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ABSTRACT 
 
 

IDENTIFICATION OF ACTIVE DISEASE-ASSOCIATED SUBNETWORKS 
IN HUMAN PROTEIN-PROTEIN INTERACTION NETWORKS 

USING THE MCL ALGORITHM 
 
 

KIVILCIM ÖZTÜRK 
 

Computer Science and Engineering 
M.Sc. Thesis, 2015 

 
Thesis Supervisors: Yücel Saygın and Uğur Osman Sezerman 

 
 

Keywords: Active Subnetworks, Pathways, Markov Cluster Algorithm, 
GWAS, Rheumatoid Arthritis 

 
 
An active subnetwork is a group of highly interacting genes that are associated with a 
particular disease in a biological interaction network. Finding these subnetworks 
facilitates the understanding of the molecular mechanisms of diseases and contributes to 
the process of devising treatment strategies, making the identification of active 
subnetworks an important problem. In this thesis, the use of a clustering algorithm is 
proposed for the detection of active subnetworks and a methodology that is based on the 
Markov Cluster (MCL) algorithm is implemented. The methodology uses graph 
representation to represent the human protein-protein interaction network, a novel 
scoring scheme to appoint weights to the interactions among the network, the Markov 
Cluster algorithm for the active subnetwork search, a scoring formula to assign scores to 
each found subnetwork and an elimination of subnetworks depending on those scores, 
followed by a functional enrichment step to discover the functionally important KEGG 
pathways related with found subnetworks. This methodology is applied on WTCCC 
Rheumatoid Arthritis (RA) dataset and identified: KEGG pathways previously found to 
be RA-related (e.g., NF-kappaB, Jak-STAT, Toll-like receptor, MAPK signaling 
pathways), and additional pathways (e.g., Serotonergic synapse) as associated with RA. 
The comparative study shows that the presented method outperforms state-of-the-art 
techniques, and functional enrichment results demonstrate that the method can 
successfully detect significant subnetworks that are related with RA which is a complex 
multifactorial disease. Therefore, it is proposed that the method can be used on the 
datasets of other complex diseases to identify active disease-associated subnetworks. 
 
 
 
 
 
 



v 

 

 
 
 

ÖZET 
 
 

MCL ALGORİTMASI KULLANILARAK 
İNSAN PROTEİN-PROTEİN İNTERAKSİYON AĞLARINDA 
HASTALIK-İLİŞKİLİ AKTİF ALT-AĞLARIN SAPTANMASI 

 
 

KIVILCIM ÖZTÜRK 
 

Bilgisayar Bilimi ve Mühendisliği 
Master Tezi, 2015 

 
Tez Danışmanları: Yücel Saygın ve Uğur Osman Sezerman 

 
 

Anahtar Kelimeler: Aktif Alt-Ağlar, Yolaklar, Markov Kümeleme Algoritması, 
GWAS, Romatoid Artrit 

 
 
Biyolojik bir interaksiyon ağında, belirli bir hastalık ile alakalı ve birbiriyle yoğun 
etkileşim içerisinde olan genlerin bulunduğu gruplara aktif alt-ağ denilir. Bu alt-ağları 
bulmak hastalıkların moleküler mekanizmalarını anlamaya yardımcı olmakta ve tedavi 
yöntemleri tasarlamaya katkıda bulunmaktadır; bu nedenle aktif alt-ağların saptanması 
önemli bir problemdir. Bu tezde, aktif alt-ağların tespiti için bir kümeleme 
algoritmasının kullanımı önerilmektedir ve Markov Kümeleme (MCL) algoritmasına 
dayalı bir yöntem geliştirilmiştir. Bu yöntem, insan protein-protein etkileşim ağını 
temsil etmek için grafik temsili, ağdaki interaksiyonlara bir değer atamak için yeni bir 
skorlama tekniği, aktif alt-ağ araması için Markov Kümeleme algoritması, bulunan alt-
ağlara skor atamak için yeni bir formul ve alt-ağların bazılarını elemek için de bu 
skorları kullanmaktadır. Bu aşama, saptanan alt-ağlarla ilişkili fonksiyonel olarak 
önemli olan KEGG yolaklar tespit edilerek takip edilmektedir. Tanımlanan teknik 
WTCCC Romatoid Artrit (RA) datası üzerinde test edilmiştir ve sıradaki yolakları RA-
ilişkili yolaklar olarak saptamıştır: daha önce RA ile alakalı olduğu keşfedilmiş yolaklar 
(NF-kappaB, Jak-STAT, Toll-like receptor, MAPK signaling gibi) ve yeni yolaklar 
(Serotonergic synapse). Karşılaştırmalı bir çalışma, sunulan metodun son model 
tekniklerden daha iyi bir performansa sahip olduğunu göstermekte ve sonuçlar metodun 
başarılı bir şekilde kompleks ve multifaktoriyel bir hastalık olan RA ile alakalı alt-ağları 
saptayabileceğini kanıtlamaktadır. Bu nedenle, metodun başka kompleks hastalıkların 
dataları üzerine uygulanması durumunda o hastalıklarla ilişkili alt-ağları da tespit 
edebileceği önerilmektedir. 
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Chapter 1 
 
 

INTRODUCTION 
 
 
 
 

An active subnetwork is a group of interconnected genes in a protein-protein interaction 

(PPI) network and is composed of genes that are associated with a particular disease or 

a condition. Over the years, the problem of active subnetwork search, aiming the 

detection of these active subnetworks, has become increasingly important to our global 

understanding of the molecular mechanisms of diseases. It has been conceived that all 

proteins encoded by genes are responsible for the execution of specific functions which 

they perform by interacting with each other and destruction of these interactions may be 

playing a major role in the development of diseases. Therefore it is very important to 

identify these disease-related active subnetworks which in turn might assist in the 

understanding of molecular architecture of diseases and thus, hopefully, their treatment. 

 

Due to the conceived importance of the active subnetwork detection problem, many 

computational methods have been proposed as a solution in the last decade. Most of 

these methods integrate observation data (e.g., gene expression) with the network 

topology to identify the potential subnetworks [1]. Frequently in these methods, the PPI 

network is represented as a graph where nodes denote genes and edges denote the 

interactions between the proteins encoded by those genes. Furthermore, the nodes are 

scored to reflect  the significance of the genes they represent relative to the disease 

based on a variety of approaches including genetic variants, messenger RNA (mRNA) 

expression, microRNA expression, DNA methylation, protein abundance [2], with the 

significance being determined in a condition specific experiment such as a microarray 

or a genome-wide association study. 
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In this thesis, a clustering algorithm method is proposed for the problem of active 

subnetwork search in the human protein-protein interaction network. This method 

utilizes graph representation to represent the genes and the interactions between them, a 

novel edge weight calculation scheme to assign weights to those interactions, the 

Markov Cluster algorithm for the discovery of active subnetworks, a scoring formula to 

appoint scores to each found subnetwork and an elimination of subnetworks depending 

on those scores, followed by a functional enrichment step to discover the functionally 

important KEGG pathways in the found subnetworks. The method is applied on the 

Wellcome Trust Case Control Consortium (WTCCC) Rheumatoid Arthritis (RA) 

dataset. 
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Chapter 2 
 
 

RELATED WORK and CONTRIBUTION 
 
 
 
 

In literature, disease-related active subnetworks have been tried to be identified for 

different purposes from detecting disease-related regulatory pathways [3] and finding 

markers for cancer [4], to estimating response to its treatments [5]. In 2002, Ideker et al. 

[3] introduced a framework for active subnetwork detection from a full network of 

molecular interactions. This framework describes a problem which looks for the 

connected regions of the network that displays noticeable variations in expression on a 

specific set of conditions. Since then, this problem has been studied with many 

approaches which eventually settled to involve two parts [1]:  

 

1. The scoring scheme: The interactions between the genes and the connected 

region of genes are scored so that the scores indicate the probability of the 

region being active. 

2. The search model: The search among the connected regions is designed in a way 

to achieve the identification of the highest scoring regions. 

 

The model proposed by Ideker et al. [3] acquires statistical scores of each gene based on 

their mRNA expression data obtained from a microarray study and assigns an overall 

statistical score to every subnetwork. Then the actual search for the maximal-scoring 

subnetworks is performed using simulated annealing. 

  

In their study, Ideker et al. [3] demonstrated that the second part of the problem, which 

coincides with the active subnetwork search, is an NP-hard problem. Since then, a lot of 

attempts have been made to use heuristics to solve the problem, like greedy search, 

color coding, algorithms based on mathematical programming and again simulated 
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annealing. Guo et al. [6] also used simulated annealing in their study with the 

methodological difference being their use of edge-based scoring. The advantage of such 

edge-based methods which result with a list of edges (interactions) instead of a list of 

nodes (genes) is that they also demonstrate the active interactions in the condition rather 

than only displaying the active groups [1]. Ma et al. utilizes both node and edge-based 

approaches in their scoring scheme [7] with the F-statistic measuring gene expression, 

and an expected conditional F statistic (ECF) measuring correlation between genes.  

 

To find the significant areas of the network, Sohler et al. developed a greedy approach 

which selects a set of seed genes according to a threshold and then performs a greedy 

expansion by incorporating the most significant adjacent genes based on their p-values 

at every iteration [8]. Chuang et al. [4] also uses a similar approach to detect the 

highest-scoring subnetworks in the PPI network by using gene expression profiles of 

tissue samples in order to find markers for breast cancer. In this search, seed proteins 

are chosen as the starting point for the active subnetworks, and at each step, the protein 

among the neighbours that are closer than a specified distance and that would yield the 

highest score upon being added to the current subnetwork is included. Nacu et al. [9] 

argues that even though the use of a greedy search reduces the amount of subnetworks 

being searched and thus can get stuck in a local maxima, it is still better than using a 

randomized algorithm by picking the neighbouring protein to be added to the current 

subnetwork at random which would facilitate the search of more subnetworks at a cost 

at speed. Since the work of Sohler et al. [8] the greedy approach has been adopted in 

many studies [10, 11, 12, 13]. Searching strategy in the study of Jia et al. [14] is also 

similar with the utilization of a greedy search algorithm, one difference being that they 

use GWAS data as opposed to expression data to detect a set of disease markers.  

 

Rajagopalan and Agarwal [15] attempt a graph-based heuristic approach to detect 

subnetworks that maximally include all proteins of a particular biological pathway. 

They start by calculating corrected node scores for every gene in the network based on 

their p-value and then grouping nodes with positive scores into a subnetwork using a 

breadth-first search. Starting with the maximal-scoring subnetwork, a depth-first search 

detects paths to other subnetworks which are merged with the current subnetwork if the 

process improves the overall score. Dao et al. [5] employs a color coding technique for 

their network-based classification algorithm (OptDis) for the development of 



5 

 

subnetwork markers using expression profiles of breast cancer patients treated with 

combination chemotherapy. On the other hand, Qiu et al. [16] followed a mathematical 

programming based method where a diffusion kernel matrix describes the interaction of 

connected genes with the Pearson correlation based on their expression and then each 

gene is categorized as ‘active’ or ‘not active’ using a support vector regression approach 

with the tool RegMOD. In another study, Backes et al. [17] proposes a branch-and-cut 

based approach for the identification of deregulated subnetworks which can be 

performed on both directed (e.g., regulatory networks) and undirected graphs (e.g., PPI 

networks) for the search of maximally-connected subnetwork. 

 

Genetic algorithms have also been used in the identification of active disease-associated 

subnetworks. Klammer et al. [18] presented an algorithm called SubExtractor that 

combines phosphoproteomic data with protein network information from STRING to 

identify differentially regulated subnetworks. The network created is based on a 

Bayesian probabilistic model that accounts for information about both differential 

regulation and network topology with the method being heavily constructed upon a 

genetic algorithm. Wu et al. [19] also uses a genetic algorithm which they argue as an 

improvement on the use of greedy search algorithms as though they are fast, they may 

not succeed in the determination of the optimal subnetwork markers and consequently 

reduce the performance of the successive learning machines. 
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Chapter 3 
 
 

PRELIMINARIES 
 
 
 
 

In section 3.1, background information on the genome-wide association studies is 

provided, followed by background information on the Rheumatoid Arthritis in section 

3.2. 

 
 
 
3.1.  Background on Genome-Wide Association (GWA) Studies 
 
 
Genome-wide association studies (GWAS) represent a recently developed research 

technique that has evolved into a powerful tool for investigating the genetic structure of 

human disease. GWAS aims to detect genetic risk factors for common, complex 

diseases (e.g., Rheumatoid Arthritis) by analyzing DNA sequence variations from 

across the human genome [20]. The variations that are targeted by GWAS are the single 

nucleotide polymorphisms (SNPs) that are common to the human genome and the 

purpose of the technique is to determine how these polymorphisms are distributed 

across different populations [21]. The ultimate aim of GWAS is to employ genetic risk 

factors to determine an individual's risk of developing a particular disorder and to 

understand the reasons of disease susceptibility in order to come up with new 

prevention and treatment plans [20]. 

 

Single nucleotide polymorphisms are found to be the most common type of DNA 

sequence variation encountered in human genome with an estimated 10 million [21]. In 

GWA studies, case-control setup is adopted in which two groups of individuals, one 

carrying the disease in question and the other being the healthy control group, are 

genotyped for common SNPs. It is then investigated which SNPs are encountered more 
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in the case group with a distinct difference which allows a statistical estimate being 

made about the level of heightened risk for each SNP using their odds ratio. Then with a 

chi-squared test, this odds ratio is converted into a p-value representing the significance 

of the SNP based on the frequency in which it occurs in the diseased individuals. The 

higher the frequency is, the lower the p-value will be. 

 

In a notable study conducted in 2007 by the Wellcome Trust Case Control Consortium 

(WTCCC), 14,000 people were genotyped for seven common diseases with 2,000 

people for each disease and 3,000 healthy individuals for the shared control group [22]. 

This study was the largest GWAS to be ever carried out at its time and it allowed many 

genetic markers for these common diseases to be discovered that have been helpful for 

the development of treatment strategies. 

 

The GWA studies have been made more practical and less expensive by the use of the 

DNA microarray which is a small glass slide with a collection of microscopic DNA 

spots attached to it in a specific pattern [21]. The principle of microarrays is 

hybridization between two DNA strands. When a sample of DNA fragments is placed 

on the array, some of the DNA will hybridize to a probe on the surface and the rest will 

be washed away. Then the use of a scanning technology enables the researcher to detect 

in which parts of the array there has been a binding between the probe and the sample, 

and to what amount, which then can help with building a statistical estimation of 

increased risk for developing the disorder as explained above. 
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3.2.  Background on Rheumatoid Arthritis (RA)  
 
 
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology that 

causes joint inflammation and pain in the parts of body like feet, hands, hips and knees. 

The underlying mechanism involves the immune system, which is designed to protect 

the health of the body by attacking foreign substances (e.g., bacteria), attacking the 

joints instead, and consequently causing inflammation and thickening of the joint 

capsule. Rheumatoid arthritis occurs in 1% of the developed world’s population [23] 

and is two to three times more prevalent in women than men with this difference being 

more pronounced in people of age less than 50 [24].  

 

In the pathophysiology of Rheumatoid Arthritis, both genetic and environmental factors 

are implicated. While the main environmental risk to RA is thought to be smoking [23], 

more than half of the risk of having RA is attributed to genetic factors which are not 

completely discovered even though they have been researched for more than a decade. 

With the disease being encountered as frequently as 1 in every 100 people, it is 

important to continue the research to determine the genetic reasoning behind it. 
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Chapter 4 
 
 

DATASETS 
 
 
 

 
4.1.  Protein-Protein Interaction (PPI) Network 
 
 
In this thesis, two sets of data are used. The first dataset represents the human protein-

protein interaction (PPI) network as a list of pairwise interactions between proteins and 

was obtained from the supplementary material of Goh et al.’s study [25]. This dataset 

first contains the PPIs acquired by testing binary interactions between proteins using a 

stringent, high-throughput yeast two-hybrid system [26, 27], and then the PPIs derived 

from literature by manual curation [26]. In this dataset, there are, in total, 61,070 

interactions between 10,174 genes with 22,052 of them being non-self-interacting and 

non-redundant interactions. 

 
 
 
4.2.  Genetic Association Data of Rheumatoid Arthritis 
 
 
The second dataset that was used in this thesis contains the genes that have been found, 

in a genome-wide association (GWA) study performed by the Wellcome Trust Case 

Control Consortium (WTCCC), to be significant for the disease of rheumatoid arthritis 

[22], which indicates these genes as being possibly involved in the development of the 

disease. In the mentioned GWA study, from the British population, 1999 patients with 

rheumatoid arthritis and 3004 healthy individuals as controls were examined. Using the 

Affymetrix GeneChip 500K Human Mapping Array Set, 500,475 single nucleotide 

polymorphisms (SNPs) were tested on these 5,003 samples. In the end, 25,027 SNPs 

were identified, showing nominal evidence of association with the disease, based on 

their genotypic p-values of association (p < 0.05). In a following study by Burcu-Bakir 
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and Sezerman [28], this SNP data and their genotypic p-values of association were used 

to assign these SNPs into 4,029 genes using the SPOT web server [29] by considering 

all known SNP/gene transcript associations. Then to take the possible associations 

between SNPs and their conserved transcription factor binding sites (TFBSs) into 

account, an additional 65 proteins (transcription factors), each protein known to bind to 

a TFBS a RA-associated SNP resides in, were added to the set using the SNPnexus 

program [30], bringing the number of genes in the dataset to a total of 4,094 genes. In 

order to incorporate functional information (regional score) to these genes, genotypic p-

values were weighted by the functional scores of the SNPs that have been mapped to 

those genes, and a weighted P-value (Pw-value) was calculated for each gene which 

was consequently assigned to the gene as its p-value. In this thesis, this final gene set 

composed of 4,094 genes along with their assigned p-values [28] representing their 

significance to the rheumatoid arthritis is utilized to determine active subnetworks of 

this disease. 
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Chapter 5 
 
 

METHOD 
 
 
 
 
5.1.  Scoring: Edge Weight Calculation 
 
 
In the presented methodology, a novel scoring scheme is developed to assign scores to 

interactions between edges, called an edge weight, which would reflect the importance 

of said interaction. In this scheme, first, a score, ��������, is assigned to the edge � 

that connects genes 	 and 
, by multiplication of significance value �� of both genes, 

where u represents the gene, using equation (1). Then, this score is converted into a 

standard score (-score) with equation (2), where Φ�� is the inverse normal cumulative 

distribution function and � denotes the -score of the edge �. The value of � will be 

assigned to the edge as its weight. 

 

�������� = �� ∗ ��        (1) 

 

� = Φ��	�1 − ���������          (2) 

 

In the method developed by Ideker et al. [3], a scoring scheme that is somewhat similar 

to our scheme in the way of converting p-values to z-scores is used, and a value of 0.5 is 

appointed to the nodes without p-values. This is equal to placing neutral significance to 

these nodes, which is a plausible idea when working with a PPI network that does not 

have many null-valued nodes. But in this case, where there are 8147 null nodes out of 

10174 nodes, giving neutral significance to most of the nodes in the network will cause 

the final output network to have more null nodes than it is meaningful. Moreover, in a 

GWAS study, a node being null indicates it being insignificant for the disease, 

rheumatoid arthritis, as explained in section 3.1. Therefore it has been decided to assign 
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1 as the p-value to these genes to declare them as insignificant. However, in the case of 

both genes of an interaction being assigned the value of 1, instead of using equation (2) 

to calculate the z-score, the edge weight is set to be zero (0) directly as appointing 1 to 

both p-values would lead to negative infinity in the equation. 
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5.2.  Subnetwork Search by the Markov Cluster Algorithm 
 
 
In this thesis, the Markov Cluster (MCL) Algorithm that is proposed by Van Dongen is 

used to identify the active disease-associated subnetworks among the human protein-

protein interaction network. The MCL algorithm is an unsupervised graph clustering 

algorithm that is based on the idea that there are more links in a cluster than between 

clusters and by simulating this stochastic flow in graphs, the clusters can be obtained 

[31]. 

 
 
 
5.2.1. Graph representation 
 
 
As the MCL algorithm is a clustering algorithm for graphs, the protein-protein 

interaction network in this case is represented as a graph which is composed of nodes 

denoting genes and edges, which are the lines connecting these nodes, representing the 

interactions between the proteins coded by the genes denoted by said nodes. The graph 

is undirected, meaning that there is no distinction between the two nodes associated 

with each edge. 

 

In order to be able to perform mathematical operations on the graph, it is expressed in a 

matrix format where each row and column denotes a gene while each matrix entry 

represents the edge weight between those genes. As the graph is undirected, the matrix 

will be symmetric at first. However, before the beginning of the MCL algorithm, it is 

required to perform a scaling step, in the form of normalizing each column, such that 

the resulting matrix will be stochastic. This means that the matrix elements on each 

column will correspond to probability values with each column summing up to 1 and 

the matrix not being symmetric anymore. 
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5.2.2. Clustering scheme 
 
 
Natural clusters in a graph are depicted by the existence of many interactions among the 

nodes of a cluster, and fewer interactions between the nodes of different clusters. The 

MCL algorithm is based on the idea that random walks upon the graph will more likely 

result in staying within the natural cluster than travel between [31]. Therefore, by 

performing random walks on the graph, the algorithm attempts to detect where the flow 

tends to gather, and thus, where clusters are. The simulation of random walks is done by 

alternating between two processes called expansion and inflation operations. 

 
 
 
5.2.3. Expansion operation 
 
 
In expansion step, the power of Markov Chain transition matrix, edge weight matrix, is 

taken using the normal matrix product (e.g., matrix squaring). This allows flow to 

connect different regions of the graph that are not connected directly by the presence of 

only one edge. 

 

Since there are only 61,070 interactions between 10,174 genes in our network, the 

matrix of edges will be a sparse matrix with most of the entries having zero-value. Thus 

in this study, while implementing the algorithm, in order to increase the speed of the 

matrix multiplication process and to decrease the memory demand, having a sparse 

matrix is taken advantage of by converting it to a sparse matrix format, which in this 

case is, the Compressed Row Storage (CRS) format. CRS format uses three arrays: val, 

which stores the values of non-zero elements of the matrix, col_ind, which stores the 

column indices of the elements in val array, and row_ptr, which stores the locations in 

the val array that start a row. In this way, the required memory cells to store an N by N 

matrix is reduced to 2NNZ+N+1, where NNZ denotes number of non-zero elements, 

from N2 which is the number of memory cells needed to store the matrix in a standard 

matrix format (e.g., a 2-D vector). Then the matrix multiplication is done between the 

matrix and the CRS which represents the same network in a different structure, and this 

decreases the complexity of matrix multiplication from O(N3) to O(NNZ x N) algebraic 

operations including both multiplications and additions. 
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5.2.4. Inflation operation 
 
 
Inflation coincides with raising each matrix entry to a given non-negative power, 

followed by a scaling step to return the matrix to a stochastic state, which is done by re-

normalizing of each column. This operation is responsible for further strengthening 

strong currents and weakening already weak currents so that the less popular links 

between nodes can be demoted. 

 

After every inflation step, edges are evaluated according to a threshold that is decided to 

be 1x10-6. If the weight between two nodes is less than 1x10-6, the edge between them is 

eliminated. In this way, inflation operation reduces the number of edges, while 

expansion raises them. 

 
 
 
5.2.5. Stopping criteria 
 
 

Expansion and inflation operations are iteratively used to strengthen the graph where it 

is strong and to weaken where it is weak. Ultimately, the iteration of these operations 

concludes in the segmentation of the graph into distinct components. The resulting 

components do not have any interactions between them anymore and the collection of 

these final components is understood as clustering [31]. 

 

Though global convergence is hard to prove, in practice, the process almost always 

converges to a doubly idempotent matrix, meaning that it does not change with further 

steps, and it is at a steady state [31]. In this state, every non-zero value in a single 

column has the same number making the column, in a sense, homogeneous. 
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5.2.6. Significance score calculation 
 
 
After the MCL algorithm is finished, all genes in the network are separated into 

different clusters and every gene belongs to only one cluster. Then, in order to analyze 

the significance of the clusters, a scoring scheme is used to assign a score to each 

cluster. This Cluster Score (��) is calculated by multiplication of significance value �� 
of each gene using the following equation, where � denotes the number of nodes in a 

cluster and � is the set of genes in the cluster. 

 

�� = ����
�∈�

!
� "#

 

 

Based on this formula, the lower the p-values of each gene in the cluster is, the lower 

the cluster score will be; which, in turn, would mean that the most significant clusters 

will have the lowest cluster scores. 

 
 
 
5.2.7. Subnetwork elimination 
 
 
Due to the nature of the MCL algorithm, a number of very small clusters emerge at the 

end; and the significance of these clusters, in terms of relation to the disease, (e.g., 

Rheumatoid Arthritis) should be evaluated before the other steps of the proposed 

method, so that the clusters that are deemed unimportant can be eliminated. Their 

relativity to the disease is evaluated by the usage of cluster score explained in section 

5.2.6. Then, the clusters with score more than a given threshold value, and also the ones 

composed of less than 10 genes, simply for being too small to be significant, are 

eliminated. 
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5.3.  Functional Enrichment of Identified Subnetworks 
 
 
After the active subnetwork search algorithm detects the subnetworks with maximal 

scores, the next step is to evaluate if the genes in these subnetworks are really involved 

in the molecular mechanisms of the disease. Interpretation of such data is performed by 

finding the biological functions that are enriched in sets of genes. Functional enrichment 

is a technique for interpreting gene groups by statistical methods to identify functional 

annotations (e.g., pathways, cellular processes) the genes are associated with. It is done 

by comparing the group of detected genes with the genes known to be involved in a 

biological pathway to see if they match, which would mean that the subnetwork is 

related to that pathway. If the pathways found to be related to the subnetwork are also 

known to be a part of the development of RA, then it would be understood that the 

subnetwork in question is an active RA-related subnetwork.  

 

The analysis uses the information about genes and their associated functions on 

biological databases (e.g., KEGG, Gene Ontology). In this thesis, for the functional 

enrichment of identified subnetworks, ClueGO plugin [32] of Cytoscape, which is an 

open-source Java program, is utilized. Even though ClueGO extract functional 

information about given genes utilizing KEGG, BioCarta databases and Gene Ontology 

[32], only the pathways obtained by using the KEGG database are used. During the 

functional enrichment process of ClueGO, a two-sided (enrichment/depletion) test 

based on the hypergeometric distribution is employed and Bonferroni correction method 

was used to correct the p-values for multiple testing. 
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Chapter 6 
 
 

RESULTS and DISCUSSION 
 
 
 
 
The proposed techniques were implemented in C++11; and their performance was 

tested on real datasets and compared with the performance of state-of-the-art 

techniques. The experiments were performed in a machine with 2.5Hz quad-core Intel 

Core i7 CPUs, 16 GB 1600MHz memory and OS X 10.10 Yosemite operating system. 

The complexity of the algorithm implemented is O(NNZ x N) where NNZ denotes the 

number of non-zero elements in the protein-protein transition matrix and N is the size of 

the matrix. 

 
 
 
6.1.  Parameters for Optimal Results 
 
 
Starting with 4,094 genes that are found to be significant in a GWAS (WTCCC RA 

dataset), and a human protein-protein interaction network of 61,070 interactions 

between 10,174 genes, the MCL algorithm followed by a functional enrichment step 

was performed to identify RA-related genes and functionally important KEGG 

pathways. All interactions between genes were assigned an edge weight score to signify 

the importance of the interaction using the p-values of genes making up the interaction. 

Then the MCL algorithm was utilized for the search of active RA-associated 

subnetworks.  

 

The MCL algorithm simulates random walks on the graph by alternating between two 

processes called expansion and iteration to extract potentially meaningful subnetworks 

by attempting to discover where the flow tends to gather in the network. After the 

discovery of subnetworks, functional enrichment step finds the KEGG pathways that 
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are associated with these subnetworks. In order to evaluate how meaningful found 

subnetworks are, the next step is to analyze their KEGG pathways and find how many 

of those pathways are related to RA. In order to do this, a detailed literature search is 

performed and it is seen how many of the best scoring pathways have been found to be 

related to Rheumatoid Arthritis in previous studies. 

 

Since the MCL algorithm does not use a fixed expansion or inflation parameter value, 

different values are attempted to find the parameters that give the best results. In total, 

15 combinations of parameters are used with expansion parameter taking the values of 

2, 3, 4 and inflation parameter taking the values of 2, 2.5, 3, 3.5 and 4. After the use of 

all 15 combinations, different subnetworks are found and functional enrichment step is 

performed on all of these subnetworks.  In order to be able to determine which 

parameter combination finds the best subnetworks, the KEGG pathways found to be 

associated with these subnetworks are evaluated and it is assessed how many of these 

pathways are found to be related to RA in previous studies as explained above. 
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Expansion 
parameter 

Inflation 
parameter 

Threshold 
Top 20 

pathways 
Top 40 

pathways 

2 

2 
- 9 14 

0.30 / 0.23 12 13 

2.5 
- 10 13 

0.32 / 0.22 11 11 

3 
- 10 13 

0.34 / 0.26 11 11 

3.5 
- 10 13 

0.32 / 0.28 11 11 

4 
- 10 11 

0.44 / 0.35 9 9 

3 

2 
- 12 25 

0.20 / 0.12 19 27 

2.5 
- 12 24 

0.14 / 0.12 19 28 

3 
- 14 24 

0.14 / 0.11 19 29 

3.5 
- 14 25 

0.16 / 0.12 19 26 

4 
- 14 25 

0.14 / 0.12 19 26 

4 

2 
- 11 20 

0.18 / 0.13 16 23 

2.5 
- 11 23 

0.22 / 0.16 16 25 

3 
- 11 23 

0.18 / 0.16 15 23 

3.5 
- 10 20 

0.20 / 0.19 15 24 

4 
- 10 18 

0.26 / 0.22 14 22 
 
Table 1. The number of RA-related pathways found among the top 20 and top 40 
scoring pathways associated with subnetworks detected by the MCL algorithm, with the 
use of each parameter combination, where threshold is used to eliminate clusters with 
cluster score higher than it, as explained in section 5.2.7. 
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First deduction to be made is that, the number of RA-related pathways found among the 

top 20 and top 40 scoring pathways of subnetworks found by the MCL algorithm 

increases with the use of a cluster score threshold which supports our decision of 

eliminating insignificant subnetworks using this threshold. Secondly, it can be seen that 

the usage of expansion parameter 3 gives the best results and 4 gives acceptable results 

while 2 gives the worst. Though it seems that the usage of inflation parameters from 2 

to 4 does not change the results a great deal, the inflation parameter 3 combined with 

expansion parameter 3 gives the best results by finding 19 RA-related pathways among 

the top 20 scoring pathways and 29 RA-related pathways among the top 40 scoring 

pathways. Therefore we decided to explore the results of the usage of these parameters 

in detail in the following sections. 

 

 

 

 

Expansion 
parameter 

Inflation 
parameter 

Threshold 

2 

2 0.28 
2.5 0.28 
3 0.28 

3.5 0.28 
4 0.35 

3 

2 0.12 

2.5 0.12 

3 0.12 

3.5 0.12 

4 0.12 

4 

2 0.16 
2.5 0.16 
3 0.16 

3.5 0.20 
4 0.24 
 

Table 2. Thresholds that give the best results for each parameter combination. 
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6.2.  Functionally Important KEGG Pathways for RA 
 
 
At the end of the implemented modified MCL algorithm, 91 subnetworks were 

detected. Then the functional enrichment of all of the 91 subnetworks was carried out 

together in order to find the subnetworks that are related to RA the most and thus the 

candidate active disease-associated subnetworks. As a result of the functional 

enrichment step, 113 KEGG pathway terms were found to be associated with only 24 of 

the subnetworks, reducing the number of potential active subnetworks to 24. In Table 4 

and Table 5, we represent 20 maximally-scoring pathways, determined by their Term P-

values, which are mostly related to immunity, inflammation, and synaptic systems. We 

compared our findings with previously found RA-related KEGG pathways. Most of the 

pathways identified by the proposed methodology have been previously found to be 

associated with Rheumatoid Arthritis with experimental techniques and these pathways 

are Notch signaling, Circadian entrainment, NF-kappa B signaling, GABAergic 

synapse, Axon guidance, Jak-STAT signaling, Leukocyte transendothelial migration, 

MAPK signaling, TGF-beta signaling and Toll-like receptor signaling pathways. 

 

ECM-receptor interaction, which was discovered as the most significant KEGG 

pathway by the described methodology, is thought to be associated with RA as 

fibroblast-like synoviocytes (FBS) from RA synovium was detected to be binding to 

extracellular matrix (ECM) proteins more than the normal FBS which was concluded as 

the tight binding of rheumatoid FBS to the ECM proteins playing a role in ECM 

remodeling in the rheumatoid process in vivo [33]. The contribution of Notch signaling 

pathways is that macrophages are thought to play a pathogenic role in rheumatoid 

arthritis by secreting inflammatory mediators that contribute to joint inflammation and 

bone erosion and the Notch pathway has been believed to be influencing the 

development of macrophages for some time [34]. In following studies, Notch signaling 

has been demonstrated to be active in CD4+ T cells during the development of RA and 

also to be playing a significant role in Th1 and Th17 cell differentiation which displays 

the role of Notch signaling pathways in the development of RA [35]. After the 

observation of the molecular machinery controlling the circadian rhythm being 

disturbed in RA patients [36], Circadian entrainment pathway is also thought to be 

affected by RA. NF-kappa B signaling has long been a pathway recognized with its 

relation to RA with the transcription factor NF-kappa B being a pivotal regulator of 
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inflammation; and recent studies have also supported this view by revealing a broad 

involvement of NF-kappa B in other aspects of RA pathology, including development 

of T helper 1 responses, activation, abnormal apoptosis and proliferation of RA 

fibroblast-like synovial cells, and differentiation and activation of bone resorbing 

activity of osteoclasts [37, 38, 39, 40]. Since the activation of peripheral GABA 

receptors were demonstrated to inhibit the development of RA in the collagen-induced 

arthritis  (CIA) mouse model of RA [41], GABAergic synapse has thought to be 

involved in RA. Axon guidance is another pathway believed to be implicated in RA 

after recent findings of Semaphorin-3A, which is a member of a large family of 

conserved proteins originally implicated in axon guidance, increasing the CD4+NP-1+ T 

cell ability to suppress alloresponses and its transient expression being altered in 

rheumatoid inflammation [42]. Jak-STAT signaling, Leukocyte transendothelial 

migration, MAPK signaling, Toll-like receptor signaling pathways are all pathways 

found to be significantly involved in RA [28]. Finally, TGF-beta signaling pathway 

have also been believed to be associated with RA via its relation to ECM with the action 

of transforming-growth-factor (TGF)-β following inflammatory responses is being 

characterized by increased production of extracellular matrix (ECM) components [43, 

44]. 

 

Some of the other pathways identified by the described methodology have been 

previously found to be related to RA with computational techniques. These pathways 

are Morphine addiction, Focal adhesion, Glutamatergic synapse, Retrograde 

endocannabinoid signaling, Cholinergic synapse and Dopaminergic synapse pathway. 

All of these pathways have been shown to be associated with RA in a recent study [45] 

where two GWAS were carried out using RA datasets from both GAW16 (Genetic 

Analysis Workshop 16) and the WTCCC, and all SNPs were mapped to genome-wide 

autosomal genes followed by a calculation of gene-wise risk values by minimum P-

value method. The KEGG pathway risk scores were determined by Fisher combination 

method and the significant pathways were identified by a permutation test. Focal 

adhesion pathway was also experimentally demonstrated to be involved in cellular 

processes such as osteoclast pathology and angiogenesis, which are known to be 

significant for RA [46]. 
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Additionally, the result of recent experimental studies suggest PI3K-Akt signaling 

pathways and Complement and coagulation cascades to be in relation with RA, though 

the mechanisms are still not completely known. In a study, it has been shown that 

PI3Kɣ blockade by both genetic and pharmacological approaches reduces joint 

inflammation and damage in collagen-induced arthritis indicating PI3K as potentially 

involved in development of RA [47]. 
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KEGG Term 
Significance 

Score 
Term               

P-value 
Number 
genes 

Percent 
genes 

Number 
genes in 
pathway 

ECM-receptor interaction 0.109866 2.16E-45 42 48.3% 87 
Morphine addiction 0.087881 4.46E-45 31 33.7% 92 
Notch signaling pathway 0.08836 2.59E-33 20 41.7% 48 
Focal adhesion 0.109866 6.32E-32 46 22.2% 207 
Circadian entrainment 0.087881 2.73E-30 24 25.0% 96 
NF-kappa B signaling pathway 0.069851 2.09E-29 30 33.0% 91 
GABAergic synapse 0.087881 2.86E-29 23 25.6% 90 
Glutamatergic synapse 0.087881 3.19E-28 24 20.9% 115 
Retrograde endocannabinoid 
signaling 0.087881 9.20E-28 23 22.5% 102 
Cholinergic synapse 0.087881 9.57E-27 23 20.5% 112 
Axon guidance 0.062392 6.85E-26 16 12.6% 127 
Jak-STAT signaling pathway 0.074546 5.24E-25 54 34.6% 156 
Serotonergic synapse 0.087881 6.46E-25 22 19.5% 113 
Leukocyte transendothelial 
migration 0.074546 1.07E-24 47 39.8% 118 
MAPK signaling pathway 0.033538 1.49E-23 28 10.9% 256 
Dopaminergic synapse 0.087881 1.72E-23 22 16.9% 130 
TGF-beta signaling pathway 0.073886 2.45E-23 16 20.0% 80 
Complement and coagulation 
cascades 0.096368 4.76E-21 12 17.4% 69 
Toll-like receptor signaling 
pathway 0.069851 6.33E-19 24 22.6% 106 
PI3K-Akt signaling pathway 0.109866 3.11E-17 41 11.8% 346 

 
Table 3. The 20 most significant pathways, determined by their term p-values, found to 
be related to the subnetworks that are detected by the active subnetwork search. 
Significance score is the cluster score explained in section 5.2.6 and term p-value is a 
score given to reflect the importance of the pathway by the functional enrichment step. 
‘Number genes’ denotes the number of genes in the subnetwork found to be associated 
with the given pathway. Likewise, ‘percent genes’ denotes the percentage of these 
genes among the total number of genes of the given pathway which is denoted by 
‘number genes in pathway’. 
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Among the twenty best scoring pathways found by the proposed methodology, the only 

pathway found that has not been shown to be associated to RA previously, to the best of 

our knowledge, is Serotonergic synapse pathway. Even though this pathway has not 

been demonstrated to be in relation to RA by experimental or computational methods, 

the results of some clinical studies suggests a relation between the two. In one study, the 

amount of serotonin receptors in RA patients has been observed to be significantly 

decreased, suggesting either the reduced amounts of the receptors to cause a 

susceptibility to the disease or be a secondary effect of the disease [48]. Similarly, in a 

case study, after a SSRI uptake, which is thought to increase extracellular serotonin 

concentrations, a continued remission of RA in a patient has been observed which 

suggests serotonin receptors playing a role in mediating inflammatory processes [49]. 

 

The fact that all of the best scoring KEGG pathways identified by the described 

methodology have been previously found to be associated with RA experimentally, 

computationally or by clinical studies demonstrates the methodology as a powerful tool 

to detect active RA-associated subnetworks while also supporting our decision of using 

GWAS data as the genetic association data of RA. 

 

All of the pathways described above along with the genes found in subnetworks to be 

associated with those pathways are displayed in Table 4 and 5. 
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KEGG Term Significance 
Score 

Term        
P-value 

Num. 
Genes 

Associated Genes Found 

ECM-receptor 
interaction 

0.109866 2.16E-45 42 ITGB1*, ITGB5*, ITGB3*, LAMA3*, TNC*, LAMC2*, 
LAMC1*, THBS1*, COMP*, VTN*, RELN*, ITGB8*, 
ITGAV*, ITGB7*, CD36*, ITGB6*, ITGA4*, LAMB3*, 
GP1BB*, ITGA3*, ITGA2*, ITGA1*, FN1*, GP1BA*, 
GP5*, HSPG2*, COL1A1*, GP9*, COL1A2*, 
COL2A1*, COL4A2*, COL4A1*, COL4A4*, ITGA10*, 
COL4A3*, ITGA11*, COL4A6*, ITGA8*, COL4A5*, 
ITGA6*, ITGA5*, ITGA9*, 

Morphine 
addiction 

0.087881 4.46E-45 31 PDE1C*, PDE1B*, PDE1A*, ADCY2*, PRKX*, 
ADCY1*, ADCY8*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNG7*, PRKACG*, 
ADORA1*, GNG8*, PDE4A*, PRKACA*, PRKACB*, 
PDE4D*, PDE4C*, GNG12*, GNG11*, GNG13*, 
GNB2*, GNB1*, GNAS*, GNB4*, GNB3*, GNB5*, 

Notch signaling 
pathway 

0.08836 2.59E-33 20 JAG2*, NOTCH2*, PSENEN*, NOTCH3*, JAG1*, 
NOTCH1*, MAML2*, MAML1*, NOTCH4*, PSEN2*, 
DTX1*, PSEN1*, RBPJ*, DLL1*, DLL4*, LFNG*, 
NCSTN*, APH1B*, MFNG*, MAML3*, 

Focal adhesion 0.109866 6.32E-32 46 ITGB1*, FIGF*, SHC3*, ITGB5*, FLT4*, ITGB3*, 
LAMA3*, TNC*, ILK*, LAMC2*, LAMC1*, 
ARHGAP5*, THBS1*, COMP*, VTN*, RELN*, 
CAPN2*, ITGB8*, FLNB*, ITGAV*, ITGB7*, ITGB6*, 
ITGA4*, LAMB3*, ITGA3*, HGF*, ITGA2*, ITGA1*, 
FN1*, PTK2*, COL1A1*, COL1A2*, COL2A1*, 
COL4A2*, COL4A1*, COL4A4*, ITGA10*, COL4A3*, 
ITGA11*, COL4A6*, ITGA8*, COL4A5*, ITGA6*, 
ITGA5*, TLN1*, ITGA9*, 

Circadian 
entrainment 

0.087881 2.73E-30 24 ADCY2*, PRKX*, ADCY1*, ADCY8*, GNG12*, 
GNG11*, GNG13*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNB2*, GNG7*, PRKACG*, 
GNB1*, GNAS*, GNB4*, GNB3*, GNG8*, GNB5*, 
PRKACA*, PRKACB*, 

NF-kappa B 
signaling 
pathway 

0.069851 2.09E-29 30 TRADD*, LY96*, TNFAIP3*, TNFRSF11A*, RELA*, 
RELB*, IKBKB*, IRAK1*, RIPK1*, IKBKG*, 
MAP3K7*, TICAM2*, CHUK*, TNFSF14*, DDX58*, 
TRAF2*, IRAK4*, TRAF1*, NFKB1*, TIRAP*, 
NFKB2*, TNFRSF1A*, NFKBIA*, TRAF6*, TAB2*, 
TAB1*, MAP3K14*, TLR4*, MYD88*, BIRC3*, 

GABAergic 
synapse 

0.087881 2.86E-29 23 ADCY2*, PRKX*, ADCY1*, ADCY8*, GNG12*, 
GNG11*, GNG13*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNB2*, GNG7*, PRKACG*, 
GNB1*, GNB4*, GNB3*, GNG8*, GNB5*, PRKACA*, 
PRKACB*, 

Glutamatergic 
synapse 

0.087881 3.19E-28 24 ADCY2*, PRKX*, ADCY1*, ADCY8*, GNG12*, 
GNG11*, GNG13*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNB2*, GNG7*, PRKACG*, 
GNB1*, GNAS*, GNB4*, GNB3*, GNG8*, GNB5*, 
PRKACA*, PRKACB*, 

Retrograde 
endocannabinoid 
signaling 

0.087881 9.20E-28 23 ADCY2*, PRKX*, ADCY1*, ADCY8*, GNG12*, 
GNG11*, GNG13*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNB2*, GNG7*, PRKACG*, 
GNB1*, GNB4*, GNB3*, GNG8*, GNB5*, PRKACA*, 
PRKACB*, 

Cholinergic 
synapse 

0.087881 9.57E-27 23 ADCY2*, PRKX*, ADCY1*, ADCY8*, GNG12*, 
GNG11*, GNG13*, GNGT1*, GNG10*, GNG3*, 
GNG2*, GNG5*, GNG4*, GNB2*, GNG7*, PRKACG*, 
GNB1*, GNB4*, GNB3*, GNG8*, GNB5*, PRKACA*, 
PRKACB*, 

 
Table 4. Pathways from 1 to 10 among the 20 most significant pathways, determined by 
their term p-values, found to be related to the subnetworks that are detected by the 
active subnetwork search, along with the genes associated with those pathways. 
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KEGG Term Significance 
Score 

Term     
P-value 

Number 
Genes 

Associated Genes Found 

Axon guidance 0.062392 6.85E-26 16 EPHA5*, EPHA4*, EPHA7*, EPHA6*, EFNA5*, 
EFNA4*, EFNA1*, EFNB2*, EFNA3*, EFNA2*, 
EFNB3*, EPHB2*, EPHB1*, EPHA3*, NGEF*, 
EPHA2*, 

Jak-STAT 
signaling pathway 

0.074546 5.24E-25 54 IFNA5*, CSF2*, IFNA1*, IL23R*, IFNA2*, MPL*, 
CBLC*, IL5RA*, CBLB*, IFNA8*, GHR*, SPRED2*, 
SPRED1*, JAK2*, JAK1*, IFNAR2*, IL15RA*, 
IFNA13*, CISH*, IFNGR1*, IL15*, IFNGR2*, 
TYK2*, OSMR*, PRLR*, IL23A*, IL3RA*, SOS1*, 
SOS2*, IRF9*, IFNAR1*, CSF2RB*, PIK3R2*, 
PIK3R1*, CSF2RA*, SOCS3*, SOCS1*, SOCS5*, 
STAT5A*, STAT5B*, TSLP*, IFNB1*, STAT1*, 
STAT2*, STAT3*, PTPN11*, STAM*, IFNW1*, 
IL3*, IL5*, IL2RB*, SPRY2*, PTPN6*, IL7R*, 

Serotonergic 
synapse 

0.087881 6.46E-25 22 PRKX*, GNG12*, GNG11*, GNG13*, GNGT1*, 
GNG10*, GNG3*, HTR6*, GNG2*, GNG5*, GNG4*, 
GNB2*, GNG7*, PRKACG*, GNB1*, GNAS*, 
GNB4*, GNB3*, GNG8*, GNB5*, PRKACA*, 
PRKACB*, 

Leukocyte 
transendothelial 
migration 

0.074546 1.07E-24 47 ITK*, ROCK1*, NCF2*, TXK*, CTNND1*, ITGB2*, 
GNAI3*, PIK3R2*, PIK3R1*, THY1*, CLDN2*, 
F11R*, CLDN1*, MLLT4*, ACTB*, ICAM1*, 
CDC42*, PLCG2*, PTK2B*, CTNNA3*, CTNNA2*, 
PLCG1*, RAC1*, JAM2*, JAM3*, PRKCG*, VASP*, 
VAV3*, ACTN3*, PRKCB*, CYBB*, RHOH*, 
CYBA*, PRKCA*, PTPN11*, ACTN4*, VAV2*, 
CLDN6*, CLDN5*, CLDN4*, CLDN3*, CLDN8*, 
CLDN7*, PECAM1*, CTNNB1*, CLDN16*, VCL*, 

MAPK signaling 
pathway 

0.033538 1.49E-23 28 ATF2*, PTPRR*, ZAK*, STK4*, DUSP16*, ELK1*, 
RPS6KA4*, DUSP10*, RPS6KA5*, MKNK1*, 
MKNK2*, MAP2K6*, MAPK3*, DUSP4*, 
MAP2K3*, MAP3K2*, MAP2K4*, DUSP2*, 
MEF2C*, MAP3K1*, DUSP1*, MAPK14*, DUSP7*, 
MAPK13*, MAPK11*, MAPKAPK3*, MAPKAPK5*, 
PTPN7*, 

Dopaminergic 
synapse 

0.087881 1.72E-23 22 PRKX*, GNG12*, GNG11*, GNG13*, GNGT1*, 
PPP1CB*, GNG10*, GNG3*, GNG2*, GNG5*, 
GNG4*, GNB2*, GNG7*, PRKACG*, GNB1*, 
GNAS*, GNB4*, GNB3*, GNG8*, GNB5*, 
PRKACA*, PRKACB*, 

TGF-beta 
signaling pathway 

0.073886 2.45E-23 16 BMPR2*, AMHR2*, NOG*, GDF6*, SMAD6*, 
ACVR2B*, BMP7*, GDF5*, ACVR2A*, BMP6*, 
GDF7*, SMAD7*, BMP4*, BMP2*, BMPR1B*, 
BMPR1A*, 

Complement and 
coagulation 
cascades 

0.096368 4.76E-21 12 F10*, VWF*, SERPINC1*, PROS1*, C4BPA*, 
C4BPB*, F2*, F3*, F5*, F7*, F9*, PROC*, 

Toll-like receptor 
signaling pathway 

0.069851 6.33E-19 24 TICAM2*, CHUK*, LY96*, IRAK4*, NFKB1*, 
RELA*, TIRAP*, IKBKB*, NFKBIA*, TLR1*, 
TBK1*, IRAK1*, TRAF6*, AKT3*, MAP3K8*, 
RIPK1*, TAB2*, IKBKG*, TAB1*, TLR5*, IKBKE*, 
MAP3K7*, TLR4*, MYD88*, 

PI3K-Akt 
signaling pathway 

0.109866 3.11E-17 41 ITGB1*, FIGF*, ITGB5*, FLT4*, ITGB3*, LAMA3*, 
TNC*, LAMC2*, LAMC1*, THBS1*, COMP*, 
VTN*, RELN*, ITGB8*, ITGAV*, ITGB7*, ITGB6*, 
ITGA4*, LAMB3*, ITGA3*, HGF*, ITGA2*, 
ITGA1*, FN1*, OSM*, PTK2*, COL1A1*, 
COL1A2*, COL2A1*, COL4A2*, COL4A1*, 
COL4A4*, ITGA10*, COL4A3*, ITGA11*, 
COL4A6*, ITGA8*, COL4A5*, ITGA6*, ITGA5*, 
ITGA9*, 

 
Table 5. Pathways from 11 to 20 among the 20 most significant pathways, determined 
by their term p-values, found to be related to the subnetworks that are detected by the 
active subnetwork search, along with the genes associated with those pathways. 
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6.3.  Use of Threshold for Cluster Score 
 
 
At the end of the functional enrichment step, Term P-value scores are used to order 

KEGG pathways found to be associated with the subnetworks identified by the 

methodology. The use of these scores to evaluate the significance of the pathways is 

very effective since during the scoring process both the number of genes in the 

subnetwork that are found to be associated with the particular pathway and the size of 

the subnetwork are taken into account. However there is one downside to using this 

scoring scheme, and it is that in the case of having a small subnetwork where most of 

the genes have a p-value of 1, meaning that they are insignificant for RA, but are found 

to be associated with a specific pathway; and only a small number of the genes have a 

p-value lower than 0.05, but are not found to be associated with the aforementioned 

pathway; the scheme may give very low Term P-value scores to the pathway indicating 

that the pathway is an important one even though it is not a pathway significant for RA 

since the genes found to be in relation with the pathway are not significant genes for RA 

(p-value = 1). In order to avoid this issue, at the end of the MCL algorithm, a cluster 

score is assigned to each subnetwork which reflects the significance of the subnetwork 

in terms of relation to RA as explained in Section 5.2.6. The lower the cluster score is, 

the more significant the subnetwork is for RA. For this reason, before the functional 

enrichment step is carried out, subnetworks that have cluster scores higher than a given 

threshold are thought to be very insignificant for RA and thus eliminated. One example 

of such elimination can be seen in Table 6 and 7. Prior to elimination, pathways that are 

not involved in development of RA such as Ribosome, Nucleotide excision repair, RNA 

transport, DNA replication, Proteasome and Mismatch repair, can be mistakenly 

perceived as significant based on their Term P-values, but their Cluster Scores 

(Significance Scores) clearly shows their insignificance for RA. Therefore, in this 

thesis, it is proposed that in order to evaluate the importance of found subnetworks, the 

use of Term P-value scores by itself is not sufficient and can lead to irrelevant pathways 

being classified as significant. However, the use of Term P-value scores combined with 

our proposed Cluster Scores (Significance Scores) is very effective and gives more 

accurate results. 
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KEGG Term Significance 
Score 

Term                    
P-value 

Ribosome 0.550133 9.66E-126 
Nucleotide excision repair 0.148243 2.66E-61 
RNA transport 0.242717 4.56E-47 
ECM-receptor interaction 0.109866 2.16E-45 
Morphine addiction 0.087881 4.46E-45 
DNA replication 0.148243 2.15E-42 
Proteasome 0.247622 4.33E-38 
Notch signaling pathway 0.08836 2.59E-33 
Focal adhesion 0.109866 6.32E-32 
Circadian entrainment 0.087881 2.73E-30 
NF-kappa B signaling pathway 0.069851 2.09E-29 
GABAergic synapse 0.087881 2.86E-29 
Glutamatergic synapse 0.087881 3.19E-28 
Retrograde endocannabinoid signaling 0.087881 9.20E-28 
Cholinergic synapse 0.087881 9.57E-27 
Axon guidance 0.062392 6.85E-26 
Jak-STAT signaling pathway 0.074546 5.24E-25 
Serotonergic synapse 0.087881 6.46E-25 
Leukocyte transendothelial migration 0.074546 1.07E-24 
MAPK signaling pathway 0.033538 1.49E-23 
Dopaminergic synapse 0.087881 1.72E-23 
TGF-beta signaling pathway 0.073886 2.45E-23 
Mismatch repair 0.148243 4.45E-23 
Complement and coagulation cascades 0.096368 4.76E-21 
Toll-like receptor signaling pathway 0.069851 6.33E-19 
PI3K-Akt signaling pathway 0.109866 3.11E-17 

 

Table 6. The best scoring KEGG pathways that are associated with identified 
subnetworks before subnetwork elimination (according to the threshold of 0.12). The 
pathways which are striked-through are the ones to be eliminated. 
 

 

 

 



31 

 

 

 

 

 

 

 

 

KEGG Term Significance 
Score 

Term               
P-value 

ECM-receptor interaction 0.109866 2.16E-45 
Morphine addiction 0.087881 4.46E-45 
Notch signaling pathway 0.08836 2.59E-33 
Focal adhesion 0.109866 6.32E-32 
Circadian entrainment 0.087881 2.73E-30 
NF-kappa B signaling pathway 0.069851 2.09E-29 
GABAergic synapse 0.087881 2.86E-29 
Glutamatergic synapse 0.087881 3.19E-28 
Retrograde endocannabinoid signaling 0.087881 9.20E-28 
Cholinergic synapse 0.087881 9.57E-27 
Axon guidance 0.062392 6.85E-26 
Jak-STAT signaling pathway 0.074546 5.24E-25 
Serotonergic synapse 0.087881 6.46E-25 
Leukocyte transendothelial migration 0.074546 1.07E-24 
MAPK signaling pathway 0.033538 1.49E-23 
Dopaminergic synapse 0.087881 1.72E-23 
TGF-beta signaling pathway 0.073886 2.45E-23 
Complement and coagulation cascades 0.096368 4.76E-21 
Toll-like receptor signaling pathway 0.069851 6.33E-19 
PI3K-Akt signaling pathway 0.109866 3.11E-17 

 

Table 7. The best scoring KEGG pathways that are associated with identified 
subnetworks after subnetwork elimination (according to the threshold of 0.12). 
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6.4.  Comparative Studies 
 

In order to evaluate the performance of the proposed methodology, the results have 

been compared with the results of state-of-the-art techniques. One such technique is the 

program PANOGA [28] which uses the simulated annealing implemented in 

jActiveModules plugin [3] for the active subnetwork search and then the ClueGO 

plugin [32] of Cytoscape for the functional enrichment step. Data the method is applied 

upon is the PPI network from Goh et al.’s study [25] and GWAS data taken from 

WTCCC [22]. It is important to note that the same data is also used in this thesis, 

though they use both SPOT [29] and F-SNP [50] p-values to incorporate functional 

information into genes while we used only SPOT p-values. Since as a result of their 

study, they only report the 20 highest scoring pathways found by their methodology, we 

decided to base this comparison on those pathways even though they are not particularly 

the highest scoring pathways in our results. The other techniques chosen to be compared 

with our technique is Wu et al., Martin et al. and Zhang et al. It is important to note that, 

the methods they develop and the datasets they apply their techniques on differ from the 

ones used by this methodology to some extent. Wu et al. exploits text-mining [51], 

Martin et al. uses GWAS data from WTCCC and NARAC studies and performs 

pathway analysis to prioritize regions containing genes that are involved with RA [52] 

and Zhang et al. develops a multidimensional screening approach which was applied on 

GAW16 (Genetic Analysis Workshop) data [53].  

 

Comparative results of the performance of the proposed methodology and these four 

methods are shown in Table 8, in terms of number of genes found in commonly 

identified KEGG pathways. Additionally, since our program and the program 

PANOGA utilizes the same tool, the ClueGO plugin of Cytoscape, for the functional 

enrichment step, leading to the Term P-value scores being used to evaluate the detected 

KEGG pathways in both programs, our results are further compared with the results of 

PANOGA by using Term P-value scores. 

 

As can be seen in Table 8, the number of genes found by our methodology is higher, in 

most cases, than the genes found by the other methods. Additionally, the Term P-value 

given to the pathways to describe its significance in the subnetworks is almost always 

lower in our results than the results of PANOGA which indicates our results to be 
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superior since the pathways become more significant as their Term P-value gets lower. 

These results demonstrate that the methodology proposed in this thesis is superior to 

these four methods described performance-wise. 
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  Number of genes found Term P-values 

KEGG Term Martin 
et.al. 

Wu        
et.al. 

Zhang 
et.al. 

PANO
GA 

our 
method 

PANO 
GA 

our 
method 

Focal adhesion 0 36 32 30 46 9.33E-11 6.32E-32 
ErbB signaling pathway 0 23 0 20 10 2.13E-10 5.79E-13 
Tight junction 0 0 5 22 38 1.80E-08 1.99E-13 
Chemokine signaling 
pathway 

0 0 0 26 22 2.31E-08 3.24E-24 

Adherens junction 0 0 18 17 29 1.16E-07 8.83E-15 
Bacterial invasion of 
epithelial cells 

0 0 0 16 28 1.57E-07 3.10E-13 

Neurotrophin signaling 
pathway 

0 0 0 20 15 2.36E-07 9.69E-08 

Long-term potentiation 22 0 7 15 7 3.67E-07 1.61E-05 
Pathways in cancer 0 0 0 32 0 1.12E-06 0 
Chronic myeloid 
leukemia 

0 21 18 14 0 1.44E-06 0 

Cell adhesion molecules 
(CAMs) 

26 0 10 18 31 1.42E-05 1.02E-07 

Leukocyte 
transendothelial 
migration 

24 14 0 17 47 1.72E-05 1.07E-24 

T cell receptor signaling 
pathway 

21 16 16 16 26 2.70E-05 6.90E-08 

Toll-like receptor 
signaling pathway 

0 22 6 13 24 1.97E-03 6.33E-19 

Antigen processing and 
presentation 

0 0 3 11 22 2.08E-03 1.23E-10 

Allograft rejection 0 0 0 8 5 2.16E-03 4.13E-09 
MAPK signaling 
pathway 

0 43 34 20 28 6.13E-03 1.49E-23 

Type I diabetes mellitus 0 0 1 8 5 6.24E-03 8.74E-09 
Apoptosis 18 12 11 11 13 6.48E-03 1.38E-16 
Jak-STAT signaling 
pathway 

25 0 16 15 54 7.41E-03 5.24E-25 

Prostate cancer 0 22 0 11 9 5.04E-02 9.06E-04 
Calcium signaling 
pathway 

35 0 4 16 34 1.63E-01 4.79E-07 

VEGF signaling 
pathway 

0 15 13 9 0 2.71E-01 0 

 
Table 8. Comparison of KEGG pathways found by our method with previous studies in 
terms of number of genes associated within each KEGG term; and an additional 
comparison with method PANOGA in terms of the score, term p-values. 
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6.5.  Best Subnetworks and Potential Gene Markers 
 

Using term p-values and cluster score, we identified 3 significant subnetworks as the 

candidate active RA-associated subnetworks on the basis of their aggregate degree of 

genetic association with RA, in terms of the KEGG pathways found to be represented 

by them. These three subnetworks can be seen in Tables 9, 10 and 11. 

 

The first active subnetwork is composed of 727 genes and 727 edges, and 26 KEGG 

pathways are found to be associated with this subnetwork. Most of the KEGG pathways 

of this subnetwork are known to be related to RA either as a result of experimental 

studies: Jak-STAT signaling, Leukocyte transendothelial migration, T cell receptor 

signaling [28], B cell receptor signaling, Ras signaling, Rap1 signaling [54], Cytokine-

cytokine receptor interaction pathways; or as a result of computational studies: 

Adherens junction, Tight junction, Bacterial invasion of epithelial cells, Cell adhesion 

molecules (CAMS) [28] and Calcium signaling pathways [28, 45]. 

 

The second active subnetwork is composed of 72 genes and 71 edges, and there are 20 

KEGG pathways that are represented by this subnetwork. Almost half of these pathways 

have been found to be associated with RA through computational means: Morphine 

addiction, Glutamatergic synapse, Retrograde endocannabinoid signaling, Cholinergic 

synapse, Dopaminergic synapse and Long-term potentiation [45]; while some of them 

are shown to be related to RA experimentally: Circadian entrainment [36] and 

GABAergic synapse [41]. The fact that almost all of the mentioned pathways 

(Cholinergic synapse, Glutamatergic synapse, Dopaminergic synapse and Retrograde 

endocannabinoid signaling pathways) are synapse-related pathways and have been 

discovered to be related to RA (including Morphine addiction and Long-term 

potentiation also)  in the same previous study [45] demonstrates how closely related the 

genes in the subnetwork are to each other and to RA, proving the success of the MCL 

algorithm in clustering. 

 

The third active subnetwork is composed of 239 genes and 239 edges, and 20 KEGG 

pathways have been identified to be represented by this subnetwork. Some of those 

pathways have been shown to be RA-related previously through experimental work: 

NF-kappa B signaling [37], Toll-like receptor signaling [28], TNF signaling [55] and 
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Neurotrophin signaling [28]; and some through computational work: Measles [56] and 

Prostate cancer [28]. In addition, the involvement of Epstein-Barr virus (EBV) infection 

and RA has been investigated for more than two decades during which EBV has been 

speculated to be an environmental trigger for RA and even though a definite proof is yet 

to be discovered, a large amount of circumstantial evidence suggest a relation between 

them [57, 58]. Furthermore the NOD-like receptor signaling and RIG-I-like receptor 

signaling pathways found in this subnetwork are also believed to be related to RA [59] 

even though the mechanisms relating the two are not completely understood. 

 

Both based on their cluster score and the term p-values of the KEGG pathways 

associated with them, all 3 subnetworks described above are significant candidates to be 

recognized as active RA-associated subnetworks. The fact that most of their associated 

KEGG pathways have been discovered to be related to RA previously strongly supports 

this conclusion.  
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KEGG Term Significance      
Score 

Term                    
P-value 

Jak-STAT signaling pathway 0.074546 5.24E-25 
Leukocyte transendothelial migration 0.074546 1.07E-24 
Adherens junction 0.074546 8.83E-15 
Tight junction 0.074546 1.99E-13 
Bacterial invasion of epithelial cells 0.074546 3.10E-13 
Natural killer cell mediated cytotoxicity 0.074546 4.34E-13 
Fc gamma R-mediated phagocytosis 0.074546 1.01E-12 
B cell receptor signaling pathway 0.074546 4.86E-11 
Rap1 signaling pathway 0.074546 6.02E-11 
Fc epsilon RI signaling pathway 0.074546 1.61E-09 
Proteoglycans in cancer 0.074546 5.65E-09 
Gap junction 0.074546 6.00E-08 
T cell receptor signaling pathway 0.074546 6.90E-08 
Cell adhesion molecules (CAMs) 0.074546 1.02E-07 
Ras signaling pathway 0.074546 1.89E-07 
Calcium signaling pathway 0.074546 4.79E-07 
Platelet activation 0.074546 6.93E-07 
Regulation of actin cytoskeleton 0.074546 1.38E-06 
Phosphatidylinositol signaling system 0.074546 1.61E-06 
Pathogenic Escherichia coli infection 0.074546 2.26E-06 
Cytokine-cytokine receptor interaction 0.074546 8.14E-06 
cGMP-PKG signaling pathway 0.074546 1.32E-05 
cAMP signaling pathway 0.074546 2.48E-05 
HIF-1 signaling pathway 0.074546 2.16E-04 
Oxytocin signaling pathway 0.074546 5.93E-04 
Prolactin signaling pathway 0.074546 7.93E-04 

 
Table 9. The 26 pathways found to be related to the first active subnetwork that is 
composed of 727 genes and 727 edges. 
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KEGG Term Significance 

Score 
Term                      

P-value 

Morphine addiction 0.087881 4.46E-45 
Circadian entrainment 0.087881 2.73E-30 
GABAergic synapse 0.087881 2.86E-29 
Glutamatergic synapse 0.087881 3.19E-28 
Retrograde endocannabinoid signaling 0.087881 9.20E-28 
Cholinergic synapse 0.087881 9.57E-27 
Serotonergic synapse 0.087881 6.46E-25 
Dopaminergic synapse 0.087881 1.72E-23 
Alcoholism 0.087881 4.75E-16 
Taste transduction 0.087881 2.84E-12 
Ovarian steroidogenesis 0.087881 7.59E-11 
Bile secretion 0.087881 2.82E-09 
Gastric acid secretion 0.087881 9.99E-08 
Insulin secretion 0.087881 3.43E-07 
Salivary secretion 0.087881 5.15E-07 
Thyroid hormone synthesis 0.087881 1.46E-06 
Long-term potentiation 0.087881 1.61E-05 
Vasopressin-regulated water reabsorption 0.087881 2.49E-05 
Endocrine and other factor-regulated calcium 
reabsorption 

0.087881 7.31E-04 

Cocaine addiction 0.087881 8.93E-04 
 
Table 10. The 20 pathways found to be related to the second active subnetwork that is 
composed of 72 genes and 71 edges. 
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KEGG Term Significance 
Score 

Term                          
P-value 

NF-kappa B signaling pathway 0.069851 2.09E-29 
Toll-like receptor signaling pathway 0.069851 6.33E-19 
Epstein-Barr virus infection 0.069851 3.44E-16 
RIG-I-like receptor signaling pathway 0.069851 4.39E-15 
Toxoplasmosis 0.069851 5.04E-14 
Herpes simplex infection 0.069851 5.08E-14 
TNF signaling pathway 0.069851 1.16E-13 
Measles 0.069851 5.10E-13 
NOD-like receptor signaling pathway 0.069851 1.18E-12 
Osteoclast differentiation 0.069851 4.28E-11 
Hepatitis C 0.069851 5.66E-11 
Influenza A 0.069851 9.44E-09 
Cytosolic DNA-sensing pathway 0.069851 3.42E-08 
Neurotrophin signaling pathway 0.069851 9.69E-08 
Hepatitis B 0.069851 1.97E-07 
Chagas disease (American trypanosomiasis) 0.069851 1.16E-06 
Legionellosis 0.069851 1.21E-06 
Pertussis 0.069851 2.54E-06 
Shigellosis 0.069851 3.73E-04 
Prostate cancer 0.069851 9.06E-04 

 
Table 11. The 20 pathways found to be related to the third active subnetwork that is 
composed of 239 genes and 239 edges. 
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It is also important to note which genes are located in the centers of these subnetworks. 

As the nature of the algorithm that is used in this thesis for the detection of active 

subnetworks, the MCL algorithm finds the subnetworks by clustering and while doing 

so gathers the genes that are in the cluster around a central node that is the attractor and 

thus is expected to be a significant gene for the condition, which in this case is RA. 

Following this logic, the central genes of the subnetworks are also investigated with the 

hope that they may be used as potential gene markers. The genes that are located in the 

center of the first subnetwork are EGFR and TJP1; in the center of the second 

subnetwork is ADCY8; and in the center of the third subnetwork are HSPA1L and 

MED10. 

 

 

 

 

 

 

 

  Central Genes 

Subnetwork 1 EGFR, TJP1 
Subnetwork 2 ADCY8 
Subnetwork 3 HSPA1L, MED10 

 

Table 12. The genes that are found to be located in the centers of the best three 
subnetworks. 
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Significance      
Score 

Subnetwork           
Size 

Central Genes 

0.00697 35 ERBB4, NRG1 
0.013097 32 AGPAT1, PPAP2B 
0.021011 28 CD247, PTPN22 
0.029534 59 DSCAML1, MAGI3 
0.029804 59 C3, CFB 
0.033538 83 HLA-DMB, HLA-DRA 
0.061454 14 CNDP2, NDRG1 
0.062392 23 EFNA5, EPHA4 
0.064051 62 NRXN1, SYT1 
0.065805 109 HLA-DQA2, TLE1 
0.065857 11 ATG10, ATG7 
0.069395 18 AKAP9, KCNQ1 
0.069851 239 HSPA1L, MED10 
0.073886 58 BMP7, BMPR1B 
0.074007 161 CALM1 
0.074546 727 EGFR, TJP1 
0.07594 37 RALGDS, RAP1A 
0.08658 13 MDC1, MRE11A 

0.087881 72 ADCY8 
0.08836 88 MAML3, NOTCH4 

0.094491 15 CD28, IL12A 
0.096368 23 GGCX, PROS1 
0.097339 58 GNAI1, OPRD1 
0.103063 50 GLI1, SUFU 
0.109866 267 COL4A3, FN1 
0.119937 17 RAD51L1, RAD51L3 

 
Table 13. The genes that are found to be located in the centers of the subnetworks, 
along with the cluster score and size of the subnetworks. 
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Chapter 7 
 
 

CONCLUSION and FUTURE WORK 
 
 
 
 
In this thesis, a clustering algorithm method is proposed in which, a novel edge weight 

calculation scheme to represent the interactions in the network, the Markov Cluster 

algorithm for the active subnetwork search, a scoring scheme to appoint scores for each 

found subnetwork and an elimination of subnetworks depending on those scores, is 

implemented, for the detection of active subnetworks in the human protein-protein 

interaction network. This method is applied on a real dataset (WTCCC-RA), followed 

by a functional enrichment step and the results are compared with the results of 

PANOGA [28] and methods proposed by Wu et al. [51], Martin et al. [52] and Zhang et 

al. [53]. The performed experiments demonstrate that the proposed method could 

successfully extract maximal scoring active subnetworks in human PPI networks and 

detect significant Rheumatoid Arthritis related subnetworks. The comparative study 

indicates that the presented technique outperforms the state-of-the-art active subnetwork 

search techniques. Therefore, it is proposed that this method can be applied upon the 

datasets of other complex diseases to discover active disease-associated subnetworks. 

 

In the future studies, it is suggested to investigate the relation of the genes that are found 

to be located in the 3 maximal scoring subnetworks, to RA. Since the central genes of 

these subnetworks are especially significant due to the reason of acting as the attractor 

gene to all of the other genes in the cluster, a special interest should be paid to them. It 

is highly likely that they play an important role in the development of Rheumatoid 

Arthritis and thus they can be used as gene markers in the detection of the disease. 

Therefore, as a future experimental study, the mechanisms relating these genes to RA 

can be analyzed and it may be investigated if they can accurately discover the disease if 
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they were to be utilized as gene markers. Furthermore, they can also be studied to see if 

treatment strategies can be devised by targeting them through therapeutic approaches.  
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APPENDIX 
 

 

 

 

 

 

 

KEGG Term Significance 
Score 

Term                       
P-value 

Nucleotide excision repair 0.228724 2.62E-60 
DNA replication 0.228724 1.39E-44 
Morphine addiction 0.217203 3.71E-39 
Basal transcription factors 0.212178 1.99E-37 
Notch signaling pathway 0.243467 2.32E-28 
Glutamatergic synapse 0.217203 4.40E-26 
Circadian entrainment 0.217203 9.06E-26 
Retrograde endocannabinoid signaling 0.217203 3.14E-25 
GABAergic synapse 0.217203 1.87E-24 
Dopaminergic synapse 0.217203 4.22E-23 
Cholinergic synapse 0.217203 1.57E-22 
Serotonergic synapse 0.217203 1.87E-22 
Mismatch repair 0.228724 6.13E-21 
RNA polymerase 0.212178 2.11E-20 
Pyrimidine metabolism 0.212178 2.04E-14 
Cytosolic DNA-sensing pathway 0.212178 3.22E-14 
Apoptosis 0.223952 3.26E-14 
Cell cycle 0.228724 5.40E-14 
Complement and coagulation cascades 0.020834 5.46E-13 
ECM-receptor interaction 0.262625 3.30E-12 

 
Table 14. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 2, inflation parameter 2 and threshold 0.28. 
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KEGG Term Significance 
Score 

Term                     
P-value 

DNA replication 0.21225 1.41E-46 
Nucleotide excision repair 0.21225 1.20E-44 
Basal transcription factors 0.208244 3.35E-31 
Notch signaling pathway 0.243467 2.32E-28 
GABAergic synapse 0.218292 3.67E-26 
Morphine addiction 0.218292 7.01E-26 
Circadian entrainment 0.218292 1.60E-25 
Retrograde endocannabinoid signaling 0.218292 5.19E-25 
Cholinergic synapse 0.218292 3.13E-24 
Glutamatergic synapse 0.218292 5.19E-24 
Mismatch repair 0.21225 7.23E-22 
Serotonergic synapse 0.218292 2.58E-20 
Dopaminergic synapse 0.218292 1.55E-17 
Complement and coagulation cascades 0.020834 5.46E-13 
Cell cycle 0.21225 2.38E-12 
Staphylococcus aureus infection 0.020834 4.18E-11 
Homologous recombination 0.21225 1.68E-10 
mTOR signaling pathway 0.055623 9.95E-10 
Dorso-ventral axis formation 0.011087 2.86E-09 
Taste transduction 0.218292 2.26E-08 

 
Table 15. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 2, inflation parameter 2.5 and threshold 0.28. 
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KEGG Term Significance 
Score 

Term                        
P-value 

DNA replication 0.253588 4.00E-47 
Nucleotide excision repair 0.253588 2.49E-40 
Basal transcription factors 0.205027 3.97E-29 
Notch signaling pathway 0.243467 2.32E-28 
GABAergic synapse 0.25613 4.22E-25 
Morphine addiction 0.25613 8.06E-25 
Circadian entrainment 0.25613 1.84E-24 
Retrograde endocannabinoid signaling 0.25613 5.94E-24 
Cholinergic synapse 0.25613 3.57E-23 
Glutamatergic synapse 0.25613 5.91E-23 
Mismatch repair 0.253588 4.15E-22 
Serotonergic synapse 0.25613 3.11E-21 
Chemokine signaling pathway 0.25613 1.24E-20 
Dopaminergic synapse 0.25613 1.01E-16 
Complement and coagulation cascades 0.020834 5.46E-13 
Cell cycle 0.253588 1.34E-12 
Staphylococcus aureus infection 0.020834 4.18E-11 
Homologous recombination 0.253588 1.22E-10 
Dorso-ventral axis formation 0.008507 9.55E-10 
Base excision repair 0.253588 2.46E-08 

 
Table 16. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 2, inflation parameter 3 and threshold 0.28. 
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KEGG Term Significance 
Score 

Term                        
P-value 

DNA replication 0.275742 5.32E-48 
Nucleotide excision repair 0.275742 9.73E-39 
Notch signaling pathway 0.218395 1.66E-29 
GABAergic synapse 0.262436 8.61E-25 
Morphine addiction 0.262436 1.64E-24 
Circadian entrainment 0.262436 3.75E-24 
Retrograde endocannabinoid signaling 0.262436 1.21E-23 
Cholinergic synapse 0.262436 7.25E-23 
Glutamatergic synapse 0.262436 1.20E-22 
Mismatch repair 0.275742 1.73E-22 
Serotonergic synapse 0.262436 5.96E-21 
Chemokine signaling pathway 0.262436 2.64E-20 
Dopaminergic synapse 0.262436 1.74E-16 
Complement and coagulation cascades 0.020834 5.46E-13 
Cell cycle 0.275742 1.26E-11 
Staphylococcus aureus infection 0.020834 4.18E-11 
Dorso-ventral axis formation 0.011932 9.55E-10 
Homologous recombination 0.275742 4.54E-09 
Base excision repair 0.275742 1.60E-08 
Taste transduction 0.262436 6.28E-08 

 
Table 17. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 2, inflation parameter 3.5 and threshold 0.28. 
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KEGG Term Significance 
Score 

Term                        
P-value 

DNA replication 0.294674 2.24E-48 
Nucleotide excision repair 0.294674 4.44E-39 
Basal transcription factors 0.345756 1.09E-29 
Notch signaling pathway 0.218395 1.66E-29 
GABAergic synapse 0.346668 3.72E-23 
Morphine addiction 0.346668 6.82E-23 
Mismatch repair 0.294674 1.09E-22 
Circadian entrainment 0.346668 1.48E-22 
Retrograde endocannabinoid signaling 0.346668 4.44E-22 
Cholinergic synapse 0.346668 2.39E-21 
Glutamatergic synapse 0.346668 3.83E-21 
Serotonergic synapse 0.346668 1.81E-19 
Dopaminergic synapse 0.346668 3.92E-15 
Complement and coagulation cascades 0.020834 5.46E-13 
Staphylococcus aureus infection 0.020834 4.18E-11 
Dorso-ventral axis formation 0.011932 9.55E-10 
Homologous recombination 0.294674 3.35E-09 
Base excision repair 0.294674 1.18E-08 
Taste transduction 0.346668 4.55E-08 
Fanconi anemia pathway 0.294674 3.82E-07 

 
Table 18. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 2, inflation parameter 4 and threshold 0.35. 
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KEGG Term Significance 
Score 

Term                     
P-value 

ECM-receptor interaction 0.091926 2.54E-51 
Focal adhesion 0.091926 1.26E-37 
Morphine addiction 0.080974 2.47E-34 
NF-kappa B signaling pathway 0.081024 1.30E-32 
Notch signaling pathway 0.11082 1.36E-31 
Apoptosis 0.081024 1.57E-30 
Axon guidance 0.070037 3.57E-30 
Complement and coagulation cascades 0.091926 4.43E-29 
Jak-STAT signaling pathway 0.067762 1.17E-25 
Leukocyte transendothelial migration 0.067762 1.24E-24 
Circadian entrainment 0.080974 4.70E-23 
Natural killer cell mediated cytotoxicity 0.067762 1.11E-22 
Cholinergic synapse 0.080974 1.61E-22 
PI3K-Akt signaling pathway 0.091926 2.62E-22 
Toll-like receptor signaling pathway 0.081024 8.28E-22 
TGF-beta signaling pathway 0.10762 5.10E-21 
RIG-I-like receptor signaling pathway 0.081024 3.51E-20 
TNF signaling pathway 0.081024 4.60E-20 
Measles 0.081024 5.88E-20 
GABAergic synapse 0.080974 9.79E-20 

 
Table 19. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 3, inflation parameter 2 and threshold 0.12. 
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KEGG Term Significance 
Score 

Term                 
P-value 

ECM-receptor interaction 0.116181 4.51E-50 
Morphine addiction 0.08146 6.86E-47 
Focal adhesion 0.116181 1.18E-35 
Notch signaling pathway 0.086308 1.42E-33 
Circadian entrainment 0.08146 4.86E-30 
GABAergic synapse 0.08146 4.94E-29 
Glutamatergic synapse 0.08146 5.68E-28 
NF-kappa B signaling pathway 0.079797 1.16E-27 
Axon guidance 0.070037 1.31E-27 
Retrograde endocannabinoid signaling 0.08146 1.58E-27 
Cholinergic synapse 0.08146 1.65E-26 
Jak-STAT signaling pathway 0.07494 2.39E-25 
Serotonergic synapse 0.08146 1.08E-24 
Dopaminergic synapse 0.08146 2.86E-23 
Leukocyte transendothelial migration 0.07494 3.86E-23 
Complement and coagulation cascades 0.086646 1.41E-21 
TGF-beta signaling pathway 0.063987 2.27E-21 
Toll-like receptor signaling pathway 0.079797 4.78E-20 
PI3K-Akt signaling pathway 0.116181 5.37E-20 
Natural killer cell mediated cytotoxicity 0.07494 1.75E-19 

 
Table 20. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 3, inflation parameter 2.5 and threshold 0.12. 
 
 

 

 

 

 

 



57 

 

 

 

 

 

 

 

 

KEGG Term Significance 
Score 

Term                  
P-value 

ECM-receptor interaction 0.109866 2.16E-45 
Morphine addiction 0.087881 4.46E-45 
Notch signaling pathway 0.08836 2.59E-33 
Focal adhesion 0.109866 6.32E-32 
Circadian entrainment 0.087881 2.73E-30 
NF-kappa B signaling pathway 0.069851 2.09E-29 
GABAergic synapse 0.087881 2.86E-29 
Glutamatergic synapse 0.087881 3.19E-28 
Retrograde endocannabinoid signaling 0.087881 9.20E-28 
Cholinergic synapse 0.087881 9.57E-27 
Axon guidance 0.062392 6.85E-26 
Jak-STAT signaling pathway 0.074546 5.24E-25 
Serotonergic synapse 0.087881 6.46E-25 
Leukocyte transendothelial migration 0.074546 1.07E-24 
MAPK signaling pathway 0.033538 1.49E-23 
Dopaminergic synapse 0.087881 1.72E-23 
TGF-beta signaling pathway 0.073886 2.45E-23 
Complement and coagulation cascades 0.096368 4.76E-21 
Toll-like receptor signaling pathway 0.069851 6.33E-19 
PI3K-Akt signaling pathway 0.109866 3.11E-17 

 
Table 21. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 3, inflation parameter 3 and threshold 0.12. 
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KEGG Term Significance 
Score 

Term                  
P-value 

ECM-receptor interaction 0.100874 3.85E-45 
Morphine addiction 0.083949 1.09E-44 
Notch signaling pathway 0.089066 2.43E-32 
Focal adhesion 0.100874 1.16E-31 
Circadian entrainment 0.083949 1.05E-29 
GABAergic synapse 0.083949 1.27E-28 
Glutamatergic synapse 0.083949 9.86E-28 
Retrograde endocannabinoid signaling 0.083949 3.45E-27 
Leukocyte transendothelial migration 0.070723 2.91E-26 
Cholinergic synapse 0.083949 3.21E-26 
Axon guidance 0.062392 6.85E-26 
Jak-STAT signaling pathway 0.070723 3.77E-25 
MAPK signaling pathway 0.030788 1.13E-24 
Serotonergic synapse 0.083949 2.25E-24 
TGF-beta signaling pathway 0.087756 2.45E-23 
Dopaminergic synapse 0.083949 5.10E-23 
Complement and coagulation cascades 0.119912 3.96E-19 
NF-kappa B signaling pathway 0.057181 2.26E-18 
PI3K-Akt signaling pathway 0.100874 5.04E-17 
Regulation of autophagy 0.050172 8.75E-16 

 
Table 22. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 3, inflation parameter 3.5 and threshold 0.12. 
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KEGG Term Significance 
Score 

Term                     
P-value 

ECM-receptor interaction 0.098358 2.16E-45 
Morphine addiction 0.085889 6.56E-43 
Notch signaling pathway 0.095922 2.59E-33 
Focal adhesion 0.098358 6.32E-32 
Circadian entrainment 0.085889 4.12E-28 
Leukocyte transendothelial migration 0.069522 2.89E-27 
GABAergic synapse 0.085889 5.20E-27 
Glutamatergic synapse 0.085889 3.09E-26 
MAPK signaling pathway 0.033703 4.16E-26 
Jak-STAT signaling pathway 0.069522 4.94E-26 
Axon guidance 0.062392 6.85E-26 
Retrograde endocannabinoid signaling 0.085889 1.19E-25 
Cholinergic synapse 0.085889 9.85E-25 
TGF-beta signaling pathway 0.081018 4.59E-23 
Serotonergic synapse 0.085889 6.45E-23 
Dopaminergic synapse 0.085889 1.24E-21 
NF-kappa B signaling pathway 0.060653 9.12E-20 
Complement and coagulation cascades 0.031087 3.34E-19 
PI3K-Akt signaling pathway 0.098358 3.11E-17 
Regulation of autophagy 0.050172 8.75E-16 

 
Table 23. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 3, inflation parameter 4 and threshold 0.12. 
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KEGG Term Significance 
Score 

Term                 
P-value 

Morphine addiction 0.121026 2.76E-46 
Complement and coagulation cascades 0.076994 9.38E-39 
Jak-STAT signaling pathway 0.094846 7.49E-35 
Circadian entrainment 0.121026 4.53E-33 
ErbB signaling pathway 0.094846 6.70E-31 
GABAergic synapse 0.121026 4.68E-30 
Glutamatergic synapse 0.121026 4.75E-29 
Retrograde endocannabinoid signaling 0.121026 1.51E-28 
ECM-receptor interaction 0.10869 1.36E-27 
Cholinergic synapse 0.121026 1.58E-27 
Transcriptional misregulation in cancer 0.084129 6.65E-25 
Valine, leucine and isoleucine degradation 0.062028 3.17E-24 
Serotonergic synapse 0.121026 6.48E-24 
Chemokine signaling pathway 0.121026 4.44E-22 
T cell receptor signaling pathway 0.094846 3.11E-21 
Dopaminergic synapse 0.121026 6.20E-21 
Natural killer cell mediated cytotoxicity 0.094846 1.14E-18 
B cell receptor signaling pathway 0.094846 1.75E-18 
Fc gamma R-mediated phagocytosis 0.094846 3.57E-18 
Fc epsilon RI signaling pathway 0.094846 9.44E-18 

 
Table 24. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 4, inflation parameter 2 and threshold 0.16. 
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KEGG Term Significance 
Score 

Term                 
P-value 

Morphine addiction 0.152546 1.43E-44 
Circadian entrainment 0.152546 1.63E-31 
GABAergic synapse 0.152546 1.66E-28 
Glutamatergic synapse 0.152546 1.29E-27 
Retrograde endocannabinoid signaling 0.152546 4.52E-27 
Complement and coagulation cascades 0.086029 1.40E-26 
Cholinergic synapse 0.152546 4.20E-26 
ECM-receptor interaction 0.066727 6.54E-24 
B cell receptor signaling pathway 0.13378 7.82E-24 
Jak-STAT signaling pathway 0.108349 1.24E-23 
Serotonergic synapse 0.152546 1.52E-22 
Dopaminergic synapse 0.152546 2.92E-21 
Fc gamma R-mediated phagocytosis 0.13378 3.39E-21 
Cell cycle 0.157265 4.99E-21 
Chemokine signaling pathway 0.152546 6.43E-21 
Valine, leucine and isoleucine degradation 0.077613 3.61E-19 
Apoptosis 0.123193 4.34E-18 
Fc epsilon RI signaling pathway 0.13378 1.47E-16 
Natural killer cell mediated cytotoxicity 0.13378 7.01E-16 
T cell receptor signaling pathway 0.13378 8.91E-16 

 
Table 25. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 4, inflation parameter 2.5 and threshold 0.16. 
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KEGG Term Significance 
Score 

Term                     
P-value 

Morphine addiction 0.153488 9.29E-43 
Circadian entrainment 0.153488 8.41E-32 
GABAergic synapse 0.153488 9.26E-29 
Glutamatergic synapse 0.153488 6.93E-28 
Retrograde endocannabinoid signaling 0.153488 2.52E-27 
Cholinergic synapse 0.153488 2.34E-26 
Serotonergic synapse 0.153488 9.14E-23 
ECM-receptor interaction 0.143751 1.05E-22 
Dopaminergic synapse 0.153488 1.75E-21 
B cell receptor signaling pathway 0.144153 3.28E-21 
Chemokine signaling pathway 0.153488 3.63E-21 
Valine, leucine and isoleucine degradation 0.077613 3.61E-19 
Fc gamma R-mediated phagocytosis 0.144153 7.60E-19 
Jak-STAT signaling pathway 0.111467 7.04E-18 
ErbB signaling pathway 0.144153 7.25E-18 
Apoptosis 0.099167 1.04E-16 
Osteoclast differentiation 0.144153 1.35E-16 
Natural killer cell mediated cytotoxicity 0.144153 2.24E-16 
Alcoholism 0.153488 9.52E-16 
Fc epsilon RI signaling pathway 0.144153 1.66E-15 

 
Table 26. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 4, inflation parameter 3 and threshold 0.16. 
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KEGG Term Significance 
Score 

Term                 
P-value 

Morphine addiction 0.149316 9.29E-43 
Circadian entrainment 0.149316 8.41E-32 
GABAergic synapse 0.149316 9.26E-29 
Glutamatergic synapse 0.149316 6.93E-28 
Retrograde endocannabinoid signaling 0.149316 2.52E-27 
Cholinergic synapse 0.149316 2.34E-26 
ECM-receptor interaction 0.190868 5.84E-23 
Serotonergic synapse 0.149316 9.14E-23 
Dopaminergic synapse 0.149316 1.75E-21 
Chemokine signaling pathway 0.149316 3.63E-21 
Valine, leucine and isoleucine degradation 0.077613 3.61E-19 
Natural killer cell mediated cytotoxicity 0.186387 3.96E-17 
Apoptosis 0.113795 1.79E-16 
Fc gamma R-mediated phagocytosis 0.186387 1.88E-16 
Alcoholism 0.149316 9.52E-16 
B cell receptor signaling pathway 0.186387 2.05E-15 
Complement and coagulation cascades 0.026537 6.19E-15 
Osteoclast differentiation 0.186387 9.36E-15 
Fc epsilon RI signaling pathway 0.186387 3.68E-14 
TGF-beta signaling pathway 0.145419 3.88E-14 

 
Table 27. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 4, inflation parameter 3.5 and threshold 0.20. 
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KEGG Term Significance 
Score 

Term                 
P-value 

Morphine addiction 0.132583 2.26E-41 
Basal transcription factors 0.138179 1.43E-35 
Circadian entrainment 0.132583 1.62E-28 
GABAergic synapse 0.132583 2.20E-27 
Glutamatergic synapse 0.132583 1.22E-26 
Retrograde endocannabinoid signaling 0.132583 5.05E-26 
Cholinergic synapse 0.132583 4.19E-25 
ECM-receptor interaction 0.190868 5.84E-23 
Serotonergic synapse 0.132583 1.55E-21 
Dopaminergic synapse 0.132583 2.53E-20 
Chemokine signaling pathway 0.132583 3.60E-20 
Valine, leucine and isoleucine degradation 0.077613 3.61E-19 
Cell cycle 0.187381 2.32E-17 
RNA polymerase 0.138179 1.61E-16 
Apoptosis 0.108758 1.79E-16 
B cell receptor signaling pathway 0.218297 2.61E-15 
Natural killer cell mediated cytotoxicity 0.218297 6.16E-15 
Complement and coagulation cascades 0.026537 6.19E-15 
Fc epsilon RI signaling pathway 0.218297 5.55E-14 
Staphylococcus aureus infection 0.026537 4.45E-13 

 
Table 28. The 20 most significant pathways, determined by their term p-values, found 
to be related to the subnetworks that are detected by the active subnetwork search, using 
expansion parameter 4, inflation parameter 4 and threshold 0.24. 
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