interact with the analyte both 

through lock-key mechanism and via secondary interactions. This way, highly selective 

polymeric films/matrices are obtained. When exposed to the analyte, polymeric film reversibly 

adsorbs analyte molecules. This adsorption results in increasing the charge of the polymeric film, 

thus altering the resistance of bottom layer (graphene). The sensing mechanism via molecular 

imprinting is explained in Figure 13. 

The purpose of this study is to develop a hybrid nanosensor to detect NTO by adsorbing 

nitroaromatic compound on molecularly imprinted chitosan film and to determine the amount of 

adsorbed species via the change in resistivity of monolayer graphene sheet. To do this, monolayer 

graphene was transferred onto SiO2 substrate, and coated with molecularly imprinted polymer 

film. Metallic electrodes were embedded into substrate by lithography prior to graphene transfer. 

Here, NTO was chosen as the target molecule since it is a new generation insensitive explosive, 

thus a possible replacement for TNT. Selectivity and sensitivity of the fabricated nanosensor was 

tested against analyte and a chemical compound that is similar to NTO in molecular structure 

(histidine). Real sample measurements were also carried out to test the effect of other possible 

interfering chemicals present in water and soil samples. Although it has been widely used in 

nitroaromatics detection as film substrate, molecularly imprinted chitosan was used as a direct 

sensor probe for the first time without needing any further component to increase the signal 

strength or to ensure interaction.  In addition, a unique micro fabrication technique was applied 

where the electrodes to measure the change in sheet resistance of graphene due to molecularly 

imprinted polymer-analyte attractions were embedded in sensor substrate. To our knowledge this 

is the first time where such a technique has been used, unlike other methods where electrodes 

were usually fabricated on graphene for transfer length measurements (TLM). By this process, 

contamination of graphene or other interfering species during fabrication and measurements were 

eliminated. 
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Figure 13 Schematic representation of molecular imprinting and recognition mechanism 
employed in nanosensor. 

 

3.2 Materials & Methods 

3.2.1 Preparation of Molecularly Imprinted Chitosan Films    

Molecular imprinting was carried out to ensure non-covalent interactions between polymeric film 

and NTO molecules. For this purpose, acetic acid solution (1%) of chitosan (CS) and NTO was 

introduced with glutaraldehyde (GA) and stirred for 5 minutes. The mixture was then spin-coated 

onto a CVD graphene substrate. As a negative control, non-imprinted films were prepared in the 

absence of NTO. Amount of NTO and glutaraldehyde added were explained in Table 3. Resulting 

films were characterized by ATR-FTIR spectroscopy. Swelling kinetics of the films was studied 

in detail along with its effect on NTO adsorption capacity.  

3.2.2 ATR-FTIR Spectroscopy 

ATR-FTIR spectra of crosslinked films were collected on a Bruker Equinox 55 ATR-FTIR 

spectrometer from 550 to 4000 cm-1, with a resolution of 0.5 cm-1. A total of 32 scans were 

gathered and baseline-corrected. 

3.2.3 UV-Vis Spectroscopy 

Capacities of NTO adsorption of molecularly imprinted films were measured in terms of the 

decrease in visible light absorption of NTO solutions exposed to molecularly imprinted chitosan 

films, compared to that of non-imprinted films. Spectra were collected using Schimadzu UV3600 
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Plus Ultraviolet, visible and near-IR spectrometer. Selectivity studies, along with desorption 

kinetics were carried out using UV-Visible spectroscopy. 

Table 3 Summary of samples, crosslinker agent and amounts of NTO used in imprinting 
 

Code NTO/CS ratio (m/m) CS/GA ratio (m/V) 

CSNIP1 - 0.02 

CSNIP2 - 0.04 

CSNIP3 - 0.08 

CSNIP4 - 0.16 

CSNTO-N1 0.20 0.02 

CSNTO-N2 0.40 0.02 

CSNTO-N3 0.60 0.02 

CSNTO-N4 0.80 0.02 

CSNTO1 0.40 0.02 

CSNTO2 0.40 0.04 

CSNTO3 0.40 0.08 

CSNTO4 0.40 0.16 

 

3.2.4 Fabrication of Metallic Contact Lines 

Micro fabrication of nanosensor starts with development of metallic contact lines. For this 

purpose we developed two strategies, one of them involves a hard mask of TLM lines, and the 

other involves photolithography with soft mask. In the first method, an aluminum mask with 

TLM lines prepared beforehand was placed on Si/SiO2 substrate and substrate was etched. Gold 

electrodes were then placed into the etched holes by gold evaporation. In the second method, 

substrate is first spin-coated with a photoresist material. Following to coating, a soft mask 

carrying the inverse of TLM images was aligned on substrate (negative resist). The substrate was 

then exposed to UV radiation to develop negative image of the mask on substrate. Here, UV 

radiation causes negative resist to polymerize and more difficult to dissolve. This way, negative 
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resist remains on the substrate and a developer solution cleans the coating on unexposed regions 

(TLM pattern). Once the TLM pattern was prepared, electrodes were placed on substrate by gold 

evaporation.  

Since graphene monolayers are sensitive to minute mechanical strain, it is absolutely necessary to 

make the substrate surface as flat as possible after patterning the metallic contact lines. A simple 

micro-fabrication process where metallic structures can be embedded inside a substrate is adapted 

for the currently used thermally oxidized silicon substrate (1 micron oxide layer). A mask (Figure 

14 (e)) with TLM contact line patterns was aligned on the sample wafer and was etched with 

silicon hexafluoride based DRIE recipe, depicted in Table 4. 

In the next step, e-beam evaporator (NanoVak NVTE4-01 Thermal Evaporator) was used to 

deposit a Cr adhesion layer of 20 nm thicknesses, followed by the deposition of a 100 nm thick 

thermally evaporated Au electrode, without removing the mask. This resulted in a perfectly flat 

substrate with embedded metallic TLM lines. In order to see the effect of employing 

photolithography on flatness, soft mask prepared for photolithography was replaced with a hard 

mask.  Figure 14 (a, b, c, d) depicts the fabrication steps, while Figure 14 (e,-g) shows the top and 

cross-sectional views of the sample after the deposition of graphene and polymer films. An actual 

image of the nanosensor is presented in Figure 14 (h). 

Table 4 DRIE Recipe for Silicon nitride etchings (Oxford Plasma Lab) 
 

SF6 flow rate 45 sccm 

Pressure 7.5×10-9 Torr 

DC forward power 50 Watts 

ICP forward power 2000 Watts 

Table temperature 10 °C 

Silicon Di Oxide etch rate ~2.2 nm/sec 
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Figure 14 Schematic representation of fabrication steps and details of fabricated nanosensor; 
Si/SiO2 substrate (a); etched and Cr/Au deposited substrate (b); monolayer graphene transfer and 
molecularly imprinted polymer spin-coating (c); layer-wise sensor view (d); top-view with TLM 

pattern length details (e), side-view (f), and details of side view (g); fabricated nanosensor (h). All 
dimensions in (e) are in mm. 

 

3.2.5 Monolayer Graphene Transfer onto Si/SiO2 Substrate 

We transferred single layer graphene from copper substrate to Si/SiO2 substrate prepared both by 

hard mask and photolithography. For this purpose, we first prepared graphene samples in desired 

shape and dimensions and then spin coat them using PMMA (5000 rpm, 50s) and dried (60°C, 

2min; 180°C, 5min). The reason behind PMMA coating was to prevent any breakage of graphene 

since graphene is a very delicate material. Spin coating was carried out twice since our PMMA 

was very thin. Once the coating was done, we etched the backsides of graphene samples using 

plasma asher (CTorr, O2 etching, P=100kW, 10 s). We then put the samples in ammonium 

persulfate solution (0.7%, overnight; or 7% 1 h) to etch the Cu substrate. Once the Copper is 

completely oxidized and the APS solution turned to blue, we removed the graphene layers into 

d-Water and washed overnight. We then collected graphenes on glass substrate and dried on hot  
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Figure 15 Graphene transfer process 
 

plate (60 °C, 45min; 180 °C, 1h). To Finally, to remove PMMA, we put the graphene-coated 

substrate in acetone overnight and washed the samples with IPA and distilled water. Monolayer 

graphene was characterized by Raman Spectroscopy. Figure 15 demonstrates graphene transfer 

process onto Si/SiO2 substrate. 

3.2.6 Scanning Electron Microscopy 

The surface of the substrate with metallic contact lines and graphene was investigated by 

Scanning Electron Microscopy.  For this purpose, samples were sputter coated with a thin layer of 

Pt/Pd. Images were acquired by SEI detector, using an electron gun voltage of 2 kV. 

3.2.7 Raman Spectroscopy 

Raman spectra of graphene samples transferred onto glass substrate were obtained at 532 nm 

visible excitation using Renishaw InVia Reflex Raman Spectrometer attached to a microscope. 

Single'Layer'
Graphene'on'
Cu'substrate'

PMMA'
Spin'coated'

Copper'
etched'

Graphene'
transferred'
on'glass'

PMMA'
etched'
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3.2.8 Electrical Measurements 

The change in resistance of monolayer graphene due to NTO adsorption onto molecularly 

imprinted chitosan was measured by two-probe setup (Cascade MicroTech PM5 Probe Station). 

Sheet resistance of graphene was calculated by linear fit of Equation 1. Details of sheet resistance 

calculations by TLM are found in Appendix A. 

 

Equation 1 
𝑹𝑻𝒐𝒕𝒂𝒍 = (𝑹𝒔𝒉𝒆𝒆𝒕 𝑾𝒄𝒉𝒂𝒏𝒏𝒆𝒍)𝒅+ 𝟐𝑹𝒄𝒐𝒏𝒕𝒂𝒄𝒕  

 

3.3 Results and Discussion 

3.3.1 Chemical Characterization of Molecularly Imprinted Films 

Figure 16-a shows the attenuated total reflectance (ATR)-FTIR spectrum of native CS. The band 

at 1149.94 cm−1 and overlapped bands round 1022 cm−1 are attributed to asymmetric C-O 

vibrations resulting from deacetylation and C-OH and C-O-C vibrations of the β-(1-4)-linked 

D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) rings, 

respectively. In addition, the absorption bands at 1314.56 cm-1 are attributed to C-H bending 

of -CH2 groups, while the one at 1373.56 corresponds to C-O stretching mode of -CH2-OH 

groups. The peaks within the range of 1589.79-1651.34 cm-1 correspond to the bending mode of 

primary amino groups and carbonyl stretching, respectively. The broad absorbance band in the 

region of 2862.72 cm-1 corresponds to symmetric and asymmetric stretching of the aliphatic -CH2 

and -CH3 groups. The wide peak centered at 3287.05 cm-1 originated from -OH groups along with 

H-bonding. 

Crosslinked CS samples showed similar FTIR bands to CS, with slight shifts, within the range of 

800-1200 cm-1 that corresponds to main saccharide ring. Different than native CS, crosslinked 

non-imprinted (Figure 16-b) and NTO-imprinted (Figure 16-c) CS spectra showed some 

additional vibrations.  For instance, the newly formed bands around 1550 cm-1 in crosslinked 

species revealed the existence of quaternary amino groups.[96] Moreover, the sharp band around 

1636 cm-1 of C=N vibrations proved the formation of Schiff’s base upon crosslinking. 
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Figure 16 FTIR spectra of native (a), crosslinked, non-imprinted (b) and NTO imprinted chitosan 
(c). 

 

3.3.2 Adsorption Studies 

To track the adsorption capacities of non-imprinted and imprinted chitosan samples, we first 

introduce the gels into a 10 mg/mL NTO solution and allow NTO’s to be adsorbed onto gel 

surfaces overnight. Then we carried out UV-Vis spectroscopy in order to detect the decrease in 

the amount of NTO in the solution and compared them to the original 10mg/mL NTO solution. 

Both non-imprinted and NTO imprinted chitosans adsorbed NTO, but imprinted one is slightly 

better in adsorption. Figure 17 demonstrates the Uv-Vis spectra of NTO adsorbed CSNTO, 

CSNIP and standard NTO solution (10 mg/mL, 320x diluted). 
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Figure 17 Uv-Vis spectra of NTO adsorbed CSNTO, CSNIP and standard NTO solution. 
  

3.3.3 pH & Swelling Kinetics 

To optimize NTO adsorption in CS films, pH and swelling kinetics studies were carried out. 

Swelling kinetics was investigated by subjecting imprinted and non-imprinted CS gels with 

different GA amounts to 2% acetic acid solutions. Swelling degree was calculated from the 

weight ratio between dry and swelled gels. Figure 18-a suggested that a non-usual swelling trend 

was observed in CSNIP gels due to the presence of free amino- functional groups. On the other 

hand, an inverse proportion between crosslinker amount and swelling was observed in CSNTO 

gels implying that the network gets more rigid with increased crosslinker amount. Considering 

high crosslinking with a low swelling degree of CSNTO films as the selection criteria, the 

optimum range of crosslinker amount was determined as 8-12%.  

Furthermore, it was also observed that films prepared with 12% crosslinker were brittle and easily 

broken during measurements. Therefore, 8% was chosen as optimum crosslinker concentration. 

Once the crosslinker amount was optimized, the effect of pH on swelling (Figure 18-b and NTO 

adsorption capacities of films (Figure 18-c) were tested by exposing gels to 0.1 mg/mL NTO 
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solutions prepared in different pH buffers. Immersed films were then compared to original 

solutions in terms of UV-Vis absorption. As seen in Figure 18-b, lowest degree of swelling was 

observed at pH 6.7 and 12.0 for both gels. Although NTO adsorption capacity of CSNTO was 

significantly higher between pH 3.7-4.7, a very significant swelling, up to 7x was observed in 

NTO imprinted CS around these pH values (Figure 18-c). Therefore, this region was omitted. In 

addition, Figure 18-c also suggested that NTO adsorption of CSNTO was significantly higher 

than that of CSNIP at pH 6.7. Considering lower swelling and higher NTO adsorption, an 

optimum pH value of 6.7 was selected and further measurements were carried out at this pH 

value. 

3.3.4 Effect of NTO Amount on Molecular Imprinting 

Effect of NTO amount on imprinting was investigated by Uv-Vis spectroscopy. For this purpose, 

Chitosan-NTO solutions were prepared in different NTO amounts (Table 5). Chitosans were 

crosslinked by glutaraldehyde (1%) and left to gelate. After washing, gels were exposed to NTO 

solutions (1 mg/mL) and UV-Vis spectra were recorded and compared to reference NTO 

solution.  

Table 5 Sample names, amount of imprinted NTO (g) and CS solution (12mg/mL) used in NTO 
optimization. 

 

Sample Name Imprinted NTO amount (g) Amount CS (mL) 

CSNTON1 0.05 50 

CSNTON2 0.10 50 

CSNTON3 0.30 50 

CSNTON4 0.60 50 

CSNTON5 0.90 50 

 

Uv-Vis spectroscopy revealed that NTO adsorption was minimum around 12-18 mg/mL NTO 

concentrations (Figure 18 (d), while it enhances significantly with the reduction in NTO in gel 

preparation medium. In addition, it was observed that high concentrations of NTO increase the  
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Figure 18 Effect of pH on swelling (a) and on NTO adsorption (b) with respect to crosslinker 
amount; effect of crosslinker amount on swelling (c); and amount of imprinted NTO on NTO 

adsorption of molecularly imprinted films (d). Non-imprinted films are shown in blue and 
imprinted films are shown in red. 

 

crosslinking time (crosslinking resulted in viscous liquids rather than a rigid gel). We presume 

that high amounts of NTO aggregate and block the crosslinking regions of polymer chains. 

Taking these parameters into consideration, optimum amount of NTO in imprinting was 

determined as 1-2%. 
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3.3.5 Elution Studies 

One of the important aspects with molecularly imprinted films is that the interaction with the 

analyte should be reversible. To test the reversibility of NTO adsorption on molecularly  

 

Figure 19 Uv-Vis spectroscopy results of washed CS films with and without heating, and 
standard NTO solution. 

 

imprinted CSNTO films, elution studies were carried out. For this purpose, molecularly imprinted 

CSNTO films were immersed into NTO solutions (10 mg/mL) and washed back. NTO molecules 

eluted by CSNTO films were tracked by Uv-Vis spectroscopy of the washings. Figure 19 shows 

the Uv-Vis results of the immersed CSNTO films following washing.  

Uv-Vis spectra of NTO solution against dialysis washings of CSNTO film suggested that NTO 

solution demonstrated a sharp peak in the near UV region, which was also found in dialysis 

washings before heating. Dialysis sample before heating showed an absorption that has same 

𝜆!"# with NTO, indicating that NTO’s were washed off during dialysis. On the other hand, 

heating caused to a blue shift in the 𝜆!"# of the dialysis sample, which might have aroused from 

chitosan removal from the surface during heated dialysis, since chitosan had a wide absorption 

peak at farther UV region. Therefore, heating was omitted from elution process. 
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3.3.6 Durability 

Another important aspect of the prepared CS films is the durability and integrity of the film. This 

is particularly important since all the analyte measurements are carried out in aqueous solutions 

of NTO. Therefore, prepared CS films should be durable in solution. In that case, integrity of the 

film is related with hydrophobicity since disintegration of films from substrate surface is only 

possible if the films are hydrophilic. To examine the hydrophillicity of molecularly imprinted CS 

films, contact angle measurements were carried out. Figure 20 demonstrates contact angle 

measurements of non-imprinted and NTO imprinted CS films. 

Contact angle measurements showed that hydrophillicity of CS films decreased upon NTO 

imprinting. This might have aroused from the decrease in solvent accessible area since NTO 

molecules occupy the binding pockets created within the CS film surface.  

 

Figure 20 Contact angle measurements of non-imprinted and NTO imprinted CS films. 
 

3.3.7 Micro Fabrication 

Figure 21 shows microscopic images of leveled (flat) (a) and unlevelled (b) gold electrodes 

before graphene transfer; SEM images of unlevelled (c) and leveled (d) after graphene transfer. It 

was observed from optical microscopy and SEM images that after graphene transfer (Figure 

21 a-b) leveling by photolithography, instead of using hard mask is a crucial step in micro 

fabrication.  SEM images of graphene on an unlevelled gold-Si/SiO2 (Figure 21-c) substrate 

revealed that graphene was scratched when transferred on unlevelled substrate. Therefore, height 

NTO$imp$CS$*ilm!
Theta=$77.02!

NIP$CS$film!
Theta=$65.02!
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profiles should be carefully investigated following each gold deposition. On the other hand, 

Figure 21-e-f demonstrates optical microscopic images of sensor following photolithography. 

Comparing the optical microscopic images of sensors fabricated with a hard mask (a) and a soft 

mask (b) with same TLM patterns, it was observed that the edge groove and unevenness is 

considerably cured when a soft mask was employed. 
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Figure 21 Optical microscopic images of graphene on unlevelled (a) and levelled (b) gold 
electrodes; SEM images of graphene on unlevelled (c) and levelled (d) gold electrodes.  Optical 
microscopy images of levelled gold electrodes (yellow) on SiO2 substrate (brown) fabricated by 

photolithography without (e) and with (f) graphene. 

3.3.8 Monolayer Graphene Characterization 

Raman Spectroscopy was employed to confirm monolayer graphene. For graphene samples, two 

characteristic Raman peaks were observed due to a Stokes phonon energy arising from laser 

excitation. The first one, G band observed at 1593 cm-1, corresponds to primary in-plane 

a" b"

c" d"

e" f"
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vibrations, whereas the second one, 2D band observed at 2689 cm-1, accounts for a second order 

two-phonon process exhibited by all sp2 carbon materials. 2D is the highest intensity peak in a 

single layer graphene spectrum and along with G band; it can be used to determine the number of 

layers of a graphene sample. In multi-layer graphene 2D peak is split into four and reduces in 

intensity. As seen in Figure 22, our sample showed 2D>G behavior in band intensity from 

different regions, therefore monolayer graphene was confirmed. 

 

Figure 22 Raman Spectrum of monolayer graphene (a), and microscopy image of the area Raman 
data was gathered (b). 

 

3.3.9 TLM Measurements and Sensitivity Studies 

Prior to polymer coating, sheet resistance of graphene on SiO2 was measured by TLM and 

determined as 418,2 ohm/sq which correlated well with the literature data.[97] With 160 nm 

polymer coating, this value was increased to 832,0 ohm/sq due to the introduction of low-

conducting layer (0.25 ± 0.09 S/m) [98] when compared to monolayer graphene (2.62 × 102 

S/m).[99] 

A series of TLM measurements were carried out to determine the sensitivity of fabricated 

nanosensor by exposing sensors to NTO solutions in different concentrations. Subjecting to 
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increasing current, I-V measurements were carried out and sheet resistances were calculated by 

the slope of resistance curves at increased contact pair distances. Details of sheet resistance 

calculations were explained in Appendix A. Sensor fabricated using NTO imprinted CS was 

treated with NTO solutions and TLM measurements were carried out following air-drying. TLM 

measurements were carried out in concentration and current range of 0.01-0.1 mg/mL and 

0.01-0.1 mA, respectively. This way, a standard curve was obtained for each NTO concentration 

value. Sheet resistances were obtained from slopes of standard curves and plotted against 

corresponding NTO concentration. Results show that sensor fabricated using NTO imprinted CS 

gave linear response to increased NTO concentration in the range of 0.01-0.1 mg/mL. Therefore, 

measurement limits were determined as 0.01 and 0.1 mg/mL. Therefore, measurement limits 

were determined as 0.01 and 0.1 mg/mL. This detection limit is acceptable considering that the 

sensor probe is composed of a polymeric thin film. Table 6 summarizes high performance 

nitroaromatic sensors found in the literature, their type of measurement, detection limits and 

response times. Comparing literature examples to our sensor45-57, one can conclude that there 

are sensor studies available in the literature with better response times and low detection limits, 

nevertheless most of these methods rely on vapor-phase detection of nitroaromatics. This type of 

detection can be challenging due to the low vapor pressure of these nitroaromatics. In addition, 

most of the measurements require sophisticated instrumentation. In our case, fabricated 

nanosensor is advantageous in terms of ease of measurement (a simple I-V test) with wide linear 

range. 
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Table 6 Comparison of sensing performances of selected nitroaromatics sensors found in 
literature. 

 

Sensing Material 
Measurement 

Type 

Detection 

Limit 

Response 

Time (min) 
References 

Molecularly imprinted 

polymer thin film-graphene 
Electrical 10-100 ppm <5 This work 

Electrochemical gas sensor 
Electrochemical 

VP* 
50-500 ppm 10-20 [100] 

Siloxane SAW**-VP 235 ppt 0.84 [101] 

Carbowax-silica SAW-VP 300 ppb 1 [102] 

Molecularly imprinted 

cyclodextrin 
SAW-VP 600 ppb 5 [103] 

Dye embedded copolymer Colorimetric 0.2 ng N/A [104] 

Polyacetylene thin film 
Fluorescence 

quenching 
ppb level <20 [105] 

SiO2 modified electrode 
Cathodic 

voltammetry 
1.8 nM N/A [106] 

Fluorescent paper UV 0.5 ppm 0.5 [107] 

Pervoskite-reduced graphene 

oxide 

GCE***-cyclic 

voltammetry 
0.3-0.8 µM N/A [108] 

PVA membrane Fluorescent-optical 5.0×10−6 M 1 [109] 

Graphene film 
GCE-differential 

pulse voltammetry 
1-200 ppb 1 [75] 

Reduced graphene oxide 
GCE-stripping 

voltammetry 
5.49×10−7 M N/A [110] 

Polystyrene-gelatin double 

film 

Fluorescence 

quenching-VP 
N/A 20 [111] 

* Vapor pressure, ** Surface acoustic resonance, *** Glassy carbon electrode 
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Figure 23 Selectivity comparison of non-imprinted (CSNIP) sensor to imprinted (CSNTO) 
against NTO and histidine (blue scale is also valid for histidine values). 

 

3.3.10 Selectivity Studies 

Selectivity studies were carried out by comparing the TLM results obtained from NTO imprinted 

and non-imprinted sensors. It was found out that non-imprinted sensor was insensitive to any 

change in NTO concentration. It was also observed that sheet resistance values obtained from 

non-imprinted polymer were relatively higher compared to the imprinted ones. This may be due 

to the fact that non-imprinted polymer non-selectively adsorbs different species present in the 

solution. Comparison of sheet resistance results obtained from NTO-imprinted and non-imprinted 

sensor are shown in Figure 23. 

Selectivity studies also include the response of molecularly imprinted sensor to another chemical 

compound that is similar to NTO in molecular shape. To evaluate this, CSNIP and CSNTO 

sensors were exposed to 0.1 mg/mL histidine solutions and TLM sheet resistance values were re-

calculated. It was observed that CSNTO sensor resulted in significantly higher sheet resistance 

values when treated with histidine, whereas non-imprinted sensor gave a sheet resistance value 

that was in the same order with the ones exposed to NTO. In other words, CSNIP failed to 
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distinguish analyte from other chemicals, and did not to respond selectively against different 

concentrations of NTO. On the other hand, CSNTO sensor is selective against NTO analyte, and 

does not respond to other species, even when a structurally similar chemical is introduced. Sheet 

resistance values obtained from NTO and histidine treatment of same concentrations are also 

shown in Figure 23. 

3.3.11 Response Time & Noise Measurements 

Noise and response time measurements were carried out by immersing CSNTO sensor into 

0.1 mg/mL NTO solution. Sheet resistance was recorded with respect to time. Results revealed 

that the response time of CSNTO sensor was less than 5 minutes (Figure 24-a). In addition, it was 

observed that the data converged to a sheet resistance value of 574,2 ohm sq-1, which correlated 

well with previous sheet resistance value for 0.1 mg/mL NTO (shown in Figure 23). This also 

implies that CSNTO sensor read reproducible sheet resistance values for same concentrations of 

analyte. In addition, noise level of the sensor determined as ±0.5 mV (Figure 24-b).  

 

Figure 24 Response time measurements of CSNTO sensor for 0.1 mg/mL NTO solution (a) and 
noise measurement during a (b). 

 

a" b" b"a"
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3.4 Conclusions 

We have successfully fabricated molecularly imprinted chitosan-graphene nanosensor and 

linearly detected explosive NTO molecules in the range of 0.01-01 mg/mL analyte 

concentrations. Fabrication started with embedding electrodes into a non-conducting substrate, 

which is, to our knowledge, a unique technique in TLM pattern formation, followed by graphene 

transfer and polymeric film coating. It was noted that leveling of metallic electrodes with 

substrate, in other words, creating a flat surface after electrode embedding is a crucial step in 

sensor fabrication, since graphene was prone to breakage when transferred on unlevelled 

substrates. Following graphene transfer, monolayer graphene was verified by Raman 

spectroscopy and it was observed that graphene was successfully transferred and was continuous 

without any breakage. The performance of molecularly imprinted polymeric film was 

investigated and the amounts of NTO and crosslinker required for imprinting were determined 

along with optimum pH range and swelling. TLM measurements were carried out successfully, 

and was observed that imprinted film responded linearly to increased NTO concentration in the 

targeted range, which covers the lowest observed adverse effect, level value of NTO determined 

by USEPA. Therefore, toxic levels of NTO are within the detectible limits of the developed 

sensor. In addition, employing molecularly imprinted polymeric films as sensor probe is 

advantageous in detecting analytes in a linear fashion since non-imprinted polymer failed to give 

a linear response region. In addition to this, a chemical compound with a similar molecular shape 

was tested with the fabricated sensor in order to verify the lock-key model between molecularly 

imprinted film and analyte. It was concluded that sensor with molecularly imprinted polymeric 

film was insensitive against this compound, whereas sensor with non-imprinted produced false 

positives with chemical compounds in similar shapes. In other words, molecular imprinting was 

not only important in terms of giving a linear response region for analyte, but it also served to 

increase the selectivity of polymeric film in the range of linear response.  

To sum up, a molecularly imprinted polymer-graphene based nanosensor was developed to 

selectively detect NTO from ecological water samples. Fabrication technique used to prepare this 

sensor combined micro fabrication and polymer technologies and is unique in terms of 

embedding electrodes into sensor substrate, as most of the studies in this field were based on 
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fabricating metallic electrodes on top of graphene sheet. Sensors fabricated using this method are 

re-usable, respond linearly with the analyte within the targeted region of analyte concentration 

and selective against the analyte molecules. Although there are other methods available in the 

literature to measure nitroaromatics in lower concentrations, these methods usually require 

sophisticated instrumentations such as XPS and Raman. Unlike the others, sensor developed in 

this study provides easy measurement techniques applicable to field studies with less effort.  
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CHAPTER 4  Soft Segment Length Controls Morphology Of Poly(Ethylene 

Oxide) Based Segmented Poly(Urethane-Urea) Copolymers In a Binary 

Solvent 
 

4.1 Introduction 

Urethane-urea chemistry is a powerful tool in synthesis of elastomers used in different industrial 

processes such as biomaterials, coating materials and textiles. [112-118] These type of polymers 

are usually composed of two segments, in which physically crosslinked, densely hydrogen 

bonded urethane-urea groups serve as stiff domains (hard segments, HS) and soft segments (SS) 

form into the bulk of the material that endows the high extensibility. Here, HS are obtained by 

diisocyanate reactions where diols or diamines act as chain extenders. On the other hand, SS are 

usually selected as difunctionally terminated telechelic oligomers. Thus, thermal and mechanical 

properties of these two domains are significantly different from eachother. HS domains are 

designed to have a Tg or Tm significantly higher than the service temperature range, whereas SS 

domains are selected as having very low Tg. [119] The choice of segments’ composition lead  to 

thermodynamic incompatibility between segments and effect several properties such as the 

packing behavior and morphology. This leads to different morphological traits in the segmented 

polyurethane-urea copolymers such as phase-separation or self-assembly of basic building blocks. 

[115] Therefore, control of structure and morphology enables fine-tuning of properties, giving 

rise to final materials with various functions. [118] 

In thermoplastic polyurethanes (TPUs) the structure-property and morphology relationship is 

determined by several parameters. These parameters can be categorized into four groups. First 

group may be addressed as the chemical structure, secondary interactions and chain size / length 

properties. Second group is defined by the context of soft segment, i.e. chemical nature, 

molecular weight and Hildebrand solubility parameter of the soft segment. The third group of 

parameters determining structure-property-morphology relationship is the type and extent of 
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intermolecular interactions in between hard and soft segments. The fourth and final group is the 

polymerization procedure and reaction conditions. [115]  

Here, design of the reaction conditions; particularly selection of the solvents is of high 

importance.  

Selection of reaction conditions and the polarity of solvent are particularly important among the 

parameters in synthesis of segmented poly(urethane-urea) copolymers. Their effect become more 

significant especially in the case of high molecular weight, high hard segment content and/or 

polyether based soft segments. [120] Commonly used solvents in preparation of segmented 

poly(urethane-urea( copolymers are THF, DMF and their mixture. Experimental studies on these 

parameters have been conducted during the last decades including different synthesis approaches, 

[121-124] mechanical properties,[125-128] structure-property relationship[129-131] including 

morphology,[132-134] and micro-phase separation[135]. On the contrary, limited amount of 

computational studies are found on investigation of critical parameters that determine structure-

morphology-property relations in segmented poly(urethane), poly(urea) and/or poly(urethane-

urea) copolymers. [136-140] For this reason, theoretical investigations on the behavior of 

copolymer’s hard and soft segment building blocks in the presence of these solvents are crucial to 

help raise the knowledge on structure-morphology-property relations in multiple length scales.  

Poly(ethylene oxide) is a promising candidate as soft segment in preparation of polyurethanes due 

to the several factors. For instance, macromolecular PEO can form into various physical states 

because it has high conformational freedom. Secondly, due to its amphiphilic nature, PEO can 

form multiple hydrogen bonds. In addition to these, vast amount of literature on characteristic 

parameters and folding properties as a function of chain length giving rise to fine-tuned 

morphologies in varying molecular weights, biocompatibility and water solubility. The ease of 

synthesis and availability of various commercial products are other important aspects of PEO. 

[141-148] The use of PEO is also important for targeted applications based on PEO:urea host-

guest complexes as they can be considered as model systems for supramolecular polymeric 

materials.  
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In parallel to the increase in computational power in the last decades,[149] multi-scale modeling 

has enabled researchers support experimental results in silico, to help explain events taking place 

on the atomistic scales where experimentally accessible information do not suffice. While 

molecular dynamics (MD) simulations have the potential to provide this information, applications 

to multi-chain systems usually require massive computing resources since they numerically solve 

Newton’s equation of motion for each atom in the system that also incorporates many solvent 

molecules. On the other hand, dissipative particle dynamics (DPD) simulations use coarse-

grained beads into which sets of atoms are clustered. [150, 151] It then becomes possible to build 

a connection between the atomistic and macroscopic scales. Studies have been published on 

multi-scale modeling of polymeric systems to explain various mechanisms ranging from self-

assembly of light harvesting systems[152], polymer adsorption on silica surfaces[153], solvent 

effect on morphology of electrosprayed surfaces[154], self-assembly of copolymers[155], 

molecular chain conformations below and above critical temperature[156], to name a few. 

Coarse grained and multi-scale simulation studies of segmented poly(urethane urea) copolymers 

found in the literature provide crucial information on the structure-morphology-property 

relationship. For instance, molecular and mesoscale simulations of a segmented silicone-urea 

copolymer suggest that the copolymer demonstrates a very distinctive phase separation even for 

the smallest HS content.[157] Using coarse-grained models, it was also demonstrated that 

morphology of the copolymer mainly depends on SS selection in which hydrophobic SS blocks 

favor microphase separation.[140] In addition, morphologies of poly(tetramethylene oxide) based 

segmented poly(urethane-urea) copolymers investigated by coarse-grained model suggest that 

intermolecular interactions play an important role in strain hardening of the material.[158] This 

study, on the other hand, deals with the effect of SS chain length on the morphological behavior 

of the poly(ethylene oxide) based segmented poly(urethane-urea) copolymers in a complex 

solvent system of THF:DMF (1:6.25). For this purpose, an atomistic model of the soft segment 

was first built and single chain properties of poly(ethylene oxide) (PEO; SS) with increasing 

chain length was investigated. This was then compared to DPD studies of the same chain length 

set to test the reliability of DPD model employed. HS molecules were then incorporated into the 

chains, and DPD simulations were carried out for three different copolymers with varying HS and 
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SS chain length to obtain the final morphologies. Secondary interactions established between 

urethane and PEO molecules are found to be mainly responsible for morphology differences 

observed in segmented copolymer with varying HS and SS chain length, a finding that is 

supported by monitoring interactions of reverse mapped structures of the copolymer where full 

atomistic detail has been recovered. Density fields obtained from DPD simulations are also in 

good agreement with atomic force microscopy (AFM) images of the corresponding systems.  

4.1.1 Classical Molecular Dynamics Theory 

Precise simulations of atomic interaction require Quantum Mechanical (QM) calculations. 

However, these calculations are computationally expensive and time-consuming, considering the 

fact that QM solves time dependent Schrödinger equation for each and every atom in the system. 

[159] For this reason, this method can only be applied to the systems containing 10-100 atoms in 

practical time scales. Even though it was applicable large systems such as polymers, the 

information of electronic properties provided by QM calculations would mostly be insignificant 

for macromolecules. In simulations of large systems, the output is usually bulk properties 

including diffusion coefficient and Young’s modulus and these properties depend on locations of 

atomic sets. 

A dynamic simulation can be run once energy optimized structure is established. The basics of a 

dynamics simulation are equations of motion. Equations of motion can be modified to deal with 

the effects of temperature and pressure. The output of a dynamics is a trajectory of atomic 

configurations and velocities over a period of time. Other properties are be derived from 

trajectory. 

4.1.1.1 Equations of Motion 

To simply put, MD simulations solve Newton’s equation of motion; 

Equation 2 
𝒇𝒊   𝒕 =𝒎𝒊𝒂𝒊 𝒕  

 

where 𝑓!   is the force, 𝑚! is the mass, and 𝑎! is the acceleration of particle 𝑖 at time 𝑡. Here, the 

force of an atom at a coordinate 𝑟! is calculated from the derivative of potential energy 𝑉; 
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Equation 3 

−
𝜕𝑉
𝜕𝑟!

= 𝑚!   
𝜕!𝑟!
𝜕𝑡!  

It is important to note that the classical equations of motion are deterministic. In other words, the 

coordinates and velocity of an atom at time 𝑡 can be determined using initial coordinates and 

velocity of the atom. This means that the trajectory of an MD run is sensitive to initial 

coordinates, therefore different trajectories may be obtained using different simulation tool or 

computer. In addition, the initial coordinates of a molecule are obtained by previous operations 

such as energy minimization while initial velocities are generated randomly with respect to 

desired temperature. This is another rationale of the fact that MD simulations cannot be repeated 

identically. One approach is to overcome is to employ force fields that allow setting the random 

number seed the same as the previous runs.  

4.1.1.2 Statistical Ensembles 

Integration of Newton’s equation of motion results in constant-energy surface of a model. 

However, most of the natural phenomena do not take place under constant temperature and 

pressure. In contrast, natural events are exposed to pressure and heat exchange and total energy of 

the system is not conserved. To represent this situation in MD calculations, several approaches 

were developed by keeping three of the state variables (energy E, enthalpy H (that is, E +PV), 

number of particles N, pressure P, stress S, temperature T, and volume V) constant. Statistical 

ensembles are listed as follows: [160] 

• Constant temperature and pressure (NPT) 

• Constant energy volume (NVE) 

• Constant pressure, constant enthalpy (NPH) 

• Constant temperature, constant volume (NVT) 

Note that in all ensembles, number of particles is kept constant. The ensembles NPT and NPH 

can only be applied to periodic systems since volume is not defined in non-periodic systems.  

NVE ensemble: Also known as microcanonical ensemble, NVE is obtained by calculation of 

standard Newton equation without a temperature or pressure control. Here, energy is conserved 
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when deriving this adiabatic ensemble. This ensemble is not employed in calculation of 

equilibrium conditions. Since temperature is not controlled in NVE, the desired temperature is 

usually not achieved.  

NVT ensemble: Also known as canonical ensemble, NVT is obtained by keeping temperature 

constant. For this purpose a thermostat coupling is employed. NVT ensemble is useful in 

calculating conformations of the models in vacuum without periodic boundary conditions since 

volume, pressure and density are defined by periodic boundary conditions.  

NPH ensemble: This ensemble is an analogue of NVE, but in NPH ensemble, size of the unit cell 

is variable. [161] Since enthalpy (H) is the sum of E and PV, NPH ensemble is obtained by 

keeping pressure constant without temperature control. The control of pressure in MD 

simulations is carried out employing a barostat. Specific heat at constant pressure, thermal 

expansion coefficient and adiabatic compressibility can be calculated using NPH ensemble. 

NPT Ensemble: This ensemble enables to control both temperature and pressure simultaneously. 

Here, temperature and pressure are kept constant by employing thermostat and barostat, 

respectively. NPT is used when exact values of pressure, volume and density are important in the 

calculations. 

4.1.1.3 Equilibrium Properties  

The main objective in MD simulations is to calculate equilibrium thermodynamic properties. A 

microscopic dynamic variable 𝐴 over a time period 𝑡 can be calculated by; 

Equation 4 

𝐴 𝑡 =    lim
!→!

1
𝑇 𝐴 𝑡 𝑑𝑡

!

!
 

This time averaging allows calculating first order properties such as internal energy, kinetic 

energy and pressure. Microscopic expressions of these first order properties in the form of 

fluctuations enable calculating thermodynamic properties of a system such as thermal expansion, 

specific heat and bulk modulus. 
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4.1.1.4 Temperature 

Temperature is a macroscopic property derived from microscopic kinetic energy. In MD 

simulations, kinetic energy of a system is calculated from atomic velocities. Equation 5 defines 

the average kinetic energy of a system: 

Equation 5 

𝐾 =
𝑁!𝑘!𝑇
2  

where 𝐾 is the kinetic energy, 𝑁! is the number of degrees of freedom, 𝑇 is the thermodynamic 

temperature of the system. The brackets denote the average of ensembles. The Born-

Oppenheimer approximation of nuclei and electrons defines the degrees of freedom as 

Equation 6 
𝑁! = 3𝑁 − 6 

for nonlinear molecules with N>2. [162] 3N is due to the movement of atoms in 3 dimensions, 

and 6 degrees of freedom are subtracted because the whole body rotation and translational motion 

around the center of mass in each 3 axis are ignored. But for periodic systems, only the 

translational motion of the center of mass can be ignored. Therefore the equation becomes: 

Equation 7 
𝑁! = 3𝑁 − 3 

In MD simulations, 

Equation 8 
𝑁! = 3𝑁 

for an unrestricted system with 𝑁 atoms, since the vibrational motions are ignored. The resulting 

degrees of freedom arise from 3 velocity components, vx, vy, and vz, atoms. [163] 

Thermodynamic temperature, 𝑇, of a system is the average of instantaneous Temperature, 

𝑇!"#$%"$. Temperature of the system at an instant can be derived from Equation: 
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Equation 9 

𝑇!"#$%"$ =
2𝐾
𝑁!𝑘!

 

Combining Equation 8 with Equation 9;  

 

Equation 10 

𝑇!"#$%"$ =
2𝐾
3𝑁𝑘!

 

In MD simulations, initial velocities are generated to produce a Maxwell-Boltzmann distribution 

in the desired temperature. [164] The temperature, however, does not remain constant during the 

simulation due to the kinetic-potential energy exchanges. Therefore, several thermostat methods 

have been developed to keep the temperature at the desired value. The most frequently used 

thermostat methods include Berendsen, Hose-Hoover, NHL and Andersen. [164] In Berendsen 

method, temperature is kept constant by exchanging the thermal energy of the system with a heat 

bath.  In Nose-Hoover method, an additional degree of freedom that represents the interaction of 

the system with a bath is introduced into the structure. The extended equations of motion are then 

solved to generate the ensemble. On the other hand, Andersen method randomizes the initial 

velocities at a predefined collision period to keep the temperature constant. 

4.1.1.5 Pressure 

Similar to temperature, pressure is a thermodynamic quantity that is only meaningful at 

equilibrium. In MD simulations, pressure is calculated by the virial theorem: [165] 

Equation 11 

𝑝𝑉 = 𝑁𝑘!𝑇 +
2
3 𝑊  

where W is the virial. [166] 

The thermodynamic pressure, 𝑝, is the average of instantaneous pressure, 𝑝!"#$%"$, where the 

instantaneous pressure is defined as: 
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Equation 12 

𝑝!"#$%"$ =
𝑁𝑘!𝑇!"#$%"$

𝑉 +
2𝑊
3𝑉  

Combining Equation 12 with Equation 10, we get 

Equation 13 

𝑝!"#$%"$ =
2
3𝑉 (𝐾 +𝑊) 

Note that the pressure can only be defined if the system has a definite volume. In real world this 

is done by restricting the system in a container, whereas in computer simulations the unit cell 

with a periodic boundary condition is considered as a container. Similar to pressure, volume and 

density can only be calculated when the structure is bounded and periodic in all directions.  

Similar to temperature, pressure needs to be controlled throughout the simulation to produce a 

correct statistical ensemble.  Some of the frequently used pressure barostats include Andersen, 

Berendsen and Parrinello-Rahman. [166, 167] In Andersen and Berendsen methods, pressure is 

controlled by keeping the shape of the cell constant while changing the volume. On the other 

hand, Parrinello-Rahman method changes both volume and shape of the cell to keep the pressure 

in desired level. 

4.1.1.6 Forcefields 

The forcefield defines the energy surface on which atoms move. Forcefields are usually prepared 

to meet specific systems’ criteria; therefore, forcefield selection is based on structure type. A 

forcefield comprises all the necessary information to calculate energy and force. The information 

include; 

• Internal coordinates (Bond distances, bond angles, torsions) 

• Partial charges 

• Forcefield types 

• Forcefield typing rules 

• Energy expression functions 
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These elements are used to fit the potential energy surface. The internal coordinates terms, i.e. 

bond distances, angles, torsions are used to describe the potential energy surface due to the 

interaction of bonded and non-bonded atoms. Bonded atoms are defined via bond distance, angle 

torsion, while non-bonded interactions are defined by electrostatic and van der Waals 

interactions. Partial charges in a molecule are also predefined by forcefield, depending on the 

forcefield type of the atom. Along with the typing rules specific to forcefield employed, all the 

elements are created o generate the energy expression functions and the energy surface.  

Forcefield types are prepared by a number of varying properties: 

• Element (if atom) 

• Type of bonds 

• Number of bonding 

• Hybridization 

• Formal charge 

Once the forcefield type is set for all the particles in a system, the forcefield uses them to generate 

the energy expression.  

Equation 14 
𝐸!"!#$ = 𝐸!"#$%&$ + 𝐸!"!!!"#$%$ + 𝐸!"#$$  !"#$ 

 

Here, 𝐸!"#$%&$ is the sum of bond, angle, and torsion energies. Similarly, 𝐸!"!!!"#$%$ is the sum 

of van der Waals, Coulomb, and hydrogen bonding energies. Besides, 𝐸!"#$$  !"#$ stands for angle 

distortions caused by nearby atoms.  

4.1.2 Dissipative Particle Dynamics Theory 

The most significant drawback of MD simulations is that they employ all the atomistic details 

within a system. This approach is usually too detailed to understand several physical processes 

such as aggregation and phase separation. In addition to that, current computer processors allow 

simulating atomistic details up to a few thousand molecules over a few nanoseconds. Therefore, 
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with the current computer technology it is not possible to atomistically simulate physical 

processes that take place in microseconds.  

In 1993, Koelman et al. introduced Dissipative Particle Dynamics (DPD) that allows computer 

simulations in mesoscale of length and time. [168] DPD enables to simulate mesoscale molecules 

is mesoscopic time and length scale due to the coarse graining approach it uses. Similar MD, 

DPD integrates equation of motion, but instead of atoms, it solves the equation for “beads” in a 

given mass and size. The bead represents a cluster of atoms and its motion is assumed to obey 

Newton’s laws. However, due to coarse graining of sets of atoms into beads, atomic information 

is lost in DPD. An important advantage of DPD over MD is that the time steps are much larger; 

therefore simulation times are significantly shorter. One of the main objectives in DPD is to 

determine the phase behavior of polymers. 

There are different force definitions between bead pairs in DPD; a harmonic conservative 

interaction, dissipative force and random force. A dissipative force represents a viscous drag 

between moving beads, while in random force; energy input into the system is maintained.  In all 

force definitions, number of beads and linear momentum is conserved.  

Integrating equations of motion for the beads through the phase space of the system generates the 

trajectory in DPD. The thermodynamic observables such as density fields, order parameters, 

correlation functions, stress tensor. In order to construct a better understanding on DPD theory, 

Flory-Huggins theory of polymer solutions [169] is discussed in detail in the following 

subsection. 

3.1.2.1 Flory-Huggins Theory 

Flory-Huggins theory is remarkable in the sense that it is able to explain all the phase behavior of 

polymers using a simple parameter of Flory-Huggins Interaction Parameter, 𝜒. This parameter is 

experimentally obtained, and available in the literature for majority of polymers. DPD theory 

compares DPD parameter to Flory-Huggins interaction parameter. This way, it is possible to 

calculate DPD parameter from 𝜒 of simple polymer solutions, and the link it to more complex 

systems. 
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 In Flory-Huggins theory, polymer solutions are considered as polymer is distributed over lattice 

series 𝑁! of solvent molecules 

Equation 15 
𝑁! = 𝑁! + 𝑁!𝑟 

where  𝑁! and 𝑁! represents number of solvent molecules and number of polymer molecules with 

𝑟 repeating units. For simplicity, polymer is considered to be composed of two components of A 

and B. Thus, in polymer lattice 𝑁!, chain A occupies lattice series of 𝑁!", while chain B occupies 

𝑁!". The polymer lattice is completely packed with A and B, therefore the volume fractions of A 

(𝜑!) and B (𝜑!) adds up to 𝜑! + 𝜑! = 1. This way, the free energy of mixing of two 

components Δ𝐹 at constant temperature can be written as 

Equation 16 
Δ𝐹
𝑘!𝑇

=
𝜙!
𝑁!
𝑙𝑛𝜙! +

𝜙!
𝑁!

𝑙𝑛𝜙! + 𝜒𝜙!𝜙! 

The first two terms in the free energy equation are the entropic terms component in mixing. These 

two terms makes negative contribution to the equation, indicating that mixing is always 

entropically favorable. The third term is the energy component. Since the entropy terms are 

constant, the main factor in determining the favorability of mixing is the 𝜒 parameter. Therefore, 

the large values of 𝜒 creates phase mixing of components, while small and negative values of 𝜒 

favors mixing.  

Groot and Warren make the connection between DPD and Flory-Huggins Theory. [170] They 

have set a range of parameters in DPD and made a connection between these parameters and 𝜒 of 

Flory-Huggins’ by using the quadratic equation of free energy density in DPD:  

Equation 17 
𝑓!
𝑘!𝑇

=
𝜌
𝑁 𝑙𝑛𝜌 −

𝜌
𝑁 +

𝛼
𝑘!𝑇

𝑎𝜌! 
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where ρ is the density, 𝛼 is the interaction parameter, α is a constant, and N is the chain length 

(Groot and Warren considered N=1). Comparing this expression with the Flory-Huggins free 

energy-of-mixing (Equation 16) Groot and Warren made the identity 

Equation 18 
𝜒 =

𝛼
𝑘!𝑇

𝜌Δ𝑎 

where Δ𝑎 = 𝑎!" − (𝑎!! + 𝑎!!)/2, with A and B representing two components in the simulation. 

Groot and Warren performed several DPD simulations to find the 𝛼. For this purpose, they 

prepared simulation boxes that are phase-separated and with two phases rich in A and B. 

Assuming all the component have the same compressibility, they confirmed a linear relationship 

between 𝛼 and 𝜒 at a density of 3.0 and 5.0.  

Equation 19 
𝛼 !!! = 25+ 3.25  𝜒 

𝛼 !!! = 15+ 1.45  𝜒 

3.1.2.2 Scaling in DPD 

Instead of using atomistic information, DPD deals with beads that represent a set of atoms. The 

beads defined in DPD have the same mass 𝑚, velocity 𝑣, and the interaction radius 𝑟!. This 

allows to introduce a reduced set of units where the interaction radius and bead mass are the units 

of length and mass. In addition to these, since beads share the same velocity at constant 

temperature, it is logical to use the thermal energy, 𝑘!𝑇 as the energy reference, 𝐸!"#. The rest of 

the units are derived from these three. For instance; 

𝐹𝑜𝑟𝑐𝑒 = 𝐸!"#
𝑟! 

𝑡𝑖𝑚𝑒 = 𝑟! (𝑚 𝐸!"# 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐸!"#
𝑟!!
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To compare a DPD result to an atomistic simulation, one needs to convert reduced units into 

physical units. The reduced length unit in DPD, 𝑟!, is converted to physical units as follows: 

Equation 20 

𝑟 =
𝑟!

𝑟!
 

 Similarly, time 𝑡! in reduced units is converted to physical as follows: 

Equation 21 
𝑡 = 𝑡!𝑟! 𝑚

𝐸!"# 

with a time unit of 𝑟! 𝑚
𝐸!"# = 0.005  𝑛𝑠. The typical values used in for reduced units are 

𝑚 = 0.1  𝑘𝑔𝑚𝑜𝑙!! 

𝐸!"# = 2478  𝐽𝑚𝑜𝑙!! 

𝑟! = 0.8  𝑛𝑚 

The DPD forcefield employed in this study uses these values in physical units conversion. 

 

4.2 Materials and Methods  

4.2.3 Single Chain All-Atom MD Simulations of PEO 

Single chain MD simulations were carried out for varying chain lengths from 10 to 200 repeat 

units in 1:6.25 THF:DMF mixtures. For this purpose, several boxes were created containing a 

single chain of PEO and a total of 500 solvent molecules (Table 7). Single chain polymers were 

obtained using the Homopolymer Building Tool of Materials Studio 6.0 package.[171] Polymer 

chains were then solvated by creating simulation boxes using the Amorphous Cell construction 

tool.[172] Fixing the density to 1 g/cc, energy minimization was carried out using COMPASS27 

(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) Forcefield 

[173], where long range interactions were calculated using Ewald summation and van der Waals 
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interactions were truncated with a cutoff distance of 12.5 Å. Systems were initially subjected to 

2 ns canonical ensemble (NVT) simulations for energy refinement. Isothermal-isobaric ensemble 

(NPT) MD simulations were then carried out at a pressure of 1 atm and a temperature of 300 K. 

Andersen-Berendsen thermostat-barostat was employed[174, 175] to maintain the temperature 

and pressure at the desired values.  All analyses were carried out after discarding the first 2 ns of 

the NPT simulations. Calculation details are provided in Appendix B. 

 

Table 7 Compositions of single and multi-chain PEO MD and DPD models employed in this 
study* 

 

Chain 

length 

(m.u)*** 

MD DPD 

Single Chain* Single Chain Multiple Chain 

Cubic Box 

Edge 

Length 

(Å) 

Equilibration 

NVT MD 

duration 

(ns) 

Projection 

NPT MD 

duration 

(ns) 

Number 

of PEO 

Beads 

Number 

of 

Solvent 

Beads 

Cubic 

Box 

Edge 

Length 

(Å) 

Number 

of PEO 

Beads 

Number 

of 

Solvent 

Beads** 

Cubic 

Box 

Edge 

Length 

(Å) 

10 38.27 2 5 5 45 20.40 105 927 56.00 

20 38.44 2 5 10 90 26.00 160 1383 56.32 

40 38.77 2 5 20 180 32.40 220 1970 70.40 

60 39.01 2 7 30 270 37.20 420 3595 80.40 

80 39.40 2 7 40 360 40.80 520 4676 88.04 

100 39.72 2 7 50 450 44.00 550 4666 94.80 

200 41.21 2 10 100 900 56.00 1100 9113 120.0 

 

*Number of solvent molecules is 500 in all MD systems. The complex solvent system of 

THF:DMF 1:6.25 is employed in all the MD calculations. 

** The complex solvent system of THF:DMF 1:6.25 is employed in all the DPD calculations.  

*** m.u: monomeric units (1 unit of ethylene oxide) 

4.2.4 DPD Parameterization 

DPD simulations start with constructing beads and parameterizing bead-bead interactions. For 

this purpose, PEO chains with varying chain lengths were mapped onto beads. Along with 
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solvent molecules, polymer chains were partitioned into beads composed of chemically distinct 

units with similar sizes.  

Following the well-established procedure described in previous studies,[155, 176] DPD 

parameters of beads were derived by calculating Hildebrand solubility parameter (δ) and Flory-

Huggins interaction parameter (χ). δ was calculated by, [177] 

Equation 22 

𝜹 =
𝑬𝒄𝒐𝒉
𝑽 = 𝑪𝑬𝑫 

 

where Ecoh and CED correspond to cohesive energy and cohesive energy density, respectively. 

Once δ values were obtained, χ parameters of the beads were calculated from, [178] 

Equation 23 

𝝌𝒊𝒋 =
𝑽𝒎
𝑲𝑩𝑻

𝜹𝒊 − 𝜹𝒋
𝟐 

 

Where Vm Stands for molecular volumes of the beads calculated by ACDLabs/Chemsketch.[179] 

To calculate δ and χ, successive MD simulations were carried out where a 1 ps equilibration step 

followed by 100 ps NVT ensemble was applied to simulation boxes containing molecules with 10 

beads of the same type. Densities of simulation boxes were fixed at 1.0 g/cc in case of PEO; 0.89 

and 0.94 g/cc for THF and DMF, respectively. Cohesive energy densities and solubility 

parameters were calculated from MD trajectories using CED calculation tool of the Forcite 

module of the Materials Studio 6.0 package. DPD interaction parameters (𝑎!") were then 

calculated using the linear relationship, 

Equation 24 
𝒂𝒊𝒋 ≈ 𝒂𝒊𝒊 + 𝟑.𝟐𝟓𝝌𝒊𝒋 

 

where 𝑎!! = 25𝑘!𝑇 for a box density of 3 DPD units[170]. Like PEO and solvents, HS was also 

partitioned into beads of similar sizes with the rest of the beads. Partitioned HS units, along with 
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PEO beads are shown in Figure 25-a-b. For HS beads B and C, effect of side chains on DPD 

parameters was also investigated. To do this, four different bead types; B, B’, C, C’ were 

prepared and DPD parameters were calculated for each type. Here, B’ and C’ are chemical 

derivatives of B and C; i.e. B, B’, C, C’ are cyclohexane, methylcyclohexane, 1,6-hexanediamine 

and 2-metyhl-1,6-hexanediamine, respectively. Table 8 summarizes the interaction and DPD 

parameters calculated according to equations 1-3. No significant difference was observed 

between DPD parameters calculated using C and C’ (0.13%), a negligible difference was 

observed between DPD parameters calculated using B and B’ (2.5%). Therefore, further 

calculations were carried out by removing side chains from the beads.  

4.2.5 DPD Simulations 

For DPD studies, each cubic box was formed with a density of 3 DPD units. The box size and 

number of beads varied so that the system contains 10% of polymer and 90% solvent beads. A 

20000 steps DPD equilibration followed by 100000 steps of production DPD was produced with 

a spring constant of 4.0; the temperature was set to unity. DPD simulations were carried out on 

three different types of systems. The first is comprised of only single chains the soft segment 

polymer (PEO) of varying chain lengths; these simulations were carried out to directly compare 

with all-atom (AA) MD simulation results for the corresponding systems. Summary of single 

chain DPD parameters are listed in Table 7. In the second set, DPD simulations multiple chains 

of soft segment PEO were carried out, providing the correlation coefficient between single and 

multiple chain DPD simulations. In the third set, full polymer DPD studies were carried out by 

adding hard segment beads (shown in Figure 25-b) to the ends of PEO chains of varying length. 

For PEO chains in three different lengths, 46, 106 and 182, HS beads were added so as to form 

30% of the full polymer. Number of hard segment units added to PEO molecules of 46, 106 and 

182 in length were 2, 4 and 6, respectively. A summary of the latter systems studied by DPD is 

listed in Table 9. Details of the DPD parameters are given in Appendix B. 

4.2.6 Fine Graining 

Fine graining was carried out to bring the molecular information back to the coarse-grained 

equilibrated morphologies. For this purpose, a template polymer was prepared containing 

chemical information for each bead type. Motion groups and centroids were added to this 
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template polymer based on the beads created for the DPD study. Each polymer chain from the 

last frame of the DPD trajectory was extracted and recorded as isolated polymers. Details of 

prepared template molecule are displayed in Figure 25-c. A script prepared by Marrink et 

al.[180] was employed to convert bead-modeled system to atomic model. Details of the script are 

given in Appendix B. This script identifies and matches the beads with atomic information 

provided in the template molecule, and places each centroid to the corresponding bead’s 

coordinate. Once fine graining was completed, the system was further relaxed by short MD 

simulations. 

Table 8 Calculated Flory-Huggins interaction parameters 𝝌𝒊𝒋 (lower diagonal) and DPD 
parameters 𝒂𝒊𝒋 (upper diagonal) of the beads. 

 

𝜒 !
" 

 
PEO THF DMF A B C B’ C’ 

𝑎
!"  

PEO 
 

29.89 25.17 25.74 31.86 25.28 30.06 25.16 

THF 1.50 
 

27.95 31.97 25.02 28.69 25.01 28.82 

DMF 0.05 0.90 
 

26.34 29.33 25.00 28.02 25.00 

A 0.23 2.13 0.41 
 

35.36 27.05 32.89 26.59 

B 2.10 0.01 1.32 3.17 
 

30.35 - 30.35 

C 0.09 1.13 1.03E-3 0.63 1.64 
 

28.62 - 

B’ 1.55 4.14E-3 0.92 2.41 - 1.11  - 

C’ 0.05 1.17 9.62E-4 0.49 1.64 - -  
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Table 9 Compositions of DPD models used in copolymer calculations 
 

SS length (m.u.) 
Number of SS 

Beads 

Number of HS 

beads 

Number of 

Chains 

Number of 

Solvent beads** 

Cubic Box Edge 

Length (Å) 

46 230 180 10 3690 70.80 

106 530 380 10 8190 116.4 

182 910 580 10 13410 135.4 

* m.u: monomeric units (1 unit of ethylene oxide), ** Total number of solvent mixture of 

THF:DMF (1:6.25) 

 

 

Figure 25 (a) Two dimensional chemical structure of PEO based poly(urethane urea) copolymer. 
Segments of copolymer are defined as HS, chain extender and SS. (b) Three-dimensional 

chemical structures of partitioned beads of copolymer for DPD simulations. Carbon, oxygen, 
nitrogen and hydrogen atoms are represented in gray, red, blue and white, respectively.  (c) 

Template polymer prepared for fine graining. Motion groups and centroids added on template 
polymer are displayed in gray and green, respectively. 
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4.2.7 Synthesis of Poly(ethylene oxide) based Poly(urethane-urea) Copolymers 

Poly(ethylene oxide) glycol oligomers (PEO) with <Mn> values of 2000, 4600 and 8000 g/mol 

were purchased from Merck to synthesize PEO46-, 106- and 182-copolymer, respectively. Bis(4-

isocyanatocyclohexyl)methane (HMDI) was provided by Bayer and had a purity better than 

99.5%. The chain extender 2-methyl-1,5-diaminopentane (MDAP) was supplied by DuPont. 

Dibutyltin dilaurate (DBTDL) was obtained from Witco and was used as a catalyst by diluting to 

1% by weight in tetrahydrofuran. Reagent grade 2-propanol (IPA), tetrahydrofuran (THF) and 

dimethylformamide (DMF) were obtained from Merck. All chemicals were used as received. The 

synthesis of segmented polyurethane-ureas followed the general procedures rely on the two-step 

polymerization technique widely reported in the literature[115].  

4.2.8 Atomic Force Microscopy (AFM) Studies 

For AFM imaging, atomically smooth silicon wafers were used as substrates. A stock solution of 

each polymer with a concentration of 10% in THF/DMF as obtained from the synthesis was 

diluted by a factor of 1:100 using the same binary solvent system. Two different sets of 

experiments were performed to provide structural insight into the materials with respect to the 

applied processing conditions. In the first set, a droplet was deposited on the substrate surface 

from the dilute solution of each polymer to investigate the morphologies developed under low-

shear and/or steady state conditions. In this case, great care was shown to avoid shearing of the 

polymer solutions. Each sample was kept at ambient temperature in a fume hood and 

subsequently dried in an air oven at 100˚C for 24 hours. Then, they were cooled to the room 

temperature and kept in sealed boxes for 24 hours before measurements. In the second set, we 

aimed to understand the effect of shear on the morphology developments of the materials. Thus, 

the samples were prepared by spin coating using the same stock solutions under high-shear 

conditions. The samples were subjected to the same drying protocol used in the preparation of 

drop-cast samples as summarized above.  

For all set of measurements, height and phase images were captured on a Bruker ScanAsyst 

enabled Multimode-8 Atomic Force Microscope equipped with a Nanoscope 8.1 controller. All 

samples were analyzed in standard tapping/non-contact mode by using a Bruker ScanAsyst Air 

probe with a nominal spring constant of 0.4 N/m, resonance frequency of 70 kHz and a radius of 
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curvature of 2 nm. Tip specifications and further details of the probes are available at 

http://www.brukerafmprobes.com/p-3726-scanasyst-air.aspx. All images were recorded at 1 Hz 

frequency with 512×512 scan and a set point ratio of ~0.6 at ambient temperature and humidity 

conditions. 

4.3 Results and Discussion 

4.3.9 All Atom and Coarse-Grained Simulations of PEO Homopolymer Lead to Similar 

Chain Dimension Scaling 

Single chain AA and single-/multi-chain DPD simulations were carried out on a set of PEO 

oligomers with varying chain length. The 𝑅!"#! ! ! values obtained from AA and DPD 

simulations are listed in Table 10 and displayed in Figure 26. We find that 𝑅!"#! ! ! results 

obtained from DPD calculations of single PEO chains are in good agreement with those from AA 

simulations. In addition, a good correlation is observed in 𝑅!"#! ! ! values (1.07±0.12) of single 

chain and multiple chain DPD calculations.  We note that since equilibration of the AA 

simulations gets harder as the chain length gets longer, the data points at higher chain lengths 

have larger uncertainty. The correspondence between the coarse grained and AA results implies 

that the DPD model used in this study is suitable for studying PEO chains in the complex 

THF:DMF solvent. Note that, magnitudes of values gathered from MD and DPD results are 

different from each other due to the fact that DPD calculations use reduced units based on the 

cutoff distance, bead mass and temperature. Our results are also in conformity with the AA and 

coarse-grained calculations in previous work.[181, 182] 

In characteristic ratio calculations of the mixed solvent systems, we find a decreasing trend in 

values obtained from both AA and DPD simulations (Table 10), thus displaying a deviation from 

the usual behavior of C∞ with an increasing trend that levels off at high enough chain 

lengths[183]. This decrease is confirmed by Tarazona et al.[184] By viscosity measurements in 

several solvents, it was experimentally observed that a change in Coulombic forces governed by 

dielectric constant of the solvent gives rise to a change in molecular dimensions of the polymer 

chains. In that case, we can conclude that both single chain MDs and multi chain DPDs suggested 

an unusual trend in C∞, which may be attributed to complex solvent system.  
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Figure 26 𝑹𝒆𝒏𝒅𝟐 𝟏 𝟐 comparison of single chain AA and DPD simulations of PEO in chain sizes 
ranging from 10-200. Data points representing AA and DPD simulations are shown in black and 

gray, respectively. 
 

4.3.10 PEO Based Segmented Poly(urethane urea) Copolymers Self Organize into Channels 

at Low SS Lengths 

The morphologies obtained from 100000 steps of DPD simulations are displayed in Figure 27. 

Overall conformations of soft segments of copolymers were obtained using the MesoCite tool. 

The density fields are those of the ethylene oxide segment only. It is observed that copolymers 

show different morphological traits in pure DMF, pure THF or in the THF/DMF mixture (Figure 

27, red morphologies). Copolymers with longer soft segments, i.e. PEO106- and 

PEO182-copolymer, tend to form granular structures. On the other hand, isosurfaces around the 

soft segment of PEO46-copolymer form channels between solvent molecules. In addition, 

channel formation is only observed when the complex solvent system employed. 
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Table 10 Overall results of all MD and multi-chain DPD simulations carried out in this study. 
 

 𝑹𝒆𝒏𝒅𝟐 𝟏 𝟐 C∞ 

 Single Chain 
Multi-

Chain 

Single Chain Multi-

Chain 

Number of 

Monomers 

all atom 

(Å) 

DPD 

(DPD 

Units) 

DPD 

(DPD 

Units) 

all atom 

(Å) 

DPD 

(DPD 

Units) 

DPD 

(DPD 

Units) 

PEO 

10 11.02 1.71 1.97 2.75 0.58 0.78 

20 13.13 2.75 2.92 1.95 0.76 0.85 

40 13.27 4.27 4.09 1.00 0.91 0.84 

60 15.32 5.83 5.84 0.89 1.13 1.14 

80 19.54 6.47 6.93 1.08 1.05 1.20 

100 18.08 5.66 7.39 0.74 0.64 1.09 

200 27.52 11.6 11.0 0.86 1.35 1.22 

Copoly

mer 

46 - - 4.91 - - 1.05 

106 - - 7.25 - - 0.99 

182 - - 11.5 - - 1.46 
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Figure 27 Density field profiles of PEO46-, PEO106- and PEO182-copolymer’s soft segments in 
pure solvents THF (a, b, c), DMF (d, e, f) and solvent mixture of THF:DMF 1:6.25 (g, h, i). Soft 
segment density fields are demonstrated in red. Density fields are displayed for the soft segments 
and solvent molecules were turned off for better visualization. Periodic images were expanded to 

3.5 nm. 
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Figure 28 Density field profiles of PEO46-, PEO106- and PEO182-copolymer’s soft segments 
under low shear of 0.01 DPD units (a, b, c) and high shear of 0.1 DPD units (d, e, f). Soft 

segment density fields are demonstrated in purple (shear 0.01) and blue (shear 0.1). Density fields 
are displayed for the soft segments and solvent molecules were turned off for better visualization. 

Periodic images were expanded to 3.5 nm. 
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To test the stability of the morphologies in the mixed solvents, we have sheared each of these 

systems at different rates. The modified density fields under stress are displayed in Figure 28. We 

find that channel formation in the PEO46-copolymer soft segment is stable under both shear rates 

applied. On the other hand, PEO106- and PEO182-copolymer organize into an ordered structure 

under different shear rates applied, i.e., the equilibrium structures of PEO106-copolymer and 

PEO182-copolymer are not stable under shear. These results proposed that PEO46-copolymer 

should display similar morphological features under both non-sheared and sheared conditions. In 

contrast, the other two copolymers may exhibit different morphologies with respect to applied 

processing conditions. As the structure-property behavior of such materials strongly depend on 

the preparation conditions determining the final morphologies, we believe that experimental 

validation of our computational results can provide significant insight into the key mechanisms 

behind the morphology development in these copolymers. For this reason, AFM studies of the 

copolymers have performed as given in the following section. 

4.3.11 AFM Studies of the Corroborate Chain-Length Dependent Morphologies and 

Stability of the co-Oligomers 

AFM is a powerful experimental tool to examine the morphologies of such complex materials. To 

correlate the results obtained from the DPD simulations under both non-sheared and sheared 

conditions, we have obtained AFM images of the corresponding systems. In comparing with the 

DPD morphologies, we note that the edge length of cubic boxes that are in DPD units are 

converted to ångström multiplying by interaction distance of 8 Å.[185] Representative phase 

images of the non-sheared and sheared samples are presented in Figures 29 and 30, respectively. 

As shown in Figure 29, AFM phase morphologies of the non-sheared samples are in accordance 

with the results obtained from the DPD simulations for all the copolymers under steady-state 

conditions. PEO46-copolymer (Figure 29-a) preserves similar channel-like structures, which were 

obtained from the DPD simulations, at a higher length scale. On the other hand, the irregular 

bead-like structures observed in the DPD simulations of the PEO106- and PEO182-copolymer 

were recorded as randomly packed bead-like structures at a higher length scale as demonstrated 

by their AFM studies at equilibrium (Figures 29-b and 29-c, respectively). 
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The results obtained from the AFM and DPD studies based on the copolymer morphologies are 

also in good agreement for the sheared samples. As emphasized in DPD section, the 

PEO46-copolymer preserves the channel-like structure under the applied shear conditions as 

shown in Figure 30-a. For this copolymer, the AFM phase morphologies observed under non-

sheared and sheared conditions are similar to each other (Figures 29-a and 30-a). On the other 

hand, the randomly packed bead-like structures in the PEO106- and PEO182- copolymer (Figure 

29-b and 29-c) turn into oriented “beads on a string” like fibrillar structures under the applied 

shear conditions as shown in Figures 30-b and 30-c, respectively. These results are also in accord 

with the shear-induced morphologies obtained from the DPD simulations. Thus, the AFM studies 

experimentally validate the results obtained from the DPD simulations. As the chain length of 

PEO106 particularly corresponds to the critical entanglement chain length of PEO,[186] these 

results also suggest that this value (critical entanglement chain length) should be considered as a 

significant parameter for the selection of PEO oligomers as soft segments during the synthesis of 

PEO-based segmented polyurethane-urea copolymers. To the best of our knowledge, the 

importance of this key parameter has not yet been reported in the extensive polyurethane 

literature. As demonstrated by DPD and AFM studies, here we report that the copolymers with 

PEO soft segments having chain lengths higher than the critical value display significantly 

different structure-morphology-property relationships depending on the preparation conditions. 

On the contrary, those with PEO soft segment having a chain length lower than the critical value 

show similar structure-morphology-property behavior, independent of the preparation conditions. 

4.3.12 Hydrogen Bond Formation between Urethane-PEO Groups Derives Channel 

Formation 

To understand the reason behind the channel formation observed in copolymer with PEO46, 

radial distribution functions (RDFs) were plotted for each type of beads in copolymer structure. 

Figure 31 shows the RDFs of all HS-HS, SS-SS, HS-SS and PEO-solvent interactions.  

Investigating the HS-HS interactions (Figure 31-a), no correlation is observed between chain 

length and HS-HS interaction probability. But since HS-HS interactions are primarily responsible 

of polymer’s hard segment conformation and indirectly affect soft segment, we focused our  
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Figure 29 AFM phase images of non-sheared PEO46-copolymer (a), PEO106-copolymer (b) and 
PEO182-copolymer (c). AFM samples were prepared by polymer casting method. 

 

Figure 30 AFM phase images of sheared PEO46-copolymer (a), PEO106-copolymer (b) and 
PEO182-copolymer (c). AFM samples were prepared by spin-coating method. 

 

investigation on HS-SS and SS-SS interactions. As the copolymer chain length is increased, both 

SS-SS and HS-SS interactions are weakened (Figure 31-b-c). It is also observed that HS-SS 

interactions in PEO46 are significantly stronger than PEO106 and PEO182. To understand this 

difference, we extended our investigation into bead basis. 
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Figure 31 Radial distribution functions (RDFs) plotted for each type of beads in copolymer 

structure. (a-c) RDFs of HS beads vs. SS of PEO46-, 106- and 182-copolymer are demonstrated 
in black, red and blue, respectively. (d-f) RDFs of copolymer SS vs. bead A, B, and C are 

demonstrated in line, dash and dot, respectively.  
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Figure 31 (cont.d) (g) RDFs of PEO46-copolymer SS vs. bead A, THF and DMF are 
demonstrated in black, dark gray and light gray, respectively. (h) RDFs of PEO106-copolymer SS 
vs. bead A, THF and DMF are demonstrated in red, purple and magenta, respectively. (i) RDFs of 

PEO182-copolymer SS vs. bead A, THF and DMF are demonstrated in blue, cyan and green, 
respectively. 
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Comparing the HS bead interactions with SS for all copolymers, A-type hard segment beads were 

found to be closest to soft segment (Figure 31-d-f; black). This directed us to the idea that A-type 

beads might form secondary interactions with soft segment, thus affecting the conformation of 

soft segment. Considering the probability of A-type beads to be close to soft segment is the 

highest in PEO46 (Figure 31-d; black) compared to PEO106 and 182 (Figure 31-e-f; black), it 

can be concluded that A-type beads regulate the channel-like morphology observed in copolymer 

with PEO46.  

To decide whether PEO-solvent or PEO-urea interactions were more dominant in channel 

formation, radial distribution functions of soft segment was plotted against hard segment bead A 

and solvents (Figure 31-g-i). It was observed that, unlike longer copolymers, SS of PEO46 

resulted in a higher probability of interaction with A-type bead than that of solvents. In other 

words, urea/urethane molecules were in higher probability of being around soft segment, rather 

than solvent molecules. This indicated that interactions between soft segment and urea are the 

main reason behind channel formation. 

4.3.13 Reverse-Mapped Structures Reproduced the Channel-Like Morphology 

 

We have next reverse-mapped the atomistic details on the PEO46-copolymer system to determine 

which atomistic interactions dominate the channel formation. Reverse mapping[180] was carried 

out for each polymer molecule and solvent type separately. Polymer chains were then brought 

together to form the original structure. Once fine graining was successfully completed, the system 

was further relaxed by energy minimization followed by 120 ps long NVT-MD simulations. The 

last frame of the DPD trajectory for the PEO46-copolymer, along with the fine-grained model is 

displayed in Figure 32-a-b. Density field calculations of the reverse mapped structure reproduces 

the channel-like morphology observed in DPD (the reverse mapped model and density fields 

generated from it are displayed in Figure 32-c-d). The reverse mapped structures of 

PEO46-copolymer supports the idea that A-type beads, namely urethane, form hydrogen bonds 

with soft segments, i.e. between carbonyl groups in the hard segments and ether oxygen groups in 

the soft segments. Hydrogen bonds formed between urethane and PEO groups are exemplified in 
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Figure 33. These include those between HS-HS and HS-SS is labeled with cyan and green, 

respectively. Here, a hydrogen bond is defined if the distance between donor and acceptor heavy 

atoms is less than 4 Å. 

 

Figure 32 (a) Last snapshot from the DPD trajectory. PEO, HS bead A, B, C THF and DMF 
beads are represented in red, purple, cyan, pink, green and blue, respectively. (b) Reverse mapped 
model. (c) 3x3x3 expanded crystal structure of reverse mapped model. Carbon, oxygen, nitrogen 

and hydrogen atoms are represented in gray, red, blue and white, respectively. (d) 3x3x3 
expanded density fields of reverse mapped PEO46 PEO46-copolymer. Density fields were 
created for soft segments using MesoCite tool. Solvent molecules were turned off for better 

visualization. 
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Figure 33 Hydrogen bonds formed between HS-SS molecules of PEO46-copolymer. Inter- and 
intra-segmental H bonds are labeled in green and cyan, respectively. Carbon, oxygen and 

nitrogen atoms are represented in gray, red, blue and white, respectively. Hydrogen atoms are 
turned off for better visualization. 2D representations of inter- and intra-segmental Hydrogen 

bonds established between HS-SS and HS-HS segments are represented in the inset in green and 
cyan, respectively. 

 

4.4 Conclusions 

This study comprises a multiscale MD & DPD approach to assess the effect of chain length on 

overall morphology in PEO based segmented poly(urethane urea) copolymers. For this purpose, a 

three step strategy was employed where in the first step was designed to see the single chain 

characteristics of the soft segment in a complex solvent system and to test the validity of DPD 

calculations. Single chain characteristics revealed that 𝑅!"#! ! ! obtained in MD and DPD are in 

good agreement and coarse grained DPD model can reproduce conformational preferences of the 

chains obtained in all atom representation. This result confirms that the properties of much longer 

and/or multiple chain polymers can be studied with more reasonable computational costs.  

Following the single chain soft segment investigations, we have added hard segment beads into 

PEO soft segment DPD models to examine the effect of chain length on morphology. The models 

a" b"

c" d"

e"
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are prepared as to have soft segment chain lengths of 46, 106 and 182 repeating units that 

correspond to the oligomers prepared in our labs. Investigating the DPD trajectories of copolymer 

in terms of density fields, we observe stable channel formations in the PEO46 copolymer in 

complex solvent system. These channels are neither observed in pure solvents, nor under steady 

shear, implying that the formations are stable and specific to copolymers with shorter soft 

segments. Moreover, both AFM and DPD studies suggest that the structure-morphology 

development, and thus, the properties of PEO46-copolymer, mainly depend on its intrinsic 

features rather than the preparation conditions. On the other hand, structure-morphology-property 

relationship is rather dependent on preparation conditions than the intrinsic properties in 

PEO106- and PEO182-copolymer.  

Radial distribution functions of copolymer beads with each other and with solvent reveals that the 

specific channel formation observed in PEO46 copolymer is not solely depend on polymer-

solvent (THF, DMF) interactions, but more on secondary interactions formed between hard 

segment urethane groups and the soft segment. We showed that there are two competing 

mechanisms in minimizing the free energy upon quaternary urethane-SS-THF-DMF system. 

Here, intermolecular interactions between HS and SS regulate the overall morphology in PEO46 

copolymer resulting in a phase mixing of homogeneously distributed hard segments in soft 

segment. On the other hand, intramolecular interactions within SS molecules regulate the 

morphology in PEO106- and PEO182-copolymers. This leads to phase separation; a cluster 

formation of soft segments in which hard segment molecules cannot penetrate. This feature is 

only observed above a critical SS chain length. Conversely, secondary interactions regulate the 

morphology in copolymers with SS chains below critical lengths. The findings of this study 

provides significant insight into the fundamental phenomena of microphase separation/mixing in 

segmented copolymers regulated by thermodynamic control through good/poor solvent duality 

for the design and synthesis of new materials with diverse functions.  
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CHAPTER 5  Conclusions 

 

The first hypothesis proposed in this thesis was the validity of freeze concentration method as a 

useful reaction tool for modification of thermosensitive macromolecules. A model biopolymer 

was selected to test the method and Michael addition of several organic acids into chitosan 

backbone was carried out in FC medium. Spectroscopic analysis results revealed solid evidence 

that Michael addition took place under FC conditions. In addition to that, the solubility of 

chitosan biopolymer was also increased after Michael addition. Moreover, FC reactions resulted 

in a decrease in crystallinity of chitosan polymer and this decrease was attributed to the addition 

of bulkier side chain groups into polymer’s backbone. This decrease in crystallinity was also 

addressed as the reason behind increased solubility since the addition of bulkier side chain groups 

decreased the regularity of structure by reducing the amount of intermolecular secondary 

interactions. By a quantitative Cd-ninhydrin test it was shown that the Michael adducts possesses 

less amount of primary amines in their structure, which is another evidence that the amount of 

secondary interactions established via H-bonding between amine groups were reduced upon 

modification. On the other hand, freeze concentration reaction did not have any significant effect 

on thermal properties of Michael adducts, while morphological properties differ upon freeze 

concentration reactions. This change can be attributed to the additional stress introduced by ice 

formation phase during freeze concentration. This study poses the validity of FC method for 

chemical reactions of macromolecules, especially the thermosensitive materials such as proteins. 

The effect of modified morphology on mechanical and surface properties can be listed as the 

future studies on this matter. 

The second purpose in this thesis was to develop a chemical nanosensor to detect trace amount of 

nitroaromatics from environmental samples. To do this, a hybrid nanosensor composed of 

monolayer graphene and molecularly imprinted polymer was developed and its performance was 

evaluated. During the fabrication, a novel method of “embedded electrodes” was developed and 

the metallic contact lines used to measure the change in sheet resistance of graphene were 

embedded into substrate. TLM measurements revealed that the sensor responds selectively in a 
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linear region of analyte concentrations between 10-100 ppm, which covers the toxic levels of the 

nitroaromatic type analyte. In addition, the sensor was sensitive against imprinted analyte, while 

it did not respond to any other possibly interfering chemicals. Moreover, The noise level of the 

sensor was very low compared to the signal. Comparing the developed sensor with the literature 

examples of nitroaromatics sensors, it was concluded that the measurement technique employed 

is very simple and can be applied to on-field measurements of nitroaromatics while other 

examples usually require heavy instrumentation and a laboratory environment to read the signal. 

Further to that, the noise level and the detection limit of developed sensor is acceptable 

considering the fact that the active layer is a polymeric thin film.  

In the third part of the thesis, a multiscale computational approach was employed to investigate 

the structure-morphology-property relationship of PEO based segmented poly(urethane-urea) 

copolymers. For this purpose, MD, DPD and reverse mapping methods were employed. Results 

were compared with experimentally obtained AFM images.  In the first step, MD and DPD 

simulations results were compared in terms of end-to-end distances of single chain PEO (SS) 

models in varying chain lengths. This was done to assess the validity of DPD model. The 

comparison of MD DPD models revealed that the trend in end-to-end distances with respect to 

increasing chain lengths of MD and DPD models were similar, therefore the DPD model is able 

to produce reliable results. In the second step, HS beads were incorporated into SS chains and 

copolymer models were prepared in 3 different chain lengths; PEO46-, PEO106- and PEO182-

copolymer, respectively. DPD simulations of these copolymers were carried out in pure THF, 

Pure DMF and a mixture of THF:DMF (1:6.25) solvents and density field maps were generated. 

It was first observed that the morphology of the copolymers differ with respect to solvent used, 

and a stable channel formation was observed in PEO46-copolymer only when the complex 

solvent system is employed, while PEO106- and PEO182-copolymers tend to form granular 

formations in this solvent system. In addition, density field maps generated from DPD trajectories 

of copolymers were compared to AFM phase images. AFM images of PEO46-copolymer 

indicated a phase separation of HS and SS segments in PEO106- and PEO182-copolymers, while 

a phase mixing is observed in PEO46- with similar channel formations in a larger scale. In this 

respect, AFM images were similar to DPD density fields. Furthermore, to test the stability of the 
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specific channel formations in PEO46-copolymer, DPD simulations were also carried out under 

different steady shear rates. Along with AFM images, shear DPDs revealed that the channel 

formations observed in PEO46-copolymer are stable even under high rates of shear applied, while 

the morphologies of PEO106- and PEO182-copolymers are distorted with shear application. This 

lead us to the idea that the dominant factor under morphology formation observed in PEO46-

copolymer is due to its intrinsic properties, whereas the morphologies of copolymers with longer 

chains are dependent on preparation conditions.  

To investigate the intrinsic factors affecting the morphology of PEO46-copolymer, radial 

distribution functions (RDF) of SS beads of copolymers were plotted against HS and solvent 

beads. RDF plots revealed that, unlike PEO106- and PEO182-copolymer, SS beads of PEO46-

copolymer mostly interact with urethane beads of HS. In addition, solvent molecules are found to 

be in closer contact with PEO46-copolymer than PEO106- and PEo182-. To explain this 

behavior, we developed the hypothesis of competition of energy minimization mechanisms that is 

the root of intrinsic properties. The solvent molecules, urethane groups and SS molecules 

participate in competition and the winner is case dependent. In the first case scenario, SS 

molecules minimize their energy by forming secondary interactions with each other and form SS 

granules in which HS and solvent molecules cannot penetrate. This gives rise to a phase 

separation and is observed only after a specific SS chain length. In the second case, the SS 

molecules minimize their energy by forming intersegmental secondary interactions with HS 

molecules; therefore the solvent molecules can penetrate and interact with SS. This situation 

gives rise to a phase mixing of HS and SS segments and is observed only when the SS chain is 

short. To prove the hypothesis, reverse mapped models of DPD were investigated. Monitoring the 

secondary interactions, intersegmental Hydrogen bonds established between urethane groups and 

SS are only observed in PEO46-copolymer. The hypothesis is proven to be true, and gives us the 

solid evidence to conclude that the secondary interactions between urethane and SS regulate the 

phase mixing and separation of HS and SS segments with respect to critical chain length and soft 

segment chain length controls the unusual macroscopic properties observed in TPUs. 

  



95 
 

BIBLIOGRAPHY 

1. Kim, S.-K. and N. Rajapakse, Enzymatic production and biological activities of chitosan 
oligosaccharides (COS): A review. Carbohydrate Polymers, 2005. 62(4): p. 357-368. 

2. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer 
Science, 2006. 31(7): p. 603-632. 

3. Jayakumar, R., et al., Biomedical applications of chitin and chitosan based 
nanomaterials—A short review. Carbohydrate Polymers, 2010. 82(2): p. 227-232. 

4. Ravi Kumar, M.N.V., A review of chitin and chitosan applications. Reactive and 
Functional Polymers, 2000. 46(1): p. 1-27. 

5. Pires, C.T.G.V.M.T., J.A.P. Vilela, and C. Airoldi, The Effect of Chitin Alkaline 
Deacetylation at Different Condition on Particle Properties. Procedia Chemistry, 2014. 9: 
p. 220-225. 

6. Kafetzopoulos, D., A. Martinou, and V. Bouriotis, Bioconversion of chitin to chitosan: 
purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of 
the National Academy of Sciences, 1993. 90(7): p. 2564-2568. 

7. Rong Huei, C. and H.-D. Hwa, Effect of molecular weight of chitosan with the same 
degree of deacetylation on the thermal, mechanical, and permeability properties of the 
prepared membrane. Carbohydrate Polymers, 1996. 29(4): p. 353-358. 

8. Kumar, B.A., M.C. Varadaraj, and R.N. Tharanathan, Low molecular weight chitosan--
preparation with the aid of pepsin, characterization, and its bactericidal activity. 
Biomacromolecules, 2007. 8(2): p. 566-72. 

9. Mogilevskaya, E.L., et al., The crystal structure of chitin and chitosan. Polymer Science 
Series A, 2006. 48(2): p. 116-123. 

10. Tømmeraas, K., et al., Preparation and characterisation of oligosaccharides produced by 
nitrous acid depolymerisation of chitosans. Carbohydrate Research, 2001. 333(2): p. 137-
144. 

11. Okuyama, K., et al., Molecular and Crystal Structure of Hydrated Chitosan. 
Macromolecules, 1997. 30(19): p. 5849-5855. 

12. Kurita, K., et al., N-Alkylation of chitin and some characteristics of the novel derivatives. 
Polymer Bulletin, 2002. 48(2): p. 159-166. 

13. Harish Prashanth, K.V. and R.N. Tharanathan, Chitin/chitosan: modifications and their 
unlimited application potential—an overview. Trends in Food Science & Technology, 
2007. 18(3): p. 117-131. 

14. Jayakumar, R., et al., Sulfated chitin and chitosan as novel biomaterials. International 
Journal of Biological Macromolecules, 2007. 40(3): p. 175-181. 

15. Sajomsang, W., Synthetic methods and applications of chitosan containing pyridylmethyl 
moiety and its quaternized derivatives: A review. Carbohydrate Polymers, 2010. 80(3): p. 
631-647. 

16. Sashiwa, H., et al., Chemical Modification of Chitosan. 13. Synthesis of Organosoluble, 
Palladium Adsorbable, and Biodegradable Chitosan Derivatives toward the Chemical 
Plating on Plastics. Biomacromolecules, 2002. 3(5): p. 1120-1125. 



96 
 

17. Sashiwa, H., et al., Chemical Modification of Chitosan. 14: Synthesis of Water-Soluble 
Chitosan Derivatives by Simple Acetylation. Biomacromolecules, 2002. 3(5): p. 1126-
1128. 

18. Sashiwa, H., et al., Chemical modification of chitosan: preparation of chitosan-sialic acid 
branched polysaccharide hybrids. Chemical Communications, 2000(11): p. 909-910. 

19. Kurita, Y. and A. Isogai, Reductive N-alkylation of chitosan with acetone and levulinic 
acid in aqueous media. International Journal of Biological Macromolecules, 2010. 47(2): 
p. 184-189. 

20. Yang, T.-C., C.-C. Chou, and C.-F. Li, Preparation, water solubility and rheological 
property of the N-alkylated mono or disaccharide chitosan derivatives. Food Research 
International, 2002. 35(8): p. 707-713. 

21. Yang, T.-C., C.-C. Chou, and C.-F. Li, Antibacterial activity of N-alkylated disaccharide 
chitosan derivatives. International Journal of Food Microbiology, 2005. 97(3): p. 237-
245. 

22. Bhattarai, N., et al., PEG-grafted chitosan as an injectable thermosensitive hydrogel for 
sustained protein release. Journal of Controlled Release, 2005. 103(3): p. 609-624. 

23. Bobu, E., et al., Synthesis and characterization of n-alkyl chitosan for papermaking 
applications. Cellulose Chemistry and Technology, 2011. 45(9): p. 619. 

24. Morimoto, M., et al., Synthesis of novel chitosan with chitosan side chains. Carbohydrate 
Polymers, 2011. 84(2): p. 727-731. 

25. Ying, G.-q., et al., Preparation, water solubility and antioxidant activity of branched-
chain chitosan derivatives. Carbohydrate Polymers, 2011. 83(4): p. 1787-1796. 

26. Buranaboripan, W., et al., Preparation and characterization of polymeric host molecules, 
β-cyclodextrin linked chitosan derivatives having different linkers. International Journal of 
Biological Macromolecules, 2014. 69: p. 27-34. 

27. Ramos, V.M., et al., Modified chitosan carrying phosphonic and alkyl groups. 
Carbohydrate Polymers, 2003. 51(4): p. 425-429. 

28. Zuñiga, A., et al., Synthesis and characterization of N-propyl-N-methylene phosphonic 
chitosan derivative. Carbohydrate Polymers, 2010. 79(2): p. 475-480. 

29. Ngimhuang, J., et al., Synthesis of a novel polymeric surfactant by reductive N-alkylation 
of chitosan with 3-O-dodecyl-d-glucose. Polymer, 2004. 45(3): p. 837-841. 

30. Benediktsdóttir, B.E., et al., Synthesis of N,N,N-trimethyl chitosan homopolymer and 
highly substituted N-alkyl-N,N-dimethyl chitosan derivatives with the aid of di-tert-
butyldimethylsilyl chitosan. Carbohydrate Polymers, 2011. 86(4): p. 1451-1460. 

31. Petit, C., S. Reynaud, and J. Desbrieres, Amphiphilic derivatives of chitosan using 
microwave irradiation. Toward an eco-friendly process to chitosan derivatives. 
Carbohydrate Polymers, 2015. 116: p. 26-33. 

32. Bangde, P.S., R. Jain, and P. Dandekar, Alternative Approach to Synthesize Methylated 
Chitosan Using Deep Eutectic Solvents, Biocatalyst and “Green” Methylating Agents. 
ACS Sustainable Chemistry & Engineering, 2016. 4(6): p. 3552-3557. 

33. Badawy, M.E.I., et al., Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan 
Derivatives. Biomacromolecules, 2004. 5(2): p. 589-595. 

34. Lee, M.-Y., et al., Synthesis of chitosan-based polymeric surfactants and their adsorption 
properties for heavy metals and fatty acids. International Journal of Biological 
Macromolecules, 2005. 36(3): p. 152-158. 



97 
 

35. Fujita, S. and N. Sakairi, Water soluble EDTA-linked chitosan as a zwitterionic flocculant 
for pH sensitive removal of Cu(ii) ion. RSC Advances, 2016. 6(13): p. 10385-10392. 

36. Le Tien, C., et al., N-acylated chitosan: hydrophobic matrices for controlled drug release. 
Journal of Controlled Release, 2003. 93(1): p. 1-13. 

37. Jiang, G.-B., et al., Preparation of polymeric micelles based on chitosan bearing a small 
amount of highly hydrophobic groups. Carbohydrate Polymers, 2006. 66(4): p. 514-520. 

38. Lee, K.Y., et al., Structural Determination and Interior Polarity of Self-Aggregates 
Prepared from Deoxycholic Acid-Modified Chitosan in Water. Macromolecules, 1998. 
31(2): p. 378-383. 

39. Bhattarai, S.R., et al., N-Acylated chitosan stabilized iron oxide nanoparticles as a novel 
nano-matrix and ceramic modification. Carbohydrate Polymers, 2007. 69(3): p. 467-477. 

40. Choi, C.Y., et al., Effect of N-acylation on structure and properties of chitosan fibers. 
Carbohydrate Polymers, 2007. 68(1): p. 122-127. 

41. Hirano, S., et al., The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre 
and chitin–cellulose blended fibre at a solid state. Carbohydrate Polymers, 2000. 41(2): p. 
175-179. 

42. Hu, Y., et al., Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer, 
2007. 48(11): p. 3098-3106. 

43. Shelma, R. and C.P. Sharma, Acyl modified chitosan derivatives for oral delivery of 
insulin and curcumin. Journal of Materials Science: Materials in Medicine, 2010. 21(7): p. 
2133-2140. 

44. Mekhail, G.M., et al., Anticancer effect of atorvastatin nanostructured polymeric micelles 
based on stearyl-grafted chitosan. International Journal of Biological Macromolecules, 
2012. 51(4): p. 351-363. 

45. Vu, K.D., et al., Development of edible bioactive coating based on modified chitosan for 
increasing the shelf life of strawberries. Food Research International, 2011. 44(1): p. 198-
203. 

46. Nebbia, G. and G.N. Menozzi, Early experiments on water desalination by freezing. 
Desalination, 1968. 5(1): p. 49-54. 

47. Lorain, O., et al., Potential of freezing in wastewater treatment: soluble pollutant 
applications. Water Research, 2001. 35(2): p. 541-547. 

48. Pincock, R.E. and T.E. Kiovsky, Reactions in Frozen Solutions. VI.1 The Reaction of 
Ethylene Chlorohydrin with Hydroxyl Ion in Ice. Journal of the American Chemical 
Society, 1966. 88(19): p. 4455-4459. 

49. O’Sullivan, D. and J.R. Sodeau, Freeze-Induced Reactions: Formation of 
Iodine−Bromine Interhalogen Species from Aqueous Halide Ion Solutions. The Journal of 
Physical Chemistry A, 2010. 114(46): p. 12208-12215. 

50. Kurková, R., et al., Chemistry of Small Organic Molecules on Snow Grains: The 
Applicability of Artificial Snow for Environmental Studies. Environmental Science & 
Technology, 2011. 45(8): p. 3430-3436. 

51. Vajda, T., Cryo-bioorganic chemistry: molecular interactions at low temperature. 
Cellular and Molecular Life Sciences CMLS, 1999. 56(5): p. 398-414. 

52. Nikonorov, V.V., et al., Synthesis and characteristics of cryogels of chitosan crosslinked 
by glutaric aldehyde. Polymer Science Series A, 2010. 52(8): p. 828-834. 



98 
 

53. Sashiwa, H., et al., Chemical Modification of Chitosan, 17. Macromolecular Bioscience, 
2003. 3(5): p. 231-233. 

54. Curti, E., D. de Britto, and S.P. Campana-Filho, Methylation of Chitosan with 
Iodomethane: Effect of Reaction Conditions on Chemoselectivity and Degree of 
Substitution. Macromolecular Bioscience, 2003. 3(10): p. 571-576. 

55. Chen, K.C., J.S. Knapp, and K.K. Holmes, Rapid, inexpensive method for specific 
detection of microbial beta-lactamases by detection of fluorescent end products. J Clin 
Microbiol, 1984. 19(6): p. 818-25. 

56. Gassmann, M., et al., Quantifying Western blots: pitfalls of densitometry. Electrophoresis, 
2009. 30(11): p. 1845-55. 

57. Abràmoff, M.D., P.J. Magalhães, and S.J. Ram, Image processing with ImageJ. 
Biophotonics international, 2004. 11(7): p. 36-42. 

58. Britto, D.d., S.P. Campana-Filho, and O.B.G.d. Assis, Mechanical properties of N,N,N-
trimethylchitosan chloride films. Polímeros, 2005. 15: p. 142-145. 

59. Idros, N., et al., Colorimetric-Based Detection of TNT Explosives Using Functionalized 
Silica Nanoparticles. Sensors, 2015. 15(6): p. 12891. 

60. Barshick, S., Analysis of Accelerants and Fire Debris Using Aroma Detection 
Technology. 1998. 

61. Hakansson, K., et al., Low-mass ions observed in plasma desorption mass spectrometry of 
high explosives. J Mass Spectrom, 2000. 35(3): p. 337-46. 

62. Anferov, V.P.M., G. V.; Fisher, R., Pulsed spectrometer for nuclear quadrupole 
resonance for remote detection of nitrogen in explosives. Review of Scientific 
Instruments, 2000. 71(4): p. 1656-1659. 

63. Crespy, C., et al., Energy dispersive X-ray diffraction to identify explosive substances: 
Spectra analysis procedure optimization. Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 
2010. 623(3): p. 1050-1060. 

64. Krausa, M. and K. Schorb, Trace detection of 2,4,6-trinitrotoluene in the gaseous phase 
by cyclic voltammetry1. Journal of Electroanalytical Chemistry, 1999. 461(1–2): p. 10-13. 

65. Eiceman, G.A. and J.A. Stone, Peer Reviewed: Ion Mobility Spectrometers in National 
Defense. Analytical Chemistry, 2004. 76(21): p. 390 A-397 A. 

66. Lu, J. and Z. Zhang, A reusable optical sensing layer for picric acid based on the 
luminescence quenching of the Eu—thenoyltrifluoroacetone complex. Analytica Chimica 
Acta, 1996. 318(2): p. 175-179. 

67. Rose, A., et al., Sensitivity gains in chemosensing by lasing action in organic polymers. 
Nature, 2005. 434(7035): p. 876-879. 

68. Agency, U.S.E.P., Approaches for the remediation of federal facility sites contaminated 
with explosive or radioactive wastes. 1993, Washington, D.C.: Office of Research and 
Development, [68]  

69. Stanley, J.K., et al., Toxicity of the conventional energetics TNT and RDX relative to new 
insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. 
Environmental Toxicology and Chemistry, 2015. 34(4): p. 873-879. 

70. Alnaizy, R. and A. Akgerman, Oxidative treatment of high explosives contaminated 
wastewater. Water Research, 1999. 33(9): p. 2021-2030. 



99 
 

71. Senesac, L. and T.G. Thundat, Nanosensors for trace explosive detection. Materials 
Today, 2008. 11(3): p. 28-36. 

72. Shi, G.H., et al., Fluorescence quenching of CdSe quantum dots by nitroaromatic 
explosives and their relative compounds. Spectrochimica Acta Part A: Molecular and 
Biomolecular Spectroscopy, 2008. 70(2): p. 247-252. 

73. Engel, Y., et al., Supersensitive Detection of Explosives by Silicon Nanowire Arrays. 
Angewandte Chemie International Edition, 2010. 49(38): p. 6830-6835. 

74. Zhang, Y., et al., Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for 
Selective Detection of Nitroaromatic Explosives. ACS Applied Materials & Interfaces, 
2015. 7(14): p. 7471-7475. 

75. Tang, L., et al., Uniform and rich-wrinkled electrophoretic deposited graphene film: a 
robust electrochemical platform for TNT sensing. Chemical Communications, 2010. 
46(32): p. 5882-5884. 

76. Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano 
Letters, 2008. 8(3): p. 902-907. 

77. Pumera, M., Graphene-based nanomaterials and their electrochemistry. Chemical 
Society Reviews, 2010. 39(11): p. 4146-4157. 

78. Brownson, D.A. and C.E. Banks, Graphene electrochemistry: an overview of potential 
applications. Analyst, 2010. 135(11): p. 2768-2778. 

79. Zhou, S.Y., et al., Substrate-induced bandgap opening in epitaxial graphene. Nat Mater, 
2007. 6(10): p. 770-5. 

80. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat 
Mater, 2007. 6(9): p. 652-655. 

81. Pumera, M., Graphene-based nanomaterials for energy storage. Energy & Environmental 
Science, 2011. 4(3): p. 668-674. 

82. Pumera, M., Electrochemistry of graphene: new horizons for sensing and energy storage. 
The Chemical Record, 2009. 9(4): p. 211-223. 

83. Holthoff, E.L., D.N. Stratis-Cullum, and M.E. Hankus, A Nanosensor for TNT Detection 
Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. 
Sensors, 2011. 11(3): p. 2700. 

84. Saglam, S., et al., Electrochemical sensor for nitroaromatic type energetic materials using 
gold nanoparticles/poly(o-phenylenediamine-aniline) film modified glassy carbon 
electrode. Talanta, 2015. 139: p. 181-8. 

85. Collins, B.E., A.T. Wright, and E.V. Anslyn, Combining Molecular Recognition, Optical 
Detection, and Chemometric Analysis, in Creative Chemical Sensor Systems, T. Schrader, 
Editor. 2007, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 181-218. 

86. Wulff, G., T. Gross, and R. Schönfeld, Enzyme Models Based on Molecularly Imprinted 
Polymers with Strong Esterase Activity. Angewandte Chemie International Edition in 
English, 1997. 36(18): p. 1962-1964. 

87. Lu, Y., et al., Molecular recognition through the exact placement of functional groups on 
non-covalent molecularly imprinted polymers. Journal of Chromatography A, 2002. 
950(1): p. 89-97. 

88. Dhal, P.K. and F.H. Arnold, Template-mediated synthesis of metal-complexing polymers 
for molecular recognition. Journal of the American Chemical Society, 1991. 113(19): p. 
7417-7418. 



100 
 

89. Svenson, J. and I.A. Nicholls, On the thermal and chemical stability of molecularly 
imprinted polymers. Analytica Chimica Acta, 2001. 435(1): p. 19-24. 

90. Xu, L., et al., Chitosan in Molecularly-Imprinted Polymers: Current and Future 
Prospects. International Journal of Molecular Sciences, 2015. 16(8): p. 18328. 

91. Chiou, M.-S., P.-Y. Ho, and H.-Y. Li, Adsorption of anionic dyes in acid solutions using 
chemically cross-linked chitosan beads. Dyes and Pigments, 2004. 60(1): p. 69-84. 

92. Wang, L., et al., A novel nitromethane biosensor based on biocompatible conductive 
redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix. 
Biosensors and Bioelectronics, 2010. 26(3): p. 991-995. 

93. Diaz Aguilar, A., et al., A hybrid nanosensor for TNT vapor detection. Nano Lett, 2010. 
10(2): p. 380-4. 

94. Liu, M. and W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive 
detection of TNT by surface-enhanced Raman spectroscopy. Biosens Bioelectron, 2013. 
46: p. 68-73. 

95. Ko, H. and V.V. Tsukruk, Nanoparticle-decorated nanocanals for surface-enhanced 
Raman scattering. Small, 2008. 4(11): p. 1980-4. 

96. Zhang, Z., et al., Antibacterial Properties of Cotton Fabrics Treated with Chitosan. 
Textile Research Journal, 2003. 73(12): p. 1103-1106. 

97. Liao, C.-D., et al., Chemical Vapor Deposition Synthesis and Raman Spectroscopic 
Characterization of Large-Area Graphene Sheets. The Journal of Physical Chemistry A, 
2013. 117(39): p. 9454-9461. 

98. Martins, A.M., et al., Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac 
Tissue Engineering. Biomacromolecules, 2014. 15(2): p. 635-643. 

99. Marinho, B., et al., Electrical conductivity of compacts of graphene, multi-wall carbon 
nanotubes, carbon black, and graphite powder. Powder Technology, 2012. 221: p. 351-
358. 

100. Garzon, F., E. Brosha, and R. Mukundan, Explosives detection sensor. 2006, Google 
Patents. 

101. McGill, R.A., et al., The design of functionalized silicone polymers for chemical sensor 
detection of nitroaromatic compounds. Sensors and Actuators B: Chemical, 2000. 65(1–
3): p. 5-9. 

102. Kannan, G., et al., Adsorption studies of carbowax coated surface acoustic wave (SAW) 
sensor for 2, 4-dinitro toluene (DNT) vapour detection. Sensors and Actuators B: 
Chemical, 2004. 101(3): p. 328-334. 

103. Yang, X., et al., Molecular recognition and self-assembled polymer films for vapor phase 
detection of explosives. Talanta, 2001. 54(3): p. 439-445. 

104. Dorozhkin, L.M., et al., Detection of trace amounts of explosives and/or explosive related 
compounds on various surfaces by a new sensing technique/material. Sensors and 
Actuators B: Chemical, 2004. 99(2–3): p. 568-570. 

105. Liu, Y., et al., Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 
2001. 17(24): p. 7452-7455. 

106. Zhang, H.-X., et al., Electrochemical Sensor for Detecting Ultratrace Nitroaromatic 
Compounds Using Mesoporous SiO2-Modified Electrode. Analytical Chemistry, 2006. 
78(6): p. 1967-1971. 



101 
 

107. Ma, Y., et al., Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic 
Explosive Detection. Analytical Chemistry, 2012. 84(19): p. 8415-8421. 

108. Ahmad, K., et al., Preparation of SrTiO3 perovskite decorated rGO and electrochemical 
detection of nitroaromatics. Electrochimica Acta, 2016. 215: p. 435-446. 

109. Zarei, A.R. and B. Ghazanchayi, Design and fabrication of optical chemical sensor for 
detection of nitroaromatic explosives based on fluorescence quenching of phenol red 
immobilized poly(vinyl alcohol) membrane. Talanta, 2016. 150: p. 162-168. 

110. Chen, T.-W., et al., Determination of Explosives Using Electrochemically Reduced 
Graphene. Chemistry – An Asian Journal, 2011. 6(5): p. 1210-1216. 

111. Yu, R., et al., A novel double-layer electrospun nanofibrous membrane sensor for 
detecting nitroaromatic compounds. Journal of Materials Science, 2016. 51(23): p. 10350-
10360. 

112. Nuyken, O., Block Copolymers — Overview and Critical Survey. Von A. Noshay und J. E. 
McGrath. Academic Press. Inc., New York 1977. 1. Aufl., XVI, 516 S., geb. $ 45.00. 
Angewandte Chemie, 1978. 90(1): p. 77-77. 

113. Szycher, M., Szycher's handbook of polyurethanes. 1999: CRC press. 
114. Prisacariu, C., Polyurethane elastomers: from morphology to mechanical aspects. 2011: 

Springer Science & Business Media. 
115. Yilgör, I., E. Yilgör, and G.L. Wilkes, Critical parameters in designing segmented 

polyurethanes and their effect on morphology and properties: A comprehensive review. 
Polymer, 2015. 58: p. A1-A36. 

116. Yilgor, I. and E. Yilgor, Structure‐Morphology‐Property Behavior of Segmented 
Thermoplastic Polyurethanes and Polyureas Prepared without Chain Extenders. Polymer 
Reviews, 2007. 47(4): p. 487-510. 

117. Delebecq, E., et al., On the versatility of urethane/urea bonds: reversibility, blocked 
isocyanate, and non-isocyanate polyurethane. Chemical reviews, 2012. 113(1): p. 80-118. 

118. Krol, P., Synthesis methods, chemical structures and phase structures of linear 
polyurethanes. Properties and applications of linear polyurethanes in polyurethane 
elastomers, copolymers and ionomers. Progress in materials science, 2007. 52(6): p. 915-
1015. 

119. Yilgor, I., et al., Influence of soft segment molecular weight on the mechanical hysteresis 
and set behavior of silicone-urea copolymers with low hard segment contents. Polymer, 
2011. 52(2): p. 266-274. 

120. Unal, S., et al., A new generation of highly branched polymers: hyperbranched, 
segmented poly (urethane urea) elastomers. Macromolecules, 2004. 37(19): p. 7081-
7084. 

121. Yilgor, E., M. Isik, and I. Yilgor, Novel Synthetic Approach for the Preparation of 
Poly(urethaneurea) Elastomers. Macromolecules, 2010. 43(20): p. 8588-8593. 

122. Jewrajka, S.K., et al., Polyisobutylene-based polyurethanes. II. Polyureas containing 
mixed PIB/PTMO soft segments. Journal of Polymer Science Part A: Polymer Chemistry, 
2009. 47(11): p. 2787-2797. 

123. Erdodi, G., et al., Polyisobutylene-based polyurethanes. III. Polyurethanes containing 
PIB/PTMO soft co-segments. Journal of Polymer Science Part A: Polymer Chemistry, 
2009. 47(20): p. 5278-5290. 



102 
 

124. Fernández, C.E., et al., An overview on 12-polyurethane: Synthesis, structure and 
crystallization. European Polymer Journal, 2010. 46(11): p. 2089-2098. 

125. Kang, J., et al., PIB-based polyurethanes. IV. The morphology of polyurethanes 
containing soft co-segments*. Journal of Polymer Science Part A: Polymer Chemistry, 
2009. 47(22): p. 6180-6190. 

126. Piril Ertem, S., et al., Effect of soft segment molecular weight on tensile properties of 
poly(propylene oxide) based polyurethaneureas. Polymer, 2012. 53(21): p. 4614-4622. 

127. Yilgor, I., et al., Contribution of soft segment entanglement on the tensile properties of 
silicone–urea copolymers with low hard segment contents. Polymer, 2009. 50(19): p. 
4432-4437. 

128. Korley, L.T.J., et al., Effect of the degree of soft and hard segment ordering on the 
morphology and mechanical behavior of semicrystalline segmented polyurethanes. 
Polymer, 2006. 47(9): p. 3073-3082. 

129. Klinedinst, D.B., et al., The effect of varying soft and hard segment length on the 
structure–property relationships of segmented polyurethanes based on a linear symmetric 
diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer, 2012. 53(23): p. 5358-
5366. 

130. Das, S., et al., Effect of Symmetry and H‐bond Strength of Hard Segments on the 
Structure‐Property Relationships of Segmented, Nonchain Extended Polyurethanes and 
Polyureas. Journal of Macromolecular Science, Part B, 2007. 46(5): p. 853-875. 

131. Das, S., et al., Structure–property relationships and melt rheology of segmented, non-
chain extended polyureas: Effect of soft segment molecular weight. Polymer, 2007. 48(1): 
p. 290-301. 

132. Yilgor, I., et al., Time-dependent morphology development in segmented polyetherurea 
copolymers based on aromatic diisocyanates. Journal of Polymer Science Part B: Polymer 
Physics, 2009. 47(5): p. 471-483. 

133. Hood, M.A., et al., Morphology control of segmented polyurethanes by crystallization of 
hard and soft segments. Polymer, 2010. 51(10): p. 2191-2198. 

134. Sami, S., et al., Understanding the influence of hydrogen bonding and diisocyanate 
symmetry on the morphology and properties of segmented polyurethanes and polyureas: 
Computational and experimental study. Polymer, 2014. 55(18): p. 4563-4576. 

135. Kulkarni, A.S., et al., Micro-phase Separation via Spinodal-like Decomposition in 
Hexamethylynediisocyanate (HDI)-polyurea. Journal of Inorganic and Organometallic 
Polymers and Materials, 2012. 22(3): p. 624-628. 

136. Unal, S., et al., Understanding the structure development in hyperbranched polymers 
prepared by oligomeric A2+B3 approach: comparison of experimental results and 
simulations. Polymer, 2005. 46(13): p. 4533-4543. 

137. Yılgör, İ., E. Yurtsever, and B. Erman, Conformational Analysis of Model Poly(ether 
urethane) Chains in the Unperturbed State and under External Forces. Macromolecules, 
2002. 35(26): p. 9825-9831. 

138. Yilgör, E., E. Yurtsever, and I. Yilgör, Hydrogen bonding and polyurethane morphology. 
II. Spectroscopic, thermal and crystallization behavior of polyether blends with 1,3-
dimethylurea and a model urethane compound. Polymer, 2002. 43(24): p. 6561-6568. 



103 
 

139. Yılgör, E., İ. Yılgör, and E. Yurtsever, Hydrogen bonding and polyurethane morphology. 
I. Quantum mechanical calculations of hydrogen bond energies and vibrational 
spectroscopy of model compounds. Polymer, 2002. 43(24): p. 6551-6559. 

140. Yildirim, E., et al., Effect of intersegmental interactions on the morphology of segmented 
polyurethanes with mixed soft segments: A coarse-grained simulation study. Polymer, 
2016. 90: p. 204-214. 

141. Qiu, W., et al., Reversibility between glass and melting transitions of poly (oxyethylene). 
Macromolecules, 2005. 38(20): p. 8454-8467. 

142. Matsuura, H. and K. Fukuhara, Vibrational spectroscopic studies of conformation of poly 
(oxyethylene). II. Conformation–spectrum correlations. Journal of Polymer Science Part 
B: Polymer Physics, 1986. 24(7): p. 1383-1400. 

143. Uemura, T., et al., Unveiling thermal transitions of polymers in subnanometre pores. 
Nature communications, 2010. 1: p. 83. 

144. French, A.C., A.L. Thompson, and B.G. Davis, High‐Purity Discrete PEG‐Oligomer 
Crystals Allow Structural Insight. Angewandte Chemie, 2009. 121(7): p. 1274-1278. 

145. Kim, S.A. and L.A. Archer, Hierarchical Structure in Semicrystalline Polymers Tethered 
to Nanospheres. Macromolecules, 2014. 47(2): p. 687-694. 

146. Yoshihara, T., H. Tadokoro, and S. Murahashi, Normal Vibrations of the Polymer 
Molecules of Helical Conformation. IV. Polyethylene Oxide and Polyethylene‐d4 Oxide. 
The Journal of Chemical Physics, 1964. 41(9): p. 2902-2911. 

147. Chrissopoulou, K., et al., Crystallinity and chain conformation in PEO/layered silicate 
nanocomposites. Macromolecules, 2011. 44(24): p. 9710-9722. 

148. Kwon, O.-H., V. Ortalan, and A.H. Zewail, Macromolecular structural dynamics 
visualized by pulsed dose control in 4D electron microscopy. Proceedings of the National 
Academy of Sciences, 2011. 108(15): p. 6026-6031. 

149. Favino, M., R. Krause, and I. Pivkin, A survey on stochastic multi-scale modeling in 
biomechanics: computational challenges. arXiv preprint arXiv:1609.07719, 2016. 

150. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between 
atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 
4423. 

151. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic 
Phenomena with Dissipative Particle Dynamics. EPL (Europhysics Letters), 1992. 19(3): 
p. 155. 

152. Liu, K., et al., Molecular and mesoscale mechanism for hierarchical self-assembly of 
dipeptide and porphyrin light-harvesting system. Physical Chemistry Chemical Physics, 
2016. 18(25): p. 16738-16747. 

153. Maurel, G., et al., Multiscale Modeling of the Polymer–Silica Surface Interaction: From 
Atomistic to Mesoscopic Simulations. The Journal of Physical Chemistry C, 2015. 119(9): 
p. 4817-4826. 

154. Ozden-Yenigun, E., et al., Molecular basis for solvent dependent morphologies observed 
on electrosprayed surfaces. Phys Chem Chem Phys, 2013. 15(41): p. 17862-72. 

155. Kacar, G., C. Atilgan, and A.S. Özen, Mapping and Reverse-Mapping of the 
Morphologies for a Molecular Understanding of the Self-Assembly of Fluorinated Block 
Copolymers. The Journal of Physical Chemistry C, 2010. 114(1): p. 370-382. 



104 
 

156. Furuncuoğlu Özaltın, T., et al., Multiscale modeling of poly(2-isopropyl-2-oxazoline) 
chains in aqueous solution. European Polymer Journal. 

157. Yildirim, E., et al., Multiscale Modeling of the Morphology and Properties of Segmented 
Silicone-Urea Copolymers. Journal of Inorganic and Organometallic Polymers and 
Materials, 2012. 22(3): p. 604-616. 

158. Chantawansri, T.L., et al., Coarse-grained modeling of model poly(urethane urea)s: 
Microstructure and interface aspects. Polymer, 2012. 53(20): p. 4512-4524. 

159. Tal‐Ezer, H. and R. Kosloff, An accurate and efficient scheme for propagating the time 
dependent Schrödinger equation. The Journal of chemical physics, 1984. 81(9): p. 3967-
3971. 

160. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university 
press. 

161. Andersen, H.C., Molecular dynamics simulations at constant pressure and/or 
temperature. The Journal of chemical physics, 1980. 72(4): p. 2384-2393. 

162. Born, M. and J.R. Oppenheimer, On the quantum theory of molecules. Сборник статей к 
мультимедийному электронному учебно-методическому комплексу по дисциплине 
«физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический 
факультет, 1927. 

163. Tildesley, D. and M. Allen, Computer simulation of liquids. Clarendon, Oxford, 1987. 
164. Hünenberger, P.H., Thermostat algorithms for molecular dynamics simulations. 

Advanced computer simulation, 2005: p. 130-130. 
165. Allen, M. and D. Tildesley, Molecular Simulation of Liquids. Clarendon, Oxford, 1987. 
166. Tsai, D., The virial theorem and stress calculation in molecular dynamics. The Journal of 

Chemical Physics, 1979. 70(3): p. 1375-1382. 
167. Saito, H., et al., Molecular collective dynamics in solid para-hydrogen and ortho-

deuterium: The Parrinello–Rahman-type path integral centroid molecular dynamics 
approach. The Journal of chemical physics, 2003. 119(2): p. 953-963. 

168. Koelman, J. and P. Hoogerbrugge, Dynamic simulations of hard-sphere suspensions 
under steady shear. EPL (Europhysics Letters), 1993. 21(3): p. 363. 

169. Andersson, C., Flory-Huggins theory. 2008. 
170. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between 

atomistic and mesoscopic simulation. The Journal of chemical physics, 1997. 107(11): p. 
4423-4435. 

171. MaterialsStudio, Materials Studio 6.0. 2002, Dassault Systems: San Diego. 
172. Theodorou, D.N. and U.W. Suter, Detailed molecular structure of a vinyl polymer glass. 

Macromolecules, 1985. 18(7): p. 1467-1478. 
173. Sun, H., COMPASS:   An ab Initio Force-Field Optimized for Condensed-Phase 

ApplicationsOverview with Details on Alkane and Benzene Compounds. The Journal of 
Physical Chemistry B, 1998. 102(38): p. 7338-7364. 

174. Andersen, H.C., Molecular dynamics simulations at constant pressure and/or 
temperature. The Journal of Chemical Physics, 1980. 72: p. 2384-2393. 

175. H. J. C. Berendsen, J.P.M.P., W. F. Vangunsteren, and J.R.H. A. Dinola, Molecular 
dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984. 81: 
p. 3684-3690. 



105 
 

176. Ozden-Yenigun, E., et al., Molecular basis for solvent dependent morphologies observed 
on electrosprayed surfaces. Physical Chemistry Chemical Physics, 2013. 15(41): p. 
17862-17872. 

177. Huggins, M.L., The Solubility of Nonelectrolytes. By Joel H. Hildebrand and Robert S. 
Scott. The Journal of Physical Chemistry, 1951. 55(4): p. 619-620. 

178. Robert D. Groot, T.J.M., Dynamic simulation of diblock copolymer microphase 
separation. The Journal of Chemical Physics, 1998. 108. 

179. ACD/ChemSketch, ACD/ChemSketch 5.0. 2003, Advanced Chemistry Development, Inc.: 
Toronto, ON, Canada. 

180. Rzepiela, A.J., et al., Reconstruction of atomistic details from coarse-grained structures. 
Journal of Computational Chemistry, 2010. 31(6): p. 1333-1343. 

181. Lee, H., et al., Molecular dynamics studies of polyethylene oxide and polyethylene glycol: 
hydrodynamic radius and shape anisotropy. Biophysical journal, 2008. 95(4): p. 1590-
1599. 

182. Lee, H., et al., A coarse-grained model for polyethylene oxide and polyethylene glycol: 
conformation and hydrodynamics. The journal of physical chemistry B, 2009. 113(40): p. 
13186-13194. 

183. Mark, J.E. and P.J. Flory, The Configuration of the Polyoxyethylene Chain. Journal of the 
American Chemical Society, 1965. 87(7): p. 1415-1423. 

184. Tarazona, M.P., et al., Conformational characteristics of poly(vinylpyrrolidone). solvent-
dependence of the chain dimensions. Macromolecular Theory and Simulations, 1993. 
2(5): p. 697-710. 

185. Marrink, S.J., et al., The MARTINI Force Field:   Coarse Grained Model for Biomolecular 
Simulations. The Journal of Physical Chemistry B, 2007. 111(27): p. 7812-7824. 

186. Wool, R.P., Polymer Interfaces, Structure and Strength. 1993, New York: Hanser 
Publishers. 

 

 

  



106 
 

APPENDIX A 

This appendix describes TLM calculations and the derivation of sheet resistance from TLM 

measurements. To determine the sheet resistance of the sensor, we use two-probe (1 for current, 1 

for voltage) electrical measurements. The two contacts are located at the end of electrodes with a 

contact area of 𝐴!. 

Equation A 1 
𝑅! = 2𝑅! + 2𝑅! + 𝑅! 

where 𝑅! is the resistance arising from metallic contact lines, 𝑅! is the resistance due to metal 

and graphene interface, and 𝑅! is the sheet resistance of the semiconductor. Since 𝑅!>>𝑅! in 

most cases, 𝑅! is usually ignored. Therefore, two terms are regarded to calculate the total 

resistance 

Equation A 2 

𝑅! =
𝑅!
𝑊!!

𝑑 + 2𝑅! 

This relation provides calculation of sheet resistance from TLM measurement of a set of identical 

resistor pairs in varying distance. 

 
Figure A 1 Sheet resistance calculation from TLM patterns. Distance values are given in mm. 
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In our study, sheet resistances of graphene sheets in the presence of varying amounts of NTO 

were calculated by TLM measurements of gold contacts. Once we construct the distance vs. total 

resistance curves from I-V measurements, we derived the sheet resistance as follows:  

 
 

Figure A 2 Dimensions of metallic contact lines. Length valeus are given in mm. 
 

Equation A 3 
 

𝑅! = 𝑠𝑙𝑜𝑝𝑒  𝑥  𝑊 

 

All the sheet resistance values described in Chapter 2 were calculated using this procedure. 

Moreover, resistance values were derived from 5 different calculations in each data point. Figure 

A-3 demonstrates an example calculation of sheet resistance employed in this study. 

W
"=
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Figure A 3 TLM Calculations for CSNTO sensor in the absence of NTO (pure water). 
 

Putting the slope of distance vs. resistance curve in Figure A-3 (bottom) into Equation A-3, the 

sheet resistance of graphene in the absence of NTO is;   

𝑅! = 0.0832  
𝑂ℎ𝑚
𝜇𝑚   𝑥  10000𝜇𝑚 

𝑅! = 832  𝑜ℎ𝑚/𝑠𝑞 

Sheet resistances of graphenes in the presence of varying NTO concentration were also calculated 

using the same strategy. 
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Figure A 4 TLM results of CSNTO sensor within the linear region. 
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Sheet resistance values of CSNTO were linear up to an NTO concentration of 0.1 mg/mL. After 

this NTO concentration, TLM results started to deviate from linearity. 

 

Figure A 5 TLM results of CSNTO sensor within the linear region. 
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The deviation from linearity is demonstrated in Figure A-6. 

 

Figure A 6 Sheet resistances with respect to NTO concentration. 
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APPENDIX B 

 

This appendix describes details of all the calculations performed in Chapter 3. Firstly, Canonical 

ensemble parameters used for energy refinement are demonstrated in Figure B-1. 

 

Figure B 1 Setup and energy parameters for canonical ensembles. 
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Isothermal-isobaric ensemble (NPT) MD simulations were carried out with the following 

parameters demonstrated in Figure B-2. 

 

Figure B 2 Setup, thermostat and barostat parameters used in NPT ensemble. 
 



114 
 

For DPD studies, 20000 steps DPD equilibration were followed by 100000 steps of production 

DPDs. Details of the parameters used in all DPD calculation are provided in Figure B-3. Note 

that the interaction parameters are case-dependent, and given here as an example. 

 

 

Figure B 3 Setup, interaction, dissipation and spring constant parameters parameters used in 
DPD calculations. 
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Appendix B.1 Fine Graining Script 

To fine grain beads to atomistic details, a script prepared by Marrink et al.[180] was employed 

This script identifies and matches the beads with atomic information provided in the template 

molecule, and places each centroid to the corresponding bead’s coordinate. Note that the editable 

settings section in the script should be adjusted for each trajectory. Details of this script are as 

follows: 

 
#!perl 
 
use strict; 
use MaterialsScript qw(:all); 
 
# Title: Creates initial atomistic model by reverse mapping from beads 
# Author: Reinier Akkermans 
# Version: 1.0 
# MS Version: 5.5 
# Modules: Materials Visualizer 
 
# Fine-grains bead to atomistic representation. As input, requires a bead 
document, and study table.  
# The study table contains the marked up atomistic structures and the name 
in the study table should 
# map to the bead name. 
 
# To make this work, there also needs to be a map between the bead name 
and the centroid and motion-group 
# name on the atomistic representation. This should be setup before the 
initial mesoscale calculations 
# are run otherwise it is very hard to do this post simulation.  
 
# For each type of meso-molecule in the system, each bead in the molecule 
must have a unique name that you  
# can identify it with. Note that the ForcefieldType and Name can be 
different so you don't have to set up 
# duplicate forcefield types. 
 
######################################################################### 
# Begin editable settings 
 
my $forceConstant = 100; #  Defined on the restraint kcal/mol/A^2 
 
my $doc = $Documents{"fullpolyTHF.xsd"}; # the bead document 
 
my $std = $Documents{"patternTHF.std"}; # the study table with the marked 
up pattern documents 
 
# End editable settings 
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######################################################################### 
 
 
# Create a hash table for quick access and a name list to enable set 
creation 
my %patterns; 
my @names; 
for(my $row = 0; $row < $std->RowCount; $row++) 
{ 
 my $patternDoc = $std->Cell($row,0); 
 if(defined $patternDoc) 
 { 
  my $name = $std->Cell($row,1); 
  $patterns{$name} = $patternDoc; 
  foreach my $motionGroup (@{$patternDoc->MotionGroups})  
  { 
   push(@names,$motionGroup->Name); 
  } 
   
 } 
} 
      
# create the fine-grained document 
my $docFine = Documents->New($doc->Name."_fine.xsd"); 
 
# loop over all molecules in the coarse-grained document 
my $moleculesCoarse = $doc->UnitCell->Molecules; 
foreach my $moleculeCoarse (@{$moleculesCoarse})  
{ 
 my $name = $moleculeCoarse->Name; 
  
 # find the corresponding template document (stop if not found) 
 my $patternDoc = $patterns{$name}; 
 if(!defined $patternDoc){ die "Template document $name not found\n";} 
 
 # copy the molecule into the new document 
 my $moleculeFine = $docFine->CopyFrom($patternDoc); 
 
 # move the motion groups into position 
 foreach my $bead (@{$moleculeCoarse->Beads})  
 { 
  # the name of the bead 
  my $beadName = $bead->Name; 
      
  # the position of the bead 
  my $beadXYZ = $bead->XYZ; 
      
  # find the corresponding motion group (stop if not found) 
  my $motionGroup = $moleculeFine->MotionGroups($beadName); 
  if(!defined $motionGroup){ die "Motion group $beadName not 
found\n";} 
      



117 
 

  # move the motion group (note: this does not work for 
centroids) 
  $motionGroup->RotationCenter = $beadXYZ;   
 } 
   
 # create anchors, distances and restraints 
 foreach my $motionGroup (@{$moleculeFine->MotionGroups})  
 { 
  # the name of the bead 
  my $motionGroupName = $motionGroup->Name; 
          
  # find the centroid with the same name (stop if not found) 
  my $centroid = $moleculeFine->Centroids($motionGroupName); 
  if(!defined $centroid){ die "Centroid $motionGroupName not 
found\n";;} 
   
  # create an anchor at the centroid position 
  my $anchor = $docFine->CreatePositionAnchor($centroid-
>CentroidXYZ); 
  $anchor->Name = $motionGroupName; 
   
  # create a distance monitor between the anchor and the centroid 
  my $distance = $docFine->CreateDistance([$anchor,$centroid]); 
  $distance->Name = $motionGroupName; 
   
  # apply a restraint to the distance 
  my $restraint = $distance->CreateRestraint("Harmonic",  
   [HarmonicMinimum => 0, HarmonicForceConstant => 
$forceConstant]); 
  $restraint->Name = $motionGroupName; 
 } 
} 
 
# create sets for easy selection on the UI later 
foreach my $name (@names) 
{ 
 my $filteredAnchors = FilterByName($docFine->PositionAnchors, $name); 
 $docFine->CreateSet("Anchors_". $name, $filteredAnchors); 
 
 my $filteredDistances = FilterByName($docFine->Distances, $name); 
 $docFine->CreateSet("Distances_". $name, $filteredDistances); 
 
 my $filteredRestraints = FilterByName($docFine->Restraints, $name); 
 $docFine->CreateSet("Restraints_". $name, $filteredRestraints); 
  
 my $filteredCentroids = FilterByName($docFine->Centroids, $name); 
 $docFine->CreateSet("Centroids_". $name, $filteredCentroids);  
  
 my $filteredMotionsGroups = FilterByName($docFine->MotionGroups, 
$name); 
 $docFine->CreateSet("MotionGroups_". $name, $filteredMotionsGroups);  
} 
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# create a new cell but don't recalculate bonding as the bonds will be 
non-sensical 
my $lattice3D = $doc->Lattice3D; 
Tools->CrystalBuilder->SetSpaceGroup($lattice3D->SpaceGroupCrystalClass); 
Tools->CrystalBuilder->SetCellParameters( 
 $lattice3D->LengthA, $lattice3D->LengthB, $lattice3D->LengthC,  
 $lattice3D->AngleAlpha, $lattice3D->AngleBeta, $lattice3D-
>AngleGamma); 
Tools->CrystalBuilder->Build($docFine, Settings(CalculateBonding => 
"No")); 
 
my $runTime = time - $^T; 
print "Total time taken: " . $runTime . " seconds\n"; 
 
############################################################### 
# Subroutine to filter the items passed in by name 
 
sub FilterByName 
{ 
 my ($all, $name) = @_; 
 my @filtered; 
 foreach my $item (@$all) 
 { 
  if($item->Name eq $name) 
  { 
   push(@filtered, $item); 
  } 
 } 
 return \@filtered; 
} 
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