
I

LOW POWER MOTION ESTIMATION HARDWARE DESIGNS

by

ONUR CAN ULUSEL

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190018324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

LOW POWER MOTION ESTIMATION HARDWARE DESIGNS

APPROVED BY:

Assist. Prof. Dr. İlker Hamzaoğlu ………………………….

(Thesis Supervisor)

Assist. Prof. Dr. Ayhan Bozkurt ………………………….

Assoc. Prof. Dr. Erkay Savaş ………………………….

Assist. Prof. Dr. Müjdat Çetin ………………………….

Dr. Mustafa Parlak ………………………….

DATE OF APPROVAL: ………………………….

III

© Onur Can Ulusel 2010

All Rights Reserved

IV

LOW POWER MOTION ESTIMATION HARDWARE DESIGNS

Onur Can Ulusel

EE, Master Thesis, 2010

Thesis Supervisor: Assist. Prof. Dr. İlker Hamzaoğlu

ABSTRACT

Motion Estimation (ME) is the most computationally intensive and most power

consuming part of video compression and video enhancement systems. ME is used in video

compression standards such as H.264/MPEG-4 and it is used in video enhancement

algorithms such as frame rate conversion and de-interlacing. Half pixel (HP) ME increases the

video coding efficiency at the expense of increased computational complexity. Therefore, in

this thesis, we designed and implemented efficient integer pixel (IP) ME hardware

implementing full search ME algorithm, and we proposed techniques for reducing the

dynamic power consumptions of IP and HP ME hardware. The proposed ME hardware

architectures are implemented in Verilog HDL and mapped to Xilinx FPGAs. The FPGA

implementations are verified with post place & route simulations.

We proposed comparison prediction (CP) technique for reducing the power

consumption of IP block matching (BM) ME hardware. CP technique reduces the power

consumption of absolute difference operations performed by IP BM ME hardware. The

proposed technique can easily be used in all IP BM ME hardware. It reduced the power

consumption of a fixed block size IP BM ME hardware implementing full search algorithm

by 9.3% with 0.04% PSNR loss on a Xilinx XC2VP30-7 FPGA.

We also proposed two techniques for reducing the power consumption of H.264 HP

ME hardware. The first technique is vector dependent sum of absolute difference (SAD) reuse

which reduces the amount of computations for variable block size H.264 HP ME with no

PSNR loss. The second technique is a novel modification of the HP search algorithm which

adaptively tries to use the IP motion vector trajectories to reduce HP search to 1-D. This

technique causes an average PSNR loss of 0.36 dB. The two techniques reduced the power

consumption of a variable block size H.264 HP ME hardware by 6% and 31% on a Xilinx

Virtex 6 FPGA respectively.

V

DÜŞÜK GÜÇ KULLANIMLI HAREKET TAHMİNİ DONANIMLARI

Onur Can Ulusel

EE, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Yard. Doç. Dr. İlker Hamzaoğlu

ÖZET

Hareket Tahmini (HT) video sıkıştırma ve video iyileştirme sistemlerinin en çok işlem

yapılan ve en çok güç harcayan kısmıdır. HT, H.264/MPEG-4 gibi video sıkıştırma

standartlarında ve çerçeve hızı dönüştürme gibi video iyileştirme uygulamalarında kullanılır.

Yarım piksel hassaslığında (YPH) HT video kodlama verimini arttırmakla birlikte yapılan

işlem miktarını da arttırır. Bu nedenle bu tezde, tam arama HT algoritmasını kullanan verimli

tam sayı hassaslığında (TSH) HT donanımları tasarladık ve gerçekleştirdik. Ayrıca TSH ve

YPH HT donanımları için güç azaltma teknikleri önerdik. Önerilen HT donanımları Verilog

HDL dili kullanılarak gerçekleştirildiler ve Xilinx FPGA‟lerine yerleştirildiler.

Blok eşleştirme (BE) HT donanımlarının güç kullanımını azaltmak için karşılaştırma

öngörüsü (KÖ) tekniğini önerdik. KÖ tekniği BE HT donanımlarında yapılan mutlak fark

işleminin güç kullanımını azaltır. KÖ tekniği tüm BE HT donanımlarına kolayca

uygulanabilir. Bu tezde ise sabit blok boyutlu 256 işlem birimli BE HT donanımına

uygulandı.

Ayrıca, H.264 YPH HT için iki güç azaltma tekniği önerdik. Bu tekniklerin bir YPH

HT donanımının güç kullanımını olan etkilerini gösterdik. Birinci teknik hareket vektörlerine

bağlı olarak mutlak farklar toplamlarının (MFT) yeniden kullanımı tekniğidir. Bu teknik

değişken blok boyutlu HT için yapılan işlem miktarını PSNR kaybı olmadan azaltmaktadır.

İkinci teknik YPH HT algoritmasında yapılan özgün bir değişikliktir. Bu teknik tam sayı

hareket vektörlerinin uzantılarını kullanarak YP arama penceresini uyarlanır bir şekilde tek

boyuta indirmektedir. Bu teknik değişken blok boyutlu HT için yapılan işlem miktarını az bir

PSNR kaybı ile azaltmaktadır.

VI

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor Dr. İlker Hamzaoğlu for his

invaluable guidance and support throughout my study. I appreciate very much for his

suggestions, detailed reviews and invaluable advices. He has been a great mentor to me and I

feel privileged to be his student.

I am sincerely grateful to my thesis committee members, Dr. Ayhan Bozkurt, Dr. Erkay

Savaş, Dr. Müjdat Çetin, and Dr. Mustafa Parlak, for their invaluable feedback.

I would like to thank to all members of System-on-Chip Design and Testing Lab,

Aydın Aysu, Abdülkadir Akın, Yusuf Adıbelli, Çağlar Kalaycıoğlu, Zafer Özcan, Mert Çetin,

and Murat Can Kıral who have been greatly supportive during my study.

I would also like to express my deepest gratitude for my beloved family who always

believed in me, and always tried their best to make things easier for me.

Finally I would like to acknowledge Sabancı University and TÜBİTAK for

supporting me throughout my graduate education.

VII

TABLE OF CONTENTS

 ABSTRACT…………………………………………………..………………………IV

 ÖZET…………………………………………………………………………………..V

 ACKNOWLEDGEMENTS…………………………………………………….…….VI

 TABLE OF CONTENTS…………………………………………………………....VII

 LIST OF FIGURES……………………………………………………………..……IX

 LIST OF TABLES…...X

 ABBREVIATIONS…..XI

1 INTRODUCTION……………………………………….……………………………..1

1.1 Thesis Contributions …………………………………………………………………. 4

2 FULL SEARCH MOTION ESTIMATION HARDWARE DESIGNS ……………….6

2.1 Motion Estimation Hardware with 256 Processing Elements ………………………... 6

2.1 Motion Estimation Hardware with 64 Processing Elements ………………………... 10

3 POWER REDUCTION TECHNIQUE FOR INTEGER PIXEL MOTION

ESTIMATION HARDWARE……………….……………….……………………………....14

3.1 Absolute Difference Hardware ………………………………………........................ 14

3.2 Comparison Prediction Technique ………………………………………………….. 16

3.3 Implementation Results ……………………………………………………………... 18

4 POWER REDUCTION TECHNIQUES FOR H.264 HALF-PIXEL MOTION

ESTIMATION HARDWARE………………………………………………………………..23

4.1 Half-Pixel Motion Estimation Algorithm and Hardware……………………………..23

VIII

4.2 Vector Dependent SAD Reuse Technique……………………………………………26

4.3 Integer-Pixel Motion Vector Trajectory Based Adaptive Half-Pixel Motion Estimation

Algorithm …………………………………………………………….....................................28

4.4 Implementation Results……………………………………………………………….33

5 CONCLUSIONS AND FUTURE WORK…...35

6 REFERENCES………………………………………………………………………..36

IX

LIST OF FIGURES

Figure 1.1 Motion Estimation………………………………………………………………….2

Figure 2.1 256 PE VBS ME Hardware Architecture ………………………………………….6

Figure 2.2 PE Architecture ………………………...…………………………………………..7

Figure 2.3 (a) Vertical Search Flow (b) Zigzag Search Flow …………………………………8

Figure 2.4 64 PE VBS ME Hardware Architecture ………...………………………………..11

Figure 3.1 Standard Absolute Difference Hardware …………………………………………15

Figure 3.2 (a) Reset based Absolute Difference Prediction Hardware (b) Enable based

Absolute Difference Prediction Hardware ……………………………………….…………..16

Figure 3.3 Checkerboard Pattern for Standard (S) and Predicted (P) Absolute Difference

Hardware ……………………………………………………………………………………..18

Figure 3.4 Rate Distortion Curves for a) Mother & Daughter and b) Mobile Video Sequences

………………………………………………………………………………………………...20

Figure 4.1 Half Pixel Search Locations ……….…………………………………..…………23

Figure 4.2 Half Pixel Interpolation …..24

Figure 4.3 Variable Block Size Modes ……………………………………………………....25

Figure 4.4 Half Pixel Interpolation Hardware for 4x4, 4x8 and 8x4 Sub Blocks……………26

Figure 4.5 Half Pixel Interpolation for 4x4 Sub Blocks ……………………………………..29

Figure 4.6 Half Pixel Search Locations for Each Integer Pixel …...30

Figure 4.7 Vector Trajectory Estimations for (a) Zero, (b) Twice Bigger Than, and (c) Bigger

Than Criteria ………………….……………...………………………………………………31

X

LIST OF TABLES

Table 2.1 Dataflow of 256 PE VBS ME Hardware …………………………………….…... 8

Table 2.2 The FPGA Resource Usage and the Maximum Clock Frequency of 256 PE VBS

ME Hardware…….…………………………………………………………………………...10

Table 2.3 Data Flow of 1st PE Column in 64 PE VBS ME Hardware …..…………………..12

Table 2.4 The FPGA Resource Usage and the Maximum Clock Frequency of 64 PE VBS ME

Hardware ……………………………………………………………………………………..13

Table 3.1 Average PSNR and Bit Rate for Several Video Sequences ……………………….19

Table 3.2 Comparison of Motion Estimation Hardware Architectures ……………………...22

Table 4.1 Average Computation Reduction Obtained from a Foreman CIF (352x288) Video

Sequence Using Vector Dependant SAD Reuse Technique …………………………………27

Table 4.2 Comparison of Estimation Methods (Percentage of 1-D Search and the Resulting

PSNR) ………………...…………………………………………………………………….. 32

Table 4.3 Area and Power Comparison of Proposed Vector Dependent SAD Reuse (VDSR)

and Vector Trajectory Based Search (VTBS) Techniques .………………………………….34

XI

ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BM Block Matching

BRAM Block Random Access Memory

BRF Best Reference Frame

CAVLC Context Adaptive Variable Length Coding

CIF Common Intermediate Format

CP Comparison Prediction

DVD Digital Versatile Disc

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FS Full Search

FSM Finite State Machine

HDL Hardware Description Language

HDTV High Definition Television

HP Half-Pixel

IP Integer-Pixel

ISO/IEC International Standards Organization, International Electrotechnical

Commission

ITU-T International Telecommunications Union, Telecommunications

Standardization Sector

JVT Joint Video Team

LUT Look-up Table

MB Macroblock

ME Motion Estimation

MPEG Motion Picture Experts Group

MV Motion Vector

NAL Network Abstraction Layer

XII

PE Processing Element

PSNR Peak Signal Noise Ratio

PVT Process Voltage Temperature

QP Quantization Parameter

R-D Rate-Distortion

RTL Register Transfer Level

SAD Sum of Absolute Differences

VBS Variable Block Size

VCD Value Change Dump

VGA Video Graphics Array

1

CHAPTER I

INTRODUCTION

Motion Estimation (ME) is the most computationally intensive part of video

compression and video enhancement systems. ME is used to reduce the bit-rate in video

compression systems by exploiting the temporal redundancy between successive frames, and

it is used to enhance the quality of displayed images in video enhancement systems by

extracting the true motion information. ME is used in video compression standards such as

MPEG4 and H.264 [1], and in video enhancement algorithms such as frame rate

conversion [2, 3].

Block Matching (BM) is the most preferred method for ME. BM ME partitions current

frame into non-overlapping NxN rectangular blocks, and it tries to find the block from the

reference frame in a given search window that best matches the current block in the current

frame. Sum of Absolute Differences (SAD) is the most preferred block matching criterion. As

shown in Figure 1.1, the location of a block in a frame is given using the (x,y) coordinates of

top-left corner of this block. The search window in the reference frame is the [-p, p] size

region around the location of the current block in the current frame. The SAD value for a

current block in the current frame and a candidate block in the reference frame is calculated

by adding the absolute differences of corresponding pixels in the two blocks as shown in the

formula (1.1). In this formula, Bmxn

is a block of size mxn, d=(dx, dy) is the motion vector, c

and r are current and reference frames respectively. Since a motion vector expresses the

relative motion of the current block in the reference frame, motion vectors are specified in

relative coordinates. If the location of the best matching block in the reference frame is (x+u,

y+v), then the motion vector is expressed as (u,v).

 (1.1)

2

Figure 1.1 Motion Estimation [1]

ME is performed on the luminance (Y) component of a YUV image and the resulting

motion vectors are also used for the chrominance (U and V) components. Full Search (FS)

ME algorithm finds the reference block that best matches the current block by computing the

SAD values for all search locations in a given search range. Therefore, FS algorithm achieves

the best performance among BM ME algorithms, but its computational complexity is high.

In fixed block size (FBS) ME, only the motion vectors for 16x16 MBs are computed.

In order to improve the ME performance, variable block size (VBS) ME is used in the H.264

standard. But, the computational complexity of FS algorithm for VBS ME is even higher [4,

5]. In VBS ME, each 16x16 MB can be divided into sub-blocks in four different ways; 16x16,

16x8, 8x16 or 8x8. Each 8x8 sub-block can be further divided into 8x8, 8x4, 4x8 or 4x4 sub-

blocks. Each 8x8 sub-block can be divided into different size sub-blocks.

3

Several fast search ME algorithms, such as New Three Step Search [6], Diamond

Search [7], Hexagon-Based Search [8], and Adaptive Dual Cross Search [9], are proposed to

reduce the computational complexity of FS algorithm. These algorithms try to approach the

PSNR of FS algorithm by computing the SAD values for fewer search locations in a given

search range. Several hardware architectures for fast search ME algorithms are proposed in

the literature [10, 11].

Although many fast search ME algorithms are developed, FS algorithm has remained

a popular candidate for hardware implementation because of its regular dataflow and good

compression performance [12, 13].

In order to further improve the performance of integer pixel (IP) ME, half-pixel (HP)

accurate VBS ME is performed [14, 15]. However, the amount of computation required by

HP VBS ME is even more than the amount required by IP VBS ME. Therefore, this coding

gain comes with an increase in encoding complexity and hence with an increase in the power

consumption of HP VBS ME hardware. Several techniques for reducing the amount of

computation by HP ME are proposed in the literature [16 - 21]. Some of these papers present

efficient HP ME hardware implementations with efficient memory usage [16, 17]. An

interpolation-free HP ME is proposed in [18]. Fast HP ME algorithms using reduced number

of HP search locations are proposed in [19 - 21].

Multimedia applications running on portable devices increased recently and this trend

is expected to continue in the future. Since portable devices operate on battery, it is important

to reduce power consumption so that battery life can be increased. Therefore, power

consumption has become a critical design metric for portable applications.

Due to low non-recurring engineering (NRE) costs, Field Programmable Gate Arrays

(FPGAs) are ideal solutions for low-to-mid volume designs [22]. However, FPGAs consume

more power than standard cell-based Application Specific Integrated Circuits (ASIC). FPGAs

have look-up tables and programmable switches. Look-up table based logic implementation is

inefficient in terms of power consumption, and programmable switches have high power

consumption because of large output capacitances. Therefore, power consumption is an even

more important design metric for FPGA implementations, and designers should consider the

4

impact of their design decisions not only on speed and area, but also on power consumption

throughout the entire design process [23].

1.1 Thesis Contributions

In this thesis, we propose two VBS ME hardware architectures which use 256

Processing Elements (PE) and 64 PEs respectively. The proposed VBS ME hardware

architectures perform FS ME. 64 PE ME hardware has lower area than 256 PE ME hardware.

However, 256 PE ME hardware is faster than the 64 PE ME hardware.

In addition, we propose a comparison prediction (CP) technique for reducing the

power consumption of BM ME hardware by reducing the power consumption of absolute

difference (AD) operations. CP technique replaces the 8-bit comparator in AD hardware with

a D Flip-Flop (DFF) and 1-bit inverter. CP technique can easily be used in all BM ME

hardware. In this thesis, it is applied to FBS version of the proposed 256 PE VBS ME

hardware. We quantified the impact of the proposed power reduction technique on the power

consumption and Peak Signal-to-Noise Ratio (PSNR) obtained by this ME hardware. It

reduced the average dynamic power consumption of this ME hardware by 6.1% with 0.01%

PSNR loss and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA.

Finally, we propose two power reduction techniques for H.264 HP ME hardware and

show their impact on the power consumption of a VBS HP ME hardware. Both techniques

can be easily integrated to any HP ME hardware. The first technique is vector dependent SAD

reuse. It reduces the amount of computations for VBS HP ME with no PSNR loss by taking

advantage of sub-blocks with equal motion vectors (MV) to calculate the SADs of larger sub-

blocks using the SADs of smaller sub-blocks. The second technique is a novel modification of

the HP search algorithm which adaptively tries to use the IP MV trajectories to reduce HP

search to 1-D. This technique causes an average PSNR loss of 0.36 dB. We integrated both

techniques to the H.264 VBS HP ME hardware proposed in [24]. The two techniques reduced

the power consumption of this VBS HP ME hardware by 6% and 31% on a Xilinx Virtex 6

FPGA respectively.

5

The rest of the thesis is organized as follows;

Chapter II presents 256 PE ME Hardware and 64 PE ME Hardware.

Chapter III explains the proposed comparison prediction technique for reducing the

power consumption of BM ME hardware, and presents its impact on the power consumption

of the proposed 256 PE ME hardware.

Chapter IV explains two power reduction techniques for H.264 HP ME hardware,

and presents their impact on the power consumption of a VBS HP ME hardware.

Chapter V presents the conclusions and possible directions for future work.

6

CHAPTER II

FULL SEARCH MOTION ESTIMATION HARDWARE DESIGNS

2.1 Motion Estimation Hardware with 256 Processing Elements

The block diagram of the proposed ME hardware architecture for implementing VBS

FS ME algorithm using 256 PEs is shown in Figure 2.1. FBS version of this ME hardware

architecture is also implemented. In the proposed architecture, a 2-D systolic PE array is used

and all the PEs are capable of shifting data down, up and left. Each circle in the figure

represents a PE. This ME hardware finds the MVs of an MB in a search range of [-16, 15]

pixels.

Figure 2.1 256 PE VBS ME Hardware Architecture

7

The architecture of a PE is shown in Figure 2.2. Each PE calculates the absolute

difference between a pixel in the current MB and a pixel in the search window. The SAD of a

search location is calculated by adding the absolute differences calculated by PEs using an

adder tree. This ME hardware is highly pipelined and its latency is eight clock cycles; one

cycle for synchronous read from BRAM, one cycle for horizontal shifting, one cycle for SAD

computation in 2-D systolic PE array, two cycles for the adder tree generating 4x4 SADs and

three cycles for the adder tree generating 41 MVs for 7 different block sizes.

The proposed 256 PE VBS ME hardware searches the search locations in a search

window column by column in a zigzag pattern. Most of the proposed ME hardware

architectures using 256 PEs use a vertical search flow and when the end of a column is

reached the search location at the top of the next column is searched as shown in Figure 2.3

(a). Therefore, it is required to either broadcast multiple pixels into the PEs [25] or delay all

the PEs until they are filled. There are 256 PE ME hardware architectures using a 2-D systolic

PE array and searching the search window in a zigzag pattern as shown in Figure 2.3 (b) [26].

However, these architectures either use both row and column aligned memories or use data

duplication. The proposed ME hardware architecture overcomes this problem by using a

pipeline of 16 8-bit temporary registers.

Figure 2.2 PE Architecture

8

In the proposed 256 PE VBS ME hardware, the search starts at top left search location

of the search window and proceeds down until the last search location of this column is

searched. Then, the search continuous with the last search location of the next column and

proceeds up until the first search location of this column is searched. Only 16 new search

window pixels are required by the PE array in each cycle to calculate the SAD of the next

search location regardless of its position in the search window.

Table 2.1 Dataflow of 256 PE VBS ME Hardware

Clock
1st Column

…
16th Column Temp Column

PE(0,15) PE(0,14) … PE(0,0) PE(15,15) PE(15,14) … PE(15,0) Reg15 Reg14 … Reg0

0 S(0,0) nop

…

nop

…

S(15,0) nop

…

nop S(16,0) nop

…

nop

1 S(0,1) S(0,0) nop S(15,1) S(15,0) nop S(16,1) S(16,0) nop

… … … … … … … … … …

15 S(0,15) S(0,14) S(0,0) S(15,15) S(15,14) S(15,0) S(16,15) S(16,14) S(16,0)

16 S(0,16) S(0,15)

…

S(0,1)

…

S(15,16) S(15,15)

…

S(15,1) S(16,16) S(16,15)

…

S(16,1)

17 S(0,17) S(0,16) S(0,2) S(15,17) S(15,16) S(15,2) S(16,17) S(16,16) S(16,2)

… … … … … … … … … …

46 S(0,46) S(0,45) S(0,31) S(15,46) S(15,45) S(15,31) S(16,46) S(16,45) S(16,31)

47 S(1,46) S(1,45)

…

S(1,31)

…

S(16,46) S(16,45)

…

S(16,31) nop nop

…

nop

48 S(1,45) S(1,44) S(1,30) S(16,45) S(16,44) S(16,30) nop nop S(17,30)

… … … … … … … … … …

78 S(1,15) S(1,14) S(1,0) S(16,15) S(16,14) S(16,0) S(17,15) S(17,14) S(17,0)

… …

1007 S(31,46) S(31,45)

…

S(31,31)

…

S(46,46) S(46,45)

…

S(46,31) nop nop

…

nop

1008 S(31,45) S(31,44) S(31,30) S(46,45) S(46,44) S(46,30) nop nop nop

… … … … … … … … … …

1038 S(31,15) S(31,14) S(31,0) S(46,15) S(46,14) S(46,0) nop nop nop

Figure 2.3 (a) Vertical Search Flow (b) Zigzag Search Flow

9

The data flow of the PEs is shown in Table 2.1 where S(x, y) is a search window pixel.

Current MB pixels are not shown in the table, because each PE stores the same current MB

pixel (e.g. PE(0,0) stores C(0,0)) while searching all the search locations in a search window.

The PE array is filled in the first 15 cycles. While searching the search locations in the first

column of the search window, in each cycle, vertical up shift is performed in the PE array and

all the PEs except the ones in the last row are provided search window pixels from their

neighboring PEs. PEs in the last row of PE array, in each cycle, read 16 new search window

pixels from 16 BRAMs.

The 17
th

 BRAM is used to be able to perform a left shift in the PE array after all the

search locations in a column are searched. The 17
th

 BRAM is connected to the temporary

registers and by the time there is a need for left shift, the pixels needed for the right most PEs

in the PE array become ready in these temporary registers. After the search locations in the

first column are searched, a left shift is performed in the PE array while the PEs in the 16
th

column of the PE array receive search window pixels from the temporary registers.

While searching the search locations in the second column of the search window, in

each cycle, vertical down shift is performed in the PE array and all the PEs except the ones in

the first row are provided search window pixels from their neighboring PEs. PEs in the first

row of PE array, in each cycle, read 16 new search window pixels from 16 BRAMs.

Each BRAM stores the pixels in every 17th column of the search window, e.g. the first

BRAM stores the pixels in the 1
st
, 18

th
 and 35

th
 columns. The order of the search window

pixels read from the BRAMs is static. However, the order of the search window pixels

required by the PE array and the temporary registers varies depending on the column being

processed. This problem is solved by reordering the 16+1 pixels in a search MB row by the

horizontal rotator hardware.

The proposed 256 PE VBS ME hardware is implemented in Verilog HDL. The

Verilog RTL code is synthesized to a XC2VP30 Xilinx Virtex II Pro FPGA with speed grade

7 using Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the

same FPGA using Xilinx ISE tool. The FPGA resource usage and the maximum clock

frequency of the placed & routed design are given in Table 2.2. The ME hardware takes 1091

clock cycles to process a MB. Therefore, it can process a VGA (640x480) frame in 11.23 ms

10

(1200 MBs x 1091 clock cycles per MB x 8.578 ns clock cycle = 11.23 ms). Therefore, it can

process 1000/11.23 = 89 VGA frames per second.

2.2 Motion Estimation Hardware with 64 Processing Elements

The proposed 64 PE VBS ME hardware architecture is shown in Figure 2.4. This ME

hardware finds the MVs of an MB in a search range of [-16, 15] pixels. This ME hardware

has a systolic array of 64 (16x4) PEs. Each PE calculates the SAD values of 4 search

locations for each MB. Each PE has 4 search pixel registers and 4 current pixel registers. The

current pixels are loaded once for each current MB. The search pixels are reloaded for each

search MB. However, by using data reuse technique, each PE column reads only one search

pixel from the Block RAMs. Other search pixels are shifted among PEs. This reduces the

required memory bandwidth compared to broadcasting search pixels to PEs every clock cycle

as proposed in [27].

Table 2.2 The FPGA Resource Usage and the Maximum Clock Frequency of 256 PE VBS

ME Hardware

Function Generators 17252 62.98%

CLB Slices 8626 62.98%

DFFs 8736 29.79%

BRAMs 17 12.5%

Frequency (MHz) 113.23

11

The data flow of the 1
st
 PE column is shown in Table 2.2 where S(x, y) is a search

window pixel. Current MB pixels are not shown in the table, because each PE stores the same

four pixels for each MB. Each PE stores four search pixels and calculates their absolute

differences with corresponding current pixels in four cycles. It takes 12 cycles for each PE to

receive at least one search pixel and start execution at the beginning of each MB column in

the search window. The first search pixels read from BRAMs are written directly to their

registers in the PEs. Once the registers in all PEs are filled with the pixels in the first search

MB of a MB column, each PE column reads a new search pixel in every four cycles and the

search pixels in the PEs are shifted down in each PE column.

Figure 2.4 64 PE VBS ME Hardware Architecture

12

The proposed ME hardware calculates SAD values for all 4x4 sub-blocks in a search

MB in 4 cycles. The partial SAD values for 4x4 sub-blocks are stored in an accumulator.

After the SAD values for all 4x4 sub-blocks are calculated, the SAD values for the other sub-

blocks are calculated by an Adder Tree. After all the search locations in the search window

are searched, the sub-blocks with smallest SAD values are stored in the Comparator with their

respective motion vectors.

The proposed 64 PE VBS ME hardware is implemented in Verilog HDL. The Verilog

RTL code is synthesized to a XC2VP30 Xilinx Virtex II Pro FPGA with speed grade 7 using

Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the same

FPGA using Xilinx ISE tool. The FPGA resource usage and the maximum clock frequency of

the placed & routed design are given in Table 2.3. The ME hardware takes 4160 clock cycles

to process a MB. Therefore, it can process a VGA (640x480) frame in 43.70 ms (1200 MBs x

4160 clock cycles per MB x 8.755 ns clock cycle = 43.70 ms). Therefore, it can process

1000/43.70 = 22 VGA frames per second.

Table 2.2 Data Flow of 1st PE Column in 64 PE VBS ME Hardware

Clock

1st Column

PE(0,0) PE(0,1) PE(0,3)

Reg3 Reg2 Reg1 Reg0 Reg3 Reg2 Reg1 Reg0 Reg3 Reg2 Reg1 Reg0

0 S(0,0)

…

1 S(0,1) S(0,0)

… … … … … … … … … … … … …

5 S(0,3) S(0,2) S(0,1) S(0,0) S(0,4)

6 S(0,3) S(0,2) S(0,1) S(0,0) S(0,5) S(0,4)

… … … … … … … … … … … … …

12 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4) S(0,12)

13 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4) S(0,13) S(0,12)

14 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4) S(0,14) S(0,13) S(0,12)

15 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4) S(0,15) S(0,14) S(0,13) S(0,12)

16 S(0,4) S(0,3) S(0,2) S(0,1) S(0,8) S(0,7) S(0,6) S(0,5)

…

S(0,16) S(0,15) S(0,14) S(0,13)

… … … …

139 S(0,34) S(0,33) S(0,32) S(0,31) S(0,38) S(0,37) S(0,36) S(0,35) S(0,46) S(0,45) S(0,44) S(0,43)

140 S(1,0)

…

141 S(1,1) S(1,0)

… … … … … … … … … … … … …

155 S(1,3) S(1,2) S(1,1) S(1,0) S(1,7) S(1,6) S(1,5) S(1,4) S(1,15) S(1,14) S(1,13) S(1,12)

… … … …

4476

S(31,34) S(31,33) S(31,32) S(31,31) S(31,38) S(31,37) S(31,36) S(31,35) … S(31,16) S(31,15) S(31,14) S(31,13)
4477

4478

4479

13

Table 2.3 The FPGA Resource Usage and the Maximum Clock Frequency of 64 PE VBS

ME Hardware

Function Generators 11608 42.38%

CLB Slices 5804 42.38%

DFFs 6241 21.28%

BRAMs 17 12.5%

Frequency (MHz) 114.22

14

CHAPTER III

POWER REDUCTION TECHNIQUE FOR INTEGER PIXEL MOTION

ESTIMATION HARDWARE

BM ME hardware architectures perform absolute difference (AD) operations for

calculating SAD values [10, 11, 28]. The number of AD operations performed by BM ME

algorithms is very high. For example, FS algorithm performs 103,809,024 AD operations for

finding motion vectors of a CIF (352x288) size frame in a [-16, 15] search range. Using larger

frame sizes, larger search ranges or multiple reference frames significantly increases the

number of AD operations performed.

Therefore, we propose comparison prediction (CP) technique for reducing the power

consumption of BM ME hardware by reducing the power consumption of absolute difference

operations. CP technique replaces the 8-bit comparator in AD hardware with a D Flip-Flop

(DFF) and 1-bit inverter. CP technique can easily be used in all BM ME hardware. In this

thesis, it is applied to the FBS version of the proposed 256 PE VBS ME hardware. It reduced

the average dynamic power consumption of this ME hardware by 6.1% with 0.01% PSNR

loss and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA.

3.1 Absolute Difference Hardware

The 256 PE FBS ME hardware implements full search algorithm with a zigzag search

flow in a [-16, 15] search range. It finds the search location in the search window (SW) that

best matches the current 16x16 MB based on minimum SAD criterion. While the SW is

searched for the current MB, each PE stores a current MB pixel and calculates the AD with

corresponding pixels in the SW. ADs calculated by the 256 PEs for a search location are

added by a pipelined adder tree in order to calculate the SAD value of this search location.

15

After the SAD values for all search locations in the SW are calculated, the search process for

the current MB finishes.

The AD hardware used in this ME hardware is shown in Figure 3.1. It includes an 8-

bit comparator, two 8-bit 2to1 multiplexers, an 8-bit subtractor, and an 8-bit register. AD

hardware compares the 8-bit current MB pixel with the 8-bit SW pixel and subtracts the

smaller one from the larger one. The result of the comparison is used to select the proper

pixels for subtraction so that the result of the subtraction is always positive.

Figure 3.1 Standard Absolute Difference Hardware

16

3.2 Comparison Prediction Technique

The proposed CP technique avoids the comparison in the AD hardware by predicting

the comparison result using the previous subtraction result. As shown in Figure 3.2 (a) and

(b), the proposed technique stores an initial prediction in a DFF, and updates it after each

incorrect prediction. The initial prediction predicts that current MB pixel will be subtracted

from the SW pixel. If the sign bit of the subtraction result is 0, the prediction is correct and the

DFF is not updated. If the sign bit of the subtraction result is 1, the prediction is incorrect and

the prediction in the DFF is reversed. This new prediction is used for predicting the

comparison results for the following pixels.

(a)

(b)

Figure 3.2 (a) Reset based Absolute Difference Prediction Hardware (b) Enable based

Absolute Difference Prediction Hardware

17

When the comparison prediction is incorrect, the result of the subtraction operation is

different from the absolute difference of the two input pixels. This causes PSNR loss. Since

the pixels in the SW usually have high spatial correlation, CP technique has very high

prediction accuracy. Therefore, it causes very small PSNR loss. We determined the accuracy

of the comparison prediction on 5 video sequences each with 80 frames. The results show that

the proposed CP technique correctly predicts the results of 90.1% of the comparisons

performed by the PEs.

When there is an incorrect prediction, the larger pixel value is subtracted from the

smaller one and the subtraction result is negative. Using this negative value for SAD

calculation will result in an incorrect SAD. In order to reduce the impact of this negative

value on the SAD and therefore reduce the impact of using incorrect predictions on the PSNR

obtained by ME, we propose four different methods; reset based AD prediction (R-ADP),

enable based AD prediction (E-ADP), R-ADP used with a checkerboard pattern (CR-ADP)

and E-ADP used with a checkerboard pattern (CE-ADP).

As shown in Figure 3.2 (a), R-ADP method uses the sign bit of the subtraction result

as a reset signal for the 8-bit register used for storing the absolute difference result. When an

incorrect prediction is done, this 8-bit register is set to 0. Therefore, instead of a negative

value, 0 is used for SAD calculation. Since the SW pixels have high spatial correlation, in

case of consecutive incorrect comparison predictions, it is likely that the current MB pixel

value is close to the SW pixel values. Therefore, predicting absolute difference as 0 will have

a small impact on SAD.

As shown in Figure 3.2 (b), E-ADP method uses the inverse of the sign bit of the

subtraction result as an enable signal for the 8-bit register used for storing the absolute

difference result. When an incorrect prediction is done, this 8-bit register is disabled.

Therefore, instead of a negative value, the previous absolute difference is used for SAD

calculation. In case of consecutive incorrect comparison predictions, predicting the absolute

differences as 0 may cause the SAD to be smaller than it should be and this SAD value may

incorrectly be selected as the minimum SAD. E-ADP method avoids this by using the

previous absolute difference in case of incorrect comparison prediction. In addition, since E-

ADP method keeps the previous AD value in the 8-bit register, it does not consume dynamic

power for setting the 8-bit register to 0.

18

CR-ADP method applies the R-ADP method to 128 of the 256 PEs in the PE array.

CE-ADP method applies the E-ADP method to 128 of the 256 PEs in the PE array. In both

CR-ADP and CE-ADP methods, the 128 PEs are determined by a checkerboard pattern as

shown in Figure 3.3.

3.3 Implementation Results

The proposed R-ADP, E-ADP, CR-ADP and CE-ADP methods are integrated to

H.264 JM reference encoder software version 14.2. The average PSNR (dB) and bit rate

(Kbps) obtained by these methods for several video sequences for 16x16 FBS FS ME in a [-

16, 15] search range with zigzag search flow are given in Table 3.1. The rate distortion curves

for the video sequences are shown in Figure 3.4. The data for rate distortion curves are

obtained for quantization parameters 20, 25, 30, 35 and 40.

Figure 3.3 Checkerboard Pattern for Standard (S) and Predicted (P)

Absolute Difference Hardware

19

Table 3.1 Average PSNR and Bit Rate for Several Video Sequences

Comparison

Prediction

Accuracy

Quantization

Parameter

Absolute

Difference

Proposed Methods

R-ADP CR-ADP E-ADP CE-ADP

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

V
id

eo
 S

eq
u
en

ce
s

Foreman

(288x352)
90.9%

25

30

35

1753

804

398

38.916

35.588

32.252

2088

1016

534

38.893

35.466

31.920

1800

837

417

38.909

35.556

32.147

1814

1023

525

38.902

35.474

31.968

2070

833

411

38.910

35.563

32.197

Mobile

(288x352)
86.5%

25

30

35

9440

6647

4444

38.226

33.146

28.074

9382

6692

4496

38.216

33.130

28.036

9331

6602

4376

38.221

33.140

28.069

9487

6557

4481

38.216

33.139

28.048

9338

6566

4383

38.225

33.141

28.071

Mother &

Daughter

(288x352)

91.3%

25

30

35

2149

1198

658

39.972

36.496

32.966

2217

1248

663

39.942

36.437

32.829

2170

1200

660

39.966

36.480

32.861

2163

1203

699

39.948

36.459

32.834

2150

1214

662

39.967

36.462

32.901

Akiyo

(288x352)
93.3%

25

30

35

2219

1447

955

41.193

37.336

35.183

2258

1495

903

41.166

37.254

35.006

2211

1415

955

41.183

37.299

35.128

2329

1444

955

41.180

37.279

35.100

2257

1422

898

41.186

37.300

35.174

Paris

(288x352)
89.6%

25

30

35

6102

4126

2716

38.703

34.155

29.395

6288

4268

2817

38.678

34.129

29.357

6243

4136

2719

38.690

34.145

29.388

6170

4221

2775

38.689

34.139

29.363

6121

4178

2718

38.695

34.145

29.390

Average PSNR

 Loss

25

30

35

─

0%

0%

0%

─

0.06%

0.17%

0.44%

─

0.02%

0.06%

0.17%

─

0.04%

0.13%

0.34%

─

0.01%

0.06%

0.08%

20

The results show that E-ADP method performs better than R-ADP method, and CE-

ADP and CR-ADP methods perform very close to using standard absolute difference

operation.

(a)

(b)

Figure 3.4 Rate Distortion Curves for

a) Mother & Daughter and b) Mobile Video Sequences

21

The proposed R-ADP, E-ADP, CR-ADP and CE-ADP methods are implemented in

Verilog HDL and these hardware implementations are integrated to 256 PE ME hardware.

The resulting Verilog RTL codes are synthesized to a XC2VP30-7 FPGA using Precision

RTL 2005b and mapped to the same FPGA using ISE 8.2i. The ME hardware

implementations are verified with post place & route simulations using Modelsim 6.1c.

The power consumptions of the ME hardware are estimated using Xilinx XPower tool.

In order to estimate the dynamic power consumption of a ME hardware, timing simulation of

the placed & routed netlist of that ME hardware is done at 50 MHz for a full frame of the

Foreman video sequence using Mentor Graphics ModelSim 6.1c and the signal activities are

stored in a Value Change Dump (VCD) file. This VCD file is used for estimating the dynamic

power consumption of that ME hardware.

The area and power consumptions of ME hardware with standard AD and ME

hardware with proposed methods are given in Table 3.2. The ME hardware with R-ADP, E-

ADP, CR-ADP and CE-ADP methods use 8%, 9%, 4% and 3% less slices than the ME

hardware with standard AD. The ME hardware with R-ADP, E-ADP, CR-ADP and CE-ADP

methods have 8.1%, 9.3%, 6.0% and 6.1% less dynamic power consumption than the ME

hardware with standard AD.

R-ADP and E-ADP methods reduce the dynamic power consumption and area of the

ME hardware more than the CR-ADP and CE-ADP methods. However, R-ADP and E-ADP

methods have a PSNR loss of 0.06% and 0.04% respectively, whereas CR-ADP and CE-ADP

methods have a PSNR loss of 0.02% and 0.01% respectively. Therefore, one of the four

methods can be used for ME depending on performance and power consumption requirement

of the video compression or video enhancement application.

22

Table 3.2 Comparison of Motion Estimation Hardware

Architectures

AD

Proposed Techniques

R-ADP CR-ADP E-ADP CE-ADP

Value Value % Value % Value % Value %
A

re
a Slice 9353 8628 8 8934 4 8542 9 9039 3

LUT 16145 14353 11 15210 6 14217 12 15261 5

DFF 7377 7633 -3 7505 -2 7633 -3 7505 -2

Average
Dynamic

Power

(mW)

775.90 713.39 8.1 729.57 6.0 704.09 9.3 728.77 6.1

23

CHAPTER IV

POWER REDUCTION TECHNIQUES FOR H.264 HALF-PIXEL MOTION

ESTIMATION HARDWARE

4.1 Half-Pixel Motion Estimation Algorithm and Hardware

The search locations for half-pixel accurate motion estimation are shown in Figure 4.1.

First, integer-pixel motion estimation is performed at the integer-pixel search locations and

best integer-pixel motion vector is determined based on minimum SAD criterion. Then, half-

pixel motion estimation is performed at the eight half-pixel search locations around the best

integer-pixel motion vector with a search range of [-1, 1], and the integer-pixel motion vector

is refined by the best half-pixel motion vector.

Figure 4.1 Half Pixel Search Locations

24

Before searching for the best half-pixel motion vector, half pixels in the half-pixel

search window are interpolated from the neighboring pixels using the following 6-tap finite

impulse response (FIR) filter:

32/)520205(FEDCBAPixelHalf c (4.1)

First, the half pixels that are adjacent to two integer pixels are interpolated from 6

integer pixels. Then, the remaining half pixels are interpolated from 6 horizontal or 6 vertical

half pixels. A half-pixel interpolation example is shown in Figure 4.2. First, the half pixels a,

b, c, d, e, f are interpolated from 6 corresponding horizontal integer pixels. For example, half

pixel c is interpolated from the 6 horizontal integer pixels A, B, C, D, E, and F. Then, the half

pixels g, h, i, j, k, m are interpolated from 6 corresponding vertical integer pixels. For

example, half pixel i is interpolated from the 6 vertical integer pixels M, N, C, I, O, P. Finally,

half-pixel n can be interpolated from either horizontal half pixels g, h, i, j, k, m or vertical half

pixels a, b, c, d, e, f.

Figure 4.2 Half Pixel Interpolation

25

According to H.264 standard, there are 41 sub-blocks in a 16x16 MB as shown in

Figure 4.3. When performing VBS HP ME, each sub-block is searched in the search window

defined by the integer motion vector of that sub-block. Therefore, for each sub-block, HP ME

may be performed in a different search window.

The VBS HP ME hardware proposed in [24] performs HP interpolation and HP search

for each sub-block. For each sub-block, first, interpolation hardware calculates the half pixels

in the half-pixel search window of that sub-block. Then, search hardware searches the half-

pixel search locations and determines the best half-pixel motion vector for that sub-block. In

the VBS HP ME hardware proposed in [24], interpolation datapaths are shared by different

block sizes. 4x4, 4x8 and 8x4 blocks share 10 interpolation datapaths. 8x8, 8x16, 16x8 and

16x16 blocks share 18 interpolation datapaths. The block diagram of the half-pixel

interpolation hardware for 4x4, 4x8 and 8x4 sub-blocks is given in Figure 4.4. The

interpolation and search for different size sub-blocks run in parallel, while the interpolation

and search for the same size sub-blocks run sequentially.

Figure 4.3 Variable Block Size Modes

26

Figure 4.4 Half Pixel Interpolation Hardware for 4x4, 4x8 and 8x4 Sub Blocks [24]

4.2 Vector Dependent SAD Reuse Technique

In VBS IP ME, SAD value of each sub-block should be calculated for each search

location. SAD reuse is a commonly used technique that allows calculating the SADs of larger

sub-blocks by adding the SADs of smaller sub-blocks. As shown in Figure 4.3, SADs of all

41 sub-blocks for a search location can be calculated by using the SADs of 16 4x4 sub-blocks.

However, SAD reuse technique is not directly applicable to VBS HP ME. HP MVs of each

sub-block may be searched in different search windows. Since larger sub-blocks may have a

different search window than the search windows of smaller sub-blocks, in VBS HP ME, the

SADs of each sub-block may have to be calculated separately.

In this thesis, we propose vector dependent SAD reuse technique for VBS HP ME in

order to reduce the power consumption of VBS HP ME hardware by eliminating redundant

computations. When IP MVs of neighboring sub-blocks are equal, their cumulative search

window is the same as the search window of the larger sub-block composed of these sub-

blocks. In this case, performing HP ME for the larger block is redundant, because its SADs

for the half-pixel search locations can be calculated by using the SADs of the smaller sub-

27

blocks for the same half-pixel search locations. Vector dependent SAD reuse technique

requires comparing the IP MVs of the sub-blocks. When the IP MVs of the proper sub-blocks

are equal, the HP ME hardware can be disabled for the larger blocks, and the SADs of the

larger blocks for the half-pixel search locations can be computed using the SADs of these sub-

blocks for the same half-pixel search locations.

For each sub-block size, the percentage of the smaller sub-blocks with equal IP MVs

for a CIF size Foreman video sequence is shown in Table 4.1. It can be seen that IP MVs of

the same size sub-blocks are highly correlated and they are likely to have the same IP MV

with the one larger size sub-block. The probability of having equal IP MVs decreases as the

number of same size sub-blocks increase, e.g. it is unlikely for 16 4x4 sub-blocks of a 16x16

MB to have the same IP MV.

In our implementation of the vector dependent SAD reuse technique, HP ME for 8x4,

4x8 and 8x8 sub-blocks is not enabled if the IP MVs of the corresponding 4x4 sub-blocks are

equal. Similarly, HP ME for 8x16, 16x8 and 16x16 sub-blocks is not enabled if the IP MVs of

the corresponding 8x8 sub-blocks are equal. For example, HP ME for sub-block 25 in Figure

4.3 is not enabled if the MVs of the sub-blocks 1 and 2 are equal. Similarly, HP ME for sub-

block 34 is not enabled if the MVs of the sub-blocks 3, 4, 7 and 8 are equal.

Table 4.1 Average Computation Reduction Obtained from a Foreman CIF (352x288)

Video Sequence Using Vector Dependant SAD Reuse Technique

Average

Computation

Reduction

Computed Block Size

8x4 4x8 8x8 16x8 8x16 16x16

C
o
m

p
ar

ed
 B

lo
ck

S
iz

e

4x4 15.06 % 15.34 % 4.42% 0.88% 1.39% 0.00 %

8x4 29.92 % 9.22 % 10.35 % 3.79 %

4x8 28.09 % 8.46 % 9.47% 1.77 %

8x8 33.84 % 35.86 % 15.66 %

16x8 45.20 %

8x16 41.67 %

28

If the IP MVs of the corresponding 4x4 sub-blocks are equal, the SADs of 8x4, 4x8,

and 8x8 sub-blocks for the half-pixel search locations are computed using the SADs of these

4x4 sub-blocks for the same half-pixel search locations. Similarly, if the MVs of the

corresponding 8x8 sub-blocks are equal, the SADs of 8x16, 16x8, and 16x16 sub-blocks for

the half-pixel search locations are computed using the SADs of these 8x8 sub-blocks for the

same half-pixel search locations.

The proposed technique requires comparing IP MVs of two 4x4 sub-blocks for each

4x8 and 8x4 sub-block. Since the comparison results for 8x4 and 4x8 sub-blocks can be

reused for the 8x8 sub-blocks, 16 comparisons are enough to determine the equality of the

corresponding 4x4 IP MVs. The proposed technique also requires 4 comparisons for

determining the equality of the corresponding 8x8 IP MVs. Therefore, 20 comparisons per

MB are required.

In addition, the proposed technique requires storing the SADs of half-pixel search

locations for the 4x4 sub-blocks with equal IP MVs in a register file. Similarly, the SADs of

half-pixel search locations for the 8x8 sub-blocks with equal IP MVs are stored in a register

file. After the SADs of all corresponding 4x4 sub-blocks are calculated, an adder calculates

the sum of 2 SADs for 4x8 and 8x4 blocks, and 4 SADs for 8x8 blocks. The same adder is

used for calculating the sum of 2 8x8 sub-block SADs for 8x16 and 16x8 blocks, and 4 8x8

sub-block SADs for 16x16 MB.

4.3 Integer-Pixel Motion Vector Trajectory Based Adaptive Half-Pixel Motion

Estimation Algorithm

In order to decrease the power consumption of HP ME hardware, we propose an

adaptive algorithm that reduces the 2-D search window of HP ME to a 1-D search window.

This reduction is done if the IP MVs meet a certain criterion so that the trajectory of the MV

is estimated to be either on the x-axis or y-axis. In this case, 1-D search is performed on the

estimated trajectory of the IP MV resulting in a significant amount of computation reduction

for HP ME. If this cannot be estimated, the original 2-D HP ME algorithm is used.

29

HP ME requires both interpolation and search. Since only the half pixels required in

HP search need to be interpolated, reducing the search window to 1-D reduces the amount of

computation for both interpolation and search.

The half-pixel interpolation flow for 4x4 sub-blocks is shown in Figure 4.5. Set A

half-pixels are interpolated from a column of integer pixels, set B half-pixels are interpolated

from a row of integer pixels, and set C half pixels are interpolated from a row of set A half-

pixels. Set A half-pixels required for interpolating set C half-pixels are also computed. In 2-D

HP ME, 130 half-pixels should be interpolated, whereas 1-D HP ME requires interpolating

only the 35 neighboring set A or set B half-pixels depending on the axis chosen. Since set C

half-pixels are not used in 1-D HP ME, set A half-pixels required for interpolating the set C

half-pixels are not computed either. Similarly, for a 16x16 MB, 2-D HP ME requires

interpolating 374 set A half-pixels, 272 set B half-pixels and 289 set C half-pixels, whereas 1-

D HP ME requires interpolating 272 set A or set B half-pixels.

Figure 4.5 Half Pixel Interpolation for 4x4 Sub Blocks [24]

30

The number of search locations required for 2-D and 1-D HP ME are shown in Figure

4.6. 8 SAD values should be calculated in a search window of [-1, 1] for 2-D HP ME,

whereas only 2 SAD values should be calculated for 1-D HP ME.

We propose three different methods, Zero (Z), Twice Bigger Than (TBT) and Bigger

Than (BT), for estimating the trajectory of IP MVs. Z method estimates the trajectory of an IP

MV only if x or y component of the MV is equal to zero. In case of an IP MV with zero x

component and non-zero y component, 1-D HP ME on the y axis will be performed.

Similarly, in case of an IP MV with zero y component and non-zero x component, 1-D HP

ME on the x axis will be performed. TBT method performs 1-D HP ME on an axis if the MV

component of that axis has an absolute value at least twice larger than the absolute value of

the MV component of the other axis. In all other cases, i.e. when x and y components are

equal or close to each other, 2-D HP ME is performed. BT method estimates the trajectory of

the IP MV if the x or y component has a larger absolute value than the other component.

Since this method performs 1-D HP ME unless the x and y components of the IP MV are

equal, it favors 1-D HP ME the most.

The cases where each method performs 1-D HP ME instead of 2-D HP ME depending

on IP MV values are illustrated in Figure 4.7. Z method performs 1-D HP search only when

the MV is on the x or y axis. BT method performs 1-D HP search for almost all MVs unless

the x and y components of the MV are equal. TBT method performs 1-D HP search for about

half of all MVs.

Figure 4.6 Half Pixel Search Locations for Each Integer Pixel

31

(a)

(b)

(c)

Figure 4.7 Vector Trajectory Estimations for (a) Zero, (b) Twice Bigger Than, and (c) Bigger

Than Criteria

32

The percentage of performing 1-D search and the PSNR results obtained by each

method are shown in Table 4.2 for both FBS and VBS HP ME. The percentage of 1-D search

shows the percentage of making trajectory estimation for the IP MV and therefore performing

1-D HP ME instead of 2-D HP ME.

The results show that all three methods mostly perform 2-D HP ME for the low

motion video sequence „Akiyo‟. Therefore, they have minor PSNR loss. For the other video

sequences, both TBT and BT methods have similar results both in computation reduction and

PSNR loss. Z method performs 1-D HP ME considerably less than the other two methods,

therefore it achieves less computation reduction with better PSNR performance. Because of

the better computation reduction performance of BT technique, we used it in the hardware

implementation of IP MV trajectory based HP ME.

The proposed IP MV trajectory based HP ME technique is also integrated to VBS HP

ME hardware proposed in [24]. The integration required adding an absolute difference

hardware and two comparators, and modifying the control unit. The BT method which

Table 4.2 Comparison of Estimation Methods (Percentage of 1-D Search and the

Resulting PSNR)

Algorithm

Percentage of

1-D Search

Original

PSNR (dB)

Proposed Techniques

PSNR (dB)

FBS HP

ME

VBS HP

ME

FBS HP

ME

VBS HP

ME
FBS HP ME VBS HP ME

Z
er

o

Foreman 40.84% 33.36% 34.87 38.97 34.70 38.76

Mobile 69.69% 58.18% 27.21 28.13 26.03 27.57

Akiyo 3.06% 5.51% 44.75 46.16 44.67 46.08

T
w

ic
e

B
ig

g
er

T
h
an

Foreman 58.64% 57.74% 34.87 38.97 34.63 38.67

Mobile 74.34% 71.22% 27.21 28.13 26.01 27.50

Akiyo 3.12% 7.94% 44.75 46.16 44.67 46.06

B
ig

g
er

 T
h
an

Foreman 62.22% 68.06% 34.87 38.97 34.62 38.64

Mobile 74.70% 74.82% 27.21 28.13 26.01 27.48

Akiyo 3.12% 8.96% 44.75 46.16 44.67 46.05

33

determines whether to perform 1-D HP search or 2-D HP search is implemented as a pre-

computation step before interpolation of each sub-block. The BT method is implemented by

checking whether x and y components of the MV are equal or one of them is larger than the

other one. If they are equal, than 2-D HP ME is performed. If one of the components is larger

than the other one, then a trajectory estimation towards the larger component is done and the

appropriate control signal is sent to the HP ME module.

Depending on the result of the trajectory estimation, the interpolation module

interpolates either all the half pixels required for performing 2-D HP ME or only the half-

pixels required for performing 1-D HP ME. Similarly, the search module calculates either the

SADs of all 8 half-pixel search locations for performing 2-D HP ME or the SADs of 2 half-

pixel search locations on the selected axis for performing 1-D HP ME. The data flow of the

hardware for 1-D HP ME is similar to 2-D HP ME. But, the input registers of both

interpolation and search modules, and the accumulator in the processing elements are disabled

accordingly to reduce power consumption.

4.4 Implementation Results

The proposed VBS HP ME hardware architectures are implemented in Verilog HDL

and mapped to a Xilinx Virtex 6 FPGA using Synopsys Synplify synthesis tool and Xilinx

ISE 11.4 place and route tool.

In order to estimate the power consumptions of the VBS HP ME hardware

implementations, timing simulations of their placed and routed netlists are done using Mentor

Graphics ModelSim SE 6.1c. A frame from CIF (352x288) size Foreman video sequence is

used as input for timing simulations and the signal activities are stored in VCD files. These

VCD files are used for estimating the power consumptions using Xilinx XPower Analyzer

11.4 tool.

34

The power consumptions at 50 MHz and areas of the proposed hardware

implementations on a Virtex 6 FPGA are shown in Table 4.3. As shown in the table, the

proposed vector dependent SAD reuse and vector trajectory based HP search techniques

reduced the power consumption of the VBS HP ME hardware by 6% and 31% respectively.

Since HP ME hardware will be used as part of an H.264 video encoder, only internal

power consumption is considered, and input and output power consumptions are ignored.

Therefore, the power consumption of the HP ME hardware can be divided into four main

categories; signal power, logic power, clock power and BRAM power. Signal power is the

power dissipated in routing tracks between logic blocks. Logic power is the amount of power

dissipated in the parts where computations take place. Clock power is due to clock tree used

in the FPGA. BRAM power is the power dissipated in BRAMs.

Table 4.3 Area and Power Comparison of Proposed Vector Dependent SAD Reuse

(VDSR) and Vector Trajectory Based Search (VTBS) Techniques

Area

Original VDSR VTBS

LUTs 15595 15576 15640

D Flip-Flops 13921 14021 13921

BRAMs 37 39 24

Power Consumption (mW)

Original VDSR VTBS

Clock 28.39 28.36 26.75

Logic 5.50 4.09 2.83

Signal 15.68 11.28 10.51

BRAM 44.70 44.60 24.67

Total 94.27 88.33 64.76

35

CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis, first, we proposed two FS ME hardware architectures which use 256 PEs

and 64 PEs respectively. The 256 PE ME hardware takes 1091 clock cycles to process a MB.

Therefore, it can process 89 VGA frames per second. The 64 PE ME hardware takes 4160

clock cycles to process a MB. Therefore, it can process 22 VGA frames per second.

Then, we proposed CP technique for reducing power consumption of BM ME

hardware. CP technique replaces the 8-bit comparator in AD hardware with a DFF and 1-bit

inverter. CP technique can easily be used in all BM ME hardware. In this thesis, it is applied

to a fixed-block size 256 PE ME hardware implementing full search algorithm. It reduced the

average dynamic power consumption of this ME hardware by 6.1% with 0.01% PSNR loss

and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA.

Finally, we proposed two power reduction techniques for HP ME hardware. Vector

dependent SAD reuse technique reduced the power consumption of a VBS HP ME hardware

by 6% with no PSNR loss and minor area overhead. The vector trajectory based adaptive HP

ME technique reduced the power consumption of the same VBS HP ME hardware by 31%

with minor PSNR loss and area overhead.

As future work, the proposed CP technique can be improved to have no PSNR loss by

updating the results after incorrect predictions. The proposed low power techniques for HP

ME hardware can be applied to quarter pixel accurate ME hardware. The impact of the

proposed low power techniques on the ASIC implementations of ME hardware architectures

can be presented.

36

REFERENCES

[1] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.

[2] B.-D. Choi, J.-W. Han, C.-S. Kim, S.-J. Ko, “Motion-compensated Frame Interpolation

Using Bilateral Motion Estimation and Adaptive Overlapped Block Motion Compensation,”

IEEE Trans. on CAS for Video Technology, vol. 17, no.4, pp. 407–416, Apr. 2007.

[3] Y. Ling, J. Wang, Y. Liu, and W. Zhang, “A Novel Spatial and Temporal Correlation

Integrated Based Motion-compensated Interpolation for Frame Rate Up-conversion,” IEEE

Trans. on Consumer Electronics, vol. 54, no.2, pp. 863-869, May 2008.

[4] C. Wei, H. Hui, T. Jiarong, and M. Hao, “A High-performance Reconfigurable VLSI

Architecture for VBSME in H.264,” IEEE Trans. on Consumer Electronics, vol. 54, no. 3, pp.

1338-1345, Aug. 2008.

[5] T. Moorthy, and A. Ye, “A Scalable Computing and Memory Architecture for Variable

Block Size Motion Estimation on Field-Programmable Gate Arrays,” International

Conference on Field Programmable Logic, pp. 83-88, Sept. 2008.

[6] R. Li, B. Zeng, and M.L. Liou, “A New Three-step Search Algorithm for Block Motion

Estimation,” IEEE Trans. on CAS for Video Technology, vol. 4, pp. 438–442, 1994.

[7] S. Zhu and K.-K. Ma, “A New Diamond Search Algorithm for Fast Block Matching

Motion Estimation,” IEEE Trans. on Image Processing, vol. 9, pp. 287–290, 2000.

[8] C. Zhu, X. Lin, and L. P. [30] Chau, “Hexagon-based Search Pattern for Fast Block

Motion Estimation,” IEEE Trans. on CAS for Video Technology, vol. 12, pp. 349–355, 2002.

[9] X.-Q. Banh and Y.-P. Tan, “Adaptive Dual-cross Search Algorithm for Block-matching

Motion Estimation”, IEEE Trans. on Consumer Electronics, vol. 50, no. 2, pp. 766-775, May

2004.

[10] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A Novel Motion Estimator

Supporting Diamond Search and Fast Full Search,” IEEE ISCAS, May 2002.

[11] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically Variable Step Search

Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its

Implementation,” IEEE Trans. on Consumer Electronics, vol. 55, no. 3, Aug 2009.

37

[12] G. Stewart, D. Renshaw, and M. Riley, “A Novel Motion Estimation Power Reduction

Technique,” International Conference on Field Programmable Logic, pp. 546–549, August

2007.

[13] S. Yalcin, H. F. Ates and I. Hamzaoglu, “A High Performance Hardware Architecture for

an SAD Reuse based Hierarchical Motion Estimation Algorithm for H.264 Video Coding”,

International Conference on Field Programmable Logic, August 2005.

[14] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard”, IEEE Trans. on CAS for Video Technology, July 2003.

[15] K. Minoo, T. Q. Nquyen, “Reverse, Sub-Pixel Block Matching: Applications within

H.264 and Analysis of Limitations”, IEEE Int. Conf. on Image Processing, 2006.

[16] T. Dias, N. Roma, L. Sousa, “Efficient Motion Vector Refinement Architecture for Sub-

Pixel Motion Estimation Systems”, IEEE SIPS, 2005.

[17] T. C. Chen, Y. H. Chen, C. Y. Tsai, L. G. Chen, “Low Power and Power Aware

Fractional Motion Estimation of H.264/AVC for Mobile Applications”, IEEE ISCAS, 2006.

[18] J. W. Suh, J. Jechang, “Fast Sub-pixel Motion Estimation Techniques Having Lower

Computational Complexity”, IEEE Trans. on Consumer Electronics, August 2004.

[19] Y. J. Wang, C. C. Cheng, T. S. Chang, “A Fast Algorithm and Its VLSI Architecture for

Fractional Motion Estimation for H.264/MPEG-4 AVC Video Coding”, IEEE Trans. on CAS

for Video Technology, May 2007.

[20] Y. Song, Y. Ma, Z. Liu, T. Ikenaga, S. Goto, “Hardware-Oriented Direction-Based Fast

Fractional Motion Estimation Algorithm in H.264/AVC”, IEEE ICME, 2008.

[21] H. Nisar, T. S. Choi, “Fast and Efficient Fractional Pixel Motion Estimation for

H.264/AVC Video Coding”, IEEE ICIP, 2009.

[22] Degalahal V. and Tuan T., "Methodology for High Level Estimation of FPGA Power

Consumption", Asia and South Pacific Design Automation Conference, pp. 657-660, Jan

2005.

[23] Abdelli N., Fouilliart A.-M., Mien N., Senn E., "High-Level Power Estimation of

FPGA", IEEE International Symposium on Industrial Electronics, pp. 925-930, June 2007.

[24] S. Yalcin, I. Hamzaoglu, “A High Performance Hardware Architecture for Half-Pixel

Accurate H.264 Motion Estimation”, IFIP Int. Conf. on VLSI-SoC, October 2006.

[25] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G. Chen, “Hardware architecture design

for variable block-size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264,” IEEE Int.

Symp. on Circuits Syst., pp. 796–799, 2003.

38

[26] M. Kim, I. Hwang, and S.-I. Chae, “A fast VLSI architecture for full-search variable

block size motion estimation in MPEG-4 AVC/H.264,” ASP DAC, pp. 631–634, Jan 2005.

[27] S. Khawam, et.al., “Efficient Implementations of Mobile Video Computations on

Domain Specific Reconfigurable Arrays,” DATE Conference, February 2004.

[28] T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien, and L. G. Chen, “Fast Algorithm and

Architecture Design of Low-Power Integer Motion Estimation for H.264/AVC,” IEEE Trans.

on CAS for Video Technology, vol. 17, pp. 568-577, 2007.

