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ABSTRACT

STUDY ON LOCALIZED THERMAL EXPANSION

GRADIENT FORMATION FOR ACOUSTIC WAVE

GENERATION IN A NOVEL THERMOACOUSTIC

IMAGING MODALITY

Rupak Bardhan Roy

Ph. D. in Electronics Engineering

Supervisor: Assc. Prof. Ayhan Bozkurt

September 2017

Thermoacoustics is the process of generation of sound by heat or vice versa. Volume

generated thermoacoustic signals can be produced by thermal expansion induced

volume contraction and rarefaction inside a target body. Thermoacoustic imaging

uses this modality to obtain vivid insight into the internal structure of target body,

both for non-destructive testing and biomedical imaging. Any penetrating pulsed

radiation can be used for such purpose, including microwave where the modality is

called thermoacoustics in general or by incident light waves where the same is termed

as photoacoustics. The current thesis establishes the theoretical basis for a novel

thermoacoustic imaging modality where pulsed ultrasound is used as the incident

penetraing source. A formal forward transient theoretical eqution set is derived

based on established transient acoustic propagation models and the problem is solved

using a commercially available FEM software. The results are then compared with

experimental results and considerable agreement has been observed.

Keywords : Thermoacoustics, AA-TAI, Analytical modeling, FEM.



ÖZET

YENİ BİR TERMOAKUSTİK GÖRÜNTÜLEME

MODALİTESİNDE SES DALGASI ÜRETİMİ İÇİN

LOKALİZE ISIL GENİŞLEME GRADYANI

OLUŞTURULMASI ÜZERİNE ÇALIŞMA

Rupak Bardah Roy

Elektronik Mühendisliği Doktora Derecesi

Tez Yöneticisi: Doç. Dr. Ayhan Bozkurt

Ağustos 2017

Isı ile ses dalgası ve ses dalgalarıyla ısı üretilmesi, termoakustik adıyla anılmak-

tadır. Dış etmenlerle bir hacim içinde yaratılan sıcaklık değişimleri, sıkışma ya da

genleşmeye neden olarak termoakustik işareti üretmektedir. Termoakustik görüntüleme

tekniği, bu modalitenin hasarsız muayene ve biyolojik dokuların incelemenesi için

kullanımına dayanmaktadır. Isının bir mikrodalga kaynağı tarafından üretildiği

durumda teknik radyoa-kustik görüntüleme olarak anılmakta olup, kaynagın bir

lazer olması durumunda foto-akustik adını almaktadır. Bu tezde, termoakustik

işaretin üretilmesi için kullanılan ısı kaynağının ultrason dalgaları olduğu yeni bir

görüntüleme tekniğnin kuramsal altyapısı oluşturulmuştur. İleri yönlü bir kuram-

sal denklem dizisi geliştirilerek, önerilen görüntüleme yönteminin geçici zamanlı

çözümlemesisin bir ticari FEM yazılımıyla gerçekleştirilmesi sağlanmıştır. Çözümleme

sonuçları, deneysel verilerle karşılaştırılarak doğrulanmıştır.

Anahtar Kelimeler: termoakustik, AA-TAI, çözümlemeli modelleme. FEM.
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Chapter 1

Introduction

The word ‘thermoacoustics’ can be defined as ‘the production of sound by heat’

and vice versa. When heat is incorporated to a body, thermal expansion is made

to do mechanical work [1], and it is the mechanical vibration of the body itself.

The concept of thermoacoustics is centuries old, but, it is more recently that the

acoustic and ultrasound research community has taken up the subject very seri-

ously. The hard work has led to amazing discoveries in the field of vibration science

and to cutting edge application. Some examples are cryocoolers, the Rijke tube,

thermoelectric cooling, etc. In metals and other nonliving objects the technique

offers a new method of non destructive evaluation (NDE). In such cases thermoa-

coustic effect can be used to differentiate and locate regions of varying mechanical,

electrical, and thermal properties like thermal expansion coefficient, heat capacity

etc. which conventional NDE fails to sense. The most recent event in the field is

the invention of the thermoacoustic computed tomography or medical thermoacous-

tic imaging (TAI) which got introduced to the scientific community not more than

three decades ago [2]. In such systems a pulsed energy source is used to excite a

target region of the human body. The pulsed excitation induces some temperature

expansion-rarefaction in the target region depending on the local physical, electrical

or optical properties. This thermal expansion results in low amplitude acoustic wave

that can be detected at finite distance.Acoustic waves generated by thermoacoustic

principle with ionizing, radiating, electrical energy are generically termed as ther-

moacoustic effect. Photo-acoustic effect is the name given to the modality when

incident radiation is light.

1



Introduction

The elementary theory of thermoacoustics is based on the work by Lord Rayleigh

[3] and Sondhauss [4], however most of the theoretical and experimental work were

based only on the production of sound by heat. In 1850, Sondhauss experimentally

investigated the oscillations related to glass blowers showing that sound frequency

and intensity depends on the length and volume of the bulb followed by Kirchoff’s

publication on theoretical calculations on sound production by heat in 1868. Ther-

moacoustic effect with photon excitation was first reported by Alexander Graham

Bell where he and Mr. Sumner Tainter investigated the sound production (audi-

ble range) by incident light [5]. The work focused on many metals but mainly on

Selenium and claimed that various intensities of sound are produced from various

materials when similar light intensity and frequency are incident. Hard rubber was

seen to produce largest intensity whereas paper and mica produced the least. The

first ever adaptation of the prevalent thermoacoustic effect in medical imaging was

in 1980’s by Professor Theoder Bowen of University of Arizona [2, 6]. Following

these publications the scientific community dedicated itself to the investigation of

thermoacoustic imaging principle for in-vivo and in-vitro experiments. Some old

and recent literature deals with system design for microwave induced thermoacous-

tic imaging for breast cancer detection [7], thermoacoustic imaging of human arm

using simple CRTs [8], development of fast parallel data acquisition systems for

TAI [9], FEM system design for photoacoustic imaging procedure [10,11], and a se-

ries of papers from the Indiana University Medical Center by Dr Robert A. Kruger.

Kruger’s publications started with a time averaged theoretical model of the pho-

toaoustic effect where he assumed that a portion of photon energy is absorbed and

being converted into heat [12]. Under such assumption he solved a modified version

of Penne’s Bioheat Transfer Equation (BHTE) with a heat source term. Then intro-

ducing the wave equation and under certain assumption incorporating the temporal

temperature variation one can find the pressure at the detector. In the next paper of

the series, some technical considerations were vividly discussed including the choice

of irradiation frequency for RF based thermoacoustic imaging and a inverse Fourier

transform based image reconstruction algorithm [13]. The paper also talked about

an experimental setup for doing thermoacoustic computed tomography for imaging
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the kidney. The detector set up was 64 elements of linear piezoelectric transducer ar-

ranged in a spiral manner. The RF excitation frequency was optimized as 434 MHz.

The theoretical base of the considerations in the paper was taken from the assump-

tions used in the photoacoustic imaging model of the previous paper. Next two

papers were published in ‘Radiology Technical Developments’. First one published

some imaging data with the previously developed experimental setup. The exper-

iments were done in-vitro on porcine kidneys [14]. The results demonstrated com-

parative images between ultrasonography, MR and thermoacoustics, which formed

the platform for in-vivo experiments on human breast in his next paper [15]. The

results proved that thermoacoustic images can exhibit clear contrast-difference be-

tween healthy tissues and carcinoma. The final paper in the series set up a new

experimental setup with linear transducer array where the sample was rotated with

a rotor. So, the linear transducer array, even being fixed, was able to capture image

of the entire sample [16]. Kruger’s theoretical and technical considerations were

accepted with high impact in the scientific community and were cited in numerous

thermoacoustic research in the following years. One such publication introduced a

better version of Kruger’s system design, data acquisition and reconstruction algo-

rithm which resulted in volumetric 3D thermoacoustic images [17]. In-vitro imaging

was done on tumor mimics and breast models with acceptable results. In agreement

with Kruger’s comparative results of TA images and other conventional imaging

modalities, the prior advantages can be categorized as:

• In soft tissue regions of the body the technique can provide important insight

to tissue characteristics which conventional imaging modalities that predomi-

nantly depend on reflections fail to deliver.

• Thermoacoustic imaging has the capability to verify treatment procedures.

For example, in cancer therapy using radiation or High Intensity Focused

Ultrasound (HIFU), it can be used to understand the after effects of dosage

delivery. Some recent research has successfully verified the claim by showing

that HIFU Lesion shape and size can be studied both in-vitro and in-vivo

during and after HIFU treatment [18].

In photoacoustic/thermoacoustic imaging, target tissue is illuminated with a short
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laser/microwave pulse of very short duration (1µs or less). Under thermal confine-

ment conditions (i.e., heat generated at a point does not get enough time to diffuse),

the temperature increase is directly proportional to the momentary absorption of

energy. The resultant thermal expansion of the heated tissue creates an acoustic

signal, which form the basis of thermoacoustic (TA) imaging. The analytical for-

mulation of the theory has been deduced in available literature [19,20], and is based

on the mathematical platform of reverse source problem. In both the cases (RF

and Photoacoustics) the target is exposed homogeneously to the incident pulsed

radiation. Thus, the dissipation of incident wave throughout the entire propagation

path plays an important role. The nonlinear dissipation can be controlled if trans-

mit beam-forming can be used; but none has been reported in available literature.

Additionally, since both RF and LASER thermoacoustic uses electromagnetic inci-

dent radiation (though at different frequencies), the resultant TA wave in both cases

exhibit closely related material properties.

Recently, a novel TAI imaging technique was proposed and named as ‘Acousto-

Acoustics’ or ‘All-Acoustic-TAI (AA-TAI)’ by Prof. Mustafa Karaman of Istanbul

Technical University (ITU). Experiments conducted by Prof. Karaman in associa-

tion with Prof. Arif Sanli Ergun of TOBB-ETU, Ankara, provided evidence for the

feasibility of AA-TAI. In the proposed technique, the thermoacoustic source itself

is an ultrasonic pulse, so that the imaging sequence becomes all-acoustic, starting

from pulsed energy incorporation, inducing thermal oscillations and up to the de-

tection. Acoustic transmit beam-forming (focused ultrasound pulses) are used as

the incident radiation and the modality is expected to provide realization of im-

portant acoustic properties of the target body which has not been reported by any

available TA modalities in use. One important difference of the ultrasound-induced

thermo-acoustic signal from its photo/microwave counterpart is the comparatively

slow propagation velocity of incident sound compared to EM waves. Hence, the AA-

TAI signals coming from the deeper tissue locations are delayed by the comparatively

slow propagation speed of sound. In the contrary, photon and microwave induction

generates TA signal simultaneously from every point wherever the penetration has

taken place. The delayed generation of the AA-TAI signal can be beneficial in im-

proving the depth resolution of the resulting image. In other words, photoacoustic
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Figure 1.1: Flowchart for modeling process.

image resolution is limited by back projection of received array data (receive beam

forming), where as, the AA image resolution utilizes both phased array transmit

beam-forming as well as receive counterpart.

The aim of the current dissertation is the development of a forward transient

theoretical model of the proposed modality to support the experimental findings of

Prof. Mustafa Karaman, and Prof. Arif Sanli Ergun. The novelty of this current

thesis is based on two primary motivations:

1. Forward transient theoretical modeling: Proposes a forward transient gov-

erning equation set and solves the same using commercially available FEM

software. The schematic in Fig. 1.1 demonstrate the modeling steps. (1) The

acoustic propagation of incident pulsed ultrasound and the thermal oscillation

induced by the same are modeled using a set of equations. (2) Temperature

output from the first set is used to solve for thermal expansion-rarefaction.

(3) The final equation set uses the thermal expansion result to solve for the

TA signal generation and propagation. Finally, some experimental results are

used to prove the proposed model.

2. Manufacturing of high-efficiency transducers to be used in an imaging system

based on AA-TAI.

5
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Results obtained from simulations based on the developed model, which closely

match experimental findings, are expected to shed light upon the virtues of the pro-

posed thermoacoustic imaging modality. Numerical results are expected to be used

in the assessment of signal levels to be received form various types of tissue, as well

as the development of image reconstruction algorithms, and hardware components

to support the proposed imaging technique.

The thesis has been organized as the following:

• Theory

• FEM simulation

• Model verification by experimental data

• CMUT for HIFU

• Conclusion

6



Chapter 2

Theory

The mechanism by which pulses of heat is generated inside a body (rather than

only near the surface) by any form of pulsed penetrating energy is termed as volume

heating. The heat rise and dissipation results in volume contraction and rarefaction

which can form a acoustic source. The thermal stress produced in the body is very

short lived. For the All-Acoustic-TAI (AA-TAI) modality in context, the analytical

formulation has to be transient as the transit time of propagation of input and

output acoustic pulses cannot be neglected. The focused sound can heat a small

region of interest and by changing the direction of the transmit beam thermoacoustic

signals can be generated and assembled by post processing. A somewhat longer

time between transmit pulses are needed for ultrasonic heating in comparison to RF

or photo-acoustics as the speed of propagation through the medium of interest is

comparatively less. The disadvantage which negated the use of ultrasound during

the early ages of TAI can now be used as an advantage, as the volume heating

in pulsed LIFU/HIFU will be concised and the accompanying scattered radiation

will not surpass the thermoacoustic wave. Alternatively, the technique of reverse

polarization as discussed previously can be used.

A pulse of focused ultrasound (having a finite propagation time) incident in a

volume of a solid evidently means a sudden fluctuation of stress around the steady

state stabilized pressure value. The thermal oscillations due to the incident pulse

can be modeled as simple energy transformation from the mechanical domain to

heat domain and can be expressed by an approximated form of the energy equation
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Theory

deduced from the first law of thermodynamics, which states;

Total Energy Change = Total input heat flux + Total work done on the body

The approximation is in considerable agreement with Tominaga [21] where he pro-

posed the thermodynamic basis of thermoacoustics, stating:

“Heat flow, work flow and their mutual conversion all occur in

a thermoacoustic device.”

Based on Tominaga’s work, it can be stated in the mathematics to follow that the

short lived thermal oscillations are directly linked to the fluctuation of the internal

energy of the solid or the conversion of its mechanical energy to heat energy. This

means that the periodic changes of stress originating from the acting LIFU/HIFU

pulse on the body leads to periodic changes of temperature which finally lead to

heat currents inside the body.

According to Clarence Zenner and J. B Alblas in their series of publications on

the thermoelastic internal friction in solid [22–25], thermoelastic coupling is a phys-

ical phenomenon which is attributed to the coupling of the internal and mechanical

co-ordinates of a solid body. Heat currents are generally associated with the increase

of internal energy at the cost of mechanical energy. The conversion/increase of in-

ternal energy of a vibrating solid to/in-expense-of its mechanical energy is termed

as internal friction. The coupling of the heat and mechanical coordinates of a solid

is inherent with internal friction; and is termed as thermoelastic internal frictions

in solid. This process of energy dissipation which is connected with the velocity of

motion is the process of internal friction or viscosity. Both viscosity and thermal

conductivity has considerable effect on transient acoustic heating of any media in

question.

The viscous stress tensor (σik) and its formulation for solids and liquids has been

reported in numerous research published in the last few decades [26–31]. It is known

that a perfectly elastic material can store 100% of its energy during deformation.

On the contrary, there are materials which dissipate some of this energy, primarily in

the form of heat. Since heat is dissipated, the stress strain curve during the loading

and unloading phase of the motion is different from perfectly elastic case as shown in

Fig. 2.1. The amount of heat dissipated or acoustic energy absorbed by the material
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2.1. EQUATION SET FOR TRANSIENT HEATING BY PULSED

ULTRASOUND

Figure 2.1: A schematic representation of hysteresis.

is the area between the loading and unloading curve; also known as hysteresis.

Hysteresis requires that the loading portion of the stress-strain curve must be higher

than the unloading curve. Thus, from a stress-strain curve we can see the hysteresis

as the area between the loading and unloading curve. Real media are characterized

by such stress relaxation, structural viscosity, etc. Unlike perfectly elastic material

following Hooke’s law, stress in such materials are thus dependent on both strain

and its time derivative. Such materials are mainly biological media, polymers and

sometime approximated for metals as well; only with very high viscosity values.

The existing theory of viscosity or internal friction is globally used to describe the

mechanical properties of such materials.

2.1 Equation set for transient heating by pulsed

ultrasound

The transient heating by pulsed ultrasound propagation can thus be modeled using

the conservation equations following the heat-work law of thermodynamics. For the

current case where only pulses of ultrasound is the incident acoustic source, the
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2.1. EQUATION SET FOR TRANSIENT HEATING BY PULSED

ULTRASOUND

temporal variation of vibration as well as its effect on the variation of background

temperature at the region of interest needs to be analyzed.The analytical modeling

of transient acoustic heating in fluids and solids under the light of thermoviscous flow

and thermoelasticity has been based on the approximation of traditional equation

of conservation [24, 25, 32–35]. The current case, where both thermal conductivity

and viscosity controls the phenomenon of thermal oscillation, is not an exception as

well.

Let us consider a material with background mean flow density, pressure, velocity

and temperature defined as ρ0, p0, −→v0 , and T0, respectively. For small change on

these variables defined by ρ, p, −→v and T , the total variable quantities are defined

as:

ρt = ρ + ρ0 (2.1)

pt = p + p0 (2.2)

−→vt = −→v + −→v0 (2.3)

Tt = T + T0 (2.4)

For the current case ρ0 is the static density of the material in context, p0 = 0,

−→v0 = 0 and T0 = 293.15K. Thus the total pressure and velocity are equal to the

change or perturbation and can be written as, pt = p and −→vt = −→v respectively. The

propagation of sound pulse and the corresponding thermal oscillation can be modeled

with the equations of mass, momentum and energy conservation [36] approximated

for the given model in context and are given by:

∂ρt

∂t
+ ∇ · (ρ0

−→v ) = M (2.5)

ρ0

D−→v

Dt
= ∇ · σ + F (2.6)

ρ0Cp

(

∂Tt

∂t
+ (−→v · ∇)T0

)

− αT0

(

∂p

∂t

)

= −∇ · q + Φ + Q (2.7)

Eq. 2.5, Eq. 2.6 and Eq. 2.7 are also respectively termed as the Continuity, Navier-

Stokes and Energy equations, where Cp is heat capacity at constant pressure, α is

the coefficient of thermal expansion and M , F , Q are the respective source terms.

The source terms are zero in the incident transmit case. The operator D
Dt

is the

material derivative (or advection operator) defined as:

D

Dt
=

∂

∂t
+ (−→v ·

−→
∇) (2.8)
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2.2. EQUATION SET FOR TRANSIENT THERMAL EXPANSION AND

VOLUME DISPLACEMENT:

Total stress tensor can be written in Stoke notation as:

σ = −pδik + µ
(

∇−→v + (∇−→v )T
)

+
(

µB −
2

3
µ

)

(∇.−→v )δik (2.9)

where µ and µB are the dynamic (shear) and bulk viscosity respectively. Finally,

the viscous dissipation function and the heat flux(Fourier) is defined as:

Φ = (∇−→v ).σik (2.10)

and

q = −k(∇T ) (2.11)

k being the thermal conductivity and σik being the viscous stress tensor given by

σik = µ
(

∇−→v + (∇−→v )T
)

+
(

µB −
2

3
µ

)

(∇.−→v )δik (2.12)

where µ and µB are the shear and bulk viscosity of the medium in question. In

index notation δik is the Kronecker Delta function which is 1 when i = k, otherwise

being 0. The equation set Eq. 2.5 to Eq. 2.7 is closed by the thermodynamic state

equation given as:

ρt = ρ0(βp − αTt) (2.13)

where β is the isothermal compressibility given by β = 1

ρ0

γ
c2

; c being the speed of

sound in the medium and γ being the heat capacity ratio approximated to 1 for any

material other than air.

2.2 Equation set for transient thermal expansion

and volume displacement:

Thermal expansion can be modeled using the established thermal expansion equa-

tion given as:

ǫ = α(Tt − Tref ) (2.14)

where ǫ is the change in strain; α,the thermal expansion coefficientTref is the ref-

erence temperature and the difference (Tt − (Tref )) is the temperature variation, Tt

being the total temperature obtained by solving the coupled conservation equations
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2.3. EQUATION SET FOR AA-TA SIGNAL GENERATION AND

PROPAGATION:

in the previous module. The total displacement vector originating from the strain

change can be resolved by solving the displacement equation given as:

ρ0

∂2−→u

∂t2
= FV −∇.σ (2.15)

ρ0 is the material density, FV is the volume force and σ is the total stress which also

includes the viscous stress component given by

σik = µB

dǫvol

dt
+ µ

dǫdev

dt
(2.16)

ǫvol and ǫdev are the volume strain and deviatoric strain respectively. The strain

Equation 2.14 can be expressed in the respective volume and deviatoric components.

µ and µB are the shear and bulk viscosity components.

2.3 Equation set for AA-TA signal generation and

propagation:

The TA signal generation and propagation problem is analyzed by solving the non-

linear wave equation.
1

ρ0c2

∂2p

∂t2
−∇.(

1

ρ0

∇p) = Qm (2.17)

where, the source term;

Qm =
β1

ρ0
2c4

∂2(ps)
2

∂t2
(2.18)

ps being the source pressure, which in this particular case is the normal stress orig-

inating from the thermal expansion. The solution of the wave equation yields the

required thermoacoustic pressure signal. β1 is the coefficient of acoustic non-linearity

given by

β1 = 1 +
B

2A
(2.19)

where A and B are the nonlinear acoustic parameters. For water β1 = 10.

In Eq. 2.5, Eq. 2.6, Eq. 2.7 the linear assumption promotes that temperature

linearly follows the focal pressure. In the following set, thermal expansion is also

modeled for a linear elastic model, however with viscous damping under consider-

ation. Now, since the TA source term (Eq. 2.18) depends on the double deriva-

tive of the square of normal stress (derived from stresses developed during thermal
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2.3. EQUATION SET FOR AA-TA SIGNAL GENERATION AND

PROPAGATION:

expansion-rarefaction) the volume generated TA signal must follow the envelope of

the thermal expansion induced normal stress. Thus the output change must scale as

the square of any input change. The Fourier analysis must have a strong DC com-

ponent and a band around the frequency component of the envelope. Additionally

surface generated TA signals can also be modeled as discussed by Bowen [2,6] in his

pioneer papers. A small analysis at the beginning of Chapter 3 will discuss briefly

where they differ from the volume generated TA signals, which is of prior concern

for understanding the internal acoustic properties of a target body.
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Chapter 3

FEM Simulation

The set of equations used to model transient acoustic heating by ultrasound pulses

in Chapter 2 does not have an exact solution. Finite Element Analysis(FEA) sim-

ulations using COMSOL MultiphysicsR©, a commercially available FEM package by

COMSOL Inc., Burlington MA is used to solve the entire set of equations starting

from pressure propagation, thermal oscillation, TA signal generation and TA sig-

nal propagation. The conservation equation set is solved using the transient linear

Navier–Stokes module. Thermal expansion is solved using the Solid Mechanics mod-

ule. Pressure Acoustics module with nonlinear source term is used to solve for the

TA signal generation and propagation. To understand the theory on a basic level

a simple model is considered at first. Later the pulsed HIFU model is developed.

Before the simulation results are demonstrated it is important to discuss the mod-

eling process for both simple and HIFU model, which includes, geometry, material

parameters, boundary conditions etc.

3.1 Geometry

3.1.1 Simple model geometry

The simple model is shown in Fig. 3.1. In the geometry, the smaller half circle

represents the solid where as the bigger ring geometries represent liquid domain.

The solid domain forms the TA source. An acoustic point source is defined near

the geometry origin. Since in the linearized Navier–Stokes module a defined point
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3.1. GEOMETRY

Figure 3.1: Model geometry

source is not available, it is defined as a tiny straight line (0.001 nm) on the hori-

zontal axis. Since the model is axisymmetric the horizontal axis is attributed by the

symmetry boundary condition, which indicates mirroring. In case of Navier–Stokes

and nonlinear pressure acoustic modules the vertical axis (r=0) and the outer ring

boundary are attributed with material impedance boundary condition. In the pres-

sure acoustics module the solid domain (smaller inside quarter circle) is defined as

the TA domain source.

3.1.2 HIFU model geometry

The HIFU model geometry is constructed step by step as shown in Fig. 3.2. The

HIFU transducer half surface (as defined in general axisymmetric cases) is created

by area intersection of a circle and a triangle. The circle Fig. 3.2(a) defines the

curvature of the transducer and the focal point (25.4 mm, the center of curvature).

A rectangle Fig. 3.2(b)is then drawn with the dimension of 6.35 mm by 0.8066 mm

with one point at the origin. The intersection of the two structures forms the surface

of the designated transmit transducer as shown in Fig. 3.2(c).The liquid loading

domain is then added to the model as a 28.4 mm by 6.5 mm rectangle for transient

analysis. The next step is to do the mathematical union of the two domains which

automatically removes the intersection line by deselecting any internal boundary

structures, hence making the structure continuous. as shown in Fig. 3.2(d). Finally
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3.1. GEOMETRY

(a) 25.4 mm circle (b) 6.35 mm by 0.8066 mm rectangle

(c) Transducer half surface

(d) Finalized geometry with immersed focal object.

Figure 3.2: Steps of defining the axisymmetric computation model geometry.

a semicircle of 0.5 mm radius is drawn around the focal point of the transducer which

represent the immersed silicon glue stick bead as shown in Fig. 3.2(e). It is always

useful to keep the analysis domain as small as possible for transient analysis to reduce

the RAM usage. The RAM or physical memory needed for running a COMSOL

transient simulation depends on the meshing. A denser mesh increases the memory

usage. To negate the usage of large RAM and to reduce the computation time the

results from an initial Navier–Stokes module solution is coupled to a smaller internal

domain and the solution of thermal expansion, and TA signal generation is solved

inside, as discussed later in the results. The small domain is defined by a 3.7 mm

by 2 mm rectangle as shown in Fig. 3.2(e). The larger ring (only for structural

meshing) around the glue bead is constructed by a 1.5 mm radius circle with the
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3.2. MODULES

center again at 25.4 mm. In the frequency domain characterization (for checking the

focusing capability) of the HIFU transducer one needs to incorporate the absorbing

boundary condition as the perfectly matching layer (PML). The geometry is similar

with an additional 3 mm thick layer around the domain, defined as the PML. The

internal boundaries of the PML was also removed with the union operation.

3.2 Modules

This is a short description of the multiphysics modules used for the HIFU model

simulations. The model geometry as described above has a number of boundaries,

domains and points of measurements. Fig. 3.3 has all of them marked and named

accordingly.Domains DI, D2 and D3 represent the liquid water domain. The domain

has been broken to facilitate the structured meshing scheme. D4 represents the solid

material in question, which is a small silicon glue stick bead. Boundary B1 is the

transducer surface where the time varying input pressure pulse is attributed. Point

P1 is the focal point where pressure , temperature and thermal expansion induced

displacement 1D plots are generated. The TA signal is gathered at point P2 In order

Figure 3.3: HIFU model: domain, boundary and points.

to understand the pulsed ultrasound HIFU pulse propagation and focusing, all the

domains were selected under the transient Navier–Stokes module. B1 impersonates
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3.2. MODULES

the transducer surface and hence an analytical pressure function was incorporated

to the surface but truncated at 400 ns to approximate the 5 MHz 2 cycle sinusoidal

pulse. The analytical function is defined as,

an1(t) = A(t) = pSSin(2πf0t) (3.1)

for t defined between 0 and 800 ns. The pressure on the transducer surface is defined

as

p(t) = pS ∗ an1(t) ∗ (t[s] < Ttrunc) (3.2)

pS = 100 kPa is the peak input pressure, and can be manually defined as needed

as an input parameter. For a f0=5 MHz burst of 2 cycles, the period T is 400 ns.

In order to make sure that the propagating waves do not reflect from the domain

boundaries the characteristic acoustic impedance of water is set to boundaries B2

and B3; water being the liquid domain in context. To reduce the time and RAM

requirements of the coupled simulations. The smaller geometry encircled by B4,

B5 and B6 boundaries is used. The pressure coupled from the large Navier-Stokes

simulation is couple to B4 by the ‘withsol’ function in COMSOL and defined as

‘withsol(’sol1’,p,setval(t,t))’ where ‘p’ is the pressure from the previous all domain

Navier-Stokes computation, performed between 0 to 24µs. For solving the coupled

modules, the computation is done from 15 - 23 µs. B4 is attributed with the above

noted ‘withsol’ function which is the input pressure boundary for the smaller domain.

Characteristic acoustic impedance of water was again incorporated to the boundaries

B5 and B6.

The temperature variation from the Navier-Stoke module is used to compute

transient volume thermal expansion of the solid domain. The ‘Thermal Expansion’

sub-node comes under the Solid Mechanics module. Only the silicone glue domain

D4 is selected under the same. Thermal expansion leads to internal contraction and

rarefaction and displacement. The solid boundary B7 is configured to be ‘free’ for

displacement. The pressure acoustic transient module is used to solve for the TA

pressure signal. The source term is incorporated to the solid D4. Boundaries B4,

B5 and B6 are incorporated with characteristic impedance of water. The 1D plot of

TA signal is gathered for analysis at the point P2.

18



3.3. MATERIALS

3.3 Materials

The liquid domain used is water with the material properties stated in Table. 3.1.

Table. 3.2 below depicts the material properties of the silicone glue stick [30].

Table 3.1: Property parameter of Water

Parameter Value

Velocity of sound 1480 m/s
Density 1000 Kg/m3

Specific heat 4185.5 J/Kg-K
Thermal conductivity 0.598 W/m.K

Coefficient of thermal expansion 2 × 10−4

Bulk viscosity 3.09 × 10−4 Pa-s
Dynamic viscosity 8.09 × 10−4 Pa-s

Table 3.2: Property parameter of Silicone glue stick

Parameter Value

Velocity of sound 1345 m/s
Density 1100 Kg/m3

Specific heat 1200 J/Kg-K
Thermal conductivity 1.9 W/m.K

Coefficient of thermal expansion 7 × 10−4

Bulk viscosity 10 Pa-s
Dynamic viscosity 20 Pa-s
Young’s modulus 0.025 GPa

Poisson’s ratio 0.48
β1 4

3.4 Meshing and time stepping

Any time dependent equations has a band of frequencies in the solution. To resolve

these frequencies, the maximum allowed mesh element size becomes,

h0 =
c

(N · f0)
(3.3)

where c is the local speed of sound, and N is the number of mesh elements per

wavelength in the minimal case. A finer mesh means a bigger N . Choosing a time

step that resolves the wave equally well in time (as the mesh does in space) is
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3.5. RESULTS

(a) Mesh structure for the simple model. (b) Mesh interaction in the HIFU medel.

Figure 3.4: Meshing.

also very important. Longer time step fails to make optimal use of the mesh, and

smaller time step leads to longer solution times with not much improvement on the

results. The relationship between mesh size and time step length is defined by the

Courant Friedrichs Lewy(CFL) condition number:

CFL =
c · ∆t

h0

(3.4)

or;

∆t =
(CFL) · h0

c
(3.5)

where ∆t is the time step and h0 is the maximum mesh element size. In practice,

CFL number of 0.2 proves can be used as an optimal case.

For the HIFU model geometry the smaller circle is the solid which is meshed with

N=12 (h0 = 22.416µm) and the water domain is structurally meshed. The bigger

ring area is a densely meshed with N=10 (h0 = 29.6µm), the rectangular area

with N=8 (h0 = 37µm) and the bigger water domain with N=5 (h0 = 59.2µm).

These values are calculated assuming f0 = 5MHz, c = 1480 m/s for water and

c = 1345 m/s for silicone stick. The time step is optimized for h0 = 22.416 µm,

c = 1345 m/s and CFL = 0.2 yielding 3.3 ns. The mesh interaction between the

solid and fluid interface for both the simple and HIFU model are shown in Fig. 3.4.

Free rectangular elements have been used for meshing.

3.5 Results

In this section the simulation results for both the simple and HIFU model are ana-

lyzed in detail.
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3.5. RESULTS

(a) Transmit pressure. (b) Temperature variation. (c) Coupled temperature to
thermal expansion module.

(d) Solid displacement. (e) Normal stress on solid. (f) TA signal.

Figure 3.5: Qualitative analysis of volume TA signal generation for simple model
with a 2 MPa, 2 cycle 5 MHz input.

3.5.1 Simple model

Some surface plots are generated for qualitative analysis. For instance, the incident

pressure field, temperature, coupled temperature to solid domain and displacement

surface plots for 2 MPa input are generated at 500 ns and exhibited in Fig. 3.5. The

1D plots of the coupled momentum and energy equation are visualized at the point

near the solid boundary. For instance, for a 2 MPa input pulse; the pressure, its

frequency component and linear temperature variation is shown in the Fig. 3.6. The

input is a 2 cycle, 2 MPa, 5 MHz point pressure source. The temperature variation

in the solid originating from Navier-Stokes and energy equation is coupled to the

solid mechanics domain and thermal expansion induced displacement of the solid

domain is solved with viscous damping in consideration. The viscosity can be found

in Table 3.2. The displacement of the solid in the point of measurement (as same

as for the input pressure and temperature) is shown in Fig. 3.6(d). For the defined

input the pressure near the solid surface has a peak value of 20 kPa yielding an

approximate peak temperature change of 4 mK. The peak displace is approximately

0.28 nm in context.

The domain pressure source is defined by the double time derivative of the

squared pressure (or the normal component of stress originating from the thermal
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(b) Pressure on solid.
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(c) Temperature variation on solid.
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(d) Thermal expansion induced displace-
ment.

Figure 3.6: Pressure, temperature and displacement analysis in simple model.

contraction and rarefaction) scaled by the density square. The solution of the wave

equation taking the normal stress as the nonlinear domain source yields the total

TA signal pressure at the output and is measured at the boundary of the liquid do-

main. The TA signal must scale with the envelope of the normal stress component

originating from thermal expansion. However, since the measurement in this case is

done along the direction of the incident input wave, the envelop also contains higher

frequency scattered signal components. This can be clearly seen in the Fig 3.7(a)

where the Fourier analysis yields the frequency components. Since a 2 cycle sinu-

soid has been used, the TA envelop has a pass band around 1 MHz with a strong

DC component, which can be clearly seen in the image. As a proof of the square

dependence of the output TA signal on input sweep, a range of simulations were

performed by changing the input peak from 1 Mpa to 8 MPa and the the highest

peak pressure of the TA signal was plotted against each consecutive input. The

data was compared with the quadratic curve in MATLAB and a perfect match was
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Figure 3.7: Evaluation of the output TA and its square dependence on the input
change. Since the TA measurement is done along the direction of input signal there
are higher frequency components. The TA signal can be segregated by filtering the
output.

observed.

If one uses only the solid boundary displacement as the source and solves the

wave equation the output is not the envelope but rather a time varying signal with

both scattered and surface generated TA signal. The propagating signal contains

both the scattered 5 MHz signal and the surface generated TA signal. The TA signal

scales non-linearly but not as an exact square of the input sweep. One can extract

the TA signal by polarity cancellation; i.e. simply by summing the output generated

from positive and negative polarity input. This means, if one has the output signals

originating from a +2 MPa and -2 MPa input pressure pulses, then summing the

two output will segregate the surface generated TA signal as the scattered 5 MHz

component is 180◦ out of phase from the input. Evidently subtracting the two op-

posite polarity output will increase the strength of the scattered signal. From the

images in Fig. 3.8 the idea can be clearly realized. The resonance of the surface

generated TA signal is at 1 MHz as can be seen in Fig. 3.8(d). By varying the input

peak pressure from 1 MPa to 4 Mpa and plotting the absolute peak pressure of the

polarity canceled surface generated TA signal one obtains a nonlinear relation be-

tween the two, which doesnot exactly follow square law as can be seen in Fig. 3.8(e).

A comparative spectral response of 2 MPa and 3 MPa input is also exhibited in

Fig. 3.8(f). As an increase from 2 to 3 MPa implies a 1.5 times change in the input,

for a square law variation one will expect a 7 dB increase in the spectral component.
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(a) Positive polarity output.
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(b) Negative polarity output.
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Figure 3.8: Evaluation of the output surface generated TA and scattered signal

In the contrary a 6.02 dB increase is observed.

3.5.2 Pulsed HIFU model

As we will discuss in Chapter 4, the transmit transducer is a single element fixed

focus device with a center frequency of 5 MHz, radius of curvature (focal distance) of

25.4 mm and F number of 2. The surface of the transducer is modeled as the pressure

source. A harmonic acoustic analysis is performed to characterize the focal capability

of the transmit transducer. The 1D plot of normalized absolute pressure(Fig. 3.9(b))

(a) A closeup look at the focal point. (b) 1D pressure plot.

Figure 3.9: Frequency domain characterization of the focal capability of the trans-
ducer.
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3.5. RESULTS

(a) 800 ns. (b) 8 µs.

(c) 17 µs. (d) 21 µs.

Figure 3.10: Temporal propagation of pressure field in water.Surface pressure is
incorporated as 100 kPa.

along the axis of symmetry clearly indicates the focal spot around 25.4 mm, hence

in congruence with the transmit transducer used in the experiments.

Transient pressure propagation

To characterize the transient HIFU pulse focusing, a propagation model in water

domain(without solid) is solved at first. A 100 MPa 2 cycle 5 MHz pulse is applied to

the transducer surface. Normal impedance boundary condition at the water domain

boundary is incorporated to avoid reflection. Fig. 3.10(c) and Fig. 3.10(d) indicates

transient focusing and boundary absorption. The small silicon glue stick bead is

then inserted at the focal zone of the transducer. The acoustic focusing is computed

for the entire domain within a time span of 0 to 24µs. The time domain pressure

data from the same is then incorporated to the smaller rectangular domain and the

coupled TA problem is solved in the smaller domain only. Fig. 3.11 demonstrates the

successful transfer of pressure propagation from entire model to the smaller region.

The results in Fig. 3.12 shows the propagation of the focused pulse in the small
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3.5. RESULTS

(a) Focal pressure computed in the large do-
main.

(b) Successful incorporation in the small do-
main

Figure 3.11: Coupled pressure data from large to small domain.

(a) 15.5 µs. (b) 17.1 µs. (c) 18.7 µs.

Figure 3.12: Transient pressure propagation through solid for 100 kPa 2 cycle 5MHz
source.

domain. Acoustic wave absorption is clearly depicted in Fig. 3.12(c).

Transient thermal oscillation

The energy equation is solved with an initial domain temperature of 293.15◦ K.

Fig. 3.13 exhibits some time shots of the thermal oscillations. The successive heating

and cooling which follows the positive and negative cycle of the pressure pulse is a

proof of acoustic heating and cooling effect evident in a thermoacoustic device. A

thermoacoustic refrigerator pumps heat from low temperature to high temperature

region using sound. The source of acoustic energy can be a loudspeaker which emits

sound waves in a resonator filled with gas at high pressure. The frequency of the

driver and the length of the resonator are chosen so as to get a standing pressure

wave in the resonator. A porous material like a stack of plates is used in the acoustic

path. Due to the thermal effect of sound one end heats up while the other cools

down. A refrigeration load can then be applied at the cold end by means of a heat

exchanger.
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(a) 17.1 µs. (b) 18.7 µs. (c) Temperature coupling 17.1
µs.

Figure 3.13: Temperature variation at focus and (c) Coupled temperature to solid
(thermal expansion) domain.

(a) 16 µs. (b) 17.1 µs. (c) 19 µs.

Figure 3.14: Volume displacement inside the solid.

Thermal expansion and volume displacement

Total temperature(Tt) obtained is coupled to the solid mechanics:thermal expansion

module to solve for solid displacement inside the body. The Fig. 3.13(c) shows a

successful coupling between the Navier-Stokes and solid mechanics module at 17.1

µs. Fig. 3.14 display time shots of the total volume displacement achieved inside the

solid due to alternating compression and rarefaction originating from the thermal

oscillation.

TA signal generation and propagation

The normal component of the stress (time shots shown in Fig 3.15) deduced from

the stress strain relation inside the solid undergoing thermal expansion-rarefaction is

used to compute the domain source for transient TA signal generation. The nonlinear

source-term has the unit of s−2. The time-shots of the source term is demonstrated

as Fig 3.16. The TA signal evolves in the solid and propagates through both the

solid and liquid media as shown in Fig 3.17.
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(a) 16 µs. (b) 17.1 µs. (c) 18 µs.

Figure 3.15: Normal component of stress generated from thermal expansion and
rarefaction.

(a) 16 µs. (b) 17.1 µs. (c) 18 µs.

Figure 3.16: Time shots of the evolution of TA domain source.

Quantitative analysis: 1D transient solution data and Fourier analysis.

Fourier domain evaluation of the transmit and receive signal can provide vivid in-

sight. 1D point data are extracted from the solution of different modules. Temporal

transmit pressure point data at the center of the solid in question is deduced to

evaluate their frequency spectrum. The focal pressure originating from a 100 kPa

2 cycle 5 MHz input pulse (Fig. 3.18(a)) and its Fourier counterpart is depicted in

Fig. 3.18(b). Fig. 3.18(c) shows the temporal variation of temperature at the fo-

cus as well as the point displacement. The focal pressure measured for a 100 kPa

2 cycle 5 MHz pulse is around 1.2 MPa with a corresponding peak temperature of

120◦ mK. The thermal expansion results in a maximum total peak displacement of

approximately 4 nm. The normal stress derived from the expansion-rarefaction has

a peak value of 300 kPa which yields a TA peak pressure of approximately 1.6 kPa.

Fig 3.18(e) demonstrates the thermoacoustic signal and its Fourier response. The

result establishes the theory, as the Fourier spectrum has a strong DC component

and a pass-band close to 2 MHz. In order to verify the square law dependence of

the TA signal on the input change, the computations were repeated for peak input

pressure of 200 kPa and 400 kPa. Fig. 3.18(f) shows the match of the output data
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(a) 17 µs. (b) 18 µs. (c) 19 µs.

Figure 3.17: TA signal evolution and propagation.
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Figure 3.18: Quantitative analysis of volume generated TA signals from HIFU-TA
model.

with the MATLAB quadratic trace.

Directivity of TA signal

Since the measurement is done at orthogonal position w.r.t the source, the scattered

components are not present; unlike the simpler point source model shown previously.

Even though one does not expect to see the scattered signal at orthogonal position,

they are present in the direction of the incident pressure shown in Fig 3.19. The

plots demonstrate that the TA signal generated has finite directivity. The pressure

envelop is highest along the direction of the incident signal which is an expected

result. Fig 3.19(a) shows the point and boundary arcs where Fig 3.19(b) and (c)
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(a) Point locations and arc for measuring
and realizing directivity TA measurement.

(b) Point plots showing TA signal spatial
variation.

(c) Time wise TA plot shows exhibits direc-
tivity of TA pressure.

Figure 3.19: Directivity evaluation of output TA. In (c) arc origin corresponds to
point 3 in (a).

has been generated respectively. The origin point in (c) coincides with the point 3

in the figure. It is evident from the figures that the peak pressure is maximum in

the incident direction. For the 100 kPa input the peak pressure at the orthogonal

position is approximately 1.6 kPa where as at point 3 it is around 1.1 kPa at 1.8µs.

3.5.3 Metals

Metals can be approximated as thermoelastic materials with very high viscosity.

Thus an interesting problem would be to analyze whether metals can produce any

TA signal with HIFU excitation. Metals are stiffer in terms of viscosity, thermal

expansion and other material properties. But on the contrary the thermal conduc-

tivity of metals are considerably higher. To evaluate the TA behavior of metals

under pulsed HIFU excitation, the simulations were repeated but with copper as a

metal bead in place of silicone glue stick. The material properties are shown below
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(b) TA signal.

Figure 3.20: TA signal generation in Copper for 100 kPa 2 cycle 5 MHz input.

in Table. 3.3. The thermal expansion coefficient of copper is considerably less than

Table 3.3: Property parameter of Copper bead

Parameter Value

Velocity of sound 3560 m/s
Density 8960 Kg/m3

Specific heat 384 J/Kg-K
Thermal conductivity 401 W/m.K

Coefficient of thermal expansion 16.5 × 10−6

Bulk viscosity 800 Pa-s
Dynamic viscosity 1200 Pa-s
Young’s modulus 120 GPa

Poisson’s ratio 0.34
β1 14

that of silicone glue. Additionally, the thermal conductivity being very high, the

cooling procedure in metals is faster. Thus the volume displacement is lesser in

magnitude and thus is the peak TA pressure. When the material is changed from

copper to other stiffer metals the TA pressure gradually vanishes. However, in case

of softer alloys (not pure copper) the TA signal is stronger. In case of glue stick

the focal pressure for 100 kPa 2 cycle input was 1.2 MPa and the TA peak value

was approximately 1.6 kPa. However for copper, identical input yields 220 kPa

focal incident pressure and a TA signal peak amplitude of approximately 230 Pa,

even though in both the cases of metal and glue; the waveform and their respective

Fourier spectrum are identical. Fig. 3.20 depicts the same.
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Chapter 4

Model Verification by

Experimental Data

Figure 4.1: A schematic representation of the experimental setup.

The all-acoustic thermoacoustic imaging modality was first porposed by Prof.

Mustafa Karaman of Istanbul Technical University (ITU), and first experimental

evidence was provided by experiments conducted by himself and Prof. Arif Sanli

Ergun at TOBB-ETU, Ankara. A single element F-2 curved piezoelectric transducer

with 5 MHz center frequency, 12.5 mm diameter was excited by a 2 cycle 5 MHz si-

nusoidal pulse. A silicone glue stick was immersed in water at the focus of the

transmit transducer. The thermoacoustic signal was detected by a F-1 transducer
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Figure 4.2: TA signals received by a 1 MHz receive transducer for 200 mV 2.5 cycle
input drive signal at 5MHz.
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Figure 4.3: TA signals received by hydrophone for 200 mV 2.5 cycle input drive
signal at 5MHz.

with a 1 MHz center frequency and 50 mm diameter, which was placed at orthogonal

position and the data was collected by an oscilloscope. The schematic representation

of the experimental setup is shown in Fig. 4.1. Both the positive and negative po-

larity signals were fed to the transmit transducer and the TA signals were recorded

and the frequency spectra were examined. The separate horizontal set of images(2

in each set) in Fig 4.2 represents:

(red)- Positive polarity excitation induced TA signal and its frequency spectrum;

(blue)- Negative polarity excitation induced TA signal and its frequency spectrum;

(top black)- (Pos - neg) polarity TA signal and its frequency spectrum;

(bottom black)- Filtered (pos + neg) polarity TA and its frequency spectrum.
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Model Verification by Experimental Data

Figure 4.4: Comparison on signal sweep between pulse echo and thermoacoustic sig-
nal: (a) Pulse-echo responsehas a linear dependence (b) TA response has a parabolic
dependence on the amplitude of the excitation signal.
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Figure 4.5: Comparison between TA signal from modeling and experiment. Red
dashed line shows the experimental data.

The fact that the receive transducer operates at around 1 MHz will certainly

force the received signal to be in this frequency band. To guarantee the authenticity

of the TA signal measurements the experiments were repeated using a broadband

hydrophone. The results are exhibited in Fig 4.3. The labeling are the same as were

described for Fig 4.2. Additionally, the voltage sweep response for pulse echo signal

and thermoacoustic signal were compared. As proposed by the FEM model the TA

output has a parabolic dependence on the input, where as the pulse echo signal

varies linearly which is in accordance with the proposed theory. The results are

displayed in Fig 4.4. A comparitive plot as shown in Fig 4.5 is also exhibitted. The
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blue plot demonstrates the modeling result and the red one shows the experimental

data.
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Chapter 5

CMUT for HIFU

Piezoelectric transducers (as used in above mentioned experiments and modeling)

have certain disadvantages, especially when used for HIFU transmission, which is

required proposed AA-TAI modality. Firstly, the acoustic mismatch between the

available piezoelectric materials and any loading medium is of concern, for which

matching layers are needed. Secondly, integrating a piezoelectric element or trans-

ducer to any system is problematic, as established micro-fabrication techniques can-

not be used. Additionally backing layers incorporate back-scattering too. In context,

recently developed capacitive transducers named Capacitive Micromachined Ultra-

sonic Transducers (CMUTs) have proven to be advantageous for HIFU [37]. CMUTs

have wider bandwidth and effective transmission. Even though therapy generally

needs a single operating frequency, broader bandwidth provides probation for dual

modality therapy-imaging applications. CMUTs also exhibit less self-heating than

piezoelectric transducers. Piezoelectric devices also have high dielectric losses com-

pared to CMUTs.

Capacitive transducers were built initially with conventional machining tools

constituting a metal surface as the back electrode and a Mylar membrane forming

the top electrode [38]. First generation micro-machined versions of capacitive trans-

ducers were introduced and named as CMUTs in 1994 to differentiate them from

their piezoelectric counterparts [39] and were manufactured using the sacrificial re-

lease process. Even though wafer bonded CMUTs have been reported more recently

and gained substantial attraction, sacrificial release process still remains to be a

solid micro-fabrication tool for immersion CMUTs. The sacrificial release process
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starts with the definition of the vacuum gap of the device by patterning a layer of

sacrificial material on the substrate. Later, a con-formal layer of membrane mate-

rial is deposited, sealing the sacrificial layer. This layer separates the subsequently

deposited electrode from the vacuum gap. A second deposition seals the electrodes,

after which etch holes are opened for sacrificial release. These etch holes are, then,

sealed with a final layer of membrane material deposition, defining the full thickness

of the membrane.Both the electrostatic force applied to the CMUT membrane in

transmit, and the magnitude of the electrical output of the device in receive modes

are a function of the ratio between the applied bias voltage to the instantaneous

gap [40]. It is, hence, preferable to reduce the gap between the top and bottom elec-

trodes of the CMUT for reducing voltage levels in transmit mode, and increasing

the signal strength in receive mode [41,42]. The distance between the two electrodes

are limited by the effective gap height which equals to the summation of the vacuum

gap, and the insulating layer thickness scaled by the dielectric constant. Keeping

the bias voltage and other device geometry parameters identical, a device with com-

paratively thinner insulation layer benefits from increased electric field and device

capacitance as the effective gap height is reduced [42]. This results in a transducer

with relatively higher transmit and receive sensitivity. Improved output sensitivity

to decrease the required drive and bias voltage levels, and minimized stray capac-

itance to reduce the power consumption of the drive electronics are the two main

prerequisites of a CMUT arrays based HIFU array. To meet the former objective,

the only free transducer parameter is the insulation layer thickness. Results shown

in Fig. 5.1 reveal that the collapse voltage under atmospheric pressure decreases

from 124 V to 87 V as the first insulation film thickness is reduced from 600 nm to

200 nm. The thinning of the insulation film provides a substantial improvement in

output sensitivity. Values shown in the plot are calculated by setting the DC bias

to 80% of the collapse voltage. Based on the results shown in Fig. 5.1, we conclude

that the bias voltage requirement and output sensitivity of the particular CMUT

device can be improved by thinning the insulation layer without compromising the

electrical safety of the dielectric material.

The sacrificial release method has an inherent shortcoming in reducing insulation

layer thickness, as the film needed for sealing the sacrificial layer from the device
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Figure 5.1: Dependence of collapse voltage, electric field intensity and output sen-
sitivity to the insulation layer thickness.

electrode needs to be comparatively thicker than the sacrificial structures due to con-

formality issues. This results in a mechanically weak membrane at the perimeter,

incapable of protecting the electrode material from the potential corrosive effects of

the etchant used during release. The under-etch step cannot precede the electrode

and subsequent membrane deposition steps, as it will result in a structurally weak

thin dielectric layer which cannot withstand the processes involved in membrane

release. To alleviate this problem, methods for modifying CVD recipes for better

con-formality have been reported [43]. Compensation of the effect of a thick insula-

tion layer by the use of high dielectric constant materials such as Hafnium(IV) oxide

(HfO2) have also been suggested [42], but these still require a con-formal film.

In due context, a micromachining method is proposed which mitigates the con-

formality requirement on the CVD films for the fabrication of CMUTs by burying

metallic films into structural layers. The method facilitates flat surfaces for subse-

quent processing which enables the construction of (1) thinner insulating films to

increased device sensitivity, and (2) patterned back electrodes for reducing stray

capacitance. The technique also alleviates issues resulting from bent structures [44].

5.1 Fabrication Issues

Initial manufacturing efforts were conducted using the conventional sacrificial etch

technique. Process steps are depicted in Fig. 5.2. The chromium sacrificial layer is
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Photoresist Conductive Silicon Silicon Nitride Chromium Gold

(a) (b) (c) (d) (e)

Figure 5.2: Process steps for conventional CMUT fabrication: (a) Bottom insulator
deposition followed by sacrificial patterning, growth and lift-off, (b) insulation layer
growth and electrode patterning, (c) etch hole lithography, (d) sacrificial underetch,
(e) final membrane deposition and sealing.

Figure 5.3: Harm caused by the chromium etchant on the Cr-Au electrode. The
micro-graph on the left shows that the Cr adhesion layer beneath the Au top elec-
trode has been removed by the etchant so that the top electrode breaks apart when
wiped with a cotton swab. The SEM image on the right was taken from a simi-
larly damaged sample. The insulation layer on the vacuum gap is still intact. The
interconnect line is seen to have a hollow opening through which the etchant has
apparently flown.

patterned on an initial Si3N4 insulation layer coating a p-type low resistivity (0.01-

0.02 Ω-cm) silicon wafer. This is followed by the deposition of the first structural

Si3N4 layer, which also acts as an insulator. This step is followed by electrode

patterning which are then buried under another Si3N4 film. The process is completed

by the opening of the etch holes, the sacrificial release, and a final sealing deposition.

To minimize the adverse effects of the insulation layer on device sensitivity, patterned

chromium sacrificial islands of 200 nm thickness were coated with a 300 nm thick

Si3N4 film. After underetch, substantial peeling was observed at the edges of the top

electrodes of the device, even though they were buried under a Si3N4 film of 600 nm

thickness, as shown in Fig. 5.3. This discrepancy was attributed to the conformality

of the deposited Si3N4 film. The manufacturing process which require the patterning

of films of films of varied thickness (few 100 nm - few µm) at various steps, results in

height variations on the wafer surface. The coating on the sacrificial islands which

forms the insulation layer consequently after release has to be tightly encapsulating

to protect the top electrode from the harm of the sacrificial etchant. Even though

39



5.1. FABRICATION ISSUES

Si

Au
Cr

Si3N4

Si
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Figure 5.4: A non-conformal film results in the top electrode getting into contact
with the sacrificial layer, and consequently being harmed by the etchant.

PECVD dielectric thin films are claimed to be conformal for any thickness being

deposited, there has been reported cases as evidence of the side walls being thinner

than the horizontal layer on the structures, especially when the structures below

are a few hundred nanometers thick, and hence creating void [45]. The problem

associated with the film thickness is the electrode getting into contact with the

sacrificial layer from the sidewall region of the sacrificial islands, which gives a

substantial harm to the electrode during underetch, as shown in Fig. 5.4. The same

harm would have been observed when KOH is used as the sacrificial etchant, as

KOH is known to harm Cr and Ti. [46, 47]. The conventional devices fabricated on

conducting wafers also had high levels of parasitic capacitance due to interconnect

lines and connection pads outside the active device area, due to which an array

element with 5 pF active device capacitance results in an electrical load as high has

28 pF. A workaround for this issue is the use of totally insulating or SOI wafers onto

which a back electrode layer would be grown. As the back and top electrodes would

only overlap over the active device area, stray capacitance would be significantly

reduced. Consequently, a method for the manufacturing of buried back electrodes is

developed. The membrane material was chosen as PECVD Silicon Nitride (Si3N4),

grown using an Oxford PlasmaLab System 100 deposition system. Table 5.1 lists

the deposition parameters. The dual frequency pulsed deposition recipe yields a low

stress membrane. A KLA-TENCOR P6 Surface Profiler was used the asses the post

deposition stress build-up in multi-layer films. An average value of 132 MPa of tensile

stress was measured, which is consistent with values reported in the literature [48,
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Electrode
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Conducting Si
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Figure 5.5: CMUTs on conducting substrates inherently suffer from stay capacitance
created by interconnects and pads outside active device area (left.) The problem
can be alleviated by the growth of a non-overlapping explicit back electrode in an
insulating layer (right.)

Table 5.1: PECVD Silicon Nitride Deposition Parameters

Parameter Value

SiH4/N2 (5%/95%) Flow Rate 400 sccm
NH3 Flow Rate 20 sccm

N2 Flow Rate 600 sccm
Chamber Pressure 650 mTorr

HF (13.56 MHz) Duration 14 seconds @ 20 W
LF (380 kHz) Duration 6 seconds @ 20 W

Table Temperature 300◦C
Deposition Rate 10 nm/min

49]. The PECVD deposition system provides excellent control on the growth rate,

and, hence, the film thickness. The mass density of the Si3N4 film was calculated

as 2280 kg/m3 based on the pre- and post-deposition weight of the wafer, which

was measured using a Sartorius CPA224S scale with 0.1 mg resolution. Using test

structures comprising sandwiched dielectric layers between electrodes, the dielectric

constant of the film was measured as 6.2. The sacrificial material opted for our

process is chromium due to low process temperature requirements, and increased

selectivity. A commercially available etchant (TechniStrip Cr01 by Microchemicals

GmbH, Ulmis used for the removal of the chromium sacrificial layer. PECVD Si3N4

films and silicon substrates are fully inert to the etchant. Electrodes are made of

gold, with chromium used as the adhesion layer. A TORR E-beam and Thermal

Evaporator has been used for the growth of metallic films. Etch holes for sacrificial

release are opened using an Oxford Plasma Lab 100 ICP 300 RIE/ICP system. The

recipe is shown in Table 5.2.
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Table 5.2: Silicon nitride etching parameters

Parameter Value

SF6 Flow Rate 45 sccm
Chamber Pressure 7.5 × 10−9 Torr

DC Power 50 W
RF Power 2000 W

Table Temperature 10◦C
Etch Rate 8 - 10 nm/sec

electrode

substrate

sacrificial
membrane

Conventional Embedded Sacrificial

Au

Si

Si3N4

Cr

Figure 5.6: The conventional fabrication method requires a first silicon nitride layer
to be at least as thick as the sacrificial to separate the device electrode from the
sacrificial layer. A nonconformal thinner layer produces a profile as marked by
the dashed circle. The proposed method alleviates this problem by embedding the
sacrificial layer.

5.1.1 CMUTs with Embedded Sacrificial Layers

As a solution to the problem associated with the conventional process, a microma-

chining technique is proposed where the metallic sacrificial layer is embedded into

the substrate to provide a topology free surface, obviating the conformality require-

ment (Fig. 5.6). The results of this technique were published in [50]. The process

steps of the moderated fabrication procedure are depicted in Fig. 5.7. We start

with the deposition of 300 nm of insulating Si3N4 layer which can act both as the

etch stop layer during release and as an insulator during device operation. This is

followed by an image reversal lithography with the sacrificial pattern mask on the

insulator coated silicon wafer succeeded by a 100 W descum for 20 seconds. The next

step is a controlled RIE process which opens up approximately 200 nm deep grooves

in the shape of the sacrificial patterns. Finally, 200 nm of chromium is evaporated,

which is followed by lift-off. Hence, the etching of the grooves and the deposition of

the sacrificial layers are done with a single lithography step making the grooves and

the sacrificial layer self-aligned. Sacrificial embedding is followed by the deposition

of the first structural Si3N4 layer, whose thickness is set to 200 nm. We, then, pat-

terned the Cr/Au top electrode of 20 nm/150 nm thickness. The electrodes are then

buried under another 600 nm thick Si3N4 film. We have used a positive lithography
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Photoresist Conductive Silicon Silicon Nitride Chromium Gold

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.7: Process steps for embedded sacrificial technique: (a) Image reversal
lithography with sacrificial mask on insulating nitride; (b) DRIE defines 200 nm
deep sacrificial grooves; (c) 200 nm Chromium evaporation; (d) Liftoff and clean-
ing; (e) First nitride layer deposition; (f) Top electrode deposition and patterning;
(g) Burying electrode under thick nitride; (h) Etch via patterning and etching; (i)
Underetching, release and drying; (j) Final sealing layer deposition. The top layer
covering aids also in reaching the needed membrane thickness.

Photoresist Conductive Silicon Silicon Nitride Chromium Gold Thermal Oxide

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(l) (m) (n) (o)(k)

Figure 5.8: Process steps for devices made by embedded sacrificial technique made
with separate bottom electrodes. (a) Lithography on a thermally oxidized Si wafer,
(b) RIE for groves, (c) Au/Cr deposition and lift-off. Steps (d)-(m) follow the
procedure in Fig. 5.7. An additional lithography and RIE is required to expose and
wire bond the back electrode, as in (n) and (o).

step to pattern the etch holes which are opened up by an RIE step. Afterwards, the

sample is set for underetching and release. The etchant is flushed using methanol to

avoid stiction. After proper drying, the devices are coated with another thick layer

of silicon nitride to seal the holes and to reach the required membrane thickness.

5.1.2 CMUTs with Embedded Back Electrodes

To reduce spurious capacitance, devices were fabricated on thermally oxidized silicon

wafers as suggested in [41], but by burying the metallic back electrode of the device

into the oxide layer by the embedding technique. For these devices, the top and

bottom electrodes overlap only at the active device area, which substantially reduces

the parasitic capacitance (Fig. 5.5). Embedding the back electrode enables the
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Figure 5.9: Optical micrographs of sealed devices on conductive substrate (top left)
and thermally oxidized wafer (top right). CMUT ring array (bottom left), wire
bonded and insulated device (bottom right).

growth of a thin insulation layer on the electrode, and provides a flat surface for

subsequent steps, which are identical to those used in the manufacturing of devices

on a conducting substrate. The steps of the process are depicted in Fig. 5.8.

5.2 Results

Optical micrographs of sealed devices without and with embedded back electrodes,

and wire bonded devices ready for testing are shown in Fig. 5.9. Few of the sam-

ple devices (with and without separate bottom electrodes) manufactured using the

embedded sacrificial technique were finely broken to facilitate a cross-section view.

Fig. 5.10 shows the SEM pictures of these devices. The measured thicknesses of the

vacuum gap and the initial nitride layer are both 212 nm for the first sample, while

the insulating layer is thinner than the gap in the other two samples.

5.2.1 Improvement in Output Sensitivity

As a verification for device sensitivity, a transducer with membrane and insulation

layer thicknesses of 1.7µm and 350 nm, respectively, and collapse voltage of approx-

imately 100 V was immersed in sunflower oil and each element of the array were

driven with 20 Vpp signals at 7.5 MHz while the DC bias was set to 80 V. Individual
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(a) CMUTs with equal gap and
insulation.

(b) CMUT with thinner insula-
tion..

(c) CMUT with thinner insula-
tion and back electrode.

Figure 5.10: SEM of manufactured CMUT device. The gap and silicon nitride layer
beneath the electrode is visible. Measurements indicate that the initial nitride film
is as thick as the vacuum gap which is only possible by the embedded sacrificial
layer method (top.) The image at the center shows the cross section of a test device
where a comparatively thinner insulation layer was achieved. The third figure is an
SEM cross section of a device with separately embedded bottom electrode; which
also exhibits a thinner insulation in comparison to the vacuum gap height.

drive signals were phased to focus the transducer to 1.5, 2.0, and 3.5 mm, respec-

tively. For each setting, the focal pressure was measured as 1300, 990, and 830 kPa,

using an Onda HNP-0200 hydrophoneThe focusing gain from the transducer surface

to the hydrophone tip of 200µm diameter was calculated as 5.91, 4.94, and 2.86

for the respective focal distances, using the plane wave decomposition method. The

attenuation in sunflower oil was taken as 1.38 × 10−7 NPs/cm [51]. Consequently,

the measured focal pressure values correspond to 220, 200, and 290 kPa of pressure

measured at the transducer surface, respectively. Based on the analysis result of

Fig. 5.1, the DC bias requirement of the manufactured device is about 19% smaller

than that of a transducer with an insulation layer of 600 nm thickness, while the

output sensitivity is higher by 10%. The device can generate 14 kPa/V of pressure,

which is comparable to the efficiency of commercially available piezoelectric trans-

ducers, but does not require a matching layer, and, hence, is smaller in physical

dimensions. Combined with significantly decreased self heating, the CMUT is a

viable alternative for HIFU applications.

5.2.2 Reduction in Parasitic Capacitance

Device capacitance for both type of arrays (with and without separate bottom

electrodes) were measured separately with an Agilent 4294A Impedance Analyzer.
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Measurements were performed on unbiased transducers. For the devices fabri-

cated on conducting silicon wafer the capacitance of one array element (comprising

170 CMUT cells) is 28 pF, while for the device array manufactured with separately

embedded gold bottom electrodes the capacitance is measured as 11 pF. Conse-

quently, stray capacitance is reduced from 22 pF to 6 pF, which is in excess of 70%.
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Chapter 6

Conclusion

This dissertation establishes the theoretical and numerical basis for a novel ther-

moacoustic imaging modality which uses ultrasound as the heat source. A forward

transient theory is developed and a full set of governing equations are proposed for:

1. Ultrasonic pulse propagation and target heating leading to temporal thermal

oscillations;

2. Thermal expansion of target, volume displacement;

3. TA signal generation, propagation and evaluation.

The coupled Navier-Stokes equation are solved under the light of linear perturbation

theory using COMSOL MultiphysicsR©(a commercially available FEM package) to

evaluate the thermal oscillation at the target. The results obtained are used to solve

the thermal expansion and rarefaction of the solid medium immersed in fluid. Fi-

nally the TA signal generation and propagation are solved using the nonlinear wave

equation. At first a simple point source model is used to prove the feasibility of the

proposed modality. Later, in a separate model pulsed HIFU heating is used as the

excitation mean. Some simple experimental results are used to validate the model.

To the best knowledge of the author, a forward transient working model exhibiting

the feasibility of ultrasound driven thermoacoustic imaging procedure gas not been

proposed or demonstrated in available literature. The target material is chosen to be

silicon glue stick immersed in water. Simulation results are in close agreement with

experimental data. It is seen that the thermoacoustic signal scales with parabolic

dependance on the input signal as the TA signal approximately follows the envelop

of the normal stress component (or pressure) originating from the thermal expansion
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gradient. This insight is also available in the spectral analysis results of the output

signal. Additionally, metals were also tried as target objects and in due agreement

with experimental verification it was infered that softer metals with high viscosity

can also absorb sound pulses and generate TA signals. If the current modality has

to be established as a feasible option for biomedical imaging and NDE, a proper im-

age reconstruction algorithm has to be developed, which remains a open problem.

Once developed, the present work can be expanded to a HIFU-TA based imaging

device design and prototyping. However rigorous experimentation and analysis are

needed before something similar can be established. As HIFU is the incident en-

ergy, high efficiency capacitive micromachined ultrasonic transducers(CMUTs) with

high transmit sensitivity are fabricated with important development on established

micromachining techniques and hence solving a standing problem. These ring ar-

ray transducers have demonstrated strong HIFU capabilities and can be used in

the AA-TAI device prototype for both transmit and receive. In conclusion, this

novel technique of all ultrasound thermoacoustic imaging has immense research and

development potential.
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