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ABSTRACT 

 

 

 

 

 “ACCELERATING LOCAL SEARCH ALGORITHMS FOR TRAVELLING 

SALESMAN PROBLEM USING GPU EFFECTIVELY” 

 

GİZEM ERMİŞ 

M.Sc. ‘Thesis’, July 2015 

Prof. Dr. BÜLENT ÇATAY 

Keywords: GPU computing, parallelization, optimization, GPU architecture, TSP 

The main purpose of this study is to demonstrate the advantages of the GPU usage to 

solve computationally hard optimization problems. Thus, to solve the Travelling 

Salesman Problem, 2-opt and 3-opt methods were implemented in parallel. These search 

techniques compare every possible valid combination of the certain exchange system. It 

means that large numbers of calculations and comparisons are required. Through the 

parallelization of these methods via the GPU, performance has increased remarkably 

compared to performance in the CPU. Because of the distinctive manner of work and 

the complicated memory structure of GPU, implementations can be tough. Imprecise 

usage of GPU causes considerable decrease in the performance of the algorithm. 

Therefore, in addition to comparisons between GPU and CPU performances, the effect 

of GPU resource allocations on the GPU performance was examined. Allocating 

resources in different ways, several experiments on various sized travelling salesman 

problems were tested. According to the experiments, a technique was specified to utilize 

GPU resources ideally. Although GPU devices evolve day to day, some resources of 

them have still quite restricted capacity. For this reason, when it came to large scale 

problems, a special on-chip memory of the GPU device remained incapable. In order to 

overcome this issue, some helpful approaches were proposed. Basically, the problem 

was divided into parts. Parallelism was applied to each part separately. To sum up, the 

aim of this research is to give some useful insights about effective GPU usage and 

making researchers in the optimization area familiar with it. 
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ÖZET 

 

 

 

 

 “GRAFİK İŞLEMCİ BİRİMİNİN ETKİN KULLANIMIYLA GEZGİN SATICI 

PROBLEMİ İÇİN YEREL ARAMA ALGORİTMALARININ HIZLANDIRILMASI” 

 

GİZEM ERMİŞ 

Yüksek Lisans Tezi, Temmuz 2015 

Prof. Dr. BÜLENT ÇATAY 

Anahtar sözcükler: Grafik İşlemci Birimi ile programlama, paralleştirme, 

optimizasyon, Grafik İşlemci Birimi mimarisi , gezgin satıcı problemi 
 

 

Çalışmanın temel amacı NP-zor optimizasyon problemlerini çözmede Grafik İşlemci 

Birimi kullanımının avantajlarını göstermektir. Bu nedenle, gezgin satıcı problemini 

çözmek üzere 2-opt ve 3-opt yöntemleri paralel olarak uygulanmıştır. Yöntemler belirli 

bir değişim sisteminin tüm geçerli kombinasyonlarını karşılaştırmaktadır. Bunun anlamı 

çok fazla sayıda hesaplama ve karşılaştırma işlemine ihtiyaç duyacak olmalarıdır. Bu 

yöntemlerin Grafik İşlemci Birimi aracılığıyla paralelleştirilmesiyle, Merkezi İşlemci 

Biriminin performansıyla karşılaştırıldığında performans önemli ölçüde artmıştır. 

Grafik İşlemci Biriminin kendine özgü çalışma tarzı ve karmaşık mimari yapısı 

nedeniyle, uygulamalar zorlu olabilmektedir. Grafik İşlemci Biriminin özensiz 

kullanımı algoritmanın performansında kayda değer bir azalışa yol açabilir. Bu nedenle, 

Grafik ve Merkezi İşlemci Birimi performanslarının karşılaştırmalarına ek olarak, 

Grafik İşlemci Biriminin kaynak tahsisinin işlemci performansındaki etkisi de 

incelenmiştir. Kaynaklar farklı yollarla paylaştırılarak, çeşitli büyüklükteki gezgin satıcı 

problemleri üzerinde birtakım deneyler test edilmiştir. Deneylere göre Grafik İşlemci 

Birimi kaynaklarını ideal olarak paylaştırmak için bir yöntem belirlenmiştir. Grafik 

İşlemci Birimleri günden güne evrilmesine rağmen, bazı kaynakları hala oldukça sınırlı 

kapasiteye sahiptir. Bu sebeple, uygulama sırasında söz konusu büyük boyutlu 

problemler olduğunda, Grafik İşlemci üzerindeki özel bir bellek yetersiz kalmıştır. 

Sorunun üstesinden gelmek için, bazı yararlı yaklaşımlar önerilmiştir. Temel olarak, 

problem parçalara ayrılmıştır. Paralelleştirme işlemi her parçaya ayrı ayrı uygulanmıştır. 

Özetleyecek olursak, bu araştırmanın amacı Grafik İşlemci Biriminin etkin kullanımıyla 

ilgili faydalı bilgiler vermek ve optimizasyon alanındaki araştırmacıların bu konuya 

aşina olmalarını sağlamaktır. 
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1 INTRODUCTION 

Optimization problems have maintained their importance in many areas such as industry 

and the public sector. Efficiency is as much critical factor as solution quality when an 

optimization algorithm is written. Algorithms of optimization methods such as 2-opt or 

3-opt are computationally difficult when they are solved via a CPU. A qualified 

parallelism can accelerate these kinds of algorithms considerably. While restricted 

parallelism can be managed via central processing units (CPUs), the modern graphical 

processing units (GPUs) can provide much more parallelism through their highly 

parallel structure. Thus they can considerably reduce the execution time of algorithms 

by performing a wide range of calculations at the same time, in other words in a parallel 

manner. 

 

In the hardware structure of a computer, the task of reading and executing program 

instructions belongs to a processor which is a chip in computers. These instructions 

notify the processor what to do such as reading data from memory or sending data to an 

output bus. CPU is a common type of processor (Prinslow and Jain, 2011). The 

processor core or briefly “core” is an individual processor and a modern processor can 

have multi or many cores. 

Modern GPUs are many-core processors that are specifically designed to perform data-

parallel computation. Data parallelism means that each processor performs the same 

task on different pieces of distributed data (Brodtkorb et al., 2013). This data parallel 

framework of GPUs is referred to as “single instruction multiple data (SIMD). 

 

 Before the evolution of nowadays’ advance GPUs, traditional, single-core processors 

were exploited. A single core processor could provide only concurrency through the 

“multithreading”, but no parallelism. Multithreading handles the concurrent execution 

of different parts of the same program and each of these parts referred to as thread. 

However, it is not possible to execute different tasks or programs in a parallel way via 
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one single-core processor. There is a crucial fundamental difference between 

concurrency and parallelism. “In a multithreaded process on a single processor, the 

processor can switch execution resources between threads, resulting in concurrent 

execution.” It means that although single-core processors can normally execute one 

thread at a time, via multithreading the processor can switch between threads, which is 

that while one of the threads in the program was waiting another thread can execute, 

giving the impression that threads are running concurrently. “In the same multithreaded 

process in a multiprocessor environment, each thread in the process can run on a 

separate processor at the same time, resulting in parallel execution (Oracle, 2010).” 

 

Computationally hard tasks such as solution of optimization problems were taking a 

great deal of time when they were solved by the help of single-core processors. Faster 

and faster single-core processors were developed by computer industry, but they were 

still insufficient for peak performances. Because it was difficult to accelerate individual 

processors/cores further but possible to provide more processing power by putting more 

cores onto a single chip/processor, around the year 2000, by fitting more cores in the 

same chip, single-core processors evolved to multi-core processors (Figure 1.1), which 

work together to process instructions and thus have higher total theoretical performance 

(Brodtkorb et al., 2013) (Oxford). Multi-core processors, which have two or more 

independent processors, achieved greater performance through parallelism rather than 

shortening the completion period of an operation via higher clock speed, in other words 

accelerating individual processors. These multi-core CPUs were efficient at task parallel 

implementations. Consequently the sequential software started to lose its prestige and 

via multiple CPU cores task parallel implementations were applied to computationally 

hard tasks. 
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Figure 0.1 A basic block diagram of a generic multi-core processor 

 

After some time, because of gaming industry needs, GPUs which actually were the 

normal component in common PCs, developed quickly in terms of computational 

performance. Multi-core GPU processors evolved to massive multi-core or many-core 

processors which work as massively  parallel stream processing accelerators or data 

parallel accelerators. Because of the rapid advances of GPUs, they became common as 

accelerators in general purpose programming. Although both multi-core CPUs and 

GPUs can implement parallel algorithms, the architectural differences between CPUs 

and GPUs created different usage areas for them depending upon the nature of the 

problem. While multi-core CPUs are designed for task parallel implementations, many-

core processors are specifically designed for data parallel implementations. Instead of 

distributing different tasks amongst individual processors, in data parallel computations 

the data is distributed (SIMD). Furthermore, CPU performance is better on latency-

sensitive, partially sequential algorithms. However, GPU performance is better on 

latency-tolerant, highly-parallel algorithms (Prinslow et al., 2011). In other words, CPU 

aims to minimize the time of a single operation or minimize the latency of a single 

operation, although GPU tries to maximize the number of operations in unit of time or 

maximize throughput in per unit time. Lastly, compared to CPUs, GPUs have much 

more arithmetic logic units, which perform all arithmetic computations and comparison 

operations. Thus, via GPUs data parallel, throughput-oriented applications with intense 

arithmetic operations can be accelerated on a large scale. More extensive differences 

between the GPU and CPU architectures will be elaborated on the architecture part.  
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Nowadays, GPUs have many processors and with the help of these processors GPU 

performance can be much better than CPU performance in some specific problems, 

especially in computational problems. Of course the increase in the number of 

processors created a need for simpler processors than previous ones, which we will 

elaborate on the Architecture part. Because of these simpler GPU processors and the 

limited structure of GPUs with data-parallel computation, it is difficult to solve an entire 

problem via GPUs. Thus, to benefit from GPU, we do not necessarily have to choose a 

completely parallelizable problem. It is quite sensible to take advantage of GPU 

technology in the convenient part of the solution method and continue to use CPU for 

remaining parts. In other words an algorithm starts at the CPU and whenever data 

parallelism can be managed the data is sent to the GPU and computations are made in 

parallel there. This is called general-purpose computation on GPUs (GPGPU) and also 

heterogeneous programming. 

 

In order to observe the advantages of GPU usage in solving computationally expensive 

optimization problems, we applied the parallel 2-opt and 3-opt local search methods for 

the Travelling Salesman Problem (TSP) which are proposed by Rocki and Suda (2012, 

2013). The 2-opt technique depending on the best improvement searches for all the 

possible swaps in a route and the aim is finding the swap that will decrease the tour cost 

most. The method that we applied is a complete 2-opt local search will compare every 

possible valid combination of the swapping mechanism (Wikipedia). This is why these 

methods take a great deal of time when the CPU is used unless the data is not too small. 

As can be realized, 2-opt and 3-opt methods are quite suitable for adapting to the SIMD 

architecture of the GPU. Possible swaps will have different effects on the tour cost and 

to calculate these effects the same formula will be used. In this situation, possible swaps 

can be thought as multiple data and the formula can be thought as single instruction. 

Thus, to calculate the effect of each possible swap, by applying parallelism through the 

GPU, we can obtain significantly better results in terms of computation time compared 

to that of the CPU. Moreover, it is possible to produce accelerations in GPU algorithm 

time by using its memory more efficiently. 

 

The main reason for this research is to provide insights into powerful usage of GPUs, 

building efficient techniques, sharing some useful experimental results and sighting the 
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advantages of GPU usage. Furthermore, restrictions of GPUs and strategies to overcome 

these restrictions will be mentioned. We aim to encourage researchers who are 

interested in optimization problems to benefit from the advantages of GPUs. 
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2 LITERATURE REVIEW 

Local search is a fundamental algorithm in optimization problems. This algorithm 

generates several candidate solutions in the defined neighborhood to improve the 

current solution and then picks the best or an improving one among them. This process 

continues until there is no further improvement for the current solution. Because the 

evaluation of the neighborhood is quite suitable to be performed in parallel, local search 

algorithms can be accelerated for problems with large neighborhood substantially. 

 

Up to now, the researchers performing local searches through GPU generally reported 

the speedups in comparison to CPU. During GPU implementations, performance 

analysis and improvement of system performance is fairly important to provide 

effective utilization of GPU resources. Schulz (2013) accelerated the naive GPU 

algorithm using profiling tools and saturating device fully. According to the study of 

Schulz, to saturate the GPU a large enough problem instance is required. Schulz 

achieved a speedup of almost an order of magnitude compared to the Benchmark 

Version. Burke and Riise demonstrated that the evaluation of the entire neighborhood to 

discover the best improvement can display better performance than applying the first 

improvement. 

 

The first research applying some kind of local search to routing problems via GPU 

belongs to Janiak et al. (2008). Janiak presented the implementation of a tabu search 

algorithm for TSP and flow shop scheduling problem. After CUDA was introduced, 

performing local search methods in GPU became much easier. To solve TSP problem 

Luong et al. (2009) used GPU as a coprocessor for extensive computations which is 

evaluating each solution from a given 2-exchange (swap) neighborhood in parallel. 

Remaining computations were done in CPU. 

 



7 

 

A local search has four main steps which are neighborhood generation, evaluation, 

move selection and solution update. The simplest method is to create the neighborhood 

on the CPU and transferring it to GPU each time. Luong et al. (2011b) applied this 

technique which requests copying of a lot of information from the CPU to the GPU. 

Other way is to generate neighborhood in GPU. 

 

To evaluate the neighborhood the common method used is to assign one or several 

moves to a thread which is called mapping. Luong et al. (2011b), Burke and Riise 

(2012) Coelho et al. (2012), Rocki and Suda (2012), Schulz (2013) utilized an explicit 

formula to provide mapping. Luong et al. (2011b) used an algorithm. The mapping 

approach, which is done in GPU, removes the need for copying some information from 

CPU to GPU. 

 

As neighborhood evaluation is the most computationally expensive task, it was 

generally performed on the GPU. However, choosing the best move may not be 

performed on the GPU.  

 

Luong et al. (2011b), O’Neil et al. (2011), Coelho et al. (2012), Rocki and Suda(2012), 

Schulz (2013)presented some implementation details in order to execute kernel 

efficiently. Among them the only one who demonstrated the profiling analysis of these 

details is Sculz. Moreover, because of the limited memory of GPU, for large 

neighborhoods Schulz proposed an implementation that divides the neighborhood in 

parts. More comprehensive review of GPU computing and its application to Vehicle 

Routing Problems can be found in the studies of Brodtkorb et al. (2013) and Schulz et 

al. (2013). 
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3 ARCHITECTURE 

In order to comprehend the possible advantages of GPU usage in certain kinds of 

applications, firstly the main differences of GPU and CPU architecture should be 

understood. 

 

GPUs and multi-core CPUs are specifically designed to perform different types of 

parallel computations. Although the design of CPU is optimized for partially-sequential 

code performance, GPU is optimized for highly parallel code execution.  CPUs can be 

called as latency-oriented devices and GPUs are throughput-oriented devices.  Latency 

is the amount of time to complete a task which is measured in units of time, like 

seconds. Throughput is tasks completed per unit time and it is measured in units as stuff 

per time, like jobs completed per hour. While CPU aims to minimize latency, GPU tries 

to maximize throughput. 

 

The main components of a regular processor are arithmetic logic units (ALU), control 

unit, cache and DRAM. The main difference between GPUs and CPUs is that GPUs 

devote proportionally more transistors to arithmetic logic units (ALU) and less to 

caches and flow control in comparison to CPUs. As mentioned in the introduction, all 

arithmetic computations such as multiplication, addition and also comparison operations 

are performed by ALUs. GPUs also typically have higher memory bandwidth compared 

to CPUs (Oxford).  

 

As seen in the Figure 3.1, CPUs have larger local cache than GPUs. Cache memory is 

random access memory (RAM) that a computer microprocessor can access more 

quickly than it can access regular RAM and it reduces the instruction and data access 

latencies of large complex applications. Moreover CPUs have more sophisticated 

control logic in contrast to GPUs. These control logic provides to reduce arithmetic 

calculation latency and memory access latency. 
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Figure 0.2 The architectural difference between CPU and GPU 

(Kirk and Hwu, 2013) 

 

Control logic and cache memories do not help to reach the peak calculation speed 

because large cache memory and sophisticated control logic consume chip area and 

power considerably. By using smaller cache and simpler control logic it is possible to 

have more arithmetic execution units and memory access channels on chip. So the 

larger control logic and cache memory in CPUs are disadvantageous with regards to 

time performance of the whole algorithm. (Kirk and Hwu, 2013) 

 

GPUs aim to maximize chip area and power budget dedicated to floating point 

calculations. Compared to GPUs, CPUs have very powerful arithmetic control units 

(ALU) that can generate arithmetic results in very few clock cycles which requires more 

energy. The power of the CPU ALUs stems from sophisticated control unit and big 

control cache in the CPU architecture. Because ALUs in CPU are quite powerful, they 

have extremely short latency for producing floating arithmetic operations. However, 

GPUs have great numbers of energy efficient ALUs which have long latency but 

heavily pipelined for high throughput. Pipelining helps microprocessor to begin 

executing a second instruction before the first one has been completed. (Figure 3.2) It 

means that completion of one operation takes more time, but the total time to complete 

all operations can be shorter than in that of CPUs if the large number of ALUs (so many 

threads) in GPUs can be fully utilized. In other words, in GPU system overall 

throughput is improved, even though the execution of each individual thread is 

degraded. 
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Figure 0.3 Pipelining 

 

As discussed earlier, CPU hardware reduces the execution latency of each individual 

thread by reducing the latency of operations, while GPU has long latency for a single 

thread as it uses simpler control logic and smaller cache. In order to tolerate these 

latencies, massive numbers of threads are required like GPUs have. Through these 

massive numbers of parallel threads in GPU, the total execution throughput is 

maximized although individual threads take much longer time than in CPU.  

 

To sum up, the design of GPU saves chip area and power by allowing pipelined 

memory channels and arithmetic operations to have long latency. As the power and area 

of the cache, control and individual arithmetic logic unit (ALU) were reduced in the 

design of GPU, more memory access units and arithmetic units could be used on a chip 

and this kind of a design increased the total execution throughput. In the working 

system of GPU, as some of the threads should wait for long latency memory access or 

arithmetic operations, it is more advantageous to use large number of parallel threads to 

compensate the waiting time. Otherwise GPU usage can be meaningless. In GPU 

architecture a small cache memory is provided for each set of multiple threads that 

access the same memory data. In this way, instead of going to DRAM these multiple 

threads can go the cache, which takes much shorter time (Kirk and Hwu, 2013). 

 

As mentioned earlier, CPUs minimize the execution latency of a single thread while 

GPUs maximize execution throughput of all threads. So it can be said that CPU and 

GPU have different advantages. By using CPUs for sequential parts of the algorithm 

where latency matters and GPUs for parallel parts where throughput wins, the optimal 

algorithms can be achieved. This way of programming is called as heterogeneous 

programming. In our research, accelerated 2-opt and 3-opt algorithms were investigated 

which were written by utilizing heterogeneous programming.  CUDA C language which 

supports the heterogeneous programming was used. CUDA C is very similar to regular 
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C language, additionally it has a kernel function which exploits parallelism and some 

additional functions that provide kernel launch and communication between CPU and 

GPU.  

 

A CUDA program has two main components. First one is host code which runs locally 

on CPU and second one is GPU kernel code which is a GPU function that runs on GPU 

device. A heterogeneous code starts on a CPU host and when parallelization is needed 

the host code invokes a GPU kernel on a GPU device (Cornell Workshop, 2015).  

 

As seen in the Figure 3.3, kernels have a grid structure which has lots of thread blocks 

and these thread blocks have lots of threads which exploit parallelism. Through these 

threads, different parts of the data can be processed independently of each other as 

parallel. After kernel finishes its execution, the CPU continues to execute the original 

program.  In order to use GPU, firstly a device should be initialized and GPU memory 

should be allocated in host code. Then the data that will be made parallel should be 

transferred to the device from the host and kernel should be invoked. Invoking kernel is 

like calling a function. Differently from C, the kernel functions take configuration 

parameters or arguments (Hwu, 2015). These configuration parameters consecutively 

represent number of blocks in the grid and number of threads in a block. After kernel 

finishes its parallel processes, the result should be transferred from device to host if it is 

needed. 

 

Each thread in GPU can be thought as a virtualized Von-Neumann processor. Thus, 

every CUDA thread can execute a program. As mentioned before, the GPU memory has 

lots of threads, in other words lots of processors and the kernel function is executed by 

them. Because of the SIMD structure of GPU, all threads in a grid run the same kernel 

code. To specify memory addresses and make control decisions, each thread has its own 

indexes, in other words each thread has a unique thread ID. These indices are used by 

threads in order to decide what data to work on (Hwu, 2015). The threads and blocks 

have a 3-dimensional structure to ease parallelism of some specific problems. It 

simplifies memory addressing when processing multidimensional data (Hwu, 2015). 

However it is not an obligation to use all the dimensions. While applying two 
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dimensions is a betterway in a matrix multiplication, in our study utilizing only one 

dimension is more appropriate. 

 

 
Figure 0.4 The thread hierarchy in the CUDA programming model 

 (Virginia Tech) 

 

In order to access the indexes of threads, CUDA has specific predefined variables such 

as “threadIdx.x”, “blockIdx.x”, “blockDim.x”, gridDim.x”, which represent “x” 

dimension. As we will utilize only one dimension in our problem, we will not 

emphasise “y” and “z” dimensions. If the number of threads in a block is represented by 

“n”, which refers to as “block dimension (blockDim.x)”, each thread will have different 

indexes from “0” up to and including “n-1” in that block. In other words, starting from 0 

“threadIdx.x” counts the threads in a block one by one. Through “threadIdx.x” these 

indexes can be assigned to a variable in the device. “blockDim.x” takes the size of a 

block which is the number of threads in a block. Like threadIdx.x”, “blockIdx.x” counts 

the number of blocks in the grid one by one, in a sense it gets the indexes of blocks 

from 0 up to the specified number of blocks in a grid. Lastly “gridDim.x” represents the 

size of a grid, in other words number of blocks in a grid.  
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Figure 0.5 The indexes produced by kernel depending on the number of blocks 

launched in the grid and the number of threads launched in the block 

 

Let’s assume that there are N threads in a block and M blocks in the grid. (Figure 3.4) 

In this situation every thread has a thread index and also a block index which are 

specified by “threadIdx.x” and “blockIdx.x” consecutively. These are predefined 

CUDA variables that can be used in a kernel and they actually are initialized by the 

hardware for each thread like below (Hwu, 2013):  

 

threadIdx.x = 0,1,2,3,4............(N-1) 

blockDim.x = N 

blockIdx.x = 0,1,2,3,4..........(M-1) 

 

“blockDim.x” helps to factor in both the thread index and the block index. In order to 

obtain all the thread indexes, the block index (blockIdx.x) should be multiplied by the 

block dimension (blockDim.x) and added to the thread index (threadIdx.x) such as 

“blockDim.x*blockIdx.x+threadIdx.x”. Via that formula all the indexes of all the 

threads in Figure 3.4 will be initialized by the system like in Table 3.1. Third and forth 

columns in this table shows how block ids and thread ids in each block are 

automatically initialized when kernel launches M blocks including N threads. Second 

column shows the size of a block. Depending on these built-in variables, indexes 

specific to each thread in the grid are calculated in the first column. 

 

 

 

 

 

BLOCK 0 BLOCK 1 ............................ BLOCK M-1

0 1 2 ............. N-1 N N+1 N+2 ............. 2N-1    ...................... N*(M-1) N*(M-1)+1 ................ N*M-1
T

h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 N

-1

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 N

-1

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 N

-1



14 

 

Table 0.1 The relationship between the indices, thread id, block id and block dimension 

 

As shown in the Figure 3.4 and in the Table 3.1, from the formula 

“blockDim.x*blockIdx.x+threadIdx.x”, thread 0 in block 0 has the index of 0 as the 

block index is 0. However thread 0 in block 1 has the index of “N” instead of “0”, as the 

block index is 1. Then thread 0 in the next block will have the index of “2N”. 

Consequently the index values of the first block will range from “0” up to and including 

“N-1” , the index values of the second block will range from “N” up to and including 

“2N-1” and the index values of the last block will range from “N*(M-1)” up to and 

including “N*M-1”. All the indexes from 0 up to and including N*M-1 can be obtained 

in this way, as we have “M” blocks and “N” threads in each block (M*N threads 

totally).  Threads within a block can cooperate via shared memory, atomic operations 

and barrier synchronization although threads within different blocks cannot interact 

(Hwu, 2013). This subject will be elaborated later. 

 

indexes 
(blockDim.x*blockIdx.x+threadIdx.x) 

 
blockDim.x 

 
blockIdx.x 

 
threadIdx.x 

0 N 0 0 

1 N 0 1 

2 N 0 2 

.. N 0 .. 

N-1 N 0 N-1 

N N 1 0 

N+1 N 1 1 

N+2 N 1 2 

.. N 1 ... 

2*N-1 N 1 N-1 

... ... ... ... 

... ... ... ... 

... ... ... ... 

N*(M-1) N M-1 0 

N*(M-1)+1 N M-1 1 

N*(M-1)+2 N M-1 2 

.. N M-1 .. 

N*M-1 N M-1 N-1 
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Of course there are some restrictions in parallelism because of the GPU design. State of 

the art GPU cards allow to use maximum 1024 threads in a block and 231-1 blocks in the 

grid.  

3.1 Device Memories and Data Transfer 

As discussed previously, before the kernel invocation the GPU memory should be 

allocated and then the necessary data should be moved from CPU (host memory) into 

GPU (device memory) via API (application programming interface) functions so that 

the device can be ready to process the data.  

 

API functions are programming interface functions in CUDA host code.  In industry 

standard programming languages are extended via APIs. In order to help C 

programmers to use GPUs in a heterogeneous environment, CUDA designers and 

NVIDIA proposed some API functions (Hwu, 2013). These API functions provide the 

communication and integration between CPU and GPU. Two main API functions are 

“device memory allocation” and “host-device data transfer” functions.  

 

A conceptual understanding of CUDA memories is necessary in order to understand 

how API functions work (see Figure 3.5) It is known that device has great numbers of 

threads and each of these threads is actually a processor. Therefore each thread has 

registers as displayed in Figure 3.5 and these registers hold variables that are private to 

the thread (Hwu, 2015). In this figure, global memory is the memory that all threads can 

have access. The “device memory allocation” functions are specialized functions that 

allocate global memory. On the other hand, “host-device data transfer” functions copy 

the data from the host memory to the global memory and from the global memory to the 

host memory. These API functions should be defined in the host code. 

 

The specific expression of “device memory allocation” function is “cudaMalloc()” 

which allocates object in the device global memory. It has two parameters. The first 

parameter specifies the address of a pointer to the allocated object and the second one 

shows the size of allocated object as bytes.  
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The second function is called “cudaMemcpy()” which is a “host-device data transfer” 

function. “cudaMemcpy()” helps to transfer the data from host memory to device 

memory and vice versa. It has four parameters which are consecutively pointer to the 

destination, pointer to the source, the size of the data to be copied as bytes and the 

direction of the transfer (host to device or device to host). 

 

 

Figure 0.6 Overview of CUDA device memory model (Kirk and Hwu, 2013) 

 

After device memory allocation and data transferring from host to device, the kernel 

function can be invoked. In addition to regular features of C functions, CUDA kernel 

functions should be preceded by “__global__” keyword so that compiler can understand 

that it is a kernel function. Launching the kernel function differs from calling a 

traditional C function. It has special parenthesis syntax of “<<< ....... >>>” between the 

name of the function and the parameters of the function. This special parenthesis 

includes two configuration parameters for the kernel. The first one is the number of 

blocks in the grid and the second one is the number of threads in a block.  

 

During the configuration of the kernel, the important point is determining the number of 

required threads according to the solution method. When the kernel is launched in the 

host code, the kernel function is called and the hardware produces a grid of threads 

according to the configuration parameters like in Figure 3.6. 



17 

 

 

Figure 0.7 The grid of threads produced because of the kernel launch (Hwu, 2013) 
 

As mentioned earlier each thread in the grid has the built in variables blockIdx.x, 

blockDim.x and threadIdx.x; these predefined variables allow threads to generate 

different data indices so that each thread can process a different part of the data. In 

addition to these functions it should be known that from kernel or from other device 

functions only the device functions can be called and these functions should be 

preceded by “__device__”.   

 

The whole CUDA function types are described in the first column of Table 3.2.The 

second and third columns consecutively present the places that these functions are 

executed and called from. Host functions are actually functions in CPU. They are called 

from the host and also executed in the host. “__global__” defines a kernel function and 

kernel function has to return “void”. Although kernel functions are called from the host 

they are executed on the device. Lastly, “__device__” defines device function which is 

called from the device and executed on the device. 

 

Table 0.2 CUDA functions and their behaviors 

 Executed on the: Only callable from the: 

__device__float DeviceFunc( ) device device 

__global__ void KernelFunc( ) device host 

__host__ float HostFunc( ) host host 

 

3.2 Thread Scheduling and Latency Tolerance 

Up to now, the basic concepts of GPU and the mechanism of a CUDA program are 

discussed. In order to reach peak calculation speeds the resources of GPU should be 

utilized carefully, rather than using the advantages of GPU randomly. It should be 
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ensured that hardware execution resources are utilized efficiently. In order to manage 

this, number of blocks and number of threads should be specified according to the 

structure of the execution resources of GPU, in other words CUDA thread blocks 

should be assigned to execution resources efficiently. The capacity constraints of 

execution resources should be considered and zero-overhead thread scheduling should 

be provided to tolerate the latencies in individual threads (Hwu, 2013).  

 

In order to perform thread scheduling properly, firstly the features of the GPU card 

should be investigated. GPU cards maintain to evolve, their qualifications change and 

improve in time. Current GPU technology is much better than before and in the future 

most probably it will be much better than today. 

 

In our study, one of the best GPU cards which named as Quadro K600 is used and its 

compute capability is 3.0. Compute capability shows the general specifications and 

features of a compute device (Nvidia, 2015). Table 3.3 presents the features of a device 

with compute capability 3.0. The capacity constraints of execution resources depend on 

the type of GPU device. As illustrated in table, our device can have maximum 1024 

threads in a block and “231-1” blocks in the grid.  

 

As mentioned before, when a kernel is launched CUDA system produces equivalent 

grid of threads and assigns them to execution resources. The execution resources in 

GPU hardware are organized into streaming multiprocessors (SM) (Kirk and Hwu, 

2013). Streaming multiprocessors executes the threads in block granularity.  All the 

threads in a block are assigned to the same SM. Quadro K600 has a very efficient and 

advance multiprocessor, which specifically named as “SMX” (Figure 3.8). SMXs have 

also some resource limitations. From Table 3.3 it can be seen that each SMX can have 

maximum 16 resident blocks and 2048 resident threads.  

 

When the CUDA system assigns a block to a streaming multiprocessor, this block is 

divided into 32 thread units which is called warps. In other words, in CUDA each block 

is executed as warps and each warp has 32 parallel threads. Each warp has sequential 

indexes, for example the first warp has the indexes from 0 up to 31, the second one has 

the indexes from 32 up to 63 etc. In each warp the same instruction is executed.  When 
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an instruction in a warp should wait for a result of a previous long-latency operation, 

this warp cannot be executed. While this warp stalls, another ready warp is selected to 

be executed. (see Figure 3.7) This process of tolerating the latency arising from the 

long-latency operations with other group of threads is called latency hiding (Kirk and 

Hwu, 2013). Consequently, by providing enough active warps, latency hiding can be 

managed as the hardware can find a warp for execution at any time rather than waiting 

for the busy warps. The GPU hardware doesn’t waste time while choosing the ready 

warps, for this reason it is called zero-overhead thread scheduling. As seen in the Table 

3.3, the restriction about warps is that one SMX can have maximum 64 warps. As seen 

in the Figure 3.8, one SMX has 4 warp schedulers which allow 4 warps to be executed 

parallel.  

 

Utilizing great numbers of warps can be the one way of achieving enough parallelism 

and increasing the performance, but not necessarily. This kind of parallelism is called 

“thread level parallelism”. Thread level parallelism is assessed by the “occupancy” 

which is the number of active warps over the maximum number of active warps 

supported on one SM. Thus, increasing the occupancy can provide thread level 

parallelism. Maximum number of active warps per multiprocessor is 64 in our device, in 

addition to the previous restrictions. By considering these memory restrictions, different 

combinations of block and grid dimensions can be exploited to increase occupancy.  

Table 3.4 demonstrates the configuration parameters when all warps are utilized on the 

device. First two columns consecutively show number of threads in a block and number 

of blocks in a grid. Depending on the block dimension, the number of active warps in 

each block is calculated in the third column and multiplying number of active warps in 

each block by number of blocks in the grid the number of active warps in the system is 

calculated in the last column.  

 

Figure0.8Warp scheduling (Cooper, 2011) 

 

Table 0.3 The features of a GPU device with compute capability 3.0 
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Technical Specifications Compute Capability 3.0 

Maximum dimensionality of grid of thread blocks 3 

Maximum x-dimension of a grid of thread blocks 
 

231-1 

Maximum y- or z-dimension of a grid of thread blocks 
 

65535 

Maximum dimensionality of thread block 3 

Maximum x- or y-dimension of a block 1024 

Maximum z-dimension of a block 64 

Maximum number of threads per block 1024 

Warp size 32 

Maximum number of resident blocks per multiprocessor 16 

Maximum number of resident warps per multiprocessor 64 

Maximum number of resident threads per multiprocessor 2048 

Number of 32-bit registers per multiprocessor 64 K 

Maximum number of 32-bit registers per thread block 64 K 

Maximum number of 32-bit registers per thread 63 

Maximum amount of shared memory per multiprocessor 48KB 

Maximum amount of shared memory per thread block 
 
 

48KB 

Number of shared memory banks 32 

Amount of local memory per thread 512KB 

Constant memory size 64KB 

Cache working set per multiprocessor for constant memory 8KB 

Cache working set per multiprocessor for texture memory 
 
 

Between 12 KB and 48 KB 
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Table 0.4 Utilizing all possible warps in the streaming multiprocessor 

Block Dimension 
(threads in a block) 

Grid Dimension 
(number of blocks) 

Number of Warps 
in a Block 

Number Of Warps 
in a SM 

1024 2 1024/32=32 32*2=64 

512 4 512/32=16 16*4=64 

256 8 256/32=8 8*8=64 

128 16 128/32=4 16*4=64 

 

To sum up, the resource restrictions are like following:  

- Number of threads in a block can be maximum 1024. 

- A Streaming Multiprocessor can have maximum 16 blocks. 

- Blocks are divided by warps. One warp has 32 threads. As a result, one block 

can have 1024/32=32 warps most. 

- One SM can have maximum 64 warps. 

 

As seen from Table 3.4; 

- Number of threads in a block is less than or equal to 1024. Also it is divisible by 

the size of a warp which is 32. 

- Number of blocks in a grid, i.e., in a streaming multiprocessor, is less than or 

equal to 16. 

- As one warps contains 32 threads, to find number of warps in a block number of 

threads in a block should be divided by 32. For each combination number of 

warps in a block is less than or equal to 32 in the table. 

- Number of warps in a SM is found multiplying number of warps in a block by 

number of blocks in a SM. In the table, number of warps in a SM is equal to 64 

which means that all warps in a SM are utilized. 
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Figure 0.9 Streaming multiprocessor structure of the GPU device (Nvidia, 2012) 

 

In addition to thread level parallelism, instruction level parallelism can be applied to 

expose enough parallelism and achieve good performance. In instruction level 

parallelism an individual thread executes concurrent operations, while independent and 

parallel operations are assigned to different threads in thread level parallelism. In other 

words, parallel tasks are executed by different threads in TLP (see Figure 3.9) and 

parallel tasks are executed by one thread in ILP (see Figure 3.10).  
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Figure 0.10 Thread level parallelism (Volkov, 2010) 

 

 

Figure 0.11 Iteration level parallelism (Volkov, 2010) 
 

Although thread level parallelism is a good way of increasing performance, the 

limitations in kernel resources may prevent hiding latencies at some point. When 

resource consumption of a kernel is too large, it restricts the number of concurrent 

threads on a streaming multiprocessor. In this situation, instruction level parallelism can 

be applied or instruction level parallelism and thread level parallelism can be combined.  

In some cases low thread level parallelism with higher instruction level parallelism may 

exploit better performance as lower occupancy increases the number of registers per 

thread. However, the register pressure also increases. Because all the loads are grouped 

or batched together through a thread-private array in register memory in addition to 

having each thread execute multiple concurrent operations.  Thread private arrays 

consume registers and may further add to register pressure (Ruetsch and Fatica, 2013). 

Thus, determination of how much thread level or instruction level parallelism will 

produce optimal results depends on type of the problem. In this research, certain 

experimental studies were done about this subject using 2-opt TSP problem that will be 

elaborated on the experimental design section.  
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3.3 Memory Model and Locality 

It is possible and important to manage scalable parallel programs via CUDA. A scalable 

system is a system whose performance improves after adding hardware, proportionally 

to the capacity added. If a system, algorithm or program maintains its efficiency and 

practicability when applied to large instances, it is said to scale.  

 

Quickly memory access is a critical factor for a scalable and parallel execution. It is 

very important to be careful about using the different memory parts of the GPU 

efficiently. In addition to global memory which is mentioned before, shared memory 

and registers will be introduced in this chapter. InFigure 3.5, different CUDA memories 

can be observed. In this figure, 2 blocks and 2 threads in each block are representatively 

demonstrated. Normally a grid has the capability of including a lot more blocks and 

threads.  

 

In Figure 3.5, registers and shared memory are called on-chip memories as they are 

situated in GPU device. Variables of these memories can be accessed quite quickly and 

in a highly parallel way. CUDA memory types specify the visibility of a variable in 

addition to its access speed. 

 

As discussed earlier, host code copies the data into the global memory and out of the 

global memory through “cudaMemcpy”. All the threads in a grid/kernel can access to 

the global memory. Thus, all the threads in a grid can see the contents of the global 

memory. In CUDA another memory level is “registers” which are generally used for 

frequently used variables. Each thread in the grid has a certain number of registers to 

hold its private variables. The variables that are placed into registers by the respective 

thread of these registers can only be visible to that same thread. Other threads in the grid 

cannot identify the value of these variables. Next memory that we will talk about it is 

shared memory. All the blocks in the grid can use shared memory. In shared memory, 

some locations are allocated to each block. When a block uses its allocated locations in 

the shared memory (i.e. own shared memory), all the threads in that block are able to 

see the contents of that locations of the shared memory. Nonetheless, the threads in 

other blocks cannot see the contents of these locations. Although each block can read 
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from and write to their own shared memory, the data in the shared memory of different 

blocks cannot be visible to each other.  

 

Table 0.5 Features of CUDA variables 

Variable declaration Memory Scope Lifetime 

intLocalVar; register thread thread 

__device__ __shared__intSharedVar; shared block block 

__ device__intGlobalVar; global grid application 

__device__ __constant__intConstantVar; constant grid application 

 

 In Table 3.5 some features of CUDA variables are demonstrated. It shows the memory 

that each variable occupies, the scope of them and how much they exist. In order to use 

registers for a CUDA variable, we can declare that variable as an automatic variable in 

the kernel function or device function. In a kernel function all the variables that are 

declared like in the traditional C function become register variables. Thus, these 

variables are located into the registers and the scope of a variable is within one thread. 

Each thread in the grid will have the different/own version of that variable. When a 

thread changes the value of its private variable, other threads cannot see that 

modification. Moreover, the lifetime of a register variable is same with the life of a 

thread. It means that the register variable destroyed when its thread finishes execution.  

In Table 3.5, the second row shows the declaration of the shared memory variables. 

When the identifier “__device__ __shared__” is seen in front of a variable, it means that 

this variable will be placed into shared memory. As the scope of the shared memory 

variable is within one block, a variable that is declared for a block will only be 

detectable for the threads in that block. However, each block will have the different/own 

version of that shared memory variable. Thus, the contents of the variables in one block 

will not be visible to other blocks in shared memory. Also the lifetime of a shared 

memory variable is equal to the lifetime of a block. When a block finishes its execution, 

shared memory variables belong to that block are destroyed. In the third row of Table 

3.5, the features of global memory can be observed. Global variables can be declared 

via “__ device __” statement. Unlike previous variables, global variable is declared in 

the host code. Rather than using the “__ device__” expression, more common 

declaration of the global memory is provided via “cudaMalloc” and “cudaMemCpy”.   

Although accesses to global variables are slow, they are visible to all threads in the 

kernel and their lifetime lasts through the execution. For this reason, global variables 
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can be used to cooperate across blocks. But, when a thread changes the value of 

particular global variable, other threads may not realize this modification immediately. 

Stopping the kernel execution is the only way to provide synchronization between 

threads from different blocks. This is why global variables are generally used to send 

information from one kernel invocation to another one. 

 

Briefly we will mention some details about CUDA memory variables. Firstly we 

actually do not need to use identifier “__ device__” to declare shared memory and 

constant memory variables as constant and shared memory are already in the device. 

The second detail is that although all automatic variables are placed into registers, 

automatic variable arrays are stored in the global memory.  Thus the access to a large 

automatic array is quite slow. 

 

It is critical to decide where the variables should be declared. If we want host access to 

a variable, then the variables should be declared outside any function. The variables that 

are declared in a kernel or device function cannot be accessed from host. Constant and 

global memory variables are in this class.  On the other hand, the variables that host 

don’t need to access such as registers and shared memory variables, can be declared in 

kernel.   

 

Lastly we should mention shared memory a bit more in detail as it is crucial in terms of 

the speed of an algorithm. Shared memory, whose contents are explicitly declared, is an 

exceptional memory type in CUDA. Explicit memories are the memories that can be 

intentionally and consciously declared. Each streaming multiprocessor (SM) has a 

shared memory. Shared memory is much faster accessible than global memory and also 

its performance is much better in both latency and throughput.  Shared memory is 

generally used to store specific part of the data in the global memory which are 

frequently used during the execution of kernel (Kirk and Hwu, 2013). Although shared 

memory is quite fast, the memory of it is pretty small as it needs to fit into the 

processor. 

 

 In CUDA there is a common programming method for shared memory. The most 

important point is that the data should be divided into parts called tiles that fit into 
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shared memory. As mentioned before the shared memory is allocated to blocks. So 

these tiles are actually blocks. All the threads in a block cooperate and copy the tile 

from global memory to the shared memory. As there can be wide range of threads in a 

block, a good parallelism can be managed while transferring data to the shared memory. 

This kind of parallelism refers to as memory level parallelism. Once the data is moved 

to shared memory, the computations can be managed in a much faster way as shared 

memory gives the data to the processing units at quite high speed.  

 

 

 

 

 

 

 



28 

 

4 EXPERIMENTAL DESIGN 

In this study, to solve symmetric TSP accelerated 2-opt and 3-opt algorithms were 

implemented utilizing SIMD structure of GPU. Fundamentally “Accelerating 2-opt and 

3-opt Local Search Using GPU in the Travelling Salesman Problem (KamilRocki and 

Reiji Suda, 2012) ” and “High Performance GPU Accelerated Local Optimization in 

TSP (KamilRocki and Reiji Suda, 2013)” papers were considered. In addition to 

observing how much GPU accelerated sequential 2-opt and 3-opt CPU algorithms, 

some tests were performed on these algorithms to discover the best way of allocating 

GPU resources and also take the advantages of different parallelism strategies.  

 

Repeating 2-opt exchanges on a travelling salesman tour, which considerably improves 

the solution, is an efficient local-search method for solving TSP.  

 

As shown in Figure 4.1, in a 2-opt exchange step, two edges are removed from the 

current tour and after this removal process two sub-tours emerge. There is only one way 

to reconnect these sub-tours by protecting the validity of the travelling salesman tour 

and they are connected in this way. 2-opt exchange is performed in the event that the 

cost of the two edges that reconnects two new sub-tours created is lower than the cost of 

removed edges. As the other parts of the tour remain same, there is no need for further 

calculations. 

 

2-opt algorithm calculates the effect of each possible edge exchange on the current tour 

cost. From among these possible exchanges, it performs the one with the best 

improvement, in other words the exchange that decreases current tour cost most. 

Algorithm repeats this step until there is no further improvement.  
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Figure 0.12 2-opt step on a travelling salesman tour 

 

If the number of nodes in the tour is “n”, the number of possible edge exchanges/swaps 

in each iteration is  
𝑛×(𝑛−1)

2
 .  

 

Example 4.1: Assuming that there are 10 nodes/cities in a tour, all possible edge 

exchanges are presented in Table 4.2 in which “t” represents the array that keeps tour 

order (check Table 4.1 for the initial tour order). 

 

Table 0.6 Initial tour order in Example 4.1 

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t[10] 

0 1 2 3 4 5 6 7 8 9 0 

 

As shown in Table 4.2, there are 
10∗9

2
= 45 possible edge swaps in a tour consisting of 

10 nodes. In this table, the entries (the nodes) in bold consecutively represent the row 

and the column indexes of a triangular matrix which will be important in the 

parallelization phase of 2-opt algorithm. Note that in the last column of each row 

deleted and added edges are same. We don’t save any time when we eliminate these 

exchanges as they will be performed in parallel. For this reason we won’t let our 

program to make an effort to control unnecessary exchanges. 

 

If node “i” symbolizes the row indexes and node “j” symbolizes the column indexes, “i” 

and “j” variables will take the values in Table 4.3.In this table, in each cell the first 

number in the parenthesis will be assigned to “i” variable and the second one will be 

assigned to “j” variable. 
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Table 0.7 All possible edge exchanges for a TSP tour with 10 nodes 

         

Remove  
(t[2],t[1]) 
(t[1],t[0]) 
Add 
(t[2],t[1]) 
(t[1],t[0]) 

        

Remove  
(t[3],t[2]) 
(t[1],t[0]) 
Add 
(t[3],t[1]) 
(t[2],t[0]) 

Remove  
(t[3],t[2]) 
(t[2],t[1]) 
Add 
(t[3],t[2]) 
(t[2],t[1]) 

       

Remove 
(t[4],t[3]) 
(t[1],t[0]) 
Add 
(t[4],t[1]) 
(t[3],t[0]) 

Remove 
(t[4],t[3]) 
(t[2],t[1]) 
Add 
(t[4],t[2]) 
(t[3],t[1]) 

Remove 
(t[4],t[3]) 
(t[3],t[2]) 
Add 
(t[4],t[3]) 
(t[3],t[2]) 

      

Remove  
(t[5],t[4]) 
(t[1],t[0]) 
Add 
(t[5],t[1]) 
(t[4],t[0]) 

Remove 
(t[5],t[4]) 
(t[2],t[1]) 
Add 
(t[5],t[2]) 
(t[4],t[1]) 

Remove 
(t[5],t[4]) 
(t[3],t[2]) 
Add 
(t[5],t[3]) 
(t[4],t[2]) 

Remove 
(t[5],t[4]) 
(t[4],t[3]) 
Add 
(t[5],t[4]) 
(t[4],t[3]) 

     

Remove 
(t[6],t[5]) 
(t[1],t[0]) 
Add 
(t[6],t[1]) 
(t[5],t[0]) 

Remove 
(t[6],t[5]) 
(t[2],t[1]) 
Add 
(t[6],t[2]) 
(t[5],t[1]) 

Remove 
(t[6],t[5]) 
(t[3],t[2]) 
Add 
(t[6],t[3]) 
(t[5],t[2]) 

Remove 
(t[6],t[5]) 
(t[4],t[3]) 
Add 
(t[6],t[4]) 
(t[5],t[3]) 

Remove 
(t[6],t[5]) 
(t[5],t[4]) 
Add 
(t[6],t[5]) 
(t[5],t[4]) 

    

Remove 
(t[7],t[6]) 
(t[1],t[0]) 
Add 
(t[7],t[1]) 
(t[6],t[0]) 

Remove 
(t[7],t[6]) 
(t[2],t[1]) 
Add 
(t[7],t[2]) 
(t[6],t[1]) 

Remove 
(t[7],t[6]) 
(t[3],t[2]) 
Add 
(t[7],t[3]) 
(t[6],t[2]) 

Remove 
(t[7],t[6]) 
(t[4],t[3]) 
Add 
(t[7],t[4]) 
(t[6],t[3]) 

Remove 
(t[7],t[6]) 
(t[5],t[4]) 
Add 
(t[7],t[5]) 
(t[6],t[4]) 

Remove 
(t[7],t[6]) 
(t[6],t[5]) 
Add 
(t[7],t[6]) 
(t[6],t[5]) 

   

Remove 
(t[8],t[7]) 
(t[1],t[0]) 
Add 
(t[8],t[1]) 
(t[7],t[0]) 

Remove 
(t[8],t[7]) 
(t[2],t[1]) 
Add 
(t[8],t[2]) 
(t[7],t[1]) 

Remove 
(t[8],t[7]) 
(t[3],t[2]) 
Add 
(t[8],t[3]) 
(t[7],t[2]) 

Remove 
(t[8],t[7]) 
(t[4],t[3]) 
Add 
(t[8],t[4]) 
(t[7],t[3]) 

Remove 
(t[8],t[7]) 
(t[5],t[4]) 
Add 
(t[8],t[5]) 
(t[7],t[4]) 

Remove 
(t[8],t[7]) 
(t[6],t[5]) 
Add 
(t[8],t[6]) 
(t[7],t[5]) 

Remove 
(t[8],t[7]) 
(t[7],t[6]) 
Add 
(t[8],t[7]) 
(t[7],t[6]) 

  

Remove 
(t[9],t[8]) 
(t[1],t[0]) 
Add 
(t[9],t[1]) 
(t[8],t[0]) 

Remove 
(t[9],[8]) 
(t[2],t[1]) 
Add 
(t[9],t[2]) 
(t[8],t[1]) 

Remove 
(t[9],t[8]) 
(t[3],t[2]) 
Add 
(t[9],t[3]) 
(t[8],t[2]) 

Remove 
(t[9],t[8]) 
(t[4],t[3]) 
Add 
(t[9],t[4]) 
(t[8],t[3]) 

Remove 
(t[9],t[8]) 
(t[5],t[4]) 
Add 
(t[9],t[5]) 
(t[8],t[4]) 

Remove 
(t[9],t[8]) 
(t[6],t[5]) 
Add 
(t[9],t[6]) 
(t[8],t[5]) 

Remove 
(t[9],t[8]) 
(t[7],t[6]) 
Add 
(t[9],t[7]) 
(t[8],t[6]) 

Remove 
(t[9],t[8]) 
(t[8],t[7]) 
Add 
(t[9],t[8]) 
(t[8],t[7]) 

 

Remove 
(t[10],t[9]) 
(t[1],t[0]) 
Add 
(t[10],t[1]) 
(t[9],t[0]) 

Remove 
(t[10],t[9]) 
(t[2],t[1]) 
Add 
(t[10],t[2]) 
(t[9],t[1]) 

Remove 
(t[10],t[9]) 
(t[3],t[2]) 
Add 
(t[10],t[3]) 
(t[9],t[2]) 

Remove 
(t[10],t[9]) 
(t[4],t[3]) 
Add 
(t[10],t[4]) 
(t[9],t[3]) 

Remove 
(t[10],t[9]) 
(t[5],t[4]) 
Add 
(t[10],t[5]) 
(t[9],t[4]) 

Remove 
(t[10],t[9]) 
(t[6],t[5]) 
Add 
(t[10],t[6]) 
(t[9],t[5]) 

Remove 
(t[10],t[9]) 
(t[7],t[6]) 
Add 
(t[10],t[7]) 
(t[9],t[6]) 

Remove 
(t[10],t[9]) 
(t[8],t[7]) 
Add 
(t[10],t[8]) 
(t[9],t[7]) 

Remove 
(t[10],t[9]) 
(t[9],t[8]) 
Add 
(t[10],t[9]) 
(t[9],t[8]) 
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Table 0.8 Required indexes that will be produced by built-in variables in kernel 

(all different city combinations) 

   j 
i 

1 2 3 4 5 6 7 8 9 

1          

2 (2,1)         

3 (3,1) (3,2)        

4 (4,1) (4,2) (4,3)       

5 (5,1) (5,2) (5,3) (5,4)      

6 (6,1) (6,2) (6,3) (6,4) (6,5)     

7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6)    

8 (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7)   

9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8)  

10 (10,1) (10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) 

 

Based on the edge exchange operations in Table 4.2 and specified “i” and “j” values in 

Table 4.3, the sequential 2-opt algorithm is demonstrated in Figure 4.2 where “n” is the 

number of nodes, “change” is the decrease in tour cost and “global_min” is the 

minimum of the “change” values. Searching for minimum of the “change” values gives 

the maximum decrease in the tour cost. Algorithm sequentially calculates the decrease 

in the tour cost for all possible edge exchanges. Meanwhile, it compares the effect of 

current edge exchange with the previous ones. If the current edge exchange improves 

the tour cost more than previous best exchange, it stores the related “i” and “j” values. 

At the end it reaches the best improvement for the current solution.  

 

Figure 0.13 Sequential 2-opt algorithm 
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4.1 Parallelization Strategy for 2-Opt Algorithm on TSP 

In 2-opt method, the same task is performed on different parts of the travelling salesman 

tour. As can be seen in the sequential algorithm (see Figure 4.2),  the calculation of 

“distance(t[i],t[j]) + distance(t[i-1],t[j-1]) - distance(t[i-1],t[i]) -distance(t[j-1]+t[j])” is 

applied to all city combinations in the current tour as the best improvement strategy is 

implemented. Thus, it can be said that 2-opt algorithm is quite suitable for “single 

instruction multiple data (SIMD)” structure of GPU.  

 

 Parallelism can be managed by distributing 
n∗(n−1)

2
 possible edge exchanges (see Table 

4.2) among different threads equally so that each thread can calculate the effects of 

relevant exchanges on the tour cost. In order to achieve distributing process one or more 

city combinations (Table 4.3) should be assigned to different threads. In this way each 

thread can perform exchange effect calculations on different parts of the tour using city 

pairs assigned to it. 

 

In this study “Calculating the effect of single edge exchange” will be called as a “job” 

and all jobs will be made parallel to each other to discover the effect of all possible edge 

exchanges. As discussed earlier, it is important to combine thread level parallelism and 

iteration level parallelism in some situations. In our problem, one thread can perform 

several jobs in a parallel way which exploits iteration level parallelism and also 

different threads can perform different jobs in parallel to each other which utilizes 

thread level parallelism.  

 

To decide how many jobs a thread will perform, number of possible edge exchanges 

should be divided by the number of threads.  

 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 =  
n∗(n−1)

2∗totalNumberOfThreadsInGPU
                  (4.1) 

 

If 5 threads are used to solve TSP in Example 4.1, each thread will perform 
10∗(10−1)

2∗5
=

9 jobs, which will be called “number of iterations” or “iterations” from now on. It 

means that each thread will iterate 9 times to calculate the effect of 9 possible swaps. 
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The most critical part in the algorithm is generating common formulas for all threads so 

that they can produce “i” and “j” values in Table 4.3. Table 4.4, in which id represents 

index of a job, shows the division of jobs between threads and also (i,j) values 

associated with these jobs . In order to obtain “i” values which represent rows, we 

should relate i values to the job ids that derive from predefined variables in CUDA.  

 

Table 0.9 Assigning jobs to threads 

(ids represent jobs that will be performed in parallel) 

     j 
 i 

1 2 3 4 5 6 7 8 9 

1 
 
 

        

2 
thread 0 

id = 0 
(2,1) 

        

3 
thread 1 

id=1 
(3,1) 

thread 2 
id=2 
(3,2) 

       

4 
thread 3 

id=3 
(4, 1) 

thread 4 
id=4 
(4,2) 

thread 0 
id=5 
(4,3) 

      

5 
thread 1 

id=6 
(5, 1) 

thread 2 
id=7 
(5,2) 

thread 3 
id=8 
(5,3) 

thread4 
id=9 
(5,4) 

     

6 
thread 0 

id=10 
(6, 1) 

thread 1 
id=11 
(6,2) 

thread 2 
id=12 
(6,3) 

thread 3 
id=13 
(6,4) 

thread 4 
id=14 
(6,5) 

    

7 
thread 0 

id=15 
(7, 1) 

thread 1 
id=16 
(7,2) 

thread 2 
id=17 
(7,3) 

thread 3 
id=18 
(7,4) 

thread 4 
id=19 
(7,5) 

thread 0 
id=20 
(7,6) 

   

8 
thread 1 

id=21 
(8, 1) 

thread 2 
id=22 
(8,2) 

thread 3 
id=23 
(8,3) 

thread 4 
id=24 
(8,4) 

thread 0 
id=25 
(8,5) 

thread 1 
id=26 
(8,6) 

thread 2 
id=27 
(8,7) 

  

9 
thread 3 

id=28 
(9, 1) 

thread 4 
id=29 
(9,2) 

thread 0 
id=30 
(9,3) 

thread 1 
id=31 
(9,4) 

thread 2 
id=32 
(9,5) 

thread 3 
id=33 
(9,6) 

thread 4 
id=34 
(9,7) 

thread 0 
id=35 
(9,8) 

 

10 
thread 1 

id=36 
(10, 1) 

thread 2 
id=37 
(10,2) 

thread 3 
id=38 
(10,3) 

thread 4 
id=39 
(10,4) 

thread 0 
id=40 
(10,5) 

thread 1 
id=41 
(10,6) 

thread 2 
id=42 
(10,7) 

thread 3 
id=43 
(10,8) 

thread 4 
id=44 
(10,9) 

 

In example 4.1, there are 45 jobs totally. To complete these jobs 5 threads are allocated 

for thread level parallelism and 9 iterations will be performed for iteration level 

parallelism.  As each of 5 threads iterates through 9 different jobs, at the end all of the 

jobs will be performed.   

 

In order to allocate 5 threads, block dimension should be initialized as “5” and grid 

dimension is 1 in the host code. If “idx” represents thread ids, it should be defined as in 

Figure 4.3. 
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Figure 0.14 Assigning thread indices via buit-in variables 

 

Thus, the variable of “idx” will get the values of “0,1,2,3,4” automatically. 

 

Iteration level parallelism will be managed in the kernel function. If “no” represents the 

number of iterations and “packSize” represents all the threads in the grid,job ids will be 

obtained asin Figure 4.4. 

 

 

Figure 0.15 Assigning jobs to specified threads 

 

So the ids will be as follows: 

id = 0,1,2,3,4,5,6,7,8,9,10......43,44 

 

Table 4.5 summarizes calculation of first fourteen job ids depending on built-in 

variables and iterations.  
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Table 0.10 Calculating the job ids using built-in variables and iterations 

threadIdx.x blockIdx.x blockDim.x idx iteration(no) packSize id 

0 0 5 0 0 5 0 

1 0 5 1 0 5 1 

2 0 5 2 0 5 2 

3 0 5 3 0 5 3 

4 0 5 4 0 5 4 

0 0 5 0 1 5 5 

1 0 5 1 1 5 6 

2 0 5 2 1 5 7 

3 0 5 3 1 5 8 

4 0 5 4 1 5 9 

0 0 5 0 2 5 10 

1 0 5 1 2 5 11 

2 0 5 2 2 5 12 

3 0 5 3 2 5 13 

4 0 5 4 2 5 14 

       Because up to and including the kth row there are 
𝐤∗(k+1)

2
 jobs in Table 4.4, it can be said 

that 
𝐤∗(k+1)

2
 counts the number of jobs. Through this approach Rocki and Suda achieved 

the formula 4.2. 

 

 𝐤 ∗ (k + 1)

2
= id 

 (4.2)    

 

By finding the roots of that quadratic equation and modifying it, the formula of “i” 

indices were obtained as in 4.3 where “i” values are rounded down in order to generate 

integer numbers. 

 

 
𝑖 =

3 + √8 ∗ 𝑖𝑑 + 1

2
 

 (4.3) 

 

Utilizing “i” and “id” values, the formula of “j” was obtained like in 4.4 where “j” 

values are rounded down in order to generate integer numbers. 

 

 
𝑗 = 𝑖𝑑 −

(𝑖 − 2) ∗ (𝑖 − 1)

2
+ 1 

 (4.4) 

 

For example, when id is equal to “25”, 

𝑖 =
3+√8∗25+1

2
= 8,5 ≅ 8   and𝑗 = 25 −

6∗7

2
+ 1 = 5. 
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When id is equal to “11”, 

𝑖 =
3+√8∗11+1

2
= 6,2 ≅ 6 and 𝑗 = 11 −

4∗5

2
+ 1 = 2. (Check Table 4.4) 

 

After calculating all the values of (i, j) pairs like in Table4.4, the 2-opt exchange effects 

of related edges will be calculated in parallel. In the algorithm, for each (i, j) pair the 

cost of the deleted edges will be subtracted from cost of the added edges in order to 

discover how much 2-opt exchange decreases the current tour cost. The result will be 

assigned to a variable called as “change”. Each thread will store different “change” 

values in its own registers. From among these values, after the positive values are 

eliminated as they signify increase in the tour cost, the minimum value will be chosen 

as it gives the maximum decrease in the tour cost. Then 2-opt exchange will be applied 

to relevant edges and the current tour will be updated. The 2-opt exchange operations 

will continue until there is no further improvement in the tour cost. 

 

While solving a large scale TSP using GPU, it is not logical to store the calculated 

distances between cities in the off-chip global memory since the access of threads in 

kernel to the global memory is very slow. As outlined in the “Architecture” on-chip 

shared memory is very fast but also very limited which is 48KB in our device, therefore 

it cannot be used too. The best way is to store only city coordinates and tour order in 

fast shared memory and calculating the necessary distances each time utilizing the high-

power computational power of GPU. The city coordinates will be defined as “structure” 

which includes integer x and y variables representing x and y coordinates of the cities. 

 

As the city coordinates and tour order will be stored in the shared memory, it should be 

calculated that until which problem size our algorithm will be feasible. The size of a 

city coordinate defined as integer is 4 bytes. Moreover tour order will be defined as 

“unsigned short” with the size of 2 bytes. The memory needed for each city will be 10 

bytes because a city has two coordinates and one tour order.  

 

Shared memory is 48 KB which equals to 48 × 1024 = 49152 bytes. Consequently, 

shared memory can store the coordinates and tour order of  
49152 𝑏𝑦𝑡𝑒𝑠

10 𝑏𝑦𝑡𝑒𝑠
= 4915 cities. 

Under these circumstances solvable maximum problem size is 4915. 
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Formula 4.5 represents the “distance” function which will calculate the Euclidean 

distances between cities where “coords[i].x” represents the x coordinate of the city “i” 

and “coords[i].y” represents the y coordinate of the city i. 

 

 √(coords[i].x − coords[j].x)2 + (coords[i].y − coords[j]. y)2  (4.5) 

 

Figure 4.5 presents the “distance” function on device. As this function will be called 

from kernel function, which executes on the device, and only a device function can be 

called from a device function (Table 3.2), the distance function should be preceded by 

“__device__” declaration. In order to call “distance” function from host, it should be 

preceded by “__host__”. 

 

Figure 0.16 Device function to calculate the distances between cities 

 

In Appendix C the draft view of the algorithm can be examined. Code starts at host 

defining necessary variables such as for number of nodes/cities, number of possible 

exchanges/swaps in the tour. Variable “iter” (number of iterations) is defined to assign 

more than one job to a thread, in other words to decide the amount of iteration level 

parallelism. The way of distributing jobs among threads and iterations can be observed 

in Table 4.6. In this table, the numbers in the cells show the ids of possible edge 

exchange effects (job ids). 
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Table 0.11 Thread-level and iteration-level parallelism 

 
 

After defining host variables, the device variables are defined for transferring to kernel 

and device memory is allocated for them. Firstly city coordinates are transferred from 

host to device. Because city coordinates will be fixed throughout the algorithm, it is 

enough to do this transfer operation just once. The initial tour order is specified in 

ascending order (Table 4.1). Thereby an initial solution is determined. The 

configuration parameters (block and grid dimension) and number of iterations are set. It 

is important to reiterate that multiplication of iterations, block and grid dimension 

should be arranged as equal to the number of possible edge exchanges. As mentioned 

before, 2-opt exchange is applied until there is no further decrease in the tour cost. Thus 

the kernel function which searches for the best improvement via 2-opt method will be 

invoked as long as the best improvement in the tour cost is less than zero. Each time the 

updated tour order should be transferred from host to device and then the kernel should 

be invoked to begin a new 2-opt search on the new tour.  

 

In kernel function, through built-in CUDA variables the indexes of threads in SM are 

assigned to a register variable called “idx”. “packSize” calculates the number of threads 

in SM. Via for loop jumping as “packSize” distance iteration times, new jobs are 

assigned to threads until all jobs are completed (check Table 4.6). This process provides 

iteration level parallelism. Ids of all jobs, in other words all possible exchanges, are 

assigned to threads in this way. According to these ids, the indexes of each possible city 
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pairs are calculated (Formula 4.3 and 4.4). Utilizing the indexes of city pairs the 

relevant edge exchange effects are calculated in parallel. The exchange which decreases 

the tour cost most is detected via CUDA-specific “atomicMin” function and the id of it 

is stored. Then this id is copied to host where the necessary edge exchange is performed 

in the current tour. Acquired new tour is copied to kernel and next 2-opt search is 

performed on this new tour. 

 

General draft of CUDA Code is given in Appendix C.  

4.2 Experimental Results 

In order to utilize the GPU optimally, different kinds of kernel configuration parameters 

will be tested. Considering resource restrictions of our GPU device and occupancy of 

streaming multiprocessor in the device, the results will be commented. As discussed 

previously, occupancy is calculated by dividing the number of active warps in an SM by 

the number of warps supported on an SM of the GPU. Busy warps in SM are called as 

active. Occupancy helps to exploit GPU memory efficiently by increasing thread level 

parallelism. Through a high occupancy many resources of GPU device can be kept busy 

and more jobs can be done in parallel. 

 

Our device, Quadro K600, has 1 streaming multiprocessor which is called SMX and the 

compute capability of Quadro K600 is 3.0 (check Table 3.4). Therefore SMX have 

maximum 2048resident threads and 16resident blocks. As each warp consists of 32 

threads, an SMX have maximum 
2048

32
 = 64 resident warps. In order to utilize all the 

resident warps in an SMX, blocks and grid should be arranged like in Table 3.5.  

However other resource restrictions such as maximum number of registers and shared 

memory limit per SMX may prevent to utilize all the warps. These factors should be 

checked in order to understand whether they decreased the number of active warps or 

not. Total number of registers per SMX is 65536 and shared memory per SMX is 

48𝐾𝐵 ∗ 1024 = 49152 bytes in our device. Afterdiscovering the number of registers 

and amount of shared memory that each block uses, the number of active blocks and 

active warps can be calculated. These factors do not decrease the number of active 
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blocks or warps if there are enough registers and shared memory for each block in the 

optimal warp system, in which all the warps are used (check Table 3.5). Otherwise, 

occupancy may decrease. Let’s assume that there are 512 threads in a block and 4 

blocks in the grid which means 64 possible active warps are available. But, if the 

number of registers or amount of shared memory in the SMX is enough for only 3 

blocks, it means that there are only 3 active blocks and 
512𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

32𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑝
× 3𝑏𝑙𝑜𝑐𝑘𝑠 =

48 active warps. A programmer tool called CUDA Occupancy Calculator automatically 

performs these calculations when user enters the necessary information about GPU 

device and some resource usage. Considering additional factors such as “register 

allocation unit size” or “warp allocation granularity”, its calculations are more precise.  

 

For different sized TSPs, the performance changes with different resource allocations 

can be examined in the following experiments. As reported in Table 4.6, in our 

algorithm some part of the possible swaps should be distributed among launched 

threads via block dimension and grid dimension. Then remaining possible swaps should 

be assigned to the same threads again via “iterations (no)”. In other words, “number of 

iterations” will help to assign more than one job to a thread. 

 

 In these experiments the block dimensions will be arranged as multiples of warp size 

which is 32. The configurations with the same block dimensions will be grouped and 

there will be 4 groups in our experiments which are 1024, 512, 256 and 128. For each 

group different [grid dimension, iterations] combinations will be executed. Among each 

group a launch with the best performance will be selected. In the table italic and bold 

entries represent them. Then, among all launches the best one or ones will be selected 

and the entries in bold indicate them. 

 

In order to select best performance, the kernel performances will be compared because 

number of 2-opt iterations will change each time. This change arises from the behavior 

of CUDA-specific “atomicMin” function. When different edge exchanges produce the 

same amount of decrease in the tour cost, this function may choose any of them at each 

program run. For this reason minimized tour cost and 2-opt iteration results are not 

identical, but quite close to each other. Nevertheless, in some situations comparing 

“cpu+gpu” times will not be fair enough. 
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It is important to reiterate that “grid dimension” and “block dimension” together will 

help us to observe the effect of thread level parallelism while “number of iterations” 

will help to observe the effect of iteration level parallelism. 

4.2.1 Experiment 1-500 cities  

We assume that the best kernel launches will be achieved when all warps in SMX are 

utilized (i.e when occupancy is 100%). Predicted best kernel launches and observed best 

kernel launches are compared in Table 4.7. More detailed performance results for 

different sized TSP problems with various configuration parameter settings can be 

found in Appendix A. 

 

Table 0.12 Predicted best kernel launches vs. observed best kernel launches for TSP 

with 500 cities 

 

Predicted best kernel 
launches 

 
Observed best launches 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

kernel 
time 
(ms) 

Minimized 
cost 

# of 
2-opt 

iterations 

CPU+GPU 
time (ms) 

1024 2 61 1024 2 61 0.203 16292 529 325 

512 4 61 512 4 61 0.203 16292 529 326 

256 8 61 256 8 61 0.209 16196 538 340 

128 16 61 128 9 109 0.307 16304 529 346 

 

In Table 4.7 it can be seen that in the first three groups best performances are obtained 

when all warps are active. It means that shared memory and registers are enough for all 

launched blocks. However, in the last group out of 16 blocks, only 9 blocks are used 

when the best performance is obtained. 

 

Restriction of Resources  

In our algorithm, each thread uses 20 registers and each block occupies 5012 bytes 

shared memory for 500 nodes/cities. For each group calculation of the resource usage in 

the SMX is given in Table 4.8. In the table the number of active blocks that registers 
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and shared memory allows is determined. After analyzing restrictions, occupancy is 

calculated.  

 

Table 0.13 Restrictions of shared memory and registers 

When All 
Warps Are 
Used in SM 

Restriction of Registers Restriction of Shared 
Memory 

After 
Restrictions 

Block 
Dim 

Grid 
Dim 

# of  
Registers 

Used in SM 

max.  # of 
active blocks  

registers allow 

Shared 
memory 
used in 

SM 
 

max. # of 
active blocks 

shared 
memory 
allows 

Grid 
Dim 

 
Occupancy 

1024 2 
1024 ∗ 20
= 20480 

65536

20480
= 3 > 2 

5012 bytes 
 

49152

5012
= 9 > 2 

2 
 

100% 

512 4 
512 ∗ 20
= 10240 

65536

10240
= 6 > 4 49152

5012
= 9 > 4 4 100% 

256 8 
256 ∗ 20
= 5120 

65536

5120
= 12 > 8 49152

5012
= 9 > 8 8 100% 

128 16 
128 ∗ 20
= 2560 

65536

2560
= 25 > 16 

𝟒𝟗𝟏𝟓𝟐

𝟓𝟎𝟏𝟐
= 𝟗

< 16 
9 56% 

 

1st Group-Block Dimension: 1024 

To utilize all the warps in the multiprocessor 2 blocks should be launched. 

 

1st check: Restriction of Registers 

 In the first group, because each block has 1024 threads, a block exploits 1024 ∗ 20 =

20480 registers. We know that maximum number of registers per SMX is 65536. Thus 

each multiprocessor can have maximum 
65536

20480
= 3  blocks. Since there are enough 

registers for 3 blocks, which is greater than 2, we conclude that register capacity of the 

SMX does not restrict the usage of all active warps. 

 

2nd check: Restriction of Shared Memory 

For 500 nodes, shared memory usage per block is 5012 bytes in our program. We know 

that maximum shared memory size per streaming multiprocessor is 49152 bytes. So, 

shared memory allows
49152

5012
= 9active blocks which is greater than 2.Shared memory 

capacity of the SMX does not restrict the usage of all active warps. 
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To sum up, in the first group all 64 warps can be utilized by launching 2 blocks and 

1024 threads in a block. As anticipated the best performance is obtained when all warps 

are active, in other words when occupancy is %100. 

 

In the second and third group consecutively 4 and 8 blocks are required in order to 

utilize all the active warps. Their behaviors are similar to first one. Shared memory and 

registers do not give rise to any restrictions and all warps can be utilized which provides 

100% occupancy and best performances.  

 

Rather than the first three groups, in the last group shared memory capacity prevents the 

usage of all warps. 

 

4th Group-Block Dimension: 128 

To utilize all the warps in the multiprocessor 16 blocks should be launched. 

 

Restriction of Shared Memory 

Shared memory usage varies with the change of the problem size. Thus occupied shared 

memory doesn’t change for this configuration. Although shared memory still 

allows
49152

5012
= 9 active blocks, to exploit all warps 16 active blocks are required this 

time. It means that in the SMX there is enough memory for only 9 blocks which is 

lower than 16. In this group 
128

32
∗ 9 = 36 warps out of 64 can be utilized by launching 9 

blocks and 128 threads in each block. Unlike %100 occupancy in other groups, in this 

group occupancy is 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑟𝑝𝑠 𝑖𝑛 𝑆𝑀𝑋

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑟𝑝𝑠 𝑖𝑛 𝑆𝑀𝑋
= 

36

64
=56% which creates worse 

performances than other groups. Nevertheless, the best performance within fourth group 

is achieved when all warps that shared memory and register allows are used. 

 

Consequently, for the problem with 500 cities best performances are obtained when 

occupancy is 100%. It seems that higher occupancy gives better results in our algorithm. 

 

As discussed previously, CUDA Occupancy Calculator performs above calculations 

when necessary information about GPU device and resource usage of algorithm is 

provided. It asks for the compute capability and shared memory size of the device. 
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Moreover, number of threads in a block of the launched kernel, number of the registers 

used per thread and the shared memory occupied by per block should be entered as 

inputs. Figure 4.6 displays the Occupancy Calculator inputs that should be entered by 

user for the first group. 

 

1.) Select Compute Capability (click):            3,0 

1.b) Select Shared Memory Size Config (bytes)       49152 

    

2.) Enter your resource usage:   

Threads Per Block 1024 

Registers Per Thread 20 

Shared Memory Per Block (bytes) 5012 

 

Figure 0.17 Inputs of occupancy calculator for problem with 500 nodes 

 

After the inputs in Figure 4.6are entered, the Occupancy Calculator shows the results 

consisting of the number of active threads, warps and blocks per multiprocessor and 

also occupancy of the multiprocessor as in Figure 4.7. 

 

3.) GPU Occupancy Data is displayed here and in the graphs: 

Active Threads per Multiprocessor 2048 

Active Warps per Multiprocessor 64 

Active Thread Blocks per Multiprocessor 2 

Occupancy of each Multiprocessor 100% 

Figure 0.18 Output of occupancy calculator for problem with 500 nodes 

 

From Figure 4.7, it can be seen that our calculations are in line with the results of 

Occupancy Calculator. Occupancy Calculator also presents certain plots in which one 

can identifies impact of varying block size (Figure 4.8), varying register count per 

thread and varying shared memory usage per block (Figure 4.9).  

 

The best block size options can be identified from the Figure 4.8. Clearly block 

dimensions 256, 512 and 1024 produce best performances which supports our results in 

Table 4.7 

 



45 

 

 

Figure 0.19 The effect of block size on occupancy 

 

 

Figure 0.20 The effect of shared memory usage on occupancy 
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4.2.2 Experiment 2-1000 Cities  

Table 0.14 Predicted best kernel launches vs. observed best kernel launches for TSP 

with 1000 cities 

 

Predicted best kernel 
launches 

 
Observed best launches 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Kernel 
time 
(ms) 

Minimized 
cost 

# of 
2-opt 

iterations 

CPU+GPU 
time (ms) 

1024 2 242 1024 2 242 0.7 35985 1094 1096 

512 4 242 512 4 242 0.7 36197 1090 1067 

256 8 242 256 4 484 1 36193 1091 1742 

128 16 242 128 4 967 2 36544 1089 3036 

 

As illustrated by Table 4.9, from among all groups algorithm performs best when  

- Block dimension is 1024 and grid dimension is 2. 

- Block dimension is 512 and grid dimension is 4. 

Apparently the best performance in third group is worse than the best performances in 

the first two groups. In the last group, the best performance is even worse than the best 

performance in the third group.   

 

Let’s discover the occupancies for the four groups and decide the best block size for this 

problem via Occupancy Calculator. It is important to reiterate that occupied shared 

memory changes with the increasing size of the problem. For 1000 nodes necessary 

shared memory size is 10012 bytes. Remaining settings will stay as before. 

 

Figure 4.10 shows the best block sizes for this problem as 1024 and 512 which is 

consistent with our results obtained in Table 4.9. It comes from activating all the warps 

in the SMX. As all warps can be active when block size is 1024 or 512, the best 

performances are obtained from among these groups. It appears that occupancy 

calculator verifies our results. 
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Figure 0.21 The impact of block size on occupancy for the problem with 1000 nodes 

 

Table 4.10 summarizes the resource usage and GPU occupancy data for all groups. As 

listed in the table 32 warps out of 64 are active when block dimension is 256 and only 

16 warps can be active when block dimension is set to 128 which gives rise to the 

decrease in the occupancy. Worse performances in last two groups (see Table 4.9) are 

the consequence of this lower occupancy.  

 

Table 0.15 Occupancy information for the problem with 1000 nodes 

       

 
RESOURCE USAGE: 

     

 
Threads Per Block 1024 512 256 128 

 

 
Registers Per Thread 20 20 20 20 

 

 
Shared Memory Per Block (bytes) 10012 10012 10012 10012 

 

 
GPU OCCUPANCY DATA: 

     

 
Active Threads per Multiprocessor 2048 2048 1024 512 

 

 
Active Warps per Multiprocessor 64 64 32 16 

 

 
Active Thread Blocks per Multiprocessor 2 4 4 4 

 

 
Occupancy of each Multiprocessor 100% 100% 50% 25% 

 

 

 
 

     Inspection of Table 4.10 indicates that in the third group only 4 blocks out of 8 are 

active and in the fourth group only 4 blocks out of 16 are active because shared memory 

restricts the block size that can be used per multiprocessor with 
49152

10012
= 4. Thus, the 
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algorithm displays best performances within these two groups when kernel is launched 

with 4 blocks (check Table 4.9).  

 

4.2.3 Experiment 3-1500 Cities  

As seen in Figure 4.11 and Table 4.11, occupancy calculator shows that the best block 

size is 1024 for the problem with 1500 nodes as 100% occupancy can be managed. 

According to the results of occupancy calculator, the performances are expected to be as 

follows: 

BKT of (Group 1) < BKT of (Group 2) < BKT of (Group 3) < BKT of (Group 4) 

(BKT: Best kernel time) 

which means 

P of (Group 1) > P of (Group 2) > P of (Group 3) > P of (Group 4) 

(P: performance, >: better) 

 

Figure 0.22 The effect of block size on occupancy in the problem with 1500 cities 
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Table 0.16 Occupancy information of the problem with 1500 cities 

RESOURCE USAGE:         

Threads Per Block 1024 512 256 128 

Registers Per Thread 20 20 20 20 

Shared Memory Per Block (bytes) 15012 15012 15012 15012 

GPU OCCUPANCY DATA:         

Active Threads per Multiprocessor 2048 1536 768 384 

Active Warps per Multiprocessor 64 48 24 12 

Active Thread Blocks per Multiprocessor 2 3 3 3 

Occupancy of each Multiprocessor 100% 75% 38% 19% 

 

Thus, the best performance should be observed in Group 1. In Group 1 two blocks and 

in other groups three blocks can be active. So, the best performances within each group 

will be obtained when the launch is arranged considering active thread blocks per 

multiprocessor found by occupancy calculator (Table 4.11). Similar to Experiment 2, in 

this experiment shared memory prevents utilizing all warps in the multiprocessor. 

Shared memory is enough only for 3 blocks.  

 

Table 4.12 displays observed performances of different kernel launches for the problem 

size 1500. As anticipated the performance declines with the decrease in the occupancy 

as we can see from the table. 

 

Occupancy (>:greater) 

Group 1 (100%) > Group 2 (75%) > Group 3 (38%) >Group 4 (19%) 

Performance (in terms of kernel time for 1 step 2-opt search) (>:better) 

Group 1 (1.739 ms) > Group 2 (2.125 ms) > Group 3 (3.851 ms) >Group 4 (7.515 ms) 

 

First 3 experiments indicates that the best way for the peak performances is after 

utilizing all resident warps as shared memory and register limits of the device allow, to 

perform remaining jobs through iteration level parallelism. Further experiments will be 

demonstrated in order to show the robustness of this approach. 
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Table 0.17 Predicted best kernel launches vs. observed best kernel launches for TSP 

with 1500 cities 

 

Predicted best kernel 
launches 

 
Observed best launches 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Kernel 
time 
(ms) 

Minimized 
cost 

# of 
2-opt 

iterations 

CPU+GPU 
time (ms) 

1024 2 549 1024 2 549 1 47585 1645 3262 

512 4 549 512 3 732 2 47293 1657 3935 

256 8 549 256 3 1464 3 47297 1657 6693 

128 16 549 128 3 2928 7 47604 1643 12655 

4.2.4 Experiment 4-2000 Cities 

As illustrated by Table 4.13, the occupancy declines with the decrease in the block 

dimension. For each group 2 blocks can be active which causes the reduction in the 

number of active warps of the groups excluding first group. As before the restriction to 

active warps stems from the shared memory limit. Since increasing the problem size 

accompanies more shared memory usage per block, number of active blocks in the 

multiprocessor decreases.  

 

 

Figure 0.23 The effect of block size on occupancy in the problem with 2000 cities 
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Table 0.18 Occupancy information of the problem with 2000 cities 

RESOURCE USAGE:         

Threads Per Block 1024 512 256 128 

Registers Per Thread 20 20 20 20 

Shared Memory Per Block (bytes) 20012 20012 20012 20012 

GPU OCCUPANCY DATA:         

Active Threads per Multiprocessor 2048 1024 512 256 

Active Warps per Multiprocessor 64 32 16 8 

Active Thread Blocks per Multiprocessor 2 2 2 2 

Occupancy of each Multiprocessor 100% 50% 25% 13% 

 

Table 0.19 Predicted best kernel launches vs. observed best kernel launches for TSP 

with 2000 cities 

 

Predicted best kernel 
launches 

 
Observed best launches 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

Block 
Dim. 

Grid 
Dim. 

# of 
iterations 

kernel 
time 
(ms) 

Minimized 
cost 

# of 
2-opt 

iterations 

CPU+GPU 
time (ms) 

1024 2 977 1024 2 977 3 60926 2166 7099 

512 4 977 512 2 1953 5 61120 2164 11654 

256 8 977 256 2 3905 10 61336 2128 21832 

128 16 977 128 2 7809 19 61359 2129 42611 

4.3 Sequential vs. Parallel 2-opt Performance 

Table 4.15 compares the performances of sequential and parallel 2-opt algorithms for 

different sized TSP problems. As can be observed that parallel 2-opt algorithm is much 

faster than sequential one. 
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Table 0.20 Comparing sequential and parallel 2-Opt algorithm performances 

 Sequential 2-opt algorithm Parallel 2-opt algorithm 

No of 
Nodes 

Initial 
tour cost 

Total 
time 
(ms) 

No of  
2-opt 

iterations 

Minimized 
cost 

Total time 
(CPU+GPU) 

(ms) 

No of 
2-opt 

iterations 

Minimized 
cost 

500 380825 253 541 16117 181 533 16278 

1000 807793 5512 1081 34448 1096 1094 35985 

2000 1705333 79233 2219 61279 7099 2166 60926 

3000 3020898 315715 3292 91778 50754 3268 91132 

4000 4535148 1287758 4470 121050 93671 4450 121396 

4.4 Algorithm Modification to Solve Large Sized Travelling Salesman Problems 

Maximum number of cities that can be stored in the shared memory was 4915 in the 

previous algorithm and the algorithm was not performing accurately when the problem 

size exceeded 4915. In order to solve bigger problems, previous algorithm will be 

modified. Looking through earliest formed CUDA code in Appendix C can provide 

better understanding about modifications.  

 

4.4.1 First Step: Decreasing Shared Memory Usage for Each City 

To save more space in the shared memory, the city coordinates will be sent to kernel in 

the tour’s order instead of sending the tour order and city coordinates separately. As the 

tour order will not be stored in the shared memory anymore, solvable problem size will 

increase to
𝑠ℎ𝑎𝑟𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 

𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒  _𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑎 𝑐𝑖𝑡𝑦 
=

49152 𝑏𝑦𝑡𝑒𝑠

8 𝑏𝑦𝑡𝑒𝑠
= 6144. 

 

Modifications in the Host Code 

 

A new array called “orderedCoords” which will store the city coordinates in the tour 

order will be created and before each kernel launch it will be updated with the new 

order of city coordinates as in the Figure 4.12. 
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Figure 0.24 Storing the coordinates in the tour order 

 

Modifications in the Kernel Code 

 

As indicated in Figure 4.13, only the array of “orderedCoords” will be stored in the 

shared memory, instead of “Coords” and “Tour”. Thus, the “change” formula will also 

be modified. 

 

Note: Commented rows in the Figure show the code before modification. 

 

 

Figure 0.25 The modifications in the kernel code for big sized problems 
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4.4.2 Second Step: Dividing Problem into Sub Problems 

In order to increase solvable problem size further, city coordinates will be divided into 

partitions as can fit into shared memory and each partition will be sent to kernel 

sequentially.  

 

In Table 4.16, the method for dividing coordinates is illustrated for a TSP with 9000 

cities. To simplify calculations we will suppose that shared memory can store maximum 

6000 cities. The size of partitions should be 6000 and each partition should include 

different combinations of city coordinates. In order to provide these combinations there 

should be two arrays of city coordinates (coordinates A and B) consisting of 3000 nodes 

in one array. Then for each partition the cities in these different arrays will be combined 

and 2-opt search will be applied to these combinations. The number of partitions will 

change with the number of cities in the problem. For 9000 nodes, there are three 

possible arrays of coordinates which are (6000,9000], (3000,6000] and (0,3000]. 
3×4

2
=

6different combinations of these arrays accompany 6 partitions. Apparently, parallelism 

will be managed only within partitions, but not among partitions. In other words, 

partitions will be sent to kernel sequentially. For example, the second partition will be 

sent to kernel after the computations are performed on partition one.  

 

 

Table 0.21 Division scheme of coordinates for the problem with 9000 cities 

Partitions Coordinates A Coordinates B  

1 (6000,9000] (0,3000] 

2 (3000,6000] (0,3000] 

3 (0,3000] (0,3000] 

4 (6000,9000] (3000,6000] 

5 (3000,6000] (3000,6000] 

6 (6000,9000] (6000,9000] 

 

As can be realized, the range of array coordinates A corresponds to “i” values in the 

kernel and the range of array coordinates B corresponds to “j” values. Thus in Partition 

1, possible exchange effects between the cities in the range of “i= [6000, 9000]” and “j= 

[0, 3000]” are computed. As soon as kernel finishes its search in these 2 ranges 

combination, the city coordinates belongs to Partition 2 are sent to kernel. Then the 

possible exchange effects between the cities in the range of “i= [3000, 6000]” and “j= 
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[0, 3000]” are computed. After all the six partitions has been sent to the kernel, the 

necessary 2-opt exchange which decreases the tour cost most is performed and the same 

process is applied to the new tour. 

 

To clarify the discussed method, it will be applied to a small sized example, which we 

analyzed before (see Example 4.1), assuming that the shared memory can have 

maximum 6 cities. Division of the city coordinates into partitions is illustrated in Table 

4.17. 

Table 0.22 Division scheme of coordinates for the problem in Example 4.1 

(9 cities-45 possible exchanges) 

Partitions Coordinates A Coordinates B 

1 (6,9] (0,3] 

2 (3,6] (0,3] 

3 (0,3] (0,3] 

4 (6,9] (3,6] 

5 (3,6] (3,6] 

6 (6,9] (6,9] 

 

Exchanges performed sequentially are represented by different colors in Table 4.18. 

Jobs/exchanges belongs to the same partition are performed in parallel. It means that to 

complete one 2-opt search through all cities, 6 different city combinations (partitions) 

should be transferred to kernel and kernel should be called 6 times. There is a strong 

possibility that these sequential processes will extend the execution time of the 

algorithm. 
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Table 0.23 Calculated edge exchange effects depending on the coordinate ranges sent to 

kernel (see Example 3.1) 

     i 
j      

1 2 3 4 5 6 7 8 9 

1 
 
 

        

2 
Part. 3 
Id = 0 
(2; 1) 

        

3 
Part. 3 
Id=1 
(3; 1) 

Part. 3 
Id=2 
(3; 2) 

       

4 
Part. 2 
Id=3 
(4; 1) 

Part. 2 
Id=4 
(4; 2) 

Part. 2 
Id=5 
(4; 3) 

      

5 
Part. 2 
Id=6 
(5; 1) 

Part. 2 
Id=7 
(5; 2) 

Part. 2 
Id=8 
(5; 3) 

Part. 5 
Id=9 
(5; 4) 

     

6 
Part. 2 
Id=10 
(6; 1) 

Part. 2 
Id=11 
(6; 2) 

Part. 2 
Id=12 
(6; 3) 

Part. 5 
Id=13 
(6; 4) 

Part. 5 
Id=14 
(6; 5) 

    

7 

Part. 1 
Id=15 
(7; 1) 

Part. 1 
Id=16 
(7; 2) 

Part. 1 
Id=17 
(7; 3) 

Part. 4 
Id=18 
(7; 4) 

Part. 4 
Id=19 
(7; 5) 

Part. 4 
Id=20 
(7; 6) 

   

8 
Part. 1 
Id=21 
(8; 1) 

Part. 1 
Id=22 
(8; 2) 

Part. 1 
Id=23 
(8; 3) 

Part. 4 
Id=24 
(8; 4) 

Part. 4 
Id=25 
(8; 5) 

Part. 4 
Id=26 
(8; 6) 

Part. 6 
Id=27 
(8; 7) 

  

9 
Part. 1 
Id=28 
(9; 1) 

Part. 1 
Id=29 
(9; 2) 

Part. 1 
Id=30 
(9; 3) 

Part. 4 
Id=31 
(9; 4) 

Part. 4 
Id=32 
(9; 5) 

Part. 4 
Id=33 
(9; 6) 

Part. 6 
Id=34 
(9; 7) 

Part. 6 
Id=35 
(9; 8) 

 

10 
Part. 1 
Id=36 
(10; 1) 

Part. 1 
Id=37 
(10; 2) 

Part. 1 
Id=38 
(10; 3) 

Part. 4 
Id=39 
(10; 4) 

Part. 4 
Id=40 
(10; 5) 

Part. 4 
Id=41 
(10; 6) 

Part. 6 
Id=42 
(10; 7) 

Part. 6 
Id=43 
(10; 8) 

Part. 6 
Id=44 
(10; 9) 

 

Number of sequential processes will rise with the increasing size of the problem. 

Sequential processes can be calculated via following formula: 

 

 
𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 =

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑜𝑑𝑒𝑠/𝑐𝑖𝑡𝑖𝑒𝑠

(𝑠ℎ𝑎𝑟𝑒𝑑𝑚𝑒𝑚𝑜𝑟𝑦𝑐𝑖𝑡𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2)⁄
 

 (4.6)    

 

 
𝑛𝑜𝑜𝑓𝑝𝑎𝑟𝑡𝑠 =

𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 ∗ (𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 + 1)

2
 

 (4.7)    

 

Numbers of sequential processes of some different large sized problems are illustrated 

in Table 4.19. In despite of many sequential processes in a problem with 60000 cities, it 

is absolutely better than operating all 
60000×60001

2
= 1800030000  jobs sequentially. 
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Table 0.24 Calculation of sequential processes for several sized problems 

 9000 cities 15000 cities 30000 cities 60000 cities 

Number of 
different 
ranges/arrays 

 
9000

(6000 2)⁄
= 3 

 
15000

(6000 2)⁄
= 5 

 
30000

(6000 2)⁄
= 10 

 
60000

(6000 2)⁄
= 20 

Number of 
partitions 
(different 
combinations 
of city ranges) 

 
3 × 4

2
= 6 

 
5 × 6

2
= 15 

 
10 × 11

2
= 55 

 
20 × 21

2
= 210 

 

Modifications in the Device Code 

 

      The “distance” function should be modified like in Figure 4.14. 

 

Figure 0.26 Modification of the distance function for divided coordinates 

 

Modifications in the Host Code 

 

Two device arrays should be defined for coordinates A and coordinates B. Then the 

ordered coordinates should be copied to these arrays piece by piece. The code in Figure 

4.15 generates all the possible range combinations via a, a_end, b, b_end variables. For 

the problem with 9000 cities, in the first loop “a” and “a_end” consecutively represent 

the beginning and the ending of the city range A in Partition 1. Similarly “b” and 

“b_end” consecutively represent the beginning and the ending of the city range B in 

Partition 1 (see Table 4.19). After the city coordinates in Partition 1 has been transferred 

to the last defined arrays and kernel has performed its jobs on them, the coordinates in 

the Partition 2 are copied to these arrays and kernel is invoked again. Until 6 parts are 

transferred to kernel, this process is repeated. 
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Figure 0.27 Additional code in the host code to divide coordinates 

 

Note: “half_sm_capacity” represents the size of defined arrays for coordinates A and 

coordinates B. “half_sm_capacity” is equal to half of the shared memory capacity which 

is 3000. 

 

Modifications in the Kernel Code 

 

Figure 4.16illustrates several modifications in the kernel code. Shared memory should 

be allocated for two arrays which represent coordinates of A and coordinates of B. Then 

the elements of ordered coordinates of A and B should be transferred the arrays in the 

shared memory. 
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Figure 0.28 Modification in kernel code for divided coordinates 

 

Because “i” and “j” values are produced according to the number of cities, “i” should be 

restricted with the bounds of array “coordinates A” and “j” should be restricted with the 

bounds of array “coordinates B”. Thus, there is an additional “if” condition in order to 

control this. Moreover, while transferring the specific range of the data in the array of 

“orderedCoords” into the array of “orderedCoordsA” the indices of each element in the 

first array decreases as “a” unit. Therefore “a” is extracted from i and “b” is extracted 

from j in the formula of “change”.           

 

 Experimental Results for Big Sized Problems 

 

Table 4.20 summarizes the best performances for each group when the problem size is 

“6000” and “15000”. Substantial increase in the problem size created shared memory 

restriction in each group. Because shared memory allowed only 1 active block, first 

group which has more threads in its single block compared to others, performed best 

performance. Although none of the groups manage to utilize all warps in the SMX, the 

first group with the highest occupancy performed better. 
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Table 0.25 Predicted best kernel launches vs. observed best kernel launches for TSP 

with 6000 and 15000 cities 

 

CITIES:6000 EXCHANGES: 18003000 CITIES: 15000 EXCHANGES: 1112507500 

Predicted best 
kernel launches 

Observed best launches Predicted best 
kernel launches 

Observed best launches 

Bloc
k 

Dim 

Grid 
Dim 

iters 
Bloc

k 
Dim 

Gri
d 

Dim 
iters 

kerne
l time 
(ms) 

Bloc
k 

Dim 

Gri
d 

Dim 
iters 

Bloc
k 

Dim 

Gri
d 

Dim 
iters 

kerne
l time 
(ms) 

1024 2 8791 1024 1 
1758

2 61 1024 2 
5493

6 1024 1 
10987

1 1172 

512 4 8791 512 1 
3516

3 117 512 4 
5493

6 512 1 
21974

1 2216 

256 8 8791 256 1 
7032

5 230 256 8 
5493

6 256 1 
43948

3 4369 

 

 

4.5 2-Opt Algorithm with Initial Solution 

We thought that starting 2-opt algorithm with a good solution can decrease the number 

of 2-opt iterations and accordingly shorten the total time of the algorithm. Because of 

this reason, we applied nearest neighborhood search to obtain an initial solution with 

good quality. Table 4.21provides an overview of comparisons betweenalgorithm with a 

good initial solution and algorithm with a naive initial solution. Experimental results in 

the table are in line with our expectations. Qualified initial solution decreased the 

number of 2-opt iterations. Therefore it decreased the total time (CPU+GPU time) of 

the algorithm although nearest neighborhood search is sequentially applied in CPU. 
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Table 0.26 Algorithm performances with a naive initial solution vs. with a good initial 

solution 

 

Naive Initial Solution 
 

Nearest Neighborhood Initial Solution 
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500 380825 16278 533 181 278155 15707 417 173(ms) 

1000 807793 35985 1094 1096 643904 39763 867 970(ms) 

2000 1705333 60926 2166 7099 1486417 60521 1877 6276(ms) 

2500 2348116 78383 2772 23011 1894196 77113 2273 19449(ms) 

3000 3020898 91132 3268 50754 2622620 89700 2847 34611(ms) 

3500 3774387 105356 3883 62493 3479454 103951 3396 55915(ms) 

4000 4535148 121946 4462 93820 4224065 120219 3812 81460(ms) 

LARGE SIZE DATA 

6000 31433083 10480046 1554 95925 24711210 8559520 1212 74821(ms) 

9000 47099249 15206013 2362 493356 37822521 12344314 1876 392864(ms) 

4.6 3-Opt Algorithm 

3-opt algorithm is quite similar to 2-opt algorithm. The only difference is that 3 edges 

will be cut and reconnected this time. Figure 4.17 illustrates one 3-opt move. 

 

 

 

 Figure0.293-opt exchange 
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Rocki and Suda obtained the 3-opt formulas in similar way to previous one. Because 

there are 3 edge exchanges in 3-opt, there should be a new id of “k” in addition to “i” 

and “j”. Table 4.22 demonstrates the id combinations for some of possible 3-opt edge 

exchange combinations. In this Table, the values in each cell consecutively represent 

the ids of “i”, “j” and “k”. Considering that in this table there are 
𝑛∗(𝑛+1)∗(𝑛+2)

6
   

elements up to and including nth  row, Rocki and Suda proposed the Formula 4.8 for “i”. 

 

 

𝑛 {𝑖} = √3 ∗ 𝑖𝑑 + √9 ∗ 𝑖𝑑2 −
1

9

3

+ √3 ∗ 𝑖𝑑 − √9 ∗ 𝑖𝑑2 −
1

9

3

+ 1         (4.8) 

 

Table 0.27 Possible edge exchanges for 3-opt 

2,1,0          

3,1,0 3,2,0 3,2,1        

4,1,0 4,2,0 4,2,1 4,3,0 4,3,1 4,3,2     

5,1,0 5,2,0 5,2,1 5,3,0 5,3,1 5,3,2 5,4,0 5,4,1 5,4,2 5,4,3 

 

We achieved the formula of “j” based on “i” and job ids. (see Formula 4.9) 

   
 

𝑗 =
3 + √8 ∗ (𝑖𝑑 −

𝑖 ∗ (𝑖 − 1) ∗ (𝑖 − 2)
6 ) + 1

2
 

 (4.9)    

 

Based on “i”, “j” and job ids, we obtained the Formula 4.10 for “k”. 

 

 
𝑘 = 𝑖𝑑 −

𝑖 ∗ (𝑖 − 1) ∗ (𝑖 − 2)

6
−

𝑗 ∗ (𝑗 − 1)

2
 

  (4.10)    

 

Exception: The formulas above don’t work accurately when id is equal to “0”. We 

specified an “if” condition to solve this problem. 

Note that “i”, “j” and “k” values should be rounded down to acquire integer values. 

As an example these formulas are applied to a 3-opt exchange below: 

 

If id=2     𝑖 = √3 ∗ 2 + √9 ∗ 22 − 1/9
3

+ √3 ∗ 2 − √9 ∗ 22 − 1/9
3

+ 1= 3,49888 ≅ 3 
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 𝑗 =
3 + √8 ∗ (2 −

3 ∗ 2 ∗ 1
6

) + 1

2
= 2  𝑎𝑛𝑑  𝑘 = 2 −

3 ∗ 2 ∗ 1

6
−

2 ∗ 1

2
= 0 

Although these formulas give the accurate results up to some point, the formula of i 

starts to be problematic at id 454. Because “j” and “k” values depend on i, their 

formulas also don’t work. They cannot even produce any number because of inaccurate 

“i” values. We solved this issue fixing the formula of “i”. 

 

As seen in Table 4.22, 

There are  
𝐷∗(𝑛+1)∗(𝑛+2)

6
 elements up to and including nth row. 

Since 
1∗2∗3

6
= 1,    in the first row there should be one“2”   

Since 
2∗3∗4

6
−

1∗2∗3

6
= 3,   in the second row there should be three “3” 

Since  
 3∗4∗5

6
−

2∗3∗4

6
= 6, in the third row there should be   six “4” 

 

Since 
13∗14∗15

6
−

12∗13∗14

6
 = 91, in the 13th row there should be ninetyone“14”. However, 

the problematic id 454, which is in the 13th row, gives the result as 15 when unrevised 

formula of “i” is applied. This situation leads to inaccurate “j” and “k” values. Similarly 

formula doesn’t give the correct results for 559th, 679th, 815th, 968th and some other 

indexes. It causes more missing results in the further indexes as illustrated in Table 

4.23. This table includes some sample ids in which the formula produces inaccurate “i” 

values. The first two rows of this table show that the “i” values that should be produced 

in specific id gaps and the third row demonstrates the ids which gives inaccurate “i” 

values. For example, 6th column of the table explains that starting from id 3276 up to 

and including id 3653, “I” should be generated as “28”. However, 3652th and 3652th ids 

do not produce that value. 

 

Table 0.28 Some problematic ids stem from the unrevised formula 

id range [364,454] [455,559] [560,679] [680,815] [816,968] [3276,3653] [30856,32508] 

i 14 15 16 17 18 28 58 

problematic ids 454 559 679 815 968 3652,3653 
32505,32506 

32507,32508 

 

Thus, we modified the formula of “i” as follows: 
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 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 = √3 ∗ 𝑖𝑑 + √9 ∗ 𝑖𝑑2 − 1/9
3

+ 1 

Some of the generated “i”, “j” and “k” values through revised formula can be observed 

in the left Partition of Table 4.24. As realized some of the results are inaccurate, but at 

least “j” and “k” produce some values based on the “i” values obtained from the new 

formula. Thus, inaccurate results are controlled through a simple “if” statement. In the 

right Partition of the table, the corrected results are demonstrated. If “i” and “j” values 

are equal to each other, “i” value is incremented 1 unit and then using this updated “i” 

value “j” and “k” are calculated again.  

 

Table 0.29 Results after fixing formula of “i” 

Results of revised formula Results after control statement 

id i j k i j k 

1 2 2 0 3 1 0 

2 3 2 0 3 2 0 

3 3 2 1 3 2 1 

4 3 3 0 3 1 0 

5 4 2 0 4 2 0 

6 4 2 1 4 2 1 

7 4 3 0 4 3 0 

8 4 3 1 4 3 1 

9 4 3 2 4 3 2 

10 4 4 0 4 1 0 
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5 CONCLUSION AND FUTURE RESEARCH 

In this study we aimed to give some insights about parallelization strategies in CUDA 

and propose some methods to utilize GPU resources in a most advantageous way. 

Considering the parallelization approaches of Rocki and Suda (2012), best improvement 

2-opt and 3-opt local search algorithms were accelerated for solving Travelling 

Salesman Problem. Process of searching neighborhood which means calculating the 

effect of each possible edge exchange in the tour made in parallel. We performed 

detailed performance analysis on 2-opt search algorithm configuring kernel parameters 

in different ways. The best performances are obtained when all resident warps in SMX 

are utilized which provides 100% occupancy of device. However shared memory 

started to restrict the usage of all possible active warps in SMX with the growing size of 

the problem. In this situation the best strategy was utilizing all resident warps that 

shared memory allows. To sum up, we should keep the warps in device busy as far as 

possible which provides thread level parallelism. If the number of edge exchanges is 

greater than the total number of threads in launched warps, all exchange effect 

calculations should be distributed among the launched threads equally. It means that one 

thread will perform more than one exchange effect calculation concurrently and this 

accompanies iteration level parallelism. In implemented algorithm after exploiting 

thread level parallelism by increasing occupancy until possible highest level, iteration 

level parallelism should be applied. For large sized problems fast on-chip shared 

memory wasn’t enough to store all city coordinates. Thus, the coordinates are divided 

into partitions with the proposed technique of Rocki and Suda (2013). Moreover we 

compared the 2-opt algorithm with a nearest neighborhood initial solution and with a 

naive initial solution. We observed that qualified initial solution decreased the number 

of 2-opt iterations and correspondingly decreased the total time (CPU+GPU) of the 

algorithm although nearest neighborhood search is sequentially applied in CPU. Lastly 

we modified the 3-opt formula proposed by Rocki and Suda (2012). Although it was 

working for many index calculations, it was giving inaccurate results for some of them. 



66 

 

In addition to 2-opt and 3-opt search methods we also accelerated exchange of two 

nodes and relocate algorithms in similar way. In the future, by combining all algorithms 

in this study we are planning to implement Variable Neighborhood Search on 

Travelling Salesman Problem to get solutions with better quality. As can be observed, at 

some point the search method used cannot improve the tour cost further. In order to 

approach optimal solution more, we will switch into another search method which can 

improve the current solution. We will combine several methods and try to find the best 

combination method with regards to time and solution performance. Because GPU has 

peak performances, one may want to reach better solutions in a bit more time and 

variable neighborhood can help to get them. 
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APPENDICES 

Appendix A: 2-Opt Algorithm Results for Different Kinds of Resource Allocations 

 

TableError! No text of specified style in document.-1 2-opt performance for a TSP 

tour with 500 cities 

Block 
Dimension 

Grid 
Dimension 

Number of 
Iterations 

GPU 
Time (ms) 

Minimized 
Cost 

Number Of 2-Opt 
Iterations 

CPU + GPU 
Time (ms) 

1024 122 1 0.369 16298 530 428 

1024 61 2 0.295 16304 529 354 

1024 2 61 0.205 16278 533 181 

1024 1 122 0.333 16148 543 318 

512 244 1 0.348 16304 529 264 

512 122 2 0.281 16304 529 222 

512 4 61 0.212 16298 529 189 

512 2 122 0.334 16304 529 249 

512 1 244 0.635 16304 529 425 

256 488 1 0.366 16304 529 371 

256 244 2 0.280 16304 529 301 

256 122 4 0.246 16304 529 337 

256 8 61 0.209 16193 539 318 

256 4 122 0.335 16304 529 267 

256 1 488 1.246 16304 529 888 

128 975 1 0.624 16304 529 422 

128 488 2 0.458 16304 529 423 

128 244 4 0.386 16304 529 342 

128 122 8 0.353 16304 529 319 

128 16 61 0.342 16196 538 313 

128 8 122 0.337 16304 529 327 

128 1 975 2.469 16304 529 1426 
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Table Error! No text of specified style in document.-2  2-opt performance for a TSP 

tour with 1000 cities 

Block 
Dimension 

Grid 
Dimension 

Number of 
Iterations 

Kernel 
Time (ms) 

Minimized 
Cost 

Number Of 2-Opt 
Iterations 

CPU + GPU 
Time (ms) 

1024 484 1 1.556 36193 1091 1914 

1024 244 2 1.220 34547 1081 1539 

1024 122 4 1.024 34370 1084 1357 

1024 61 8 0.921 34546 1082 1201 

1024 2 242 0.776 35985 1094 1096 

1024 1 484 1.310 36188 1092 1667 

512 967 1 1.645 36534 1090 2078 

512 488 2 1.216 34547 1081 1592 

512 244 4 1.008 34499 1088 1381 

512 122 8 0.909 34546 1081 1206 

512 61 16 0.869 34691 1074 1234 

512 4 242 0.791 36197 1090 1067 

512 2 484 1.309 36193 1091 1682 

512 1 967 2.515 36539 1090 3021 

256 1934 1 2.969 36544 1089 3473 

256 967 2 2.129 36543 1091 2518 

256 488 4 1.743 34576 1083 2098 

256 244 8 1.547 34546 1082 1860 

256 122 16 1.453 34691 1074 1770 

256 61 32 1.422 34455 1075 1739 

256 8 242 1.311 36503 1080 1770 

256 4 484 1.309 36193 1091 1742 

256 1 1934 4.964 36544 1089 5569 

128 3868 1 6.625 36539 1090 7475 

128 1934 2 4.548 36548 1090 5227 

128 975 4 3.588 34395 1083 4082 

128 488 8 3.069 34546 1082 3534 

128 244 16 2.796 34691 1074 3259 

128 122 32 2.697 34455 1075 3099 

128 16 242 2.535 36404 1085 3004 

128 8 484 2.529 36000 1093 3017 

128 4 967 2.515 36544 1089 3036 

128 1 3868 9.866 36544 1089 10896 
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Table Error! No text of specified style in document.-3  2-opt performance for a TSP 

tour with 1500 cities 

Block 
Dimension 

Grid Dimension 
Number of 
Iterations 

GPU 
Time (ms) 

Minimized 
Cost 

Number Of  
2-Opt Iterations 

CPU + GPU 
Time (ms) 

1024 1098 1 3.963 47202 1639 6863 

1024 488 3 2.787 47587 1646 4596 

1024 244 5 2.326 47173 1646 4167 

1024 61 18 1.939 47542 1635 3483 

1024 2 549 1.739 47585 1645 3262 

1024 1 1098 2.944 47715 1643 5170 

512 2196 1 4.824 47297 1654 8411 

512 1098 2 3.510 47431 1646 6128 

512 488 5 2.776 47171 1647 4966 

512 244 9 2.475 47599 1630 4376 

512 61 36 2.254 47312 1635 4055 

512 4 549 3.005 47513 1636 5329 

512 3 732 2.125 47293 1657 3935 

512 2 1098 2.947 47715 1643 5224 

512 1 2196 5.697 47297 1654 9662 

256 4392 1 10.927 47297 1654 18436 

256 2196 2 7.090 47431 1646 12171 

256 1098 4 5.494 47173 1642 9269 

256 488 9 4.546 47599 1630 7827 

256 244 18 4.266 47624 1629 7270 

256 61 72 4.060 47249 1637 7007 

256 8 549 4.328 47615 1570 7067 

256 4 1098 5.695 47592 1642 9594 

256 3 1464 3.851 47297 1657 6693 

256 1 4392 11.244 47297 1654 18729 

128 8784 1 24.467 47297 1654 40994 

128 4392 2 15.982 47466 1644 26675 

128 2196 4 11.861 47173 1642 19753 

128 1098 8 9.663 47247 1634 16168 

128 488 18 8.568 47532 1633 14249 

128 244 36 8.053 47312 1635 13489 

128 61 144 7.885 47455 1650 13323 

128 16 549 8.479 47603 1580 13610 

128 8 1098 8.472 47511 1651 14244 
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128 3 2928 7.515 47604 1643 12655 

128 1 8784 23.458 47297 1654 38780 

 

 

Table Error! No text of specified style in document.-4  2-opt performance for a TSP 

tour with 2000 cities 

Block 
Dimension 

Grid 
Dimension 

Number of 
Iterations 

GPU 
Time (ms) 

Minimized 
Cost 

Number Of 2-Opt 
Iterations 

CPU + GPU 
Time (ms) 

1024 1953 1 8.025 61999 2136 17532 

1024 977 2 5.552 61240 2171 12537 

1024 488 5 4.428 61391 2159 10059 

1024 244 9 3.839 60869 2179 8830 

1024 61 33 3.309 61266 2140 7466 

1024 2 977 3.093 60926 2166 7099 

1024 1 1953 5.224 61359 2129 11477 

512 3905 1 14.766 60768 2214 33141 

512 1953 2 10.097 61913 2134 21924 

512 977 4 7.655 61156 2161 17125 

512 488 9 6.470 60967 2194 14658 

512 244 17 5.885 60918 2182 13285 

512 61 65 5.490 61183 2171 12274 

512 4 977 5.265 60698 2194 11811 

512 2 1953 5.216 61120 2164 11654 

512 1 3905 10.109 61336 2128 21763 

256 7809 1 30.611 61956 2137 65936 

256 3905 2 20.495 61913 2134 44092 

256 1953 4 15.229 61253 2136 33095 

256 977 8 12.685 61226 2135 27616 

256 488 17 11.497 61320 2158 25176 

256 244 33 10.810 61337 2137 23334 

256 122 65 10.467 61510 2149 22777 

256 8 977 10.144 60758 2205 22611 

256 4 1953 10.091 61276 2187 22418 

256 2 3905 10.090 61336 2128 21832 

256 1 7809 20.026 60941 2169 43408 

128 15618 1 76.194 61956 2137 163289 

128 7809 2 48.314 61913 2134 103469 

128 3905 4 34.036 61253 2136 73465 

128 1953 8 27.173 61021 2156 58938 

128 977 16 23.616 60942 2196 52301 



71 

 

128 488 33 21.830 61339 2134 46835 

128 244 65 20.933 61510 2149 45153 

128 122 129 20.351 61106 2176 44535 

128 16 977 21.984 61144 2170 42611 

128 2 7809 19.897 61359 2129 42611 

128 1 15618 39.655 61359 2129 84226 

 

Appendix B: Results for2-Opt Large Sized Data and 3-opt Algorithms 

 

Table Error! No text of specified style in document.-5Best 2-Opt Results for Large-

Sized Data 

# of Cities Block Dim Grid Dim iters kernel time (ms) 

6000 1024 1 17582 71.420 

15000 1024 1 109871 1588.713 

30000 1024 1 439468 21681.576 

45000 1024 1 988792 104357.210 

60000 1024 1 1757842 321000.937 

 

 

Table Error! No text of specified style in document.-6 3-Opt Results for Different 

Sized Data 

# of Cities kernel time (ms) Minimized Cost 
Number Of 2-Opt 

Iterations 
CPU + GPU 
Time (ms) 

100 5 5242 83 396 

200 19 7969 175 2318 

300 33 10333 270 8714 

400 61 12960 342 21012 

500 103 15998 466 50732 

600 175 18909 557 100612 

700 270 22783 632 176567 

800 358 25945 731 270441 

900 502 28570 836 437143 
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1000 631 34945 963 630951 

 

 

 

 

 

 

 

Appendix C : CUDA Code 

 

//KERNEL FUNCTION (DEVICE CODE) 

__global__ void kernel( unsigned short *tour, city_coords * coords, int * global_min, 

int * index, unsigned intnoOfNodes, unsigned intnoOfSwaps, unsigned intiter) 

{ 

//variable for the ids of threads launched in SM                                          

intidx=blockDim.x*blockIdx.x + threadIdx.x; 

 

//the number of threads in SM 

registerintpackSize = blockDim.x*gridDim.x; 

 

registerint i, j, change, id;                                                    

register intlocal_min_change = 0; 

 

//Allocating shared memory for tour order and city coordinates.                

__shared__ unsigned short t[noOfNodes+1];                                    

__shared__ city_coords c[noOfNodes+1]; 

 

//transferring elements of the tour order and city coordinates to shared memory 

for(int i= threadIdx.x; i<noOfNodes; i+= blockDim.x)  

{ t[i] = tour[i]; 

c[i] = coords[i]; } 

t[noOfNodes]= tour[noOfNodes]; 

__syncthreads(); 

 

//loop to assign multiple jobs to a thread 

for(register int no=0; no<iter; no++) 

{ 

 

//Calculating the ids of total jobs 

id = idx + no*packSize; 

if(id<noOfSwaps) 

{  

 

//calculating the index of the all possible node pairs  

i=int(3+sqrtf(8.0f*(float)id+1.0f))/2;  

j=id-(i-2)*(i-1)/2+1; 

 

//Calculating the edge exchange effect for each node pair in parallel 

change = distance(t[i],t[j],c) + distance(t[i-1],t[j-1],c) - distance(t[i-1],t[i],c)    

             - distance(t[j-1],t[j],c); 
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//Finding the minimum change among all possible exchanges 

if(change<local_min_change)  

{ 

local_min_change = change; 

atomicMin(&global_min[0], change); 

} 

 

//finding the index of the minimum change  

if(change == global_min[0])  

index[0] = id; 

} 

} 

} 

// HOST CODE 

constintnoOfNodes; 

unsignedintnoOfSwaps = noOfNodes*(noOfNodes-1)/2; 

unsignedintiter; 

unsigned short * tour = new unsigned short[(noOfNodes+1)]; 

city_coords *coords  =   (city_coords*)malloc(sizeof(city_coords)*noOfNodes);         

int * tour_cost = new int[1]; 

int *global_min = new int[1];  

int * index = new int[1]; 

 

 

// defining device variables and arrays 

unsigned short * d_tour; 

city_coords *d_coords; 

int * device_global_min; 

int * device_index; 

 

//allocating device memory for the device variables and arrays 

cudaMalloc( (void**) &d_tour, sizeof(unsigned short)*(noOfNodes+1)) ; 

cudaMalloc( (void**) &d_coords, sizeof(city_coords)*noOfNodes); 

cudaMalloc( (void**) &device_global_min, sizeof(int)*1) ; 

cudaMalloc( (void**) &device_index, sizeof(int)*1) ; 

 

//reading the city coordinates from the “.txt” file 

intvertex_sentinel = 0; 

while (vertex_sentinel<noOfNodes)  

{ 

DataFile>>vertex;  

DataFile>>coord_x;  

DataFile>>coord_y; 

coords[vertex-1].x=coord_x; 

coords[vertex-1].y=coord_y; 

vertex_sentinel++; 

  } 

 

 

//transferring the city coordinates from host to device 

cudaMemcpy(d_coords, coords, sizeof(city_coords)*noOfNodes, cudaMemcpyHostToDevice);                    

 

// storing current order of travelling salesman tour into the tour order array. 

for(int i=0; i<noOfNodes; i++) 

{ tour[i]=i; }  

tour[noOfNodes] =0; 
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tour_cost[0] = 0; 

for(int i=0; i<noOfNodes; i++)  

tour_cost[0] = tour_cost[0] + dist(tour[i], tour[i+1],coords); 

 

// configuring the block dimension, grid dimension, number of iterations. 

intblockDimX =  ; 

intgridDimX =  ; 

iter =  ; 

 

 

 

 

 

global_min[0]=-1; 

 

//call kernel function as long as there is an improvement in the current tour cost 

while(global_min[0] < 0)  

  

{  

count = count +1 ;  

global_min[0] = 0;  

 

index[0] =0; 

  

 

//Transferring the minimum change and current tour order from host to device. 

cudaMemcpy(device_global_min,global_min,sizeof(int),cudaMemcpyHostToDevice);  

cudaMemcpy(d_tour,tour,sizeof(unsigned short)*(noOfNodes+1),cudaMemcpyHostToDevice);                                       

 

//Invoking the kernel function 

kernel<<<gridDimX,blockDimX>>>(d_tour,d_coords,device_global_min,device_index, 

noOfNodes, noOfSwaps,iter);              

 

 

//Host Code Continued 

 

// Transferring the minimum  “change” value and the index of it from device to host.  

cudaMemcpy(global_min, device_global_min, sizeof(int)*1,  cudaMemcpyDeviceToHost); 

cudaMemcpy(index, device_index, sizeof(int)*1, cudaMemcpyDeviceToHost); 

 

//Performing the edge exchange in the current tour according to the index 

int id = index[0]; 

int i=int(3+sqrtf(8.0f*(float)id+1.0f))/2;  

int j=id-(i-2)*(i-1)/2+1;  

int swap2 = i-1;  

int swap1 = j; 

while(swap1 != swap2 && swap1<swap2) 

{              

int a = tour[swap1]; 

tour[swap1] = tour[swap2]; 

tour[swap2]= a; 

swap1++; 

swap2--; 

} 
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