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ance, patience, and motivation.

I am grateful to my committee members, Assoc. Prof. Erchan Aptoula and

Selim Balcısoy for taking the time to read and their useful comments and advice on

my thesis.

I also would like to thank Sabancı University and TÜBİTAK for providing the

necessary financial support for my graduate education1.

I am also indebted to my colleagues and friends and my other fellow lab-mates

from the Computer Vision and Pattern Analysis Laboratory for their assistance and

suggestions.

Most importantly, none of this would have been possible without the love and

patience of my family. I would like to express my heart-felt gratitude to my family

who are always supporting me and encouraging me with their best wishes.

1This work was partially supported by the Scientific and Technological Research Council of

Turkey under Grants 113E499.

iv



PLANT IDENTIFICATION USING LOCAL INVARIANTS:

DENSE SIFT APPROACH

Seyfettin Tolga Yıldıran

CS, M.Sc. Thesis, 2015

Thesis Supervisor: Berrin YANIKOĞLU
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Abstract

In this thesis, we investigate the use of Dense SIFT approach in automatic iden-

tification of plants from photographs. We concentrate on flowering plants and eval-

uate three alternative approaches. In the first one, we classify the plant directly

using the dense SIFT method, using appropriate parameters that are found using

experimental validation techniques.

In the second approach, we first identify the dominant colour in the photograph

and use a separate classifier in each of the colour cluster. The second approach is

intended to reduce the problem complexity and the number of classes handled by

each classifier. In this approach, the classifier for red flowers will not know about

a plant that does not flower in red; furthermore a plant that is only observed with

red flowers will only be handled by that classifier.

In a third approach, we precede the second approach by adding a Region of

Interest detector, in order to extract the flower color more reliably.

We find that enhancement of Dense SIFT features based identification is possible

with saturation-weighted hue histogram based color clustering and region of interest

detector. Using the proposed system, we obtain a 0.60 accuracy on the flower subset

in the LifecLEF 2014 database.
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Özet

Bu tezde, bitki resimleri üzerinde Dense SIFT yönteminin farklı veri yapıları ile

uygulanarak bitki türünün tanınmasını araştırdık. Çiçeklenmiş bitkileri üç farklı

yöntem ile tanımlamak üzerine odaklandık. Birinci yaklaşım Dense SIFT yönteminin

işlem görmemiş resimlere doğrudan uygulanması ile tanıma, ikinci yaklaşım renk

özniteliklerine dayalı kümelere ayırdığımız veri parçalarında Dense SIFT uygula-

yarak tanıma, üçüncü yaklaşımda ise ilgi bölgesi yöntemi ile odak noktaları seçme

işlemini ikinci yaklaşımın öncesinde uygulayarak tanımayı denedik.

Bu çalışmaların sonucunda Dense SIFT yöntemi ile bitki tanınmasında doygun-

luk ağılıklı renk özü histogramı ve ilgi bölgesi yöntemleri kullanılarak iyileştirmenin

mümkün olduğunu gözlemledik. Tasarlanan sistemi kullanarak, LifecLEF 2014 ver-

itabanı çiçek alt kümesinde 0.60 doğru tanıma başarısını elde ettik.
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Özet vi

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 CLEF Plant Image Retrieval Campaigns 4
2.1 LifeCLEF 2014 Plant Identification Campaign . . . . . . . . . . . . . 5

3 Classification with Local Invariants 8
3.1 Scale Invariant Feature Transform (SIFT) . . . . . . . . . . . . . . . 8

3.1.1 Interest Point Detection . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Dense SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Effect of Grid Sizes . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Bag of Words Representation . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Size of the Dictionary . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Support Vector Machines (SVMs) . . . . . . . . . . . . . . . . . . . 19

4 Color Based Classification 22
4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Flower Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Color Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Saturation Weighted Hue Histogram . . . . . . . . . . . . . . 26
4.3.2 Saturation Weighted Hue Statistics . . . . . . . . . . . . . . . 27
4.3.3 SWH Histogram Extraction . . . . . . . . . . . . . . . . . . . 27

4.4 Color Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Classification Using Random Forests . . . . . . . . . . . . . . . . . . 32
4.6 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



5 Classification with Cropped Images by Saliency Map based ROI
Detection 36
5.1 System Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Region of Interest (ROI) (Saliency Map) . . . . . . . . . . . . . . . . 39
5.3 Salient Region Detection and Image Cropping . . . . . . . . . . . . . 40

6 Evaluation 43
6.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 System I - Plant Identification Using Dense SIFT . . . . . . . 44
6.2.2 System II and III - Color Classification . . . . . . . . . . . . 44
6.2.3 System II - Plant Identification . . . . . . . . . . . . . . . . . 47

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Appendix 51

Bibliography 53

viii



List of Figures

2.1 LifeCLEF 2014 Plant identification task in different categories. . . . . 5

2.2 LifeCLEF 2014 Flower Data Set . . . . . . . . . . . . . . . . . . . . 7

3.1 System I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 SIFT Keypoints [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 SIFT Descriptors [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Dense SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Dense Grid Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Word Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 K-Means Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 System I Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 ”Narcisus” Flower Family . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Achromatic Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 (a) Colour image. (b) Hue of image (a). (c) Saturation of image (a).

(d) Luminance of image (a). . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Hue Histogram of Figure 4.4.a . . . . . . . . . . . . . . . . . . . . . 29

4.6 Saturation-Weighted Hue Histogram of Figure 4.4.a . . . . . . . . . 29

4.7 White Yellow Color Cluster . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 Gagea Granatelli Parl . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 Orchis Anthropophora . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 System II Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Improved System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Saliency Detection Algorithm [3] . . . . . . . . . . . . . . . . . . . . . 40

ix



5.3 ROI Samples; (a)left column Original images, (b)middle column Saliency

Maps, (c)right column ROI detected images . . . . . . . . . . . . . . 42

x



List of Tables

2.1 LifeCLEF Plant Identification Campaign 2014 data set . . . . . . . . 6

4.1 Flower Subset with Ground-truth . . . . . . . . . . . . . . . . . . . . 32

6.1 Flower Subset with Ground-truth . . . . . . . . . . . . . . . . . . . . 44

6.2 System I - Plant Identification . . . . . . . . . . . . . . . . . . . . . 44

6.3 System II - Color Classification Results . . . . . . . . . . . . . . . . . 45

6.4 System II with ROI - Color Classification Results . . . . . . . . . . . 46

6.5 System II - Plant Identification Results . . . . . . . . . . . . . . . . . 47

6.6 System II with ROI - Plant Identification Results . . . . . . . . . . . 47

6.7 Results of All Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



Chapter 1

Introduction

Identification of plants from photographs has been gaining interest, especially

with the increase in hand-held devices. The problem has many application areas,

ranging from helping botanists and the general public identify plants that they

encounter, to identifying harmful species (e.g. poison ivy).

This thesis addresses one particular approach for this problem, namely the use

of local invariants. Local invariants, such as the Scale Invariant Feature Transform

(SIFT) is an approach that has been proposed in 1999 [4] and has been widely used

in many type of object recognition problems challenges [5]. The SIFT approach is

particularly suited for the plant identification problem where the object (the plant)

may show variations common to other object recognition problems, namely color,

lighting, pose, and scale variations, as well as large variations in shape due to age

and leaf composition of the particular plant.

1.1 Scope

We propose a system to address the problem of plant identification from a given

photograph, based on local invariants. We focus on flowering plant photographs;

however the method is equally applicable to fruit-bearing plant photographs that

show similar characteristics. Furthermore, the underlying components used in this

thesis (bag of words representation with dense SIFT features) is applicable to all

plant photographs.

We envision that the approach can be a specialized module of a complete plant

identification system. Indeed, identifying a plant from pictures of its different organs
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(e.g. flower, leaf, stem, overall view) or pictures taken in different formats (e.g. a

partial photo versus a scanned leaf image) may require different approaches.

1.2 Motivation

Plant identification has been drawing more and more attention in recent years.

There are several work that address sub-problems issues relating to agriculture (e.g.

identifying diseased crop etc), and others that are more suitable for botanical ap-

plications (e.g. identifying poisonous plants).

Our work has started with the ImageCLEF Plant Identification campaigns or-

ganized since 2011 [6,7]. The campaign is organized within CLEF (Conference and

Labs of the Evaluation Forum) that organizes campaigns in order to benchmark

progress in the general area of multi-lingual or multi-modal text and image retrieval

problems.

1.3 Contributions

We compare two different plant Identification methods, geared especially for

flowering plants. One of them is the state-of-art image classification method based

on Bag of Words BoW model using dense SIFT features. In this case, we have a

single classifier to classify all the flowering plant types considered by the system

(namely the 212 plants in the LifeCLEF 2014 Flower data set). The second method

uses a color classification step as a pre-classifier step, so as to divide the problem

into smaller subproblems. In this case, the dense SIFT classifiers are trained within

the plant species falling in each colour cluster. Finally an improved version of the

second method works by selecting the Region of Interest (ROI) as the first step and

proceeds with the cropped image, with the aim of better estimating the flower color

group. In this method, we select the region of interest using the Saliency Map of

raw images.

Our main contribution is to show the applicability of Dense SIFT features to the

plant identification problem and showing that it can lead to state-of-art accuracy

results. Our secondary contributions are showing that colour clustering and region

2



of interest detections help in this problem, further improving accuracy.

1.4 Outline

In Chapter 2, we describe the ImageCLEF 2014 Plant Identification campaign

and the Flower data set.

In Chapter 3, the first system, named as Classification with Local Invariants

is explained with all used approaches: Scale Invariant Feature Transform (SIFT),

Dense SIFT, Bag Of Words BoWs, Support Vector Machines(SVMs).

In Chapter 4, we present the color classification operation, using the Saturation

Weighted Hue Histogram(SWHH) and Random Forest classifier.

In Chapter 5, we propose an improved version for second method by automati-

cally detecting the region of interest (ROI), so as to better estimate the color group

of the flower.

In Chapter 6, results from all systems are reported with details.
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Chapter 2

CLEF Plant Image Retrieval

Campaigns

The ImageCLEF lab is a component of CLEF, the Cross Language Evaluation

Forum that aims to systematically evaluate multi-modal and cross-language infor-

mation retrieval systems, since 2011. The activities of the forum are presented in

separate conference tracks [8] [9] [10] [11] [12] [7].

ImageCLEF organizes four main challenging tasks related to image annotation,

for a wide range of source images and annotation objective. These are general

multi-domain images for object or concept detection, as well as domain-specific

tasks exist such as visual-depth images for robot vision and volumetric medical

images for automated structured reporting. The goal of setting up these challenges

is to support and promote cutting-edge research addressing the key challenges in

the field.

In 2014, the LifeCLEF lab is split from the ImageCLEF with the goal of bench-

marking challenges related to life and nature, in continuity of the image-based plant

identification task. The considered tasks in 2014 are plant, bird, and fish clas-

sification. While most research is ran with a few hundreds of species/categories,

LifeCLEF tries to increase the number of species to real life sizes. In 2014 and 2015,

the plant retrieval campaign has reached a database containing almost all plant

species of France.
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2.1 LifeCLEF 2014 Plant Identification Campaign

Plant Identification is one of three main campaigns of LifeClef 2014, ran to

benchmark progress in this problem. Given a plant photograph, the problem is to

return the correct plant species among a ranked list of species. Hence, the problem

is setup and evaluated as an image retrieval problem, rather than a classification

problem.

The input images mostly consist of photographs captured from nature, while

some are scanned leaves with a simple color background. The campaign includes

seven view types, corresponding to seven subtasks: branch, flower, fruit, stem, leaf,

entire plant, or leaf scan. Samples from different view types are depicted in Fig.

2.1.

Figure 2.1: LifeCLEF 2014 Plant identification task in different categories.
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The plant photographs are all collected in France, by a network of botanists

and plant enthusiasts. The number of plant species are growing since the first

organization in 2011 when there were 71 plant species, to 126 and 250 species in

2012 and 2013, respectively [8] [9] [10]. Since LifeClef 2014, the number of species

is about 500, indicating a relatively large image retrieval problem [11] [12] [7].

The campaign has designated training and test data sets. The training data con-

tains 47,815 images and test data contains 13,146 images [7]. Details with reference

to train and test image numbers of each view type are represented in Table. 2.1,

Table 2.1: LifeCLEF Plant Identification Campaign 2014 data set

Branch Entire Flower Fruit
Leaf

(photo)

Leaf

(scan)
Stem Total

Train 1987 6356 13164 3753 7754 11335 3466 47815

Test 731 2983 4559 1184 2058 696 935 13146

The meta data accompanying a photograph includes the location, date, and

author information for the captured image. Furthermore, for some images, there is

also a user-indicated quality of image parameter.

The campaign has two evaluation schemes: identification based on a single image

(image-based) and identification based on several images of a plant (observation-

based). In the first scheme, the input is a single image upon which a system should

make its decision. In the second scheme, the decision is based on multiple pho-

tographs of an individual plant that is identified by a field (plantid) in the meta-

data. This scheme allows a system to base its decision on a richer information and

is still realistic as a user application.

In each case, the performance is measured as the average inverse rank of the cor-

rect species, in the returned list. Furthermore, each category is evaluated separately,

to benchmark the progress in separate areas.

The flower subset contains images of flower view types and is used for evaluation

and comparisons of retrieval systems in the thesis. This data set has 13,164 train and

4,559 test images with 483 plant species, as indicated in Table 2.1. Some examples

from the dataset are shown in Figure 2.2
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Figure 2.2: LifeCLEF 2014 Flower Data Set
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Chapter 3

Classification with Local

Invariants

In this chapter, we explain the base system, called System I along with its

components, depicted in Figure 3.1.

The work flow of System I is as follows. First, Dense SIFT [4] [2] descriptors

(features) are extracted from images. Secondly, a clustering and quantization step

is used to build a dictionary of visual words from the observed features. The images

are then described by the Bag of Words(BoW) [13] representation, consisting of a

histogram of the chosen visual words. Finally a Support Vector Machine(SVM) [14]

[15] [16] is trained to classify images according to their BoW histogram representa-

tion.

Each of these methods are explained in this chapter in order: The SIFT and

Dense SIFT descriptors are explained in Sections 3.1-3.2; BoW method is described

in Section 3.3; and SVMs are described in Section 3.4.

3.1 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) is an widely used image descriptor

for point based image matching researches since 1999 [4] [2]. SIFT descriptor are

also used for point based matching in the computer vision. The main reasons of

using SIFT descriptors is being invariant to translations, rotations and scaling in

the spatial domain.

The SIFT method starts by detecting interest points from a gray-level image.

8



Figure 3.1: System I
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The points are found as the local extrema of the difference of Gaussians in the

scale-space. The descriptors are in turn extracted from these points, describing the

local gradient information in a rotation-invariant manner and are used for matching

corresponding interest points between different images. The SIFT descriptor has

also been enriched for color images with various color features from spatial domain.

In this thesis, we use the method called the Dense SIFT approach where the in-

terest point detection is bypassed and the SIFT descriptors are extracted at densely

placed grids. This approach is shown to lead to better performance in some tasks

in object categorization and texture classification [17] [18].

3.1.1 Interest Point Detection

Interest point detection is the most distinctive phase within various types of

SIFT descriptors. This variety is generally originated from variation on the interest

point detection method, such as the original SIFT descriptor by Lowe [4], Hessian

Affine detector with SIFT descriptor [19] and Dense SIFT [17].

In the original SIFT descriptors by Lowe, interest points are computed from

scale-space extrema of differences of Gaussians(DoG). At first A Gaussian pyramid

is computed from gray-level images.

G(x, y; s) =
1

2πs
e−(x2+y2)/(2s) (3.1)

Secondly, difference of the adjacent levels in the Gaussian pyramid is computed,

which is referred as DoG.

DOG(x, y; s) = L(x, y; s+ ∆s)− L(x, y; s) ≈ ∆s

2
∇2L(x, y; s) (3.2)

Finally, interest points are detected as extrema of these differences.

3.1.2 SIFT Descriptors

After interest point detection, the SIFT descriptor proposed by Lowe (1999,

2004) is computed from each interest point. The SIFT descriptor is illustrated in

Fig. 3.3 and how the descriptor is computed is summarized below.

A rectangular grid is centered at the interest point with the given scale and

orientation these are adjusted for the interest point. From the experiments of Lowe,

10



Figure 3.2: SIFT Keypoints [1]

4x4 grid size is thought to be a good size. After these, the local gradient direction

with the scale of each interest point is computed as

arg∇L = atan2(Ly, Lx) (3.3)

for each point on this grid. Then, the gradient directions are coded within 8 discrete

directions and histograms of each gradient directions are computed. In computing

these histograms, each gradient direction is also weighted by the gradient magnitude,

to give greater weights for image points:

|∇L| =
√
L2
x + L2

y (3.4)

Figure 3.3: SIFT Descriptors [2]
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The local histograms are calculated for all 4x4 grid points with these 8 discrete

directions. These 8 discrete directions are combined for each interest points to

extract 4x4x8=128 dimensions image descriptor. This obtained image descriptor

is named as the SIFT descriptor.

3.2 Dense SIFT

The Dense SIFT approach is directly derived from the SIFT approach. It differs

from the SIFT approach in that the image descriptors are extracted from densely

sampled grids over the image, rather than only at interest points. In fact, there is

no interest point detection process in dense SIFT approach.

Recent researches such as [17] and [18] show that while applying the SIFT de-

scriptor for object category classification or scene classification problems, the result

on SIFT descriptors over dense grids in the image domain often provides better

classification accuracies rather than computing the SIFT descriptor from interest

points as obtained by an interest point operator. In other words, larger set of lo-

cal image descriptors computed over dense grids often provide more information

than corresponding descriptors extracted from limited number points evaluated by

interest point operator.

This approach or improvement of SIFT descriptors was firstly proposed by Bosch

et al. [20][21] and at the present time it is one of the state-of-the-art approach for

image based object classification.

The most substantial reason of preferring Dense SIFT descriptors instead of

SIFT descriptors is that with using Dense SIFT descriptors, the influence of texture

characteristic increases compared to the influence of shape characteristics. When

we consider our plant identification problem, the texture is often as important as

the shape, which is why we preferred this approach.

3.2.1 SIFT Descriptors

In Dense SIFT approach, the descriptor extraction process is similar with SIFT

descriptor extraction. The descriptors are extracted from the center points of grids,

one per grid.

12



3.2.2 Effect of Grid Sizes

The size of these dense grids have crucial impact on the success of this approach:

too big ones would loose detail and too small ones may not capture enough context.

For this reason, we have evaluated different grid size alternatives to have optimal

classification accuracy on our plant identification problem.

The size of plant images varies between 480 to 960 pixels both on vertical and

horizontal dimensions. The size of the object of interest also varies among images:

some images zoom on the petals of a flower, while others show the flower in a garden

with leaves, stem, sky, etc. When we consider these different types of images, if we

draw boxes around flowers, sizes of these imaginary flower boxes will occupy an area

from 70x70 to 400x400 pixel in raw images. However our dense grids must be large

enough to catch descriptive parts of these various sized image flowers.

After several observation over flower images, approximately 30x30 sized grids

seem enough to carry informative parts of images. Therefore, we decided four types

of dense grids size to evaluate effectiveness of sizes of dense grids. These are 16x16,

32x32, 48x48 and 64x64 pixel sized dense grids decided to work, Figure 3.5. Using

all of them probably makes our carrying information potential much more stronger,

however it computationally costly, and so choosing only two of them are enough for

identification. As a result of several experiment with these parameters, we decide

work with 16x16 and 32x32 pixel grid sizes.

Figure 3.4: Dense SIFT
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Figure 3.5: Dense Grid Sizes

3.3 Bag of Words Representation

The Bag of Words (BoW) method aims to summarize the contents of a document

or image as an unordered set (bag) of primitive elements (words or visual words),

regardless of the position of those elements in the whole document or image. In our

case, the 128 dimensional SIFT descriptor space is clustered and each descriptor is

denoted as belonging to one cluster. These enumerated clusters are the visual words

[24] [25].

The BoW method starts by creating clusters from descriptors. We use the K-

Means Clustering method for determination of clusters. Once the clusters are identi-

fied, we have what is called a dictionary or codebook of visual words. The descriptors

of a given image can then be mapped to the nearest clusters, which is accomplished

efficiently in our case using the KD-tree ([22]). This operation is called coding,

in literature. The KD-tree is a multi-dimensional binary search tree that aims to

represent the hierarchical clusters within data and thus reduces the match process

between a descriptor and all the visual words, from linear to logarithmic.

The BoW method is then complete by computing a histogram of these visual

words, pooling the information across the whole image. This approach aims to obtain

a representation of the image that is robust towards spatial variations, while it also
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Figure 3.6: Word Histogram

makes it unlikely to discriminate between objects that differ only by their spatial

arrangements. Figure 3.6 illustrates this method. These operations are called coding

and pooling respectively.
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3.3.1 Size of the Dictionary

The size of the visual words is a crucial parameter of the representation. A large

number of visual words help better representation, however the resulting histogram

may not properly cluster all the variations observed in a particular visual word.

When we consider Figure 3.6, this can be understood easily. If we use 5 visual

words instead of 7 for this three objects, green and blue words probably evaluated

as same word. Then our histogram is weakened, and so identification accuracy can

be reduced.

On the other hand, if we use large sizes of visual words, similar words can be

coded with different visual words. Another disadvantage of using large visual words

sizes is that some less frequently seen descriptor, such as descriptors from leaves,

stems, ground, sky, etc. can be coded with new visual word.

Lazebnik et al. [25] report trying different word sizes or code-book sizes and

argue that their spatial pyramid matching scheme is most effective when they choose

visual word size as 200. We made several experiments to decide on the optimal word

size for plant classifiers. These are 1200 visual words for plant classifier of System

I, and 800 for each plant classifiers of System II and Improved System II.
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Figure 3.7: K-Means Clusters

3.3.2 K-Means Clustering

Clustering algorithms are traditionally viewed as unsupervised method for data

analysis. The algorithm is presented with a set of data instances which has to be

grouped according to some similarity notion. The algorithm has only access to set

of features for each object, and no labels.

The K-Means clustering algorithm is first proposed by MacQuenn in 1967 [23]

and it is commonly used to automatically partition a data set into k groups. It

proceeds by randomly selecting k initial cluster centers and thereafter iteratively

refining them as follows:

1. Each object is assigned to its closest cluster center.

2. After that each cluster center is updated to be the mean of its constituent

instances.

3. Repeat until no change.

In our work, we initialize the cluster centers using randomly chosen instances

from Dense SIFT descriptors. The clusters are created by considering a distance

metric, such as the L1 or L2 norms, between Dense SIFT descriptors. We use

128 dimensional features and the L2 norm, as it is thought to give a more robust

measurement. An illustration of the input and output of the algorithm is given in

Fig. 3.7.

The crucial factor on this method is deciding on the number of clusters, k. In
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most cases, optimal amount of clusters are already known, therefore k can be set

directly. In our case, the optimal number of clusters is unknown and is decided

empirically.

Once we have a fixed-length representation of a given image, in terms of the ob-

served frequencies of visual words in the dictionary, we use Support Vector Machines

to classify the plant in the image, given its histogram.
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3.4 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) is state of the art classification technique in

machine learning [24] [25]. It creates sets of hyperplanes in a high dimensional fea-

ture space. It is widely used for classification, regression and for other tasks. Intu-

itively SVM creates vectors to separate feature space by considering larger distance

margin between hyperplanes. It requires the solution of the following optimization

problem to create these vectors:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (3.5)

subject to,

yi(w
Tφ(xi) + b) > 1− ξi,

ξi > 0

Solving this problem is a hard optimization problem and there are some libraries

to cope with it and create classifiers. Therefore we use one of mostly preferred

library that is LIBSVM.

LIBSVM has gained wide popularity in machine learning and many other classi-

fication areas. This library has been actively developed by Chih-Chung Chang and

Chih-Jen Lin since the year 2000 [16]. It basically works as training with labeled

train data set and learning classifier vectors with them. After that test data set is

evaluated with these learned vectors. This is a supervised learning model.

There are some variations on vector types mainly categorised as linear and non-

linear SVMs. Linear SVMs are very fast for training, however it is also limited to

use an inner product to classify descriptors. Non-linear SVMs can generally obtain

much better results by pre-transforming the data with homkermap which computes

an explicit feature map. In the lights of these facts we are using non-linear SVMs.

Non-linear SVMs are also divided into several types and Radial Basis Function

(RBF) is one of them and that is our preferred non-linear SVM classifier.

In the RBF model, the training vectors xi are mapped into a higher dimensional

space by the function φ. SVMs generates a linear separating hyperplane with the

maximal margin in this higher dimensional space. C > 0 is the penalty parameter
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of the error term. We are trying to use the optimal parameter C to train the whole

training set.

K(xi, xj) = φ(xi)
Tφ(xj) (3.6)

K is called the kernel function for SVM and the kernel function for RBF is this;

K(xi, xj) = exp(−γ ‖xixj‖2), γ > 0 (3.7)

Here γ is kernel parameter for RBF which is widely used to optimize classifier vector.

Radial Basis Function (RBF) is a reasonable choice. The first reason is that

this type of kernel is non-linearly mapping objects into a higher dimensional space.

Unlikely to the linear kernel, RBF can handle this type of classification problems,

due to nonlinear relationship between class labels and descriptors. The second

reason is the number of hyper parameters. This number influences the complexity

of model selection. Indeed the polynomial kernel has more hyper parameters than

the RBF kernel, these are r, d and γ.

K(xi, xj) = (γxTi xj + r)d, γ > 0 (3.8)

Equation 3.8 illustrates the kernel function of polynomial SVMs and its complexity.

We are creating a grid search model to decide optimal parameters for RBF.

Various pairs of (C, γ) values are tried and the one with the optimal cross-validation

accuracy is chosen for rest of the project. We found that trying exponentially

growing sequences of C and γ is a practical method to decide best parameters

These parameter are

C = {10−4, 10−3, 10−2, 10−1, 102, 102, 103, 104} (3.9)

and

γ = {2−4, 2−3, 2−2, 2−1, 22, 22, 23, 24} (3.10)

We have trained RBF model several times with these parameters to achieve

optimal results, and finally we have decide to use more than one C parameters for

different SVMs classifier. There is one SVMs classifier for System I, however we

are using five SVMs for System II and Improved System II. γ is adjusted as 2−2 for

all systems, however C is adjusted as 10 for System I and 100 for others.
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Figure 3.8: System I Example
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Chapter 4

Color Based Classification

4.1 Outline

This is the second system, named as System II. This system is constructed

by adding a color classification step before System I, with the goal of dividing

the flower classification into smaller cases, according to the main color character of

flowers.

The color classification is done using the Saturation Weighted Hue Histogram

(SWHH) of raw images. After the color classification, where the input image is

assigned into one of the 6 categories, the rest of the process flows just as in System

I, with only plant species in that color cluster. Figure 4.1 illustrates System II.

There are two main reasons for color based classification stage. The first moti-

vation is to reduce the number of flower classes, to facilitate the job of System I.

There are approximately 500 flower species with very close flower textures or shapes,

while after color clustering, each second-stage classifier deals with 50 - 200 species

only. The second reason is necessity of much more efficient use of color features.We

wanted to try the exploit the use of color information, as an alternative to extending

the Dense SIFT with color [18].

We elaborate on these issues in Section 4.2.
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Figure 4.1: System II
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4.2 Flower Taxonomy

At the top of flower genetic map comprising the LifeClef2014 flower set, there

are 89 flower families which involves 305 kinds of flower genuses in total, and at

the bottom of the genetic map, these genuses are divided into 483 types of flower

species, as shown in Figure 4.2.

As can be seen in this figure, while similarity within a flower family can be low,

similarities within the flower genus can be very high. In particular, flowers within a

genus are often similar in their petals, carpels, and stamens, while they differ mainly

in color. For example the flower genus, Narcissus, has four flower species: Narcissus

assoanus Dufour(# 5806), Narcissus dubius Gouan(# 5810), Narcissus poeticus

L.(# 5817) and Narcissus pseudonarcissus L.(# 5819). As they are from same

flower genus, the shapes of their petals and texture characteristics are similar, while

their main differences are in the color of their petals and stamens. The significance

of color features thus becomes indispensable for the fine grained identification of

flower species.

Indeed, when we consider results from identification with System I, these four

species of Narcissus are misclassified into similar species under the same genus. By

processing with color based classification step, they are clustered at different color

clusters (one of them is classified as red color cluster, while others are classified

into the white and yellow cluster). As each cluster is handled by separate plant

identification systems, they each have to deal with fewer number of classes.

Color can also be used alongside the SIFT descriptors, rather than in a pre-

classification step. Indeed, there is an extension of SIFT features with color. How-

ever, as some researchers point out (e.g. Wengert et al. [26]), this may not result

in the best way of combining these three information sources (texture, shape and

color).

As a simultaneous solution to both problems (large number of classes and incor-

porating color), we have decided to use new color descriptors and classifier stage.

In other words, we use the color information at first clustering (classification) stage,

after that Dense SIFT descriptors from gray-scale images are used for second (final)

classification step. Therefore, we have fewer number of species for each Dense SIFT

operation tasks and color and shape/texture differences between flowers with similar
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Figure 4.2: ”Narcisus” Flower Family
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shape, texture characteristics have become much more recognizable.

4.3 Color Descriptors

As color descriptors, we have considered Color Moments(CM) and Saturation

Weighted Hue Histograms(SWHH) based on our prior experience in plant identifi-

cation [27] [28] [29]. After several experiments with these descriptors, such as CM

descriptors from the whole size of images, dense grid of images, SWHH from the

whole size of images, we preferred to use SWHH from the whole image, as the chosen

color descriptor. Comparison of these experiments and results of them are discussed

in detail at Section 4.6. As a classifier of this stage, we have decided to use Random

Forest classifier due to successful results on similar problems.

4.3.1 Saturation Weighted Hue Histogram

We have selected the Saturation-Weighted Hue Histogram due to its desirable

characteristics such as matching the human color clustering better than RGB statis-

tics.

Hue, Luminance, and Saturation (HSL) form a 3D-polar coordinate color space

which is an alternative representation to the RGB space. This representation is con-

structed by first placing an axis between the origin and the point [Rmax,Gmax,Bmax]

in the RGB space, defining the achromatic axis. As shown in Figure 4.3, the color

space is fully described by these terms:

• Brightness or Luminance L ε [0, 1]: gives the position on the achromatic

axis.

• Hue H ε [0◦, 360◦]: is an angular measure around the achromatic axis with

respect to an origin at pure red.

• Saturation S ε [0, 1]: the distance from the achromatic axis.

There are different color space models whose are defined with these three com-

ponents of the HSL color space. We are using the Improved Hue, Luminance and

Saturation (IHLS) space that is one of these space models [30]. The main reason
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Figure 4.3: Achromatic Axis

of using this color space is related to the importance of the hue component in our

problem.

4.3.2 Saturation Weighted Hue Statistics

We used saturation weighted hue statistics due to determinant attribute of hue

values on flower images. The statistics are calculated with hue values that are

weighted by their corresponding saturation values. The main reason of weighting

the hue value is for compensating the weakness of hue statistics for weakly saturated

colors (gray-values).

Our calculation of the statistics are based on Allan Hanbury’s calculations [31]..

In that work, Hanbury argued about some disadvantages being due to the correlation

between hue and saturation values. This correlation is taken care of by this weighting

operation.

4.3.3 SWH Histogram Extraction

Hue histograms are usually used as image feature to classify chromatic images.

Achromatic and near-achromatic pixels are mostly eliminated in these histograms,

because in these pixels the hue term is fuzzy. Conversely, the saturation term

is ineffective in classification of achromatic and chromatic colors. Therefore we

can derive a weight for differentiating between chromatic and achromatic colors by

combining these histograms. In other words, higher saturated pixels which are the

more colourful can have higher weighting in the hue histogram than lower saturated

the less colourful pixes.
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Figure 4.4: (a) Colour image. (b) Hue of image (a). (c) Saturation of image (a).

(d) Luminance of image (a).

The saturation-weighted hue histogram is calculated with equation 4.1,

Wθ =
∑
x

SxδθHx (4.1)

where x is a pixel in the image. Hx and Sx are the hue and saturation term at a

point x and δij is the Kronecker delta function.

When we compare the hue histogram of image in Figure 4.4.b and the saturation-

weighted hue histogram in Figure 4.4.c, we can see main differences on low saturated

areas, these are black pixels in the Figure 4.4.c. This scattered hue histogram can

not meet with the expectation of representation for color differences. The resulting

color varies from red, through yellow, green, cyan, blue, magenta, back to red and

these colors are illustrated with different levels of gray pixels respectively from black

to white in the Figure 4.4.b. However the saturation-weighted hue histogram reduces

this problem and the amplitudes of the peaks are successfully reduced. So it leads

to a more robust histogram.
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Figure 4.5: Hue Histogram of Figure 4.4.a

Figure 4.6: Saturation-Weighted Hue Histogram of Figure 4.4.a
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4.4 Color Clusters

A significant decision for System II is the decision of which color clusters to have.

Too many clusters would correspond a more difficult classification task and too few

clusters would not really serve its purpose.

While doing this we considered many heuristically color clustering splits. We

started with the 9-color clusters scheme with white, yellow, red, blue, purple, green,

pink, orange, cyan. However in that case, there were many species classified in 2 or

3 different color clusters, due to the presence of multiple colors in many flowers (e.g.

yellow center, pink surround). Therefore we decided combining the most intersected

color clusters.

After several empirical color clustering experiments, five main color clusters are

determined. These are the least intersecting colors clusters that are created by

considering most intersecting color clusters from the previous scheme:

• Red Color Cluster,

• Blue & Purple Color Cluster,

• Pink & Magenta Color Cluster,

• White & Yellow Color Cluster,

• Green Color Cluster.

As can be seen from Table 4.1, color clusters of the training set contains a

varying number of 40 to 155 species in each cluster. Both training and test sets

contain images and color ground-truths from all flower species within color cluster.

The White & Yellow color cluster which is the largest cluster, includes 155 flower

species from among the 483 flower species in the full data set. Some of the species

inside this cluster are shown in Figure 4.7. The sizes of the other color clusters are

listed in Table 4.1.

Even this color scheme, there are also some intersections among the 5 color

clusters. Specifically, while the total number of species for test set is 306, the

total of the species in Table 4.1 is 381. For example, a flower species named as

Gagea Granatelli Parl has 8 flower images shown in Figure 4.8. After color based
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Figure 4.7: White Yellow Color Cluster

classification operation is done, 6 of these are classified as White & Yellow Color

C. and 2 of them (top left and middle images) are classified as Green Color C..

However, we allow for some intersection so as not to have harsh colour boundaries;

and this intersection does not necessarily cause a problem in the plant identification

phase.

Another example and different type of problem is represented in Figure 4.9 for

the flower specie Orchis Anthropophora. This flower species is classified into three

different clusters during the color clustering. Out of the 28 flower image in this

class, 2 of them were classified as Green C.; another 2 were classified as Pink &

Magenta C. and the rest were classified as White & Yellow C. This situation is not

a misclassification problem apparently, as seen in Figure 4.9, as there green and

magenta versions of this species.
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Table 4.1: Flower Subset with Ground-truth

Train

Images
Species

Test

Images
Species

Red 200 41 100 41

Blue & Purple 400 64 200 57

Pink & Magenta 400 93 200 78

White & Yellow 400 235 200 155

Green 328 50 128 50

Overall 1728 483 828 381

4.5 Classification Using Random Forests

We use a Random Forest classifier, to detect each color cluster. Random Forests

are proposed by Breiman [32], and are among the most commonly used ensemble

learning techniques. They are known to have good generalization performance.

Plant classifiers for each color clusters are trained with flower species from these

color clusters. Color clusters of the training set contains a varying number of 40 to

155 species in each cluster.

Often, one color classifier returns positive and others are negative; while occa-

sionally two color classifiers returns positive and rarely all of them returns negative.

We select the final cluster according to the the largest response output by the clas-

sifiers, indicating their strength of beliefs.

The run-time performance of the random forest is quite fast. This is the main

reason to use Random Forests as color classifier. Training time is around 15 minutes

for training set with 2000 images by Weka (data mining software in java) [33].

Testing time is approximately 15 seconds per 100 images.

4.6 System Overview

A sample input/output for System II is shown in Figure 4.10. In brief, ini-

tially the query image is classified into the correct color cluster. Then, the plant is
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Figure 4.8: Gagea Granatelli Parl

Figure 4.9: Orchis Anthropophora
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identified by System I that is trained for that color cluster.

In this example, the query image (39082.jpg) is firstly classified by the color

classifier into the Pink & Magenta cluster. After that, the identification system of

the Pink & Magenta cluster recognizes the image identity as belonging to 538 -

Carduus Nutans species, where the initial number is just the system assigned ID for

that species.

Figure 4.10: System II Example

For testing the color classification step, we use the test set that is labelled manu-

ally as to the correct color cluster and measure the Precision and Recall values within

each cluster. Detailed analysis about precision and recall results are examined in

Chapter 6.

The main disadvantage of this system is that a wrong classification at color

based classification step may cause a drastic effect on plant identification accuracy.
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However, as we allow some overlap between clusters, the errors are often not drastic.

Furthermore, reducing the number of species from 483 to 78 reduces the size of the

identification problem for System I considerably, and results in much more accurate

plant identification overall.
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Chapter 5

Classification with Cropped

Images by Saliency Map based

ROI Detection

5.1 System Outline

This system is an improved version of System II. It is constructed by adding an

image cropping (region selection) phase just before System II. The goal by construct-

ing this phase is focusing on characteristic parts of image in addition to getting rid

of frequently seen background objects such as leaves, stem, ground, etc by cutting

out them.

The most important problem for this preprocess phase is choosing the area with

required flower components. In literature it is called as Region of Interest(ROI)

Selection. After numerous literature reviews related with that problem, we have

decided to work out with Saliency Map based ROI selection algorithms, due to the

fact that most accurate results are gathered with this method during our experiments

on flower data set.

In this model firstly saliency map from raw images is extracted. Secondly band-

pass and Gaussian filters are applied on saliency map of images to get rid of noise,

artifacts and negligible pieces of flower. Finally a smart cropping process is applied

onto raw images by using these filtered maps. As shown in Figure 5.1, this process is

applied before System II. Rest of the processes are the same as work flow of System
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II. The main difference between Improved System II and System II is processing on

saliency based Region of Interests cropped images.
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Figure 5.1: Improved System II
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5.2 Region of Interest (ROI) (Saliency Map)

There are several approaches for extracting Saliency Map in the literature. We

preferred to evaluate a CVPR work by Achanta et al titled as ”Frequency-tuned

Salient Region Detection [3]. The reason why this approach is favoured is that it is

easy to implement and computationally fast, robust and accurate. In addition, this

approach benefits from features of color and luminance.

The goal of this approach is to compute the degree of saliency of each pixel with

respect to its neighbourhood. Substantial components of this approach are color

and lightness properties with center versus surround approach. In the literature,

most of the saliency map extraction approach utilize the similar center versus sur-

round method. The crucial point in this method is the size of the neighborhood

used for computing saliency. In our case we have preferred the entire image as the

neighborhood area. Empirically this preference provides us with more spatial freq

than state-of-the-art methods. Eventually, it results as uniformly highlighted salient

regions with well defined borders.

Briefly, this algorithm finds the Euclidean distance between pixel vector of Gaus-

sian filtered image with the mean vector for the input image, as shown at Equation

5.1.

S(x, y) =‖ Iµ − Iwhc(x, y) ‖ (5.1)

In the formula, S represents the saliency map for an image I. Iµ is the mean image

feature vector, Iwhc is the corresponding image pixel vector value in the Gaussian

blurred version of the original image to eliminate fine texture details and artifacts.

We are only interested in the magnitude of the difference; hence, we are just using

the L2 norm of the difference. This provides computational efficiency.

As demonstrated in Figure 5.2, at the first place input image I is used for

calculations of image average or mean vector and Gaussian blurred image. The

next step is extracting Region of Interest points by calculating differences of these

vectors. Eventually, an highlighted gray-scale map as saliency map is gathered as

depicted in the final image of Figure 5.2. The next step after the map extraction is

segmentation of region with interest points.
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Figure 5.2: Saliency Detection Algorithm [3]

5.3 Salient Region Detection and Image Crop-

ping

This process is the final phase in Region of Interest detection approach. We

accomplish this step for images with saliency maps. As illustrated in Figure 5.2, we

have gray-scale saliecy map images. In these images, intensities of pixels indicate

the relevancy of the pixel regarding searched object. Relying onto this evidence, we

have developed our region selection algorithm briefly by cropping the area associated

to these pixels.

Firstly, we create a mapping matrix from saliency map. Each element of this

matrix maps the consecutive 40 x 40 pixels from saliency map. In other words, a

binary matrix M whose size equals to one fortieth of saliency map size, is generated

and each value represents corresponding 40 x 40 area from saliency map.

Secondly, the energy of these 40 x 40 areas is calculated and energy of entire

image is as shown at Equation 5.2.

ξ =

Ni∑
i

S(i)/Ni (5.2)

If the energy of the selected area is higher than optimized k value times energy of

entire image, then we set corresponding M value as 1, otherwise 0.

Mi =

 1 if εi > εI ∗ k

0 if εi < εI ∗ k
(5.3)
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This k value is empirically optimized and it is set to 1.7 in order to be used

in our thresholding process. After that, Gaussian thresholding is applied to get rid

of noise, artifacts and some negligible pieces with 5 x 5 Gaussian filter. Then, the

Gaussian blurred M matrix is thresholded with mean value of M.

g(x, y) =
1

2πσ2
∗ e−

x2+y2

2σ2 (5.4)

In the final phase, borders of a box comprehending all positive values of final M

matrix are derived. In sum, corresponding box area from raw images are selected

as Region of Interest points and cropped to process with System II.

Images in Figure 5.3 illustrate saliency maps and corresponding cropped images

from randomly chosen images at Flower Set. Saliency maps from raw images are

extracted and they seem as convincing as most of rest images in the flower set.

Cropped (or saliency based selected) parts are also quiet successful; eventhough, at

some images cropping do not seem perfectly successful since some components of

flowers, especially small parts of petals, are deleted. However; it doesn’t constitute

a big problem in our work, and overall the RoI helps with experimental results.
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Figure 5.3: ROI Samples; (a)left column Original images, (b)middle column Saliency

Maps, (c)right column ROI detected images
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Chapter 6

Evaluation

In this chapter we evaluate and report all classification results of three systems

proposed in the thesis.

6.1 Data Set

We use the training portion of the flower data set from LifeClef2014 Plant Identi-

fication campaign to evaluate the proposed systems, containing 13,164 flower images.

We have split roughly 1/3 of this data as test set and rest of them as training set

due to absence of meta-data (ground-truth) for official test set. The resulting data

set contains 8,798 training images and 4,366 test images, containing 483 and 381

different plant species, respectively.

Since there is no ground-truth about the dominant color of a flower among the

meta-data, we have manually labelled a subset of the flower data set. As shown

in the last column of Table 6.1, the subset inludes 1,728 training images and 828

test images from 306 plant species. As can be seen in this table, the distribution of

images and plant species vary for different color clusters. Furthermore, some flower

species have images on more than one color clusters. Hence, the total number of

species in Table 6.1 is higher than 306, which is the total number of different species

in the test data. However, as indicated before, we believe that the small amount of

overlap between different color groups is necessary and is makes it worthwhile to do

a color clustering.
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Table 6.1: Flower Subset with Ground-truth

Train

Images
Species

Test

Images
Species

Red 200 41 100 41

Blue & Purple 400 64 200 57

Pink & Magenta 400 93 200 78

White & Yellow 400 235 200 155

Green 328 50 128 50

Overall 1728 483 828 381

6.2 Results

6.2.1 System I - Plant Identification Using Dense SIFT

The first set of results, shown in Table 6.2, belong to System 1, where the plants

in the photographs are classified in one step. We give the results both for the full data

set, and separately for the subset for which we manually assigned color clusters, so

as to be able to compare with System II. As can be seen,plant identification accuracy

for the full dataset is around 27%, while that for the subset is around 35%.

Table 6.2: System I - Plant Identification

Train Images

Count

Test Images

Count

Number of

Species
Accuracy

Full dataset 13,164 4,559 483 27.00%

Color groundtruth subset 1,728 828 306 34.54%

6.2.2 System II and III - Color Classification

Table 6.3 reports the results of the color classification used in System II in terms

of precision and recall measures. For color clustering in a given cluster, the precision

44



value indicates the proportion of correctly classified images among all images that

are put in that cluster, while the Recall value indicates the ratio of the images put

in that cluster among all images that indeed belong to that cluster.

High precision and recall ratios are observed for the first three color clusters

(Red, Blue&Purple, Pink&Magenta) color clusters. while the White&Yellow color

cluster has somewhat lower precision and the Green color cluster has low recall

values, respectively. We see that since the background is also green in most of

the flower photographs, this cluster has the least overall accuracy. However, the

weighted average precision is 92.83%, which is quite satisfactory.

Color classification results of the System II with region of interest detection, is

similar to that of System II for the first three color clusters, as shown in Table 6.4.

However, there is an improvement in the White&Yellow and Green color clusters.

Overall, the color classifier precision increases from 92.83% with System II, to 94.72%

with saliency based ROI selection method.

Table 6.3: System II - Color Classification Results

Test

Images

Classified

As

True

Positives
Precision Recall

Red 100 108 98 90.74% 98.00%

Blue & Purple 200 200 195 97.50% 97.50%

Pink & Magenta 200 203 196 96.65% 98.00%

White & Yellow 200 232 191 82.32% 96.00%

Green 128 85 83 97.64% 64.84%

Overall 828 828 764 92.83% 92.26
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Table 6.4: System II with ROI - Color Classification Results

Test

Images

Classified

As

True

Positives
Precision Recall

Red 100 105 98 93.33% 98.00%

Blue & Purple 200 201 197 98.01% 98.50%

Pink & Magenta 200 202 198 98.02% 99.00%

White & Yellow 200 212 195 91.98% 97.50%

Green 128 108 97 89.81% 75.78%

Overall 828 828 785 94.72% 94.80%
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6.2.3 System II - Plant Identification

The plant identification rates within each color cluster is given in Table 6.5.

These rates show what percentage of all images in the test set are recognized cor-

rectly. For instance, out of the 100 images that are the Red cluster of the test set, 69

of them are correctly identified. Note that the corresponding 31% (100-69%) error

includes both the color classification and plant identification results. In that sense,

69% accuracy in that cluster is very satisfactory.

Table 6.5: System II - Plant Identification Results

Test

Images

Classified

As

Correctly

Identified

Identification

Accuracy

Red 100 108 69 69.00%

Blue & Purple 200 200 89 44.50%

Pink & Magenta 200 203 108 54.00%

White & Yellow 200 232 114 57.00%

Green 128 85 45 35.15%

Overall 828 828 425 51.32%

Table 6.6: System II with ROI - Plant Identification Results

Test

Image

Numbers

Color

Clustering

Results

True

Classified

Numbers

Identification

Accuracy

Red 100 105 73 73.00%

Blue & Purple 200 201 92 46.00%

Pink & Magenta 200 202 117 58.50%

White & Yellow 200 212 119 59.50%

Green 128 108 53 41.40%

Overall 828 828 454 54.83%
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Plant identification results of the System II with region of interest detection

are reported in Table 6.6. If we compare these classifiers with plant classifiers of

System II, we see that the overall plant identification accuracy is increased from

51.31% to 54.83%. There are two main factors on this improvement; first of all

color classification is more accurate, as the color classification is less affected by

background. Second of all, we obtain a much more robust feature representation

(BoW dense SIFT) due to ROI selection.
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6.3 Summary

Evaluation of System I, System II and Improved System II are completed and

comparisons of accuracies are demonstrated at Table 6.7. The accuracy means the

percentage of correctly retrieved or classified images among all test subset as a final

identification results of entire systems. 51% accuracy means that roughly 51 % of all

images in the flower subset with color ground-truth are classified correctly among

306 flower species. As can be seen, there are great performance differences between

System I and others.

Specifically, the accuracy of System I is 34.54% and our proposal color based

preclassification process improves this system’s accuracy by almost 17% and 19%

with System II and Improved System II, respectively. The second factor is efficient

use of SVMs by dividing main classification problem into subsets or subproblems

with prior classification tools.

Table 6.7: Results of All Systems

System I

Accuracy

System II

Accuracy

Improved System II

Accuracy

Red - 69.00% 73.00%

Blue & Purple - 44.50% 46.00%

Pink & Magenta - 54.00% 58.50%

White & Yellow - 57.00% 59.5%

Green - 35.15% 41.40%

Overall 34.54% 51.32% 54.83%

We participated the Plant Identification campaign at 2013 and 2014 with System

I and alternative models of System II. We have 3rd rank with System I on the flower

category of campaign 2013 [10]. However, we used an alternative model of System

II at 2014. In this model we are using time-era based classification instead of color

based classification for the classification before the plant classifiers. We have 4th

rank with this model against more experienced competitors than 2013 [11][12]. The

ranks are decided by score between 1 to 0 from inverse of the rank of the correct
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species. The top scores are respectively 0,339 and 0,22 and our score is 0,118 which

means almost 20% correctly classified images. If we compare the results of System

II with results of the top competitors, we can claim that System II could get good

results almost as good as the top result.
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Chapter 7

Appendix

WEKA wrapper in MATLAB for Random Forest

1 f unc t i on Random Forest with SWHH ( )

2

3 c l e a r a l l ; c l o s e a l l ;

4

5 %% I n i t i a l i z i n g

6 % adding the path to matlab2weka codes

7 addpath ( [ pwd f i l e s e p ’ matlab2weka ’ ] ) ;

8 % adding Weka Jar f i l e

9 i f strcmp ( f i l e s e p , ’\ ’ )% Windows

10 javaaddpath ( ’C:\Program F i l e s \MATLAB\R2014b\ too lbox \Weka

−3−6\weka . j a r ’ ) ;

11 end

12 % adding matlab2weka JAR f i l e that conver t s the matlab

matr i ce s ( and c e l l s )

13 % to Weka i n s t a n c e s .

14 javaaddpath ( [ pwd f i l e s e p ’ matlab2weka ’ f i l e s e p ’ matlab2weka .

j a r ’ ] ) ;

15

16 %% Loading SWHH Dataset

17 load SWHH train
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18 load SWHH test

19

20 % numerica l c l a s s v a r i a b l e

21 featName = { ’SWHH’ } ;

22 f e a t u r e t r a i n = SWHH train ( : , 1 : 1 2 ) ;

23 c la s s num t = SWHH train ( : , 1 3 ) ;

24

25 f e a t u r e t e s t = SWHH test ( : , 1 : 1 2 ) ;

26 c lass num v = SWHH test ( : , 1 3 ) ;

27

28 % conver t ing to nominal v a r i a b l e s (Weka cannot c l a s s i f y

numerica l c l a s s e s )

29 c l a s s t r a i n = c e l l ( s i z e ( c l a s s num t ) ) ;

30 uClass num = unique ( c la s s num t ) ;

31 tmp ce l l = c e l l ( 1 , 1 ) ;

32 f o r i = 1 : l ength ( uClass num )

33 tmp ce l l {1 ,1} = s t r c a t ( ’ c l a s s ’ , num2str ( i −1) ) ;

34 c l a s s t r a i n ( c l a s s num t == uClass num ( i ) , : ) = repmat (

tmp ce l l , sum( c la s s num t == uClass num ( i ) ) , 1) ;

35 end

36 c l e a r uClass num tmp ce l l i

37

38 c l a s s t e s t = c e l l ( s i z e ( c l a s s num t ) ) ;

39 uClass num = unique ( c la s s num t ) ;

40 tmp ce l l = c e l l ( 1 , 1 ) ;

41 f o r i = 1 : l ength ( uClass num )

42 tmp ce l l {1 ,1} = s t r c a t ( ’ c l a s s ’ , num2str ( i −1) ) ;

43 c l a s s t e s t ( c lass num == uClass num ( i ) , : ) = repmat (

tmp ce l l , sum( class num == uClass num ( i ) ) , 1) ;

44 end

45 c l e a r uClass num tmp ce l l i

46
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47

48 % Choosing a r e g r e s s i o n t o o l to be used

49 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 % c l a s s i f i e r = 1 : Random Forest C l a s s i f i e r from WEKA

51 % c l a s s i f i e r = 2 : Gaussian Process Regres s ion from WEKA

52 % c l a s s i f i e r = 3 : Support Vector Machine from WEKA

53 % c l a s s i f i e r = 4 : L o g i s t i c Regres s ion from WEKA

54 c l a s s i f i e r = 1 ;

55

56 %% Train and Test

57 idxCV = c e i l ( rand ( [ 1 N] ) ∗K) ;

58 ac tua lC la s s = c e l l ( s i z e ( c lass num v , 1 ) ,1 ) ;

59 pred i c t edC la s s = c e l l ( s i z e ( c lass num v , 1 ) ,1 ) ;

60 f o r k = 1 :K

61

62 %performing r e g r e s s i o n

63 [ actual tmp , predicted tmp , probDistr tmp ] =

w e k a C l a s s i f i c a t i o n ( f e a t u r e t r a i n , c l a s s t r a i n ,

f e a t u r e t e s t , c l a s s t e s t , featName , c l a s s i f i e r ) ;

64

65 %accumulating the r e s u l t s

66 ac tua lC la s s ( idxCV == k , : ) = actual tmp ;

67 pred i c t edC la s s ( idxCV == k , : ) = predicted tmp ;

68 c l e a r f e a t u r e t r a i n c l a s s t r a i n f e a t u r e t e s t c l a s s t e s t

69 c l e a r actual tmp predicted tmp probDistr tmp

70 end

71 c l e a r idxCV k
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