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Abstract

Many applications today rely on storage and management of semi-structured infor-
mation, e.g., XML databases and document-oriented databases. This data often has to
be shared with untrusted third parties, which makes individuals’ privacy a fundamen-
tal problem. In this thesis, we propose anonymization techniques for privacy preserving
publishing of hierarchical data. We show that the problem of anonymizing hierarchical
data poses unique challenges that cannot be readily solved by existing mechanisms. We
addressed these challenges by utilizing two major privacy techniques; generalization and
anatomization.

Data generalization encapsulates data by mapping nearly low-level values (e.g., inf-
luenza) to higher-level concepts (e.g., respiratory system diseases). Using generalizati-
ons and suppression of data values, we revised two standards for privacy protection: k-
anonymity that hides individuals within groups of £ members and /-diversity that bounds
the probability of linking sensitive values with individuals. We then apply these standards
to hierarchical data and present utility-aware algorithms that enforce the standards. To
evaluate our algorithms and their heuristics, we experiment on synthetic and real datasets
obtained from two universities. Our experiments show that we significantly outperform
related methods that provide comparable privacy guarantees.

Data anatomization masks the link between identifying attributes and sensitive attribu-

tes. This mechanism removes the necessity for generalization and opens up the possibility



for higher utility. While this is so, anatomization has not been proposed for hierarchical
data where utility is a serious concern due to high dimensionality. In this thesis we show,
how one can perform the non-trivial task of defining anatomization in the context of hi-
erarchical data. Moreover, we extend the definition of classical ¢-diversity and introduce
(p,m)-privacy that bounds the probability of being linked to more than m occurrences of
any sensitive values by p. Again, in our experiments we have observed that even under

stricter privacy conditions our method performs exemplary.
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HIYERARSIK VERILERDE MAHREMIYETIN KORUNMASI
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(-¢gesitlilik, anatomlama
Ozet

Giinlimiizde bir ¢ok uygulama kismi belirli verilerin saklanmasi ve yonetimi (XML
veritabanlar1 ve belge odakli veritabanlar1 gibi) lizerine kurulmustur. Bu veriler ¢cogu za-
man gilivenilmeyen liciincii sahis ve kurumlarla paylasilmaktadir. Bu durum bireylerin
veri mahremiyetine yonelik temel sorunlar1 da beraberinde getirmektedir. Bu ¢alismada,
hiyerarsik verilerde kullanilmak tizere gelistirilmis anonimlestirme teknikleri gosteril-
mektedir. Ayrica bu ¢aligma ile hiyerarsik verilerin anonimlestirilmesi i¢in giiniimiiz tek-
niklerinin kolaylikla ¢6zemeyecegi veri mahremiyeti sorunlarina genellestirme ve anatom-
lastirma tekniklerine dayali yenilik¢i ¢oziimler getirilmektedir.

Veri genellestirmesi, verilerin neredeyse diisiik seviye degerlerini (0r: grip) daha yiik-
sek seviye kavramlara (or: solunum yolu hastalif1) doniismesini ihtiva eder. Veri degerle-
rine genelleme ve silme yapilarak, iki onemli mahremiyet standardi k-anonimleme (fert-
leri k tane elemanli gruplara koyarak saklar) ve ¢-cesitlilik (bir kisinin, herhangi bir mah-
rem bilgiyle iligkilendirilebilme ihtimalini limitler) revize edilmis ve hiyerarsik verilere
uygulanmistir. Bu standartlar1 destekleyen fayda duyarli algoritmalar sunulmustur. Algo-
ritmalarin ve bulugsal yontemlerin degerlendirmesi i¢in iki farkli iiniversite veri setiyle,
biri sentetik digeri gercek veri seti olmak iizere, deneyler yapilmistir. Deney sonuglarina
gore karsilagtirilabilir gizlilik garantileri saglayan ilgili yontemlerden dnemli dl¢iide daha

iyi performans elde edilmis ve gosterilmistir.

Vil



Veri anatomlaglastirmasi, belirte¢ verilerle, mahrem veriler arasindaki baglantiyr mas-
keler ve genelleme zorunlulugunu ortadan kaldirir. Bu sayede daha yiiksek verim saglama-
ya imkan tanir. Hiyerarsik verilerde yiiksek boyutluluk sebebiyle verim saglamanin ciddi
endise kaynadi olmasina ragmen anatomlastirma avantaji hiyerarsik verilerde bu giine
kadar Onerilmemistir. Bu tezde, anatomlastirma isleminin hiyerarsik verilere nasil uy-
gulanagini tanimlanmig ve gosterilmistir. Ayrica klasik /-cesitlilik yontemi gelistirilerek
yeni bir mahremiyet standardi (p,m)-gizliligi Onerilmistir. (p,m)-gizliligi, m tane her-
hangi bir mahrem verinin bir kisiyle iligkilendirilme ihtimalini p ile limitler. Deney-
ler sonucunda daha zor mahremiyet standartlarinda bile drnek tegkil edecek performans

sagladigin1 gozlemlenmektedir.
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Chapter 1

Introduction

1.1 Motivation

Today, exabytes of data flows around globe daily. Massive amounts of data created and
shared through search engines, social networks, streaming services, business applications,
software as a service systems and government branches. Large corporations such as
Facebook, Google, IBM, Netflix and Uber are collecting personal data in exchange of
their service. The reason behind sharing data can be due to obligation [1] or commer-
cial/public benefit. For instance, National Institutes of Health which is responsible for
medical research under U.S. Department of Health and Human Services expects some
funded projects to include a plan for sharing research data [2] . Another aspect is these
entities may want to share data to a third party like a data analytics company, with purpose
of research or create more business value.

However, data in today’s world often comes in various complex structures and for-
mats. In particular, hierarchical data has become ubiquitous with the advent of document-
oriented databases following the NoSQL trend (e.g., MongoDB) and the popularity of
markup languages for richly structured documents and objects (e.g., XML, JSON, YAML).
All the ever-increasingly collected data, when combined together pose a threat to privacy.
Simple deductive reasoning or sophisticated knowledge discovery techniques may link

individuals with sensitive information such as sexual preference, political views, alco-



hol usage or health condition. Due to such potential risks to individual privacy, many
countries have laws enforcing regulations on data sharing and publishing [3] [4].

Due to inherit privacy risks, data owners are required to de-identify personal data
before sharing it. This is not a straightforward task. Removing personal identifiers from
data, which may seem to be a proper de-identification, is not enough to ensure privacy. It
has been shown that even without the personal identifiers, an attacker can still identify a
person with great accuracy via joining released data with external sources [5]. Besides,
while protecting privacy is paramount, preserving utility is as important. All privacy
preserving data publishing techniques’ main concern is to balance privacy requirements
and amount of information published. They all try to publish as much information as they
can while preserving patterns and statistics in the data. So that when anonymized data is
published, it will be useful for applying knowledge discovery techniques.

Since the risks of identification have been realized, numerous privacy standards and a
variety of methods to enforce these standards have been proposed in the literature. Due
to its simplicity, prior research on privacy preserving data publishing addressed tabular
data. Even though a considerable portion of today’s data is stored and maintained in a
hierarchical form, very few existing work [6] address how privacy can be achieved in a
multirelational setting. Direct application of classical techniques unfortunately does not
satisfy privacy in this setting. Defining and enforcing privacy standards while preserving
utility in high dimensional hierarchical data poses a unique challenge for researchers.

In this thesis, we address the aforementioned challenge by presenting hierarchical
anonymization techniques. In particular, we used generalization and anatomization.

We motivate privacy-related attacks on hierarchical data using the example in Fig-
ure 1.1. This record fits the hierarchical education schema given in Figure 1.2. Student
S, born in /993 and majoring in Computer Science, took two courses: CS201 and CS306.
For CS201, S submitted evaluations for two of his instructors. For CS306, S submitted
one evaluation and also reported that he bought the Intro to Databases book. We say that
all of this knowledge are QIs of S. Notice that we write QIs as labels of vertices. Know-

ing some or all of these Qls, the goal of the adversary is to learn sensitive information



about S (e.g., GPA, letter grades S received from the two courses, his evaluation scores
etc.). Without anonymization this could be trivial: If there is only one Computer Science
student born in 1993 in the database, then the adversary immediately learns the GPA of
S (and consequently, every other sensitive value in S’s data record). Our anonymiza-
tion strategy is to create equivalence classes of size > /¢ for an input parameter ¢, such
that even though the adversary knows all of S’s QIs, he can only link S to a group of
¢ records. Furthermore, using /-diversity, we ensure that sensitive values for each vertex
are well-represented, e.g., if { = 3, an equivalence class of size 3 that contains S will have
two more students that took CS20] and they all received different letter grades. There-
fore, the adversary (1) cannot distinguish .S from the other two records, and (2) cannot
infer with probability > 1/¢ any particular sensitive value of S. In the upcoming sections
we show that it is not trivial to offer this privacy guarantee. In particular, straightforward

application of existing k-anonymity and /-diversity algorithms are not sufficient.

Adversarial Model. We assume that adversaries have background information regarding
their victims’ QI values. An adversary may know any combination of QI values in the
same or different vertices of his victims’ records. An adversary may also exploit struc-
tural/semantic links, e.g., S has taken 2 courses and bought exactly one book for CS306.
Our anonymization technique therefore ensures anonymity with respect to records’ struc-
ture as well as QIs. Our approach also covers negative knowledge (e.g., S did not take
CS204) as well as positive knowledge (e.g., S took CS201). We assume that adversaries

have no knowledge (positive or negative) of individuals’ sensitive values.

Contributions. This thesis makes the following contributions:

* We demonstrate the plausibility of privacy attacks on hierarchical data, e.g., XML.
We show how hierarchical data anonymization differs from other data models in the

literature.

* We formally define two notions of privacy, k-anonymity and ¢-diversity, for hi-
erarchical data. We extend popular anonymization methods (generalizations and

suppressions) and utility metrics (e.g., Information Loss Metric LM) so that they
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Computer Science
1993

Prof. Levi| | TA1 | [Prof. saygin| (C ""00 *°
7110 9/10 9/10 $34

Figure 1.1: A student’s hierarchical data record

can be applied to hierarchical data.

We devise an anonymization algorithm that, given a collection of hierarchical data
records, generates an (-diverse output. We experimentally validate the usefulness

of our algorithm and its heuristics.

We show how anatomization technique can be used to increase utility in released

hierarchical databases.

We introduce a new privacy metric (p,m)-privacy that bounds the probability of be-
ing linked to more than m occurrences of any sensitive values by p. The new metric
protects against the disclosure of frequent behaviour where frequency is controlled

by the m parameter.

We empirically demonstrate that anatomization technique can effectively increase

the utility of hierarchical databases, even under strong privacy requirements.

Organization. The remainder of this thesis is organized as follows: An overview of

related work is given in Section 1.2. In Section 1.3, we formally define our data model

and anonymization techniques, and state related assumptions. Sections 1.4, 1.5, 1.6,

1.7 motivates our approach by explaining why /-diversity is needed and why existing

tabular /-diversity methods are unable to ensure /-diversity in hierarchical data. Chapter

2 proposes a novel anonymization algorithm based on clustering, with certain heuristics

4



and Chapter 3 proposes new privacy technique based on anatomization with two different
extensions. Finally Chapter 4 re-iterates the main points, briefly touches on future work

and concludes this thesis.

1.2 Related Work

Privacy is a term that is inquiry to several disciplines. Thus, definition may vary on the
context and discipline on which it is studied on. Generic explanation of privacy is a state
where individuals can have freedom from interference or intrusion and has the right to be
let alone. Although it has been introduced in late 19th century in ”The Right to Privacy”
[10], it still remains popular due to secrecy need of man.

In this thesis, we introduce methods to meet privacy demand of the users and the ap-
plications which lies in the context of “data privacy”. In the domain of computing the
concept of data has it’s origins back in early 1900’s, in the endeavours of Claude Shannon.
Shannon, who is an American mathematician and is the author of highly influential article
called ”A Mathematical Theory of Communication” [11], is also known as the father of
information theory. In it’s simplest form data is information which is transformed into a
structure that is adequate for movement and processing. Data privacy is ones ability to
control their data in a computer system, in such fashion one has the ability to decide how
much information to disclose to 3rd parties, or not release at all. Data privacy is investi-
gated in several disciplines like health care, education and communication technologies
together with growing trends of mobile computing devices.

As governments, institutions and corporations have massive of amount data which
they want to publish for research purposes. In order to harvest value among data stores
and discover hidden patterns, while retaining the individuals privacy demand the field of
privacy preserving data publishing has emerged to satisfy requirements.

Privacy in tabular data has been widely studied. A prominent method in data anonymiza-
tion is k-anonymity [5], which states that each record in a k-anonymous dataset must

be indistinguishable from k — 1 other records with respect to their QIs. Such QI-wise



Table 1.1: Related work on hierarchical data publishing

Data Model | Adversarial Privacy Notion Anonymization
Knowledge Operations
[7] XML XML constraints, | Preventing in- | Vertex and tree re-
functional depen- | ferences due to | moval
dencies constraints  and
dependencies
[6] Multi- Quasi-identifiers | k-anonymity Generalization
relational (local recoding),
SQL suppression
[8] XML Quasi-identifiers, | Anatomy, Disassociation
dependencies d-presence of QIs and SAs,
schema  modifica-
tion
[9] Hierarchical | < m vertex la- k(m*”)-anonymity Generalization

(one  label

bels, < n edges

(global  recoding),

per vertex) structural disassoci-
ation
Chapter 2 Hierarchical | Quasi-identifiers | ¢-diversity Generalization
and their relation- (local recoding),
ships suppression (partial
and full)
Chapter 3 Hierarchical | Quasi-identifiers | Anatomy Suppression (partial

and their relation-

ships

and full)




equivalent groups are called equivalence classes (EC). k-anonymity is a promising step
towards privacy, but it is still susceptible to attacks [12, 13]. The main concern regarding
k-anonymity is that it does not consider the distribution of sensitive attributes, e.g., all
individuals in an EC may have the same sensitive value. /-diversity [12] was proposed to
address this problem, and requires that sensitive values in each EC are well-represented.
To achieve this, given an EC we limit an adversary’s probability of inferring a sensitive
value by 1/¢. Two popular ways of achieving k-anonymity and ¢-diversity are generaliza-
tions and suppressions. Generalizations replace specific values by more general ones, e.g.,
course ID “CS305” can be replaced by “CS 3rd year” or “CS3**”. Suppressions conceal
information by deleting it: Records that exist in the original data are completely removed
from the final output. Since we are working with records with complex structures, we will
not only use removal of entire records (i.e., full suppressions), but also partial suppres-
sions (i.e., pruning data records by removing vertices, edges and subtrees). Data pertur-
bation and the addition of counterfeits (i.e., fake information) is beyond the scope of our
anonymization strategy, since we would like the data publisher to remain truthful (i.e., all
data in the output must have originated from the input, and not be randomly spawned by
the anonymization algorithm). k£-anonymity was proposed by Sweeney and Samarati and
since then has become a standard for privacy protection [14, 5]. It has been shown that
optimal k-anonymity using generalizations and suppressions is NP-hard [15, 16]. Yet,
achieving practical and efficient £-anonymity on tabular data has been an active area of
research [17, 18, 19, 20, 21]. The main concern regarding k-anonymity is that it does not
consider the distribution of sensitive values [13] and it is therefore susceptible to attribute
linkage attacks [22]. In this thesis, we use /-diversity [12] that addresses this problem. In
[23], authors show that achieving optimal /-diversity through generalizations is NP-hard
for ¢ > 3. Among notable /-diversity algorithms are those in [24, 12] and [23].

Privacy notions such as k-anonymity and ¢-diversity were initially introduced for tab-
ular data, but they are being extended and applied to various types of complex data. Here
we describe the differences between our data model and those presented in earlier works

in complex data anonymization. In [25], [26] and [27], authors study variations of k-



Students enrolled
at a university

QI: major program, year of birth
SA: cumulative GPA

’

Courses taken and
grades received

QI: course ID
SA: letter grade

e ~.

Books bought for Student evalutes class
instructors and TAs

each class

QI: book name QI: name/ID of person
evaluated

SA: price paid

SA: evaluation score

Figure 1.2: Schema for education data

anonymity (e.g., k-isomorphism) to anonymize graph data. In graph data and social net-
work anonymization ([28]) data often comes in the form of one large graph, and the goal
is to make each vertex isomorphic or indistinguishable from &£ — 1 other vertices. On the
other hand, our data model assumes one disjoint record per individual. Also, we presume
an explicit hierarchy between vertices, and do not allow cyclic graphs. In [29], [30], [31]
and [32], authors investigate privacy preserving publishing of transactional databases and
set-valued data. Elements in set-valued data do not contain an order or a hierarchy, and
all elements in a database originate from the same domain (e.g., market purchases, search
logs). Our work considers multiple QI and sensitive attributes that each have a separate
domain. Several studies (e.g., [33], [34] and [35]) use generalizations and suppressions
for privacy preservation in spatio-temporal and trajectory data publishing. A trajectory is
an ordered set of points where each point has one immediate neighbor (i.e, a — b — ¢).
Whereas in hierarchical data, each vertex has multiple children that are potentially from
different domains. Finally, some works such as [36] and [37] assume that the data is in

tabular form, but the domains of sensitive attributes are hierarchically organized. They



propose privacy definitions applicable to this particular scenario. However, we assume no
ordering or hierarchy among sensitive values, and instead propose that quasi-identifying
information is organized hierarchically.

Several studies investigate privacy in semi-structured and hierarchical data from the
point of view of access control. In particular, access control systems for XML documents
have been designed and implemented for over a decade [38, 39, 40]. However, these are
orthogonal to our approach: We assume that an adversary will have full knowledge over
the database once it is published. In contrast, access control methods stop unauthorized
users (such as adversaries) from gaining access to sensitive information in the data.

Most closely related to our work are [9], [8], [6] and [7] that study privacy preserving
publishing of hierarchical or tree-structured data. Information regarding these works is
given next, and is also summarized in Table 1.1. In [7], authors focus on cases where
functional dependencies in XML data cause information leakage. They formulate such
dependencies as XML constraints. They propose an algorithm that sanitizes XML doc-
uments according to these constraints so that the resulting document no longer leaks in-
formation. Our adversarial model is broader: We study adversaries that also have back-
ground knowledge regarding their victims. In [8], authors introduce two anonymization
schemes for XML data: an extension of anatomy [41] (another well-known privacy pro-
tection method) and J-dependency. However, these methods transform the schema of
XML documents by de-associating QIs and SAs. Also, they support generalizations of
SAs, which intuitively work against our goal of making records /-diverse. Simultane-
ous to our study, [9] proposed the k™™ -anonymity definition for tree-structured data. In
their work, attackers’ background knowledge is limited to m vertex labels and n struc-
tural relations between vertices (i.e., ancestor/descendant relationships). Also contrary to
our approach, they support structural disassociations which modify the original schema
of records. In addition, they employ a global recoding approach, i.e., if a value is gen-
eralized, then all its appearances in the database must be replaced by the generalized
value. This requirement can be too constraining for high-dimensional and sparse data,

and therefore our solution uses local recoding that allows a value and its generalization



to co-exist in the output. Furthermore, their solution is exponential in m. In [6], authors
extend k-anonymity to anonymize multi-relational databases that have snowflake-shaped
entity-relationship diagrams. Their definitions are primarily concerned with £-anonymity,
and although they propose a method for ¢-diversity, (1) their solution k-anonymizes the
database first and then iteratively tries to find an output that is /-diverse, and (2) they do
not provide any experimental results. The effectiveness of their approach relies heavily
on the k-anonymized database, which is obtained without taking SAs into account. On

the other hand, our algorithms checks for ¢-diversity at each anonymization step.

1.3 Preliminary

In this chapter we formally state our definitions and assumptions. We introduce concepts
and terms and discuss further on the motivation of our work. In this section, we describe
terms and notions used in both of the works discussed in Chapter 2 and Chapter 3. We
present both formal and verbal descriptions that falls into three categories namely Data

Model, Anonymization and Anatomization.

Definition 1. (Rooted tree) Let T' be a graph with n vertices. We say that T’ is a rooted

tree if and only if:

1. T is a directed acyclic graph with n — 1 edges.

2. One vertex is singled out as the root vertex, and there is a single path from the root

vertex to every other vertex inT'.

3. Let children(v) = {c1, ..., ¢ } denote the children of vertex v, i.e., there exists an
edge v — c¢; if and only if ¢; € children(v). Then, ci, .., ¢y, are called siblings of

one another, and we assume no ordering among them.

We denote such trees by T'(V, E') where V' is the set of vertices and E is the set of edges

in the tree.

Definition 2. (Hierarchical data record) We say that a hierarchical data record satisfies

the following conditions:
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1. It follows a rooted tree structure.

2. Each vertex v has two j-tuples (7 > 0) vgr: and vgr, where v, contains the names

of QI attributes and vg contains the values of corresponding Qls.

3. Each vertex v also has two m-tuples (0 < m < 1) vgas and vsa, where vga;

contains the name of SA and vg 4 contains the value of corresponding SA.
4. We assume (|vgr| + |vsa|) > 1 to eliminate empty vertices.

In our examples we adopt the following notation to represent hierarchical records: We
write QI values (vgr) as labels of tree vertices and associated SA values (vg4) right next
to the vertices (as contiguous information). For the root vertex in Figure 1.1, vgr=(major
program, year of birth), vga=(GPA), vor=(Computer Science, 1993) and vgs=(3.81).
An edge between two vertices signals that information is semantically linked, e.g., the
evaluation score of 9/10 for Prof. Saygin in Figure 1.1 was given by this particular student
and for the CS306 course. Such links can be established through primary and foreign
keys in a multi-relational SQL database, or through hierarchical object representations in
XML or JSON. Conversion of any type of hierarchical data to the structure defined above
is trivial, given which attributes are quasi-identifiers and which ones are sensitive.

We say that an individual’s record in the database conforms to the definition of a hier-
archical data record, and only one hierarchical record exists per individual. The database
is a collection F' that contains n hierarchical records, denoted 17, ..., T,,.

Let vx[i] denote the ’th element in the r-tuple vy, where r = j or m. Let Q(A)
denote the domain of attribute A. We assume, without loss of generality, that the domains
of different attributes are mutually exclusive: Q(A) N Q(A") = () for A # A". We also
require: Vi € {1, .., |vor|}, vorli] € Q(vor[i]). Likewise, if the vertex contains a sensitive

attribute (i.e., |vga| = 1), then vga[l] € Q(vgae[l]).

Definition 3. (Union-compatibility) Two vertices v and v’ are union-compatible if and

. ’ /
only if vgr = Vg and Vsar = Vg 4

11



We use union-compatibility akin to database relations: Two database relations are
union-compatible if they share the same number of attributes and each attribute is from
the same domain. Similarly, in our case, two vertices are union-compatible if they follow
the same schema (i.e., same QIs and SAs).

In tabular data, suppression of a row refers to the removal of that row from the pub-
lished dataset (or equivalently, all values in that row are replaced by “*”). In our setting,
this translates to completely removing an individual’s hierarchical record. Although this
might be necessary and we support this operation, its effect is also drastic: If the deleted
record is large (i.e., contains a lot of vertices), then a lot of useful information might be

lost. We therefore introduce partial suppressions.

Definition 4. (Partial suppression) We say that a hierarchical data record T* is a par-
tially suppressed version of T', if T is obtained from T’ by first removing exactly one edge
Jrom T’ (call this e) and then deleting all vertices and edges that are no longer accessi-
ble from the root of T (i.e., there is no longer a path from the root to them). We write

T* = ¢.(T) to denote this operation.

Intuitively, a partial suppression is nothing but tree pruning. Such pruning can lead
to the deletion of a single vertex or a subtree containing multiple vertices and edges.
Note that the remainder of the data record is untouched, i.e., vertices that “survive” the
partial suppression operation incur no changes to their QIs or sensitive values. Figure 2.7
contains several examples: From Figure 2.7a to Figure 2.7b, the upper record loses the
vertex with TA5 under CS404. From Figure 2.7a to Figure 2.7c, the edge between the
root and CS$404 is broken, which leads to the suppression of a larger subtree (i.e., children
of CS404 are also deleted). We explicitly replace suppressed vertices with dashed lines
and lost information (both vg; and vg4) with “*” for demonstration purposes. They are
otherwise not part of the output.

Definition 5. (Structural isomorphism) Let T,(Vy, Ey), To(Va, Es), ..., To(Vy, E,,) de-
note a group of trees with vertex sets V; and edge sets E; respectively. Let R(T;) =

{vi, vs, .., v } denote the breadth-order (level-order) traversal of T;. The group of trees

is structurally isomorphic if:
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1. Fori € [1,n — 1), we have: |R(T;)| = |R(Ti+1)| = m.

2. Forj € [l,m], letT; = ;e v! denote the set of vertices at the j’th index of the

traversal. Then, all pairs of vertices in I; are union-compatible.

Definition 6. ((-diversity) Let X = {s1, Sa, ..., Sp } be a multiset of values from the domain
of a sensitive attribute A, i.e., s; € Q(A). Let f(s;) denote the frequency of value s; in X.
Then, X is (-diverse if for all s;, f(s;) < 1/L.

Informally, this probabilistic /-diversity definition states that the frequency of all sen-
sitive values must be bounded by 1/¢.

Sensitive attributes can be categorical (e.g., letter grade) or continuous (e.g., GPA).
The domain of categorical SAs consists of discrete values (e.g., letter grades from A to
F), and it is straightforward to evaluate /-diversity on a set of discrete values as above.
However, continuous SAs require an intermediate discretization step. The domain of a
continuous SA is divided into non-overlapping buckets, and X then contains the buck-
ets data values fall into. (E.g., GPA domain [0.0 — 4.0] can be divided into 8 buckets of
size 0.5. A GPA value 3.26 can then translate to the bucket [3.0 — 3.50).) We do not
enforce a specific discretization, instead our algorithms can work with an arbitrary dis-
cretization that meets the demands and preferences of the data publisher. We also allow

discretizations to contain buckets with different sizes.

Definition 7. (Diversity of vertices) Let V = {v', ..., v"} be a set of vertices from hierar-

chical data records. We study two cases:

e Forvl €V,

Ug 4l = 0. Then, V is (-diverse if and only if all vertices in V are

pairwise union-compatible.

« Forv’ €V, |vl,| = 1. Let X be defined as X = {v§,[1],v34[1], ..., v%4[1]}. Then,

V' is (-diverse if and only if all vertices in V' are pairwise union-compatible and X

is {-diverse.
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Students enrolled at the university

Courses and letter grades

studentID major YoB GPA
S1 Computer Science 1992 3.25
S2 Computer Science 1993 2.67

studentlD course grade

S1 CS201 A
S1 CS202 A-
S2 CS401 B
S2 CS404 B+

Figure 1.3: Students S/ and S2 and their courses as two tables linked using studentIDs

(primary key in Table 1, foreign key in Table 2)

Students enrolled at the university

Courses and letter grades

studentID major YoB GPA studentlD course grade
S1 Computer Science 199* 3.25 S1 CS2** A
S2 Computer Science 199* 2.67 S1 CS2**  A-
S2 CS4** B
S2 CS4** B+
3.25 2.67

Computer Science
199*

Computer Science
199*

=S

Figure 1.4: Potential result if the two tables in Figure 1.3 are anonymized independently
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1.4 /-diversity vs. k-anonymity in Hierarchical Data

Prior approaches in hierarchical (and tree-structured) data anonymization against link-
age attacks can be divided into two camps: providing privacy by disassociating QIs and
SAs [8] and extensions of k-anonymity (e.g., multi-relational k-anonymity [6] and & ("™™)-
anonymity [9]). The former publishes QI values and SA values separately, hence an ad-
versary cannot determine the sensitive value of a particular vertex (e.g., the letter grade S
received from course CS201). In the latter, records are anonymized in terms of structure
and labels (QIs in our case), but sensitive values are left unattended. (In particular, [9]
has no distinction between QI and SA.) Both may result in equivalence classes that leak
sensitive values with significant probabilities.

Let us demonstrate the plausibility of homogeneity and background knowledge attacks
on hierarchical data, where data is k-anonymized according to [6] or [9]. Say that a 2-
anonymous dataset has been published, such as the one in Figure 2.7b. Let the adversary
know beforehand that there will be at most two students that majored in Computer Science
and were born in the /990s. His victim .S is among these two students. The adversary links
S to the records in Figure 2.7b. At this point, the published dataset leaks the following
pieces of information: (1) S received an A- from CS404. (2) S submitted an evaluation
score of 8 for Prof. Leviin CS201. The peculiarity of this example comes from the fact that
the adversary had no knowledge of QI values for the vertices that leaked these information
(e.g., the adversary did not know that S evaluated Prof. Levi). Both of these privacy leaks

could have been avoided if the published data was 2-diverse as in Figure 2.7c.

1.5 /-diversity in Tabular vs. Hierarchical Data

As reported earlier, several algorithms that apply /-diversity to tabular data have been
implemented. In applicable situations, one way of processing hierarchical data is to re-
duce it to tabular data and then run tabular algorithms on it. There are also arguments
that say in most scenarios, converting hierarchical data to a single giant relation and then

using single-table algorithms is undesirable because of potential loss of information and
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semantic links between data records [42]. We now demonstrate that such conversions and

reductions are not sufficient also for privacy protection.

1.6 Anonymizing Relations Separately

A hierarchical schema (e.g., Figure 1.2) can be represented using multiple database rela-
tions that are linked via primary and foreign keys (i.e., join keys). Then, a straightforward
approach would be to consider each relation independently and run tabular ¢-diversity
algorithms on them.

Consider the two tables in Figure 1.3, where studentIDs are added and used as join
keys. When these two tables are treated independently, a resulting anonymization could be
the one in Figure 1.4. It can easily be verified that both tables are 2-diverse by themselves.
Converting the result into our hierarchical representation, though, we see that students S/
and S2 are neither 2-anonymous nor 2-diverse. An adversary that knows S/ took CS201
learns the GPA of S/, since S2 has not taken any CS200-series courses.

The main problem of this independent anonymization approach is that anonymizations
are not guaranteed to be consistent between multiple tables. In the first table, S7 and S2’s
tuples are anonymized with respect to each other, but a tabular anonymization algorithm
does not acknowledge this when anonymizing the second table. Hence, S1’s tuples may
be bundled together and S$2’s tuples may be bundled together while creating a 2-diverse

version of the second table.

1.7 Constructing and Anonymizing a Universal Relation

Another approach is to flatten hierarchical data into one big relation called the universal
relation, 1.e., the universal relation is obtained by joining all relations in a hierarchical
schema using join keys. Figure 1.5 provides a sample universal relation. Notice that this
creates a significant amount of redundancy and undesirable dependencies. Information in

deeper vertices of the records have to be rewritten for each descendant connected to that
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Join key Quasi-Identifiers Sensitive Attributes

studentID major YoB course grade GPA
S3 Computer Science 1993 CS301 C+  2.17
S4 Computer Science 1995 CS305 A 3.78
S4 Computer Science 1995 CS306 A- 3.78
S5 Computer Science 1994 CS301 B 2.96

Figure 1.5: Universal relation constructed by joining the Enrollment and Courses relations

with students S3, S4 and S5 using studentIDs

vertex (e.g., QIs major and year of birth are repeated for each course taken). A second
problem is that leaf vertices may be at different depths, which will force work-arounds
such as having null values in the universal relation. For example, in Figure 1.5 if $3 had
not taken any courses, we would either have to remove him from the universal relation,
or enter nulls for his course and grade. Here we show the ineffectiveness of the universal
relation approach even ignoring the problems discussed up to this point.

The table in Figure 1.6 is 2-diverse in terms of the two sensitive attributes, GPA and
grade. However, the hierarchical records of $3, §4 and S5 are not anonymous: S$3 and S5
are shown having taken one CS3** course each, but $4 has taken two. An adversary that
knows S4 is the only student who has enrolled in more than one CS3** course can learn
the grades S4 received from these courses, together with S4’s GPA. The problem this time
arises from the fact that each individual may have an unknown number of entries in the

universal relation.

1.8 Problem Definition

Having established the preliminaries, in this section we formally define and state the
problem.
We now discuss why we require every record 7" to belong to exactly one {;-diverse

equivalence class. If 77" does not belong to exactly one ¢;-diverse equivalence class, then
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Join key Quasi-Identifiers Sensitive Attributes

studentID major YoB course grade GPA
S3 Computer Science 199* CS3** C+  2.17
S4 Computer Science 199* CS3** A 3.78
S4 Computer Science 199* (CS3** A- 3.78
S5 Computer Science 199* CS3** B 2.96
247 Computer Science 3.78 Computer Science Computer Science 2.96
199* 199* 199*
C+__¥ A A- B__V

Figure 1.6: 2-diverse version of the universal relation in Figure 1.5

it either belongs to less than one ¢;-diverse equivalence class or multiple equivalence
classes. Say that 7} does not belong to an ¢;-diverse equivalence class where ¢; > /.
That is, 7} belongs to a t-diverse equivalence class where ¢ < ¢. Then, clearly it is pos-
sible with certain background knowledge, an adversary will be able to infer the sensitive
attribute in 7} with probability 1/¢, which is greater than 1/¢. This defeats the purpose of
(-diversity and the privacy protection we offer in this thesis. On the other hand, say that
T7 belongs to multiple equivalence classes that are ¢;-diverse. We construct an example to
demonstrate the privacy breach here: Let 77, 75 and 73 be three records that each contain
a single vertex, ¢ be 2, and 71-75 and 75-T3 be the two equivalence classes (notice that
T, appears in both equivalence classes). Since 7}-7, and 75-T5 constitute equivalence
classes, due to QI-isomorphism, we know that they have the same QIs. Say that an adver-
sary has knowledge of these QIs and tries to infer a sensitive attribute. If 7} and 75 have
the same sensitive value (and 75 has a different sensitive value) then the probability of
an adversary inferring a sensitive value is 2/3, which is greater than 1/2 (1/¢). Whereas
if 75 was not part of both equivalence classes (e.g., T1-15 was an equivalence class, and
there was a fourth record 7}, where T3-7, was an equivalence class) then the probability

of inference would be at most 2/4, even if all four records had the same QIs. 2/4 = 1/2
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(i.e., 1/0), hence there would be no privacy breach.

Given a collection of hierarchical data records F'(11,T5, ...,T},), an anonymized out-
put F* is generated via the following principle: For each record 7T; € F, either 7; is fully
suppressed and does not appear in F™*, or 7; is transformed into 7} € F™* by performing
a set of generalizations { A} and partial suppressions {¢.(7;)}. With these definitions in
mind, the problem we study in this thesis can be stated as follows: Given a set of hier-
archical data records F’, we would like to compute an ¢-diverse output F™* with minimal

information loss, using the anonymization principle above.
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Chapter 2

Privacy Preserving Generalization of

Hierarchical Data

2.1 Overview

In this chapter we present a novel privacy preserving publishing technique on hierarchical
datasets. The least one can do to protect privacy is to delete explicitly identifying infor-
mation (e.g., SSN, name). However, it has been shown that this is ineffective: [43] and [5]
report that a set of quasi-identifier (QI) attributes (e.g., gender, zipcode, date of birth) can
uniquely identify the majority of a population and also lead to linkage attacks [22]. An
adversary performs a linkage attack by knowing one or more QI values of his victim, and

trying to infer the victim’s sensitive attribute (SA) (e.g., GPA, health condition) values.

2.2 Generalization of Hierarchical Data

Domain generalization hierarchies (DGH) [12] are taxonomy trees that provide a hierar-
chical order and categorization of values. We assume that a DGH is either available or
easily inferable for each QI. Note that this assumption is widely adopted in the anonymiza-
tion literature [22, 6]. Values observed in the database appear as the leaves of DGHs. The

root vertices of DGHs contain “*” to mean “any value”, i.e., value completely hidden. A

20



/\

CS 2** CS 3

/" N\ i N
CS201 CS204 CS301 CS303 CS305 EE208 EE315

Figure 2.1: Sample generalization hierarchy for course IDs

DGH is given for attribute course ID in Figure 2.1.

Definition 8. (Generalization function) For two data values x and x* from the same QI
attribute A, x* is a valid generalization of x, written x* € ¢(x), if and only if x* appears
as an ancestor of x in the DGH of A. We abuse notation and write gbl_l (x*) to indicate all

possible leaves that can be generalized to value x* using valid generalizations.

For example, for the QI course ID, CS3** € ¢p(CS303) and CS € ¢(CS303), whereas
CS2%% ¢ ¢(CS303). Also, ¢, ' (CS3*%) = {CS301, CS303, CS305}, and ¢; '(CS305)
= {CS305}.

Definition 9. (Vertex generalization) We say that vertex v* is a valid generalization of v

and write v* € A(v), if:
1. v and v* are union-compatible.
2. vqr # v
3. Va* € vy, either a* € vy or there exists a € vqr such that a* € ¢(a).
4. vg4 =V,

In words, a vertex is generalized when at least one of its QI values gets replaced by
a value that is more general according to the attribute’s DGH. A vertex generalization

leaves sensitive values intact.
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Various metrics were proposed and used in relevant literature to calculate costs of
anonymization [17, 44, 18, 45]. In this thesis, we will use an extension of the general loss
metric (LM) [20]. Similar extensions were previously applied in a number of settings,

including medical health records [46] and multi-relational databases [6].

Definition 10. (Individual LM cost) Given a DGH for attribute A and a value x € Q(A)

(i.e., x exists in A’s DGH), the individual LM cost of value x is:

o ()] — 1
LM'(2) = o= ——

¢ (r)] =1
where r denotes the root of A’s DGH.

Definition 11. (LM cost of a collection of hierarchical records) Let I’ and F* be collec-
tions of hierarchical data records, where F™* is obtained via anonymizing F'. Let V denote
the set of vertices that exist in records in F' but do not exist in F'* due to partial or full

suppressions of records. Then, the LM cost of F™* is:

(> > > LM'(q")+ (X Iperl)

Trer* vely q*EvZN pevw

> > |verl

T;eF veT;

LM(F*) =

These cost metrics measure the utility loss due to generalizations and suppressions.
LM’ is defined on QI values, and asserts a cost according to how general a QI value
is. For example, according to Figure 2.1, LM'(CS) = 4/6, LM'(CS2**) = 1/6 and
LM'(CS201) = 0. Intuitively, if the output contains CS instead of CS2** or CS201, there
is higher ambiguity regarding the initial QI value that was generalized to CS. Hence, LM’
assigns a higher penalty to more general QlIs.

We use LM’ to build LM (F™*), a cost metric that is suitable to our setting. In this
definition, the anonymization cost is broken down into two factors: The first factor cal-
culates the cost incurred by generalizations of vertices that appear in the published data.
The second factor adds the cost of suppressions. The total cost is calculated on the order
of labels rather than vertices or trees, to better focus on each individual piece of data lost

during anonymization.
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One can verify that the LM’ cost of a QI is within the range [0, 1], where the root of
a DGH receives the highest penalty (1) and leaves receive no penalty (0). Consequently,
we ensure that LM (F™*) is also normalized to a value within [0, 1].

We compute the LM cost of anonymizing the two records in Figure 2.7¢ to provide
an example for LM (F™*). Assume that F' consists of only the two records in Figure 2.7a,
and F™* is the records in Figure 2.7c. Further assume the LM costs of generalizing years
of birth 71994 and 1995 to 199* is 1/10, course IDs CS306 and CS305 to CS3** is 1/3,
instructors Prof. Saygin and Prof. Nergiz to DB Prof. is 2/7, and TAI and TA2 to TA is
1/2. Then,

(5+3s+2+3)-2+7

LM(F*) = 5 —0.497

Definition 12. (QI-isomorphism) Let T\ (Vy, E) denote a hierarchical data record with
a set of vertices V| and edges E,. A data record Ty(Va, Es) is QI-isomorphic to T} if and

only if there exists a bijection f : Vi — V5 such that:

1. For x,y € V), there exists an edge e; € Es from f(x) to f(y) if and only if there

exists an edge e; € Iy from x to y.

2. The root vertex is conserved; i.e., denoting the root of the first tree as r, € V| and

the root of the second tree as ro € Vs, f(r1) = 1o

3. For all pairs (z, '), where v € Vi and o' = f(x), x and x’ are union-compatible

and xqr = ;.

Definition 13. (Equivalence class of hierarchical records) We say that records D =
{T1,..,T}} are k-anonymous and form an equivalence class, if for all i, j where 1 <

i,j <k, the pair (1;,T}) is QI-isomorphic.

Two records are QI-isomorphic if they appear to be completely same when all sensitive
values are deleted from both. In other words, they are indistinguishable in terms of labels

and structure. There is a clear analogy between the traditional definition of equivalence
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classes in tabular £-anonymity and our definition for hierarchical records: Both state that

an equivalence class is a set of records that are indistinguishable with respect to their QlIs.

Definition 14. ((-diverse equivalence class) We say that records {11, .., Ty} form an (-

diverse equivalence class, if and only if:
1. {1, .., Ty} constitute an equivalence class.

2. Forall 1 < 1 < k — 1, let f; be a bijection that maps T’s vertices to T;,1’s
vertices, as in QI-isomorphism. Let 17 have n vertices, labeled arbitrarily as
vl vl vi . vl Then, there should exist a set of bijections {fi, fo, .., fx_1} such

that Vx € {1,2,..,n}, the set of vertices V.= {vl, fi(v}), fa(vl), .., fa_1(v})} is

O-diverse.

(-diversity proposes the following extension to k-anonymity: Given a set of k-anonymous
records, we are certain that they are pairwise QI-isomorphic, and it is possible to generate
a set of bijections { f1, f2, .., fr_1} to match their vertices that are equivalent in terms of
structure and QIs. Matching vertices should be ¢-diverse (i.e., Definition 7) so that for ev-
ery piece of QI or structure-wise knowledge, the corresponding vertices yield a sensitive
value with probability no more than 1/¢.

We should point out that multiple bijections between two records’ vertices are possible
if they contain multiple union-compatible sibling vertices with identical QIs. In such
cases, it is too restrictive to require that all possible bijections satisfy /-diversity, therefore
our definition states that it would suffice to have one bijection that does.

Figure 2.7 contains two records together with their 2-anonymous and 2-diverse ver-
sions. This is just one way of anonymizing these records, there are also other correct
(i.e., fitting the definition of anonymity and diversity) anonymizations. The quality of
these anonymizations, however, depend on how much information is lost (according to an
appropriate cost metric). An anonymization that satisfies k-anonymity or ¢-diversity and
yields the lowest information loss is most desirable.

An alternative representation of an equivalence class which we use in later sections

is the class representative for a given equivalence class. A class representative 7' is es-
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- {3.26, 3.70}
Computer Science

199*

{B, A} A/ {A, A}

DB Prof. TA
{9/10, 10/10} {9/10, 8/10}

Figure 2.2: A class representative

sentially a hierarchical data record with one extension: If a vertex contains a sensitive
attribute, its value is not a single element, but rather a list of elements. (Vv € f, Vga
returns a set rather than a single sensitive value.) We formally define class representative

as follows:

Definition 15. (Class representative) Given an equivalence class D = {17, ..,T},} with
the corresponding set of bijections {f1, fo, .., fx_1}, we say T is the class representa-
tive for D if T is Ql-isomorphic to T} with a bijection function f and Vv € f, Vg =

{f(U)SA7 fl(f(v))th SR fk’—l(f(v))SA}'

Figure 2.2 shows a representative for the equivalence class given in Figure 2.7c. It is
easy to show that a given equivalence class is ¢-diverse if and only if the corresponding

representative is /-diverse, that is Vv € T\, the set vg4 satisfies /-diversity.

Definition 16. (/-diversity of a database) A collection of records F*(T7,...., 1) is (-
diverse if every record T € F* belongs to exactly one {;-diverse equivalence class, and

forall l;, ¢; > € holds.
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2.3 Anonymization Algorithm

We designed and implemented a solution to the anonymization problem stated at the Sec-
tion 1.8. Before moving forward, we would like to underline two important characteristics
of our anonymization scheme. First, our approach ensures that the data publisher remains
truthful. The output does not contain any information that did not exist originally in the
input, i.e., we do not consider adding new vertices, changing QIs of vertices (other than
generalizing them), or adding new QIs or SAs to existing vertices. Second, vertices that
appear in the output have the same depth, adjacency and parent as they did in the input.
That is, the structure of records in the output are consistent with the input. This schema
preservation enables easier data mining without any ambiguity.

We present our algorithm in two steps: (1) Given two records, we focus on how
to anonymize them with respect to each other so that they become 2-diverse with low
information loss. (2) We build a clustering algorithm that employs the previous step and

class representatives to anonymize an arbitrary number of records.

2.3.1 Pairwise Anonymization

Converting two records to a 2-diverse pair is pivotal not only because we use it as a
building block in our clustering algorithm, but also we employ it as a similarity metric
(i.e., to calculate distance between two hierarchical data records). In addition, given a
fixed pair of records as inputs, the anonymization function should be able to produce a
2-diverse output with as little information loss as possible. Therefore, it relies on finding
vertices and subtrees that are similar in both records.

We define the following notation: Let root(7") denote the root vertex of the hierarchi-
cal data record 7', and subtrees(v) denote the subtrees rooted at the children of v (i.e.,
for each child ¢; of v, the hierarchical data record rooted at ¢; is included in subtrees(v)).
Given two QI values X and Y both from the same QI domain, and Z that is the DGH of
the QI, we say that function mrca(X,Y, Z) returns the lowest (i.e., most recent) common

ancestor of X and Y according to Z. Assume that the function cost(T’) returns the cost
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of anonymization of 7', given a pre-defined cost metric C'M . An applicable cost metric is

LM, and in that case, cost of a record 7' is:

cost(T) = (3 S~ LM'(q) + (Y lworl)

veEV qEvQr wew

where V' denotes the vertices in 7' that are not suppressed and ¥ denotes the vertices
that were in 7" but are now suppressed. Let clone(T) return a copy of T'. Furthermore,
given two vertices a and b, let u-comp(a, b) test the union-compatibility of  and b, and

diverse(a, b) have the following behavior:

true  if u-comp(a,b) and ags Nbga = 0
diverse(a,b) =

false otherwise

A function that anonymizes hierarchical records in top-down manner is presented in
Algorithm 1. We refer to this function as diversify. Without loss of generality, we assume
that for the two input hierarchical records 77 and 75 (rooted at a and b, respectively),
|children(a)| < |children(b)|. (Otherwise 7} and 75 can be interchanged as the first step.)
The algorithm can be studied in several steps. First step checks the union compatibility
and diversity of root vertices a and b. If a and b cannot be anonymized, then their trees are
suppressed. In the second step (lines 7-10), we generalize the QIs of a and b according to
their DGHs. Resulting a and b will be indistinguishable in terms of QIs. In step 3 (lines
11-17), the algorithm checks if further calculation is needed: If a and b both have children,
then we need to find a low-cost anonymization of their subtrees. If one does not have any
children, then we can safely suppress the children and subtrees of the other. (Otherwise it
would be impossible to achieve QI-isomorphism due to structural difference.) When the
algorithm reaches line 18, it has dealt with the current level (i.e., checked if root vertices
are diverse, anonymized them and ensured that both have children). A low cost pairing
(i.e., mapping) between the subtrees rooted at a’s children and the subtrees rooted at b’s
children is returned by the function FindMapping. (We will give a detailed explanation
of how the mapping is computed in the next section.) Pairs returned by the function are

suitable candidates to be anonymized with one another. Hence, diversify is run recursively
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Algorithm 1 Top-down anonymization of hierarchical records

Input: Two hierarchical data records (or class representatives) 7} and 75, anonymization
cost metric for cost calculation, DGHs of QI attributes for finding mrca
Require: |children(root(77))| < |children(root(75))|, otherwise swap 7 and 715
1: procedure DIVERSIFY
2: a <root(17)

3: b <—root(15)

4: if —diverse(a,b) then

5: suppress 77 and 75

6: return cost(7}) + cost(73)

7: for i = 1to |ag;| do

8: g < mrca(agrli], borli], DGH of agr|i])
9: replace ag;[i| with g
10: replace bg;[i] with g

11: if subtrees(a) = () and subtrees(b) = () then
12: return cost(7}) + cost(73)

13: else if subtrees(a) = () and subtrees(b) # () then

14: let E be the set of outgoing edges from b
15: for e € E'do

16: Ty < @e(T2)

17: return cost(77) + cost(15)

18: P + FindMapping(subtrees(a), subtrees(b))

19: for each pair (a;, b;) € P do

20: diversify(a;, b;)

21: for v € subtrees(b) and A(z,v) € P for some = do
22: Let e be the edge from b to v

23: Ty < (1)

24: return cost(7}) + cost(71s)
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on each pair (lines 19-20). Since we assumed |children(a)| < |children(b)|, all subtrees
rooted at a’s children will be paired, but some subtrees rooted at b’s children might be
left-overs (i.e., they remain unpaired). Unpaired subtrees are suppressed (lines 21-23) to
achieve QI-isomorphism of 77 and 75. Finally, a successful execution of diversify always

returns the cost of anonymizing its inputs (see the return statements throughout).

2.3.2 Finding a Good Mapping

Recall that FindMapping is called using two lists of hierarchical data records S and U
(where |S| < |U

), and the goal is to produce a set of pairs {(s,u) | s € S,u € U}
that are similar. We measure similarity as the cost of anonymization. Finding an optimal
solution to this problem requires finding all mappings between all elements in .S and U,
and picking the mapping that yields the lowest cost. However, this is infeasible: Let S
have n elements and U have m elements, where m > n. The number of possible pairings
between S and U is (ZL) - n!, which implies exponential complexity. This becomes a
significant problem when the branching factor of input data records is large. (Even for
toy datasets with average branching factors of 6-7, optimal search took several hours.) We
therefore need heuristic strategies for FindMapping. Based on this observation, we now
describe two different solutions to the problem: one that employs a greedy algorithm, and

another that models the problem as an optimization problem using linear programming.

The greedy algorithm. This heuristic traverses S by picking one element at a time,
and finds the most suitable candidate in U to pair the element with. A more formal
description is given in Algorithm 2. The greedy solution has no guarantees of finding a
global optimum, but instead settles for a local optimum in each iteration (i.e., for each
element in S).

The procedure in Algorithm 2 works as follows: We pick one record at a time from
the first set .S and call this record f (line 3). Then, we consider each unpaired element
v in the second set U and compute the information loss of anonymizing f with v (lines
6-10). This is done by first making copies of f and v (to make explicit that we do not

modify the original records) and then running diversify on them. The record that yields

29



Algorithm 2 Finding a low-cost mapping greedily

Input: Two lists of hierarchical data records S and U, where |S| < |U]|
1: procedure FINDMAPPING-GRD
2 P«
3: for each f € S do

4: minCost <— 400

5: match < ()

6: for eachv € U do

7: f" < clone(f)

8: v’ < clone(v)

9: ¢ + diversify(f’,v")
10: if ¢ < minCost then
11: minCost < ¢
12: match < v
13: P + P U (f,match)

14: U < U— match
15: return P
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the lowest cost wins and gets to pair up with f (lines 10-14). We repeat this procedure
until S' is exhausted.

An interesting heuristic is to find a strategy to choose f from S in a way such that
Algorithm 2 performs better. In other words, can the order in which f is chosen from S
affect the final outcome? We tried several heuristics for this, e.g., based on the frequencies
of the vertices and QIs. However, our results were not consistent. One strategy performed
better in some occasions, but worse in others. Also, the increase or decrease in the utility
of the outputs were negligible. Thus, we refrain from building a strategy on top of greedy

mapping, but instead propose the approach described next.

Reduction to an assignment problem. We propose a second strategy for FindMapping:
We model the problem in hand as a linear sum assignment problem (LSAP). LSAP is a
famous linear programming and optimization problem [47], where one has n agents that
need to be assigned to n tasks. Assigning an agent to a task has a certain cost that depends
on the task and the agent performing it. The goal is to find an assignment such that all
tasks are performed by assigning one agent to each task, one task to each agent and the
total cost of the assignment (i.e., linear sum of task-agent pairs selected) is minimized.

More formally, given an n x n cost matrix C' = (¢;;) and a binary variable z;; repre-
senting the assignment of agent ¢ to task j, a LSAP can be modeled as:

n n
Minimize E g Cij * Tij

i=1 j=1

Subject to: inj =1 for j=1,2,..n

i=1

Y =1 fori=12.n
j=1

T4 S {0, 1} for Z,] = 1,27..771
Cij >0 for i,j:1,2,..,n

We use the Hungarian algorithm [48] to solve a LSAP, which finds an optimal (i.e.,
lowest-cost) solution to the problem above in O(n?) time. The solution is a collection of

x;;s that tell which agent is assigned to which task.
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Algorithm 3 Finding a low-cost mapping using a LSAP

Input: Two lists of hierarchical data records S and U, where |S| < |U]|
1: procedure FINDMAPPING-LSAP
2: Initialize |U| x |U| cost matrix C'

3: fori =1to|S|do

4: for j = 1to |U| do

5: f' <« clone(S]i])

6: v < clone(U[j])

7 ¢;j — diversify(f’,v)

8: fori=[S|+1to |U|do

9: for j = 1to |U]| do

10: ¢;; < cost of suppressing U[j]

11: X < solve the LSAP with cost matrix C'
122 P+« 0

13: for each z;; € X do

14: if z;; = land ¢ < |S| then
15: P <+ PU(S[i],U[j])
16: return P
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We now explain how we use LSAPs in FindMapping. The process is shown in Algo-
rithm 3. Given two lists of records S and U, we treat the records in S as agents, and the
records in U as tasks in a LSAP. We calculate the cost of an agent-task pair by running
diversify on them, which computes the information loss incurred for anonymizing that
pair (lines 3-7). This fills the uppermost |.S| rows of the cost matrix with non-negative
numbers. In many cases we have |S| < |U| (i.e., number of agents and tasks differ) and
hence the LSAP is unbalanced [49]. In these cases we add dummy suppression agents to
the cost matrix (lowermost |U| — |:S| rows) to mark unmatched elements in |U| which will
eventually be suppressed by diversify. We capture the costs of suppressing elements in U
on lines 8-10. The cost method in Section 5.1 can be used for this, and in that case, the
cost of suppressing a subtree is equal to the total number of data entries (i.e., QIs) that are
deleted from that subtree. On line 11 we solve the LSAP using the Hungarian algorithm,
and consequently use this solution to compute the matching pairs of records in .S and U
that should be returned by FindMapping, while removing all dummy assignments (lines

13-15).

2.3.3 /(-diverse Clustering

Now that we can make a pair of records 2-diverse, we need to extend our strategy to
support ¢ > 2. We do so using a clustering algorithm. Let ¢ denote a cluster. Each cluster

contains:

* A class representative, denoted c,. This is a summary data structure that depicts
the current state of the cluster. A formal definition of class representatives was

given in Definition 3.14.

* A set of data records, denoted ¢y, that are the original (i.e., unmodified) versions

of the records in the cluster.

We first explain how we initialize and build one cluster. The procedure for this is
given in Algorithm 4. Essentially, we treat a cluster as an equivalence class, and use a

clustering algorithm to build /-diverse equivalence classes. A cluster is initialized using
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one record, and at that point, it is a 1-diverse equivalence class. Then, we iteratively add
new records to a cluster one by one, and each record that joins a ¢-diverse cluster makes
it (¢ + 1)-diverse. The process is terminated when the cluster becomes ¢-diverse.

In Algorithm 4, a cluster c is initialized using one record on line 3. In order to satisfy
(-diversity, c needs to recruit {— 1 other records, hence the loop on line 4. While recruiting
new records, instead of randomly adding records to ¢, we aim to find the most suitable
record in our database [ for c. That is, we find 7}, in I such that diversify(cp, 1) would
return the lowest cost (line 5). Once this record is found, it is removed from /' and added
to ¢ (lines 6-7). Then, ¢, is updated on line 8: Generalizations and suppressions are

performed, and sensitive values in 7;’s vertices are added to matching vertices in Crep.

Algorithm 4 Create (-diverse cluster

Input: A collection of n data records F'(11,...,T,),
parameter ¢ for /-diversity,
datarecord 7, € F
1: procedure CREATECLUSTER
2: F+ F-T,
3: Initialize ¢, where ¢, = T, and ¢y = {1, }

4: for: =2to/do

5: Find T}, € F' s.t. argming, (diversify(crep, 1))

6: F+— F-1T,

7: Cinit = Cinit U T

8: Update ¢, by diversify(clone(7}), c.p) and copying sensitive values of

matching vertices

9: return c

We present our main clustering procedure in Algorithm 5 and refer to it as ClusTree.
It receives a database of hierarchical data records F', a privacy parameter ¢ and two clus-
tering parameters m and s that are both positive floating numbers. It employs Algorithm
4 as follows: It selects records in F' to initialize and build new clusters. Based on the

quality of the clusters that are built, ClusTree either accepts or rejects them. Next, we
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Algorithm 5 Clustering algorithm

Input: A collection of n data records F' (11, ...,T,),

10:

12:

13:

14:

16:

17:

18:

19:

20:

21:

22:

23:

24:

parameter ¢ for (-diversity,
maximum standard deviation multiplier parameter m,

step size parameter s

: procedure CLUSTREE

R+ 0
x <0
while true do
for each7, € I'do
if |F'| < { then
suppress all T; € F
return R
¢ < CreateCluster(F', ¢, T,)
clcost +— 0
for each T € cdo
clcost < clcost + cost(7})
if |R| > 1 then
Let 1. be the mean of costs of clusters in R
Let o be the standard deviation of costs of clusters in R
if clcost > (11 + o * x) then
Add all T} € ¢, back to F
Discard cluster ¢
else
R+ RUc
else
R+ RUc
if || = 0 then

return R
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25: X< x+s
26: if x > m then

27: X & +00

describe the details of this procedure.

ClusTree picks a T, from the input /' (line 5) and uses it to create a new cluster
using CreateCluster (line 9). Once a cluster is formed, its total anonymization cost is
calculated (lines 10-12), where the total cost is the sum of individual anonymization costs
of all records within that cluster. At this point, we introduce our clustering heuristic.
We suggest that the quality of a cluster (implied by its cost) depends significantly on the
choice of initial record 7,. If T, happens to be an outlier (e.g., has far less or higher
number of vertices than every other record in F), or its Qls are very rare) then even the
best Tjs joining 7}’s cluster will incur high costs of anonymization. Therefore on lines
13-22 of ClusTree, we perform the following check: We compute the mean and standard
deviation of previously formed clusters (lines 14-15). If the cost of the newly formed
cluster c is significantly higher than the mean, it is discarded and all records in c are
inserted back to the input /. Otherwise, ¢ can be added to the output R. We use x to
limit the discrepancy between the cost of ¢ and the mean cost of clusters in R (line 16).
X 1is initialized to O (line 3) and incremented by the step size parameter s (line 25) at each
iteration. We run iterations of the clustering procedure until y goes above m (line 26), and
afterwards we run one final pass with x = +oo (line 27) to allow clusters with any cost.
The output of the clustering algorithm is a set of /-diverse clusters. Records in F’ that are
not placed in any cluster in R are fully suppressed (lines 6-8). ClusTree terminates when
less than ¢ records remain in the input F' (lines 6-8 and 23-24).

A lower value of  sets a stricter upper bound on the costs of accepted clusters. The
rate at which y increases is determined by the input clustering parameter s. s should be
small enough that expensive clusters are rejected in the first few iterations, but also large
enough that clusters which were rejected in the previous iteration have a chance of being

accepted in the next iteration. Also, smaller s implies larger number of passes over the
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input database F' (although F' is consumed in each iteration) and would hence be more
time-consuming. The upper limit parameter m can be determined by experiment. How-
ever, if one assumes that clusters’ costs will approximately follow a uniform distribution,
the probability of a value falling outside ;2 + 3 - o is significantly small (e.g., 99.7% of the
samples in a normal distribution lie within 3 standard deviations of the mean). So, even in
cases where costs are skewed or randomly distributed, a maximum upper limit of m = 3

or m = 4 should be reasonable.

2.3.4 Complexity Analysis

In this section we analyze the time complexity of our solution. We start with pairwise
anonymization using diversify and FindMapping. Let our hierarchical data records have
branching factor (number of children at each vertex) b > 2 and height (number of edges
on the longest path between the root vertex and a leaf) /. For the sake of simplicity, we’ll
assume that all mrca operations, vertex generalizations and partial and full suppressions
are performed in total time ¢ per diversify call.

The greedy version of FindMapping requires —b'(b; .

calls to diversify when called
with two sets of subtrees. To anonymize all pairs of matched subtrees, diversify makes b
recursive calls (lines 19-20 of Algorithm 1). Hence we obtain the following recurrence
relation: T'(h) = @ -T(h—1)4+b-T(h— 1)+t where T'(0) = t. Solving this relation,
we find that diversify with FindMapping-GRD is O(t - b;—:)

The LSAP version of FindMapping requires b? diversify calls to fill its cost matrix
with agent-task costs (lines 3-7 in Algorithm 3), when called with two sets of subtrees.
Then, finding an optimal solution to the LSAP using the Hungarian algorithm is O(b%).
Similar to above, diversify still makes b recursive calls to anonymize all pairs of matched
subtrees. In this case we obtain the following recurrence relation: T'(h) = b*-T'(h — 1) +
t+O(®)+b-T(h—1) where T(0) = t. Solving this relation, we find that diversify with
FindMapping-LSAP is O(b?" 1 + ¢ . p?h).

These results are significant in several ways. First, pairwise anonymization is expo-

nential in h. Practical databases in real world, however, often have small h, e.g., h = 3, 4.
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Therefore this is not a pressing concern. Second, finding an optimal solution to a LSAP
comes at the price of introducing an additional O(b*"*1) factor in asymptotic complex-
ity. Third, there is the cost of performing generalizations and suppressions, which we
denote by t. The efficiency of these operations is dependent on their implementation.
Some operations can be implemented in constant time (e.g., checking if two vertices are
2-diverse, suppressing a given subtree). In our experiments we saw that the factor ¢ has
significant impact on execution time, hence efficient implementation of generalizations
and suppressions is key to scalability.

The complexity analysis of our clustering algorithm ClusTree is as follows: Let n
be the number of hierarchical data records in the database, ¢ be the /-diversity parame-
ter, and m and s be the clustering parameters in ClusTree. The complexity of pairwise
anonymization depends on whether GRD or LSAP mapping is used, as shown above. We
denote it here by O(diversify). We provide a worst-case analysis. The worst case occurs
when the first cluster created is the least costly cluster possible, and therefore no cluster
is accepted afterwards until the final iteration.

After initializing a cluster with a record, ClusTree (Algorithm 5) tries finding ¢ — 1
other records to join that cluster (Algorithm 4). This requires going over the remain-
ing records in the database ¢ — 1 times and calling diversify. Hence CreateCluster is
O(n - £- diversify). Calculating a cluster’s cost (lines 10-12) can be done cumulatively
within CreateCluster while the cluster is being formed, and there are online algorithms to
compute mean and variance [50] so that computing and updating them when a new cluster
is formed can be a constant time operation (lines 13-22). We therefore find that a single
pass of ClusTree over its input database is O(n? - ¢- diversify). A quick calculation shows

m

that ClusTree performs L—J + 2 passes over the data, resulting in a time complexity of

S

O((| 2] +2) - n? - £ diversify).

2.3.5 Proofs of Correctness

We now prove the correctness of the algorithm ClusTree (given in Algorithm 5), that is,

we prove that the output of the algorithm is an ¢-diverse anonymization of F'. To do this,
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we first prove the correctness of the algorithm diversify (given in Algorithm 1) which acts

as a building block in ClusTree.

Definition 17. We say a class representative T' is {'-diverse if each vertex in T contains

exactly ( sensitive values.
Corollary 1. If a class representative T is {'-diverse then T is also (-diverse.

Theorem 1. Let T and Ty be 0| and l-diverse class representatives of equivalence
classes Dy and Dy respectively. Then diversify on Ty and Ty creates a ({1 + ls)'-diverse

representative for the anonymization of 11 and Ts.

Proof. By induction:

Base Case: If the height of 77 is 0, that is, T} is (), T5 is suppressed. Since we will not have
any vertex in 7%, T* is a valid anonymization of both 77 and 75 and satisfies (¢ + ¢5)'-
diversity.

Inductive Step: Let us denote a data record with height k as 7"=*. By inductive hypoth-
esis, we assume diversify runs correctly for records with height at most £ — 1. That is,
diversify on ¢-diverse T!"=" and ¢}-diverse T)'~ creates an ({1 + {5)'-diverse representa-
tive for i, j € [0, k — 1]. We now prove the theorem for 7= and T2h =/ where i, j < k.

We proceed with the proof as follows. We first show that the roots are properly di-
versified, that is, generalized to a (¢; + ()’-diverse representative vertex (or suppressed if
diversification is not possible). We then show that the children of both trees are properly
mapped, paired and diversified.

Diversification of the Root: Let a, b, and ¢t be the roots of T{L:i, Tthj , and T™ re-
spectively. Due to the anonymization process enforced by diversify, if t # (), we have
tsa = agsa Ubga. If aga Nbsa # 0, then tg4 does not satisfy (¢; + £5)'-diversity. In
such a case, diversify, at lines 4-6, suppresses T"=* and 7. Qh = and subsequently 7% = ().
Suppressed T* is an ({1 + ¢5)'-diverse anonymization. If aga Nbsa = 0, at lines 7-10, QI
values in both roots are generalized into the nearest common parent, thus QI-isomorphism
of T* is ensured at root level. Since tga = aga U bsa, |asa| = ¢1, and |bga| = {5 then

tsa will contain /1 + /5 sensitive values, thus satisfies (¢; + ¢)’-diversity.
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Diversification of the Children: Let Cy = {A;,..., A}, Cg ={By,..., B}, Cr =
{T1,...,T,,} are the subtrees attached to a, b, and t respectively and m < n. If Cy is
empty, diversify, at lines 11-17, suppresses all trees in C'g, consequently C7 = (). In such
a case, 7™ will be composed of a single already-diversified root, thus satisfies (¢; + ¢5)'-
diversity. If C'4 is not (), either of the FindMapping functions are called. Both algorithms
guarantee that every A; € C} is paired with some unique B; € Cp. diversify, at lines
19-20, calls itself recursively on the paired subtrees. Note that due to omission of the root,
all subtrees in C'y and Ci have heights less than k. By the inductive hypothesis, for every
pair (A;, B;) matched, diversify correctly returns (¢; + ¢5)’-diverse anonymization 7; of
A; and B;. If there exists any unpaired subtree, diversify, in lines 21-23, suppresses it.

Since the root is already-diversified, all vertices in T satisfies (¢ + ¢)’-diversity. N

Theorem 2. Algorithm CreateCluster, when given records F' = {Ty,...,T,}, ¢ < n,

T, € F returns a cluster c where c,,, is I'-diverse and T, € Cyy.

Proof. At start, representative ¢ is initialized to 7, satisfying 1-diversity. At iteration %
of the for loop, (i — 1)'-diverse ¢, is diversified with a 1-diverse record and by Theorem
1, the resulting representative which is assigned to ¢, satisfies ¢-diversity. At the end
of the loop, ¢, satisfies ¢'-diversity (thus, /-diversity) and ciy; contains the associated

equivalence class. [

Theorem 3. ClusTree, when called on records F = {T\,...,T,}, returns an (-diverse

anonymization of F.

Proof. The ClusTree algorithm is basically a loop where at each iteration the following is

performed:

* At lines 5-22, ClusTree scans all records currently in F' once and for each record,
the function CreateCluster creates a single /-diverse cluster. Between lines 16-28,
if the quality of the previously-formed cluster is far away from normal parameters,
the cluster is discarded. Otherwise, it is moved from F' to the result list. Distance

threshold on the quality is controlled by the parameter Y.
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* x 1s incremented, and after reaching m it is set as oo.

The algorithm halts only when there are less than ¢ records not clustered, in which
case these records are suppressed. Due to correctness of CreateCluster, if the algorithm
terminates, every record in F' (except the few suppressed ones) belongs to exactly one
cluster (equivalence class). Thus, by Definition 16, the returned clusters and the corre-
sponding equivalence classes give an ¢-diverse anonymization of the original records.

We conclude by stating that the algorithm always halts, that is, we will eventually have
|| < ¢. Note that the distance threshold y that decides whether to discard a previously-
formed cluster is monotonically increasing with each iteration of the while loop. After
reaching m, x is set to co. When this happens, no cluster will be discarded, thus every
cluster formed by CreateCluster function is removed from F'. Since CreateCluster is
called on every record in 7}, we will eventually be left with few enough records in F' and

the algorithm returns. 0

2.4 Experiments

We implemented our algorithms in Java 8 and used MongoDB 2.4 to store our datasets.
Experiments were conducted on a commodity machine with Intel Core 17 2.40 GHz CPU

and 16 GB RAM.

Evaluation metrics. We use three means of evaluation: LM cost, average query accuracy
and KL-divergence. LM outputs a numerical value between 0 and 1 that conveys the
average cost of generalizations and suppressions over the whole database. Lower LM cost
implies higher data utility and therefore preferable anonymization.

For measuring query accuracy, we randomly generate several aggregate count queries
(e.g., “How many students took CS301?” or “How many CS courses were taken in to-
tal?”’). We issue these queries on the original dataset (X; denotes the result of the ith
query) and the anonymized dataset (Y; denotes the result of the ith query). Then, average

query accuracy is computed as follows (where NN is the total number of queries):
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N Y — Xi
(1 (e 100%))

1

N

As a third metric, we employ the Kullback-Leibler divergence (KL-divergence, in
short) as follows: We find the distribution of sensitive values in the original and anonymized
dataset. Let us call these probability distributions () and P, respectively. For example, the
distribution of letter grades in the original dataset could be 20% A, 25% A- etc., but due
to suppressions, this distribution may change to 25% A, 15% A- etc. in the anonymized

dataset. The KL-divergence of () from P is defined as [51]:

P(i)
Q(i)

A smaller KL-divergence implies that P and () are closer to one another, and hence

Dir(P|lQ) =) (P(i) - log

i

)

the statistical properties of the data are better preserved after anonymization. Thus, sim-
ilar to LM cost, it is more desirable to have smaller KL-divergence. We measure the
KL-divergence of all sensitive values (e.g., GPA, letter grades and book prices) one by
one, and report the average. Since generalizations do not affect sensitive values, only
suppressions cause changes in their distribution. Therefore, KL-divergence is a good way

to evaluate the effect of suppressions on the statistical properties of a dataset.

Datasets. We report results on three datasets (two synthetic and one real) obtained from
two different universities in Turkey. Both datasets share a similar schema to that in Fig-
ure 1.2.

For the synthetic datasets, we obtained data regarding students from Sabanci Univer-
sity’s Computer Science (CS) program. The data contained the GPA and (partial) course
grades of 30 students from this year’s graduating class. To test with a meaningful number
of data records, we simulated several students based on this sample, with the guidelines
explained in the next paragraph.

We assumed that approximately the same number of students graduate every year, and

set their current age according to their year of graduation. We simulated GPA values using

42



a normal distribution, where the mean and the standard deviation were determined by the
GPA scores of our sample. According to Sabanci University’s CS program requirements,
we ensured that all students took the obligatory courses. To each student, we randomly
assigned a fixed number of courses from the pool of core courses, and a varying number
of technical area electives. Students’ grades were determined by their GPA and the type
of course (e.g., we observed that most students perform better in obligatory courses). We
assumed that a student would buy 0 to 2 books for each course.

We created two synthetic datasets, syntheticT and syntheticS, both containing 1000
students with approximately 20 courses per student. syntheticS uses the schema in Fig-
ure 1.2, i.e., (major,YoB) — courses — books. In order to test with an increased height,
in syntheticT we added an intermediate level between the root and the courses, that de-
picts the year in which courses were taken, i.e., freshman, sophomore, junior or senior.
Therefore the schema in syntheticT is: (major,YoB) — college years — courses — books.
The division of courses into college years was probabilistic based on whether the course
is a pre-requisite for any of the other courses the student took, and the usual timeframe in
which the course is actually taken at Sabanci University.

The real dataset contains 3162 students together with their years of birth, their GPA,
the courses they took and the grades they received. So, records in this dataset have only
the first two levels shown in Figure 1.2. Furthermore, instead of the QI attribute age, we

used year of birth. We set DGHs of courses according to their IDs.

Algorithms. We evaluate five approaches, four of which are presented in this thesis. For
these, we used the LM metric as the anonymization cost metric in Algorithm 1. We tested
ClusTree with the greedy and LSAP-based implementations of FindMapping. We call
the resulting methods ClusTree-GRD and ClusTree-LSAP, respectively. Regarding the
parameters of ClusTree, we set s = (.5 since we saw that values below 0.5 did not make
an observable difference, and we obtained the best results with m = 4.

To demonstrate the effectiveness of our clustering heuristic, we implemented a sec-
ond procedure that does not contain any checks regarding the costs of clusters, i.e., we

initialize Y = 400 on line 3 of Algorithm 5. We refer to this implementation as CToff.
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There are also two versions of CToff: CToff-GRD and CToff-LSAP, depending on whether
FindMapping is greedy or LSAP-based.

In addition, we implemented the multi-relational k-anonymity algorithm together with
its ¢-diversity extension (dMiRaCle) proposed in [6]. To the best of our knowledge, this is
the only algorithm that can provide similar privacy guarantees to ours (i.e., {-diversity) in
hierarchical data. We converted our datasets into multi-relational databases and ran dMiR-
aCle on them. There are two parameters in dMiRaCle: climit (a limit on the number of
active clusters allowed during the algorithm) and #4 (a distance threshold parameter used
in dMiRaCle’s clustering phase). In our tests, we exactly mimicked the parameters sug-
gested by the authors: We set climit to be 150 and tested with th € [0, 1] with increments

of 0.1, and picked the best-performing result to report in this thesis.

Results and Discussion. We graph our results for varying values of ¢ in Figure 2.3,
Figure 2.4 and Figure 2.5 on the synthetic datasets and the real dataset, respectively. In
all experiments, we observe that LM cost and KL-divergence increase and query accu-
racy decreases as privacy requirements get stricter, i.e., ¢ is increased from 2 to 5. Two
factors contribute to the loss of data utility when ¢ is increased: (1) The anonymization
algorithm needs to find ¢ records for each cluster, i.e., higher ¢ requires more records per
cluster. Each record that joins a cluster causes generalizations and/or suppressions. These
anonymization operations are never reverted at a later point (e.g., when a new record joins
a cluster), therefore the cost of a cluster always accumulates. (2) For large values of /, it is
harder to find ¢ different sensitive values per vertex. Consider a case where the instructor
of CS306 decided to grade very generously and all students received either A or A- from
this course. When ¢ = 3, CS306 courses may never be matched with each other simply
because there are only 2 different grades observed in the database. Hence, either all oc-
currences of CS306 have to be suppressed, or they will be generalized with other courses
(e.g., CS3** courses would be the best candidates) so that they become 3-diverse in the
output.

We also observe that our algorithm outperforms dMiRaCle by a great margin in every

experiment. As explained in Section 2, [6]’s dMiRaCle is primarily concerned with k-
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45



1 g
0.9 /
0.8
0.7 /
§ 06 /X/ L ~+-dMiRaCle
s 05 4-ClusTree-GRD
=]
04 / --ClusTree-LSAP
/!7/‘ 5¢CToff-GRD
03 % ~+CToff-LSAP
0.2 .9
0.1 -
0 T T
=2 =3 =4 =5
Privacy Parameter €
(a) LM cost
100
20
80
- 70
&
g e .\ \ -+-dMiRaCle
3 s0 ~j ®ClusTree-GRD
> 40 -4-ClusTree-LSAP
3 +¢CToff-GRD
9 30 —+CT
off-LSAP
20
10 ¢ \0\‘
) T T T ¢
=2 =3 =4 =5
Privacy Parameter ¢
(b) Query accuracy
1
0.1
8 i
H -+-dMiRaCle
g 0.01 - -@-ClusTree-GRD
':T ~4-ClusTree-LSAP
> ¢CToff-GRD
0.001 ~+CToff-LSAP
0.0001 T T T
=2 =3 =4 =5
Privacy Parameter €

Figure 2.4: Results on the syntheticT dataset for ¢ = 2,3,4,5

(c) KL-divergence

46




anonymity, and its /-diversity extension depends on k-anonymizing an input dataset first
and then finding an /-diverse output. This can be a reasonable strategy when ¢ is small
(e.g., ¢ = 2), since a 2-anonymous equivalence class can, by coincidence, happen to be 2-
diverse (or, making it 2-diverse might require very few operations). However, when ¢ = 3
or 4, if the initial equivalence class is not built with /-diversity in mind, later operations to
make it /-diverse will be very costly. Our experiments demonstrate this: There is a sharp
increase in LM cost and a sharp decrease in query accuracy (in all three datasets) when ¢
is increased from 2 to 3.

We obtained better results on the synthetic datasets compared to the real dataset. We
believe that this is caused by the fact that the real dataset is more sparse (e.g., there are
5000 unique courses, some of which are taken by very few students) and has more vari-
ance (e.g., some students took only 1-2 courses, whereas others took 60-70). In contrast,
the synthetic datasets are more evenly distributed, e.g., all students are CS majors that
take around the same number of courses, most of which are courses in Computer Science
or related areas. Also, we obtain roughly 10-15% better results on syntheticS compared
to syntheticT. The probable cause for this is the division of courses into college years in
syntheticT. For example, consider two students S1 and S2 that take the elective course
ELI01, but S1 takes ELI0I in her freshman year whereas S2 takes ELI0I in her senior
year. Unless diversify decides to match S1’s freshman year with S2’s senior year (which
is a small probability, assuming S1’s freshman courses are more similar to S2’s freshman
courses rather than her senior courses) the ELI0] vertices will not be matched with each
other. Instead, they will be matched with other courses or suppressed, due to the top-
down nature of diversify. The syntheticS dataset does not suffer from this problem, since
courses are directly children of the root vertices, and are not divided into college years.

We also would like to study the effects of our heuristics, by comparing (1) ClusTree
versus CToff to validate that our clustering heuristic is useful, and (2) LSAP versus GRD
to validate the effect of using an optimal solution against a greedy solution. In most
experiments, we see that ClusTree outperforms CToff and LSAP outperforms GRD, as ex-

pected. The difference between LSAP and GRD is usually more evident when / is large,
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apart from the ¢ = 4 case on the real dataset, since most of the data in this experiment
is destroyed no matter which algorithm is used. Also, although our LSAP approach pro-
vides an optimal solution to the subtree matching problem, neither ClusTree nor CToff
guarantee optimality in the clustering phase - as in any clustering algorithm. Therefore
we cannot claim that ClusTree-LSAP or CToff-LSAP are optimal or they should outper-
form their greedy counterparts in all experiments. In most experiments they do, which is
intuitive, but there are also a few cases where the GRD approach performs almost as good
as or somewhat better than LSAP. This happens often when ¢ is small, and in particular

the KL-divergence experiment on the syntheticS dataset.
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Figure 2.6: Execution time on the syntheticS dataset

With regard to efficiency, we obtained the execution times in Figure 2.6 on syntheticS.
This dataset contains 1000 hierarchical data records (with height = 3) and a total of ap-
proximately 42000 vertices. CToff is significantly faster than ClusTree, since it performs
a single pass over the data. For all ¢ values, it took 2-3 minutes to run CToff-GRD and 3-4
minutes to run CToff-LSAP. Since ClusTree performs multiple passes over the data (with

increasing Y), it turns out to be roughly 10-15 times slower than CToff. The differences
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between execution times become more significant as ¢ is increased. All of these results
are in line with our complexity analyses.

Finally, we would like to emphasize the trade-offs between data utility and efficiency.
The choice of using ClusTree over CToff and LSAP over GRD both increase data utility,
but come at the cost of increased execution time. On average, the best-performing algo-
rithm (in terms of query accuracy and LM cost) is ClusTree-LSAP, which also happens to

be the slowest.
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Chapter 3

Privacy Preserving Anatomization of

Hierarchical Data

3.1 Overview

In Chapter 2, we used the method of generalization to protect the privacy of individuals in
shared hierarchical databases. While the proposed technique is effective, we still face two
major issues not adequately addressed by ¢-diverse generalization of hierarchical data. In
this chapter, we develop solutions for each of these issues as follows:

Utility of the released data: Over-generalization incurs heavy loss of utility especially
when a natural domain generalization hierarchy is not present or difficult to find. The loss
of utility is further amplified due to the high dimensional data.

How to preserve utility while protecting privacy has been widely studied for the
anonymization of tabular data. One effective technique in this domain is the anatomy
method which guarantees better utilized anonymizations compared to the traditional gen-
eralization techniques. Instead of applying value generalizations, anatomy breaks the link
between QI and sensitive attributes associated with individuals in a given group. As an
example, in Table 3.1, we show the private Table 7', its 2-diverse generalization 7™, and
its 2-diverse anatomization 7. Note that T is composed of a QI table and an asso-

ciated SA (sensitive attribute) table. While both tables can be joined via the group id
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Table 3.1: Generalization and anatomization on sample tabular data

(a) Private data table T’

Id | Age | Sex | Nationality | Disease

1 |42 M Ukrainian Hearth Disease
2 | 46 M Romanian Flu

3 |54 F Turkish Bronchitis

4 |51 F Italian Dyspepsia

5 | 24 M German Pneumonia

6 |22 F German Gastritis

(b) ¢-diverse generalization T

Id | Age Sex | Nationality Disease

1 [40-50] | M Eastern European | Hearth Disease
2 [40-50] | M Eastern European | Flu

3 [50-55] | F Mediterranean Bronchitis

4 | [50-55] | F Mediterranean Dyspepsia

5 [20-25] | M German Pneumonia

6 [20-25] | F German Gastritis

(c) QI table for anatomization T4

Age | Sex | Nationality | Group Id
42 M Ukrainian 1
46 M Romanian 1
54 F Turkish 2
51 F Italian 2
24 M German 3
22 F German 3

(d) SA table for anatomization 74

Group Id

Disease

Count

1

Hearth Disease

1

1

Flu

1

Bronchitis

Dyspepsia

Pneumonia

W W NN

Gastritis
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2001

Alcohol Alcohol Aids Diaria
P. P.

m
AB-
2000 2006 2006 2007
Aids Aids Flu Cold

Figure 3.1: Example tree data

attribute, within a group, which QI row is associated with which SA row is hidden. For
example, an adversary knowing that his 42 years old, male, Ukranian friend is in the re-
leased anatomization can at best link him to hearth disease or flu with equal probabilities.
Thus, the released data respects 2-diversity. Note that 2-diverse anatomization 7 offers
a richer information content than 2-diverse generalization 7™ which groups the same set
of individuals as 7 does.

Despite the apparent advantage of anatomy on utility, no work has been done to apply
anatomization to hierarchical data. In this chapter, we show how one can create privacy-

preserving anatomization of a given hierarchical dataset and experimentally demonstrate
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[45 - 50]

[2000 - 2005] 2005 - 2010

Figure 3.2: /-diverse result

that anatomy can significantly increase the utility of released hierarchical databases.
Multi-sensitive values linked to individuals: (-diversity is initially designed for tabu-
lar private databases in which each individual is associated with a single sensitive value.
However, hierarchical data belonging to an individual may exhibit multiple sensitive value
from the same domain. This introduces a unique privacy attack even if the released hierar-
chical data respects /-diversity. To demonstrate the attack, consider the private database,
in Figure 3.1, showing the blood types and health records of two patients in a given hos-
pital. (E.g., the second tree belongs to an 46 years old patient with AB- blood type. The
patient has been diagnosed as having AIDS twice in 2000 and 2006; while diagnosed as

55



suffering from Flu and Cold in 2006 and 2007, respectively.) We also show, in Figure 3.2,
a 2-diverse generalization of both patients. Note that an adversary knowing that her 46
years of friend visited the hospital in 2006 can at best map him to one of the generalized
trees. The generalization respects 2-diversity in that the respective diagnosis in 2006 can
be either Alcohol poisoning or AIDS with equal probability 0.5. While the diagnosis in
each distinct visit demonstrates the required diversity, unfortunately the same cannot be
said when we consider multiple visits. Note that, both trees contain AIDS, a disease not
treatable. Regardless of when the diagnosis happened, the attacker will conclude that his
friend suffers from AIDS.

Due to inadequate privacy offered by classical /-diversity, in this chapter, we pro-
pose a new privacy metric (p, m)-privacy that limits an attacker’s confidence in linking
at most m instance of a particular sensitive attribute to an individual over multiple nodes
of anonymous trees. We propose an anatomization algorithm to enforce the new metric
and experimentally show that (p, m)-privacy can be achieved with high utility in released

hierarchical databases.

3.2 Anatomization of Hierarchical Data

(-diversity states that the observed frequency of any sensitive value in a multiset or group
must be bounded by 1/¢. We note that SAs can be categorical or continuous: The domains
of categorical SAs consist of discrete values, and the definition above applies trivially.
Continuous SAs require an intermediate discretization step, in which their domains are
divided into non-overlapping buckets. A uniform discretization is often assumed, how-
ever, we designed our algorithms to accommodate arbitrary discretizations that meet the
preferences of the data publisher.

As demonstrated in Section 3.1, despite (-diversity, the nature of hierarchical data
allows linkage attacks in which: (i) an individual can be linked to a sensitive value with
high probability, and (ii) an individual can be linked to having multiple occurrences of a

sensitive value. For some sensitive values the latter may not constitute a privacy risk, e.g.,
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linking Alice to flu with high probability, or Alice being diagnosed with flu multiple times
may not be a problem. However, some sensitive values, such as AIDS or alcohol poisoning
are discriminatory by nature. Therefore we need to limit an adversary’s confidence in
linking a discriminatory value with an individual.

We introduce the (p, m)-privacy principle for this purpose. First, since anatomy works
by disassociating QIs and SAs, reconstruction of the data and therefore linkage attacks are
probabilistic (hence the parameter p). Second, for some discriminatory sensitive values,
their number of occurrence is important (hence the parameter m). For example, a sin-
gle occurrence of AIDS might be sufficient to discriminate against an individual, but it
might take more than two occurrences of alcohol poisoning to deduce alcohol addiction

problems and consequently discriminate.

Definition 18. (Discriminatory rule) A discriminatory rule is a triplet (s;, m,p) where
s; is a sensitive value within the domain of a SA, m is the maximum number of allowed

occurrences of s; in any tree, and p is a probability (confidence threshold) 0 < p < 1.

For example, the verbal rules given above could be written as: (AIDS,1,1/2) and

(alcohol poisoning, 2,1/3).

Definition 19. ((p,m)-privacy) We say that a publication of the private data F satisfies
(p, m)-privacy if for all discriminatory rules (s;,m,p) and an adversary observing the

published data:
VT € F, Pr[Adversary links T to > m occurrences of s;] < p

Informally, (p, m)-privacy states that the published data should not cause an adversary
to discriminate against an individual with confidence greater than p. For example, for any
T € F, Pr|T is linked to AIDS] < !/2 and Pr[T is linked to at most 2 occurrences of al-
cohol poisoning]< 1/3. Note that, per the definition above, the confidence of 1 occurrence

of alcohol poisoning can be > 1/3, and this would not yield a violation of (p, m)-privacy.
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3.3 Anatomization Techniques

We developed two techniques based on the disassociation of QIs and SAs for privacy
preserving publishing of hierarchical data records. Per the naming in the seminal work of
Xiao and Tao studying disassociation on tabular data [41], we refer to our techniques as
anatomization techniques.

Our two techniques are called tree-by-tree anatomy (t-t anatomy) and vertex-by-vertex
anatomy (v-v anatomy) due to their grouping and publishing strategy. Both techniques
satisfy (-diversity and (p, m)-privacy, but the application and enforcement of these privacy
notions are inherently different. Hence, as the experiments in Section 3.5 will show, one
technique may outperform the other with respect to the information loss in its output,

based on the values of parameters ¢, p and m.

3.3.1 t-t Anatomy

The general idea behind t-t anatomy is to first distribute each record 7' € F' into one of
the many groups. We discuss how groups are formed in coming sections. Each group has
a unique group ID, and it is modified to enforce ¢-diversity and (p, m)-privacy. When a
group is published, the records in that group are divided into two separate trees: one for
QIs (called QI-trees) and one for SAs (called SA-trees).

We illustrate this process in Figure 3.3 and introduce some notation. Let the trees in
Figure 3.1 be located in the group with group ID G,. To enforce ¢-diversity and (p, m)-
privacy, we perform some modifications (suppressions and vertex reordering) on the trees.
Before publication, we separate the QIs and SAs by dividing GGy’s trees into QI-trees and
SA-trees as shown. We use the projection operation from the database literature to denote
this operation, e.g., mo;(7") outputs the QI-tree of 7', and 7g4(7") outputs the SA-tree
of T'. Note that from the published version, an adversary equipped with arbitrary infor-
mation regarding an individual’s QIs is not able to locate that individual’s SA-tree (and
hence sensitive values) with probability larger than !/|c,|, where |G| is the cardinality

of Gy. Given the published QI-trees and SA-trees, reconstruction of the original data is
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probabilistic, using the permutation operation which we denote by ><. Note that in the
general case, for a group cardinality of g, there exist g! different permutations. For any
one individual 7', the probability that the adversary correctly links the QIs and SAs of an

individual through reconstruction is 1/g.

Enforcement of /-diversity requires structural isomorphism as well as sufficient diversity
in sensitive values. An adversary with complete knowledge of his victim’s QIs will only
be able to link an individual to a group ID (say ) under which there must exist at least ¢
SA-trees as a pre-requisite for ¢/-diversity. Then, for each vertex, we check if the matching
vertices in the SA-trees (i.e., vertices that appear in the same index of the ordered tree

traversal) satisfy /-diversity. This is formalized in the following definition.

Definition 20. ((-diversity for t-t anatomy) Let G be a t-t anatomous publication of a
group of Ql-trees and SA-trees, R(T;) = {vi, vs,..,v" } denote the breadth-order traver-
sal of SA-tree T;, and I; = Uie[l,lG\] U;- denote the set of vertices at the j’th index of the

traversal, as in the definition of isomorphism. G satisfies (-diversity, if:
1. The number of Ql-trees and SA-trees is equal, and > (.
2. Ql-trees are structurally isomorphic, and so are SA-trees.

3. Forall j € [1,m), the set consisting of the sensitive values (vga) of the vertices in

1; satisfies (-diversity.

As an example, consider the 2-diverse anatomization given in Figure 3.3. Rule 1 and
2 can easily be verified as there are exactly two structurally isomorphic trees in QI and
SA groups. For rule 3, I; represents the root nodes of the trees. Corresponding set of
sensitive {0+, AB-} satisfy 2-diversity. Similarly, for I5, I3, and I, the corresponding
sets are { Alcohol P., AIDS}, {Alcohol P, Flu}, and {Diaria, Cold} respectively. All sets

respects 2-diversity, thus rule 3 holds as well.

Enforcement of (p,m)-privacy. Let S denote the list of all discriminatory rules. To
enforce (p, m)-privacy, we check each rule (s;,m,p) € S one by one. First, we find

the number of SA-trees in G which would violate the rule if they were linked with an
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individual: Let ¢(7), s;) denote the number of observances of s; in SA-tree 7. Then, we
define 11(G, s;,m) as the number of SA-trees 7' € G such that ¢(7,s;) > m. Second,
recall that an adversary’s confidence in linking an individual to a particular SA-tree is
1/ic|. Linking to any one of the p trees causes a privacy violation. Therefore, we arrive
at the following: If #(G:si:m)/ig| < p, the discriminatory rule is satisfied; else, the rule is

violated. This is formalized below.

Definition 21. ((p,m)-privacy for t-t anatomy) Let G be a t-t anatomous publication of
a group of Ql-trees and SA-trees, and S denote a list of discriminatory rules. G satisfies

(p, m)-privacy, if for each rule (s;, m,p) € S, we have:
|G|

As an example, ¢-t anatomization in Figure 3.3 satisfies (AIDS, 1, 0.5) rule. Note that
there is only 1 out of 2 SA trees having at least one occurrence of AIDS. Similarly, the

anatomization also satisfies (Alcohol P., 2, 0.5) rule.

/Go

Figure 3.3: ¢t-t anatomy result, QI and SA trees
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Finally, we say that a ¢-¢ anatomous publication of the whole data is privacy preserving,
if for all groups G; containing QI-trees and SA-trees, ¢-diversity and (p, m)-privacy are

satisfied.

3.3.2 v-v Anatomy

Go Gi 1
0+ Alcohol P.
AB- Aids
Gz
Alcohol P.
Flu
Gis
Diaria
Cold

Figure 3.4: v-v anatomy result, QI trees and SA groups

In ¢-t anatomy, both QI-trees and SA-trees follow a tree structure where each piece of
information is explicitly linked to the other with tree edges. This can be regarded as both
an advantage and a disadvantage. Its advantage is that there is no ambiguity in the output
regarding which sensitive values occur together. Hence, data reconstruction and inter-
pretation is easier: Given the QI-trees and SA-trees in a group, the potential hierarchical
data records can be reconstructed using a permutation operation > and we can run any
data mining task on these outputs as if we ran them on the original (private, unpublished)

records. Another advantage is that joint distributions and correlations between sensitive
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values are preserved in the published data.

However, explicit links between sensitive values can also become a disadvantage.
The general assumption in the privacy preserving data publishing literature is that an
adversary has his victims’ QI information, but no knowledge of SAs. The previous works
on hierarchical data publishing also employ this assumption [6, 52]. However, as [53]
points out, the unique nature of hierarchical data may invalidate this assumption. Let
us assume a stronger adversary, who not only has QI information, but also one sensitive
value. For example, for the publication in Figure 3.3, let the adversary know that Alice’s
diagnosis in 2007 was Cold. Such knowledge is realistic, e.g., the adversary was a co-
worker of Alice and Alice might have given this information thinking Cold is common
and harmless. Then, since all other SAs are linked to Cold, the adversary immediately
learns that Alice was also diagnosed with AIDS in 2000. This shows that in hierarchical
data, direct links between SAs can help an adversary infer discriminatory sensitive values
given that he knows a non-discriminatory value. A second disadvantage is that explicit
links makes enforcing (p,m)-privacy harder which we will cover in coming sections.

We designed v-v anatomy to overcome this problem. v-v anatomy prevents this attack
at the expense of no longer preserving correlations between sensitive values. The pub-
lishing strategy of v-v anatomy is roughly the same for QIs, i.e., QIs are still published as
tree structures. However, SAs are published in independent groups rather than trees.

We illustrate v-v anatomy using Figure 3.4. In contrast to QI-trees in t-t anatomy, we
use augmented QI-trees (AQI-trees) in v-v anatomy. AQI-trees extend QI-trees by adding
an explicit sensitive value identifier associated with each vertex, e.g., G0.1, G1.1, G1.2.
For each AQI-tree published in one group, we ensure that the vertices which appear in
the same index of the breadth-order traversal have the same identifier. (Formally, for the
traversal of AQI-tree T; in group G, i.e., R(T}) = {vi, vi, .., v }, for all j, the set of
vertices Z; = Uz‘e[l,\ all vj- contain the same sensitive value identifier.) Furthermore, each
identifier is unique, i.e., it is never repeated within the same tree. Each unique identifier
corresponds to one sensitive attribute group (SA-group). An SA-group is a collection

(multiset) of sensitive values. The key difference between v-v anatomy and t-t anatomy
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is that v-v anatomy employs SA-groups instead of SA-trees.

For a vertex v in an augmented QI-tree, we use v.SAG to denote the corresponding
SA group and v.I to denote the vertices that has the same sensitive value identifier.

We now discuss how reconstruction works in v-v anatomy and how the aforemen-
tioned privacy attack is prevented. Consider the v-v anatomization given in Figure 3.4.
First, let Bob be the 47 years old victim whose QIs are known by the adversary in Figure
3.4. Then, the adversary can precisely locate Bob’s QI-tree. For each of Bob’s sensitive
values, the adversary observes an SA-group identifier, e.g., G1.2 containing {Alcohol
P..Flu}. However, none of Bob’s actual sensitive values can be inferred with probability
larger than !/¢, as long as each SA-group satisfies /-diversity. Second, let Alice be the 46
years old victim whose QIs are known by the adversary, and in addition, one more of her
SAs are also known, say the diagnosis Cold in 2007. Notice that the unknown SAs cannot
be inferred, e.g., even if Cold is known by the adversary, a second diagnosis, {Alcohol
P.Flu} cannot be discovered with confidence larger than !/¢ because it occurs in an in-
dependent SA-group GG1.2. (Of course, in this stronger adversarial setting, ¢(-diversity
and (p, m)-privacy lose their meaning for the sensitive value that is already known by the
adversary.)

The permutation operation (i.e., <) is more involved: Let 7" be an AQI-tree with |V|
vertices. For each vertex, given that the publication satisfies /-diversity, there exists an
SA-group of cardinality at least ¢ that stores potential sensitive values for that vertex.
Therefore the > operation has at least (¢!)V! outputs, as opposed to ¢! in t-t anatomy. The
probability that an individual’s all sensitive values are correctly reconstructed is ¢~/V1,
as opposed to /=1 in t-t anatomy. Typical values for £ € [2,5], hence it is possible to
enumerate all outputs of >d in t-t anatomy. On the other hand, we often have trees with
|V| > 20, which causes the output of < to be incomputable in the case of v-v anatomy.
Hence, when reconstructing v-v anatomous data, we need to resort to answering queries
probabilistically. This limitation in practicality is the price we have to pay to overcome
the aforementioned attack.

Enforcement of /-diversity has 3 requirements: (1) Structural isomorphism of AQI-trees
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prohibits linkage attacks based on structural differences. (2) The existence and unique-
ness of SA-groups within each tree guarantees that an individual’s information is not
under-represented or over-represented in SA-groups. (3) Since SA-groups are multisets
by construction, application of the standard ¢-diversity definition (in Def. 6) is sufficient
to ensure /-diversity of the published information. These 3 requirements are formalized

in the definition below.

Definition 22. ((-diversity for v-v anatomy) Let G be a v-v anatomous publication of a

group of AQI-trees and SA-groups. G satisfies (-diversity, if:

1. The number of AQI-trees in the group is > {, and all AQI-trees are structurally

isomorphic.

2. Each vertex in an AQl-tree is associated with an SA-group, and no SA-group is

repeated twice in the same AQI-tree.
3. Each SA-group satisfies the multiset (-diversity definition given in Def. 6.

Enforcement of (p,m)-privacy. Let (s;, m, p) be the discriminatory rule under consider-
ation. First, we observe that after /-diversity is satisfied, the frequency of occurrence of s;
in any SA-group must be less than or equal to !/e. From a worst-case perspective, assume
that the frequency is equal to 1/e. Let n(G, s;) denote the number of SA-groups in G that
contain one or more occurrences of s;. The probability that an adversary infers exactly m
occurrences of s; in any reconstructed hierarchical data record in G follows a Binomial

distribution:

PriX =m] = Prim;n(G, s;), %]
U(G7 Si) 1 m 1 n(G,s;)—m
= (") e

m

where X is a random variable capturing the number of occurrences of s; in any recon-

structed record in GG. From Def. 19, we need to ensure: Pr[X > m] < p. It follows that:
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1—-Pr[X <m|<p

Pri X <m]>1-p

Following the cumulative distribution function of the Binomial distribution, together with

the notation above, the LHS term can be written as follows:
lm—1]

U(G> Si) 1., 1 G.s:)—7
Pr| X = S(2) (1 = ZyNGisi) =g
ix<ml= 3 (") gra-g
7=0

Definition 23. ((p,m)-privacy for v-v anatomy) Let GG be a v-v anatomous publication

of a group of AQI-trees and SA-groups, and S denote a list of discriminatory rules. G
satisfies (p, m)-privacy, if for each rule (s;, m,p) € S, the following inequality holds:

Lm—1]

Z (U(Gf 51)) . (%)] (11— %)H(Gm)j >1—p

=0 J

where j is an integer.

The v-v anatomization given in Figure 3.4 satisfies (p, m)-privacy with rules (AIDS, 1,%%)
and (Alcohol P.,2,%). For the latter, we have two SA-groups containing Alcohol P. (e.g.,
n(G, Alcohol P.) = 2). We have (3) - (1/2)> + (3) - 1/2-1/2 = 3/s > 1 — /4, thus the rule
holds. Note that even though the groups and the corresponding node matchings are the
same in v-v and ¢ — ¢ anatomizations in Figures 3.4 and 3.3, v-v anatomization satisfies
a stronger (p, m)-privacy standard. While this is so, ¢ — ¢ anatomization has the ability to
better preserve the explicit links between sensitive values.

Finally, we say that a v-v anatomous publication of the whole data is privacy preserving,
if for all groups containing AQI-trees and SA-groups, ¢-diversity and (p, m)-privacy are

satisfied.

3.4 Anatomization Algorithms for Hierarchical Data

In this section, we propose an algorithm for hierarchical data that creates ¢-¢ or v-v anat-
omizations satisfying ¢-diversity and (p, m)-privacy. The pseudocode for the algorithm

Anatomize is given in Algorithm 6.
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Algorithm 6 Anatomize

Require: A collection of trees F', privacy parameter ¢ and a set of discriminatory rules

R.

Ensure: The returned dataset is an anatomization of F' and respects /-diversity and

o]

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

(m, p)-privacy for the given rules.

. let F be an empty set of augmented trees

let LP be an empty set of trees
let FP = {F\,...,F,,} where each [} is an empty set of trees.
F P = partition(F, np)
FP=FP+ LP
for all F; € FFPdo
forall T € F; do
if |F;| < ¢ then

LP=LPUF,
break

let T4 be an augmented tree structurally isomorphic to 7.
for all vertex v € T do
let v be the vertex with the same breadth-first order in 7’
vA.SAG = {v.sa}
vA.I = {v}
for j < 2,/ do
T’ <+ argminp. , COST(Merge(T, T, R))
T4 < Merge(T4,T")
F,=F -1
FA— pA 4 A
generate and return ¢-t or v-v anatomization respecting SA groups and matched ver-

tices (e.g., 1) in Fly.

66



As the first step on line 4, the algorithm splits the data into equal size partitions where
the number of partitions np is an input parameter. To partition, we order the collection
of trees according to number of vertices in the trees and then place them into new sets in
such a way that each partition contains trees with similar number of vertices. The algo-
rithm almost always groups trees belonging to the same partition. Partitioning makes the
algorithm more efficient by only searching for groups within a much smaller population
at a small cost to utility. We claim that the cost to utility is minimal. An optimal algorithm
without partitioning would avoid grouping trees with many vertices with those with few
vertices since such grouping would cause many vertices in the former to be suppressed.
Thus, for most trees best possible group candidates reside in the same partition.

On the next step, the algorithm iterates over each partition F; on line 6 and tries to
group trees in F;. Each group is represented as an augmented tree so that information
about linked vertices and associated SA groups can be maintained. ¢-diversity is enforced
in an incremental fashion. For instance, if ¢ is 3, algorithm will first pick a tree T" from F'
and find the closest tree that can be merged with minimum cost so that the resultant group
satisfies 2-diversity. (we discuss algorithm merge shortly) Then, another tree is merged
with the group in such a way that the final group satisfies 3-diversity. Finally the group
is then put in the result set /4 on line 21. Note that any group created by the algorithm
contains exactly ¢ data trees. At the end of the loop, those < ¢ many trees that cannot
be diversified are moved to a temporary partition L. Trees in L P are revisited once all

partitions are processed.

Algorithm 7 Merge

Require: augmented tree 7%, tree 7" and a set of discriminatory rules R
Ensure: the returned augmented tree is a merge of the two input trees and does not violate
the discriminatory rules.
1: T4 = clone(T*)
2: MergeVertices({root(T)},{root(T)}, T, R)

Algorithm Merge (given in Alg. 7) gets an associated j-diverse augmented tree for the

existing group and a tree 7', and merges them into a new (j + 1)-diverse augmented tree

67



respecting discriminatory rules. The merge of the trees is performed recursively in a top-
down fashion. At each level of the trees, the algorithm MergeVertices (given in Alg. 8)
maps each vertex v in the augmented tree with exactly and uniquely one vertex v in the
data tree only if the following conditions are met. First, the sensitive value v.sa associated
with v should not appear in the SA group v*.SAG. Recall that groups contain exactly
¢ trees, thus any repeating sensitive attribute would violate /-diversity. Second, adding
v.sa in v4.SAG should not violate any of the discriminatory rules. Recall that given the
augmented tree T, this check can be performed via Definition 23 or 21 depending on the
desired type of the anatomization. If both conditions are met, the vertices are linked and

the algorithm is called on the children of vertices recursively on line 8.
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Algorithm 8 MergeVertices

Require: set of augmented vertices V4 set of vertices V, associated augmented tree T4,
and a set of discriminatory rules I?
Ensure: V4 and V are merged into V4 in such a way that SA groups in T respects
diversity and (p, m)-privacy
1: setall v € V4 and v € V as unmatched.
2: forallv? € V4 do

3: for all unmatched v € V do

4: if v.sa ¢ v1.SAG then

5: vA.SAG = vA.SAG + v.sa

6: vA T =vA T+

7: if T4 satisfies (m, p)-privacy rules R(see Def. 23 and 21) then
8: MergeVertices(children of v4, children of v4, T4, R)
9: set v4 and v as matched.

10: break
11: else
12: vA.SAG = vA.SAG — v.sa
13: vA T =04 T —w
14: if v is unmatched then
15: suppress the subtree rooted by v in 74

3.5 Experiments

We now present experimental results regarding anatomization algorithms we proposed
for hierarchical databases. We implemented our algorithms in Java 8. Experiments were
conducted on a machine with Intel Xeon E3 @ 3.60 GHz CPU and 32 GB RAM. In
order to evaluate our work on (p,m)-privacy, we did extensive experiments which show
the effects of varying the privacy parameters p, m and ¢. These experiments include

measurement of suppression and query accuracy. At the end of this section, we compare
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our technique with our previous work described in Chapter 2. We use the same dataset
syntheticS detailed in Section 2.4 in all of these experiments.
We use two quality metrics to evaluate the utility of released hierarchical data. First
metric we use is suppression accuracy. Suppression accuracy can be calculated as
> Ho | veT
€F o [veTi}[

|F|

100

where T/ is the anatomized tree linked to the same individual as T; and query accuracy

can be calculated with the same formula given in 2.4
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Figure 3.5: Suppression accuracy at m = 3 ¢-p varying

In Figure 3.5, we fix m at 3 and demonstrate the change in suppression accuracy with
respect to various ¢ and p. It’s clearly seen that p and accuracy are directly proportional,
e.g., as p increases, so does the accuracy. Utility and privacy requirements are inversely
proportional. As ¢ increases, so does the number of trees per group. Each additional tree
requires more suppression, thus the utility drops. Note that when p is 1, ¢-¢ anatomy yields
the same suppression accuracy as v-v anatomy. This is an expected behaviour since for

p = 1 the discriminatory rules are not enforced.

70



100
90

80

50
40
30
20
10

12 m:1 122 m:3 122 m:5 13 m:1 1:3m:3 1:3m:5 I:4 m:1 1:4 m:3 1:4 m:5

Mt-tanatomy ®v-vanatomy

Figure 3.6: Suppression accuracy at p = 0.75 ¢-m varying

In Figure 3.6 we fix p at 0.75 and we investigate the change in suppression accuracy
versus change in ¢ and m. As m increases, the standard tolerates more occurrences of the
same sensitive values appearing in an anatomized tree, this in return decreases the number

of suppressed vertices per anatomized tree.
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Figure 3.7: Suppression accuracy at £ = 3 p-m varying

In Figure 3.7 we fix ¢ at 3. We observe change in suppression accuracy due to change

in m and p. Similar conclusions can be derived here, increase in m and p results in better
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accuracy.

In all three experiments, we achieve > 60% accuracy for ¢ = 2. This drops to > 50%
and > 40% for / = 3 and ¢/ = 4. We also observe the overhead of achieving (p,m)-
privacy. For example, the accuracy increases to > 80%, > 70%, and > 60% when p = 1.
Another important point is that in all our suppression tests with p # 1 v-v anatomy almost
always performs better than ¢-¢ anatomy. Recall that a grouping achieving (p,m)-privacy
for t-t anatomy also satisfies (p,m)-privacy for v-v anatomy. However, the reverse is not
the same. Thus, there likely exist groupings with lower number of suppressions satisfying

(p,m)-privacy for v-v anatomy but not ¢-¢ anatomy.

Query accuracy
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Figure 3.8: Query accuracy at m = 3 ¢-p varying

In Figure 3.8, we examine query accuracy with varying ¢ and p when m is fixed at 3.
We observe a slightly different behaviour compared to the results in Figure 3.5, Figure
3.6 and Figure 3.7. As in suppression accuracy experiments, v-v anatomy out-performs
t-t anatomy in all settings p # 1. When p = 1, however, we see ¢-t anatomy results in
anatomizations with better query accuracy. This is an expected behaviour. Note that a

grouping achieves /-diversity for ¢-¢ anatomy if and only if it also does for v-v anatomy.
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As discussed in Section 3.3.1 and 3.3.2, for the same grouping, ¢-¢ anatomy preserves
explicit links between sensitive values, thus provides better query accuracy. Note that
the information content within explicit links are not captured by the suppression accuracy

metric.

100

90

1:22 m:1 1:22 m:3 1:22 m:5 1:33 m:1 1:3m:3 1:3 m:5 1:4 m:1 1:4 m:3 1:4 m:5

=)
o

[
o

N
o

w
o

N
o

-
o

Ht-tanatomy ®v-vanatomy

Figure 3.9: Query accuracy at p = 0.75 ¢-m varying

In Figures 3.9 and 3.10, we observe a similar behaviour as in Figures 3.6 and 3.7.
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Figure 3.10: Query accuracy at £ = 3 p-m varying

We now investigate how query type affects utility by clustering queries into partitions
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(e.g., query families). We have created 10 different query families which are based on the
count of SAs and QIs in different depths of the trees and their combinations. It includes

queries such as:
* The count of students having A- or B+ from a Math or CS course.
* The count of students with age 26 and has taken CS 201.

* The count of students that has taken Math 101 and got grade B- in Math 101 and
also has bought Math 101 textbook.

In Figure 3.11, Figure 3.12 and Figure 3.13, we show accuracy versus queries (denoted
with their family id numbers). We have different settings of ¢, p and m in each figure so
that it enable us to compare ¢-t anatomy and v-v anatomy. In all these figures, we can
clearly see that when the depth of the query increases, the query accuracy reduces which
is an expected behaviour. Because as we go down during top down merging of trees when
upper level parent node is suppressed, children nodes that are connected to the parent

node are also suppressed.
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Figure 3.11: Query family accuracy at { =2, m =2, p=0.5
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Figure 3.12: Query family accuracy at { =3, m=2,p=0.33
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Figure 3.13: Query family accuracy at / =4, m =2, p =0.25
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Figure 3.14: Accuracy gain in percentage vs (-diversity

Comparison to Previous Work

In order to evaluate our anatomy technique with generalization technique proposed in
Chapter 2, we run the same query accuracy tests on ¢/-diverse generalization, ¢-diverse ¢-t
and v-v anatomization with no discriminatory rules. In Figure 3.14, x-axis shows ¢ values
and y-axis shows accuracy gain (in percentage) against /-diversity. We observe that ¢-¢-
anatomization offers 6-10% more query accuracy compared to generalization. This drops

to 3-5% better accuracy for v-v-anatomy.
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Figure 3.15: t-t anatomy running time over number of partitions
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Figure 3.16: v-v anatomy running time over number of partitions
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In Figure 3.15 and Figure 3.16, we investigate the effect of partitioning over utility. In
both figures, horizontal axis denotes the number of clusters and vertical axis denotes the
average utility and right vertical axis denotes the average duration in seconds. For both ¢-¢
anatomy and v-v anatomy, one can improve the running time of the anatomization process
by increasing the number of partitions. Normally the size of the clusters decreases as the
number of partitions increases. Hence the speedup is based on comparing less number of
trees in the same cluster. For instance, increasing the number of partitions up to 5 results
in reduction of running time to one third of using a single partition. This incurs only a %3
loss of utility which a good trade-off between utility and efficiency. One may prefer this

method for a rapid preview or when the efficiency is a concern as in streaming databases.
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Chapter 4

Conclusions

In this thesis we addressed the problem of privacy in hierarchical data publishing. We dis-
cussed how popular privacy notions such as k-anonymity, /-diversity, as well as other new
standards can be applied to hierarchical data with generalization and anatomy techniques.
In Chapter 2 we designed an algorithm that produces ¢-diverse generalizations of collec-
tions of hierarchical data records. Even though we use the LM metric in Chapter 2, our
approach is suitable for other monotonic cost metrics. For example, one can use a metric
that penalizes certain levels in the hierarchical schema more than others (e.g., to apply
more emphasis on courses than evaluations). Other domain-specific heuristics can also be
employed. To fight sparsity of high-dimensional data and provide flexibility, our solution
uses local recoding. We also address negative knowledge as well as positive knowledge:
For every piece of information an adversary has (e.g., student has taken course X and/or
has not taken course Y'), there are at least ¢ records in the anonymized output that fit this
description. Therefore, the adversary’s confidence regarding a particular sensitive value
of his victim is always bounded by 1//.

There are also certain limitations of our approach in Chapter 2. For example, if all
records in an equivalence class contain the letter grade A for different courses, an ad-
versary may learn with probability > 1/¢ that his victim has received an A from some
course, even though he cannot be certain which course it was. In certain cases such dis-

closures might be unacceptable, e.g., adversary learns that his victim has AIDS from
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an anonymized medical data set. To aid in this problem, in Chapter 3 we presented
new standard called (p,m)-privacy which bounds the probability of being linked to more
than m occurrences of any sensitive values by p, through defining discriminatory rules
for different sensitive values. Instead of utility-expensive generalizations, we enforced
(p,m)-privacy with anatomization which de-associates QIs and SAs to increase utility in
shared databases. We have proposed two different types of de-association (publishing
techniques), ¢-t anatomy and v-v anatomy, each of which is better suited in a different

scenario. Both proposed techniques ensure ¢-diversity and (p,m)-privacy.

4.1 Future Work

Anonymization and anatomization techniques are extensively studied in the literature.
Current techniques are mostly developed for tabular data. We believe that hierarchical
data is also as important as tabular data. With growing number of devices and combining
various sources of information available, near future will witness more hierarchical data
sets than ever, which will bring the challenge of privacy preserving data transformation
of hierarchical data for data owners.

This thesis brings a novel solution to this problem. We can discuss several direc-
tions as future work. Since our anonymization and anatomization strategy does not allow
noise in the output. One could try to see whether data utility can be improved by adding
noise and counterfeits like differential privacy [54], which relies on noise addition. This
question may yield alternative techniques for reaching higher data utility. Also one may
improve the current partitioning technique by altering the introduced partitioning scheme
(i.e. introducing new partitioning strategies). Moreover one may also come up with new
publishing methods other than ¢-¢ and v-v anatomy which should be investigated in future.

In addition in Chapter 3 our proposed techniques results in exactly £ number of trees
in a group. One may try to add more than ¢ trees in a group, as it’s perfectly okay to have
more than ¢ trees in group as long as (p,m)-privacy and/or ¢-diversity are satisfied.

Furthermore there are numerous tools and engines that process hierarchical data. In
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particular, XML streams and query engines are widely used in today’s world. An inter-

esting area of research is how our definitions of privacy can be applied in these contexts

(e.g., XML data streams) [55].

Finally, hierarchical data anonymization and anatomization is open to develop further

techniques to work for different privacy definitions and expectations.
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