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In this dissertation, we study three emerging problems in revenue management.

First problem is about optimal capacity allocation in single-leg airline revenue man-

agement with overbooking. We propose new static and dynamic models. The static

problems are difficult to solve optimally. Therefore, we introduce approximate models,

which provide upper and lower bounds on the optimal expected revenues. In the dy-

namic case, we propose a model based on two streams of events; the arrivals of booking

requests and cancellations. Following the characterization of the optimal policy, we also

present the nested structure of the optimal allocations.

Second problem is about optimal capacity allocation in the presence of a contin-

gent commitment option. This option has been recently offered by airline systems to

provide purchase flexibility to the customers. The problem becomes finding the revenue

maximizing policy for contingent commitments and advance bookings. We first propose

a dynamic programming model. Since it is computationally intractable, we develop an

alternate dynamic model based on geometric approximation. In our numerical study,
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we investigate the effect of the commitment option on various test instances.

In the third problem, we investigate optimal room allocation policies in hotel

revenue management. Long-term stays are very common in hotel industry. Therefore,

it is crucial to consider allocation of multiple-day capacities when responding to a

request. This requirement leads to solving large-scale network problems, which are

computationally challenging. Therefore, we work on various decomposition methods to

find reservation policies for walk-in and stay-over customers. We also devise solution

algorithms to solve large problems efficiently.

vi
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Nurşen Aydın

Doktora Tezi, 2014
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Bu tezde, gelir yönetimi alanındaki üç güncel problem çalışılmıştır. İlk problemde

amaç, kapasite üstü rezervasyona izin verilen bir uçuşun toplam kapasitesinin, geliri

enbüyükleyecek şekilde yolcu sınıflarına ayrılmasıdır. Bu problem için yeni statik ve

dinamik modeller önerilmiştir. Statik problemlerin karmaşık yapılarından dolayı, en

iyi beklenen gelir için alt ve üst sınırları veren yeni modeller sunulmuştur. Dinamik

problemde ise, rezervasyon ve iptaller için iki akış temelli bir dinamik programlama

modeli önerilmiştir. Ayrıca elde edilen en iyi politikanın yapısı incelenerek, en uygun

kapasite dağıtımının içiçe bir yapıda olduğu gösterilmiştir.

İkinci problemde geçici rezervasyon seçeneğini içeren kapasite dağıtım problemi

incelenmiştir. Bu seçenek, müşterilere alım esnekliği sağlaması amacıyla havayolları re-

zervasyon sistemleri tarafından yakın zamanda sunulmaya başlanmıştır. Bu doğrultuda

ele aldığımız problemin amacı, geçici ve kesin rezervasyonlar için karar politikasının

belirlenmesidir. İlk önce bir dinamik programlama modeli önerilmiştir. Ancak bu

modelin çözülmesi çok güç olduğundan, geometrik yakınsamaya dayalı alternatif bir

dinamik programlama modeli geliştirilmiştir. Geçici rezervasyon seçeneğinin etkileri

sayısal örnekler üzerinde test edilmiştir.
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Üçüncü problemde, otel gelir yönetiminde oda dağıtımı incelenmiştir. Müşterilerin

uzun süreli konaklaması otel endüstrisinde çok yaygındır. Bu nedenle, müşteri talep-

lerine cevap verirken kapasitesi kullanılan bütün günleri göz önünde bulundurmak çok

önemlidir. Dolayısıyla karşımıza büyük ölçekli ve çözülmeleri oldukça zor ağ problemleri

çıkmaktadır. Bu çalışmada, rezervasyonsuz gelen ve kalış süresini uzatmak isteyen

müşteriler için rezervasyon politikalarını belirleyen ayrıştırma yöntemleri incelenmiştir.

Ayrıca büyük ölçekli problemleri daha etkili çözmeyi sağlayacak çözüm algoritmaları

geliştirilmiştir.
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Chapter 1

INTRODUCTION

Revenue management’s (RM) focus upon the techniques and strategies in product avail-

ability and pricing makes RM one of the most important operations research practices.

Historically, airline industry plays the steering role in revenue management. This promi-

nence can be attributed to the quick responses of the airline executives, who have

realized the importance of controlling the reservation process to increase their gains

throughout a fiscal year. The major development in revenue management began with

the 1978 deregulation of the U.S. airline industry. With this act, airline companies

also began to manage their own schedules and prices. Low-cost carriers entered the

market that increased the competition between airlines. Major airlines began imple-

menting revenue management practices to compete with the low-cost carriers. The

main problem, then and now, in revenue management has been to determine how to

reserve the seats for the requests coming from the passengers. The first studies on

airline revenue management (ARM) focused on single-leg flight problems. After airline

companies began to use hub-and-spoke networks to manage their operations, network

airline revenue management became an active area of research. Hub-and-spoke struc-

ture allow many origin-destination pairs to be served with different flights. It is well

known today that many airline companies are interested in managing their revenues

over a network of flights. However, network problem is difficult to solve because it

includes multiple legs and leg capacities are shared among different flights. The state

space of the network problem basically becomes the Cartesian product of flight capac-
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ities in the network. Due to this complex structure, network problems are treated by

using various approximations. Achieving a good balance between the quality and the

efficiency of the approximation method becomes the primary challenge. For a historical

account of the role of airline industry in revenue management, we refer to [80, Section

1.2] .

Capacity allocation, overbooking and pricing are the main strategies used by air-

line revenue management specialists. While capacity allocation deals with reserving

seats for different fare classes, overbooking is concerned with the number of additional

booking requests to be accepted above the physical capacity. It is quite common that a

certain percentage of the accepted requests cancel before the departure time (cancella-

tions) or do not show-up at the departure time (no-shows). Consequently, the capacity

becomes available for boarding overbooked passengers. Thus, overbooking is used by

the airline companies to protect themselves against vacant seats due to no-shows and

late cancellations. On the other hand, some of the reservations may be denied boarding

due to the lack of capacity at the departure time. In such a case, the airline faces

penalties such as monetary compensations, and even worse, suffers from bad public

relations. Even though the overbooking decision involves uncertainties regarding the

no-shows and cancellations, accepting more booking requests than available capacity is

still a commonly-used, profitable strategy because the revenue collected by overbook-

ing usually exceeds the penalties for denied boardings [73]. In capacity allocation and

overbooking models, it is assumed that prices are fixed and fare classes are controlled

by opening or closing decisions as demand evolved. Pricing strategy deals with the

problem of determining the set of prices of the fare classes that will maximize the total

expected revenue. After reservation systems started using online sale channels, pricing

has thus become an important control mechanism for the airlines [14]. Bungart [67]

presents a comprehensive review of the pricing and capacity control strategies and he

states that pricing can be considered as a special case of capacity control when prices

are used as control variables.

The control of the flight capacities plays an important role in most of the revenue

management strategies. Recent studies focus on mitigating the effects of demand un-
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certainty in the market. Revenue management practices use various types of options as

new ways to differentiate products and effectively manage the demand uncertainty [42].

Many customers have uncertain valuations of the product in advance of its delivery.

For instance, the travel time of a customer can be changed due to the unknown future

constraints or sport fans would not want to attend the tournament if their favored team

was eliminated. By offering various options together with the specific products, service

providers aim to attract those customers who otherwise would not consider to buy. Up-

grades, flexible products, refundable fares and opaque selling can be given as examples

to these options. While options offer purchase flexibility to customers, they also provide

additional revenue to the service providers [40]. Despite the fact that the airline in-

dustry pioneered the use of revenue management techniques, with these new strategies,

many other service industries now benefit from revenue management applications. RM

techniques can be applicable to any industry with volatile demand and selling fixed,

perishable capacity [49]. Today, a wide range of industries, such as; hotels (e.g. Bitran

and Mondschein [15]), car rental agencies (e.g. Carol and Grimes [21]), cargo industries

(e.g. Popescu [70]), retailers (e.g. Bitran and Mondschein [16]) and Internet providers

(e.g. Nair and Bapna [68]) have adopted revenue management practices. Chiang et

al. [26] provide a comprehensive review of the revenue management studies in different

industries. However, RM applications in those sectors are not common as they are in

the airline industry. Ivanov and Zhechev [47] outline that there is a comparable gap

between hotel and airline RM literature. Although hotel industry is one of the main

application areas of revenue management, the techniques developed for ARM problems

have generally been used in the hotel reservation system after simplifying the problem.

In this thesis, we work on capacity control problems in single-leg and network

revenue management. Considering new developments in airline and hotel industry, we

address the gaps in the literature and concentrate our efforts on new models that are

important for the applications of revenue management. In this context, we first work

on overbooking and option problems in single-leg revenue management and then focus

on network capacity allocation problems in hotel RM. As these problems are difficult

to solve, approximation methods have been employed in the literature to simplify. Our
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focus is to develop more realistic models compared to the proposed models in the

literature. Moreover, we introduce new concepts which are widely used in airline RM.

1.1 Motivation and Contributions

Airline revenue management is an active area of research. The high interest of airline

companies led to an acceleration in studies in this area after 1990s. Many solution

approaches have been designed and theoretical results obtained for capacity allocation

problem [80]. Nonetheless, joint capacity allocation and overbooking problem has not

been thoroughly studied. Models with overbooking are difficult to handle as the state-

space in dynamic formulations increases significantly. Hence, in almost all cases, an

approximation to the problem is solved. The first studies in this area focus on finding the

overbooking limit by ignoring the capacity allocation. The following studies concentrate

both on the capacity control and overbooking decisions. However, most of these studies

have considered overbooking limit as an input parameter. A common practice is first

setting the virtual capacity and then doing the allocations (c.f. Belobaba [11]). This

heuristic approach, in fact, undermines the effects of these two decisions on each other.

Therefore, it is natural to study the joint capacity allocation and overbooking problem

which is, in general, difficult to solve largely because of the uncertainty in demand,

no-shows and cancellations.

This is what we provide in the first part of the thesis. The approach we propose

aims to provide joint capacity allocation and overbooking policy. We study the prop-

erties of the model and propose new mathematical programming models for static and

dynamic single-leg problems that involve no-shows, cancellations, and hence, overbook-

ing. Our first static model focuses on finding the total overbooking limit for multiple

classes under the assumption that the fare class requests are accepted as long as the

total number of reservations is below the total booking limit. This model allows for

class-dependent cancellations and no-shows. To the best of our knowledge, our model is

a first in the literature in determining an optimal total booking limit under this broad

setting. As a by-product of our approach, we also discover that a well-known heuristic

from the literature finds an optimal overbooking limit whenever the particular parame-
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ters dictated by our analysis are used. In the second static model, which also considers

the class-dependent no-shows and cancellations, we determine simultaneously the total

booking limit and the partitioned allocation of the virtual capacity to each fare class.

Arriving at a computationally difficult model, we propose upper and lower bounding

problems to obtain approximate solutions, which have demonstrated promising perfor-

mance in our computational study. We also derive bounds on the error introduced

by solving the upper bounding problem instead of the corresponding original static

model. Our last model involves a dynamic setting based on two independent streams

of events; arrivals of booking requests and cancellations. Contrary to the static case,

the dynamic setting deals with the class-independent show-ups and cancellations. The

proposed model, therefore, can be used as a heuristic in practice for the actual model

with class-dependent processes.

The second theme we address in this thesis is a relatively new application, namely

contingent commitment options, in the airline reservation systems. Revenue manage-

ment systems focus on designing services to manage demand risk, improve capacity

utilization and increase revenues. Recently, the airline reservation systems offer the

contingent commitment option to attract customers who are price sensitive and have

uncertain travel time. This option allows passengers to reserve a seat for a certain

duration of time within the reservation period before making a buy or a leave decision.

Commitment option has been widely adopted by many airline companies that even

dedicated web based services, such as OptionsAway, have been launched [91].

From an airline perspective, every committed seat provides an additional revenue

from the non-refundable fee. However, offering aforementioned options may cannibal-

ize demand by blocking the expensive fare class customers, if the capacity management

is poor. In addition, this option also creates another source of uncertainty causing

probable revenue loss due to empty seats. In this thesis, we introduce the commit-

ment concept to the revenue management literature. We develop single-leg revenue

management models that consider such contingent commitment decisions. We start

with a dynamic programming model of this problem. This model is computationally

intractable as it requires storing a multi-dimensional state space due to book-keeping
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of the committed seats. To alleviate this difficulty, we propose an alternate dynamic

programming formulation. We also present a deterministic linear programming model

that gives an upper bound on the optimal expected revenue from the intractable dy-

namic programming model. We study the properties of the model and examine how

does offering commitment options to customers affect overall revenue.

The third theme we address in this thesis is related to capacity allocation problem

in hotel revenue management. Hotel RM problem has a linear network structure and

hence it can be defined as a special case of airline network revenue management problem.

However, due to the problem structure, the techniques developed for network problem

may not be directly applicable. First, multi-night stay in hotels is quite common.

While a flight itinerary generally includes at most three legs, number of nights in a

hotel itinerary can be as high as twelve [96]. Second, demand structure is different.

Hotel customers can change their length of accommodation even while staying in the

hotel. However, it is not possible for an airline customer to alter her reservation once she

is on board in a flight [49]. Moreover, while airline customers generally make advance

purchases, a good portion of the hotel customers are constituted by walk-ins and even

the early reservations in the booking period can cancel for free.

The literature on capacity control problem for hotel industry is not as mature

as the one for airline industry. Due to the complexity of the problem, the proposed

studies generally focus on the deterministic problem or single day stay only. In this

study, we work on the room allocation problem with walk-in and stay-over customers

for multi-day stay and formulate the problem as a dynamic programming model. Since

the resulting model is a large-scale network problem, we concentrate on decomposition

methods to attack the dynamic model. We first work on single-day decomposition and

propose new modeling approach by analyzing the structure of the problem. However,

day-based decomposition causes a loss of information on the number of customers in

each booking type. Therefore, performance of these methods can be poor for stay-over

customers. To include these customers, we work on the product-based decomposition.

By exploiting the analytical properties of the model, we devise a fast solution algorithm.
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1.2 Overview of the Proposed Thesis

All problems in this thesis deal with capacity allocation in revenue management. In

Chapter 2, we study joint capacity allocation and overbooking problem. We first discuss

the methods proposed in the overbooking and capacity allocation literature. Then, we

present our dynamic and static models for single-leg revenue management. We study the

properties of the model and propose solution procedures. In Chapter 3, we introduce

the concept of contingent commitment option and examine the options presented in

revenue management literature. We analyze the consequences of selling this option

along with standard bookings of the products. We derive dynamic and static models

for the capacity allocation problem. We discuss the analytical properties of the model

and propose an alternate tractable model to determine the optimal capacity allocation

policy. We conduct a computational study to evaluate how offering options affects the

airline’s revenue and test the performance of our approach. In Chapter 4, we study the

capacity allocation problem in a hotel network. We introduce new modeling approaches

for managing seat inventory using dynamic programming methodology. We focus on the

day-based and pair-based decomposition approaches by considering walk-in and stay-

over customers. We analyze structural properties of the decomposition approaches and

solution algorithms. We provide several computational results to test the performances

of our approaches. Finally, in Chapter 5 we discuss our results and contributions. We

also provide a discussion about our future research.
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Chapter 2

SINGLE-LEG PROBLEM: OVERBOOKING OPTION

In this chapter, we discuss our work on the problem of joint capacity allocation and over-

booking [6]. Airline revenue management is concerned with identifying the maximum

revenue seat allocation policies. Since a major loss in revenue results from cancellations

and no-shows, overbooking has received a significant attention in the literature over the

years. We first provide a summary of the single-leg capacity control models.

Studies on seat allocation problem starts with Littlewood’s [63] work. Littlewood

proposes a solution method for the single-leg problem with two fare classes. The idea

behind his model is to equate the marginal revenues in each of the two fare classes.

Belobaba [12] extends this idea to a multi-class problem and introduces the method

of expected marginal seat revenue (EMSR) for the general approach. However, this

method can generate optimal booking limits only for the two fare class problem. Curry

[30], Wollmer [94], and Brumelle and McGill [20] work on EMSR method and obtain

optimal policies for the multi-class static problem.

Lee and Hersh [60] propose a discrete time dynamic programming model and

formulate the problem as a Markov decision process (MDP). In this model, the reser-

vation period is divided into sufficiently small time intervals to allow only one arrival.

In each period, a reservation request is accepted if its fare is higher than expected

marginal revenue of the seat. The work of Lee and Hersh has elicited interest from

various researchers and it is refined by Liang [61] and Lautenbacher and Stidham [59].

While Liang reformulates the model in continuous time, Lautenbacher and Stidham
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[59] combine the dynamic and static approaches under a common MDP formulation.

Parallel to seat allocation, research on overbooking problem has accelerated. The

early overbooking literature concentrates mainly on static models with one or two fare

classes and the objective of finding the overbooking limit. The first scientific work

on overbooking is proposed by Beckman [10]. He develops a static single fare class

overbooking model, which determines the overbooking limit by considering the trade-

off between the lost revenue due to empty seats, the total cost of denied boardings

and the revenue generated by the go-show passengers. The go-shows are the passengers

who show up without any reservation at the departure time. American Airlines adopted

Beckman’s approach and implemented a related model in 1976 and then revised it in

1987 [75]. Beckman’s work is succeeded by Thompson [82], who considers a practical

model ignoring the probability distribution of demand and requiring only data on the

number of cancellations among the total number of reservations. Given the capacities

for two fare classes, Thompson [82] aims at determining the overbooking amount for

each fare class so that the probability of overbooking equals to a specified value. He

also supports his arguments by a statistical analysis of the involved distributions. The

works of Beckman and Thompson are refined by Taylor [81]. Like Thompson, he focuses

on a service measure by constraining the number of denied boardings but considers

cancellations, no-shows and group sizes explicitly. This influential work of Taylor has

attracted the attention of various airlines. Consequently, the variants of this work are

implemented, and then, reported in a sequence of papers. The references and the details

of this history are given by Rothstein [73].

Chi [25] studies a static overbooking problem with multiple fare classes and formu-

lates it as a dynamic programming model. However, when cancellations and no-shows

are considered, the model suffers from the curse of dimensionality because one needs to

keep track of the number of reservations for each class. To overcome this difficulty, Chi

proposes an approximate model that can be solved in polynomial time. Coughlan [27]

also considers a overbooking problem with multiple fare classes, but he assumes that

the go-show passengers are given the empty seats at the same price as in Beckman [10].

Unlike the majority of the studies in the literature, Coughlan does not use a Poisson
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distribution to model the demand but makes the simplifying assumption that both the

demand and the number of bookings for each fare class are independent and normally

distributed. Coughlan’s discussion also supposes implicitly that the minimum of the

demand and the number of bookings is also normally distributed; unfortunately, this

supposition does not hold mathematically in general. Overall, the author provides a

closed form formula for the revenue function and applies heuristic search methods to

find a maximizer.

Several researchers have addressed dynamic overbooking models for single-leg

problems. Generally, the dynamic overbooking problem is modeled as a Markov Deci-

sion Process (MDP). Rothstein [72] proposes two such models, where only one fare class

is considered. In the first model, the objective is to find the optimal expected revenue

after deducting the cost of denied boardings. Following the work of Thompson [82], the

second model adds a constraint to limit the proportion of denied boardings. Alstrup

et al. [2] also use a MDP to solve an overbooking model but this time with two fare

classes and the cost of downgrading (a cost that is incurred due to reserving cheaper

seats for the passengers requesting more expensive fare classes). Chi [25] also discusses

two dynamic models with multiple fare classes. Although the first model incorporates

the realistic setting of cancellations occurring in time, it is computationally intractable.

To ease the computational burden, Chi then assumes in his second model that the can-

cellations occur right before the departure time. This assumption allows him to solve

the resulting model with an approximation similar to the one he uses in the static case.

Chatwin [22] analyzes the optimal solution structure of a discrete time dynamic single

fare class overbooking model and discusses the conditions, under which a booking limit

policy is optimal. Subramanian et al. [76] study a more general setting than Chatwin,

where they analyze the overbooking problem with multiple fare classes. The authors

consider the arrival of a cancellation, the arrival of a booking request and no arrival of

any type as a combined stream and assume that at most one of these events can occur

at any discrete time epoch. Under this setting they present two models. In the first

model, the cancellation and no-show probabilities do not depend on the fare classes.

They show that the resulting problem can be equivalently modeled as a queuing system
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discussed in the literature [62]. In their second model, they relax the class independence

assumption and model a more general problem with class-dependent cancellations and

no-shows. Unfortunately, the resulting dynamic programming formulation cannot be

solved efficiently because of the high-dimensional state space. Chatwin [23] examines

a continuous-time single fare class overbooking problem, where fares and refunds vary

over time according to piecewise constant functions. In his model the arrival process

of requests is assumed to be a homogeneous Poisson process, and the probabilities to

identify the type of a request are independent of time. He assumes that the reserva-

tions cancel independently according to an exponential distribution with a common

rate, and the arrival process of requests depends on the number of reservations. Under

these assumptions, the author formulates the problem as a homogeneous birth-and-

death process and shows that a piecewise constant overbooking limit policy is optimal.

A closely related study is given by Feng et al. [36]. They consider a continuous-time

model with cancellations and no-shows. They derive a threshold type optimal control

policy, which simply states that a request should be admitted only if the corresponding

fare is above the expected marginal seat revenue (EMSR). Karaesmen and van Ryzin

[48] examine the overbooking problem differently. Their model permits that fare classes

can substitute for one another. They formulate the overbooking model as a two-period

optimization problem. In the first period the reservations are made by using only the

probabilistic information of cancellations. In the second period, after observing the

cancellations and no-shows, all the remaining customers are either assigned to a re-

served seat or denied by considering the substitution options. They give the structural

properties of the overall optimization problem, which turns out to be highly nonlin-

ear. Therefore, they propose to apply a simulation based optimization method using

stochastic gradients to solve the problem.

In all of the above models probability distributions are used to model uncertainty

in demand and cancellations. Recent studies in revenue management focus on the

availability of information. Adaptive methods are used when there exists no or limited

information about the demand. Most of these methods assume that there is access

only to samples from demand distributions. They mainly compute the booking limits
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based on the past information but also react to the possible inaccuracies related to

the estimates of demand [89, 46]. Kunnumkal and Topaloglu [52] consider a capacity

allocation problem with limited demand information and develop a stochastic approx-

imation method to compute the optimal protection levels iteratively. They prove that

the sequence of protection levels computed by using their approach converge to the

optimal ones. Birbil et al. [28] present a robust version of static and dynamic single

leg problems. In their model, they take into account the inaccuracies associated with

the estimated probability distributions of the demand for different fare classes. Ball

and Queyranne [8] use online algorithms to treat also a robust problem. In this way,

they eliminate the need for estimating the demand and present the closed-form optimal

booking limits. Lan et al. [58] generalize Ball and Queyranne’s model by assuming

that the demand for each fare class lies in a given interval. By using relative regret and

absolute regret as performance criteria, they provide two capacity allocation models

which differ in their objective functions. They show that these two models can be ana-

lyzed in a unified manner and both models provide nested booking limits. In a related

work, Lan et al. [57] formulate a joint overbooking and seat allocation model, where

both the random demand and no-shows are characterized using interval uncertainty.

They focus on the seller’s regret in not being able to find the optimal policy due to

the lack of information. The regret of the seller is quantified by comparing the net

revenues associated with the policy obtained before observing the actual demand and

the optimal policy obtained under perfect information. The model aims to find a policy

which minimizes the maximum relative regret.

In the present study, we work on the problem proposed by Aydin [5]. She discusses

the static and dynamic overbooking problems and proposes several solution approaches.

However, the proposed static models find the capacity allocation policy for a given over-

booking limit. In other words, she computes the overbooking limit without considering

the capacity allocation policy of multiple fare classes. In addition, the proposed models

are computationally intractable for the large-scale problems. On the other hand, in the

dynamic model she assumes that cancellation probability is linearly increasing with the

number of reservations.
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In this chapter, we discuss two static models which allow class-dependent cancel-

lations and no-shows. The first model can be seen as a generalization of the single fare

class model discussed in Phillips [69]. The second static model aims at determining

both the total booking limit and the partitioned allocation of the virtual capacity to

each fare class. Since the resulting problem is difficult to solve, we introduce com-

putationally tractable approximate models. We also work on the error committed by

solving the these approximate models instead of the originally proposed model. We

then propose a discrete-time dynamic model based on independent streams of arrivals

of booking requests and cancellations. Our modeling approach differs from the one

based on a combined stream of events (Subramanian et al. [76]) by allowing the arrival

and cancellation processes to be independent. In particular, we assume that requests

for different fare classes arrive according to independent nonhomogeneous Poisson pro-

cesses. Moreover, the number of cancellations in any time period, given that there

are n number of accepted requests at the beginning of that time period, is a bino-

mially distributed random variable with n independent trials and a period-dependent

cancellation probability. Thus, as desired, the arrival process of the booking requests

are independent of the number of reservations whereas the cancellation and no-show

probabilities depend on the total number of reservations.

2.1 Static Overbooking Models

In this section, we propose two static risk-based overbooking models and analyze them

in-depth to obtain efficient solution methods. The risk-based models try to determine

a policy considering the trade-off between the potential revenue from accepting an

additional request and the cost of an additional denied service. The objective of our

first static model is to find an optimal booking limit maximizing the expected net

revenue under the assumption that the greedy policy—that is, a request for any fare

class is accepted as long as the total number of reservations is below the overbooking

limit— is applied. In this model, the probabilistic information comes from the aggregate

demand for all fare classes. However, we assume that each booking request belongs to a

fare class with a certain probability. Finding an optimal total booking limit in this way
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is useful in practice, since the overbooking limit can be used as an input to some well-

known allocation methods. This kind of heuristic approach first determines the total

booking limit and then uses one of the well-known capacity allocation methods, like the

famous EMSR heuristics [12, 13], to calculate the nested protection levels for different

fare classes. In our second model, on the other hand, the probabilistic information is

related to the demand for each fare class. We try to determine both the total booking

limit and the partitioned allocation of the virtual capacity to each fare class in such a

way that the expected net revenue is maximized. Since the second static model is quite

hard to solve, we introduce two computationally tractable models that give upper and

lower bounds on the proposed model’s optimal expected net revenue.

In the subsequent discussion, we consider a flight with a known seat capacity

of C and do not assume that the booking requests for different fare classes arrive in

a certain order. In the first model, the booking requests for m different fare classes

are accepted until the total booking limit b ≥ C is reached, whereas in the second

model the booking decisions are based on the capacity allocated to each fare class. An

accepted request becomes a reservation and a reservation may cancel at any time before

departure or may not show up without cancelling. Let βs
i > 0 denote the probability

that an accepted fare class i request shows up at the departure time. For the remaining

fare class i reservations, if we denote the probability of a cancellation by δi, then a fare

class i reservation cancels with probability βc
i := (1 − βs

i )δi. We assume that a fare

class i cancellation is refunded a percentage αi of the corresponding ticket price ri, and

no-shows do not receive any refund. If the number of shows exceeds the capacity C,

then exactly C shows will be on the flight and the rest will be denied boarding. For each

denied service, the airline incurs a denied service cost of θ > 0. We refer the interested

reader to Chatwin [23] for a discussion on fare class-independent compensation for a

denied boarding. In our study, the total booking limit and the individual booking limits

are allowed to be infinite; an infinite value corresponds to accepting all the booking

requests. Let Z̄+ = Z+ ∪ {∞} denote the set of extended natural numbers. Aside

from this notation, the random variables and the vectors are denoted by uppercase and

lowercase boldface letters, respectively. If X and Y are random variables, then X =d Y
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means that the cumulative distribution functions of X and Y are identical. To simplify

the exposition, we also denote max{x, 0} by [x]+.

2.1.1 Total Booking Limit

In this section, we propose a model to determine a total booking limit b ≥ C. We

consider a model, where the probabilistic information is the random total booking

requests, and denote this non-negative integer valued random variable byD. We assume

that D has a finite first moment and each booking request belongs to a certain fare

class according to a multinomial selection mechanism with given probabilities. These

probabilities can be estimated using historical data about the overall market share of

each fare class. In particular, each arriving request is for fare class i with probability

pi, i = 1, . . . ,m. Clearly, pi ≥ 0 and
∑m

i=1 pi = 1. Thus, we assume that the random

fare class i demand, denoted by Di, has a binomial distribution with D independent

trials and the success probability of pi.

We first define a Bernoulli selection type random variable. If X denotes the non-

negative integer random size of a population, then the random variable B(p,X) denotes

the total number within the population of size X having a certain property under the

condition that each member in the population has this property with probability p

independent of each other. Hence, the random variable B(p,X) is given by

B(p,X) :=

⎧
⎪⎨

⎪⎩

∑X
k=1 1{Uk≤p}, if X ≥ 1;

0, if X = 0,

(2.1)

where Uk, k ∈ N, is a sequence of independent standard uniformly distributed random

variables, and the random variable X is independent of the sequence Uk, k ∈ N. By

relation (2.1), we obtain

E (B(p,X)) = pE (X) .

Furthermore, it is well-known that the generating function of the random variable

B(p,X) is given by

E
(
zB(p,X)

)
= E

(
(1− p+ pz)X

)
(2.2)
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and

B (q,B(p,X)) =d B(pq,X)

for any 0 ≤ p, q ≤ 1 [35].

We consider the greedy policy of accepting a booking request for any fare class

as long as the total booking limit b is not reached. Under this policy the random total

number of reservations is given by N(b) := min{b,D}. Let Dr
i designate the random

number of reservations for fare class i. Since our policy accepts any request until the

booking limit is reached, it is easy to prove the following lemma, which implies that the

joint distribution of the random vector (Dr
1, . . . ,D

r
m) follows a multinomial distribution

with N(b) independent trials and the success probabilities pi, i = 1, . . . ,m.

Lemma 2.1.1 Under the greedy policy, it follows that Dr
i =

d B(pi,N(b)).

Proof. Let Dr
i denote the random number of fare class i reservations. By the

definition of the total booking limit b and the used policy, we obtain for every integer

k satisfying k ≤ b− 1 and y ≤ k that

P(Dr
i = y | N(b) = k) = P(Dr

i = y | D = k) =

(
k

y

)
pyi (1− pi)

k−y. (2.3)

It also follows for every y ≤ b that

P (Dr
i = y | N(b) = b) = P (Dr

i = y | D ≥ b)

=
P (Dr

i = y,D ≥ b)

P (D ≥ b)
=

∑∞
k=b P (Dr

i = y,D = k)

P (D ≥ b)

=

∑∞
k=b P (Dr

i = y | D = k)P (D = k)

P (D ≥ b)
(2.4)

=

∑∞
k=b

(
b
y

)
pyi (1− pi)

b−y P (D = k)

P (D ≥ b)
=

(
b

y

)
pyi (1− pi)

b−y.

Applying now relations (2.3) and (2.4) yields the desired result. !
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As discussed at the beginning of Section 2.1, we distinguish between a no-show

and a cancellation to obtain an explicit expression of the revenue obtained from each

reservation. By Lemma 2.1.1 and the properties of the Bernoulli selection mechanism,

the random number of fare class i shows and fare class i cancellations are given by

B(βs
i pi,N(b)) and B(βc

i pi,N(b)), respectively, (c.f. [82, 22, 27] for similar uses of the

Bernoulli selection scheme). Hence, for a given booking limit b the random total revenue

generated by any fare class i reservation is given by

riB(pi,N(b))− αiriB(βc
i pi,N(b)),

where αiri denotes the refund paid for a fare class i cancellation. Introducing now

τi = ri(1− αiβ
c
i ), i = 1, . . . ,m, (2.5)

the expected total revenue over all reservations becomes

∑m

i=1
piτiE(N(b)). (2.6)

To incorporate the penalty cost of overbooking, we first observe adding up all the

shows that the total number of denied boardings equals

[∑m

i=1
B(βs

i pi,N(b))− C
]+

.

Since the binomial random variables B(βs
i pi,N(b)), i = 1, . . . ,m, arise within a multi-

nomial selection experiment with independent trials from the same population, we

obtain
[∑m

i=1
B(βs

i pi,N(b))− C
]+

=d
[
B
(∑m

i=1
βs
i pi,N(b)

)
− C

]+
. (2.7)

Then, using relations (2.6) and (2.7) the expected net revenue is obtained as

ψ(b) :=
∑m

i=1
piτiE(N(b))− θE

([
B
(∑m

i=1
βs
i pi,N(b)

)
− C

]+)
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and the optimal booking limit is found by solving

max{ψ(b) : b ≥ C, b ∈ Z̄+}. (PT )

To analyze the global properties of the function b (→ ψ(b), we first observe that

ψ(b) = E(f(N(b))) with f : Z+ → R given by

f(x) =
∑m

i=1
piτix− θE

([
B
(∑m

i=1
βs
i pi, x

)
− C

]+)
. (2.8)

In the next lemma we derive an important property of expectations of discrete

concave functions of the random variable B(p, n).

Lemma 2.1.2 If the function g : Z+ (→ R is discrete concave (convex), then the func-

tion n (→ E (g (B(p, n))) is also discrete concave (convex).

Proof. We need to show that n (→ E (g (B(p, n+ 1))) − E (g (B(p, n))) is de-

creasing (increasing). By the definition of B(p, n + 1) given in relation (2.1) and the

conditional expectation formula we obtain that

E (g (B(p, n+ 1)))− E (g (B(p, n))) = pE (g (B(p, n+ 1))− g (B(p, n)) |Un+1 ≤ p)

= pE (g (1 +B(p, n))− g (B(p, n)) |Un+1 ≤ p)

= pE (g (1 +B(p, n))− g (B(p, n))) .

(2.9)

Since B(p, n + 1) ≥ B(p, n) and g is discrete concave (convex) we obtain that n (→

g (1 +B(p, n)) − g (B(p, n)) is decreasing (increasing) and by relation (2.9) the result

follows. !
For any non-negative random variable D, we define the random variable N(n) =

min{n,D}.

Lemma 2.1.3 If f : Z+ (→ R is a discrete concave function and f(∞) := lim infn↑∞ f(n),

an optimal solution of the optimization problem max{f(n) : n ≥ C, n ∈ Z̄+} is also an

optimal solution of the problem max
{
E (f (N(n))) : n ≥ C, n ∈ Z̄+

}
.
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Proof. The discrete concavity of f implies its discrete unimodality. If its

unimodality point nopt equals ∞, or equivalently, f is increasing, the desired result

easily follows. On the other hand, if nopt is finite, we obtain for every n ≥ nopt that

f(n+ 1) ≤ f(n) (2.10)

and for every n < nopt

f(n+ 1) ≥ f(n). (2.11)

By the definition of N(n) it follows that

f(N(n+ 1))− f(N(n)) = (f(n+ 1)− f(n))1{D≥n+1}.

This shows

E (f(N(n+ 1))− f(N(n))) = (f(n+ 1)− f(n))P(D ≥ n+ 1) (2.12)

and by relations (2.10),(2.11) and (2.12) we obtain for every n ≥ nopt that

E (f (N(n+ 1))) ≤ E (f (N(n)))

and for every n < nopt

E (f (N(n+ 1))) ≥ E (f (N(n))) .

Hence, nopt is also an optimal solution of max
{
E (f (N(n))) : n ≥ C, n ∈ Z̄+

}
. !

By Lemma 2.1.2 it follows that the function x (→ E([B(
∑m

i=1 β
s
i pi, x) − C]+)

is discrete convex, and this implies that the function x (→ f(x) is discrete concave.

Therefore, by Lemma 2.1.3 the optimal solution of

max{f(b) : b ≥ C, b ∈ Z̄+}
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coincides with the optimal solution of problem (PT ). Then, by using the discrete

concavity of the function f , an optimal solution to (PT ) is given by

bopt = inf{b ≥ C : f(b+ 1)− f(b) < 0}. (2.13)

Here we use the convention that the infimum of the empty set is equal to infinity.

Introduce βs :=
∑m

i=1 β
s
i pi and let Uk, k = 1, . . . , b + 1, be a sequence of independent

standard uniformly distributed random variables. Furthermore, let 1A be the indicator

random variable of the event A, i.e, it takes value 1 if the event A occurs, and 0

otherwise. Then, by relation (2.8) and the representation of a binomial distributed

random variable given in (2.1) we obtain for every b ≥ C that

f(b+ 1)− f(b) =
∑m

i=1
piτi − θE

(
1{Ub+1≤βs}

)
E
(
1{

∑b
k=1 1{Uk≤βs}≥C}

)

=
∑m

i=1
piτi − θβsP

(∑b

k=1
1{Uk≤βs} ≥ C

)

=
∑m

i=1
piτi − θβsP (B(βs, b) ≥ C) .

This shows using θβs > 0 that

f(b+ 1)− f(b) < 0 ⇔ P (B(βs, b) ≥ C) >
µ0

µ1
,

where

µ0 =
∑m

i=1
piτi and µ1 = θβs. (2.14)

Therefore, by using (2.13), the optimal solution to our optimization problem becomes

bopt = inf

{
b ≥ C : P (B(βs, b) ≥ C) >

µ0

µ1

}
. (2.15)

A surprising consequence of this result is that the optimal total booking limit does

not depend on the probability distribution function of the total demand D. It is also

easy to see that the optimal solution to our overbooking problem is to set b = ∞ when

µ0 − µ1 ≥ 0. An intuitive interpretation of this result is as follows: Since the expected
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net revenue per fare class i reservation is at least equal to τi − θβs
i , the expected net

revenue per reservation is given by

∑m

i=1
pi(τi − θβs

i ) = µ0 − µ1.

This expression being non-negative shows that for the risk-based objective, it is

always profitable to accept all requests despite the overbooking cost. Thus, the total

booking limit should be set to infinity. When µ0 − µ1 < 0, there exists a finite optimal

solution bopt ≥ C.

We next provide a computationally efficient iterative method to calculate the

optimal total booking limit. To determine bopt, we need to evaluate iteratively for

b ≥ C the increasing sequence

γb = P (B(βs, b) ≥ C) .

For b = C, it is obvious that

γC = P (B(βs, C) ≥ C) = (βs)C .

Then, we obtain the recursive relation

γb+1 = γb + βsP (B(βs, b) = C − 1) . (2.16)

Our proposed overbooking model is related to the single fare class model discussed

in Section 9.3.2 of Phillips [69]. Actually, the optimal booking limit of our model with

multiple fare classes is equal to the booking limit obtained by the risk-based overbooking

model with a single fare class, where the price is µ0/βs, the overbooking cost is θ

and the show-up probability is βs. In Section 9.4.2 of the same book, a heuristic is

proposed to determine the total booking limit for multiple fare classes by reducing

the problem to a single fare class model. Basically, this method first estimates the

values of the parameters associated with a representative single fare class from the fare

21



class-dependent parameters, and then, solves the resulting single fare class model. As

a direct consequence of this estimation, only a heuristic method is obtained. Contrary

to Phillips [69], we show that under a multinomial selection scheme linking the overall

demand to the demand for each fare class and the policy of accepting all the requests

until the total booking limit is reached, our proposed model determines the optimal

total booking limit. From a different angle, we can state that our analysis provides

the values of the price, show-up probability and overbooking cost parameters for which

the heuristic proposed by Phillips is exact. As mentioned before, our model can be

used to provide the overbooking limit to the capacity allocation heuristics like EMSR-a

and EMSR-b. Since we allow class-dependent show-up probabilities, our model could

perform better than those standard static models that determine the total overbooking

limit when the show-up probabilities do not depend on the fare classes [69]. We note

that the performance of the proposed model depends on the accuracy of the estimation

of the model parameters. Among the parameters required to determine the optimal

total booking limit (see (2.5),(2.14) and (2.15)), we acknowledge that the parameters

pi are the most challenging to estimate due to the non-availability of proper historical

data. As emphasized in Talluri and van Ryzin [79], typically, the data on the arrivals is

incomplete and only the purchase transaction data are available. In our case, suppose

that the pi parameters associated with more expensive fare classes, and consequently

the parameter µ0 in relation (2.14), are overestimated. Then, this shows by relation

(2.15) that we may end up with a higher total booking value.

We conclude this section with two further remarks: (i) The first static model in

the airline revenue management literature was proposed by Beckman [10]. He considers

the cost minimization for a single fare class and provides a more complex analysis.

He also observes that the overbooking limit decision does not depend on the demand

distribution. His model can also be analyzed with our simpler approach. (ii) As it

is common in the literature [76, 80], the expected total denied boarding cost may be

given by an increasing convex function to represent the need to offer higher levels of

compensation or incur higher goodwill costs for each additional denied boarding. Given

the total booking limit b, this implies that for our model the denied boarding cost equals
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E(c(N(b))), where c : Z+ → R is given by

c(x) = E(g(B(
∑m

i=1
βs
i pi, x)− C))

and g : R → R is an increasing convex function satisfying g(z) = 0 for every z ≤ 0.

Again by Lemma 2.1.2 the function c is discrete convex, and consequently, the function

f : Z+ → R given by

f(x) =
∑n

i=1
piτix− c(x)

is discrete concave. Therefore, as in the previous model, one can show that the optimal

booking limit is in the form of (2.13).

2.1.2 Booking Limits for Individual Fare Classes

In this section we focus on a model, in which the partitioned booking limits as well as

the overbooking limit are determined. This modeling approach sets us apart from other

methods using capacity allocation heuristics, like EMSR-a and EMSR-b [12, 13], after

setting the overbooking limit. However, it is important to note that a policy, which

strictly maintains the partitioned booking limits, is rarely applied in practice because in

such a dynamic setting it is clearly suboptimal to reject a higher fare class request even

if there is available capacity for lower fare classes. Therefore, the partitioned booking

limits are used to obtain nested booking limits or nested protection levels. Under a

nested policy, higher fare classes are allowed to use all the capacity reserved for lower

fare classes. From this perspective, whenever the optimal partitioned limits that are

obtained in this section are used in a nested way, the resulting method becomes another

heuristic but it does not require a predefined overbooking limit.

We assume that the distribution of the demand for fare class i, denoted by

Di, is known and E(Di) < ∞ for all i = 1, . . . ,m. If bi is the partitioned book-

ing limit for fare class i, then the random variable Ni(bi) = min{bi,Di} denotes

the number of reservations for fare class i. Using our notation in the previous sec-

tion, the random number of fare class i reservations that show up at the departure

time and the random number of fare class i cancellations are given by B(βs
i ,Ni(bi))
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and B(βc
i ,Ni(bi)), respectively. Since the random total number of denied boardings

is equal to [
∑m

i=1 B(βs
i ,Ni(bi)) − C]+, the expected net revenue φ(b) for a vector

b = (b1, . . . , bm) ∈ Z̄m
+ is given by

φ(b) =
∑m

i=1
τiE(Ni(bi))− θE

([∑m

i=1
B(βs

i ,Ni(bi))− C
]+)

. (2.17)

Thus, we need to solve the following problem to obtain the optimal partitioned booking

limits:

max{φ(b) : b ∈ Z̄m
+}. (PI)

Observe that
∑m

i=1 bi defines the overbooking limit and as suggested, the problem

(PI) provides the optimal overbooking limit and the optimal partitioned booking limits

simultaneously. Unfortunately, due to the expected total overbooking cost, the expected

total net revenue is not separable by the fare classes and this makes it difficult to solve

the optimization problem (PI) in an efficient way. Therefore, we consider lower and

upper bounding functions on the expected total overbooking cost proposed by Aydin [5]

and develop computationally efficient methods to find approximate solutions to problem

(PI).

To compute a lower bounding function on the total expected overbooking cost,

we use Jensen’s inequality which leads to

E
([∑m

i=1
B(βs

i ,Ni(bi))− C
]+)

≥
[
E
(∑m

i=1
B(βs

i ,Ni(bi))− C
)]+

=
[∑m

i=1
βs
iE (Ni(bi))− C

]+
.

This shows by relation (2.17) that for every b ∈ Z̄m
+

φ(b) ≤
∑m

i=1
τiE(Ni(bi))− θ

[∑m

i=1
βs
iE(Ni(bi))− C

]+
:= φU(b).
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Hence, an upper bound on the optimal objective value of problem (PI) can be obtained

by solving the optimization problem

max{φU(b) : b ∈ Z̄m
+}. (PUB

I )

Although its objective function is not separable, it is still possible to use dynamic

programming to solve the problem (PUB
I ). The main idea is to partition the set of

integers into two sets. Let

S1 =
{
b ∈ Z̄m

+ :
∑m

i=1
βs
iE(Ni(bi)) ≥ C

}
and S2 :=

{
b ∈ Z̄m

+ :
∑m

i=1
βs
iE(Ni(bi)) ≤ C

}
.

Clearly, S1 ∪ S2 = Z̄m
+ . Therefore, we have

max{φU(b) : b ∈ Z̄m
+} = max {max {φU(b) : b ∈ S1} ,max {φU(b) : b ∈ S2}} .

Thus, to compute φU(b), we need to take the maximum of the objective function values

of the following two optimization problems

max {φU(b) : b ∈ S1} = θC +max
{∑m

i=1
(τi − θβs

i )E(Ni(bi)) : b ∈ S1

}
(2.18)

and

max {φU(b) : b ∈ S2} = max
{∑m

i=1
τiE(Ni(bi)) : b ∈ S2

}
. (2.19)

Note that both problems (2.18) and (2.19) are separable and they can be solved

by dynamic programming. However, we note that the implementation for solving prob-

lem (2.18) demands a special treatment. This is because of the greater-than-equal-to

constraint, since one can check this constraint at each stage only when the bookings

for all fare classes are known. To overcome this difficulty, we formulate (2.18) as a

constrained shortest path problem and solve it using the well-known K-shortest path

algorithm [95]. This algorithm returns successively the first K paths from origin to des-

tination on a graph. We apply the same algorithm to return several paths in decreasing

order of φU(b) values until we find the first one that satisfies the constraint in (2.18).
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We also note that our upper bounding problem is similar to the approximate model

proposed in [25, Section 2.3.4]. However, Chi [25] applies one more approximation to

solve the resulting model, whereas we solve it to optimality.

Although we solve the problem with the K-shortest path algorithm, it is not

computationally efficient. Next, we present a solution method based on a mixed-integer

programming formulation, which is easier to follow and seems to be computationally

more efficient as demonstrated by our numerical experiments. To restrict the feasible

region of the problem (PUB
I ) and formulate it as a mixed-integer linear program, we

have to introduce upper bounds on the booking limits.

Our objective is to restrict the feasible region of the upper bounding problem to

a box. In other words, we introduce bounding constraints bi ≤ Mi, i = 1, . . . ,m, in

such a way that the error we make in calculating the objective function is significantly

small. Our proposed approach is based on the next lemma.

Lemma 2.1.4 Suppose that we consider the optimization problem max{h(b) : b ∈ Z̄m
+}

with

h(b) =
∑m

i=1
fi(bi)− g(b).

If the functions fi, i = 1, . . . ,m, and g are increasing and bounded, then for every ϵ > 0

there exists a box B such that for every b ∈ Z̄m
+ one can find a vector b̂ ∈ B ⊆ Zm

+

satisfying

h(b)− h(b̂) ≤ mϵ.

Proof. Since limb↑∞ fi(bi) = fi(∞), there exists for every ϵ > 0 some bi(ϵ) such

that

fi(∞) ≤ fi(bi(ϵ)) + ϵ ∀i = 1, . . . ,m.

Consider the box B = {b ∈ Z̄m
+ : bi ≤ bi(ϵ), i = 1, . . . ,m} and let b /∈ B. This shows

that the set I = {1 ≤ i ≤ m : bi > bi(ϵ)} is nonempty and take b̂ = {b̂1, . . . , b̂m} with

b̂i =

⎧
⎨

⎩
bi(ϵ) if i ∈ I

bi otherwise
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Clearly b̂ belongs to B and b ≥ b̂. Using now the assumption that the functions

fi, i = 1, . . . ,m, and g are increasing and bounded we obtain

h(b)− h(b̂) =
∑m

i=1(fi(bi)− fi(b̂i)) + g(b̂)− g(b)

≤
∑m

i=1(fi(∞)− fi(b̂i)) + g(b̂)− g(b)

≤ mϵ,

and this shows the desired result. !
Observe that the objective function of the upper bounding problem can be written

in the form of the function h given in Lemma 2.1.4:

φU(b) =
∑m

i=1
fi(bi)− g(b)

with

fi(bi) = τiE(Ni(bi)) and g(b) = θ
[∑m

i=1
βs
iE(Ni(bi))− C

]+
. (2.20)

It is easy to see that the functions fi, i = 1, . . . ,m, and g given in (2.20) are

increasing. Since we assume that E(Di) < ∞ for all i = 1, . . . ,m, the functions fi and

g are bounded. Thus, for a specified error term ϵ we can easily find some integer bi(ϵ)

satisfying

fi(∞)− fi(bi(ϵ)) = τiE([Di − bi(ϵ)]
+) ≤ ϵ ∀i = 1, . . . ,m.

Then, by Lemma 2.1.4, it is guaranteed that considering the feasible region B =

{b ∈ Zm
+ : bi ≤ bi(ϵ), i = 1, . . . ,m} instead of {b ∈ Z̄m

+} would result in a deviation

of at most mϵ from the optimal objective function value, i.e., φU(b)− φU(b̂) ≤ mϵ for

any b̂ ∈ B and b ≥ b̂.

Before presenting the mathematical model, let us introduce the binary variables

xij, i = 1 . . . ,m, j = 0, . . . ,Mi, where xij = 1 and xij = 0 imply that bi = j and

bi ̸= j, respectively. Then, calculating the input parameters aij := E(Ni(j)) for all

i = 1 . . . ,m, j = 0, . . . ,Mi, we obtain an alternate formulation of the problem (PUB
I ):
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maximize
∑m

i=1
τi
∑Mi

j=0
aijxij − θw (2.21)

subject to w ≥
∑m

i=1
βs
i

∑Mi

j=0
aijxij − C, (2.22)

w ≥ 0, (2.23)
∑Mi

j=0
xij = 1, i = 1, . . . ,m, (2.24)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 0, . . . ,Mi. (2.25)

By constraints (2.24)-(2.25) and the definition of parameters aij, it is guaranteed

for each fare class i that exactly one of the binary variables xi0, xi1, . . . , xiMi takes value

1 and
∑Mi

j=0 aijxij = E(Ni(
∑Mi

j=1 jxij)). Let (x∗, w∗) be an optimal solution of the

problem (2.21)-(2.25). Constraints (2.22) and (2.23), and the structure of the objective

function (2.21) ensure that

w∗ = [
∑m

i=1
βs
i

∑Mi

j=0
aijx

∗
ij − C]+.

Then, it is easy to show that the booking limits bi =
∑Mi

j=1 jx
∗
ij, i = 1 . . . ,m, provide

an optimal solution of the problem (PUB
I ) under additional bounding conditions. The

number of binary variables is
∑m

i=1 Mi ≤ mmax{M1, . . . ,Mm}. In practice, the number

of fare classes is a reasonably small number for a single leg problem, and therefore,

the proposed formulation can be very efficiently solved by a standard mixed integer

programming solver such as CPLEX.

We note that restricting the feasible region by introducing sufficiently large bounds

is not really a concern in determining the optimal policy. Having bi = Mi at the

optimal solution of the problem (2.21)-(2.25) would imply that, in practice, all of the

booking requests for fare class i are accepted, since Mi is in general a large number

compared to the number of arriving booking requests. However, forcing bi ≤ Mi leads

to an error in calculating the objective function value, since the function E(Ni(·)) :

Ẑ+ → R is increasing, and so E(Ni(Mi)) < E(Ni(∞)). To this end, we provide an

analysis to determine the upper bound values in such a way that the derivation from
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the optimal objective function value of the problem (PUB
I ) is at most mϵ for a specified

error tolerance ϵ.

To compare the quality of the revenue obtained with the approximate optimization

problem (PUB
I ) against that provided by the optimization problem (PI), we next find

a lower bound on the optimal objective function of the problem (PI). To compute an

upper bounding function on the expected total overbooking cost, let y = (y1, . . . , ym) ∈

Zm
+ with

∑m
i=1 yi = C be a partitioned allocation of available capacity C to each fare

class. By the subadditivity of the function x (→ [x]+, we observe that

[∑m

i=1
B(βs

i ,Ni(bi))− C
]+

=
[∑m

i=1
(B(βs

i ,Ni(bi))− yi)
]+

≤
m∑

i=1

[B(βs
i ,Ni(bi))− yi]

+ .

Thus, for any partitioned allocation y such that
∑m

i=1 yi = C, yi ∈ Z+, we have

E
([∑m

i=1
B(βs

i ,Ni(bi))− C
]+)

≤
∑m

i=1
E
(
[B(βs

i ,Ni(bi))− yi]
+) ,

and we obtain by relation (2.17) that

φ(b) ≥
∑m

i=1
τiE(Ni(bi))− θ

∑m

i=1
E
(
[B(βs

i ,Ni(bi))− yi]
+) := φL(b,y). (2.26)

Hence, a lower bound on the optimal objective value of the problem (PI) is found by

solving

max{φL(b,y) :
∑m

i=1
yi = C, b ∈ Z̄m

+ , y ∈ Zm
+}. (P LB

I )

Since the optimization problem (P LB
I ) is separable, it can be solved by dynamic

programming. We first observe that the problem (P LB
I ) is equivalent to the optimization

problem

max{ρL(y) :
∑m

i=1
yi = C,y ∈ Zm

+}

with

ρL(y) := max{φL(b,y) : b ∈ Z̄m
+}.
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By the additivity of the function b →φL(b,y) given in (2.26) it follows that

ρL(y) =
∑m

i=1
ρi(yi)

with

ρi(yi) = max{τiE(Ni(bi))− θE( [B(βs
i ,Ni(bi))− yi]

+) : bi ∈ Z̄+}.

Since the random variable B(βs
i ,Ni(b)) is bounded above by b and the function b →

τiE(Ni(b)) is increasing, we can restrict the feasible region {bi ∈ Z̄+} by adding the

valid inequality bi ≥ yi and obtain

ρi(yi) = max{τiE(Ni(bi))− θE( [B(βs
i ,Ni(bi))− yi]

+) : bi ≥ yi, bi ∈ Z̄+}.

Observe that the above problem is in the form of the problem (PT ) presented in

the previous section. Then, by using relation (2.15), the optimal solution of the above

problem becomes

b∗i (yi) = min

{
b ≥ yi : P(B(βs

i , b) ≥ yi) >
τi
θβs

i

}
.

This yields

ρi(yi) = τiE(Ni(b
∗
i (yi))− θE( [B(βs

i ,Ni(b
∗
i (yi))− yi]

+). (2.27)

Therefore, the problem (P LB
I ) boils down to a simple allocation problem

max
{∑m

i=1
ρi(yi) :

∑m

i=1
yi = C,y ∈ Zm

+

}

that can be solved by dynamic programming with a one-dimensional state space, where

the stages correspond to the fare classes. The associated dynamic programming recur-

sion can be formulated as follows: We consider for j ∈ {1, . . . ,m} and n ∈ {0, 1, . . . , C},

the parameterized optimization problems

Rj(n) = max
{∑m

i=j
ρi(yi) :

∑m

i=j
yi = n, yi ∈ Z+, i = j, . . . ,m

}
. (2.28)
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By relation (2.28), the boundary condition for n ∈ {0, 1, . . . , C} becomes

Rm(n) = ρm(n).

Then, by the dynamic programming optimality principle, the recursive relation for every

j ∈ {1, . . . ,m− 1} and n ∈ {0, 1, . . . , C} is given by

Rj(n) = max {ρj(yj) +Rj+1(n− yj) : yj ≤ n, yj ∈ Z+} .

Notice that this solution method requires evaluating the value of the function

ρi(yi) given in (2.27) for all i ∈ {1, . . . ,m} and yi ∈ {0, 1, . . . , C}. It is easy to

find b∗i (yi) using the recursive relation (2.16). Then, we need to efficiently calculate

E( [B(βs
i ,Ni(b∗i (yi))− yi]

+) for all yi ∈ {0, 1, . . . , C}. To achieve this, we derive the dis-

tribution function of the bounded random variableNi(bi) and compute P (B(βs
i , n) = k)

for n ∈ {0, . . . , bi} and k ∈ {0, . . . , n} using the following recursion:

P (B(βs
i , n) = k) = (1− βs

i )P (B(βs
i , n− 1) = k) + βs

iP (B(βs
i , n− 1) = k − 1)

with the boundary condition P (B(βs
i , 0) = 0) = 1.

We remark that the lower bounding problem (P LB
I ) has a nice interpretation. The

decision maker first determines the yi, i = 1, . . . ,m, values representing a partitioned

allocation of the available capacity to each fare class. Then, the risk she takes is

the possibility of observing that the total number of fare class i shows exceeds the

preallocated capacity yi, in which case she ends up paying a penalty cost. This means

that a penalty is incurred even if a reservation occupies a preallocated seat belonging

to a different fare class. With this interpretation, it is clear that by solving the problem

(P LB
I ), we obtain a lower bound on the actual optimal expected total net revenue that

would be secured by solving the actual problem (PI).

As discussed in the beginning of this section, the practitioners prefer to use the

partitioned booking limits in a nested way. Therefore, one can use the partitioned

booking limits obtained by our lower and upper bounding models to calculate the
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nested booking limits, or equivalently, the nested protection levels that could be used in

a dynamic setting. To be precise, the nested booking limit for fare class i is determined

as
∑i

j=1 bj, i = 1, . . . ,m. In fact, this shall also be our approach in our computational

study given in Section 2.3.

We also work on the error committed by solving (P LB
I ) or (PUB

I ) instead of the

originally proposed problem (PI). We partially answer this question in the case of

the upper bounding problem by utilizing its continuous relaxation. We provide upper

bounds on the error introduced by solving (PUB
I ). To derive these bounds we use the

optimal function value of (P LB
I ) and the continuous relaxation of (PUB

I ) obtained by

dropping the integrality restriction on the booking limits:

max{
∑m

i=1
τiE(Ni(bi))− θ

[∑m

i=1
βs
iE(Ni(bi))− C

]+
: b ∈ R̄m

+}, (RUB
I )

where R̄+ = R+ ∪ {∞} denotes the set of extended non-negative real numbers.

We first present some simple structural observations about the optimal solutions,

then derive an exact analytical expression for them. This expression will allow us to

obtain an upper bound on the error (introduced by solving (PUB
I )) solely in terms of

the problem parameters.

Lemma 2.1.5 Consider the index set I = {i : τi − θβs
i ≥ 0} and its complement

IC = {1, . . . ,m} \ I.

i. There exists optimal solutions b∗ and bR∗of the problems (PUB
I ) and (RUB

I ) such

that b∗i = bR∗
i = ∞ holds for every i ∈ I.

ii. If
∑m

i=1 β
s
iE(Di) ≤ C holds, then b∗ = (∞, . . . ,∞) is an optimal solution of both

(PUB
I ) and (RUB

I ).

Proof. Since the proofs for (RUB
I ) are similar, we only prove the results for

(PUB
I ). To show (i) we first observe that the objective function of (PUB

I ) can be written

as follows:

φ(b) = min
(∑m

i=1
(τi − θβs

i )E(Ni(bi)) + θC,
∑m

i=1
τiE(Ni(bi))

)
. (2.29)
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Let b̂ be an arbitrary optimal solution of (PUB
I ) and consider the feasible solution

b∗ ∈ R̄+ with

b∗i =

⎧
⎨

⎩
b̂i if i ∈ IC

∞ if i ∈ I.

Using the assumption that τi − θβs
i ≥ 0 for all i ∈ I we have

∑m
i=1(τi − θβs

i )E(Ni(b̂i)) ≤
∑

i∈IC (τi − θβs
i )E(Ni(b̂i)) +

∑
i∈I(τi − θβs

i )E(Di)

=
∑m

i=1(τi − θβs
i )E(Ni(b∗i )).

Similarly, by the positivity of the parameters τi, we have

∑m

i=1
τiE(Ni(b̂i)) ≤

∑
i∈IC

τiE(Ni(b̂i)) +
∑

i∈I
τiE(Di) =

∑m

i=1
τiE(Ni(b

∗
i )).

By plugging these inequalities into (2.29) we obtain φ(b̂) ≤ φ(b∗), which shows that

b∗ is also an optimal solution, and proves our claim.

To show (ii) we observe that if
∑m

i=1 β
s
iE(Di) ≤ C holds, the objective function

of (RUB
I ) becomes

∑m
i=1 τiE(Ni(b)). Since the coefficients τi are nonnegative and the

mapping b (→ E(Ni(b)) is nondecreasing, our claim follows immediately. !
In the next lemma, it is shown that an optimal solution of (RUB

I ) can also be

easily obtained when
∑m

i=1 β
s
iE(Di) > C.

Lemma 2.1.6 Consider the continuous relaxation (RUB
I ) and assume that

∑m
i=1 β

s
iE(Di) >

C holds.

i. Suppose that the fare classes are indexed such that τ1
βs
1
≥ τ2

βs
2
≥ · · · ≥ τm

βs
m
. If

τi − θβs
i ≤ 0 holds for all i = 1, . . . ,m, then an optimal solution is given by

bR∗
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if 1 ≤ i ≤ k∗ − 1

min{b ∈ R̄+ : E(Nk∗(b)) = yk∗} if i = k∗

0 if k∗ + 1 ≤ i ≤ m,

(2.30)
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where

k∗ = min{k :
k∑

i=1

βs
iE(Di) ≥ C}

and

yk∗ =
C −

∑k∗−1
i=1 βs

iE(Di)

βs
k∗

.

We remark that C ≤ 0 implies bR∗ = (0, . . . , 0).

ii. As before, consider the index set I = {i : τi − θβs
i ≥ 0} and its complement IC.

There exists an optimal solution bR∗ such that bR∗
i = ∞ holds for every i ∈ I,

while (bR∗
i )i∈IC is an optimal solution of the following residual problem:

max

{
∑

i∈Ic
τiE(Ni(bi))− θ

[∑
i∈Ic

βs
iE(Ni(bi))− Ĉ

]+
: bi ∈ R̄+, i ∈ Ic

}
,

(2.31)

where Ĉ = C −
∑

i∈I β
s
iE(Di).

Note that, since τi − θβs
i ≤ 0 holds for all i ∈ IC, the residual problem has an

optimal solution of the form described in part (i).

Proof. (i) We first prove that the problem (RUB
I ) has an optimal solution bR∗

which satisfies

µ(bR∗) :=
∑m

i=1
βs
iE(Ni(b

R∗
i )) = C. (2.32)

Consider an arbitrary optimal solution b̂.

Case 1: µ(b̂) ≤ C. Since µ is continuous and nondecreasing on R̄m
+ , and

µ ((∞, . . . ,∞)) =
∑m

i=1 β
s
iE(Di) > C, there exists some bR∗ ≥ b̂ satisfying µ(bR∗) = C.

As the coefficients τi are nonnegative, and the mappings b (→ E(Ni(b)) are nondecreas-

ing, we have

φU(b
R∗) =

∑m

i=1
τiE(Ni(b

R∗
i )) ≥

∑m

i=1
τiE(Ni(b̂i)) = φU(b̂).

It follows that bR∗ is also an optimal solution, which proves our claim.
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Case 2: µ(b̂) ≥ C. Similarly to the previous case, µ ((0, . . . , 0)) = 0 implies

that there exists some bR∗ ≤ b̂ satisfying µ(bR∗) = C. Using the assumption that

τi − θβs
i ≤ 0 for all i = 1, . . . ,m, we now have

φU(b
R∗) =

∑m

i=1
τiE(Ni(b

R∗
i ))− θ

(∑m

i=1
βs
iE(Ni(b

R∗
i ))− C

)

=
∑m

i=1
(τi − θβs

i )E(Ni(b
R∗
i )) + θC

≥
∑m

i=1
(τi − θβs

i )E(Ni(b̂i)) + θC

=
∑m

i=1
τiE(Ni(b̂i))− θ

(∑m

i=1
βs
iE(Ni(b̂i))− C

)
= φU(b̂).

It follows that bR∗ is also an optimal solution, which proves our claim. By incorporating

the valid equality (2.32) into (RUB
I ) we obtain the problem

max{
∑m

i=1
τiE(Ni(bi)) :

∑m

i=1
βs
iE(Ni(bi)) = C, b ∈ R̄m

+}.

Since the mapping b (→ E(Ni(b)) is continuous and nondecreasing for all i = 1, . . . ,m,

we can apply the change of variable yi = E(Ni(bi)). This leads to the continuous

knapsack problem below, which has the same optimal objective value as (RUB
I ).

max
{∑m

i=1
τiyi :

∑m

i=1
βs
i yi = C, 0 ≤ yi ≤ E(Di)

}

According to the ordering of the indices specified in the statement of the lemma, the

optimal solution of this problem is given by

y∗i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(Di) if 1 ≤ i ≤ k∗ − 1

C −
∑k∗−1

i=1 βs
iE(Di)

βs
k∗

if i = k∗

0 if k∗ + 1 ≤ i ≤ m,

where k∗ = min{k :
∑k

i=1 β
s
iE(Di) ≥ C}. Applying the transformation bR∗

i = min{b ∈

R̄+ : E(Ni(b)) = y∗i } we obtain the optimal solution given in (2.30).
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(ii) By part (ii) of Lemma 2.1.5, there exists an optimal solution bR∗ such that

bR∗
i = ∞ holds for every i ∈ I. Utilizing this result the problem (RUB

I ) becomes

∑
i∈I

τiE(Di)+max{
∑

i∈Ic
τiE(Ni(bi))−θ

[∑
i∈Ic

βs
iE(Ni(bi))− Ĉ

]+
: bi ∈ R̄+, i ∈ Ic}.

By dropping the constant term
∑

i∈I τiE(Di) we arrive at the residual problem (2.31).

!
As an immediate consequence of the above result, we obtain an analytical expres-

sion for the optimal objective value of (RUB
I ).

Corollary 2.1.1 Suppose that the fare classes are indexed such that τ1
βs
1
≥ τ2

βs
2
≥ · · · ≥

τm
βs
m
. Substituting the optimal solutions characterized in Lemma 2.1.6 into the objective

function φU we obtain

φU(b
R∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑m
i=1 τiE(Di) if

∑m
i=1 β

s
iE(Di) ≤ C

∑
i∈I(τi − θβs

i )E(Di) + θC if
∑

i∈I β
s
iE(Di) ≥ C

∑k∗−1
i=1 τiE(Di) + τk∗yk∗ otherwise,

(2.33)

where k∗ = min{k :
∑k

i=1 β
s
iE(Di) ≥ C}.

Lemma 2.1.6 states that according to the policy characterized by the solution of

(RUB
I ), there is at most one fare class for which booking decisions are made based on a

finite positive booking limit. The remaining fare classes are divided into two groups: for

some classes all the booking requests are accepted, while for the others all the requests

are rejected. Since the optimal solution of (RUB
I ) can have a fractional component

associated with the index k∗, bR∗ might not be a feasible solution to (PUB
I ). However,

we can obtain a feasible solution by simple rounding:

⌊bR∗
i ⌋ :=

⎧
⎪⎪⎨

⎪⎪⎩

∞ if bR∗
i = ∞

⌊bR∗
i ⌋ otherwise.

(2.34)
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We next derive upper bounds on the error introduced by solving (PUB
I ) instead

of (PI).

Lemma 2.1.7 Suppose that b∗, bU∗ and bR∗ denote the optimal solutions of the orig-

inal problem (PI), the upper bounding problem (PUB
I ), and the relaxed problem (RUB

I ),

respectively. In addition, ⌊bR∗⌋ is defined as in (2.34). If φ(
⌊
bR∗⌋) > 0, then the

following relations hold:

0 ≤ φU(bU∗)− φ(b∗)

φ(b∗)
≤ φU(bR∗)− φ(b∗)

φ(b∗)
≤ φU(bR∗)

φ(⌊bR∗⌋) − 1. (2.35)

Since φU(bU∗
) ≥ φ(b∗) ≥ 0, φU(bU∗) ≤ φU(bR∗), and φ(b∗) ≥ φ(⌊bR∗⌋) > 0, the

assertion immediately follows.

Note that we have an analytical expression for the solution ⌊bR∗⌋ (see (2.30) and

(2.34)). Thus, the upper bound given in Lemma 2.1.7 depends solely on the problem

data and can be computed without performing optimization.

In our computational study, we have observed that φ(
⌊
bR∗⌋) is positive for all

the problem instances. If the condition φ(
⌊
bR∗⌋) > 0 is violated, we can utilize the

optimal solution of (P LB
I ), which we denote by (bL∗,yL∗). Since φL(bL∗,yL∗) ≥ 0 and

φ(b∗) ≥ max{φ(⌊bR∗⌋),φL(bL∗,yL∗)}, a generalized version of (2.35) becomes

0 ≤ φU(bU∗)− φ(b∗)

φ(b∗)
≤ φU(bR∗)− φ(b∗)

φ(b∗)
≤ φU(bR∗)

max{φ(⌊bR∗⌋),φL(bL∗,yL∗)} − 1.

(2.36)

The remaining challenge is to compute φ(⌊bR∗⌋) appearing in (2.35) and (2.36).

Assuming that the random demands for fare classes, Di, i = 1, . . . ,m, are bounded and

independent, for a given booking policy denoted by b ∈ Z̄m
+ we can numerically calculate

the value of the φ(b) using the FFT method (see, e.g.,Tijms [83]). Basically, we need

to compute numerically the distribution function of the bounded random variable

∆(b) :=
∑m

i=1
B(βs

i ,Ni(bi)).

37



To achieve this, we compute the generating function of the random variable ∆(b). By

the independence of the random demand variables Di, i = 1, . . . ,m, and hence, the

independence of the random variables Ni(bi), i = 1, . . . ,m, and relation (2.2), we obtain

the generating function as follows:

E(z∆(b)) =Πm
i=1E(zB(βs

i ,Ni(bi)))

=Πm
i=1E

(
(1− βs

i + βs
i z)

Ni(bi)
)

=Πm
i=1Pi(1− βs

i + βs
i z),

where Pi(w) := E(wNi(bi)). Notice that Pi(w) can be easily calculated for given distribu-

tions of the random demand variables Di, i = 1, . . . ,m. Since the random variable ∆(b)

is bounded, we apply the standard FFT method for a finite sequence using E(z∆(b))

and obtain the distribution function of ∆(b). Then, we simply compute the challenging

expectation E([∆(b)− C]+) appearing in the expected net revenue function φ.

2.2 Dynamic Overbooking Model

In this section, we discuss the dynamic overbooking problem, Since overbooking is

allowed, the total number of reservations may exceed the actual capacity but the con-

sequences, like denying boarding or departing with vacant seats, are faced at the time

of departure. As time progresses during the reservation period the booking requests

arrive randomly, and when a request arrives into the system we need to decide whether

to accept or reject that request. The sequence of these accept or reject decisions leading

to the highest net revenue is the optimal policy that we are after in this section.

2.2.1 Dynamics of The System

We introduce a discrete-time dynamic overbooking model, where time 0 represents the

beginning of the reservation horizon and time T represents the departure time of the

flight. The request arrivals only occur at discrete time points tk = kh, k = 1, . . . , K−1,

with h being chosen sufficiently small, T = Kh, K ∈ N, and t0 = 0. At most one

booking request occurs at each time period Ik = [tk−1, tk).
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A sample path of this discrete time arrival process is represented by a realization

of a finite random vector (ξ1, . . . , ξK−1), where ξk = i designates that a request for

fare class i arrives at time tk, i ∈ {0, . . . ,m}, k = 1, . . . , K − 1. Note that a request

for fare class 0 is also added to represent a no arrival at a given time point. The

probability that a request for fare class i arrives at time tk is pi(tk) := P(ξk = i),

i ∈ {0, . . . ,m}, k = 1, . . . , K − 1. Clearly, pi(tk) ≥ 0 and
∑m

i=0 pi(tk) = 1 for all time

points t1, . . . , tK−1.

To model the cancellation process, we assume that each reservation, independently

of other reservations, cancels in period Ik with probability c(Ik), k = 2, . . . , K. Thus,

the number of cancellations in period Ik, given that there are n accepted requests at

time tk−1, is a binomial distributed random variable B(c(Ik), n). Consequently, the

number of accepted requests just before time tk becomes B(1− c(Ik), n). Observe that

when

c(Ik) = 1− exp (−λch) ,

the cancellation process is represented by a homogeneous Markovian death process with

departure rate λc > 0, and hence, the cancellation probability does not depend on when

the reservation was made. This property is coined as “forgetfulness property” and it is

empirically confirmed to hold in practice [73].

As before ri is the price of a fare class i ticket, i = 1, . . . ,m. We also introduce

r0 = 0 to represent the price for the no-arrival case. Without loss of generality, we

take r0 < r1 < . . . < rm. We assume that each cancelled reservation receives a fixed

refund of κ, and the airline incurs a fixed cost of θ for each denied boarding. At each

time epoch tk, we decide to accept or reject a possible request after the number of

cancellations in the time interval Ik is realized. We might observe some no-shows just

before the departure of the flight. It is assumed that the show-up probability of each

reservation does not depend on its fare class, and it is denoted by βs.

At this point we should note that some aspects of our model are covered by

Subramanian et al. [76] and Chatwin [23]. Subramanian et al. consider the arrival of a

cancellation, the arrival of a booking request and no-arrival of any type as a combined

stream. That is, they assume that only a booking request, a cancellation or a null
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event (no booking request, no cancellation) can be realized at each time epoch. This

implies that the arrival and cancellation events are dependent and hence the probability

measure of the arrival process of requests depends implicitly on the total number of

reservations. However, their discretization approach allows for the independence of

these two stochastic processes up to a o(h) error in the associated probabilities, where

h is the length of each time interval. In other words, in the discrete time setting of

their model the independence between the arrival and cancellation processes holds as h

goes to zero. On the other hand, our approach avoids this technical issue by modeling

the arrival and cancellation processes as two different streams and allows naturally

the independence between these two stochastic processes. Moreover, our alternative

modeling approach yields a simpler mathematical proof of the discrete concavity of

the expected optimal net revenue as a function of the total number of reservations.

Chatwin avoids the discretization approach and assumes that the overall arrival process

of the requests is a continuous time homogeneous Poisson process, and the probabilities

to identify the class of a request are independent of time. Under this assumption,

the arrival processes of requests for different fare classes are independent homogeneous

Poisson processes. Also he models the cancellation process as a homogenous Markovian

death process, and therefore, (although Chatwin applies the Bellman-Jacobi differential

approach) it is possible to use a regenerative approach to analyze his model. However,

for nonhomogeneous stochastic processes it is more difficult to apply the Bellman-Jacobi

or regenerative approach (essentially we need to use a two dimensional state space in

our optimal control problem) and since the corresponding continuous optimal value

equation needs to be solved by discretization, it seems to be more natural to start at

the beginning with a discrete time nonhomogenous arrival process.

2.2.2 Analysis of The Proposed Model

We now present the detailed mathematical description of the proposed dynamic model.

Let us denote by t+k the time epoch just after an accept or reject decision for a request

that arrives at time tk, k = 1, . . . , K − 1. Similarly, the time epoch just after the

departure of the flight is denoted by t+K . Let Jk(n), k = 1, . . . , K − 1, denote the
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expected optimal net revenue from t+k up to t+K given that the number of reservations

at t+k is n. To determine Jk(n), n ∈ Z+, k = 1, . . . , K − 1, we first observe that

after an accept or reject decision at tk yielding a total of n reservations at time t+k ,

the number of cancelled reservations in the interval Ik+1 is a binomially distributed

random variable B(c(Ik+1), n). Hence, the total number of reservations just before

time tk+1 is B(1 − c(Ik+1), n). This implies that the total number of reservations just

before the departure time is B(1 − c(IK), n) and the total number of shows is given

by B(βs(1 − c(IK)), n). Then, by E(B(c(Ik), n)) = nc(Ik), the independence of the

arrival and cancellation processes and the dynamic programming optimality principle

we obtain for every k = 1, . . . , K − 2, and n ∈ Z+

Jk(n) = −κnc(Ik+1) + p0(tk+1)E (Jk+1(B(1− c(Ik+1), n)))

+
∑m

i=1
pi(tk+1)E (max {ri + Jk+1(B(1− c(Ik+1), n) + 1), Jk+1(B(1− c(Ik+1), n))})

(PDM)

and the boundary condition

JK−1(n) = −κnc(IK)− θE
(
[B(βs(1− c(IK)), n)− C]+

)
. (2.37)

Clearly, for n = 0 we obtain P (B(1 − c(Ik+1), 0) = 0) = 1, and the above recursion

reduces to

Jk(0) = p0(tk+1)Jk+1(0) +
∑m

i=1
pi(tk+1)max {ri + Jk+1(1), Jk+1(0)} .

Next, we shall mention some results related to the discrete concavity (convexity)

that are used in our analysis of the above model. We start with a definition.

Definition 2.2.1 A function f : Z+ (→ Z is discrete concave if and only if the differ-

ences n (→ f(n+ 1)− f(n) are decreasing. A function f is discrete convex if and only

if -f is discrete concave.
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The proof of the following lemma is given by Lippman and Stidham [62].

Lemma 2.2.1 Let r ≥ 0 and f : Z+ (→ R be a discrete concave function. Then the

function h : Z+ (→ R given by h(n) = max{r+ f(n+ 1), f(n)} is also discrete concave.

We next obtain the optimal policy of the dynamic programming model (PDM) by

showing that the function n (→ Jk(n) is a discrete concave function on Z+ for every

k = 1, . . . , K − 1.

Lemma 2.2.2 The function n (→ Jk(n) is discrete concave on Z+ for every k =

1, . . . , K − 1.

Proof. For ease of exposition we introduce the function n (→ Γk+1(i, n) given

by

Γk+1(i, n) :=

⎧
⎪⎨

⎪⎩

max {ri + Jk+1(n+ 1), Jk+1(n)} , for i ∈ {1, . . . ,m};

Jk+1(n), for i = 0,

(2.38)

Then, the recursion of the dynamic model (PDM) for every k = 1, . . . , K − 2, becomes

Jk(n) = −κnc(Ik+1) +
∑m

i=0 pi(tk+1)E (Γk+1 (i,B(1− c(Ik+1), n))) . (2.39)

Using Lemma 2.1.2, it follows that the function n (→ JK−1(n) listed in relation

(2.37) is discrete concave on Z+. Suppose now for a given k+ 1 < K that the function

n (→ Jk+1(n) is discrete concave on Z+. Our proof is then completed once we show that

the function n (→ Jk(n) is discrete concave on Z+. Applying our induction hypothesis

and Lemma 2.2.1, we first obtain that the function n (→ Γk+1(i, n) given in (2.38) is

discrete concave for any i ∈ {0, 1 . . . ,m}. This implies using Lemma 2.1.2 that the

function

n (→ E (Γk+1 (i,B(1− c(Ik+1), n)))

is discrete concave on Z+ and by relation (2.39) the result follows. !
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Let us now introduce

bki := max {n ∈ Z+ : ri ≥ Jk+1(n)− Jk+1(n+ 1)} .

Since a discrete concave function has decreasing differences by definition, it follows by

Lemma 2.2.2 that the following dynamic booking limit policy is optimal:

“accept the request for fare class i at tk ⇔ total number of reservations ≤ bki”

As the fares are assumed to be ordered, we then obtain the following nested structure:

bk1 ≤ bk2 ≤ · · · ≤ bkm.

2.3 Computational Experiments

We devote this section to a computational study for discussing different aspects of

the models proposed in the previous sections. In particular, we conduct simulation

experiments to benchmark the policies obtained with our lower bounding model (P LB
I ),

upper bounding model (PUB
I ) and the dynamic model (PDM) against some well-known

approaches used in the literature [58, 57]. We next explain our simulation setup in

detail and then present our numerical results.

2.3.1 Simulation Setup

We simulate the arrival of requests and cancellations over the discrete time points

tk, k = 1, . . . , K − 1. The probability that there is a request for fare class i at time

point tk is pi(tk). If we accept a request for fare class i, then we generate a revenue

of ri. Without loss of generality, we take r0 < r1 < . . . < rm. Each accepted fare

class i request cancels with probability ci(Ik) in period Ik = [tk−1, tk), k = 2, . . . , K.

Hence, the number of fare class i cancellations at time point tk is binomially distributed

with a success probability ci(Ik+1). Each cancellation is refunded with an amount of

riαi, i = 1, . . . ,m. At the end of the reservation period, each reservation shows up with
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probability βs
i and the penalty cost of denying boarding to a reservation for fare class

i is νri.

To generate these arrival and cancellation probabilities we shall mimic the actual

stochastic processes. We assume that the booking requests arrive according to a homo-

geneous Poisson process with rate λa, and the cancellations for fare classes i = 1, . . . ,m,

are modeled by a Markovian death process with departure rates λci . Then, we have for

k = 1, . . . , K − 1

p0(tk) = exp(−λah)

and

ci(Ik) = 1− exp (−λcih) .

Given a request arrives at time tk, this request is for fare class i with probability

fi(tk) satisfying, fi(tk) ≥ 0 and
∑m

i=1 fi(tk) = 1. In other words, upon an arrival at time

tk, the different fare class requests are generated according to a multinomial selection

scheme with probabilities fi(tk), i = 1, . . . ,m, k = 1, . . . , K − 1. Assuming that in

reality the lower fare class requests arrive more frequently in the early periods than the

higher fare classes, we set the multinomial probabilities as

fi(tk) =
πi(tk)∑m
i=1 πi(tk)

, i = 1, . . . ,m,

where πi(tk) are simple linear functions. This way of setting the multinomial prob-

abilities complies with the desired demand pattern. As illustrated in Figure 2.1, we

set

pi(tk) = fi(tk)(1− p0(tk)), i = 1, . . . ,m, k = 1, . . . , K − 1.

To obtain the optimal booking limits of static models, we need to compute the

demand probabilities P (Di = k) for all i = 1, . . . ,m and k = 0, . . . , K − 1. Since the

arrivals are independent across time periods, the total demand for fare class i is the

sum of independent Bernoulli random variables with success probabilities pi(tk), k =

1, . . . , K − 1. We obtain these demand distributions by applying the well-known Fast

Fourier Transform (FFT) method [see, e.g., 83]. The distribution of the total demand
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Figure 2.1: An example of the changes in multinomial probabilities over time

used by the EMSR-based heuristics is obtained by the FFT method as well, since the

random demands for individual fare classes are also independent.

In our simulation setup, the following class-dependent parameters are given: fares

(ri), refund percentages (αi), cancellation probabilities (βc
i ), and show-up probabilities

(βs
i ). In order to test the performances of the booking policies against varying arrival

intensities, we use the load factor parameter ρ, which is given by

ρ =
(K − 1)(1− exp(−λah))

C
. (2.40)

Observe that the numerator is the expected number of booking requests. To con-

form with our simulation setup, we tie the arrival rate to a given load factor and obtain

λa by solving (2.40) for a specified value of ρ. When it comes to the cancellation rates,

we assume that the behaviors of the customers towards cancellation are independent of

whether they have reserved a ticket or not. Using this assumption and simple condi-

tioning, we can relate the cancellation probabilities to the cancellation rates and acquire

λci , i = 1, . . . ,m, from

∑K−1
k=1 (1− exp(−λci(T − tk)))fi(tk)∑K−1

k=1 fi(tk)
= βc

i , i = 1, . . . ,m.
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Then, we obtain the probabilities pi =
E(Di)
E(D) , i = 1, . . . ,m, denoting the fractions of the

aggregate demand allocated to different fare classes.

Recall that in our dynamic model the cancellation and show-up probabilities do

not depend on the fare classes. By applying a simple conditioning, we estimate the

class-independent show-up and cancellation probabilities as

βs =
m∑

i=1

βs
i pi and β

c :=
m∑

i=1

βc
i pi, (2.41)

respectively. Using now the class-independent cancellation probability, we obtain the

cancellation rate, λc by solving

∑K−1
k=1 (1− exp(−λc(T − tk)))

K − 1
= βc.

2.3.2 Numerical Results

In this section, we apply a benchmarking study including several approaches from the

literature as well as our static and dynamic models. We also provide an experimental

design, similar to the one in [86], for different parameters used in our simulation. All

the contender methods that we use for benchmarking apply the EMSR-b heuristic but

they mainly differ in terms of the way the virtual capacity is obtained:

- EMSR/Risk: Our total booking limit given by relation (2.15) is used as the virtual

capacity.

- EMSR/MP: The virtual capacity is set according to the deterministic rule de-

scribed by [11]. However, this rule requires a class-independent show up rate.

Therefore, we use βs as described at the end of the previous section and the

virtual capacity is equal to C/βs.

- EMSR/SL: The virtual capacity is based on a type-I service level constraint using

the actual capacity. This constraint imposes that probability of overbooking is

less than or equal to 1.0e− 3 [69, Section 9.3].
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- EMSR/NO: Overbooking is not allowed. Therefore, EMSR-b heuristic is applied

with the actual capacity.

In the sequel, we simulate the arrival process for many replications and refer to

the average revenues obtained by the optimal policies of our static models (PUB
I ) and

(P LB
I ) as UB and LB, respectively. Likewise, we denote the average revenue of the

dynamic policy obtained with our model (PDM) by DM. We note once again that both

of the static models provide partitioned booking limits but we use these limits in a

nested way in all our simulations.

In all our numerical experiments, we set the capacity of the plane, the planning

horizon, the discretization mesh lengths and the number of discrete time points to

C = 150, T = 200, h = 1.0e − 2, K = 20, 000, respectively. The refund percentages

(α1, . . . ,αm) and the cancellation probabilities (βc
1, . . . , β

c
m) are evenly distributed in

the intervals [0.00, 0.30] and [0.05, 0.17]. For our dynamic programming implementation

to solve the DP model, an upper bound sufficiently larger than C was imposed on the

total number of reservations. This allows us to restrict the state space for computational

purposes. In the implementation for solving the DP model, setting such an upper bound

means that a booking request would be rejected if the total number of reservations

reaches this upper bound. As required by formulation (2.21)-(2.25), we also need to

impose an upper bound Mi on the booking limit bi for each i = 1, . . . ,m. To serve this

purpose, we choose sufficiently large Mi values by setting ϵ = 1.0e− 7 in Lemma 2.1.4.

Our experimental design is based on various factors of the fares (ri), the overbook-

ing cost θ, the load factor ρ, the number of fare classes m, and the show-up probabilities

(βs
i ). The lowest price is fixed to 50 and the prices of the other fare classes are evenly

distributed in the interval [50, η50], where η ∈ {4, 7} gives two sets of fares. For the pro-

posed static and dynamic models the class-independent overbooking cost is determined

by

θ = ν
m∑

i=1

ripi,

where ν ∈ {3, 5} is used to create two factors indicating low and high overbooking

costs. We use load factor values ρ ∈ {1.4, 1.8} corresponding to medium and high
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loads. We also apply sensitivity analysis with respect to the number of fare classes

selected as m ∈ {4, 8}. The last parameter set comes from the show-up probabili-

ties βs
• := (βs

1, . . . , β
s
m). We give two sets of show-up probabilities to represent pos-

sibly low and high show-up rates. These are βs
L := (0.95, 0.92, 0.80, 0.77) and βs

H :=

(0.98, 0.95, 0.83, 0.80) for m = 4; βs
L := (0.95, 0.93, 0.91, 0.89, 0.83, 0.81, 0.79, 0.77) and

βs
H := (0.98, 0.96, 0.94, 0.92, 0.86, 0.84, 0.82, 0.80) for m = 8. Under this setup, we eval-

uate the solutions of the contender approaches for all 32 test problem instances. Then,

the policies obtained by these solutions are compared for each instance by taking 50

simulation runs.

Table 2.1 presents the optimal objective function values of (PUB
I ) and (P LB

I ),

where bU∗ and (bL∗,yL∗) denote their optimal solutions, respectively. The last column

gives the percentage gap between the objective function values of these two bounding

problems. As seen from this table, the relative differences are mostly affected by the

number of fare classes. Recall that (P LB
I ) partitions the actual capacity to each fare

class and incurs a penalty even if a reservation occupies a preallocated seat belong-

ing to a different fare class. This treatment of the capacity does not allow sharing

the seats among the fare classes efficiently. Consequently, the performance of (P LB
I )

deteriorates more than that of (PUB
I ) and the percentage gap increases with a higher

number of fare classes. The results also depict that the optimal objective function value

of (P LB
I ) decreases slightly as the overbooking cost coefficient ν gets higher. On the

other hand, the change in the optimal objective function value of (PUB
I ) is even less

significant when the overbooking cost becomes higher. Consequently, the percentage

gap tends to increase with ν; nonetheless, this change is quite minor. Regarding the

impact of varying class fares, we observe that the optimal objective function values of

both models increase as the parameter η becomes larger. However, the increase in the

optimal objective function value is larger for (P LB
I ) compared to (PUB

I ). Therefore, the

percentage gap decreases as η gets larger.
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Table 2.1: The optimal objective function values of PUB
I and P LB

I

Instances (a) (b)
m ρ βs

• η ν φL(bL∗,yL∗) φU(bU∗) ((b)− (a))/(a)%
4 3 21,444.88 22,815.67 6.39%

βs
H

4 5 21,337.41 22,815.67 6.93%
7 3 35,601.98 37,265.54 4.67%

1.4
7 5 35,464.30 37,268.98 5.09%
4 3 21,654.65 23,071.37 6.54%

βs
L

4 5 21,528.50 23,071.38 7.17%
7 3 35,834.72 37,527.54 4.72%
7 5 35,702.62 37,527.54 5.11%

4
4 3 24,434.11 26,106.48 6.84%

βs
H

4 5 24,186.78 26,106.48 7.94%
7 3 41,014.06 43,672.63 6.48%

1.8
7 5 40,618.44 43,672.63 7.52%
4 3 24,904.36 26,674.35 7.11%

βs
L

4 5 24,622.59 26,674.35 8.33%
7 3 41,714.30 44,537.86 6.77%
7 5 41,277.23 44,537.86 7.90%

4 3 20,403.45 22,657.20 11.05%
βs

H 4 5 20,215.49 22,657.20 12.08%
7 3 33,653.33 36,990.55 9.92%

1.4
7 5 33,396.48 36,990.55 10.76%
4 3 20,670.32 23,053.38 11.53%

βs
L 4 5 20,436.40 23,053.38 12.81%

7 3 34,022.66 37,502.04 10.23%
7 5 33,702.95 37,502.04 11.27%

8
4 3 23,141.81 25,606.24 10.65%

βs
H 4 5 22,873.36 25,606.24 11.95%

7 3 38,817.54 42,726.61 10.07%

1.8
7 5 38,399.12 42,726.61 11.27%
4 3 23,542.35 26,135.89 11.02%

βs
L 4 5 23,209.54 26,137.07 12.61%

7 3 39,384.75 43,504.99 10.46%
7 5 38,917.66 43,502.70 11.78%

Figures 2.2 to 2.5 present average net revenues over all simulation runs for the

booking policies obtained by the different methods for varying factors. In these figures,

we compare the performances of the booking policies obtained by our proposed models

to those of the benchmarking methods with respect to high and low show-up probabili-
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ties (denoted by H and L) and the overbooking cost coefficient, ν. The details of these

figures are given in Table 2.2, where the revenue obtained by the dynamic model is used

as a base approach to report the relative performances of the remaining approaches.

Figures 2.6 and 2.7 depict the number of seats overbooked by various methods averaged

over all simulation runs. In these figures, the number of fare classes is fixed, while the

parameters (ρ,βs
•, η, ν) vary.

Figure 2.2: Average net revenues (ρ = 1.4, m = 4)

Figure 2.3: Average net revenues (ρ = 1.8, m = 4)
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Figure 2.4: Average net revenues (ρ = 1.4, m = 8)

Figure 2.5: Average net revenues (ρ = 1.8, m = 8)
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Figure 2.6: Average overbooking amount (m = 4)

Figure 2.7: Average overbooking amount (m = 8)
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The first observation we have is that the proposed upper bounding model (PUB
I )

performs better than all the EMSR-based heuristics for any combination of the param-

eters (Figures 2.2 to 2.5). On the other hand, Figures 2.6 and 2.7 show that the upper

bounding model (PUB
I ) overbooks on average more seats than the other solution meth-

ods. However, this excess overbooking compensates for the revenue loss due to empty

seats. We also observe the cases where the average revenues of the booking policies

obtained by (PUB
I ) and (PDM) can become relatively close. We caution the reader that

these relatively small gaps between DM and UB implicitly demonstrates the impor-

tance of considering class-dependent show-up and cancellation probabilities. Lacking

this consideration, the dynamic model treats all cancellations and no-shows the same

way, and consequently, may fail to capture the actual dynamics of the system. As Fig-

ures 2.3-2.5 illustrate, the lower bounding problem (P LB
I ) performs slightly better when

the load factor is high. As we mentioned before, (P LB
I ) is more conservative than the

upper bounding problem and its overbooking policy is based on reserving more seats

only for the expensive fare classes. Therefore, when the load-factor is high, it benefits

from the increase in the number of booking requests for the expensive fare classes and

it makes more overbooking. Comparing the plots for (P LB
I ) in Figures 2.2 and 2.4 with

those in Figures 2.3 and 2.5, we note that the average revenue obtained by solving (P LB
I )

is closer to the revenue obtained by EMSR/SL for the lower load-factor value. However,

it performs better and the average revenues as well as the number of overbooked seats

stay close to those of EMSR/Risk and EMSR/MP when the load factor is high. As

depicted in Figures 2.6 and 2.7, even there are instances when (P LB
I ) overbooks more

seats than EMSR/MP and EMSR/Risk on average. These instances correspond to the

cases where (P LB
I ) outperforms both EMSR/MP and EMSR/Risk. However, when the

number of fare classes increases, the performance of (P LB
I ) deteriorates even if the load

factor is high (see Figures 2.3 and 2.5).

When we look into the performances of the EMSR-based heuristics, we observe

that EMSR/Risk and EMSR/MP are better than the remaining two heuristics. This

difference is more striking when the load factor is high and the show-up probabilities

are low as designated by Figures 2.3 and 2.5 (see also the rows corresponding to βs
L
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in Table 2.2). This behavior can be attributed to the impact of overbooking. As

illustrated by Figures 2.6 and 2.7, the differences between the average number of seats

overbooked by the different EMSR-based heuristics are more significant when show-

up probabilities are low. In those cases EMSR/Risk and EMSR/MP benefit more

than EMSR/SL from the extra revenue gained by the overbooked seats. The average

revenue obtained by EMSR/MP is slightly higher than that of EMSR/Risk. Unlike

EMSR/Risk, EMSR/MP does not consider the overbooking penalty when determining

the virtual capacity. Therefore, the difference between the average revenues of the

policies obtained by these models increases with the overbooking cost factor. It turns

out that the proposed weighted average of the class-dependent show-up rates given in

relation (2.41) captures the nature of the show-up behavior accurately. We observe in

our numerical study that EMSR/MP reserves slightly more seats than EMSR/RISK

(at most 3 seats over all instances), and these additional seats are effective for collecting

extra revenues from overbooking. This success of EMSR/MP is also in accordance with

the observation made in [69, Section 9.3].

Table 2.2 and Figures 2.2 to 2.5 illustrate that, like our bounding models, the

performances of the EMSR-based heuristics deteriorate with respect to the dynamic

model with a higher number of fare classes. The deterioration in the performances

of the EMSR-based heuristics can be explained by the fact that these heuristics are

mainly based on comparing two fare classes. To obtain such a structure, each fare-class

is compared against the aggregation of the classes with lower fares. As the number

of fare-classes increases, the aggregation does not capture the stochastic nature of the

problem well. It is also important to note that the percentage gaps between DM and the

revenues of the remaining strategies are more striking when the load factor is high. This

can be due to the reactions of the models to the low fare class requests, especially, in the

early periods. As the load factor becomes higher, we observe many requests throughout

the planning horizon. The dynamic policy then reacts in a more conservative way and

rejects the early low fare requests. Such behaviour allows reserving seats for more

expensive fare classes arriving in later periods, and hence, results with an increase in

the total revenue. However, working with aggregate demands, the static models cannot
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react to the changes within different time intervals. Moreover, unlike the static models,

the dynamic model adjusts the booking limits by taking into account the reservations

and cancellations that have already taken place. It ends up overbooking more than

the static solution methods, and consequently, the revenue loss due to empty seats is

counteracted by the gains from the overbooked seats.

Table 2.2: Percentage differences relative to the expected net revenue of PDM

Instances DM versus
m ρ βs

• η ν EMSR/NO EMSR/SL EMSR/MP EMSR/Risk LB UB
4 3 6.91% 6.29% 4.06% 4.31% 5.39% 2.02%

βs
H

4 5 6.46% 5.84% 3.59% 4.35% 5.52% 1.58%
7 3 4.04% 3.67% 2.67% 2.93% 3.78% 0.73%

1.4
7 5 3.76% 3.39% 2.39% 2.75% 3.59% 0.45%
4 3 7.88% 6.08% 3.82% 3.88% 5.66% 1.95%

βs
L

4 5 7.61% 5.80% 3.54% 4.14% 6.13% 1.69%
7 3 4.79% 4.20% 2.65% 2.75% 4.23% 0.83%
7 5 4.53% 3.93% 2.38% 2.71% 4.26% 0.57%

4
4 3 12.48% 9.43% 5.61% 5.96% 4.94% 2.75%

βs
H

4 5 11.96% 8.89% 5.04% 6.19% 5.10% 2.19%
7 3 11.71% 8.92% 5.39% 5.83% 4.80% 2.23%

1.8
7 5 11.32% 8.52% 4.97% 6.26% 5.01% 1.81%
4 3 13.58% 8.43% 4.67% 5.08% 3.87% 2.37%

βs
L

4 5 13.16% 7.98% 4.21% 5.28% 4.91% 1.94%
7 3 12.69% 8.01% 4.54% 4.88% 4.37% 1.87%
7 5 12.40% 7.71% 4.23% 5.12% 4.56% 1.59%

4 3 10.01% 7.42% 4.25% 4.95% 6.67% 3.02%
βs
H 4 5 9.64% 7.04% 3.85% 4.86% 7.38% 2.61%

7 3 8.09% 6.11% 3.66% 3.75% 6.32% 1.94%

1.4
7 5 7.97% 5.98% 3.54% 4.45% 7.07% 1.82%
4 3 11.23% 7.14% 3.81% 4.09% 7.35% 2.54%

βs
L 4 5 10.90% 6.79% 3.45% 4.78% 7.59% 2.18%

7 3 8.68% 5.54% 2.82% 3.18% 6.20% 1.07%
7 5 8.43% 5.29% 2.55% 3.79% 6.67% 0.81%

8
4 3 11.72% 10.12% 6.22% 6.65% 6.84% 4.18%

βs
H 4 5 11.45% 9.83% 5.92% 7.16% 7.63% 3.88%

7 3 10.46% 9.12% 5.93% 6.25% 6.66% 3.31%

1.8
7 5 10.13% 8.78% 5.58% 6.68% 7.51% 2.95%
4 3 13.15% 9.80% 5.48% 5.85% 6.26% 3.63%

βs
L 4 5 12.51% 9.15% 4.79% 6.19% 7.67% 2.95%

7 3 11.50% 8.78% 4.88% 5.09% 6.57% 2.55%
7 5 11.27% 8.54% 4.63% 5.99% 7.50% 2.31%
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We next report an encouraging result about the error we introduce by solving the

upper bounding problem. As in Lemma 2.1.7, we denote the optimal solutions of the

original static problem (PI) and the continuous relaxation of upper bounding problem

(RUB
I ) by b∗ and bR∗, respectively. Moreover, φU(bR∗) is the optimal objective value of

the relaxed upper bounding problem. Table 2.3 shows the values of the upper bound

on the optimality gap (φU(bU∗) − φ(b∗))/φ(b∗) given in Lemma 2.1.7. These results

indicate that the error bound is mostly affected by the overbooking penalty and the

load factor. We observe that φ(
⌊
bR∗⌋) is significantly smaller when ν is higher, and

consequently, the error bound increases as ν gets higher. On the other hand, when the

load factor is high, (PUB
I ) reacts in a more conservative way and reduces the booking

limits of cheaper fare classes. Therefore, the resulting overbooking cost decreases, the

revenue φ(
⌊
bR∗⌋) increases, and hence, the error bound decreases as the load factor

gets higher. We also observe that the error bound tends to decrease as η increases,

since the relative increase in φ(
⌊
bR∗⌋) is more than the increase in φU(bR∗).

We conclude the presentation of our numerical results by reporting the wall-clock

times of the proposed solution methods. We used a computer with 2.4 GHz Intel Core

2 Quad processor and 3024 MB of RAM. The codes are written in MATLAB 7.6.0

running under Windows XP operating system. EMSR/NO, EMSR/SL, EMSR/MP,

and EMSR/Risk heuristics require on average less than 0.1 seconds. It takes on average

1.10 and 0.40 seconds to solve the lower and the upper bounding problems, respectively.

Thus, our heuristics are comparable to the widely-applied EMSR-based heuristics in

terms of computational efficiency. The most computational effort is invested in finding

the optimal policy of the dynamic model, which takes on average 2,260 seconds. Clearly,

this time depends on the mesh-size parameter h and the length of the planning horizon

T .
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Table 2.3: Bound on error introduced by solving PUB
I

Instances
φU(bR∗) φ(

⌊
bR∗⌋) Error

m ρ βs
• η ν Bound

4 3 22,818.62 21,269.03 0.073

βs
H

4 5 22,818.62 20,267.47 0.126
7 3 37,274.78 34,842.09 0.070

1.4
7 5 37,274.78 33,251.79 0.121
4 3 23,089.39 21,492.75 0.074

βs
L

4 5 23,089.39 20,440.34 0.130
7 3 37,545.56 35,020.98 0.072
7 5 37,545,56 33,349.93 0.126

4
4 3 26,139.73 24,669.71 0.060

βs
H

4 5 26,139.73 23,723.86 0.102
7 3 43,735.93 41,406.30 0.056

1.8
7 5 43,735.93 39,904.45 0.096
4 3 26,708.94 25,239.06 0.058

βs
L

4 5 26,708.94 24,282.21 0.100
7 3 44,589.74 42,258.88 0.055
7 5 44,589.74 40,739.57 0.094

4 3 22,666.43 21,031.50 0.078

βs
H

4 5 22,666.43 19,947.70 0.136
7 3 37,002.55 34,408.86 0.075

1.4
7 5 37,002.55 32,687.73 0.132
7 3 23,059.60 21,391.50 0.078

βs
L

7 5 23,059.60 20,287.86 0.137
7 3 37,513.66 34,868.28 0.076
7 5 37,513.66 33,115.64 0.133

8
7 3 25,614.71 23,985.24 0.068

βs
H

7 5 25,614.71 22,943.83 0.116
7 3 42,742.07 40,162.18 0.064

1.8
7 5 42,742.07 38,508.38 0.110
4 3 26,146.71 24,525.39 0.066

βs
L

4 5 26,146.71 23,478.70 0.114
7 3 43,525.34 40,956.54 0.063
7 5 43,525.34 39,294.34 0.108
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Chapter 3

SINGLE-LEG PROBLEM: DELAYED PURCHASE OPTION

In this chapter, we study delayed purchase decisions in single-leg revenue management.

As mentioned in Chapter 1, airline reservation systems recently offer the contingent

commitment option to customers. This option allows customers to reserve a seat for

a certain duration of time with a small fee. Therefore, it has the potential to attract

price sensitive customers as well as improve overall capacity utilization. However, it

also creates another source of uncertainty leading to probable revenue loss due to empty

seats.

As an example of a contingent commitment, consider a flight for which the airline

offers the commitment option for all fare classes. Customers can still buy seats as

usual. However, if a customer prefers to reserve a seat instead of buying it, then she

can commit to a seat for a fixed non-refundable fee. Such a passenger would then be

guaranteed a seat of the fare class until the end of a predetermined commitment period.

The length of the commitment period is fixed by the airline. If the customer decides to

purchase her committed ticket within this period, then she pays the ticket fare at the

time of initial inquiry. Otherwise, she leaves the system without any reimbursement.

In short, this option allows passengers to delay their purchase decision with seat and

price guarantee for the length of the commitment period.

In practice, there are variants of the contingent commitment option. While some

airline companies offer this option to all customers before they choose their flights,

some other companies present this option right before customers purchase their tickets.
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Figure 3.1 shows a typical screen shot from an airline reservation website that offers

a contingent commitment option at the beginning of the booking operation. This

reservation website serves 12 airline companies in the USA and Canada. We observe

that the contingent commitment fee depends on the length of the commitment period

and the option is offered until a week before the departure time of the flight. Although

the commitment option resembles a typical travel insurance, there are two important

differences. First, the commitment option holds the reservation for a fixed period of

time, whereas the travel insurance is valid only until the departure date. Second,

the contingent commitments allow passengers to cancel their reservations at any time

within the commitment period. However, travel insurance allows free cancellation only

if specific circumstances, like emergencies, arise. Therefore, a passenger is more likely

to cancel her contingent commitment than canceling her travel insurance.

Figure 3.1: A screen shot of a contingent commitment option [91]

From an airline perspective, every committed seat provides an additional revenue

from the non-refundable fee. However, reserving a seat, especially early in the reser-

vation period, may result in rejecting a high fare class request at a later time, which

in turn can lead to significant revenue losses. Therefore, the contingent commitment

and the capacity control decisions should be simultaneously taken into consideration.
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To simplify the discussion, we refer to immediately purchased seats as bookings in the

subsequent part.

In this work, we address the joint problem of capacity allocation and commitment

option for a single flight leg. We seek answers to the following questions: (i) How does

offering commitment options to customers affect overall revenue? (ii) How do commit-

ment options affect the optimal seat allocation? (iii) Should commitment options be

offered throughout the planning horizon or just during a predefined time period? (iv)

What is the effect of duration of commitment period on the optimal policy?

Our problem setting is based on two independent streams of events; arrivals of

booking and commitment requests and cancellations of committed seats. At each time

period, either a commitment request or a booking request can be realized indepen-

dently. We need to decide whether to accept or reject each arriving request. We first

introduce an exact dynamic programming formulation for this problem. However, this

formulation requires keeping track of the remaining commitment time of each accepted

contingent commitment request, and hence, makes use of a high-dimensional state vari-

able. Consequently the dynamic program becomes intractable. As a remedy, we propose

an approximation to the dynamic programming formulation that performs remarkably

well as we demonstrate in our computational study. In addition to this approximation,

we present deterministic linear programming models which provide upper bounds on

the intractable exact dynamic programming formulation.

Although we use airline reservation systems as the primary application area of

this research, the commitment option as we consider here is applicable to any industry

selling fixed, perishable capacity, such as; cargo, hotel and car rental. To make our

point clear, we note that hotel reservation systems and car rental agencies are already

exercising some options similar to the commitment option here. Car rental and hotel

systems offer both flexible and non-refundable products. While flexible products can be

canceled without any penalty, non-refundable products are offered with various penalty

options like charging the first day or the entire trip. For the non-refundable products the

reservation systems present insurance policies for a fixed price. These insurance policies

guarantee the refund of the whole reservation price, if the reservation is canceled. We
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will revisit these cases after presenting our models. Although, some of the problems

in hotel and car rental industries are network based problems, the methods proposed

in this thesis may also be applied in these applications since in practice single-leg

decomposition methods are frequently applied to network problems.

To the best of our knowledge, the concept of contingent commitment option has

not been previously studied in the literature. However, there exists a number of studies

on the sale options used in the revenue management. Recently callable and flexible

products have been introduced in airline industry. Callable products give airline the

flexibility of accepting expensive fare class customers instead of low fare class customers.

A buyer of such a product can be transferred to a later flight if there is no capacity

left in the flight she has booked. In that case, airline pays a pre-specified recall price

to the customer (Gallego et al., [39, 37]). Similarly, in flexible products airline is free

to assign the flexible product buyer to any of the pre-specified alternatives (Gallego

and Phillips [40]). Unlike the callable product, a flexible product guarantees a seat in

those alternatives. Callable and flexible product options appeal to the customers who

have low product valuation and flexible travel time. Gallego and Phillips show that

offering the flexible product significantly increases the profitability. These options are

also examined in the marketing science literature. Fay and Xie [34] work on the concept

of probabilistic goods and selling. In their study, a probabilistic good corresponds to

a set of multiple services that a buyer obtains with a probability. The probabilistic

selling denotes the selling strategy where probabilistic goods and standard products

are sold together. They examine the benefits of offering probabilistic goods. Similar to

the flexible products, the opaque selling option is introduced in the travel industry. In

opaque selling, product alternatives are concealed from a customer and she is unaware

of the product she buys until the purchase. Anderson and Xie [3] present a recent study

on the opaque selling option and examine the cases where opaque selling is offered with

regular full information selling. They show that offering opaque selling with regular

selling improves the customer segmentation, and hence, increases the revenues. Gallego

and Stefanescu [42] give a nice overview of different options introduced in the service

industries.
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Lately, Sainam et al. [74] investigate the benefits of call options in sport events.

This option allows sport fans to reserve a ticket for the final game until the teams

playing in final are identified. If the option buyer decides to attend the game, she

pays for the final. Otherwise, she cancels the ticket. Sainam et al. show that the call

options provide extra revenue when they are offered with the advance purchase option.

Balseiro et al. [9] extend the work of Sainam et al. by including pricing analysis

of call options. They propose a two-stage optimization model. In the first stage, a

pricing problem is solved and in the second stage, given the fixed prices, the capacity

allocation problem is solved. The problem is intractable. Therefore, they propose a

deterministic approximation. Gallego and Sahin [41] work on the partially refundable

fares and show that offering partially refundable fares is more profitable than offering

non-refundable and fully refundable fares. They propose an inter-temporal valuations

model by considering both capacity provider and consumer. The commitment option

that we discuss here can be considered as a special case of partially refundable fares

where the passengers can get the refund, if they cancel during the commitment period.

However, these contingent commitment options bring an additional source of complexity

as they can be utilized only within a certain time window.

Contingent commitments in our study are somewhat similar to the options in the

finance literature. That literature focuses on pricing and exercise time of options. An

option pricing problem can be modeled as a Markov decision problem. However, the

resulting problem is hard to solve due to curse of dimensionality. One approach is to use

Monte Carlo simulation to generate good solutions (see for instance Board et al. [18] for

the pricing of European options). Another approach is to apply approximate dynamic

programming to give lower and upper bounds on the value of the option [65, 88, 45]. The

pricing problem is also approximated by solving linear programming models [32]. We

refer the reader to Trigeorgis [87] for the review of pricing models. Several researchers

work on the optimal time of exercising the real option. McDonald and Siegel [66] work

on the investment timing problem for an irreversible project and develop an investment

rule when the value and the cost of the project are both stochastic. Rhys et al. [71]

use first passage time approach to obtain expected waiting time to exercise an option.
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Han and Park [44] develop a model to determine the exercise timing by considering the

trade-off between early exercising and waiting.

This chapter is organized as follows. In Section 3.1, we present the problem and

develop a dynamic programming model to make the capacity allocation and contingent

commitment decisions over a single flight leg. Due to the curse of dimensionality this

model is hard to solve. Therefore, in Section 3.2, we present an alternate tractable dy-

namic programming model that approximates the actual contingent commitments pro-

cess. In Section 3.3, we introduce deterministic and randomized linear programming

approximations that give upper bounds on the exact dynamic programming model.

A lower bound is also obtained when the problem size becomes large in terms of ca-

pacities and the expected number of arrivals. Finally, in Section 3.4, we analyze the

effects of offering contingent commitment option through computational experiments.

We demonstrate that under certain conditions, offering this option will increase the

expected revenue of the flight, though offering the contingent commitment options is

not always in the best interest of the airline. In the same section, we introduce an alter-

nate dynamic programming model for contingent commitment option. In this model,

we assume that we have an additional information on the probability distribution of

standard bookings and contingent commitments. We present several examples to show

the effect of this information on the expected revenues.

3.1 Problem Formulation

We have a single flight leg with m fare classes and capacity C. The reservation horizon

is partitioned into T time periods, and the flight departs at the beginning of period

T + 1. At each time period, a customer arrives into the system with a particular fare

class in mind. If this fare class is open for purchase, then the customer books the ticket.

After booking the ticket, she decides whether she wants to pay extra to purchase the

flexibility provided by the contingent commitment option. A customer that is interested

in fare class i arrives at time period t with probability αit. Then, she either buys the

commitment option with probability νi or book the seat with probability (1 − νi). In

other words, booking and commitment requests for fare class i arrive with probabilities
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pit = αit(1− νi) and qit = αitνi, respectively. We assume that
∑m

i=1 pit + qit ≤ 1 for all

t ∈ {1, ..., T} and denote the probability of having no arrival by p0t = 1−
∑m

i=1 pit+ qit.

A customer with a contingent commitment stays in the system for exactly s periods

before making a final purchase decision. After s time periods, she buys the seat with

probability pb or leaves the system with probability pl = 1− pb.

At each time period, we have to decide whether to accept or reject the arriving

fare class requests. If we accept a booking request for fare class i, then we generate a

revenue of fi. When we accept a commitment request for fare class i, we gain a fixed

non-refundable revenue f c at the period of request. After s periods of commitment

duration elapses, we generate a revenue of fi with probability pb, if the same customer

decides to buy the ticket she committed to. Whether the accepted customer is charged

at the time of reservation or later, Talluri and van Ryzin demonstrate that there is

no difference in the total expected revenue [80, Section 4.4.2]. Therefore, the expected

revenue of an accepted commitment request for fare class i is φi := f c + pbfi. Each

type of request consumes unit capacity on the flight leg and the rejected requests or

the canceled contingent commitments simply leave the system.

Next we give a dynamic programming formulation. We denote the total number

of bookings and accepted commitments at a time period (decision epoch) t by xt. To

store the accepted contingent commitments between time periods t− s and t, we desig-

nate an s-dimensional binary vector, zt. If there is an accepted commitment in one of

the intervals {t− s, t− s+1, · · · , t−1}, then the corresponding component of zt equals

to 1; otherwise, it is set to 0. The pair xt and zt represents the state in our dynamic

programming model of the problem. Note that the first element of zt shows if there

is a commitment request by a customer s time periods ago. At each time period, we

need to check if there is such a customer and determine whether she makes an actual

purchase decision or not. Letting z1t be the first element of zt, the leaving passenger

without making an actual purchase decision is represented by a Bernoulli random vari-

able B(z1t, pl) having a success probability of pl. As we move from period t to t+1, the

first element of zt needs to be dropped, and zt+1 is constructed by appending a binary

variable to the remaining s − 1 elements of zt. To denote this shifting operation, we
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define Γ : {0, 1}s+1 (→ {0, 1}s given by

Γ(z, ζ) = [0 Is]

⎡

⎣ z

ζ

⎤

⎦ ,

where 0 is an s-dimensional column vector consisting of zeros, Is is an s × s identity

matrix, and ζ ∈ {0, 1}. Using now this notation, if we accept the commitment request

at time t+ 1, then zt+1 = Γ(zt, 1); otherwise, zt+1 = Γ(zt, 0).

We capture the decisions at time period t by m-dimensional binary vector ut =

[u1t, u2t, · · · , umt]ᵀ where uit takes value 1 if we accept the arriving reservation request

at time period t, and takes value 0 if we reject the arriving reservation request at time

period t. Since our accept-reject decision depends on the available capacity, the set of

feasible decisions at time period t is given by

Ut(xt) = {ut ∈ {0, 1}m : xt + uit ≤ C, i = 1, 2, · · · ,m}.

We are ready to formulate the problem as a dynamic program. Let Jt(xt, zt)

denote the expected optimal revenue from t up to T given that at time period t, the

total number of bookings and commitments is xt and the commitment history for

s periods is zt. By the independence of the arrival and the commitment processes

and the dynamic programming optimality principle, we obtain for every 1 ≤ xt ≤ C,

zt ∈ {0, 1}s and t = 1, 2, · · · , s that

Jt(xt, zt) = max
ut∈U(xt)

{ m∑

i=1

pit
{
fiuit + Jt+1(xt + uit,Γ(zt, 0))

}
+

m∑

i=1

qit
{
φiuit + Jt+1(xt + uit,Γ(zt, uit))

}
+ p0tJt+1(xt,Γ(zt, 0))

}

(3.1a)
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and for s < t ≤ T ,

Jt(xt, zt) = max
ut∈U(xt)

{ m∑

i=1

pit
{
fiuit + EJt+1(xt + uit −B(z1t, pl),Γ(zt, 0))

}
+

m∑

i=1

qit
{
φiuit + EJt+1(xt + uit −B(z1t, pl),Γ(zt, uit))

}
+

p0tEJt+1(xt −B(z1t, pl),Γ(zt, 0))

}
. (3.1b)

The boundary condition is simply JT+1(xT+1, zT+1) = 0. Since a contingent commit-

ment makes the purchase decision at the end of the commitment period, we do not

observe any commitment purchase decisions during the first s time periods. After time

period s due to the random cancellations of contingent commitments, we need to com-

pute the expectation of optimal value functions over a Bernoulli event. This means for

z1t = 1 that

EJt+1(xt+uit−B(z1t, pl),Γ(zt, 0)) = pbJt+1(xt+uit,Γ(zt, 0))+plJt+1(xt+uit−1,Γ(zt, 0)).

Clearly, J1(0,0) gives the optimal expected total revenue at the beginning of the plan-

ning horizon, where 0 represents the fact that we start with no commitments.

3.2 Approximate Model

We note that the state variable zt in the exact model may involve many dimensions

in actual applications. Thus, solving the recursive equation through standard dynamic

programming tools can be computationally demanding. Therefore, we propose an al-

ternate dynamic programming formulation based on geometric approximation. Our ap-

proximation hinges on the assumption that each commitment, independently of other

commitments, can buy, leave or retain at each time period with probabilities qb, ql,

and qr, respectively. In other words, each commitment makes buy-leave decision with

probability (qb + ql) or stays in the system with probability qr. Since we want to

approximate the amount of time that a contingent commitment stays in the system

with s periods, we calibrate these probabilities such that 1/(1 − qr) = s. Assuming a
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contingent commitment results in a final purchasing decision with probability pab , we

obtain that pab = qb + qbqr + qbq2r + . . . Once we choose qr and qb in this fashion, we find

ql = 1 − qr − qb. Furthermore, given that there are y accepted commitments, the ran-

dom numbers of bought, Mb(y), cancelled, Ml(y) and retained, Mr(y) commitments in

period t follow collectively the multinomial distribution with parameters qb, ql, qr, and

number of trials y. Note that under this probabilistic setting, a committed passenger

may stay in the system until the departure time. Since each accepted commitment

request eventually buys the ticket with probability pab , the expected revenue obtained

from fare class i commitment request is given by φa
i := f c + pabfi. We also assume that

an accepted commitment request cannot make buy or leave decision in the time period

she is accepted. We believe that this assumption is more realistic since in practice the

duration of a time period is quite short. An appealing feature of this modelling ap-

proach is that it avoids the necessity to keep track of how long each accepted contingent

commitment has been in the system since a contingent commitment makes a decision

to buy, cancel or keep the commitment at each time period independently. In this

case, the state variable in the dynamic programming formulation of the commitment

problem collapses to two scalars; the number of bookings and the number of accepted

contingent commitments.

Let xt and yt be the total number of reservations (including both contingent

commitments and bookings) and contingent commitments at time period t, respectively.

Then, the recursive equations for the proposed approximate dynamic programming

model is given by

Vt(xt, yt) = max
ut∈U(xt)

{ m∑

i=1

pit
{
fiuit + EVt+1(xt + uit −Ml(yt),Mr(yt))

}
+

m∑

i=1

qit
{
φa
i uit + EVt+1(xt + uit −Ml(yt),Mr(yt) + uit)

}
+

p0tEVt+1(xt −Ml(yt),Mr(yt))

}
. (3.2)

Again, the boundary condition is simply VT+1(xT+1, yT+1) = 0. In this formulation, xt−

Ml(yt) and Mr(yt) represent the remaining number of reservations and commitments,
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given the state of reservations at the beginning of time period t is (xt, yt) and we do not

accept anybody during that time period. On the other hand, if we accept a commitment

request at time period t, the state of the system becomes (xt+1−Ml(yt),Mr(yt)+ 1),

since we assume that commitments cannot cancel within the period they are accepted.

Note that in both models, the purchase probability of a contingent commitment is

class independent. In case of the exact model (3.1a)-(3.1b), we could have relaxed this

assumption and worked with class dependent purchase probabilities. Then, we would

have needed to store the fare class of each accepted commitment, which would have

required holding even a larger state space. In case of the approximate model (3.2),

however, qb and qr values are class independent by definition. We could have used

weighted averages to set both probabilities. In fact this was the approximation used

in overbooking problem defined in Chapter 2. If we had used such an approach, then

we would have added one more level of approximation to our dynamic programming

model. Therefore, we avoided this kind of construction and decided to work with a

purchase probability that is class independent.

Before we discuss the optimal policy, let us note that the way we use the commit-

ment option in the approximate dynamic model reminds similar options offered in the

service industry. For instance, the insurance policies are also commonly offered to guar-

antee reservations. In this case, the customers can cancel at any time until they receive

the service. However, this default option in insurance policies is just an assumption in

our approximate model.

The optimal policy of problem (3.2) can be summarized as follows: Given the

state variables (xt, yt) at time period t, the optimal decisions at time period t are given

by

u∗it =

⎧
⎨

⎩
1, if (1− νi)(fi + Vt+1(xt + 1, yt)) + νi(φa

i + Vt+1(xt + 1, yt + 1)) ≥ Vt+1(xt, yt);

0, otherwise.

(3.3)
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Next, we present that optimal decisions have a nested structure under certain conditions.

Proposition 3.2.1 Suppose the probability of a request being a commitment is class inde-

pendent; that is, ν1 = ν2 = · · · = νm. Then, given the fare ordering f1 ≥ f2 ≥ ... ≥ fm,

and hence, the ordering of the expected commitment revenues, φa
1 ≥ φa

2 ≥ ... ≥ φa
m, we have

u∗1t ≥ u∗2t ≥ ... ≥ u∗mt, t = 1, ..., T .

Proof. For given x and y, to maximize Vt(xt, yt) we accept a booking or commitment

request (u∗it = 1) if

pit(fi+EVt+1(xt + 1−Ml(yt),Mr(yt))) + qit(φ
a
i + EVt+1(xt + 1−Ml(yt),Mr(yt) + 1))

≥ pitEVt+1(xt −Ml(yt),Mr(yt)) + qitEVt+1(xt −Ml(yt),Mr(yt)).

Let ν := ν1 = ν2 = · · · = νm. Then, by using pit = (1− ν)αit and qit = ναit, we obtain

(1− ν)(fi+EVt+1(xt + 1−Ml(yt),Mr(yt))) + ν(φa
i + EVt+1(xt + 1−Ml(yt),Mr(yt) + 1))

≥ EVt+1(xt −Ml(yt),Mr(yt)). (3.4)

Since fi−1 ≥ fi and φi−1 ≥ φi, if relation (3.4) holds for fare class i request (u∗it = 1), then it

also holds for the fare class i− 1 request u∗(i−1)t = 1. Similarly, if relation (3.4) does not hold

for the expensive fare class i−1, then it does not hold for the cheaper fare class i either. This

means that, if u∗(i−1)t = 0 then u∗it = 0. Therefore, we obtain the desired result. !
The assumption in Proposition 3.2.1 seems crucial as we can give a simple counter

example where the optimal policy does not have a nested structure. Figure 3.2 illustrates

such an example. In this example, we set the problem parameters as follows; m = 2, C = 25,

f1 = 26, f2 = 25, f c = 10, s = 2, and pb = 0.7. Given that there are x = 1 reservations and

y = 0 commitments at the beginning of each time period, the optimal decisions are computed.

The optimal policy table is given in the lower part of the figure. As this table shows, although

a request for the low fare class is accepted, the expensive fare class request is rejected for the

first two periods.
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1

1 2 3 4

α13 = 0.6
α23 = 0.4

α12 = 0.5
α22 = 0.5

α11 = 0.3
α21 = 0.7

ν1 = 0.1 ν2 = 0.9

u∗
it

1

1

1

01st fare class

2nd fare class

0

Optimal Policy Table,(x,y)=(1,0)

Figure 3.2: A counter example when the assumption in Proposition 3.2.1 does not hold

3.3 Linear Programming Approach

An alternate approximation approach is to model a linear program that corresponds to the

exact dynamic programming model (3.1a)-(3.1b). Deterministic linear program is a well-

known method to solve the network capacity allocation problem [93, 77]. It assumes that

all random quantities are known in advance and they take on their expected values. Talluri

and van Ryzin [78] propose a randomized version of DLP for the network problem that

randomizes the realizations of demand. The main advantage of linear programming models

is the computational efficiency. Due to its computational performance, these approaches are

popular in practice. However, an important shortcoming of these methods is that they do not

capture the temporal dynamics of the problem as dynamic models do.

3.3.1 Deterministic Linear Program

In this section, we introduce the deterministic model for the contingent commitment problem.

To formulate this linear program, let wit be the number of the bookings and commitments

that we plan to accept for the fare class i at time period t. Since an arriving customer either

buys the commitment option with probability νi or books the seat with probability (1− νi),

the expected number of booked and committed fare class i seats at time period t are given

by (1− νi)wit and νiwit, respectively. Consequently, the deterministic linear program has the

following form:
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maximize
T∑

t=1

m∑

i=1

fi(1− νi)wit +
T∑

t=1

m∑

i=1

φiνiwit (3.5)

subject to υ1 = C, (3.6)

υt = υt−1 −
m∑

i=1

wi(t−1), 2 ≤ t ≤ s+ 1, (3.7)

υt = υt−1 −
m∑

i=1

wi(t−1) +
m∑

i=1

νiwi(t−s−1)pl, s+ 2 ≤ t ≤ T, (3.8)

υT+1 = υT −
m∑

i=1

wiT +
T∑

k=T−s

m∑

i=1

νiwikpl, (3.9)

wit ≤ αit, i = 1, ...,m; t = 1, ..., T, (3.10)

υt, wit ≥ 0, i = 1, ...,m; t = 1, ..., T, (3.11)

where υt is the remaining capacity at the beginning of time period t ∈ {1, ..., T + 1}. Con-

straints (3.6)-(3.9) keep track of the remaining capacity at each time period. Constraints

(3.10) ensure that the reservation requests that we plan to accept do not exceed the expected

number of arrivals. Note that by substituting constraints (3.6)-(3.8) into constraint (3.9), we

obtain
∑T

t=1

∑m
i=1(1 − νi)wit + (1 − pl)

∑T
t=1

∑m
i=1 νiwit ≤ C. Therefore, the total expected

number of assigned seats may exceed the capacity. In this model, this excess amount depends

on the commitment cancellation probability. We denote the optimal objective function value

of (3.5)-(3.11) by Z∗
DLP .

There are two uses of DLP. First, it gives a policy to accept or reject the product

requests. Let {w∗
it, ∀i, t} be the optimal value of the decision variables in problem (3.5)-

(3.11). Then, according to the policy dictated by DLP, a booking or a commitment request

is accepted with probability w∗
it/αit. Second, its optimal objective value provides an upper

bound on the maximum expected revenue over the whole planning horizon, as we show in the

next proposition.

Proposition 3.3.1 The optimal objective value of the DLP model gives an upper bound on

the exact dynamic programming model. That is, J1(0,0) ≤ Z∗
DLP .

Proof. Suppose the random variables Wit, ∀i, t denote the number of reservations

accepted over the planning horizon under the optimal policy of the exact dynamic program-
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ming model. Each accepted reservation for fare class i either buys the contingent commitment

option with probability νi or books the seat with probability (1 − νi). Let Xit and Zit be

the random numbers of bookings and commitments accepted for fare class i at time period

t, respectively. Since an accepted commitment request can cancel with probability pl, we

also let Sit and Lit be the binary random numbers denoting the sale and cancellation of the

commitments, respectively. That is, Sit takes value 1, if there is a commitment reservation

for fare class i at time period t and that reservation decides to buy, and Lit takes value 1 if

this commitment reservation cancels.

Let now Dit be the random number of reservation requests for fare class i at time period

t. Then, we have,

V1 = C, (3.12)

Vt = Vt−1 −
m∑

i=1

Xi(t−1) −
m∑

i=1

Zi(t−1), 2 ≤ t ≤ s+ 1, (3.13)

Vt = Vt−1 −
m∑

i=1

Xi(t−1) −
m∑

i=1

Zi(t−1) +
m∑

i=1

Li(t−s−1), s+ 2 ≤ t ≤ T, (3.14)

VT+1 = VT −
m∑

i=1

XiT −
m∑

i=1

ZiT +
T∑

k=T−s

m∑

i=1

Lik, (3.15)

Xit + Zit ≤ Dit, i = 1, ...,m; t = 1, ..., T, (3.16)

where (3.12)-(3.15) ensure that the balance equations in each time period holds, (3.16) ensures

that total number of bookings and commitments that we accept under the optimal policy do

not exceed the reservation requests. Consequently, the total revenue under the optimal policy

of the exact dynamic programming is

T∑

t=1

m∑

i=1

fiXit +
T∑

t=1

m∑

i=1

f cZit + fiSit.

By conditioning on Wit we trivially obtain E(Zit) = νE(Wit). Since Xit = Wit − Zit,

we have E(Xit) = (1− νi)E(Wit). Similarly, conditioning on Zit leads to E(Sit) = pbνiE(Wit).

Therefore, the total expected revenue is given by

J1(0,0) =
T∑

t=1

m∑

i=1

fi(1− νi)E(Wit) +
T∑

t=1

m∑

i=1

f cνiE(Wit) + fipbνiE(Wit).
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Taking the expectations (3.12)-(3.16) and noting that E(Dit) = αit, the solution given by

wit = E(Wit) and υt = E(Vt) is feasible for the DLP model (3.5)-(3.11). Therefore, we have

Z∗
DLP ≥ J1(0,0) =

T∑

t=1

m∑

i=1

fi(1− νi)E(Wit) +
T∑

t=1

m∑

i=1

φiνiE(Wit),

and the desired result holds. !
Next, we focus on obtaining an asymptotic lower bound. To obtain this bound, we

make use of another upper bounding problem. Note that problem (3.5)-(3.11) ensures that

the remaining capacity at each time period, υt, is non-negative. By relaxing this constraint,

we can give an upper bound on the DLP model (3.5)-(3.11) as follows:

maximize
T∑

t=1

m∑

i=1

fi(1− νi)wit +
T∑

t=1

m∑

i=1

φiνiwit (3.17)

subject to
T∑

t=1

m∑

i=1

(1− νi)wit +
T∑

t=1

m∑

i=1

pbνiwit ≤ C, (3.18)

wit ≤ αit, i = 1, ...,m; t = 1, ..., T, (3.19)

wit ≥ 0, i = 1, ...,m; t = 1, ..., T. (3.20)

We denote the optimal objective function of this model by Z∗
DLP−UB. Here, constraint (3.18)

is obtained by substituting constraints (3.6)-(3.8) into constraint (3.9).

Remark 3.3.1 When there is no commitment option (s = 0) or probability of buying the

committed seat equals to 1 (pb = 1), DLP given by (3.5)-(3.11) boils down to the standard

capacity allocation problem. Furthermore, when Z∗
DLP−UB = Z∗

DLP , the dual variables corre-

sponding to constraints (3.6)-(3.9) in problem (3.5)-(3.11) are all equal. Therefore, the dual

of problem (3.5)-(3.11) can be reduced to a one-dimensional unconstrained problem, and it

can be solved very efficiently by any variant of the bisection method.

Now we are ready to obtain an asymptotic lower bound on the distance between the

optimal objective function value of DLP and the optimal expected revenue of the exact dy-

namic programming model. Our analysis follows a similar approach as in Gallego et al. [38].

However, in our case, we need to consider the cancellation explicitly. Let us first explain

the setting. We introduce a sequence of problems {Pκ : κ ∈ Z+} indexed by parameter κ.

Problem Pκ has κT time periods in the planning horizon and the capacity of the flight is
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κC. Moreover, the probability of reservation request for fare class i at time period t is given

by αi⌈t/κ⌉, where operator ⌈.⌉ rounds up the values passed to it. We note that the problem

described in Section 3.1 is P1. The flight capacity in problem Pκ is κ times the capacity of the

flight in problem P 1. Similarly, the length of the booking horizon in problem Pκ is κ times

the length of the booking horizon in problem P1. In addition, the arrival probabilities αi⌈t/κ⌉

at time periods {κ(t − 1) + 1, ...,κt} in problem Pκ are the same as the arrival probabilities

at time period t in problem P1. Hence, the expected total booking demand and the expected

total commitment demand for fare class i in problem Pκ is

κT∑

t=1

αi⌈t/κ⌉ = κ
T∑

t=1

αit.

This implies that the expected numbers of reservation requests in problem Pκ are κ times

larger than those in problem P1. Consequently, problem Pκ is a scaled version of problem

P1.

We consider the linear programming model (3.17)-(3.20) for problem Pκ. Let Zκ
DLP−UB

denote the optimal objective value of the upper bound on DLP for the scaled problem Pκ.

Likewise, Zκ
DLP denotes the optimal objective value of the scaled deterministic linear program

given by problem (3.5)-(3.11) and Jκ
1 (0,0) stands for the optimal expected total revenue for the

scaled problem Pκ that we obtain by solving the corresponding dynamic program. Proposition

3.3.1 shows that the optimal objective value of the deterministic linear program provides an

upper bound on the optimal expected total revenue. Thus, we have Zκ
DLP ≥ Jκ

1 (0,0). Since

Zκ
DLP−UB ≥ Zκ

DLP , we also have Zκ
DLP−UB ≥ Jκ

1 (0,0).

To prove the asymptotic bound, we first define a lower bound on the rate of conver-

gence. Let dib and dic denote the random numbers of total fare class i requests for bookings

and commitments i respectively. Then, the expected booking and contingent commitment

demands for fare class i are computed as

µb
i := E(dib) = (1− νi)

T∑

t=1

αit and µc
i := E(dic) = νi

T∑

t=1

αit.

Likewise, σib and σic denote the corresponding standard deviations. Then, the coefficient of

variation of the number of requests for bookings and commitments are given as
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CV b
i =

√
σ2
ib

µb
i

and CV c
i =

√
σ2
ic

µc
i

, for i = 1, ...,m.

We also define

CV = max
1≤i≤m

{
CV b

i , CV c
i

}
,

as the maximum coefficient of variation.

Proposition 3.3.2 Let CV denote the maximum coefficient of variation over bookings and

commitments for all fare classes. Then for ϵ ∈ [1− pb, 1], we have

J1(0,0) ≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB.

Proof. Let {w∗
it : ∀i, t} be the optimal value of the decision variables in problem

(3.17)-(3.20). We consider a policy π that accepts at most (1 − ϵ)(1 − νi)
∑T

t=1w
∗
it booking

requests and (1− ϵ)νi
∑T

t=1w
∗
it contingent commitment requests for fare class i for ϵ ∈ (0, 1).

Due to the capacity constraint (3.18) in DLP-UB model, the policy π is feasible if (1−ϵ) ≤ pb.

The expected revenue Pπ is given by

Pπ = E[
m∑

i=1

fimin(dib, (1− ϵ)
T∑

t=1

(1− νi)w
∗
it) +

m∑

i=1

f cmin(dic, (1− ϵ)
T∑

t=1

νiw
∗
it)

+
m∑

i=1

fiS(min(dic, (1− ϵ)
T∑

t=1

νiw
∗
it))],

where S(k) is a binomial random variable with k independent trials with success probability

pb and it gives the number of purchased committed seats. A lower bound to the generic term

in the expression for Pπ is then given by

E[min(dic, (1− ϵ)
T∑

t=1

νiw
∗
it)] ≥ (1− ϵ)

T∑

t=1

νiw
∗
itP(dic ≥ (1− ϵ)

T∑

t=1

νiw
∗
it) (3.21)

≥ (1− ϵ)
T∑

t=1

νiw
∗
itP(dic ≥ (1− ϵ)

T∑

t=1

νiαit) (3.22)

≥ (1− ϵ)
T∑

t=1

νiw
∗
it

(
1− CV c

i
2

CV c
i
2 + ϵ2

)
(3.23)

≥ (1− ϵ)
T∑

t=1

νiw
∗
it

(
1− CV 2

ϵ2

)
. (3.24)
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The inequality (3.22) holds since νiw∗
it ≤ νiαit, (3.23) follows from the Marshall’s inequality

and (3.24) holds due to the definition of CV . Since E[S(min(dic, (1 − ϵ)
∑T

t=1 νiw
∗
it))] =

pbE[min(dic, (1 − ϵ)
∑T

t=1 νiw
∗
it)], we can give a lower bound to Pπ by using the inequality

(3.24) as follows:

Pπ ≥ (1− ϵ)
(
1− CV 2

ϵ2

)
(

m∑

i=1

T∑

t=1

fi(1− νi)w
∗
it +

m∑

i=1

T∑

t=1

f cνiw
∗
it +

m∑

i=1

T∑

t=1

fipbνiw
∗
it)

≥ (1− ϵ)
(
1− CV 2

ϵ2

)
Z∗
DLP−UB

≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB

This implies

J1(0,0) ≥ Pπ ≥
(
1− ϵ− CV 2

ϵ2

)
Z∗
DLP−UB.

!
To tighten the lower bound in the above inequality, we maximize it over ϵ and obtain

ϵ∗ = max{(2CV 2)1/3, 1− pb}.

Since ϵ ∈ [1 − pb, 1], this tighter bound is only obtained when 2CV 2 < 1. Consequently we

have,

J1(0,0) ≥ Pπ ≥
(
1− ϵ∗ − CV 2

ϵ∗2

)
Z∗
DLP−UB.

Next we examine the structure of the lower bound as the problem size gets large.

Proposition 3.3.3 Given ϵ ∈ [1− pb, 1] and κ > 0, we have

Zκ
DLP−UB ≥ Zκ

DLP ≥ Jκ
1 (0,0) ≥

(
1− ϵ− CV 2

κϵ2

)
Zκ
DLP−UB,

where CV denotes the maximum coefficient of variation over bookings and commitments for

all fare classes. Therefore,

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP

≤ 1.

Proof. We observe that if {w∗
it : ∀i, t} is an optimal solution to problem (3.17)-

(3.20). Then {w∗
i⌈t/κ⌉ : ∀i, t} is an optimal solution for the scaled problem. Thus, it follows
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that Zκ
DLP−UB = κZDLP−UB. For the scaled problems, the expected demand and the variance

are scaled with κ. If µ and σ2 denote the mean demand and variance for problem P1, then

the mean demand is κµ and the variance is κσ2 for the problem Pκ. Therefore, the maximum

coefficient of variation of the scaled problem is

CV κ = max
1≤i≤m

{√
κσ2

ib

κµb
i

,

√
κσ2

ic

κµc
i

}
=

CV
√
κ

κ

By following the result of Proposition 3.3.2 and replacing CV κ with CV
√
κ

κ , we have

Jκ
1 (0,0) ≥

(
1− ϵ− CV 2

κϵ2

)
Zκ
DLP−UB.

When κ goes to infinity, the expression
(
1 − ϵ − CV 2

κϵ2

)
approaches to (1 − ϵ). Since

ϵ ∈ [1 − pb, 1], this bound is tighter when ϵ = 1 − pb. Therefore, as pb goes to 1, the

upper bound obtained from Z∗
DLP−UB becomes asymptotically tight. Following the result of

Proposition 3.3.2, we obtain the following convergence rate

κZDLP−UB ≥ Zκ
DLP ≥ Jκ

1 (0,0) ≥
(
1− ϵ− CV 2

κϵ2

)
κZDLP−UB,

Dividing the chain of inequalities by κZDLP−UB and taking the limit as κ goes to infinity, we

get

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP−UB

≤ lim
κ→∞

Zκ
DLP

Zκ
DLP−UB

≤ 1

which implies,

pb ≤ lim
κ→∞

Jκ
1 (0,0)

Zκ
DLP

≤ 1.

!
The first part of this proposition gives a lower bound for the scaled problems of DLP

and the exact dynamic programming model. The asymptotic result in the second part implies

that the optimal objective function value of the DLP is at most 1/pb multiple of the exact

model as the problem size gets large in terms of the capacity and the expected demand. This

limiting behavior also shows that DLP becomes asymptotically tight as pb becomes closer to 1.

This is an obvious observation, since the commitment problem becomes a standard capacity

allocation problem when pb = 1 [77].
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3.3.2 Randomized Linear Program

Talluri and van Ryzin [78] propose a randomized linear program for the network capacity

control problem and show that it provides a tighter upper bound on the optimal expected

revenue compared to the one obtained by the deterministic linear program. Kunnumkal et al.

[51] extend the work of Talluri and van Ryzin by considering both the capacity control and the

overbooking decisions. We follow their approach for our problem and propose a randomized

linear program to obtain an upper bound on the optimal expected total revenue.

Let Dit be the random demand for fare class i at time period t, and d = {dit : ∀i, t}

be a realization of the random variable D = {Dit : ∀i, t}. Note that we have E{Dit} = αit.

Under a realization of arrivals, we propose solving the following model:

maximize
T∑

t=1

m∑

i=1

fi(1− νi)wit +
T∑

t=1

m∑

i=1

φiνiwit

subject to υ1 = C,

υt = υt−1 −
m∑

i=1

wi(t−1), 2 ≤ t ≤ s+ 1,

υt = υt−1 −
m∑

i=1

wi(t−1) +
m∑

i=1

plνiwi(t−s−1), s+ 2 ≤ t ≤ T,

υT+1 = υT −
m∑

i=1

wiT +
T∑

k=T−s

m∑

i=1

plνiwik,

wit ≤ dit, i = 1, ...,m; t = 1, ..., T,

υt, wit ≥ 0, i = 1, ...,m; t = 1, ..., T.

We define Z∗
RLP (d) to denote the optimal total revenue obtained when we make

the accept or reject decisions for the booking and commitment requests requests after

observing a realization d of the demands. Next, we show that randomized linear pro-

gram provides an upper bound on the optimal expected total revenue and this bound

is tighter than the one obtained from the deterministic linear program.
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Proposition 3.3.4 Let Z∗
RLP = E{Z∗

RLP (D)}, then we have J1(0,0) ≤ Z∗
RLP ≤ Z∗

DLP .

Proof. Let w(d) = {wit(d) ∈ {0, 1} : ∀i, t} denote the number of accepted

reservation requests under the optimal policy of the exact dynamic programming model.

The number of accepted requests depends on the realization d = {dit ∀i, t}. Then we

have

J1(0,0) =E{
T∑

t=1

m∑

i=1

fi(1− νi)wit(D) +
T∑

t=1

m∑

i=1

(f cνiwit(D) + fipbνiwit(D))}

≤E{Z∗
RLP (D)} = Z∗

RLP .

The first equality follows from the optimality of the policy. The first inequality holds,

since the solution w(d) is feasible for the randomize model but not necessarily optimal.

Since Z∗
RLP (d) is a piecewise linear, nonincreasing and concave. Using the Jensen’s

inequality, we obtain the result

Z∗
RLP = E{Z∗

RLP (D)} ≤ Z∗
RLP (E{D}) = Z∗

DLP .

!

3.4 Computational Experiments

In this section, we conduct simulation experiments to evaluate the effects of offering

the contingent commitment option. We also provide sensitivity analysis with respect

to various parameters. Moreover, we compare the performance of our dynamic model

against other benchmark strategies. We begin by describing the benchmark strategies

listed below.

Approximate Dynamic Model (ADM): This is the solution method that we in-

troduced in Section 3.2. That is, we solve the dynamic program in (3.2) to obtain

the optimal policy. Then, we use the decision rule (3.3) as our accept-reject policy for

booking and commitment requests.
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Standard Booking Strategy (SBS): This policy ignores the commitment requests

and only accepts the standard booking requests. Therefore, in this policy no arrival

probability at time period t becomes (1 −
∑m

i=1 pit). The optimal booking policy is

then determined by solving the problem as a standard capacity allocation problem [80,

Section 2.5].

Deterministic Linear Program (DLP): This is the solution method described in

Section 3.3.1. We solve the problem (3.5)-(3.11) to obtain the optimal values of the

variables {w∗
it, ∀i, t}. Provided that there is sufficient remaining capacity, we accept a

reservation request for fare class i with probability w∗
it/αit at time period t.

In the sequel, we refer to the average revenue obtained by the optimal policy of

the exact dynamic model given by (3.1a)-(3.1b) as EDM. Recall that the exact dy-

namic model is computationally intractable for long commitment periods. Hence, we

test the models with respect to EDM for only small instances. We simulate the arrival

of requests and cancellations over discrete time periods {1, ..., T}. At each time period,

we first generate an arrival request and then apply the corresponding policy. While an

accepted booking request for fare class i generates a revenue of fi, an accepted com-

mitment request generates a revenue of f c. After the arrival process, we check whether

there is a commitment made s periods ago and simulate a purchase or leave decision.

Each commitment passenger in fare class i buys the ticket with probability pb gener-

ating an additional revenue of fi, or leaves the system. In our numerical experiments,

we set the purchase probability of committed seat (pab ) in approximate dynamic model

equal to the purchase probability of committed seat (pb) in exact dynamic model.

To test the performances of the booking policies against varying arrival intensities,

we use the load factor parameter ρ. Noting that the total expected demand for the flight

is
∑T

t=1

∑m
i=1(pit + pbqit), the load factor is given by

ρ =

∑T
t=1

∑m
i=1(pit + pbqit)

C
.
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In all our numerical experiments, we set the capacity of the plane, the length of the

planning horizon and the number of fare classes to C = 100, T = 300 and m = 4,

respectively. The fares are evenly distributed between 250 and 1, 000.

3.4.1 Benchmarking Study

We first present the performance of the approximate dynamic model (ADM). Our ex-

perimental design is based on various factors of the load factor (ρ), the commitment

period (s), the commitment fee (f c), the probability of buying the committed seat (pb),

and the splitting probability of commitment arrivals (ν). We use load factor values

ρ ∈ {1.2, 1.6} corresponding to low and high loads. We select the commitment period

lengths from the set {5, 25, 50} to represent short, medium and long commitment in-

tervals. The commitment fees f c ∈ {40, 80} are used to represent low and high fees.

We also test the models for varying buy probabilities pb ∈ {0.4, 0.7}. The last param-

eter set comes from the splitting probability of contingent commitments (νi values).

We give two sets of values to represent low and high commitment arrivals. These are

νL := (0.10, 0.15, 0.20, 0.25) and νH := (0.40, 0.45, 0.50, 0.55) where the values in each

set are ordered from expensive to cheap fare class. We label our test problems by using

all combinations of these parameters.

As mentioned in Section 3.3.1, DLP provides an upper bound on the maximum

total expected revenue obtained by the dynamic model over the time periods {1, ..., τ}.

Moreover, we also show that the optimal objective function value of DLP is at most

1/pb multiple of the dynamic model as the problem size gets large in terms of the

capacity and the expected demand. Table 3.1 shows the upper bound obtained by

DLP for different test instances. The first four columns indicate the characteristics of

the test instances. The next two columns give the optimal objective values of EDM

and DLP, respectively. The last column gives the percentage gaps between EDM and

DLP. The results show that upper bound provided by DLP is significantly tight. For

the test instances with high load factor and low commitment demand, the percentage

gap is around 1%. Moreover, the quality of the upper bound is mostly affected by the

tightness of the room capacities.
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Table 3.1: Upper bound on the maximum total expected revenue (s = 5)

Instances % Gap with EDM
ρ ν• f c pb EDM DLP DLP

40 0.4 65,657 66,570 1.39%

νH
40 0.7 64,390 65,270 1.37%
80 0.4 68,251 69,213 1.41%

1.2
80 0.7 66,563 67,484 1.38%
40 0.4 63,547 64,390 1.33%

νL
40 0.7 62,899 63,711 1.29%
80 0.4 64,308 65,170 1.34%
80 0.7 63,622 64,449 1.30%
40 0.4 75,598 76,449 1.13%

νH
40 0.7 74,469 75,247 1.05%
80 0.4 78,072 78,939 1.11%

1.6
80 0.7 76,563 77,351 1.03%
40 0.4 73,582 74,296 0.97%

νL
40 0.7 73,002 73,702 0.96%
80 0.4 74,259 74,974 0.96%
80 0.7 73,649 74,349 0.95%

Next, we test the performances of the models against the dynamic model given

by (3.1a)-(3.1b). We estimate the net expected revenues by simulating the arrivals of

booking and commitment requests over 5,000 sample paths. We set the length of the

commitment period to 5 for the instances where we compare our models with respect to

EDM. Table 3.2 shows the average total revenues and percentage gaps between EDM

and the remaining solution methods. The first four columns in Table 3.2 show the char-

acteristics of the test instances. The next four columns give the expected total revenues

obtained by EDM, ADM, SBS, and DLP, respectively. The last three columns give the

percentage gaps between EDM and the remaining solution methods. Comparing the

percentage gaps under this setup, we observe that the performances of EDM and ADM

are very close, especially for high values of buy probability (see the rows corresponding

to high pb). As discussed with model (3.17)-(3.20), the commitment problem can be

transformed to a standard capacity allocation problem when the probability of buying

the committed seat is equal to 1 (see Remark 3.3.1). Therefore as expected, the per-

centage gaps between policies of the dynamic models decrease when pb is high. Even

for pb = 0.4, the gap between ADM and EDM is less than one-tenth of a percent.
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Moreover as the load factor increases, the percentage gap between EDM and ADM

decreases. When arrival intensity is high, models can compensate the revenue loss due

to empty seats. On the other hand, we observe that there is a noticeable performance

gap between ADM and SBS. The performance of SBS improves slightly when the load

factor is high and splitting probability is low. However even in this case, it performs

worse than ADM. A noteworthy observation is the relatively large difference between

ADM and SBS even when the load factor is high (ρ = 1.6) and the splitting probability

is low (νL). Because in this case there is ample booking requests to use the full capacity

of the flight. However, ADM still performs better than SBS by considering the com-

mitment option. In addition, it is important to note that offering commitment option

is most beneficial when the purchase probability and the commitment fee are high.

Table 3.2: Computational results for the test problems (s = 5)

Instances % Gap with EDM
ρ ν• f c pb EDM ADM SBS DLP ADM SBS DLP

40 0.4 65,748 65,732 51,455 63,692 0.024% 21.738% 3.127%

νH
40 0.7 64,443 64,437 42,685 62,159 0.010% 33.764% 3.544%
80 0.4 68,298 68,294 51,455 66,247 0.007% 24.660% 3.004%

1.2
80 0.7 66,459 66,453 42,685 64,210 0.009% 35.772% 3.384%
40 0.4 63,543 63,541 60,362 61,462 0.003% 5.007% 3.275%

νL
40 0.7 62,883 62,883 58,056 60,691 0.001% 7.677% 3.486%
80 0.4 64,313 64,308 60,362 62,201 0.008% 6.143% 3.283%
80 0.7 63,595 63,595 58,056 61,421 0.000% 8.710% 3.419%
40 0.4 75,579 75,569 63,738 73,645 0.014% 15.667% 2.559%

νH
40 0.7 74,435 74,434 56,267 72,336 0.002% 24.409% 2.820%
80 0.4 78,049 78,043 63,738 76,038 0.009% 18.336% 2.576%

1.6
80 0.7 76,543 76,541 56,267 74,397 0.003% 26.490% 2.804%
40 0.4 73,547 73,545 71,411 71,588 0.003% 2.905% 2.664%

νL
40 0.7 72,964 72,963 69,289 71,032 0.001% 5.036% 2.647%
80 0.4 74,221 74,220 71,411 72,243 0.001% 3.787% 2.665%
80 0.7 73,607 73,606 69,289 71,660 0.002% 5.867% 2.645%

Next, we report our results for larger values of the commitment period, s. For

comparison, we also present the results obtained when s is 5. Table 3.3 presents the

performances of the benchmark strategies with respect to various test instances. The

columns have the same interpretation as in Table 3.2. To emphasize the effect of

commitment decision in these experiments, we fix the commitment fee to the highest
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value, f c = 80. As depicted in Table 3.3, the total expected revenues decrease as

the length of the commitment period increases since the revenues obtained from the

contingent commitments decrease with the length of the commitment period. However,

this loss can be compensated with the later arrivals of the booking requests. Thus,

the decrease in revenue is more striking when the arrival intensity is low (ρ = 1.2).

On the other hand, the results indicate that ADM consistently provides the highest

total expected revenues. However as the length of the commitment period increases,

the percentage gaps between ADM and the other solution methods decrease. This

behavior can be attributed to the impact of commitment period on retain, buy and leave

probabilities. Recall that qr = (s− 1)/s; so, qr increases as length of the commitment

period increases. Therefore, when s is high, our proposed dynamic model presumes

that each accepted commitment request stays until the departure time (overestimates

the commitment period). Consequently, it may fail to capture the actual dynamics

of the system and its performance deteriorates. We note the performance difference

between ADM and SBS with respect to different lengths of the commitment period. As

the length of the commitment period increases, offering commitment option becomes

less profitable. Moreover, as the length of the commitment period increases, there exist

instances where the performances of SBS and DLP are significantly close. Recall that

our problem can be transformed to a standard capacity allocation problem when pb = 1.

Thus, the performance of SBS improves as pb increases and ν decreases.

3.4.2 Sensitivity Analysis

In the first set of simulations, we investigate the effects of the contingent commitment

option. We set the load factor (ρ) to 1.6, the length of the commitment period (s)

to 50, and the commitment fee (f c) to 80. The splitting probabilities of commitments

for all fare classes are set to the same value of 0.5. Initially, we study the potential

revenue improvements of offering the commitment option relative to offering only stan-

dard bookings. We examine two models which accept contingent commitment requests

during a certain time period. While the first model allows commitment arrivals only

in the first t periods, the second model allows them only in the last t. These models
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Table 3.3: Computational results for the test problems (f c = 80)

Instances % Gap with ADM
ρ ν• s pb ADM SBS DLP SBS DLP

5 0.4 68,294 51,455 66,247 24.66% 3.00%
5 0.7 66,453 42,685 64,210 35.78% 3.37%

νH
25 0.4 67,583 51,455 66,000 23.86% 2.34%
25 0.7 66,280 42,685 64,331 35.56% 2.94%
50 0.4 66,541 51,455 65,079 22.67% 2.20%

1.2
50 0.7 65,831 42,685 63,997 35.16% 2.79%
5 0.4 64,308 60,362 62,201 6.13% 3.27%
5 0.7 63,595 58,056 61,421 8.71% 3.42%

νL
25 0.4 64,139 60,362 62,001 5.89% 3.33%
25 0.7 63,514 58,056 61,482 8.59% 3.20%
50 0.4 63,885 60,362 61,933 5.51% 3.05%
50 0.7 63,401 58,056 61,379 8.43% 3.19%
5 0.4 78,043 63,738 76,038 18.33% 2.57%
5 0.7 76,541 56,267 74,397 26.49% 2.80%

νH
25 0.4 76,819 63,738 75,084 17.03% 2.26%
25 0.7 76,067 56,267 74,167 26.03% 2.50%
50 0.4 75,264 63,738 73,370 15.31% 2.52%

1.6
50 0.7 75,385 56,267 73,492 25.36% 2.51%
5 0.4 74,220 71,411 72,243 3.79% 2.66%
5 0.7 73,606 69,289 71,660 5.86% 2.64%

νL
25 0.4 73,943 71,411 72,098 3.42% 2.49%
25 0.7 73,497 69,289 71,652 5.72% 2.51%
50 0.4 73,540 71,411 71,695 2.89% 2.51%
50 0.7 73,303 69,289 71,497 5.48% 2.46%

are denoted by FCM and LCM, respectively. Figure 3.3 shows the optimal objective

values of these models with respect to different purchase probabilities. In this figure,

the horizontal axis namely commitment interval shows t time periods during which the

commitment requests are processed. For instance, t = 10 means that FCM accepts

commitments during only the first 10 periods and LCM accepts them only in the last

10 periods. On the other hand, when t = T , both FCM and LCM boil down to ADM

model where commitment arrivals are allowed during the whole reservation horizon.

As Figure 3.3 shows, FCM performs better than LCM when the probability of pur-

chase is low. Due to the high retain probability (qr) and low purchase probability (pb),

offering the commitment option later in the reservation horizon may result in empty

seats. Since FCM accepts contingent commitment requests early in the reservation
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period, it can compensate the empty seats resulting from the commitment cancella-

tions with the late booking arrivals. Therefore, accepting commitment requests up to

a certain time period is more profitable than allowing them towards the end of the

reservation horizon. On the other hand, as purchase probability increases, the perfor-

mance of LCM improves. Since expensive fare class customers arrive later than the

low-fare customers and the retain probability is high, FCM rejects the early commit-

ment requests to keep seats for expensive fare class customers. Hence, it loses the

potential revenue obtained from commitment reservations. Moreover, as Figure 3.3(b)

and 3.3(c) depicts, allowing commitment arrivals during the whole reservation period

is advantageous when the probability of purchasing a committed seat is not low.

(a) pb = 0.25

(b) pb = 0.50 (c) pb = 0.75

Figure 3.3: The effect of commitments on the total expected revenue for various buy
probabilities
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Next, we investigate the effect of the commitment period on total expected rev-

enue. Figure 3.4 plots the changes in total expected revenues of FCM and LCM with

respect to different lengths of commitment interval and the commitment period when

pb is low. Let t∗ denote the commitment interval value at which the maximum total

expected revenue is obtained either by FCM or LCM in Figure 3.4. As the length of

the commitment period (s) increases, the value of t∗ for FCM shifts to the beginning of

the reservation period. Recall that retain probability is positively correlated with the

length of the commitment period. Therefore, as s increases, the probability of waiting

until the end of the reservation horizon (retain probability of a contingent commitment)

also increases. As a result when pb is low, it becomes more profitable for FCM to accept

the commitment requests early in the reservation period and reserve seats for the late

arrivals of expensive fare class customers. Similarly when s is high, it is more profitable

for LCM to allow less commitment arrivals and t∗ for LCM shifts towards the end of

the reservation horizon. However, even in this case, offering contingent commitment

options can provide additional revenue compared to only offering standard booking

products (when commitment interval is 0).

(a) Total expected revenue of FCM (b) Total expected revenue of LCM

Figure 3.4: Change in the total expected revenue with respect to different s values
(pb=0.25)

In summary, Figure 3.3 depicts that accepting the commitment requests up to a

certain time period is more profitable than accepting them during the whole reservation

period when purchase probability pb of the contingent commitment option is low. As
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purchase probability increases, allowing commitment arrivals during the whole period

becomes more advantageous. In addition, offering commitment option towards the end

of the reservation period is more beneficial than offering it at the beginning of the

reservation period when purchase probability is high. Moreover, Figure 3.4 shows the

effect of length of the commitment period on total revenue. We observe that as the

length of the commitment period increases, it becomes more profitable to decrease the

length of the time period during which the commitment option is offered.

Note that the results of our approximate model depend on the buy probability

parameter, pab . We next consider what happens if this parameter is not accurately

specified. To answer this question, we simulate several scenarios, where pab is either

over- or under-estimated. We set the length of the commitment period, the commitment

fee and the exact buy probability to s = 5, f c = 80, and pb = 0.4, respectively. We

vary pab ∈ {0.2, 0.4, 0.6}. Figure 3.5 presents the percentage gaps between the revenues

obtained by the approximate dynamic model and the revenues of the exact dynamic

model. In this figure, test instances are denoted by the triplet (ρ, ν, pab ). H and L

indicate the high and low splitting probability (ν) which are defined at the beginning of

Section 3.4.1. Moreover, the dashed lines depict the exact values of the buy probability.

An interesting result we want to point out is the change in the average percentage

gaps. The percentage gaps decrease when the load factor (ρ) is high. When pab is

underestimated, ADM accepts more reservation requests from the low fare classes,

since the estimated cancellation probability is high. This treatment results in empty

seats when load factor is low. On the other hand, when pab is overestimated, ADM

rejects the reservation requests coming from the low fare classes. Therefore, it may lose

the extra fee obtained from those rejected customers. When the load factor is high, it

compensates this loss with the late arrivals.

3.4.3 An Alternate Simulation

In this simulation study, we relax the assumption related to the purchase decision of

the committed seats. In our proposed models, we assumed that the customers who

committed to a seat make the buy or leave decision at the end of the commitment
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Figure 3.5: Effect of pab estimation

period. Although this is quite often the case, sometimes those customers may purchase

the seat or cancel their reservation at any time within the commitment period. In this

section, we simulate such a setting. We assume that after committing to a seat, it is

equally likely for a customer to make a decision in each one of the s periods. Since we

compare the benchmark strategies for long commitment periods, we were not able to

solve the EDM model in this analysis.

Our results are summarized in Table 3.4. The commitment fee is set to f c = 80.

Comparing the total expected revenues in Table 3.3 against those given in Table 3.4,

we notice that the total net revenues obtained by the policies of all solution methods

slightly improve in this alternate simulation. Since frequent cancellations occur in the

alternate simulation, the expected revenues obtained from the commitments increase.

It is important to note that the percentage gaps between ADM and the other solution

methods tend to increase when we allow frequent commitment cancellations. ADM

adjusts the booking limits by taking into account the reservations and cancellations

that have already taken place. Therefore, it ends up accepting more reservation requests

from lower fare classes than the deterministic model, and consequently, the revenue loss

due to empty seats is counteracted by the gains from the committed seats.
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Table 3.4: Computational results for the test problems in the alternate simulation
(f c = 80)

Instances % Gap with ADM
ρ ν• s pb ADM SBS DLP SBS DLP

5 0.4 68,352 51,455 66,261 24.72% 3.06%
5 0.7 66,512 42,685 64,225 35.82% 3.44%

νH
25 0.4 67,967 51,455 66,365 24.29% 2.36%
25 0.7 66,456 42,685 64,457 35.77% 3.01%
50 0.4 67,376 51,455 66,014 23.63% 2.02%

1.2
50 0.7 66,216 42,685 64,399 35.54% 2.74%
5 0.4 64,328 60,362 62,209 6.17% 3.29%
5 0.7 63,595 58,056 61,426 8.71% 3.41%

νL
25 0.4 64,237 60,362 62,096 6.03% 3.33%
25 0.7 63,568 58,056 61,528 8.67% 3.21%
50 0.4 64,103 60,362 62,209 5.84% 2.95%
50 0.7 63,501 58,056 61,510 8.57% 3.14%
5 0.4 78,127 63,738 76,082 18.42% 2.62%
5 0.7 76,578 56,267 74,406 26.52% 2.84%

νH
25 0.4 77,506 63,738 75,533 17.76% 2.55%
25 0.7 76,375 56,267 74,363 26.33% 2.63%
50 0.4 76,613 63,738 74,481 16.81% 2.78%

1.6
50 0.7 76,014 56,267 73,988 25.98% 2.67%
5 0.4 74,242 71,411 72,249 3.81% 2.68%
5 0.7 73,618 69,289 71,664 5.88% 2.65%

νL
25 0.4 74,125 71,411 72,208 3.66% 2.59%
25 0.7 73,587 69,289 71,704 5.84% 2.56%
50 0.4 73,918 71,411 72,018 3.39% 2.57%
50 0.7 73,487 69,289 71,667 5.71% 2.48%

We also analyze how our approximation performs. Figure 3.6 presents the gap

between the optimal objective value of the approximate dynamic model and the av-

erage revenue obtained by its policy when regular and alternate simulations are run.

The first observation we have is that the percentage gaps are small when the length

of commitment period is short. The intuition behind this result is that, as the length

increases, ADM fails to predict the dynamics of the commitment process. As a result,

the number of empty seats increases and hence, its performance deteriorates. We cau-

tion the reader to the performances under two simulations. As Figure 3.6(a) depicts

total revenue obtained in the alternate simulation always higher than the one obtained

in regular simulation. Moreover, as the length of the commitment period increases, the
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performance of ADM worsens more than we expected. This result was more striking

with our regular simulation. This behavior can be attributed to the structure of the

alternate simulation. Since our approximation allows contingent commitment cancella-

tion at any time, it performs better in the alternate simulation.

(a) Total expected revenue (b) Percentage gap

Figure 3.6: The results related to optimal objective value of ADM and the average
revenue obtained by the optimal policy of ADM

3.4.4 An Alternate Dynamic Programming Formulation

Dynamic model (3.2) assumes that a customer decides whether she wants to purchase

the contingent commitment option after she books the ticket. Therefore, the decisions

to accept or reject a request for a standard booking and a commitment are identical. We

can also model this problem by assuming that booking and commitment decisions are

independent. In this approach, a customer arrives into the system with a particular fare

class in mind and with the intention to purchase the contingent commitment option. If

the customer is interested in the contingent commitment option and the requested fare

class is open with this option, then she purchases the option. Similarly, if the customer

is not interested in purchasing the option and the requested fare class is open without

a contingent commitment option, then she makes the booking.

To model this approach, we use uit ∈ {0, 1} and wit ∈ {0, 1} to represent the

decisions for standard booking and contingent commitment option, respectively. Then,
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the sets of feasible decisions at time period t are

Ut(xt) = {ut ∈ {0, 1}m : xt + uit ≤ C, i = 1, 2, · · · ,m},

and

Wt(xt) = {wt ∈ {0, 1}m : xt + wit ≤ C, i = 1, 2, · · · ,m}.

As in the model (3.2), let xt and yt be the total number of reservations (including both

contingent commitments and bookings) and contingent commitments at time period

t, respectively. Then, the recursive equations for the alternate dynamic programming

model is given by

V̄t(xt, yt) = max
ut∈U(xt)

{ m∑

i=1

pit{fiuit + EV̄t+1(xt + uit −Ml(yt),Mr(yt))}
}
+

max
wt∈W(xt)

{ m∑

i=1

qit{φa
iwit + EV̄t+1(xt + wit −Ml(yt),Mr(yt) + wit)}

}
+

p0tEV̄t+1(xt −Ml(yt),Mr(yt)).

Again, the boundary condition is simply V̄T+1(xT+1, yT+1) = 0.

We compare the performance of this approach with our approximate dynamic

model on various test instances in alternate simulation. We refer to the average rev-

enue obtained by the optimal policy of this alternate model as AF. Our results are

presented in Table 3.5. Comparing the relative gaps, we observe that AF performs bet-

ter than ADM. This is an expected result, since AF uses additional arrival probability

information while determining the optimal policy. A noteworthy observation is that the

percentage gaps are more significant when the contingent commitment probability is

high and the purchase probability of the committed seat is low. Since AF discriminates

between commitment and standard booking decisions, it adjusts the booking limits by

considering the low purchase probability of contingent commitments. As a result, it can

benefit from the non-refundable commitment fee by improving its capacity utilization.

On the other hand, when the load factor is high and the commitment arrival intensities

are low, the average percentage difference is around 0.22%. In this case, both mod-
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els benefit from the increase in the number of booking requests for the expensive fare

classes.

Table 3.5: Computational results for the alternate dynamic programming model
(f c = 80)

Instances AF versus
ρ ν• s pb AF ADM ADM

5 0.4 69,359 68,352 1.45%
5 0.7 67,106 66,512 0.88%

νH
25 0.4 68,919 67,967 1.38%
25 0.7 67,087 66,456 0.94%
50 0.4 68,380 67,376 1.47%

1.2
50 0.7 66,852 66,216 0.95%
5 0.4 64,746 64,328 0.64%
5 0.7 63,974 63,595 0.59%

νL
25 0.4 64,665 64,237 0.66%
25 0.7 63,925 63,568 0.56%
50 0.4 64,540 64,103 0.68%
50 0.7 63,872 63,501 0.58%
5 0.4 78,785 78,127 0.84%
5 0.7 76,949 76,578 0.48%

νH
25 0.4 78,089 77,506 0.75%
25 0.7 76,723 76,375 0.45%
50 0.4 77,221 76,613 0.78%

1.6
50 0.7 76,355 76,014 0.45%
5 0.4 74,447 74,242 0.27%
5 0.7 73,737 73,618 0.16%

νL
25 0.4 74,327 74,125 0.27%
25 0.7 73,723 73,587 0.19%
50 0.4 74,104 73,918 0.25%
50 0.7 73,606 73,487 0.16%

We conclude the presentation of our numerical results by reporting the CPU times

of the solution methods. We used a computer with 2.13 GHz Intel Pentium P6200

processor and 2 GB of RAM. The codes are written in MATLAB R2012b running

under Windows 7 operating system. Exact dynamic model requires on average 230

seconds for the problems where length of commitment period is 5. It takes on average

120 seconds to solve the approximate dynamic model. DLP requires on average less

than a second.
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Chapter 4

NETWORK PROBLEM: HOTEL REVENUE MANAGEMENT

In this chapter, we work on the capacity allocation policies in hotel industry. Hotel

revenue management can be considered as an airline network revenue management by

treating each day as a flight leg and each room as a flight seat. Generally successful

airline RM techniques such as booking control and overbooking are directly applied

to the hotel problems. However, unlike airline RM, the hotel problem has a different

structure. Customers have different arrival dates, their length of stays overlap with

each other and more importantly long-term stay is very common. While a customer

can stay seven consecutive days in a hotel, a flight itinerary rarely includes more than

three flight legs. Therefore, network effects can be more significant compared to the

airline network problem. In addition, the demand structure of the hotel problem is

different. While airline passengers make advance reservations, a good portion of the

hotel customers are walk-ins and even early bookings can cancel for free depending

on the hotel policy. Moreover, hotel customers can easily change their length of stay

(extend or leave early) at a moment’s notice. These features create unique challenges

in hotel capacity allocation, which we address in the thesis.

Network structure allows staying single or multiple days in a hotel that increases

the interaction between products. Room allocation problem is the control of total room

capacity when the customer demand is characterized by the length of stay and the room

types. Dynamic control of this problem is a challenge for analysis and optimization since

the state space becomes basically the Cartesian product of daily capacities in the hotel
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network. To overcome this difficulty, approximation methods based on decomposition

are proposed. The main idea behind this type of decomposition is to partition the net-

work problem into independent subproblems. This approach has been widely adopted

by the airline industry. However, these decomposition methods may undermine the net-

work effects of shared daily capacities between different products (reservation types).

To improve decomposition methods, recent studies focus on protecting network infor-

mation [53, 96, 4]. Weatherford [90] points out that methods taking the length of stay

into account in hotel revenue management generate greater expected revenues of up to

2.9% over the traditional single-day (or leg-based) methods.

Throughout this chapter, we focus on the problem of managing the room alloca-

tion decisions in case of stochastically arriving customers in a hotel. These customers

are classified as advance bookings, stay-overs and walk-ins. While advance bookings

make room reservations before they arrive at the hotel, walk-ins show up without any

reservation during the service period. Stay-overs are the customers who had advance

bookings and ask for extension on their reservations during their stay in the hotel.

We build our model upon this terminology. We focus on network decomposition ap-

proaches proposed for airline RM and migrate the methods to the hotel RM context by

eliminating all drawbacks in implementation.

We begin by reviewing the related work proposed in the hotel revenue management

context and then explain decomposition approaches applied to the network problem.

As mentioned in Chapter 1, there is limited research in hotel revenue management

compared with the airline literature. Ladany [55] works on the single day model with

two types of resources. The aim of the model is to find an allocation policy in order to

maximize the expected revenue per day. He develops a dynamic programming formu-

lation and obtains the allocation policy by using sequential decision process. Williams

[92] works on the single-day model during the peak demand period. In this model, he

assumes that demand arrives from three different sources; stayovers, advanced reser-

vations and walk-ins. He computes the reservation policy for each customer type by

comparing the underbooking and overbooking costs. Bitran and Mondschein [15] de-

velop a dynamic programming model for single-day problem with multiple products.
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Since the resulting model is computationally intractable for the real size problems, they

utilize some heuristics when searching for the optimal allocation policy. Weatherford

[90] focuses on the effect of length of stay. He proposes a heuristic method based on

a static model and compares this method with the other booking policies developed

for single-day. Bitran and Gilbert [17] work on a single-day and single-room problem.

They assume that during the service day, three type of customers show-up; customers

with guaranteed reservations, customers with reservations and walk-ins. They develop

a dynamic model and propose a heuristic method to obtain the room allocation policy.

Baker and Collier [7] extend the study of Weatherford and Bitran and Mondschein by

allowing cancellations, overbooking and stay-overs. They develop two heuristics that

integrate overbooking with the capacity allocation decisions. They compare the per-

formance of these heuristics with the other booking control policies in the literature

under different operating environments and discuss the advantages of each policy for

each environment.

Later studies focus on the multi-product and multi-day stay problem. Chen [24]

presents a general formulation for the deterministic problem and discusses that it can

be transferred to a network flow problem. Moreover, he shows that optimal solution of

the linear program is always integral. Goldman et al. [43] propose deterministic and

stochastic linear programming models to find nested booking limits and bid prices for

the multi-day stay problem. They utilize from the work of Weatherford [90] to develop

the deterministic model. For the stochastic model, they extend the work of De Boer et

al. [19] on airline revenue management problem. However, unlike Weatherford’s and

De Boer et al.’s model, they use the booking control policies over a rolling horizon of

decision periods. Lai and Ng [56] work on a stochastic programming formulation for

multi-day problem. They apply robust optimization techniques to solve the problem

on a scenario-basis. They also consider the risk aversion of the decision maker and

use mean absolute value to measure the revenue deviation risk. Koide and Ishii [50]

work on the optimal room allocation policies for a single day by considering early

discounts, cancellations and overbookings. They examine the properties of the expected

revenue function and show that it is unimodal on the number of allocated rooms for
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early discount and overbooking. As with Lai and Ng, Liu et al. [64] present revenue

optimization models for multi-day stay problem by considering the revenue risk. They

propose stochastic programming model with semi-absolute deviations to measure the

risk.

The problem considered in this study builds on the literature on decomposition

methods in revenue management. The output of the decomposition methods is used

to construct various strategies, such as bid-prices and nested booking limits. Adelman

[1] develops an approximation method to compute dynamic bid prices. He first for-

mulates the problem as a dynamic model and due to the curse of dimensionality, he

derives a standard linear program by approximating the dynamic programming value

functions. This approach provides an upper bound on the optimal expected revenue.

Zhang [96] proposes a non-linear non-separable functional approximation to dynamic

programming model that leads to a tighter upper bound. Topaloglu [84] focuses on

the capacity dependent bid-prices and proposes a Lagrangian relaxation method to de-

compose the network problem by the flight legs. Erdelyi and Topaloglu [33] work on

the overbooking problem in airline network and develop separable approximations to

decompose the problem by flight legs. This approach constructs capacity dependent

bid prices. However, it is quite difficult to compute the value functions for each leg.

To reduce the computational burden, Kunnumkal and Topaloglu [54] develop stochas-

tic approximation algorithm which provides capacity independent bid prices. In this

method, they formulate the total expected profit as a function of bid prices and use

the stochastic gradients to obtain a good bid price policy. Recently, Kunnumkal and

Topaloglu [53] propose a new leg-based decomposition method for airline revenue man-

agement with customer choice behaviour. In this method, they allocate revenues of

each itinerary among the covered legs and to incorporate network effect, they define a

penalty term. They view the revenue allocations and penalty terms as decision vari-

ables and use subgradient search to find the optimal solution. Although this solution

approach is manageable in small size networks, it will not be practical for the hotel

problems since the network size can be larger compared to the airline problems. Hotel

network problems are also tackled with decomposition methods. Zhang and Weath-
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erford [97] work on the dynamic pricing problem in hotel network. They generalize

the approximation method of Zhang [96] and decompose the problem into independent

single-days by approximating the value functions with nonlinear non-seperable func-

tions. They test the proposed approach by using data from a US hotel. Aslani et al.

[4] propose a decomposition method for pricing problem in hotel revenue management.

They develop an approach to estimate the effective arrival rate of each day by consid-

ering the stock-outs and customer losses due to high price levels. They decompose the

network problem into single-day subproblems with these daily arrival rates.

In this chapter, we work on the hotel capacity allocation problem with walk-

in and stay-over customers. We aim to develop practical models that provide good

approximations to the hotel network problem. We first concentrate on the day-based

decomposition method by considering the model of Kunnumkal and Topaloglu [53]. We

propose a dynamic model including walk-in customers and formulate the problem as a

linear programming model. We observe that this problem has a block angular structure

and it can be efficiently solved by Dantzig-Wolfe decomposition. However, it may still

be slow to solve larger-size network problems. Therefore, we propose an alternative

solution method and show that this method provides an upper bound on the model

of Kunnumkal and Topaloglu. We also discuss several well-known models from the

literature and generate benchmark strategies to test the performances of these solution

approaches.

To manage stay-over requests, we need to keep track of the number of reservations

in each booking type. However, day-based methods decompose the network problem

into independent days which results in a loss of information on the number of customers

in each booking type. To overcome this difficulty, we work on pair-based decomposition

methods. We concentrate on the decomposition approach proposed by Birbil et al. [29]

and extend the model to include stay-overs. In our numerical experiments, we observe

that the objective function of the stay-over model is discrete concave and hence, we

propose a method to replace it with a piece-wise linear concave function. This enables

us to rewrite the problem as a linear programming model.

98



This chapter is organized as follows. In Section 4.1, we describe the problem

and present dynamic programming model to coordinate room allocation decisions of

a hotel. We then discuss the single-day decomposition methods in Section 4.2.1. We

start by explaining the work of Kunnumkal and Topaloglu [53]. We then introduce

our linear programming approach and analyze its properties. We also present some

alternative solution methods. In Section 4.2.3, we consider stay-over extension of the

room allocation model and explain the check-in and check-out pair-based decomposition

method. Furthermore, based on our observations, we discuss our solution approaches.

Finally, in Section 4.3, we present computational experiments.

4.1 Model Formulation

We consider a hotel network with daily capacity Ci. Customers may book for a single

day or up to n multiple-days. The days and booking fares can be combined to produce

products (length of reservation and room price combinations). Figure 4.1 shows the

structure of a hotel network with multiple-day stays. In this figure, each node presents

the possible check-in and check-out days. The set of service days in the hotel network

is denoted by L and the set of products is denoted by K. We use Lk to denote the set

of days that are used by product k and Ki to denote the set of products involving day

i. Throughout, we index the service days by i and products by k.

...... ...
...1 2 3 N

Figure 4.1: The hotel network with multiple time intervals

The planning period T = {1, ..., τ} consists of two sub-periods, namely reserva-

tion and service. While in the reservation period product request arrives, accepted

reservations occupy their rooms in the service period. During the planning period, we

observe three type of customer arrivals. These arrivals are classified as advance book-
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ings, walk-ins and stay-overs. Advance bookings are the customers who arrive with a

reservation on the check-in date. On the other hand, walk-ins and stay-overs are the un-

expected customer arrivals in the service period. While walk-ins show-up without any

reservations, stay-overs request an extension on their stay. In this study, we first work

on the room allocation model with walk-in customers. Then, we discuss the possible

ways to incorporate stay-over requests.

Advance booking and walk-in requests can arrive for any of the products, and

accepted reservations occupy the reserved rooms at the service period. At each period

t, a reservation request for product k arrives with probability pkt and we have to decide

whether to accept or reject the booking requests. If we accept a reservation request for

product k, then we generate a revenue of fk. Each accepted product k request consumes

one unit of capacity on the day i ∈ Lk.

We assume that there are no reservations in the system at time t = 0, and at

most one reservation requests arrive at each time period. We define aik to represent the

amount of resource i required by product k customer. In other words, if day i is used by

product k, aik = 1 and aik = 0 otherwise. We also define ei as an |L|-dimensional vector

with a one in the element corresponding to day i. To give a dynamic programming

formulation for this problem, we need to store the number of reservations in each day.

We use zit to denote the total number of reservations on day i at time period t and the

vector zt = {zit : i ∈ L} represents the state in our dynamic programming model.

We are ready to formulate the problem as a dynamic program. Let Jt(zt) denote

the expected optimal revenue from t up to τ given that the state of the reservations

at the beginning of time period t is zt. For every 1 ≤ t ≤ τ , we can find the optimal

policy by computing the value functions through the optimality equation

Jt(zt) =
∑

k∈K

pkt max{fk + Jt+1(zt +
∑

i∈L

aikei), Jt+1(zt)}+ (1−
∑

k∈K

pkt)Jt+1(zt) (4.1)

where the boundary condition is simply Jτ+1(zτ+1) = 0 for all zτ+1.
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Unfortunately, this model is intractable because the state variable z may involve

many dimensions in practical applications and hence, solving the complete dynamic

model is not possible even for small-scale problems [80].

4.2 Decomposition Methods

In this section, we discuss the approaches to approximate the dynamic programming

formulation in (4.1). We first concentrate on day-based decomposition methods and

then work on the check-in and check-out pair-based methods.

4.2.1 Day-Based Decomposition

Recently, Kunnumkal and Topaloglu [53] have proposed an approximate dynamic pro-

gramming formulation for the customer choice problem in airline network revenue man-

agement. This method decomposes the airline network into single-leg subproblems. To

decompose the network, they allocate the revenue of each product to the flight legs that

it uses. In other words, they define leg-based price {αikt : i ∈ Lk, k ∈ K, t ∈ T } for

each product as follows:

∑

i∈Lk

αikt = fk ∀k ∈ K, t ∈ T . (4.2)

Moreover, they introduce penalty terms {βikt : i ∈ Lk, k ∈ K, t ∈ T } for each

product to coordinate the network decisions. Day-based penalties for a product should

satisfy

∑

i∈Lk

βikt = 0 ∀k ∈ K, t ∈ T . (4.3)

This condition on penalties guarantees that if we make the same decision for a product

at each subproblem, then the overall penalty for that product is equal to zero. In other

words, if we accept a reservation request of product k for each day it uses, then the

collected revenue is
∑

i∈Lk
αikt = fk and the collected penalty is

∑
i∈Lk

βikt = 0.
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By applying this idea to our model, we can transfer the multi-day hotel problem

to single-day subproblems. In this case, if we accept a booking request for product k

at time period t on day i, we generate a revenue of αikt and incur a penalty of βikt

and consume the unit capacity of day i. We use zit to denote the total number of

reservations on day i at the beginning of time period t. Then, we can formulate the

single-day problem as a dynamic program as

Vit(zit|α, β) =
∑

k∈K

pkt max{αikt + βikt + Vit+1(zit + aik), Vit+1(zit)}

+ (1−
∑

k∈K

pkt)Vit+1(zit), (4.4)

for every 1 ≤ t ≤ τ . The boundary conditions simply become Vit(Ci) = 0 and Viti(ziti) =
∑

k∈Ki
pkti max {αikti + βikti , 0} for all ziti = 1, · · · , Ci − 1, where ti is the last day we

can accept customers for day i; i.e., ti = t1+ i−1. Kunnumkal and Topaloglu [53] show

that this approximation provides an upper bound on the optimal expected revenue for

customer choice model. This result can be easily extended to our model.

Proposition 4.2.1 (Kunnumkal and Topaloglu [53], Proposition 1) For all zit ≤ Ci

and 1 ≤ t ≤ τ , we have Jt(zt) ≤
∑

i∈L Vit(zit|α, β) such that (α, β) satisfies conditions

(4.2) and (4.3).

Since
∑

i∈L Vi1(0|α, β) gives an upper bound on J1(0), we can obtain the tightest

bound by solving the following problem.

minimize
∑

i∈L

Vi1(0|α, β) (4.5)

subject to
∑

i∈Lk

αikt = fk, ∀k ∈ K, t ∈ T (4.6)

∑

i∈Lk

βikt = 0, ∀k ∈ K, t ∈ T (4.7)

αikt ≥ 0, ∀k ∈ K, i ∈ L, t ∈ T (4.8)
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Optimal objective value of problem (4.5)-(4.8) provides an upper bound on the maxi-

mum expected revenue over the whole planning horizon. Moreover, it gives the optimal

values of the revenue allocations and the penalties that we can use to construct a control

policy for the dynamic model (4.4).

The reservation policy for the network problem can be summarized as follows:

Given the allocations {(αikt, βikt), ∀i ∈ L, k ∈ K, t = 1, ..., τ} and the state variables

{zit, ∀i ∈ L} at time period t, we then accept a reservation request for product k if we

have,

fk ≥
∑

i∈Lk

((Vit(zit|α, β)− Vit(zit + 1|α, β)) .

Next, we explain the steps that can reduce problem (4.5)-(4.8) to a linear program.

Although value function Vit(zit|α, β) depends on the whole set of {zit : i ∈ L} due to

the structure of problem (4.4), it actually depends only on zit and zit + 1. This result

enables us to model the problem (4.5)-(4.8) as a tractable linear program.

For ease of expression, we replace zit with z to denote the total number of reser-

vations on day i at time period t. To rewrite the recursion let us first define

xi
ktz := max {αikt + βikt + Vi,t+1(z + 1)− Vi,t+1(z), 0} (4.9)

and

xi
kti := max {αikti + βikti , 0} . (4.10)

Then, we can rewrite (4.4) as

Vit(z) =
∑

k∈Ki

pktx
i
ktz + Vi,t+1(z)

=
∑

k∈Ki

pktx
i
ktz +

∑

k∈Ki

pk,t+1x
i
k,t+1,z + Vi,t+2(z)

If we continue in the same fashion, we obtain

Vit(z) =
∑

k∈Ki

pktx
i
ktz + · · ·+ pk,ti−1x

i
k,ti−1,z + pktix

i
kti .
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We can then simplify the difference

Vit(z + 1)− Vit(z) =
∑

k∈Ki

pkt(x
i
k,t,z+1 − xi

ktz) + · · ·+ pk,ti−1(x
i
k,ti−1,z+1x

i
k,ti−1,z)

=
∑

k∈Ki

ti−1∑

s=t+1

pks(x
i
k,s,z+1 − xi

ksz).

This formulation enables us to linearize our model. Moreover, it provides an

alternative simple proof for the convexity of the model (4.5)-(4.8).

As we mentioned before, we assume that at most one customer arrives at each time

period. Therefore, the total number of accepted customers on day i at time period t is at

most min{Ci, t}. Let θt denote this bound on the total number of reservations. Together

with (4.9) and (4.10), we have to introduce, for each k ∈ K, i ∈ Lk , t = 1, · · · , ti − 1

and z = 1, · · · , θt − 1, the following constraint into our linear programming problem:

xi
ktz ≥ αikt + βikt +

∑

κ∈Ki

ti−1∑

s=t+1

pκs(x
i
κ,s,z+1 − xi

κsz).
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Then, we can reformulate the problem (4.5)-(4.7) as

minimize
∑

k∈K

∑

i∈Lk

τ∑

t=1

pk1x
i
kt0

(4.11)

subject to xiktz ≥ αikt + βikt +
∑

l∈K

ti−1∑

s=t+1

ailplt+1(x
i
lsz+1 − xilsz),

∀k ∈ K, ∀i ∈ Lk, t = 1, .., ti − 1, z = 0, ..., θt − 1

(4.12)

xiktiz ≥ αikti + βikti , ∀k ∈ K, ∀i ∈ Lk, z = 1, ..., Ci − 1

(4.13)

xiktCi
= 0, ∀i ∈ L, ∀k ∈ K, t ∈ T

(4.14)
∑

i∈Lk

αikt = fk, ∀k ∈ K, t ∈ T

(4.15)
∑

i∈Lk

βikt = 0, ∀k ∈ K, t ∈ T

(4.16)

xiktz,αikt ≥ 0, ∀i ∈ L, ∀k ∈ K, t ∈ T , z = 0, ..., θt − 1

(4.17)

Problem (4.11)-(4.17) has |L||K|(τ − 1)τ/2 + 2τ |K| constraints which may increase the

solution time as time period increases. We discuss the solution algorithms in the following

section.

Next, we examine the fare structure of the subproblems. We accept the arriving request

of product k if its revenue is higher than the total marginal values of consuming one unit of

capacity on the days traversed. Considering the optimal policy of exact dynamic model (4.1),

it is optimal to accept a request for product k at time period t whenever

fk ≥ Jt(zt)− Jt(zt +
∑

i∈L
aikei).
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Given the ordering fk > fk−1 between two products which use the same days, if we accept

product k − 1 request, then it is also optimal to accept product k request. However, we may

not preserve this relation in each day, when we decompose the problem into single-days. We

present a simple counter example where the ordering between the classes of the same pair

is not preserved at each day. Figure 4.2 presents the network of this example. We have

four different products and product 3 and 4 use the same days. Although the fares of the

products 3 and 4 are ordered as f4 > f3, when we solve the problem (4.11)-(4.17) we obtain

an interesting result. As it is seen in Figure 4.2, while the net revenue of product 3 on day 1,

(α131 + β131), is greater than the bid price of that day, the net revenue of product 4 on day

1, (α141 + β141), is lower than that value. This means that the ordering between fare class on

each day can deteriorate with the decomposition. In the next section, we will discuss a fare

allocation procedure which also preserves the ordering between products consume capacities

of the same days.
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Figure 4.2: A counter example (C = 3, τ = 10)

4.2.2 Solution Approaches

In this section, we discuss the solution approaches to problem (4.5)-(4.8). LP formulation

given by (4.11)-(4.17) has block angular structure where independent blocks are linked by
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coupling constraints. In this problem, the blocks correspond to the different days and coupling

constrains correspond to the fare allocation decisions. In other words, constraints (4.12)-(4.14)

belong to the subproblems and constraints (4.15) and (4.16) belong to the master problem.

Therefore, it is suitable to use the decomposition method of Dantzig and Wolfe [31]. We can

easily solve the problem (4.11)-(4.17) with column generation method in a reasonable time.

However, as the network size increases, the solution time of this linear programming problem

may degrade.

Now, we will explain alternative solution approaches which may be more practical in the

larger-scale networks. We test the performances of these strategies in our numerical section.

Iterative Heuristic This approach provides an alternative heuristic solution method to

problem (4.11)-(4.17). Instead of solving the problem (4.11)-(4.17) from scratch, we solve it

for each time period starting from the last time period τ . We define V̄t(zit|ᾱ, β̄) to denote the

expected optimal revenue from t up to τ of the alternative solution approach. To compute

the optimal value of V̄t(zit|ᾱ, β̄) and (ᾱ, β̄) at any time period t, we use the optimal values of

the value functions, V̄ ∗
it+1(zit|ᾱ∗, β̄∗), at time period t+1. In other words, at each time period

t (starting from τ to 1), we solve the following problem:

minimize
∑

i∈L

Ci−1∑

zit=0

V̄it(zit|ᾱ, β̄)

subject to
∑

i∈Lk

ᾱikt = fk, ∀k ∈ K,

∑

i∈Lk

β̄ikt = 0, ∀k ∈ K,

ᾱikt ≥ 0 ∀k ∈ K, i ∈ L

where

V̄it(zit|ᾱ, β̄) =
∑

k∈K
pktmax{ᾱikt + β̄ikt + V̄ ∗

it+1(zit + 1|ᾱ∗, β̄∗), V̄ ∗
it+1(zit|ᾱ∗, β̄∗)}

+ (1−
∑

k∈K
pkt)V̄

∗
it+1(zit|ᾱ∗, β̄∗)

We refer this solution approach to decomposition problem as IHM, where the acronym stands

for iterative heuristic method. This process continues in a backward recursion until we reach
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the initial time period 1. This method divides the problem (4.11)-(4.17) into τ smaller prob-

lems which are computationally very efficient to solve. Moreover, this approach provides an

upper bound on the problem (4.5)-(4.8).

Proposition 4.2.2 Let (α∗,β∗) and (ᾱ∗, β̄∗) denote the optimal solutions to problem (4.11)-

(4.17) and iterative heuristic method, respectively. Then, for all zi1 ≤ Ci, we have
∑

i∈L Vi1(zi1|α∗,β∗) ≤
∑

i∈L V̄i1(zi1|ᾱ∗, β̄∗).

Proof. Let ᾱ∗
t = {ᾱikt : ∀k ∈ K, ∀i ∈ Lk} and β̄∗

t = {β̄ikt : ∀k ∈ K, ∀i ∈ Lk} are

the sets of optimal values of decision variables for IHM for time period t ∈ T . Notice that

(ᾱ∗
t , β̄

∗
t ) satisfies conditions (4.2) and (4.3) for all time periods and for all products and hence,

it is feasible but not necessarily an optimal to problem (4.11)-(4.17). Therefore, we have
∑

i∈L Vi1(zi1|α∗,β∗) ≤
∑

i∈L V̄i1(zi1|ᾱ∗, β̄∗). !

Deterministic Linear Program An alternative solution to capacity allocation problem

in hotel revenue management is to solve a deterministic linear program (DLP). As we discussed

in Chapter 3, DLP is formulated under the assumption that the arrivals of the product requests

take on their expected values. Let xk be the number of reservations that we plan to accept

for product k. Then, the deterministic linear program has the following form:

zDLP = maximize
∑

k∈K
fkxk (4.18)

subject to
∑

k∈K
aikxk ≤ Ci, ∀i ∈ L, (4.19)

xk ≤
τ∑

t=1

pkt, ∀k ∈ K, (4.20)

xk ≥ 0, ∀k ∈ K. (4.21)

DLP is a well-known solution method for the network revenue management problem which

provides an upper bound on the optimal total expected revenue [80]. Moreover, the dual

solution of DLP can be used to construct a policy to accept or reject the product requests.

An important shortcoming of this model is that it ignores the uncertainty in arrival process.

Talluri and van Ryzin [77] discuss that the upper bound optained by DLP is asymptot-

ically optimal as the capacities on the days (flight legs) and the expected numbers of product

requests increase linearly with the same rate. Kunnumkal and Topaloglu [53] show that the
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model (4.5)-(4.8) provides a tighter upper bound than the one obtained by DLP. Therefore,

the upper bound provided by the model (4.5)-(4.8) is also asymptotically optimal.

Fare Allocation Heuristic Now, we present a revenue allocation approach that decom-

poses the network into single days. As we previously mentioned in Section 4.2.1, as long as

the fare allocations {αitk : i ∈ L, t ∈ T , k ∈ K} satisfy the condition
∑

i∈Lk
αikt = fk for all

k ∈ K and t ∈ T , day-based decomposition with fare allocation provides an upper bound on

the optimal expected revenue. By utilizing this property, we generate a benchmark strategy

which also provides an upper bound.

The primary disadvantage of decomposition methods is that in the process of decompo-

sition, important network effects in the subproblem approximations may be lost. We utilize

the idea of prorated EMSR to retain network information. Williamson [93] proposes pro-

rated EMSR to allocate a portion of the revenue of each product to the days traversed by

the product and the EMSR model is then applied to each subproblem to obtain bid prices.

She works on the several methods to obtain prorated revenues in airline problems. These

allocation methods are based on mileage, ratio of the fare on each flight leg and number of

days. Williamson point out that these fixed proration approaches are not efficient to respond

dynamic network problem.

Each day has different demand load and hence, while the remaining capacity on some

days is abundant, others can be congested. Therefore, insufficient fare allocation of a product

to the congested days may result in rejecting the request. Since accept-reject decision of a

product depends on the opportunity cost of a room on the days it uses, our decision changes

with the remaining capacity and the remaining time. By considering these conditions, we

propose the following approach. First we compute the load factor of each day depending on

the remaining time and capacity. Second, we compute the weights of each product on each

day by using the dynamic load factor. Finally, we allocate fares of each product to the days by

considering these weights. This allocation method also guarantees that the fare class ordering

between the products traversing the same days is protected.

Let wikt denote the portion of the contribution of day i the to total revenue of product

k at time period t. We compute these weights by using the load factor of each day at each

time period. For a given time period t, the load factor of day i is equal to the ratio of total

expected demand on day i and the remaining capacity. Let Rit denote the remaining capacity
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on day i at time period t, for 1 ≤ t ≤ τ the load factor is given by

ρit(Rit) =

∑τ
l=t

∑
k∈K aikpkl
Rit

Then, the weights for product k are computed as

wikt =
ρit(Rit)∑

i∈Lk
ρit(Rit)

, i ∈ Lk, t ∈ T .

These weights allocate higher portion of the product k revenue to the day with higher load

factor. Moreover, due to the time dependent load factor, it adjusts revenues dynamically.

The main advantage of this approach is that it is computationally very efficient. However,

an important shortcoming of this approximation is that it assumes the remaining capacity

on each day are equal. We can compute the decomposed revenues of advance booking and

walk-in requests as follows,

fikt = wiktfk, i ∈ Lk, t ∈ T ,

which guarantees that fk =
∑

i∈Lk
fikt for all t. Note that this is nothing but solving a single

day problem with Ci capacities. Then, for every 1 ≤ t ≤ τ we obtain that

νit(zit) =
∑

k∈K
pktmax{fikt + νit+1(zit + aik), νit+1(zit)}+ (1−

∑

k∈K
pkt)νit+1(zit) (4.22)

with the boundary conditions νit(Ci) = 0 for all t and νiτ (ziτ ) = 0 for all ziτ ≤ Ci. The

single-day problem (4.22) is similar to the model (4.4). However, in this case we ignore the

penalty incurred by accepting the demand of a product.

Since revenue allocations {fikt : k ∈ K, i ∈ Lk, t ∈ T } satisfies condition (4.2), the

summation of the value functions νit(zit) over all days at any time period provides an upper

bound on the maximum expected revenue denoted by Jt(zt).

Corollary 4.2.1 For all zit ≤ Ci and 1 ≤ t ≤ τ , we have Jt(zt) ≤
∑

i∈L νit(zit).

The proof of this corollary follows from the Proposition 4.2.2 with ᾱikt = fikt and

β̄ikt = 0, for all i ∈ L, k ∈ K, and t ∈ T .
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4.2.3 CICO Pair-Based Decomposition

In this section, we present an alternative method that decomposes the dynamic program in

(4.1) by the check-in and check-out (CICO) pairs. As we described in Section 4.1, customers

can stay multiple days in hotel. The combination of check-in and check-out days produces

product pairs in our hotel network. The objective of this model is to find the optimal room

allocation policy for each check-in and check-out pair. Since customer stays are overlapping,

allocation of the capacity among the pairs is to be determined considering the total hotel

capacity. In other words, the rooms should be allocated in such a way that the total capacity

is never exceeded at any time. Recently, Birbil et al. [29] propose an origin-destination

(OD-pair) based decomposition method for airline revenue management problem. OD-pair

corresponds to the chek-in and check-out pair in the hotel RM. The proposed approach consists

of two stages. While in the first stage network capacities are allocated to each OD-pair, in

the second stage seat allocation policy is determined within each OD-pair. In this way, we

only need to solve single-leg problem for each pair. Next, we discuss the CICO pair-based

decomposition for the generic model including walk-in customers.

Let the set of pairs in the hotel network is given by S and xs be the amount of capacity

allocated to pair s. Suppose pair s has ms room types and the set of room types for pair s is

denoted by Js. The probability that a request for product j of pair s arrives into the system

at time period t is psjt. We use ps0t to denote the no arrival probability at time period t. If we

accept the arriving request, then we generate a revenue of rjs and consume one unit of the

allocated capacity on pair s. Now we are ready to formulate the problem. Let ϱts(xs) denote

the expected optimal revenue of pair s from t up to τ given that the remaining capacity is xs

at time period t. Then, the dynamic decomposition model for a pair s is as follows:

maximize
∑

s∈S ϱ1s(xs)

subject to
∑

s∈S aisxs ≤ Ci, i ∈ L,

xs ∈ Z+, s ∈ S,

(4.23)

In this problem, the objective function ϱts(xs) for a given xs is an optimization problem itself,

and the dynamic programming recursion is given by

ϱts(xs) =
∑

j∈Js

psjtmax{rjs + ϱt+1
s (xs − 1), ϱt+1

s (xs)}+ ps0tϱ
t+1
s (xs),
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with the boundary conditions ϱts(0) = 0 for all t and ϱτ+1
s (xs) = 0 for all xs ≥ 0. It computes

the optimal seat allocation policy for each pair s ∈ S with the objective of maximizing revenue.

Although the objective function is dynamic, the overall problem (4.23) is not. As static models

do, the allocated capacity to each pair is determined at the beginning of the planning period.

However, given the allocated room capacity, reservation policy changes with the remaining

time and capacity. Therefore, we refer this problem as partially dynamic programming model.

Lippman and Stidham [62] show that the objective function xs (→ ϱts(xs) is discrete

concave. Therefore, we can always replace it by a piece-wise linear concave function and

then, rewrite the overall problem as a linear programming problem. For each pair s, we define

the maximum available capacity as

Bs = min{Ci : ais = 1}

which gives the bound on the number of pieces for the concave function. We also define the

function x (−→ min1≤l≤Bs{γslx+ ρsl} with γs1 ≥ γs2 ≥ .... ≥ γsBs and 0 := ρs1 ≤ ρs2 ≤ .... ≤

ρsBs satisfying

ϱ1s(xs) = min
1≤l≤Bs

{γslxs + ρsl}.

Then, problem (4.23) can be rewritten as

max

{
∑

s∈S
min

1≤l≤Bs

{γslxs + ρsl} :
∑

s∈S
aisxs ≤ Ci, i ∈ L, xs ∈ Z+, s ∈ S

}
.

This problem requires solving the independent subproblem of each pair s for all integer

values of allocated capacity xs from 1 to Bs. However, optimal policy table of the partial

dynamic programming model already stores the optimal solution for all values, xs ∈ {1, ..., Bs}

and hence, we only need to construct the problem for each pair once. Next, we present that

problem (4.23) provides a lower bound on the maximum expected revenue over the whole

planning horizon.

Proposition 4.2.3 The optimal objective value of the problem (4.23) gives a lower bound on

the optimal expected revenue of dynamic programming model given in (4.1). That is, we have
∑

s∈S ϱ1s(xs) ≤ J1(0).
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Proof. Suppose that Xjs, ∀j, s denote the random number of reservations accepted

for class j in pair s over the planning horizon under the optimal policy of the decomposed

dynamic programming model (4.23). Then we have

∑

j∈Js

Xjs = Xs, s ∈ S,

∑

s∈S
aisXs ≤ Ci, i ∈ L.

Then, the total expected revenue under the optimal policy of the decomposed dynamic pro-

gramming model is
∑

s∈S
ϱ1s(Xs) =

∑

s∈S

∑

j∈Js

rjsE(Xjs).

This solution is clearly feasible. However, the exact dynamic model considers all possible

combinations of capacity allocations over each product and hence, decomposed dynamic model

provides a lower bound on the optimal expected revenue. Therefore, we have

∑

s∈S

∑

j∈Js

rjsE(Xjs) =
∑

s∈S
ϱ1s(xs) ≤ J1(0).

!
Birbil et al. [29] show that several models proposed in the literature can also be modeled

in this generic framework. In the next section, we discuss the inclusion of stay-overs to hotel

room allocation problem.

4.2.4 Stay-Over Requests

Unlike the airline capacity allocation problems, customers with reservations can request an

extension on their booking days in hotel systems. These customers are classified as stay-

overs in hotel literature. To formulate these requests, we need to keep track of the accepted

reservations in each pair. Since single-day decomposition only considers the total number of

reservations in each day, it may perform poor for this problem. Therefore, we concentrate on

the OD-based decomposition method proposed by Birbil et al. [29].

In this problem formulation, we assume that each accepted booking of pair s can request

one day extension at the beginning of check-out day with probability πs. If we accept the

stay-over request of pair s, then we generate a revenue of θs. We let ais = 1 if day i is
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used by the stay-over customer and ais = 0 otherwise. We define xs as the reserved capacity

for advanced reservations and walk-in requests of pair s. We also define ws as the reserved

capacity for stay-over requests of pair s. Let ys be the remaining capacity at the check-out

day of pair s. Due to the assumption that the stay-over requests of different reservations

are independent of each other, the total number of stay-over requests are represented by a

Binomial random variable B(πs, xs − ys) having a success probability of πs.

The problem is to determine which of the product requests to accept during the reser-

vation period and to determine which of the confirmed reservations to accept for stay-over

during the service period. If φt
s(ys|xs, ws) is the expected optimal revenue for pair s with

reserved capacities xs and ws from period t to τ given that the remaining capacity is ys, then

the dynamic model within the proposed decomposition approach becomes

maximize
∑

s∈S
φ1
s(ys|xs, ws) (4.24)

subject to
∑

s∈S
aisxs + aisws ≤ Ci ∀i ∈ L (4.25)

ws ≤ xs ∀s ∈ S (4.26)

xs, ws ∈ Z+ ∀s ∈ S (4.27)

where,

φt
s(ys|xs, ws) =

∑

j∈Js

pjtmax{rjs + φt+1
s (ys − 1|xs, ws),φ

t+1
s (ys|xs, ws)}

+ p0tφ
t+1
s (ys|xs, ws), (4.28)

for 1 ≤ t ≤ ts where ts is the check-out day of pair s. The boundary condition of dynamic

model is φts
s (ys|xs, ws) = θsE[min(ws,B(πs, xs − ys))].

Note that the approach of Birbil et al. [29] is applicable when the objective function is

discrete concave. To check this condition for given data, one needs to compute the differences,

xs (→ φt(ys|xs + 1, ws)− φt(ys|xs, ws), ws (→ φt(ys|xs, ws + 1)− φt(ys|xs, ws), and (xs, ws) (→

φt(ys|xs+1, ws+1)−φt(ys|xs, ws) and confirms that they are non-negative and non-increasing.

An alternative way of checking concavity is to solve problem (4.29)-(4.30). Next, we explain

this alternative method and discuss the construction of the two dimensional piece-wise linear

concave function.
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We define m to denote the total number of states in our dynamic programming model

in (4.28). Let ui ∈ Z2
+, i = 1, ...,m be the coordinates corresponding to these states. For ease

of notation, we define U = {1, ...,m} to denote the set of states in our model. Suppose the

corresponding objective function values are given by λi := φ(ui), i ∈ U . Since the objective

function is concave over R2
+, we have for all i and j pairs, the subgradient inequality

λj ≤ λi + γᵀi (uj − ui).

If we introduce auxiliary variables λ̂i, i ∈ U , then we can write an optimization problem as

minimize
∑

i∈U
|λi − λ̂i| (4.29)

subject to λ̂j ≤ λ̂i + γᵀi (uj − ui), i, j ∈ U , (4.30)

where λ̂i ∈ R and γi ∈ R2
+, i ∈ U are the decision variables. After loosing the absolute value

function in a straightforward manner, we obtain a linear programming problem

minimize
∑

i∈U
zi

subject to λ̂j ≤ λ̂i + γᵀi (uj − ui), i, j ∈ U ,

− zi ≤ λi − λ̂i, i ∈ U ,

zi ≥ λi − λ̂i, i ∈ U ,

zi ≥ 0 i ∈ U .

This problem can be solved very efficiently. Clearly, its optimal objective function value

should be zero with the optimal solution λ̂∗
i = λi and γ∗i for i ∈ U if the objective function

(xs, ws) (→ φs(.|xs, ws) is concave. Then, we can write

φs(ys|xs, ws) = min
i∈U

{
λi + γᵀi

([
xs

ws

]
− ui

)}

Equivalently,

φs(ys|xs, ws) = min
i∈U

{
γᵀi

[
xs

ws

]
+ bi

}
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where bi = λi − γᵀi ui, i ∈ U . By using this result, we can rewrite the model (4.24) - (4.27) as

a linear programming problem.

4.3 Computational Experiments

In this section, we present computational results that illustrates the performances of numerous

solution methods for the hotel revenue management problem described in Section 4.1. We

proceed to describe our simulation setup.

We simulate the arrival of product requests over discrete time periods T = {1, ..., τ}.

At each time period, we first generate an arrival request and then apply the corresponding

policy. The probability that there is a request for product k at time period t is pkt. To test

the performances of the booking policies against varying arrival intensities, we use the load

factor parameter ρ, which is given by

ρ =

∑
t∈T

∑
i∈L

∑
k∈K aikpkt∑

i∈LCi

In all our numerical experiments, we set the capacity of the hotel and the length of the

planning horizon to Ci = 40 for all i ∈ L and T = 200, respectively. To compute the product

fares, we define daily prices, σi. If a product covers only single day, its fare is set equal to

the corresponding daily price. In our simulation set-up, we assume that customers take a

discount (κ) if they request to stay more than a day. We compute these fares as follows

fk = κ
∑

i∈L
aikσi.

4.3.1 Computational Results for Day-Based Decomposition

In this section, we compare the performances of day-based decomposition methods. We begin

by describing the benchmark solution methods.

Linear Programming Formulation (LPF): This is the solution method that we

proposed in Section 4.2.1. That is, we solve the linear model given in (4.11)-(4.17) to obtain

the optimal values of (α,β). Then, we use these values to compute our accept-reject policy.

116



Alternative Linear Programming Model (ALP): Day-based decomposition model

described in Section 4.2.1 computes the fare allocations and penalties for each day, each

product and each time period. To shorten the computational time and understand the effect

of time on the fare allocation, we redefine fare allocations and penalties by relaxing the time

dependency. In other words, we replace the decision variables {(αikt,βikt) : i ∈ L, ∀k ∈ K, t =

1, ..., τ} with {(αik,βik) : i ∈ L, ∀k ∈ K} in problem (4.11)-(4.17). Then, we use these values

to compute our accept-reject policy.

Iterative Heuristic Method (IHM): This is the solution method described in Section

4.2.2. In particular, we solve the linear model (4.11)-(4.17) for each time period starting from

the last time period τ to obtain the optimal solution of (α,β). It is an iterative method since

we use the optimal values computed for time period t + 1 to obtain the optimal solution for

time period t.

Fare Allocation Heuristic (FAH): As described in Section 4.2.2, we use this heuristic

method to allocate fares of each product to the days traversed. Then, we compute the accept-

reject policy with these allocated fares.

Deterministic Linear Program (DLP): This is the solution method described in

Section 4.2.2. We solve the problem (4.18)-(4.21) to obtain the optimal values of the dual

variables associated to capacity constraints (4.19). We use these dual variables as the bid

prices for our accept-reject policy. To refine bid prices in our implementation, we solve the

problem (4.18)-(4.21) five times over the decision horizon. At each solution time, we replace

the right side of constraints (4.19) and (4.20) with the current remaining hotel daily capacities

and the updated expected demand.

Deterministic Fare Allocation (DFA): By using the deterministic model given in

(4.18)-(4.21), we can obtain a fare allocation policy. In order to do this, we decompose the

model (4.18)-(4.21) by days in the service period. We begin by defining a fictitious day δ with

infinite capacity and the set of days becomes L ∪ {δ}. To rewrite the model, we also define

xik as the number of the reservations that we plan to accept for product k on day i. We can
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rewrite the problem (4.18)-(4.21) as

maximize
∑

k∈K
fkxδk (4.31)

subject to
∑

k∈K
aikxik ≤ Ci ∀i ∈ L (4.32)

xik ≤
τ∑

t=1

pkt ∀i ∈ L, ∀k ∈ K (4.33)

xδk − xik = 0 ∀i ∈ L, ∀k ∈ K (4.34)

xik ≥ 0 ∀i ∈ L, ∀k ∈ K (4.35)

It is easy to see the equivalence between problems (4.18)-(4.21) and (4.31)-(4.35). Let {ᾱik :

i ∈ L, ∀k ∈ K} be the optimal values of the dual variables associated to constraints (4.34).

In the dual of problem (4.31)-(4.35), we have the constraint
∑

i∈Lk
ᾱik = fk associated with

the decision variable xδk. Therefore, we can use the dual variables ᾱik to obtain the fare

allocation. Then, we use these allocated fares to compute optimal policy of the dynamic

programming model as in fare allocation heuristic; see Topaloglu [85]. As in the DLP policy,

we refine bid prices five times during the decision horizon.

Our experimental design is based on various factors of the network size (n), the load

factor (ρ), the discount multiplier (κ), and the walk-in ratio (ω). We test our models in two

networks with the number of days n ∈ {3, 6}. We use load factor values ρ ∈ {1.2, 1.5} corre-

sponding to low and high loads. The discount factor κ ∈ {0.5, 0.7} are used to represent low

and high fares. The last parameter set comes from the demand ratio of walk-in commitments

ω ∈ {0.1, 0.2}. We label our test problems by using all combinations of these parameters.

As we mentioned in Section 4.2.1, these methods provide upper bounds on the maximum

total expected revenue obtained by the dynamic model in (4.1). For different test problems,

Table 4.1 compares the upper bounds obtained by these five solution methods. The first

three columns indicate the characteristics of the test instances. The next five columns give

the optimal objective values of the solution methods. The last four column gives the per-

centage gaps between LPF and the remaining solution methods. The results show that LPF

consistently provides the tightest upper bounds which confirms with Proposition 4.2.2 and

Corollary 4.2.1. Moreover, Kunnumkal and Topaloglu [53] show that the upper bound ob-

tained by LPF is tighter than the upper bound obtained by DLP. For all test instances, the
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upper bounds provided by ALP are significantly close to those provided by LPF. ALP uses

the time independent fare allocations and penalties and hence, it is computationally more ef-

ficient compared to LPF. These results indicate that we can use ALP instead of LPF for small

size networks. Iterative heuristic also provides tight upper bounds. For a majority of the test

problems, the percentage gap between LPF and IHM is below 1%. The quality of the upper

bound provided by IHM is mostly affected by the arrival intensity of walk-in customers. On

the other hand, the upper bound provided by FAH is very loose compared to other dynamic

policies. Recall that FAH computes the time and capacity depended load factors by assuming

that the remaining capacity on each day is the same. Therefore, the percentage gap increases

as the load factor and walk-in customer ratio increase.

Table 4.1: Upper bound percentage gaps on the maximum total expected revenue
(n = 3)

Instances % Gap with LPF
ρ κ ω ALP IHM FAH DLP

0.5
0.1 0.02% 0.58% 4.16% 3.51%

1.2
0.2 0.03% 0.78% 3.77% 3.65%

0.7
0.1 0.08% 0.44% 4.68% 3.89%
0.2 0.04% 0.60% 4.38% 4.06%

0.5
0.1 0.03% 0.24% 2.90% 3.83%

1.5
0.2 0.02% 2.04% 4.08% 3.30%

0.7
0.1 0.04% 0.49% 3.50% 4.12%
0.2 0.03% 0.78% 5.08% 3.59%

Our main computational results are summarized in Tables 4.2 and 4.3. In particular,

these two tables respectively show the results for the test problems with three and six days.

The organization of these tables is the same as that of Table 4.1. Table 4.2 compares perfor-

mances of different solutions where the revenue obtained by LPF is used as a base approach to

report the relative performances of the remaining approaches. The results indicate that LPF

outperforms all other solution methods. We also observe that the performances of LPF and

ALP can become significantly close. Therefore, we conjecture that relaxing time dependency

in the fare and penalty allocations provides a good approximation to the problem (4.11)-

(4.17). Moreover, it improves the solution time. Comparing the average percentage gaps, we

also observe that performances of ALP, IHM and DFA can become relatively close. They

compete for the second, third and fourth places. There are three test instances where IHM

performs significantly worse than DFA. These instances correspond to the cases where arrival
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intensity of walk-in customers is high. As we mentioned before, IHM decomposes the prob-

lem (4.11)-(4.17) into time periods and hence, it does not consider all possible combinations

of fare and penalty allocations. Therefore, later arrivals of walk-in customers deteriorates

the performance of IHM. On the other hand, DLP consistently provides the lowest expected

revenues.

Table 4.2: Percentage gaps relative to the expected revenue of LPF (n = 3)

Instances % Gap with LPF
ρ κ ω ALP IHM FAH DLP DFA

0.5
0.1 0.03% 0.70% 3.95% 4.59% 0.34%

1.2
0.2 0.33% 1.59% 3.33% 4.87% 0.40%

0.7
0.1 0.88% 0.58% 3.45% 5.47% 0.83%
0.2 0.32% 0.81% 2.96% 3.45% 1.19%

0.5
0.1 0.80% 0.33% 4.70% 5.56% 0.37%

1.5
0.2 0.08% 2.24% 3.58% 4.46% 0.59%

0.7
0.1 0.43% 3.13% 4.91% 7.10% 1.07%
0.2 0.38% 1.56% 4.05% 4.63% 1.60%

Table 4.3 show the performances of the different solution methods for the test problems

with 6 days. To observe sufficient amount of customer arrival, we increase the number of time

periods to 300. Due to the long computational time, we do not test the performances of LPF

and ALP for these test instances. Moreover, to make a fair comparison, fare allocations and

bid prices used in DFA and DLP are refined two times during simulation. In this table, we

use IHM as a reference when comparing the expected revenues. Comparing the percentage

gaps under this setup, we observe that the performances of IHM and DFA are very close,

especially for low walk-in ratio. DFA determines the fare allocations at the beginning of the

reservation period and updates them only at specific time periods. Therefore, it may fail to

capture the actual dynamics of the system. Comparing the percentage gaps for FAH in Table

4.2 with those in Table 4.3, we note that its performance deteriorates as the network size

increases. We caution the reader to the percentage gaps of FAH and DLP. For low values of

load factor and walk-in customer ratio, DLP performs better than FAH. Therefore, heuristic

fare allocation performs poor in large scale networks although its computational time is very

efficient.

We conclude this section by reporting average computation times obtained with different

strategies. DLP and FAH require on average less than 1.00 seconds. It takes on average 2.50

and 3.40 seconds to solve DFA and IHM, respectively. Hence, iterative heuristic is comparable
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Table 4.3: Percentage gaps relative to the expected revenue of IHM (n = 6)

Instances % Gap with IHM
ρ κ ω FAH DLP DFA

0.5
0.1 5.58% 4.19% -0.03%

1.2
0.2 5.93% 23.46% 1.70%

0.7
0.1 5.13% 3.42% -0.42%
0.2 7.69% 22.20% 2.68%

0.5
0.1 6.69% 22.61% -0.21%

1.5
0.2 7.99% 10.98% 1.97%

0.7
0.1 6.40% 22.01% -1.00%
0.2 10.64% 11.25% 3.82%

to the widely-applied deterministic models in terms of computational efficiency. The most

computational effort is invested in LPF and ALP, which take on average 1,287 and 385 seconds,

respectively. We want to point out an important property of LPF method. As we mentioned

before, problem (4.11)-(4.17) has a block angular structure and it can be solved by Dantzig-

Wolfe decomposition. Each block corresponds to independent single-days. Due to the problem

structure, we can make use of parallel computing. Therefore, it is possible to improve the

CPU times belonging to LPF and ALP.

4.3.2 Computational Results for CICO Pair-Based Decomposition

In this part of the computational study, we test the performances of the models in the presence

of stay-over customers. We use four benchmark strategies.

Stay-Over Decomposition (SOD): This is the solution method that we present in Sec-

tion 4.2.4. We solve the model (4.24)-(4.27) by relaxing the integrality constraints. To obtain

an integer feasible solution, we can simply round down the noninteger capacity allocations.

By using these allocations, we compute our dynamic policy.

Stay-Over Bid Price (SBP): We can also use model (4.24)-(4.27) to compute bid prices

associated to capacity of each day. The summation of the dual variables corresponding to

capacity constraints of the days traversed by the product is used as the bid-price for reservation

policy.
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Deterministic Stay-Over Model (DSM): Deterministic linear programming is a

well-known solution method used to compute optimal capacity policy for the hotel revenue

management problem. We extend this model to include stay-over customer requests. Let xjs

be the number of reservations that we plan to accept for product j in pair s. Similarly, let ws

be the number of reservations that we plan to accept for stay-over request of pair s. Then,

the deterministic linear program has the following form:

maximize
∑

s∈S

∑

j∈Js

rjsxjs +
∑

s∈S
θsws

subject to
∑

s∈S

∑

j∈Js

aisxjs + âisws ≤ Ci, ∀i ∈ L

xjs ≤
τ∑

t=1

psjt ∀s ∈ S, j ∈ Js,

ws −
∑

j∈Js

πsxjs ≤ 0, ∀s ∈ S,

xjs, ws ≥ 0 ∀s ∈ S, j ∈ Js,

We use bid prices associated to capacity constraints to compute our accept-reject policy.

Check-in Check-out Pair Decomposition (CICO): This is the solution method

given in Section 4.2.3. We solve the model (4.23) to obtain an allocation policy for advance

bookings and walk-in customers. This model ignores the stay-over customer requests by

simply rejecting them.

Our experimental design is based on various factors of the load factor (ρ), the discount

multiplier (κ), the stay-over probability (πs), and the walk-in ratio (ω). We use load factor

values ρ ∈ {1.2, 1.5} corresponding to low and high loads. The discount factor κ ∈ {0.5, 0.7}

are used to represent low and high fares. We give two sets of stay-over probability, {πL,πH},

to represent possibly low and high stay-over probability. While πL ranges between 0.05 and

0.20, πH is in (0.15,0.30). We also test the models for varying walk-in ratio ω ∈ {0.1, 0.2}

In the following computational experiments, we set the network size to n = 3. We label

our test problems by using all combinations of these parameters. Under this setup, we have

evaluated the reservation policies of all solution methods. To update the bid prices in our

implementation, we reoptimize the bid price policies two times over the decision horizon.
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Our main results are summarized in Table 4.4. Comparing the percentage gaps, we

observe that SBP consistently provides the highest total expected revenues, whereas CICO

consistently provides the lowest total expected revenues. We also observe that there is a

noticeable performance gap between SBP and SOD. Although SOD has a dynamic policy, it

uses fixed capacity allocations which are determined at the beginning of the decision period.

Therefore, it is partially static which affects its performance, especially when the load factor is

high. As depicted in Table 4.4, even there are instances when total expected revenue obtained

by SOD lags behind that of DLP. Birbil et al. [29] points out that the pair-based models using

predetermined allocations perform poor as the network becomes large and congested.

When we look into performances of SBP and DLP, we observe that the percentage

differences are mostly affected by the load factor and the stay-over probability. Although

both of the approaches use static bid prices for accept-reject decisions, DLP performs poor

due to disregarding randomness in the arrival process. There are test problems where the

gap between total expected revenues obtained by SBP and DLP is as high as 8.51%. When

we compare the performances of CICO and SOD, we see that taking into account the stay-

over requests brings a significant advantage. As demonstrated in Table 4.4, there exists test

instances which provide evidence to the earlier conjecture. For example in one test instance,

the gap between SBP and CICO is 13.19% whereas the gap between SBP and SOD is 2.62%.
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Table 4.4: Percentage gaps relative to the expected revenue of SBP (n = 3)

Instances % Gap with SBP
ρ π• κ ω SOD DLP CICO

0.5 0.1 2.62% 4.85% 13.19%

πs
H

0.5 0.2 4.12% 4.86% 11.52%
0.7 0.1 1.18% 3.50% 8.97%

1.2
0.7 0.2 4.18% 3.98% 9.53%
0.5 0.1 2.42% 3.97% 8.10%

πs
L

0.5 0.2 4.32% 4.71% 8.26%
0.7 0.1 1.38% 2.83% 5.53%
0.7 0.2 3.74% 4.09% 6.50%
0.5 0.1 4.94% 8.51% 11.97%

πs
H

0.5 0.2 1.66% 3.41% 7.76%
0.7 0.1 3.33% 4.72% 9.70%

1.5
0.7 0.2 3.78% 4.01% 8.23%
0.5 0.1 3.94% 6.87% 8.35%

πs
L

0.5 0.2 1.36% 3.07% 4.23%
0.7 0.1 3.27% 4.06% 6.52%
0.7 0.2 3.62% 3.54% 5.66%
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Chapter 5

CONCLUSION

In this thesis, we present three different capacity allocation policies which arise from emerging

applications in revenue management. We address the gaps in the literature and try to develop

practical solution methods. In all cases, the structures of the problem create a challenge for

analysis and implementation. Therefore, we concentrate on the approximation methods. Each

chapter in this thesis presents a different capacity allocation problem in revenue management.

While in Chapters 2 and 3 we study the single-leg revenue management problem, in Chapter

4 we discuss the network revenue management applications. To justify the benefits of our

proposed models, we conduct a computational study for each problem.

The first problem is the joint capacity allocation and overbooking problem for the single-

leg airline revenue management in Chapter 2. We develop new optimization models for static

and dynamic problems that involve no-shows, cancellations, and hence, overbooking. In the

static case, we discuss two risk-based models both of which allow class-dependent cancellations

and no-shows. Our first static model determines the optimal total booking limit under the

greedy policy. Finding the optimal total booking limit under such a general setting is useful

in practice, since the overbooking limit can be used as an input to some well-known capacity

allocation methods like the EMSR heuristics. In the second static model, we determine both

the total booking limit and the partitioned booking limits. Arriving at a computationally

difficult model, we develop upper and lower bounding problems to obtain approximate solu-

tions. As preferred in practice, we propose to use the partitioned booking limits obtained by

our upper and lower bounding models in a nested way. Thus, the resulting method becomes

a heuristic one which does not require a predefined overbooking limit like the EMSR heuris-

tics. In the dynamic case, we propose a model based on two independent streams of events;
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arrivals of booking requests and cancellations. Our modeling approach allows the number

of cancellations in any time period, given the number of accepted requests at the beginning

of that time period is a binomially distributed random variable. We show that it is easy to

solve the resulting problem with dynamic programming. Following the characterization of the

optimal policy, we also present the nested structure of the optimal allocations. We conduct

a computational study to compare the performances of the booking policies obtained by our

proposed models against those of the some well-known EMSR-based approaches used in the

literature. The numerical results demonstrate that the proposed upper bounding model out-

performs the EMSR-based heuristics for the generated test problem instances and performs

reasonably well compared to the DP model. We also observe that the policies proposed by

our upper bounding model are robust even if we switch from low to high show-up probabili-

ties or increase the overbooking cost. On the other hand, the performance of proposed lower

bounding model deviates depending on the number of fare classes and the load factor. We

also derived bounds on the error introduced by solving the upper bounding problem instead

of solving the corresponding original static model. Computational experiments demonstrate

that the error bounds are tighter when the load-factor is higher.

In Chapter 3, we introduce the concept of commitment option with single-leg revenue

management problem to the literature. By offering commitment option, airline companies

aim to attract price sensitive customers in addition to the customers who have uncertainty in

travel time. We analyze the consequences of selling this option along with standard bookings

of the products. We derive dynamic and static models for the capacity allocation problem. In

the dynamic case, finding the optimal policy for the actual problem require solving a dynamic

program with a high-dimensional state vector. Hence, we propose an approximate dynamic

programming formulation. In the deterministic case, we present a linear programming model

leading to an upper bound on the optimal objective value of the actual problem. We analyze

structural properties of deterministic model, and show that the upper bound derived from

this model is asymptotically tight.

We conduct a computational study to evaluate the impact of offering these options.

To assess the effect of commitment decisions, we compare the performance of our model

against different policies. Our numerical results confirm the intuitive expectation that offering

commitment option is most beneficial when the purchase probability of the committed seat

is high and the length of commitment period is short. Furthermore, considering a policy that
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ignores the contingent option altogether, explicitly modeling the commitment option can bring

significant revenue improvements even when customer arrival intensity for this option is low.

Also, making the contingent commitment option available up to only a certain time period

can be more profitable than making it available during the whole sales horizon, especially

when purchase probability of contingent commitment option is low. As the length of the

commitment period increases, limiting the availability of the commitment option may be more

beneficial to reap the most benefit from this option. Moreover, in our computational study

we also evaluate the performance of our approximate dynamic model. When we compare our

proposed model with the actual dynamic model, we see that there is no significant difference

between their performances for the short commitment period length. This proves that our

approximation performs very well.

In Chapter 4, we study the room allocation problem with walk-in and stay-over cus-

tomers in a hotel network. Although room allocation problem in hotel revenue management

resembles to airline capacity allocation problem, there are two important differences. First,

demand structure in hotel RM is different. Customers can change the length of their reser-

vation after their arrival or they can show-up without any reservation. Second, long-term

stay is very common in hotel systems. Therefore, it is not a good practice to directly apply

the models developed for airline problems to hotel context. In this thesis, we work on the

dynamic room allocation problem. Due to the complexity of this problem, we concentrate

on approximation methods. We analyze structural properties of the problem and present

day-based and pair-based decomposition approaches which can handle walk-in and stay-over

customers. In the first part of Chapter 4, we utilize the decomposition idea of Kunnumkal

and Topaloglu [53] and study its linear programming formulation for the day-based decompo-

sition model. We also work on the alternative solution approaches which are computationally

efficient to solve. Since day-based decomposition generates independent subproblems for each

day, it cannot store the number of reserved rooms for each product. Hence, incorporating

stay-over customers becomes a challenge. In the second part, we work on stay-over extension

and propose a pair-based decomposition model. By analyzing the structural properties of

the model, we develop a solution method. The objective is to construct a two dimensional

piecewise linear concave function. In our numerical results, we observe that our proposed

model performs better than the deterministic model which is widely used in practice.
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Our experience with several revenue management applications gave us a thorough un-

derstanding about the opportunities and the limitations of the models proposed in this thesis.

There are multitude of research direction that we may follow in the future.

Dynamic programming model of joint capacity allocation and overbooking problem in-

troduced in Chapter 2 ignores the fare class dependency and assumes that customers in each

fare class can cancel with the same probability. In addition, no-show probability of each cus-

tomer is also class independent. These assumptions can be relaxed for a more realistic model.

Nonetheless, the resulting problem would be difficult to solve due to the high dimensional state

space. A potential future research direction would be to develop a decomposition approach

which would reduce the original dynamic programming formulation into several independent

dynamic programming formulations each having a one dimensional state space. In Chapter 4,

we present two decomposition approaches which can be used to approximate class dependent

dynamic model.

Another potential future research direction might be the extension of proposed over-

booking models in the network environment. As we discussed in Chapter 4, network based

capacity allocation problems are quite difficult to solve, and hence, in practice, the methods

that require solving a series of single-leg problems are frequently applied. However, directly

using our proposed models in decomposed network problem may result in high denied board-

ing cost. In network extension, assignment of overbooking capacity may need to be performed

by considering shared flight capacities in the airline network.

The model we propose in Chapter 3 introduces the contingent commitment problem

to the revenue management literature. This option is designed to attract customers who are

uncertain about their travel time and who are price sensitive. In our modeling approach,

we assumed that customers do not anticipate future price movements. An interesting exten-

sion would be to investigate the effect of commitment option when the customers are price

sensitive. Moreover, we assume that commitment fee is fixed during the reservation period.

Explicitly considering the dynamic pricing of commitment fee would be desirable. Another

future direction of this work would be to include the overbooking option. Since contingent

commitment reservations may leave, the revenue loss due to the resulting empty seats can be

filled by overbooking the flight. In this case, the overbooking limit should be determined by

considering the cancellation possibility of contingent commitments.
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In Chapter 4, we work on the hotel revenue management problem in case of walk-in and

stay-over customer requests. To the best of our knowledge, dynamic programming model of

stay-over customers have not been proposed in the literature before. This problem is difficult

to solve due to the high dimensional state space. In this study, we assume that customers

can request for at most one day extension on their reservations. Although, the stay-over

probability of staying more than one day is low, relaxation of this assumption would result in a

more realistic model. Moreover, hotel customers have the flexibility to leave at any time during

their stay. These customers are known as early departures in hotel revenue management

literature. Incorporation of early departure request in the check-in and check-out pair-based

decomposition method would be another potential topic for future research. We can consider

early departure requests like the cancellations in airline revenue management. In Chapter 2,

we present several static and dynamic models for cancellations and no-shows. These models

can be used to incorporate early departures in pair-based decomposition methods.

Another future research direction would be investigating the error incurred by our fast

heuristic approach. This approach divides the overall problem into smaller subproblems and

each subproblem corresponds to a different time period in the planning horizon. In our

computational experiments, we observe that this method provides a good approximation and

it is computationally efficient. To improve the performance of this solution method, we can

decompose it into a smaller set of subproblems. In other words, instead of solving the overall

problem at each time period in the planning horizon, we can divide the problem into block of

time periods and find the optimal solution for each block. It would be interesting to investigate

the dependency between the size of the subproblems and the incurred error.
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