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Abstract

Spektroskopi biyomedikal alanlardan askeri uygulamalara kadar birçok alanda
kimyasal bileşenleri tanımlamak üzere geniş çapta kullanılan bir tekniktir.
Fourier Dönüşüm (FTIR) ve Dağıtıcı spektrometre olmak üzere iki farklı spec-
trometre bulunmaktadır. Fourier Dönüşü m spektrometresi gelen sinyalin
kendi girişimini kayıt etmede kullanılırken Dağıtıcı spektrometre gelen ışığı
CCD düzlemine dağıtmak için dağıtıcı ızgarası (diffraction grating) kullanmak-
tadır. FTIR spektrometrelerinin avantajı çözünürlüğün yüksek ve hızlarının
fazla olması iken flüorışıma (fluorescence) gürültü süne duyarlı olmaları spek-
trometrelerin kızılö tesi uyarım dalgaboylarında çalışmalarına neden olmak-
tadır. Dağıtıcı spektrometreler CCD düzlem dolayısı ile sınırlı çözünü rlüğe
sahip olmakta fakat daha yüksek dalgaboylarında çalışabilmektedirler. Bu du-
rum daha iyi bir sinyal gürültü oranı elde edilmesini sağlar. Bu tez yazısında iki
spektrometre teknolojisinin avantajları doğrultusunda birleştirilerek oluşturu-
lan hibrit bir spektrometre tasarımı anlatılmaktadır. Tasarımın dağıtıcı kısmı
tüm muhtemel optik sapınç ve sinyal alçalması kaynakları hesaba katılarak
simüle edilmiştir. Bununla birlikte, tasarımın interferometre kısmı ise hareket
eden aynaların dinamiği üzerine özen gösterilerek kurulmuş ve test edilmiştir.
Tasarımımıza en uygun yapıyı bulmak amacı ile çeşitli yöntemler keşfedilmiştir.

Thesis Supervisor: Meriç Özcan
Title: Associate Professor, Department of Electronics Engineering,
Sabanci University

2



Acknowledgments

I would like to express my thankfulness to my supervisor Assoc. Prof. Dr.

Meriç Özcan for his helpful comments, inspiring ideas and useful notices during

the learning process at Sabanci University. As an aspiring Master’s student, I

learned much from his deep knowledge and approach.

I would also like to thank to the committee members of my thesis defense

Prof. Dr. Erkay Savas and Prof. Dr. Necati F. Ecevit for their interest and

useful criticisms. Moreover, I also would like to thank to my dear colleague

Behzad Sardari for contributing and helping me out while dealing with diverse

difficulties.

Likewise, I appreciate the support of The Scientific and Technological Re-

search Council of Turkey (TÜBİTAK) for this project named “Development of

Fast and High Resolution Raman Spectrometer” under the research fund No:

113F357.

Finally, I would like to thank my family and my friends for supporting and

encouraging me during my whole training process in my Master’s studies.

3



Contents

1 Introduction 13

1.1 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Theory of the Michelson interferometer . . . . . . . . . . . . . 14

1.3 Raman spectroscopy, a brief introduction . . . . . . . . . . . . 18

2 Overview of IR spectroscopy 21

2.1 FTIR spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Dispersive Raman spectrometers . . . . . . . . . . . . . . . . . 22

3 Proposed setup: a hybrid FTIR and dispersive spectrometer 25

4 Optical design 28

4.1 Design tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Dispersive optics . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 The optical elements displacement: input slit, grating

and mirrors . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Aberrations in dispersive Raman . . . . . . . . . . . . 33

4.2.3 Optimization of the CCD location and line spread function 37

4.3 Interferometer design . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Framework for interferometer design and simulation . . 41

4.3.2 Collecting optics and fiber coupling . . . . . . . . . . . 47

5 Design of the chassis 49

4



6 Experimental results and data processing algorithms 52

6.1 Rotating mirror setup . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Rotating mirrors assembly . . . . . . . . . . . . . . . . 53

6.1.2 Sliding mode control . . . . . . . . . . . . . . . . . . . 56

6.2 Piezomotor implementation . . . . . . . . . . . . . . . . . . . 60

6.3 Linear motor experiments . . . . . . . . . . . . . . . . . . . . 69

7 Conclusions and future works 77

5



List of Figures

1-1 Michelson interferometer schematic. . . . . . . . . . . . . . . . 17

1-2 Light path length increases 2∆𝑑 for a mirror displacement of ∆𝑑. 18

1-3 Spectrum of the acetone molecule. . . . . . . . . . . . . . . . . 20

2-1 Michelson interferometer as used in our setup: the collimated

beam that enters the beamsplitter, is split in two beams that are

reflected by the fixed and translating mirrors. The recombined

beam is then focused on a slit and enters the dispersive part

afterward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-2 Difftaction grating splitting the incident beam into multiple

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-1 The proposed setup is composed by three parts: the input

Raman probe shines a laser signal onto a sample and collects

the scattered light, coupling it to a multimode fiber. The light

enters through a collimating lens system the FTIR spectrome-

ter; the beam, after it is recombined in the beamsplitter, is then

focused by a curved mirror on a pinhole, an then enters the dis-

persive section. Finally a CCD camera collects the diffracted

light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4-1 The software orchestration architecture, as explained in the text. 29

4-2 The plot of the intensity of interfered light as function of 𝑘. . . 30

6



4-3 Beam entering the dispersive setup is collimated by the colli-

mating mirror onto the diffraction grating. . . . . . . . . . . . 31

4-4 Complete simulation of the Czerny-Turner configuration. 10

wavelengths equally spaced from 430 to 1300 [nm] are sent

through the system using ray tracing simulation. . . . . . . . . 32

4-5 Angle between the diffraction grating and the firs negative order. 33

4-6 Angles between the optical elements (a) and their dimensions

in [mm] (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-7 The effect of the astigmatism is displayed. Rays focus at differ-

ent points in the saggital and tangential planes. . . . . . . . . 36

4-8 Effect of the spherical aberration on the focused rays. . . . . . 38

4-9 Focal distance distribution for wavelengths hitting the focusing

mirror on different locations (dashed), and fitting line (solid). . 38

4-10 Pointcarré map of an off location of the CCD (a) and of the

optimal location of the CCD (b). The guard bars are to indicate

the height of the CCD. . . . . . . . . . . . . . . . . . . . . . . 40

4-11 LSF (corresponding to the maps in Figure 4-10) of an off lo-

cation of the CCD (a) and and of the optimal location of the

CCD (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-12 The zero padded input plane electric field for a specific wave-

length (a) and the interference image (b) are displayed. . . . 44

4-13 The plot of the average intensities of the pixels matrix (a) and

the plot of its Fourier transform where the three peaks (in [𝑚−1])

of the interfered wavelengths are well detectable. . . . . . . . . 44

4-14 The interferometer depicted has the mirror on the top slightly

tilted, producing an incomplete interference on the detector. . 45

4-15 Interference pattern: on the top the fully destructive interfer-

ence for an aligned mirror and a tilted mirror, on the bottom

the constructive interferences. . . . . . . . . . . . . . . . . . . 45

7



4-16 Drop in the dynamic range as function of the tilt angle of the

mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-17 Role of the maximum acceptance angle 𝛼 on the design of the

Michelson interferometer, as explained in the text. . . . . . . . 48

5-1 (a) Overview of the chassis and the components location. (b)

Top view of the chassis. 1-the chassis; 2-the 2 DOF beamsplitter

holder; 3-the translating stage; 4-the diffraction grating turret;

5-the pinhole holder; 6-the fiber input mount; 7-the collimating

lens; 8-the fixed mirror . . . . . . . . . . . . . . . . . . . . . . 51

5-2 Design of the translating mirror holder, housing 0.5 [in] mirrors,

to be placed on the top of the motion stage. . . . . . . . . . . 51

6-1 (a) The light travels through the mirrors assembly that creates

a delay of 13 [mm] in this configuration. A shorter mirror is

mounted to allow a longer scanning range. (b) The assembled

setup is created from machined ABS plastic: the manufactured

rotating stage is composed by the spinning mirrors mounted on

a BLDC motor, the fixed mirror on the right and the inlet hole

on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6-2 Delays obtained for two simulations. X axis is the discrete time

intervals where ray propagation is performed, Y axis is the abso-

lute delay in mm. In the first plot a shorter mirror is employed,

while in the second plot two mirrors of the same length are

mounted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6-3 Raman spectrum obtained from acetone sample, and the back-

ground noise in the second plot. . . . . . . . . . . . . . . . . . 56

6-4 Clarke, on the left, and Park, on the right transforms. . . . . . 57

8



6-5 Schematics of the sliding mode control as explained in the text.

The red blocks are the inner current loops, closed directly on the

current feedback of the motor. The outer black loop is the speed

control, closed through the sliding mode observer, instead of the

encoder data that would be seen on traditional PID controls. . 58

6-6 The sliding mode observer takes as input the voltages and cur-

rents from the Park transform, and simulates the operation of

a drive. The first part is the electrical dynamics, where the

resistance R and the inductance L of the coils are considered.

The second part, linked to the first one by the machine constant

𝐾𝑠, emulates the mechanical dynamics, taking into considera-

tion the friction F and the inertia J. Angle and speed signals

are the output, and low pass filtered to ensure smoothness for

the next steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6-7 First plot is the reference speed (blue) and angle (green) from

the plant, and second one from the sliding mode observer. Speeds

and angle slopes are in good agreement. . . . . . . . . . . . . 60

6-8 The PI motion stage used in this setup. . . . . . . . . . . . . . 61

6-9 The interferometer setup as described in the text. . . . . . . . 62

6-10 Schematics of the data acquisition process: the start button

issues a global trigger to the motion stage and to the camera; it

is also collected by the acquisition board. The acquisition board

records the triggers from the camera and from the motion stage. 63

6-11 This is the timings chart of the signals recorded on the acqui-

sition board: the first signal is the camera trigger, occurring at

a constant rate; the second signal is the motion stage trigger,

they are uniform in space (5 [𝜇m] apart), but not uniform in

time. The third signal is the start trigger, and the last signal is

a convenience switch to start the data acquisition in Matlab. . 63

9



6-12 Bouncing effect on the micropositioner signal, the spurious edges

are marked with a red cross. . . . . . . . . . . . . . . . . . . . 65

6-13 The interpolated data: points marked with a + are the actual

rising edges of the stage triggers, while the points marked with

* are the interpolated data. . . . . . . . . . . . . . . . . . . . 66

6-14 Simplified shematic of a linear stage driven by a piezo motor:

the PZT elements (gray) are fired alternatively at a constant

frequency to translate the stage. . . . . . . . . . . . . . . . . . 66

6-15 Three red LED light spectrums acquired with the piezo motor

setup. (a) is acquired with a driving frequency of the stage of

10 KHz, (b) at 20 KHz and (c) at 25 KHz. The side bands are

possibly due to the vibration of the stage that is acting as a

modulation on the acquired signal. . . . . . . . . . . . . . . . 68

6-16 Spectrum of a 785 [nm] laser acquired with a driving frequency

of the stage of 25 KHz. The effect of the vibration of the stage

is noticeable in the quite broad spectrum of the peak (about 15

[nm]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6-17 Interferometer schematics: the blue light path is the main beam,

it is expanded by a microscope objective, collimated, and sent

through the interferometer, falling afterward on the CCD cam-

era. The red path is the reference beam, it follows the opposite

path of the main beam. . . . . . . . . . . . . . . . . . . . . . . 70

6-18 Picture of the interferometer with the main (blue) and reference

(red) beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6-19 A few cycles of the reference beam interference, with the zero

crossing points marked with orange circles. . . . . . . . . . . . 72

6-20 Image of the fiber mode acquired by the camera, used to per-

fectly align the two interferometer arms. . . . . . . . . . . . . 73

10



6-21 White light spectrum interference recorded with the camera.

The interference occurs at the point where the interferometer

arms have the same length. . . . . . . . . . . . . . . . . . . . 73

6-22 Time signal and its corrected Fourier transform for an infrared

LED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6-23 Time signal and its corrected Fourier transform for a yellow

LED with a 785 [nm] laser light superimposed. . . . . . . . . . 76

11



List of Tables

4.1 The parameters used to calculate the position of an astgmatism

correcting cylindrical lens. . . . . . . . . . . . . . . . . . . . . 36

12



Chapter 1

Introduction

1.1 Scope of this thesis

Spectroscopy is a widely used technique to identify chemical compounds, and

finds applications in many fields; it is used from food analysis to forensics.

This thesis is part of a project that aims to develop a novel FT spectrometer

that overcomes most of the limitations of actual spectrometers of this type.

In FT spectrometers the beam that needs to be analyzed enters a Michelson

interferometer and interferes on a single detector, here we want to multiplex

this signal by splitting it into multiple channels, each of a fixed bandwidth,

and use a CCD linear detector to acquire the signal. This technique enables us

to improve the sensitivity of the instrument because the fluorescence, all FT

spectrometers are susceptible of, will be distributed and this would increase the

SNR of all detectors. Current FT spectrometers are bounded to the infrared

region as fluorescence is reduced, but this new configuration will enable the

spectrometer to detect clean signals in the visible and UV region as well. This

is not only an improvement in the instrument bandwidth, but also allows

excitation of the sample at lower wavelengths, producing a higher intensity

signal, as in the case of Raman spectroscopy.

In this thesis the system composed by the Michelson interferometer and the

dispersive section that splits the interfered beam into multiple channels is

13



designed, and the Michelson interferometer is built and tested with different

solutions for the implementation of the delay line. The natural followup of

this thesis will be the implementation of the complete system, following the

optical design proposed here.

1.2 Theory of the Michelson interferometer

The Michelson interferometer is the best known of a class of interferometers

known as amplitude splitting interferometers; when used to detect the spec-

trum of light, a fixed mirror is replaced by a translating mirror, to introduce

a delay in one of the interferometers arm, making it an interferometric auto-

correlator.

In a Michelson interferometer as depicted in Figure 1-1, the electric field

𝐸 = 𝐸0 sin (𝜔𝑡+ 𝜑) is split into two equal beams, 𝐸1 and 𝐸2:

𝐸1 = 𝐸0 sin (𝜔𝑡+ 𝜑+ 𝐿1𝑘) (1.1)

𝐸2 = 𝐸0 sin (𝜔𝑡+ 𝜑+ 𝐿2𝑘) (1.2)

(1.3)

where 𝜔 is the frequency, 𝜑 the phase and 𝑘 = 2𝜋/𝜆 is the wavenumber, then

the electric field 𝐸𝑖 falling on the detector is the superposition of the two fields

𝐸𝑖 = 𝐸1 + 𝐸2.
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Assuming a constant 𝐸2
0 = 𝐼0, the intensity I is:

𝐼(𝜏, 𝑘) = |𝐸𝑖|2 = |𝐸1 + 𝐸2|2

= 𝐼0 sin2(𝜔𝑡+ 𝑘𝐿1 + 𝜑) + 𝐼0 sin2(𝜔𝑡+ 𝑘𝐿2 + 𝜑)+

+ 2𝐼0 sin(𝜔𝑡+ 𝑘𝐿1 + 𝜑) sin(𝜔𝑡+ 𝑘𝐿2 + 𝜑)

= 𝐼0(
1 −
���

���
���

��: 0

cos(2𝜔𝑡+ 𝑘𝐿1 + 𝜑)

2
) + 𝐼0(

1 −
���

���
���

��: 0

cos(2𝜔𝑡+ 𝑘𝐿2 + 𝜑)

2
)+

+ 𝐼0[cos(𝑘(𝐿1 − 𝐿2) −
���

���
���

���
���:

0

cos(2𝜔𝑡+ 2𝜑+ 𝑘(𝐿1 − 𝐿2))]

= 𝐼0[(1 + cos(𝑘(𝐿1 − 𝐿2))]

= 𝐼0[(1 + cos(𝑘𝜏)]

(1.4)

where 𝜏 is 𝐿1 − 𝐿2, the difference between the arms length of the interferom-

eter. The cosine terms having the time 𝑡 in the argument have time average

equal to 0.

This was derived for a single wavelength (monochromatic signal); in general

we would have a distribution of wavelengths (wavenumbers), then 𝐼(𝜏, 𝑘) =

𝐼(𝑘)[(1+cos(𝑘𝜏)]. The total intensity measured by the photodetector at every

path length difference 𝜏 is:

𝐼(𝜏) =

∫︁ +∞

0

𝐼(𝜏, 𝑘)𝑑𝑘

=

∫︁ +∞

0

𝐼(𝑘)[(1 + cos(𝑘𝜏)]𝑑𝑘

=

∫︁ +∞

0

𝐼(𝑘)𝑑𝑘 +

∫︁ +∞

0

𝐼(𝑘) cos(𝑘𝜏)𝑑𝑘

=
1

2

∫︁ +∞

−∞
𝐼(𝑘)𝑑𝑘 +

1

2

∫︁ +∞

−∞
𝐼(𝑘) cos(𝑘𝜏)𝑑𝑘

=
1

2
𝐼(𝜏 = 0) +

1

2

∫︁ +∞

−∞
𝐼(𝑘, 𝜏) cos(𝑘𝜏)𝑑𝑘

(1.5)

that is the cosine Fourier transform of I(k), composed by a DC term, 𝐼(𝜏 = 0)
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and a modulated AC term. From here we can write:

∫︁ +∞

−∞
𝐼(𝑘) cos(𝑘𝜏)𝑑𝜏 = 2[𝐼(𝜏) − 1

2
𝐼(𝜏 = 0)] (1.6)

Finally, from the recorded intensity signal as a function of the delay 𝜏 ,

we can obtain the spectral density 𝐼(𝑘) by taking its inverse cosine Fourier

transform:

𝐼(𝑘) =

∫︁ +∞

−∞
2[𝐼(𝜏) − 1

2
𝐼(𝜏 = 0)] cos(𝑘𝜏)𝑑𝜏

= 2

∫︁ +∞

0

2[𝐼(𝜏) − 1

2
𝐼(𝜏 = 0)] cos(𝑘𝜏)𝑑𝜏

= 4

∫︁ +∞

0

[𝐼(𝜏) − 1

2
𝐼(𝜏 = 0)] cos(𝑘𝜏)𝑑𝜏

(1.7)

Since the values of 𝐼(𝜏) are all real, this is equivalent to the inverse Fourier

transform of 𝐼(𝜏):

𝐼(𝑘) = 𝐹𝑇−1[𝐼(𝜏)] = 4

∫︁ +∞

0

[𝐼(𝜏) − 1

2
𝐼(𝜏 = 0)]𝑒𝑖𝑘𝜏𝑑𝜏. (1.8)

For practical reasons the scanning length is reduced in a range [-L/2,L/2],

that is equivalent to multiply 𝐼(𝜏) with a boxcar function of size [-L/2,L/2].

We can rewrite the FT integral as:

𝐼(𝑘) = 2

∫︁ +𝐿/2

−𝐿/2

[𝐼(𝜏)−1

2
𝐼(𝜏 = 0)]𝑒𝑖𝑘𝜏𝑑𝜏 = 2

∫︁ +∞

−∞
Π(

𝜏

2𝐿
)[𝐼(𝜏)−1

2
𝐼(𝜏 = 0)]𝑒𝑖𝑘𝜏𝑑𝜏.

(1.9)

The FT of the boxcar function is the sinc function, hence this operation is

equivalent to convolve the input signal with the instrument resolution function

𝑠𝑖𝑛𝑐(2𝐿𝑘) that has the first zero at

∆(𝑘) =
1

2𝐿
. (1.10)
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It is clear that to increase the resolution of the instrument it is simply neces-

sary increase the traveled distance L.

Let us now consider a discretized input signal composed by N equally

spaced intensities samples, with index 𝑛 running from 0 to N-1; each sample is

spaced 𝐿/𝑁 = ∆𝑑, where 𝐿 is the total path length difference, and 𝜏𝑛 = 𝑛∆𝑑.

The discrete Fourier Transform will be:

𝐼(𝑘𝑛) =
𝑁−1∑︁
𝑛=0

𝐼(𝜏𝑛)𝑒𝑖𝑘𝑛𝜏𝑛 . (1.11)

where 𝑘𝑛 is the discretized wavenumber. The Nyquist criterion sets the maxi-

mum step distance ∆𝑑 to avoid aliasing: if 𝑘𝑠 = 2𝜋
Δ𝑑

is the sampling frequency

in wavenumber, 𝑘𝑛 = 𝜋
2Δ𝑑

is the maximum detectable wavenumber, or Nyquist

wavenumber.

For instance, if we have a spectral range from 400 [nm] to 1100 [nm] (or

157080 to 57120 [𝑐𝑚−1]), the sampling steps ∆𝑑 must be at most a quarter of

the shortest wavelength, namely 100 [nm] (or 628320 [𝑐𝑚−1]); in fact the path

traveled by the light beam increases by 2∆𝑑 for each step ∆𝑑 of the mirror,

as shown in Figure 1-2.

L1

L2

E1

E2

E1+E2

Figure 1-1: Michelson interferometer schematic.
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Mirror

Light
path

Δd

Figure 1-2: Light path length increases 2∆𝑑 for a mirror displacement of ∆𝑑.

1.3 Raman spectroscopy, a brief introduction

Raman spectroscopy is one of the spectroscopy techniques first discovered by

Chandrasekhara Venkata Raman, an Indian physicist, in 1930. This technique

exploits the characteristics of any molecule, of having specific vibration modes,

that are discretely quantized [1]:

𝑃 = 𝛼𝐸, (1.12)

where P is the strength of the induced dipole mode, 𝛼 is an instantaneous

function of the current position of the atoms in the molecule, and (𝐸) is the

intensity of the incident wave, represented as

𝐸 = 𝐸0𝑐𝑜𝑠(2𝜋𝑣0𝑡). (1.13)

If we select 𝑄 as the physical displacement about their equilibrium position,

a vibration mode can be expressed as:

𝑑𝑄 = 𝑄0𝑐𝑜𝑠(2𝜋𝑣𝑣𝑖𝑏𝑡), (1.14)

where 𝑄0 is the maximum displacement about the equilibrium position. The

polarizability can be approximated to the first order Taylor expansion as:

𝛼 = 𝛼0 +
𝑑𝛼

𝑑𝑄
𝑑𝑄 = 𝛼0 +

𝑑𝛼

𝑑𝑄
𝑄0𝑐𝑜𝑠(2𝜋𝑣𝑣𝑖𝑏𝑡), (1.15)
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where 𝛼0 is the polarization of the molecule at the equilibrium point.

Finally we can write:

𝑃 = 𝛼0𝐸0𝑐𝑜𝑠(2𝜋𝑣0𝑡) +
𝑑𝛼

𝑑𝑄
𝑄0𝐸0𝑐𝑜𝑠(2𝜋𝑣𝑣𝑖𝑏𝑡)𝑐𝑜𝑠(2𝜋𝑣0𝑡). (1.16)

Expansion of 𝑐𝑜𝑠(2𝜋𝑣𝑣𝑖𝑏𝑡)𝑐𝑜𝑠(2𝜋𝑣0𝑡) yields to a significant result:

1

2
𝑐𝑜𝑠(2𝜋(𝑣0 − 𝑣𝑣𝑖𝑏)𝑡)𝑐𝑜𝑠(2𝜋(𝑣0 + 𝑣𝑣𝑖𝑏)𝑡), (1.17)

In the above equation it is clear how the molecule will vibrate, other than

at the frequency 𝑣0, the elastic vibration, at two other modes: 𝑣0 ± 𝑣𝑣𝑖𝑏, the

inelastic vibrations.

The so called Rayleigh scattering corresponds to the light emitted at the

incident frequency 𝑣0, while the up and down shifted scattering are the Raman

scattering, more precisely the stokes 𝑣0 − 𝑣𝑣𝑖𝑏 and anti-stokes 𝑣0 + 𝑣𝑣𝑖𝑏. The

only condition for the existence of the Raman scattering is the fact that 𝑑𝛼
𝑑𝑄

̸= 0

[2]. This means that a vibrational displacement of the atoms in the molecule

must reflect on a change in the polarizability 𝛼. Stokes scattering is the one

that carries more power, hence the easiest to detect. A simplified explanation

is that, according to the Boltzmann equations, more molecules should be in

the ground state than in any excited one. The exciting wavelength selection

plays a crucial role in the design of a Raman spectrometer, since Raman signal

intensity is roughly proportional to the inverse of the fourth power of the inci-

dent wavelength, meaning that shorter wavelengths result in a more powerful

signal. On the other side as the wavelength gets shorter, another inelastic

phenomena, called fluorescence, can obscure the Raman signal. It is also to

be noted that a larger wavelength leads to a larger shift, making the Raman

signal easier to isolate. An optimal compromise has to be found.

There are mainly two different setup, the FTIR spectrometer and the disper-

sive spectrometer. The first one usually employes a Michelson interferometer

in which a mirror is fixed and the other is translating, scanning a distance that
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is linked to the resolution of the instrument by the formula

𝑟𝑒𝑠[𝑐𝑚−1] =
1

𝑑𝑒𝑙𝑎𝑦𝑀𝐴𝑋 [𝑐𝑚]
, (1.18)

where 𝑟𝑒𝑠 is the resolution and 𝑑𝑒𝑙𝑎𝑦𝑀𝐴𝑋 is the maximum achievable optical

delay. This is because, as the Fourier transform of a signal in time domain

belongs to the reciprocal of that domain (frequency), the FT of a signal in

the length domain appertain to the wavenumber domain. The second type

of setup is the dispersive spectrometer, that uses a diffraction grating to split

the wavelengths and fan them out on a CCD. In the typical configuration,

the beam enters from a slit, and expands with a known NA on a collimating

mirror. It is then steered onto a diffraction grating that splits the beam, and

one of the diffraction modes is collected by a focusing mirror and focused on

a linear CCD array. An example of a Raman chart, obtained in our lab with

a dispersive spectrometer is shown in Figure 1-3.

Figure 1-3: Spectrum of the acetone molecule.
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Chapter 2

Overview of IR spectroscopy

2.1 FTIR spectroscopy

FT-Raman Spectrometers are much faster and they have the capability for

higher resolution when compared to the dispersive type [3], but they are more

vulnerable to fluorescent noise since all spectral components are recorded si-

multaneously. The excitation source’s wavelength should be much longer to

avoid the interference of noise originating from the fluorescent light. The most

common excitation source for these spectrometers is Nd-Yag at 1064 nm in or-

der to have reduced background noise [4]. Due to this excitation wavelength,

causing it to have reduced sensitivity level, FT-Raman is generally confined

to routine bulk analysis in recent times. FT-Raman spectrometer is based on

the most common of all interferometers, namely the Michelson interferome-

ter. A typical Michelson interferometer consists of one stationary mirror, one

translating mirror and a beam splitter at the center as shown in Figure 2-1.

The beam splitter is usually a 50:50, meaning that half of the incident power

is transmitted and half is reflected. While one of the waves is reflected off the

stationary mirror traveling a distance of (2L), the other wave is reflected off

the moving mirror traveling a distance of (2𝐿+2𝑑) where ’d’ is the traveled dis-

tance of the translating mirror from the central position. The returning waves

interfere with each other forming an interference pattern on the detector, be-
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cause it is a well known fact that if the optical path difference (2d) is equal

to a multiple of the wavelength, a constructive interference occurs, and the

vice-versa occurs if (2d) is equal to (𝑛+ 0.5)𝜆. Naturally, the resulting values

are detected in the space domain, and the Fourier Transform of this function

yields the spectrum of the incoming signal, in the wavenumber domain.

slit

translating
mirror

�xed
mirror

focusing
mirror

BS

Figure 2-1: Michelson interferometer as used in our setup: the collimated
beam that enters the beamsplitter, is split in two beams that are reflected by
the fixed and translating mirrors. The recombined beam is then focused on a
slit and enters the dispersive part afterward.

2.2 Dispersive Raman spectrometers

Dispersive Raman spectrometers are nowadays much more common than FTIR

ones, because of their compactness, robustness, and price. The working prin-

ciple of a Dispersive spectrometer is as follows: the Raman scattered light,

emitted from a compound in the sample room as a result of an interaction

between that compound and the incident wave, is collected with a lens and

passed through a slit. It is then steered by a collimating mirror towards a
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diffraction grating, which is the key element in the system. Subsequently, the

grating splits the spectrum of the incoming signal into bands of frequencies

obeying the following grating equation [5]

𝑑(𝑠𝑖𝑛(𝜃𝑖) + 𝑠𝑖𝑛(𝜃𝑚)) = 𝑚𝜆 (2.1)

where 𝜃𝑖 is the angle of the incident wave, 𝜃𝑚 is the angle between the diffracted

ray and the grating’s normal vector, d is the distance between two adjacent slits

or grooves and m is the diffraction order.A schematized model is represented

in Figure 2-2.

mode
-1 mode

0

mode
1

α β

Figure 2-2: Difftaction grating splitting the incident beam into multiple modes.

After the splitting operation is complete, the spectrum is reflected onto a

linear detector array to read the intensity information of each frequency band.

Now, the designer can choose to use any diffraction order depending on the

application, since by simply manipulating the groove period one can determine

which diffraction order gets the maximum power. However, the diffracted

beams corresponding to consecutive orders may overlap as one goes higher in

the spectral order, so it is always wiser to choose to use the first order diffracted

beams (either 1 or -1). Dispersive Raman Spectrometers have advantages

over FT-Raman Spectrometers in the way that they are less susceptible to
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fluorescent noise. Therefore it allows the user to utilize an excitation source

with a shorter wavelength. Practically, they can work with excitation sources

with wavelengths from UV to NIR range. Considering that the Raman signal

intensity is inversely proportional to the excitation wavelength ( 1
4𝜆

) [6], this

advantage makes Dispersive Raman Spectrometers more preferable in many

applications where increased sensitivity is a requirement.
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Chapter 3

Proposed setup: a hybrid FTIR

and dispersive spectrometer

In this work we propose a -hybrid dispersive and Fourier transform Raman

spectrometer- that will perform both in sensitivity and resolution, as opposed

to dispersive and FTIR spectrometers that perform in only one of the two

aspects. Our aim is to overcome the disadvantages of classical FT-Raman in-

terferometers that are the high fluorescent background noise, especially at low

excitation wavelengths, by combining it with a dispersive element so that we

can employ an excitation source with smaller wavelengths and therefore more

power, significantly increasing the signal to noise ratio at the output. At the

same time the advantages of the FTIR spectroscopy, such as the resolution

and speed, will still be present. Since with this novel setup we will overcome

the fluorescence issue, a lower wavelength of 785 [nm] (common for Raman

applications) can be used instead of the 1064 [nm] common for FTIR spec-

trometers.

This setup is composed by three sections, the Raman probe, the FTIR sec-

tion and the dispersive section. The schematics of the system is shown in

Figure 3-1.

The main purpose of this thesis is to design a hybrid spectrometer com-

posed by a Michelson interferometer on the front and a dispersive spectrometer
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after, and the experimentation on the FTIR part. The first part can be con-

sidered an FTIR spectrometer, with a fiber coupled Raman probe as input.

Two possible scanning mechanisms have been investigated, a rotating setup

composed by two mirrors face to face, and a translating mirror. Even though

the rotating mirror setup has been discarded in favor of the translating since

such a system would require an acquisition speed that can not be achieved by

linear or 2D pixel arrays (needed in our setup), an FTIR employing this rotat-

ing system has been set up to show its advantages. In fact a rotating stage is

much more stable than a translating one, that requires accelerations and de-

celerations at the end of its run. The final design that employes a translating

stage was designed and tested putting emphasis on the difficulties encountered

with the use of a piezo motor, and the final choice of a linear motor instead.

The dispersive setup has been designed in an iterative process that tries to

find the optimal parameters by using FEM analysis. The dispersive part is

particularly challenging as many aberrations such as astigmatism and coma

can greatly deteriorate the performances of the instrument. Another impor-

tant issue is the choice of the right CCD, because speed and QE requirements

are very high.

A chassis was also designed to accommodate all the optical components, both

of the interferometer and dispersive parts. Its structure well fits a specific piezo

motor that was chosen during the design process, but that turned out to have

some disadvantages with regard to linear motors, and was then discarded.
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Figure 3-1: The proposed setup is composed by three parts: the input Raman
probe shines a laser signal onto a sample and collects the scattered light, cou-
pling it to a multimode fiber. The light enters through a collimating lens
system the FTIR spectrometer; the beam, after it is recombined in the beam-
splitter, is then focused by a curved mirror on a pinhole, an then enters the
dispersive section. Finally a CCD camera collects the diffracted light.
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Chapter 4

Optical design

In this chapter I will describe how the dispersive and interferometer parts

were designed and merged. The dispersive optics are organized in the common

Czerny-Turner configuration, where the slit is placed at the focal point of the

collimating mirror, and the other components are placed such that the minimal

space is occupied. First I will explain the design of the input optics, namely the

slit and the collimating mirror, then the choice of the grating, and the measures

to take to minimize the aberrations’ effect. Finally the location of the CCD

array is optimized to allow a sharp image to be recorded. In the second part

the interferometer is designed, underlining the effect of misalignment in the

mirrors position; the fiber coupling optics are then designed, as input to the

interferometer.

4.1 Design tools

The complex software orchestration developed to design the spectrometer is

composed by mainly three components, with very specific functions. The

software used to design the mechanical parts is SolidWorks, its special features

allowed an easy parametrization of the model parts, and a robust linkage

of them as assemblies. Comsol is used as core for the FEM analysis and

ray tracing, allowing us to run the simulations on a remote powerful server

28



machine, and collect the data on a local computer for analysis. The main

orchestrator was chosen as MATLAB, that stores the model and properties

of our system, and allows us to fully operate on the simulations data. The

softwares were linked through the LiveLink interface that Comsol provides.

Such a system allows us to run multiple simulations, that imply changes in

the geometry, or the properties of the media the rays are travelling into, just

by changing the same parameters on the MATLAB script, and automatically

reflecting those changes on the SolidWorks design and/or on the Comsol media

properties. Finally, after the optimization of the design, the final geometry is

loaded on SolidCAM for manufacturing studies and CNC programming. An

overview of the complete architecture is given in Figure 4-1.

parameters

geometry

results

geometry

Figure 4-1: The software orchestration architecture, as explained in the text.

4.2 Dispersive optics

4.2.1 The optical elements displacement: input slit, grat-

ing and mirrors

Dispersive spectrometers, also called Czerny-Turner spectrometers, are usually

designed for F-number greater than 3, to avoid aberrations [7]. F-number is

related to NA according to the following equation:
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𝐹 − 𝑛𝑢𝑚𝑏𝑒𝑟 =
1

2𝑁𝐴
(4.1)

where NA is the numerical aperture, related to the light cone angle 𝜃 by the

relation

𝑁𝐴 = 𝑛 sin(𝜃) (4.2)

where n is the refractive index of the medium.

At the input of the setup is a slit. Plane waves encountering a single

aperture of width 𝑤 are diffracted such that intensity minima occur for angles

𝜃𝑛 relative to the original direction of propagation given by:

𝑁𝐴

𝑛
= sin(𝜃) =

𝑘𝜆

𝑤
(4.3)

where 𝑘 is a strictly positive integer, 𝜆 is the wavelength and 𝑤 the width

of the slit. The lobe carrying the maximum power is for 𝑘 = 1, as shown in

Figure 4-2.
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Figure 4-2: The plot of the intensity of interfered light as function of 𝑘.

In our case we chose the width of the slit in order to have an F-number of

10. The closest commercially available choice was of 100 [um]. The entrance
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slit is at the focal point of the collimating mirror, that is placed at an angle

𝜃𝑐 in order to reflect the beam on the diffraction grating, as shown on Figure

4-3.

Figure 4-3: Beam entering the dispersive setup is collimated by the collimating
mirror onto the diffraction grating.

The grating is placed at the focal point of the focusing mirror, and its angle

𝜃𝑔 angle can be adjusted, to accommodate different grooves density gratings.

Finally the focusing mirror is placed at an angle 𝜃𝑓 , that takes one order from

the diffraction grating and focuses it on the CCD placed at the focal distance.

In our simulation we sent 10 wavelengths equally spaced from 400 [nm] to

1100[nm], from a point source, having a F-number equal to 10. The complete

simulation of the system is shown in Figure 4-4

The beam hitting the mirror has diameter of 3.5 [mm] and is collimated

on the grating. Diffraction gratings split the incident beam into different

wavelengths following the formula [8]

𝑑 (sin𝛼 + sin 𝛽) = 𝑚𝜆 (4.4)

where 𝛼 is the incident entrance angle and 𝛽 the reflected angle, d the grooves

spacing, m the order and 𝜆 the wavelength. Our incident angle, as shown in

Figure 4-5, is of 6.7 [deg], m is the order -1 and d was chosen of 300 lines/mm;

extrapolating 𝛽 from the equation above, we can write:
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Figure 4-4: Complete simulation of the Czerny-Turner configuration. 10 wave-
lengths equally spaced from 430 to 1300 [nm] are sent through the system using
ray tracing simulation.

𝛽 = arcsin
𝑚𝜆

2𝑑
− 𝑠𝑖𝑛𝛼 = 19.07[𝑑𝑒𝑔] (4.5)

for the central wavelength of 700 [nm].

The position and inclination of the diffraction grating has been chosen in

order to reflect back to the collimating mirror the order 1 and dispersing it

toward the entrance slit. This will avoid this order to cause back reflections

that could finally hit the CCD and decrease the SNR. The complete design

of the dispersive part, including the angles between the normal vectors of the

32



19.26°
beta

6.71°
alpha

DG

Figure 4-5: Angle between the diffraction grating and the firs negative order.

components is shown in Figure 4-6

Although many gratings with different groove density can be fit on the design,

the density chosen for the simulation allows about 10 segments, in the spectral

range from 400 to 1100 [nm], to be resolved on a 2048 pixels array of 8 [𝜇m]

each.

4.2.2 Aberrations in dispersive Raman

Three main aberration phenomenon have to be addressed in the design of a

Czerny-Turner based spectrometer, they are coma, astigmatism and spherical

aberrations.

Coma Coma is caused by off-axis employment of optical elements such as

lenses, mirrors or gratings. Its effect is an asymmetry of the beam (for a spe-

cific wavelength), seen as a skewing of rays in the dispersion plane. Coma

comes mainly from the asymmetry of the system [9], especially brought by

the diffraction grating. This causes the beam leaving the grating to have a

different cross-section than the entering beam. This is partially corrected by

the focusing mirror, and in our design it is kept to a minimum level by keeping

the grating angle the closest to the Blaze angle. Another important rule is to
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Figure 4-6: Angles between the optical elements (a) and their dimensions in
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keep the radius of the curved mirror the closest possible, in fact our mirrors

have both the curvature of 100 [mm].

Astigmatism Astigmatism is the difference in focal length of rays that are

parallel and perpendicular to an instrument axis of symmetry. Astigmatism, if

limited, has a positive effect because it spreads the beam in the sagittal plane,

while keeping it sharp in the tangential plane, as shown in Figure 4-7. Since

our CCD pixels columns have a width much shorter than the height, this allows
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the beam to be distributed on the whole pixels vertical array; on the other side,

an exaggerated astigmatism will cause the beam to extend too much on the

vertical plane and fall off the CCD, causing a loss of the signal. Astigmatism

comes from the curvature of the spherical mirrors, and the distance between

the two foci can be calculated according to the following formula [10]:

𝑑𝑓 =
𝑟1
2
𝑠𝑖𝑛𝑎1𝑡𝑎𝑛𝑎1 +

𝑟2
2
𝑠𝑖𝑛𝑎2𝑡𝑎𝑛𝑎2 (4.6)

where 𝑟1 is the radius of the collimating mirror, 𝑟2 the radius of the focusing

mirror, 𝑎1 the off-axis incident beam angle on the first mirror, and 𝑎2 on the

second mirror. The focal point on the sagittal plane can be calculated as

𝑓𝑠 =
𝑟2

2𝑐𝑜𝑠𝑎2
(4.7)

It is possible to correct for astigmatism by fitting a cylindrical lens in the

design. The position of such a lens can be calculated as follows:

𝑠𝑐𝑠 =
𝑃 +

√︀
𝑃 2 + 4𝑃𝑓𝑐𝑠

2
(4.8)

is the distance of the lens from the new focal point, 𝑓𝑐𝑠 is the focal length of

the cylindrical lens, and P is defined as

𝑃 = 𝑑𝑓 − 𝑡0
𝑛− 1

𝑛
(4.9)

where 𝑡0 is the thickness of the lens. Finally we can define 𝐿𝑐 as the distance

of the lens from the center of the focusing mirror as

𝐿𝑐 = 𝑓𝑠 − 𝑠𝑐𝑠− 𝑡0 (4.10)

we calculated a lens using the parameters in 4.1 and obtained a distance of 37

[mm].

Even though we allocated a place in the design to fit the lens, we choose

not to compensate for the astigmatism in the first design, because the beam
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𝑟1 100 [mm]
𝑟2 100 [mm]
𝑎1 16 deg
𝑎2 16 deg
𝑡0 3
𝑓𝑐𝑠 8
n 1.5

Table 4.1: The parameters used to calculate the position of an astgmatism
correcting cylindrical lens.

height at the tangential focal point well fits the pixel column height as it will

be shown in the following sections.
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Figure 4-7: The effect of the astigmatism is displayed. Rays focus at different
points in the saggital and tangential planes.
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Spherical aberration Finally we must spend some words on the spherical

aberration, that comes from the curvature of the focusing mirror. Light hitting

different points on the mirror is focused at different distances, as shown in

Figure 4-9 for a lens. The focal point of the mirror is dependent on the angle

of incidence 𝜃 :

𝑓 = 𝑟(1 − 1

2𝑐𝑜𝑠𝜃
) (4.11)

where r is the radius of curvature. For angles 𝜃 << 1, we can write

𝑓 =
𝑟

2
(4.12)

In our case we can calculate the effect of the spherical aberration by know-

ing the range spanned by the diffraction grating, the Blaze angle, and the

diffraction angle for different wavelengths:

𝜃450𝑛𝑚 = 16.25 + 1.04 = 17.29[𝑑𝑒𝑔] (4.13)

𝜃1100𝑛𝑚 = 16.25 − 4.98 = 11.27[𝑑𝑒𝑔] (4.14)

∆𝜃 = 𝜃450𝑛𝑚 − 𝜃1100𝑛𝑚 = 6.02[𝑑𝑒𝑔] (4.15)

The effect of the incident angle on the radius of curvature is shown in

Figure 4-9.

4.2.3 Optimization of the CCD location and line spread

function

To adjust the position of the CCD in order to reach an optimal position, the

plane of the CCD array was tuned both in distance from the focusing mirror

and inclination. Two parameters has been selected, the distance of the CCD

plane from the curved mirror, and the inclination with respect to a xz plane.
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Figure 4-8: Effect of the spherical aberration on the focused rays.
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Figure 4-9: Focal distance distribution for wavelengths hitting the focusing
mirror on different locations (dashed), and fitting line (solid).

An optimization framework has been set up as follows: using the LiveLink

interfaces provided by Comsol (described in Chapter 4.1), the ray propagation

was solved in Matlab, and the Pointcarré plot of the rays hitting the CCD plane

was analyzed, measuring the maximum distance spanned by each wavelength

on the width of the CCD. An optimal function was defined as the rms value of

all the distances, and that function was minimized by tuning the distance and
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the angle of the plane. Once the optimal parameters were found, they have

been used to adjust the position of the CCD in the final design. The focusing

of the different wavelengths on a different distance is caused by the spherical

aberrations of any spherical optical element: beams closer to the corner of the

mirror will focus at a shorter distance. For the selection of the optimal value,

a distance of +/- 1 cm has been scanned from the central focal distance of the

mirror, and an angle of +/- 15 [deg] has been swept.

The incident beam on the CCD has been analyzed to extract the line spread

function (LSF) and estimate the optimal number of sections the beam can be

divided into. The cross section of the line image is called a line spread function

(LSF). A LSF is derived by integrating the point solid along sections parallel

to the direction of the line, in our case the points will be the incident location

on the CCD plane of the rays propagated by the ray tracing software. This

works because a line image is the summation of an infinite number of image

points along its length [11]. Obviously a larger number of rays would increase

the “resolution”, giving more acurate results. LSF can be derived from the

point spread function (PSF) by integrating it along a line [12]:

LSF =

∫︁ +∞

−∞
𝑝(𝑥,−𝑦)𝑑𝑦 (4.16)

where 𝑝 is the point spread function, the response of the system to an in-

finitesimal point source, in our case the single light ray. Since the point spread

function can be interpreted as the projection integral of the PSF at different

𝑥 locations, we can write:

LSF =

∫︁ +∞

−∞
𝑝(𝑥, 𝑦)𝑑𝑦 (4.17)

The Pointcarré map (the projection of the rays on a plane perpendicular to

their direction) of the CCD plane for a not optimized location, and the optimal

location are shown in 4-10; the LSF of the same configurations is shown in

Figure 4-11
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Figure 4-10: Pointcarré map of an off location of the CCD (a) and of the
optimal location of the CCD (b). The guard bars are to indicate the height of
the CCD.
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Figure 4-11: LSF (corresponding to the maps in Figure 4-10) of an off location
of the CCD (a) and and of the optimal location of the CCD (b).
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4.3 Interferometer design

4.3.1 Framework for interferometer design and simula-

tion

Design and simulation of the Michelson interferometer was done by using the

angular spectrum method to propagate the beam. A MATLAB implementa-

tion of the method has been developed. Here follows a brief introduction of the

angular spectrum method: this technique models the propagation of a plane

wave in a medium, the plane wave is first sampled using a sampling grid on a

plane perpendicular to the propagation direction of the field, an FFT of every

’pixel’ is taken, and multiplied for a complex function that takes into account

the attenuation and the phase change in the medium. To recover and interfere

the wave the inverse FFT is taken in the destination plane. Every wavelength

is propagated with the same method.

In a more formal approach, the angular spectrum method takes an input

source field on the input plane at 𝑧 = 0

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 0) = 𝜓0(𝑥, 𝑦) =

∫︁ +∞

−∞

∫︁ +∞

−∞
Ψ0(𝑘𝑥, 𝑘𝑦) 𝑒

𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦) 𝑑𝑘𝑥𝑑𝑘𝑦

(4.18)

where

Ψ0(𝑘𝑥, 𝑘𝑦) = ℱ{𝜓0(𝑥, 𝑦)} (4.19)

and a propagation kernel, dependent on the propagation medium [13]

ℎ(𝑥, 𝑦, 𝑧) =
exp(𝑖2𝜋𝑟𝜆−1)

𝑟

𝑧

𝑟
(

1

2𝜋𝑟
+

1

𝑖𝜆
) (4.20)

where 𝑟 is the distance of the (𝑥, 𝑦, 𝑧) point from the center.
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The sampling distance of the electric field in the space domain should be

fine to avoid aliasing. Also, as the wave propagates, it diffracts and the beam

size gets enlarged by the distance it propagates, so the beam size and the

zero padding around it should be appropriate for the distance it is supposed

to travel. For the first simulation, the beam is supposed to travel for around

30 cm and a beam diameter of 1 mm is both realistic and appropriate for

the simulation of an ideal Michelson interferometer. A uniform electric field

composed by 3 different wavelengths of 600 [nm], 750 [nm] and 900 [nm] (with

the suitable zero-padding) is propagated for the distance mentioned above,

the scanning mirror moves by 12.5 [nm] steps (the total path difference is then

of 25 [nm]), well below the Nyquist sampling distance that in our case is a

quarter of the smallest wavelength (150 [nm]). Higher resolution means higher

scanning range, because the resolution in wavenumber is simply the inverse of

the scanning range; it is important to note that the wavenumber resolution is

not the same for all the wavelengths, in fact a shift in wavelength ∆𝜆 = 𝜆2−𝜆1
in [nm] corresponds to a ∆𝑤 in [𝑐𝑚−1] following this equation [14]:

∆𝑤 =

(︂
1

𝜆1
− 1

𝜆2

)︂
* 107. (4.21)

In this simulation 500 samples spaced 12.5 [nm] were taken, yielding to a

traveled distance of 6 [𝜇m] hence to a resolution of 1666 [𝑐𝑚−1], enough to

separate the sample wavelengths, but allowing a short computational time,

being the angular spectrum method a very computational intensive algorithm.

The results of the simulation are shown in Figure 4-12 and 4-13.

With the method described above, a second experiment was performed, to

analyze the effect of misaligned mirrors in the interferometer setup: a beam was

propagated for a distance corresponding to the sum of the interferometer arms

lengths, d (3 [cm] * 4= 12 [cm]) and interfered with another beam traveling

the same distance plus an incremental scanning distance ∆𝑑. In the case of a

tilted mirror, the beam travels a longer distance and hit the CCD in a position
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that does not fully overlap the interfering beam: it is shifted by a distance that

is function of the angle the mirror is tilted, and the arm length:

𝑆 = 𝑑 tan𝛼 (4.22)

where 𝑆 is the shift amount and 𝛼 the angle the mirror is tilted with respect

to the vector parallel to 𝑑. This configuration is shown in Figure 4-14.

The input distribution was sent down the path and interfered with the

second beam, and the interferogram recorded. The input plane was taken of

the size of 256x256 discrete point sources (pixels) with a size each of 8 [𝜇m],

making a 4 [mm2] beam. The interference pattern at each step is recorded,

and superimposed for each wavelength, as shown in Figure 4-15. Finally the

effect of a tilted mirror was measured as drop in the dynamic range between

a fully constructive and a fully destructive interference, and this drop was

measured for different angles. The result can be seen in Figure 4-16.
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(a) (b)

Figure 4-12: The zero padded input plane electric field for a specific wavelength
(a) and the interference image (b) are displayed.
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Figure 4-13: The plot of the average intensities of the pixels matrix (a) and the
plot of its Fourier transform where the three peaks (in [𝑚−1]) of the interfered
wavelengths are well detectable.
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Figure 4-14: The interferometer depicted has the mirror on the top slightly
tilted, producing an incomplete interference on the detector.

Figure 4-15: Interference pattern: on the top the fully destructive interference
for an aligned mirror and a tilted mirror, on the bottom the constructive
interferences.
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Figure 4-16: Drop in the dynamic range as function of the tilt angle of the
mirror.
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4.3.2 Collecting optics and fiber coupling

The Raman signal is collected by a commercial probe [15] that carries the

785 [nm] laser to the tip and illuminates a sample. This probe is designed to

operate above the 785 [nm], and can be replaced with a probe operating in

a different range, if needed. The signal is then filtered inside the probe by a

notch filter and sent through a multimode fiber. The input fiber to our setup

is a hard polymer-clad, multimode, step-index fiber with a core diameter of

200 um. Its NA is 0.22. Considering the NA of the fiber, if we do not employ

any pinhole to maximize the amount of light entering the system, the light

cone angle will be

𝛽 = arcsin(𝑁𝐴) = arcsin(0.22) = 0.2218[𝑟𝑎𝑑] = 12.71[𝑑𝑒𝑔] (4.23)

Another important parameter is the maximum acceptance angle of the system.

It is calculated according to the resolution formula [16]:

𝛼𝑚𝑎𝑥 =

√︂
∆𝜎

𝜎𝑚𝑎𝑥

(4.24)

where ∆𝜎 is the spectral resolution (1[𝑐𝑚−1]), and 𝜎𝑚𝑎𝑥 the maximum wave-

number in the spectrum (1100 [nm]). Those parameters give a maximum angle

of 0.01 [rad] or 0.57 [deg]. The 𝛼 for our system can be calculated by knowing

the entrance aperture (fiber core of 200 [𝜇m]) and the focal distance of the

collimating lens. The collimating lens was chosen of focal length equal to 12.6

[mm], this gives a beam diameter of

𝑑𝑖𝑎 = 𝑓𝑙 tan 𝛽 = 2.7[𝑚𝑚] (4.25)

The maximum distance of the lens from the aperture is then calculated as

follows
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𝐿𝑚𝑎𝑥 =
𝑑

𝑡𝑎𝑛𝛼𝑚𝑎𝑥
=

100[𝑛𝑚]

𝑡𝑎𝑛0.01
= 0.01[𝑚] = 10[𝑚𝑚] (4.26)

where d is the half aperture, as shown in 4-17.

α
d

L

(a)

(b)

Figure 4-17: Role of the maximum acceptance angle 𝛼 on the design of the
Michelson interferometer, as explained in the text.
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Chapter 5

Design of the chassis

All the optical elements, the fiber coupling optics, the Michelson interferometer

and the dispersive optics will be accommodated in a compact structure. The

structure, that is planned to be built from a bulk piece of aluminum, should

allow a fine calibration of all the sensitive components, without loosing its

compactness. The mechanical chassis and the mechanical components needed

were designed in SolidWorks. The collection of the Raman signal, excited by

a 785 nm laser, is handled by a commercial Raman probe, (RPB785 from In-

Photonics). The signal travels through a 200 [𝜇m] optical fiber and is collected

by a fiber coupler. It then enters the Michelson interferometer, and finally the

dispersive part. The main part, the chassis, is shown in Figure 5-1. At the

input is the fiber coupling and the collimating lens. The lens is mounted on

a removable custom holder, designed for 0.5 [in] optics. A 2 DOF (degrees of

freedom) mount holds the beamsplitter, allowing rotation and angle adjust-

ments. The fixed mirror of the interferometer is mounted on a 3 DOF stage

from Newport, allowing it to be tilted on two axis, and moved on the z axis.

This is one of the smallest and less thick off the shelf mirror mounts available.

The precise angle alignment is needed to achieve the highest dynamic range

in the Michelson interferometer. A fixed mirror holder was designed to fit the

moving stage, and it is shown in Figure 5-2. This mount was designed for the

piezo linear stage and might need to be adjusted for other stages. After the
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interferometer a curved mirror mounted on a 2 DOF stage focuses the beam

on a pinhole, before entering the dispersive setup. The first curved mirror

collimates the beam and steers it to the diffraction grating, that is installed on

a rotating turret; this allows different groove density gratings to be installed,

just by rotating the turret and thus illuminating the focusing mirror. Another

advantage of the turret is to adjust for misalignment of the mirrors in the

dispersive section since the mirror are fixed. Following the light path, finally

a focusing mirror reflects the first mode from the grating to the CCD camera,

that is externally mounted with a C-mount ring.
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Figure 5-1: (a) Overview of the chassis and the components location. (b) Top
view of the chassis. 1-the chassis; 2-the 2 DOF beamsplitter holder; 3-the
translating stage; 4-the diffraction grating turret; 5-the pinhole holder; 6-the
fiber input mount; 7-the collimating lens; 8-the fixed mirror
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Figure 5-2: Design of the translating mirror holder, housing 0.5 [in] mirrors,
to be placed on the top of the motion stage.
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Chapter 6

Experimental results and data

processing algorithms

In this chapter the setup of the Michelson interferometer, and the three dif-

ferent configurations for the translating mirror will be presented: the rotating

mirrors assembly, the piezomotor stage and the linear motor stage setup. The

rotating mirrors have been assembled on a custom made platform spinned by

a BLDC (Brushless DC) motor, for which an appropriate controller has been

designed. The piezomotor, from PI, is a high resolution (up to 8 [nm] steps)

linear motor, with a total span of 2 [cm], and a speed up to 2 [cm/s]. It can be

operated both in single step modes or in linear mode. Its main disadvantage is

the high vibrations at low speed. Finally the linear motor, from Thorlabs, is a

linear single phase DC motor, that is coupled to a microposition optical stage

by a precision screw. It can achieve very low speeds, but a reference laser,

of a known wavelength, should be employed to have a very precise reference

on the traveled distance. At the core of all the three experimented setups is

a very performant CCD camera from Hamamatsu [17]; it is a 4 MPx camera

capable of 20 Kfps on an area of 2048x8 pixels, and a quantum efficiency of

more than 80%, possible because of its liquid cooling system that keeps the

CCD at -20 ∘𝐶.
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6.1 Rotating mirror setup

6.1.1 Rotating mirrors assembly

The core of this setup is a couple of mirrors placed face to face on a spin-

ning wheel. The mirrors create a delay line of about 1 [cm] in the current

configuration shown in Figure 6-1. The rays bouncing back from the rotat-

ing mount are redirected to the beamsplitter only for a portion of a complete

turn of the wheel; the angle spanned in our configuration was computed us-

ing the ray tracing module of Comsol. Different configurations were analyzed,

with mirrors of the same length or one shorter, and the optimal configura-

tion was obtained iterating the simulation over a range of mirror’s dimensions.

In Figure 6-2 it is shown the achievable delay with two configurations where

the mirror sizes are different. The angle spanned is larger in the first and

optimal configuration, this allows a larger delay and hence an improved reso-

lution. Mirror alignment, along with the reduced spanned angle, are the two

main drawbacks of this configuration. From our interferometer simulations,

described in Section 4.3 we observed that the maximum allowed angular error

is of about 0.1 deg for each mirror in the horizontal and vertical plane. One

big advantage over the linear motor is the stability of the rotor compared to

the need to reverse the direction at every scan. We developed a stable and

convenient control for a sensorless BLDC motor, described in the next section.

The fact that a sensorless drive was employed allows us to have much more

compact drives, that do not need any encoder, as opposed to the linear motion

setup. Finally we estimated the required sampling frequency and discovered

that very high sample rates are required: in the case of a 2 Hz speed (needed

to achieve a minimum stability for the motor) and a total scan of 2 cm, oc-

curring for only 20 degrees of the complete rotation, we need to sample the

complete run in 1/9 of seconds. In order to detect 632 [nm], according to the

Nyquist sampling theorem, we need to collect samples at least every 150 [nm]

which makes 4 samples per wavelength. For a length of 2 [cm], we have to

53



collect 133333 samples in (1/9) seconds. This means that the speed required is

9*133333 = 1.2 MHz. According to these calculations, we need a CCD setup

that is capable of recording at 1.2 MHz. Nevertheless an interferometer was

set up to test the idea, and instead of the CCD camera, a photodetector was

employed to record the interference signal. A sample spectrum obtained with

this setup is shown in Figure 6-3, for a red LED light, and a red LED plus a

825 [nm] laser as reference.
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rays: Simulation results of a ray propagation through the rotating setup. In this configuration a 
shorter mirror is mounted to allow a longer scanning range.

light inlet >

fixed mirror >

(a)

rotmount: detail of the manufactured rotating stage composed by the spinning mirrors mounted on a 
bldc motor, the fixed mirror on the right and the inlet hole on the left.  (b)

Figure 6-1: (a) The light travels through the mirrors assembly that creates a
delay of 13 [mm] in this configuration. A shorter mirror is mounted to allow a
longer scanning range. (b) The assembled setup is created from machined ABS
plastic: the manufactured rotating stage is composed by the spinning mirrors
mounted on a BLDC motor, the fixed mirror on the right and the inlet hole
on the left. 55



Figure 6-2: Delays obtained for two simulations. X axis is the discrete time
intervals where ray propagation is performed, Y axis is the absolute delay in
mm. In the first plot a shorter mirror is employed, while in the second plot
two mirrors of the same length are mounted.

Figure 6-3: Raman spectrum obtained from acetone sample, and the back-
ground noise in the second plot.

6.1.2 Sliding mode control

In this section the control algorithm and implementation of the BLDC motor,

that spins the rotating mirror stage is presented. Compared to a single phase

motor, such as the one from Thorlabs that we employed in the third and

final setup, it presents a much more complex architecture. In fact a single
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phase motor can be controlled with a simple servo loop, and an outer speed

and position loop, each one with its own PID control. The speed and position

feedbacks have to be taken from an external encoder, or a reference laser in the

case it is employed in an interferometer. The BLDC motor has the possibility

to collect the speed signal from the same windings that are used to drive it,

but a much more complicated control algorithm has to be developed.

BLDC motors driving principles BLDC motors, consisting in 3n pairs

of winding where n is the number of poles, can be controlled giving three sine

waves 120 deg apart to the windings, placed in a star configuration. If we

consider the frame of reference of the stator with respect to the fixed axis, as

shown in Figure 6-4, the first transformation is known as the inverse Clarke

transformation, from the frame of reference 𝑎𝑏𝑐 to 𝑎𝑙𝑝ℎ𝑎 − 𝑏𝑒𝑡𝑎: it converts

the three balanced currents in the three-phase stator frame into two phase-

balanced currents in an orthogonal stationary frame. This occurs in the same

plane as the stator frame, but the angle between the two axes is 90 degrees

instead of 120 degrees. The second transformation from the frame 𝑎𝑙𝑝ℎ𝑎−𝑏𝑒𝑡𝑎

to 𝑑𝑞 is called inverse Park transformation. It transfers the stationary frame

to the rotor frame to make the AC currents into DC currents [18].

a

b c

α
β

Stator reference 
frame

α

β

qd
θ

Rotor reference 
frame

Figure 6-4: Clarke, on the left, and Park, on the right transforms.

Control design and simulation Control design was implemented in Simulink,

and can bee seen in Figure 6-5; the specifications were very relaxed, but a re-

quirement was to be a sensorless drive with very little speed oscillations. Speed
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requirements were ranging between 50 to 100 rpm. The system is composed by

a block named “palnt” that implements the motor simulator and the bridge, it

is backward connected to a Clarke and vectorial pwm generator, that takes as

input the alpha and beta components from the inverse Park transform. The

inverse Park transform is fed by the current angle of the rotor, 𝜃, and the PID

control signals for the 𝐼𝑑 and 𝐼𝑞 current components. 𝐼𝑑 reference is set to

0 because its field is aligned with the rotor magnet, and thus not giving any

torque, while the 𝐼𝑞 reference component comes from the outer speed loop.

The plant was tested first taking the reference from the motor block and di-

rectly feeding it to the PID controllers, bypassing the observer. This allowed

a first rough tuning of the PID controllers.

inverse
Park transform

inverse
Clarke transform

and SVPWM

Plant
(BLDC motor)

Sliding mode
observer

PID
controllers

Back EMF Ia,b,c

+

-

angle

speed

speed ref

Ialpha,beta

Clarke
transform

Ialpha,beta

Park
transformId,q

Id,q

Figure 6-5: Schematics of the sliding mode control as explained in the text.
The red blocks are the inner current loops, closed directly on the current
feedback of the motor. The outer black loop is the speed control, closed
through the sliding mode observer, instead of the encoder data that would be
seen on traditional PID controls.

Sliding mode observer design and simulation The sliding mode ob-

server was designed in order to estimate speed and angle of the rotor from

the alpha and beta measured currents and voltages. It is composed by a flux

and current observer, a signum function, a low pass filter and a Back EMF

modified observer. The estimated (from the voltages) alpha and beta currents

are compared in the first block and the sliding surfaces are 𝐿𝑑 * 𝐼𝑑 and 𝐿𝑞 * 𝐼𝑞.
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A complete report on the existence of the sliding conditions is given in [19].

The block diagram of the sliding mode observer in a detailed form is shown

in Figure 6-6. Flux/current observer and modified back EMF observer are

connected in cascade. Low pass filtering the signals is essential, and needs a

very fine tuning to ensure good accuracy. The results from the sliding mode

observer were compared with the velocity profile obtained in the previous sim-

ulations, for a well characterized motor. The two profiles are given in Figure

6-7. A bootstrap block has been also added to allow the rotor to be aligned

with the flux and start rotating. This block also implements a ramp function

that drives the motor close to the desired speed in open loop mode.

electical
dynamics

phase alpha

electical
dynamics

phase beta

mechanical
dynamics LPFR,L,Ks

F, J

Torque

U,I alpha

U,I beta

speed

angle

speed

angle

Figure 6-6: The sliding mode observer takes as input the voltages and currents
from the Park transform, and simulates the operation of a drive. The first part
is the electrical dynamics, where the resistance R and the inductance L of the
coils are considered. The second part, linked to the first one by the machine
constant 𝐾𝑠, emulates the mechanical dynamics, taking into consideration the
friction F and the inertia J. Angle and speed signals are the output, and low
pass filtered to ensure smoothness for the next steps.
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My implementation of the sliding mode observer is given below: 

The most tricky part is to find the correct cutoff frequencies of the low pass filters (‘fid’ in the 
figure above). 
The results from the sliding mode observer were compared with the velocity profile obtained in 
the previous simulations, for a well characterized motor. The two profiles are given below

First plot is the reference speed (yellow) and theta (purple) from the plant, and second one from
the sliding mode observer. Speed and angle slope match quite well. 
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Figure 6-7: First plot is the reference speed (blue) and angle (green) from the
plant, and second one from the sliding mode observer. Speeds and angle slopes
are in good agreement.

6.2 Piezomotor implementation

In this implementation a piezomotor translating stage was employed to dis-

place the moving mirror of the interferometer and to record the interferogram.

The stage is shown in Figure 6-8, and a 0.5 [in] mirror mount is directly

mounted on the top of it. The design of the algorithm to sample the inter-

ferograms presents multiple challenges: first the synchronization between the

camera and the motion stage should be achieved, the snapshots taken by the

camera and the position of the mirror should be correlated. Then, at a later

stage, the speed of the whole scan should be optimized, and that proved to

be the most challenging issue to solve. The camera is interfaced to the com-

puter through a CameraLink interface, which allows acquisition speed up to

10 KHz for an area of 2048x8 pixels. A Matlab toolbox allows the acquisition

of the images directly into the software, for later processing. The triggering

can be both internal, allowing an output trigger for synchronization, or exter-

nal. The motion stage has a movement accuracy of 8 [nm], allowing very fine

movements. Its controller can work in either open loop or closed loop modes,

the later being obviously much slower. The controller also allows external or
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internal trigger, having a set of commands that can be used to create macros

for customized behavior. The interferometer we set up to test the two devices

is shown in Figure 6-9: a 632.8 [nm] laser beam is expanded and attenuated,

on the bottom is the fixed mirror, on the right the moving mirror and on the

top the CCD camera.
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Figure 6-8: The PI motion stage used in this setup.

In a first approach we scanned at a 100 [nm] rate, in closed loop configu-

ration, to achieve the highest accuracy, the output trigger from the controller

was used to trigger the camera. This allows having the highest accuracy pos-

sible, but at the cost of a very slow scanning speed: each step takes about 80

us (the instructions speed of the controller is 8 us, and about 10 instructions

are processed for each motion command). At this rate 1 cm takes 800 seconds

to scan. A second approach was to run both the camera and the piezo drive in

free running mode: the camera takes images at the highest rate possible, and

the controller moves the stage at a pseudo constant speed. The piezo motor

works by translating the stage of finite steps, defined by the amplitude of the

pulse sent to the piezo. Since the stage has an optical encoder, the controller

can be programmed to output a trigger signal every fixed traveled range. The

acquisition of an interferogram follows this flow: the camera interface software

is set to record a fixed number of images, say 150000, at a speed of 12 KHz for

a total time of about 12 seconds, and export an AVI file with all the images

acquired. The images are a 8x8 pixels square of 64x64 [𝑢𝑚2] centered on the
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Figure 6-9: The interferometer setup as described in the text.

beam. While the camera acquires the images, the motion stage moves at a

constant speed.In the meantime a NI acquisition board records the camera

triggers, the motion stage 5 [𝜇m] trigger signal and the global trigger that

starts both the camera and the motion stage. This flowchart and the timing

diagram are shown in Figure 6-10 and 6-11.

Having the camera firing trigger and the controller steps, a non uniform

sampling scheme can be used to take the Fourier transform of the acquired

data points from the camera, even if the spacing between them is not uniform.
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STAGE

MATLAB
SYNC
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SIGNAL TYPE:
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TRIG TRIG

Figure 6-10: Schematics of the data acquisition process: the start button issues
a global trigger to the motion stage and to the camera; it is also collected by
the acquisition board. The acquisition board records the triggers from the
camera and from the motion stage.

ttime [us]

camera
trigger
(every 
frame 
grabbed)

motion
stage
trigger
(every 5 
[um]) 

start
signal

armed
signal

Figure 6-11: This is the timings chart of the signals recorded on the acquisition
board: the first signal is the camera trigger, occurring at a constant rate; the
second signal is the motion stage trigger, they are uniform in space (5 [𝜇m]
apart), but not uniform in time. The third signal is the start trigger, and the
last signal is a convenience switch to start the data acquisition in Matlab.
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The algorithm developed takes care of the nonlinearities of the piezoelectric

motion stage. The stage is programmed to output a trigger signal every 5

[𝜇m], a distance that is adjustable, but should be chosen accordingly to the

stage speed to fully resolve the different trigger peaks. The camera outputs a

similar trigger signal every picture taken. The stage trigger is then uniform

in space, but the camera trigger is uniform in time. To be able to take the

Fourier transform of the intensities, it is necessary to first assign to every

image a traveled relative distance. This is done by knowing both the 5 [𝜇m]

steps time (the rising edges) and the time each frame has been captured.

With these information an interpolation is performed on the camera signal

where, between the 5 [𝜇m] steps, the motor is assumed to have a linear motion

(other interpolation methods have no effect on the overall performance of the

algorithm). It is here necessary to filter the data because of the bouncing effect

of the optical encoder in the motion stage: as shown in Figure 6-12 when the

stage moves a step it oscillates around that position, and produces fake 5

[𝜇m] trigger signals. This has been filtered out by setting a time threshold,

equivalent to 10 clock cycles of the controller (80 [us]). After the interpolation

array has been constructed (a portion of a sample interpolated array is shown

in Figure 6-13), the multiple frames grabbed by the camera are averaged and

a nonlinear discrete Fourier transform (DFT) is applied to the data, where to

each intensity it is associated a relative distance from the starting point. Fast

Fourier Transform (FFT) can not perform well in this context, and some degree

of interpolation is needed to fill in gaps. An alternative is the Lomb-Scargle

method (or least-squares spectral analysis, LSSA), which estimates a frequency

spectrum based on a least squares fit of sinusoid [20]. The Lomb periodogram

is used when incomplete or unevenly sampled time series of data are available.

Spectrum of laser signals and of broadband light were taken, but we noticed

that the vibration of the piezomotor had negative effects on the acquired signal,

due to the nature of the moving mechanism: small piezoelectric elements move

a linear stage by hitting the sliding rod at a constant frequency, as shown in
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Figure 6-14. If at high driving frequencies, namely above 20 KHz, the effect

of such a vibration is neglectable, at lower frequencies it is well noticeable.

A comparison of the spectrum of a red LED at different driving frequencies

is shown in Figure 6-15c, and the spectrum of a 785 [nm] laser, taken at

the driving speed of 25 KHz is shown in Figure 6-16. Even though at high

frequencies it is possible to obtain a quite clear spectrum, our camera can not

follow such a speed as shown below:

the stage speed was measured experimentally at 25 KHz driving frequency,

and it turned out to be 0.02 [m/s]. To have a minimal detectable wavelength

of 400 [nm] we need steps size of 100 [nm], that means a sampling frequency

of:

0.02 [m/s] / 100 [nm] = 200 [KHz]

But our camera has capabilities of recording only at about 15 KHz on an

area of 2048x8 pixels. The results where the piezo driving frequency was above

5 [KHz] were taken employing a photodetector instead of the camera, working

at a sampling rate of 1 MHz.

time [us]

Figure 6-12: Bouncing effect on the micropositioner signal, the spurious edges
are marked with a red cross.
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Figure 6-13: The interpolated data: points marked with a + are the actual
rising edges of the stage triggers, while the points marked with * are the
interpolated data.

+ - + -

+ - + -

Figure 6-14: Simplified shematic of a linear stage driven by a piezo motor:
the PZT elements (gray) are fired alternatively at a constant frequency to
translate the stage.

66



(a)

(b)
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(c)

Figure 6-15: Three red LED light spectrums acquired with the piezo motor
setup. (a) is acquired with a driving frequency of the stage of 10 KHz, (b) at
20 KHz and (c) at 25 KHz. The side bands are possibly due to the vibration
of the stage that is acting as a modulation on the acquired signal.

Figure 6-16: Spectrum of a 785 [nm] laser acquired with a driving frequency
of the stage of 25 KHz. The effect of the vibration of the stage is noticeable
in the quite broad spectrum of the peak (about 15 [nm]).
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6.3 Linear motor experiments

Here a linear motor is employed to translate the moving mirror, the motor is

a single phase DC motor from Thorlabs (P/N Z612B). In this configuration

the motor is driven in open loop and an auxiliary He-Ne laser is employed

to find the traveled distance. The configuration, shown in Figure 6-17, have

two beams traveling different paths, the main beam, the blue one, carries

the signal we want to analyze, while the red one is the reference beam. The

interference of the reference beam is used to find the distance traveled by

counting the number of points at which the signal crosses the zero axis, in fact

since the laser wavelength is 638.2 [nm], the intersection will occur every 160

[nm] roughly. This information is used to compensate for the non uniformity

of the motor speed, following the same algorithm we employed with the piezo

motor stage: the zero crossing points, occurring every 160 [nm] will play the

role of the trigger signal spaced 5 [𝜇m], coming from the motion stage. The

obtained zero crossing points, shown in Figure 6-19, are used to interpolate

the camera trigger signal, and assign to every image a traveled distance.
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Figure 6-17: Interferometer schematics: the blue light path is the main beam,
it is expanded by a microscope objective, collimated, and sent through the
interferometer, falling afterward on the CCD camera. The red path is the
reference beam, it follows the opposite path of the main beam.
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Figure 6-18: Picture of the interferometer with the main (blue) and reference
(red) beams.
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Figure 6-19: A few cycles of the reference beam interference, with the zero
crossing points marked with orange circles.

A good alignment of the mirrors was essential in this setup, since both

the beams, the reference and the main beam had to overlap to create the

interference. To achieve this a 785 [nm] fiber coupled laser was used: the laser

was employed below the threshold level not to saturate the camera and to

image the fiber mode shape, displayed in Figure 6-20. Since the mode has the

dimensions of few micrometers, comparable to the multimode fiber core size,

overlapping the beam coming from the two arms of the interferometer led us

to a very high contrast interference. This made much more easy to record the

interference of a broadband signal. An example of the interference for such a

signal is shown on Figure 6-21, for an Halogen lamp.
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Figure 6-20: Image of the fiber mode acquired by the camera, used to perfectly
align the two interferometer arms.

Figure 6-21: White light spectrum interference recorded with the camera. The
interference occurs at the point where the interferometer arms have the same
length.
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We recorded successfully spectrums of different light sources. The algo-

rithm used for the piezo motor stage has been adapted to this new configu-

ration where instead of the triggers from the motion stage, the signal coming

from the interference of the reference laser on a photodetector was employed

to find the zero crossing points and interpolate the camera triggers. Spec-

trum for IR led and yellow led were recorded by letting the motor travel for a

distance of 3 [mm] around the point where the interferometer arms have the

same length, and where the interference occurs. The FT of the time signal

was taken employing the same Lomb algorithm described for the piezo motor

experiments, but in this case the intensities location was taken interpolating

the zero crossing points of the reference beam. In Figure 6-22 and 6-23 the

interference and the corrected FT are displayed for the IR and yellow leds.
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(a)

(b)

Figure 6-22: Time signal and its corrected Fourier transform for an infrared
LED.
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(a)

(b)

Figure 6-23: Time signal and its corrected Fourier transform for a yellow LED
with a 785 [nm] laser light superimposed.
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Chapter 7

Conclusions and future works

In this thesis a novel design for a hybrid spectrometer is proposed, the ad-

vantages of such a system are the reduced fluorescence effect with respect to

traditional FTIR spectrometers, since the wavelengths are not all detected by a

single photodetector, but by a CCD array. This will allow the spectrometer to

work at higher excitation wavelengths, allowing a better signal to noise ratio.

The system is composed by three main parts, the signal collection optics, the

interferometer and the dispersive optics. Many challenges have been encoun-

tered in the design of the dispersive and FTIR parts: the aberrations cause a

loss of signal in the Czerny-Turner configuration, and it is necessary to correct

for them, the CCD detector position has to be finely tuned to achieve the best

signal to noise ratio. The interferometer has also to be carefully designed since

tiny misalignment in the optics cause high power loss in the signal. The input

fibre coupling optics are also a sensitive component since the acceptance angle

of the interferometer is very narrow. Finally a mechanical chassis has been

designed trying not to neglect any of the multiple hints obtained from the

simulation of all the components. Subsequently the interferometer has been

set up to test three different motion solutions for the translating mirror: a

rotating mirror assembly, a translating piezomotor stage and a linear single

phase motor. The main issue has been to find a good compromise between

the minimum achievable speed of the stage to keep a certain stability, but at
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the same time a speed that would allow the CCD camera, with a much lower

sampling rate than a photodetector, to sample at least 100 [nm] steps, needed

to detect a 400 [nm] wavelength. The best choice turned out to be the linear

motor, that has the better stability at low speed.

In this thesis work both the dispersive and interferometer sections has been

designed and simulated, but only the interferometer has been built and tested.

In a future work the complete system will be set up, following the guidelines in

this thesis; the whole system, composed by the interferometer and the disper-

sive optics will be tested and assembled in the chassis proposed, with minor

revisions to accommodate a specific motion stage.
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