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ABSTRACT 

 

 

 

Motion Estimation (ME) is the most computationally intensive and most power 

consuming part of video compression and video enhancement systems. ME is used in video 

compression standards such as H.264/MPEG-4 and it is used in video enhancement 

algorithms such as frame rate conversion and de-interlacing. Half pixel (HP) ME increases the 

video coding efficiency at the expense of increased computational complexity. Therefore, in 

this thesis, we designed and implemented efficient integer pixel (IP) ME hardware 

implementing full search ME algorithm, and we proposed techniques for reducing the 

dynamic power consumptions of IP and HP ME hardware. The proposed ME hardware 

architectures are implemented in Verilog HDL and mapped to Xilinx FPGAs. The FPGA 

implementations are verified with post place & route simulations. 

We proposed comparison prediction (CP) technique for reducing the power 

consumption of IP block matching (BM) ME hardware. CP technique reduces the power 

consumption of absolute difference operations performed by IP BM ME hardware. The 

proposed technique can easily be used in all IP BM ME hardware. It reduced the power 

consumption of a fixed block size IP BM ME hardware implementing full search algorithm 

by 9.3% with 0.04% PSNR loss on a Xilinx XC2VP30-7 FPGA.  

We also proposed two techniques for reducing the power consumption of H.264 HP 

ME hardware. The first technique is vector dependent sum of absolute difference (SAD) reuse 

which reduces the amount of computations for variable block size H.264 HP ME with no 

PSNR loss. The second technique is a novel modification of the HP search algorithm which 

adaptively tries to use the IP motion vector trajectories to reduce HP search to 1-D.  This 

technique causes an average PSNR loss of 0.36 dB. The two techniques reduced the power 

consumption of a variable block size H.264 HP ME hardware by 6% and 31% on a Xilinx 

Virtex 6 FPGA respectively. 
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ÖZET 

Hareket Tahmini (HT) video sıkıştırma ve video iyileştirme sistemlerinin en çok işlem 

yapılan ve en çok güç harcayan kısmıdır. HT, H.264/MPEG-4 gibi video sıkıştırma 

standartlarında ve çerçeve hızı dönüştürme gibi video iyileştirme uygulamalarında kullanılır. 

Yarım piksel hassaslığında (YPH) HT video kodlama verimini arttırmakla birlikte yapılan 

işlem miktarını da arttırır. Bu nedenle bu tezde, tam arama HT algoritmasını kullanan verimli 

tam sayı hassaslığında (TSH) HT donanımları tasarladık ve gerçekleştirdik. Ayrıca TSH ve 

YPH HT donanımları için güç azaltma teknikleri önerdik. Önerilen HT donanımları Verilog 

HDL dili kullanılarak gerçekleştirildiler ve Xilinx FPGA‟lerine yerleştirildiler. 

Blok eşleştirme (BE) HT donanımlarının güç kullanımını azaltmak için karşılaştırma 

öngörüsü (KÖ) tekniğini önerdik. KÖ tekniği BE HT donanımlarında yapılan mutlak fark 

işleminin güç kullanımını azaltır. KÖ tekniği tüm BE HT donanımlarına kolayca 

uygulanabilir. Bu tezde ise sabit blok boyutlu 256 işlem birimli BE HT donanımına 

uygulandı. 

Ayrıca, H.264 YPH HT için iki güç azaltma tekniği önerdik. Bu tekniklerin bir YPH 

HT donanımının güç kullanımını olan etkilerini gösterdik. Birinci teknik hareket vektörlerine 

bağlı olarak mutlak farklar toplamlarının (MFT) yeniden kullanımı tekniğidir. Bu teknik 

değişken blok boyutlu HT için yapılan işlem miktarını PSNR kaybı olmadan azaltmaktadır. 

İkinci teknik YPH HT algoritmasında yapılan özgün bir değişikliktir. Bu teknik tam sayı 

hareket vektörlerinin uzantılarını kullanarak YP arama penceresini uyarlanır bir şekilde tek 

boyuta indirmektedir. Bu teknik değişken blok boyutlu HT için yapılan işlem miktarını az bir 

PSNR kaybı ile azaltmaktadır. 
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CHAPTER I 

INTRODUCTION 

  

  

Motion Estimation (ME) is the most computationally intensive part of video 

compression and video enhancement systems. ME is used to reduce the bit-rate in video 

compression systems by exploiting the temporal redundancy between successive frames, and 

it is used to enhance the quality of displayed images in video enhancement systems by 

extracting the true motion information. ME is used in video compression standards such as 

MPEG4 and H.264 [1], and in video enhancement algorithms such as frame rate 

conversion [2, 3]. 

 

Block Matching (BM) is the most preferred method for ME. BM ME partitions current 

frame into non-overlapping NxN rectangular blocks, and it tries to find the block from the 

reference frame in a given search window that best matches the current block in the current 

frame. Sum of Absolute Differences (SAD) is the most preferred block matching criterion. As 

shown in Figure 1.1, the location of a block in a frame is given using the (x,y) coordinates of 

top-left corner of this block. The search window in the reference frame is the [-p, p] size 

region around the location of the current block in the current frame. The SAD value for a 

current block in the current frame and a candidate block in the reference frame is calculated 

by adding the absolute differences of corresponding pixels in the two blocks as shown in the 

formula (1.1). In this formula, Bmxn
 
is a block of size mxn, d=(dx, dy) is the motion vector, c 

and r are current and reference frames respectively. Since a motion vector expresses the 

relative motion of the current block in the reference frame, motion vectors are specified in 

relative coordinates. If the location of the best matching block in the reference frame is (x+u, 

y+v), then the motion vector is expressed as (u,v).  

 

       
                                

   
                  (1.1) 
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Figure 1.1 Motion Estimation [1] 

 

ME is performed on the luminance (Y) component of a YUV image and the resulting 

motion vectors are also used for the chrominance (U and V) components. Full Search (FS) 

ME algorithm finds the reference block that best matches the current block by computing the 

SAD values for all search locations in a given search range. Therefore, FS algorithm achieves 

the best performance among BM ME algorithms, but its computational complexity is high.  

 

In fixed block size (FBS) ME, only the motion vectors for 16x16 MBs are computed. 

In order to improve the ME performance, variable block size (VBS) ME is used in the H.264 

standard. But, the computational complexity of FS algorithm for VBS ME is even higher [4, 

5]. In VBS ME, each 16x16 MB can be divided into sub-blocks in four different ways; 16x16, 

16x8, 8x16 or 8x8. Each 8x8 sub-block can be further divided into 8x8, 8x4, 4x8 or 4x4 sub-

blocks. Each 8x8 sub-block can be divided into different size sub-blocks.  

 



3 

 

Several fast search ME algorithms, such as New Three Step Search [6], Diamond 

Search [7], Hexagon-Based Search [8], and Adaptive Dual Cross Search [9], are proposed to 

reduce the computational complexity of FS algorithm. These algorithms try to approach the 

PSNR of FS algorithm by computing the SAD values for fewer search locations in a given 

search range. Several hardware architectures for fast search ME algorithms are proposed in 

the literature [10, 11]. 

 

Although many fast search ME algorithms are developed, FS algorithm has remained 

a popular candidate for hardware implementation because of its regular dataflow and good 

compression performance [12, 13]. 

 

In order to further improve the performance of integer pixel (IP) ME, half-pixel (HP) 

accurate VBS ME is performed [14, 15]. However, the amount of computation required by 

HP VBS ME is even more than the amount required by IP VBS ME. Therefore, this coding 

gain comes with an increase in encoding complexity and hence with an increase in the power 

consumption of HP VBS ME hardware. Several techniques for reducing the amount of 

computation by HP ME are proposed in the literature [16 - 21].  Some of these papers present 

efficient HP ME hardware implementations with efficient memory usage [16, 17]. An 

interpolation-free HP ME is proposed in [18]. Fast HP ME algorithms using reduced number 

of HP search locations are proposed in [19 - 21].  

 

Multimedia applications running on portable devices increased recently and this trend 

is expected to continue in the future. Since portable devices operate on battery, it is important 

to reduce power consumption so that battery life can be increased. Therefore, power 

consumption has become a critical design metric for portable applications. 

 

Due to low non-recurring engineering (NRE) costs, Field Programmable Gate Arrays 

(FPGAs) are ideal solutions for low-to-mid volume designs [22]. However, FPGAs consume 

more power than standard cell-based Application Specific Integrated Circuits (ASIC). FPGAs 

have look-up tables and programmable switches. Look-up table based logic implementation is 

inefficient in terms of power consumption, and programmable switches have high power 

consumption because of large output capacitances. Therefore, power consumption is an even 

more important design metric for FPGA implementations, and designers should consider the 



4 

 

impact of their design decisions not only on speed and area, but also on power consumption 

throughout the entire design process [23]. 

1.1 Thesis Contributions 

In this thesis, we propose two VBS ME hardware architectures which use 256 

Processing Elements (PE) and 64 PEs respectively. The proposed VBS ME hardware 

architectures perform FS ME. 64 PE ME hardware has lower area than 256 PE ME hardware. 

However, 256 PE ME hardware is faster than the 64 PE ME hardware. 

  

In addition, we propose a comparison prediction (CP) technique for reducing the 

power consumption of BM ME hardware by reducing the power consumption of absolute 

difference (AD) operations. CP technique replaces the 8-bit comparator in AD hardware with 

a D Flip-Flop (DFF) and 1-bit inverter. CP technique can easily be used in all BM ME 

hardware. In this thesis, it is applied to FBS version of the proposed 256 PE VBS ME 

hardware. We quantified the impact of the proposed power reduction technique on the power 

consumption and Peak Signal-to-Noise Ratio (PSNR) obtained by this ME hardware. It 

reduced the average dynamic power consumption of this ME hardware by 6.1% with 0.01% 

PSNR loss and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA. 

 

Finally, we propose two power reduction techniques for H.264 HP ME hardware and 

show their impact on the power consumption of a VBS HP ME hardware. Both techniques 

can be easily integrated to any HP ME hardware. The first technique is vector dependent SAD 

reuse. It reduces the amount of computations for VBS HP ME with no PSNR loss by taking 

advantage of sub-blocks with equal motion vectors (MV) to calculate the SADs of larger sub-

blocks using the SADs of smaller sub-blocks. The second technique is a novel modification of 

the HP search algorithm which adaptively tries to use the IP MV trajectories to reduce HP 

search to 1-D. This technique causes an average PSNR loss of 0.36 dB. We integrated both 

techniques to the H.264 VBS HP ME hardware proposed in [24]. The two techniques reduced 

the power consumption of this VBS HP ME hardware by 6% and 31% on a Xilinx Virtex 6 

FPGA respectively. 
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The rest of the thesis is organized as follows; 

 

Chapter II presents 256 PE ME Hardware and 64 PE ME Hardware. 

 

Chapter III explains the proposed comparison prediction technique for reducing the 

power consumption of BM ME hardware, and presents its impact on the power consumption 

of the proposed 256 PE ME hardware. 

 

Chapter IV explains two power reduction techniques for H.264 HP ME hardware, 

and presents their impact on the power consumption of a VBS HP ME hardware. 

 

Chapter V presents the conclusions and possible directions for future work. 
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CHAPTER II 

FULL SEARCH MOTION ESTIMATION HARDWARE DESIGNS 

2.1 Motion Estimation Hardware with 256 Processing Elements 

The block diagram of the proposed ME hardware architecture for implementing VBS 

FS ME algorithm using 256 PEs is shown in Figure 2.1. FBS version of this ME hardware 

architecture is also implemented. In the proposed architecture, a 2-D systolic PE array is used 

and all the PEs are capable of shifting data down, up and left. Each circle in the figure 

represents a PE. This ME hardware finds the MVs of an MB in a search range of [-16, 15] 

pixels.  

 

 

 

Figure 2.1 256 PE VBS ME Hardware Architecture 
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The architecture of a PE is shown in Figure 2.2. Each PE calculates the absolute 

difference between a pixel in the current MB and a pixel in the search window. The SAD of a 

search location is calculated by adding the absolute differences calculated by PEs using an 

adder tree. This ME hardware is highly pipelined and its latency is eight clock cycles; one 

cycle for synchronous read from BRAM, one cycle for horizontal shifting, one cycle for SAD 

computation in 2-D systolic PE array, two cycles for the adder tree generating 4x4 SADs and 

three cycles for the adder tree generating 41 MVs for 7 different block sizes. 

 

 

The proposed 256 PE VBS ME hardware searches the search locations in a search 

window column by column in a zigzag pattern. Most of the proposed ME hardware 

architectures using 256 PEs use a vertical search flow and when the end of a column is 

reached the search location at the top of the next column is searched as shown in Figure 2.3 

(a). Therefore, it is required to either broadcast multiple pixels into the PEs [25] or delay all 

the PEs until they are filled. There are 256 PE ME hardware architectures using a 2-D systolic 

PE array and searching the search window in a zigzag pattern as shown in Figure 2.3 (b) [26]. 

However, these architectures either use both row and column aligned memories or use data 

duplication. The proposed ME hardware architecture overcomes this problem by using a 

pipeline of 16 8-bit temporary registers. 

  

Figure 2.2 PE Architecture 
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In the proposed 256 PE VBS ME hardware, the search starts at top left search location 

of the search window and proceeds down until the last search location of this column is 

searched. Then, the search continuous with the last search location of the next column and 

proceeds up until the first search location of this column is searched. Only 16 new search 

window pixels are required by the PE array in each cycle to calculate the SAD of the next 

search location regardless of its position in the search window. 

 

 

 

Table 2.1 Dataflow of 256 PE VBS ME Hardware 

Clock 
1st Column 

… 
16th Column Temp Column 

PE(0,15) PE(0,14) … PE(0,0) PE(15,15) PE(15,14) … PE(15,0) Reg15 Reg14 … Reg0 

0 S(0,0) nop 

… 

nop 

… 

S(15,0) nop 

… 

nop S(16,0) nop 

… 

nop 

1 S(0,1) S(0,0) nop S(15,1) S(15,0) nop S(16,1) S(16,0) nop 

… … … … … … … … … … 

15 S(0,15) S(0,14) S(0,0) S(15,15) S(15,14) S(15,0) S(16,15) S(16,14) S(16,0) 

16 S(0,16) S(0,15) 

… 

S(0,1) 

… 

S(15,16) S(15,15) 

… 

S(15,1) S(16,16) S(16,15) 

… 

S(16,1) 

17 S(0,17) S(0,16) S(0,2) S(15,17) S(15,16) S(15,2) S(16,17) S(16,16) S(16,2) 

… … … … … … … … … … 

46 S(0,46) S(0,45) S(0,31) S(15,46) S(15,45) S(15,31) S(16,46) S(16,45) S(16,31) 

47 S(1,46) S(1,45) 

… 

S(1,31) 

… 

S(16,46) S(16,45) 

… 

S(16,31) nop nop 

… 

nop 

48 S(1,45) S(1,44) S(1,30) S(16,45) S(16,44) S(16,30) nop nop S(17,30) 

… … … … … … … … … … 

78 S(1,15) S(1,14) S(1,0) S(16,15) S(16,14) S(16,0) S(17,15) S(17,14) S(17,0) 

… … 

1007 S(31,46) S(31,45) 

… 

S(31,31) 

… 

S(46,46) S(46,45) 

… 

S(46,31) nop nop 

… 

nop 

1008 S(31,45) S(31,44) S(31,30) S(46,45) S(46,44) S(46,30) nop nop nop 

… … … … … … … … … … 

1038 S(31,15) S(31,14) S(31,0) S(46,15) S(46,14) S(46,0) nop nop nop 

 

 

Figure 2.3 (a) Vertical Search Flow (b) Zigzag Search Flow 
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The data flow of the PEs is shown in Table 2.1 where S(x, y) is a search window pixel. 

Current MB pixels are not shown in the table, because each PE stores the same current MB 

pixel (e.g. PE(0,0) stores C(0,0)) while searching all the search locations in a search window. 

The PE array is filled in the first 15 cycles. While searching the search locations in the first 

column of the search window, in each cycle, vertical up shift is performed in the PE array and 

all the PEs except the ones in the last row are provided search window pixels from their 

neighboring PEs. PEs in the last row of PE array, in each cycle, read 16 new search window 

pixels from 16 BRAMs. 

 

The 17
th

 BRAM is used to be able to perform a left shift in the PE array after all the 

search locations in a column are searched. The 17
th

 BRAM is connected to the temporary 

registers and by the time there is a need for left shift, the pixels needed for the right most PEs 

in the PE array become ready in these temporary registers. After the search locations in the 

first column are searched, a left shift is performed in the PE array while the PEs in the 16
th

 

column of the PE array receive search window pixels from the temporary registers. 

 

While searching the search locations in the second column of the search window, in 

each cycle, vertical down shift is performed in the PE array and all the PEs except the ones in 

the first row are provided search window pixels from their neighboring PEs. PEs in the first 

row of PE array, in each cycle, read 16 new search window pixels from 16 BRAMs. 

 

Each BRAM stores the pixels in every 17th column of the search window, e.g. the first 

BRAM stores the pixels in the 1
st
, 18

th
 and 35

th
 columns. The order of the search window 

pixels read from the BRAMs is static. However, the order of the search window pixels 

required by the PE array and the temporary registers varies depending on the column being 

processed. This problem is solved by reordering the 16+1 pixels in a search MB row by the 

horizontal rotator hardware. 

 

The proposed 256 PE VBS ME hardware is implemented in Verilog HDL. The 

Verilog RTL code is synthesized to a XC2VP30 Xilinx Virtex II Pro FPGA with speed grade 

7 using Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the 

same FPGA using Xilinx ISE tool. The FPGA resource usage and the maximum clock 

frequency of the placed & routed design are given in Table 2.2. The ME hardware takes 1091 

clock cycles to process a MB. Therefore, it can process a VGA (640x480) frame in 11.23 ms 
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(1200 MBs x 1091 clock cycles per MB x 8.578 ns clock cycle = 11.23 ms). Therefore, it can 

process 1000/11.23 = 89 VGA frames per second. 

 

 

2.2 Motion Estimation Hardware with 64 Processing Elements 

The proposed 64 PE VBS ME hardware architecture is shown in Figure 2.4. This ME 

hardware finds the MVs of an MB in a search range of [-16, 15] pixels. This ME hardware 

has a systolic array of 64 (16x4) PEs. Each PE calculates the SAD values of 4 search 

locations for each MB. Each PE has 4 search pixel registers and 4 current pixel registers. The 

current pixels are loaded once for each current MB. The search pixels are reloaded for each 

search MB. However, by using data reuse technique, each PE column reads only one search 

pixel from the Block RAMs. Other search pixels are shifted among PEs. This reduces the 

required memory bandwidth compared to broadcasting search pixels to PEs every clock cycle 

as proposed in [27]. 

 

Table 2.2 The FPGA Resource Usage and the Maximum Clock Frequency of 256 PE VBS 

ME Hardware 

 

Function Generators 17252 62.98% 

CLB Slices 8626 62.98% 

DFFs 8736 29.79% 

BRAMs 17 12.5% 

Frequency (MHz) 113.23 
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The data flow of the 1
st
 PE column is shown in Table 2.2 where S(x, y) is a search 

window pixel. Current MB pixels are not shown in the table, because each PE stores the same 

four pixels for each MB. Each PE stores four search pixels and calculates their absolute 

differences with corresponding current pixels in four cycles. It takes 12 cycles for each PE to 

receive at least one search pixel and start execution at the beginning of each MB column in 

the search window. The first search pixels read from BRAMs are written directly to their 

registers in the PEs. Once the registers in all PEs are filled with the pixels in the first search 

MB of a MB column, each PE column reads a new search pixel in every four cycles and the 

search pixels in the PEs are shifted down in each PE column. 

 

 

Figure 2.4 64 PE VBS ME Hardware Architecture 
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The proposed ME hardware calculates SAD values for all 4x4 sub-blocks in a search 

MB in 4 cycles. The partial SAD values for 4x4 sub-blocks are stored in an accumulator. 

After the SAD values for all 4x4 sub-blocks are calculated, the SAD values for the other sub-

blocks are calculated by an Adder Tree. After all the search locations in the search window 

are searched, the sub-blocks with smallest SAD values are stored in the Comparator with their 

respective motion vectors. 

 

The proposed 64 PE VBS ME hardware is implemented in Verilog HDL. The Verilog 

RTL code is synthesized to a XC2VP30 Xilinx Virtex II Pro FPGA with speed grade 7 using 

Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the same 

FPGA using Xilinx ISE tool. The FPGA resource usage and the maximum clock frequency of 

the placed & routed design are given in Table 2.3. The ME hardware takes 4160 clock cycles 

to process a MB. Therefore, it can process a VGA (640x480) frame in 43.70 ms (1200 MBs x 

4160 clock cycles per MB x 8.755 ns clock cycle = 43.70 ms). Therefore, it can process 

1000/43.70 = 22 VGA frames per second. 

 

Table 2.2 Data Flow of 1st PE Column in 64 PE VBS ME Hardware 

Clock 

1st Column 

PE(0,0) PE(0,1)   PE(0,3) 

Reg3 Reg2 Reg1 Reg0 Reg3 Reg2 Reg1 Reg0   Reg3 Reg2 Reg1 Reg0 

0       S(0,0)         

… 

        

1     S(0,1) S(0,0)                 

… … … … … … … … … … … … … 

5 S(0,3) S(0,2) S(0,1) S(0,0)       S(0,4)         

6 S(0,3) S(0,2) S(0,1) S(0,0)     S(0,5) S(0,4)         

… … … … … … … … … … … … … 

12 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4)       S(0,12) 

13 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4)     S(0,13) S(0,12) 

14 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4)   S(0,14) S(0,13) S(0,12) 

15 S(0,3) S(0,2) S(0,1) S(0,0) S(0,7) S(0,6) S(0,5) S(0,4) S(0,15) S(0,14) S(0,13) S(0,12) 

16 S(0,4) S(0,3) S(0,2) S(0,1) S(0,8) S(0,7) S(0,6) S(0,5)   

… 

  

S(0,16) S(0,15) S(0,14) S(0,13) 

… … … … 

139 S(0,34) S(0,33) S(0,32) S(0,31) S(0,38) S(0,37) S(0,36) S(0,35) S(0,46) S(0,45) S(0,44) S(0,43) 

140       S(1,0)         
  

… 

  

        

141     S(1,1) S(1,0)                 

… … … … … … … … … … … … … 

155 S(1,3) S(1,2) S(1,1) S(1,0) S(1,7) S(1,6) S(1,5) S(1,4) S(1,15) S(1,14) S(1,13) S(1,12) 

… … …   … 

4476 

S(31,34) S(31,33) S(31,32) S(31,31) S(31,38) S(31,37) S(31,36) S(31,35) … S(31,16) S(31,15) S(31,14) S(31,13) 
4477 

4478 

4479 
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Table 2.3 The FPGA Resource Usage and the Maximum Clock Frequency of 64 PE VBS 

ME Hardware 

 

Function Generators 11608 42.38% 

CLB Slices 5804 42.38% 

DFFs 6241 21.28% 

BRAMs 17 12.5% 

Frequency (MHz) 114.22 
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CHAPTER III 

POWER REDUCTION TECHNIQUE FOR INTEGER PIXEL MOTION 

ESTIMATION HARDWARE 

 

BM ME hardware architectures perform absolute difference (AD) operations for 

calculating SAD values [10, 11, 28]. The number of AD operations performed by BM ME 

algorithms is very high. For example, FS algorithm performs 103,809,024 AD operations for 

finding motion vectors of a CIF (352x288) size frame in a [-16, 15] search range. Using larger 

frame sizes, larger search ranges or multiple reference frames significantly increases the 

number of AD operations performed. 

 

Therefore, we propose comparison prediction (CP) technique for reducing the power 

consumption of BM ME hardware by reducing the power consumption of absolute difference 

operations. CP technique replaces the 8-bit comparator in AD hardware with a D Flip-Flop 

(DFF) and 1-bit inverter. CP technique can easily be used in all BM ME hardware. In this 

thesis, it is applied to the FBS version of the proposed 256 PE VBS ME hardware. It reduced 

the average dynamic power consumption of this ME hardware by 6.1% with 0.01% PSNR 

loss and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA. 

3.1 Absolute Difference Hardware 

The 256 PE FBS ME hardware implements full search algorithm with a zigzag search 

flow in a [-16, 15] search range. It finds the search location in the search window (SW) that 

best matches the current 16x16 MB based on minimum SAD criterion. While the SW is 

searched for the current MB, each PE stores a current MB pixel and calculates the AD with 

corresponding pixels in the SW. ADs calculated by the 256 PEs for a search location are 

added by a pipelined adder tree in order to calculate the SAD value of this search location. 
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After the SAD values for all search locations in the SW are calculated, the search process for 

the current MB finishes. 

 

The AD hardware used in this ME hardware is shown in Figure 3.1. It includes an 8-

bit comparator, two 8-bit 2to1 multiplexers, an 8-bit subtractor, and an 8-bit register. AD 

hardware compares the 8-bit current MB pixel with the 8-bit SW pixel and subtracts the 

smaller one from the larger one. The result of the comparison is used to select the proper 

pixels for subtraction so that the result of the subtraction is always positive. 

  

 

 

 
 

Figure 3.1 Standard Absolute Difference Hardware 
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3.2 Comparison Prediction Technique 

The proposed CP technique avoids the comparison in the AD hardware by predicting 

the comparison result using the previous subtraction result. As shown in Figure 3.2 (a) and 

(b), the proposed technique stores an initial prediction in a DFF, and updates it after each 

incorrect prediction. The initial prediction predicts that current MB pixel will be subtracted 

from the SW pixel. If the sign bit of the subtraction result is 0, the prediction is correct and the 

DFF is not updated. If the sign bit of the subtraction result is 1, the prediction is incorrect and 

the prediction in the DFF is reversed. This new prediction is used for predicting the 

comparison results for the following pixels. 

 

 

 

 
 

(a) 

 
 

(b) 

 

Figure 3.2 (a) Reset based Absolute Difference Prediction Hardware (b) Enable based 

Absolute Difference Prediction Hardware 
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When the comparison prediction is incorrect, the result of the subtraction operation is 

different from the absolute difference of the two input pixels. This causes PSNR loss. Since 

the pixels in the SW usually have high spatial correlation, CP technique has very high 

prediction accuracy. Therefore, it causes very small PSNR loss. We determined the accuracy 

of the comparison prediction on 5 video sequences each with 80 frames. The results show that 

the proposed CP technique correctly predicts the results of 90.1% of the comparisons 

performed by the PEs. 

 

When there is an incorrect prediction, the larger pixel value is subtracted from the 

smaller one and the subtraction result is negative. Using this negative value for SAD 

calculation will result in an incorrect SAD. In order to reduce the impact of this negative 

value on the SAD and therefore reduce the impact of using incorrect predictions on the PSNR 

obtained by ME, we propose four different methods; reset based AD prediction (R-ADP), 

enable based AD prediction (E-ADP), R-ADP used with a checkerboard pattern (CR-ADP) 

and E-ADP used with a checkerboard pattern (CE-ADP). 

 

As shown in Figure 3.2 (a), R-ADP method uses the sign bit of the subtraction result 

as a reset signal for the 8-bit register used for storing the absolute difference result. When an 

incorrect prediction is done, this 8-bit register is set to 0. Therefore, instead of a negative 

value, 0 is used for SAD calculation. Since the SW pixels have high spatial correlation, in 

case of consecutive incorrect comparison predictions, it is likely that the current MB pixel 

value is close to the SW pixel values. Therefore, predicting absolute difference as 0 will have 

a small impact on SAD. 

 

As shown in Figure 3.2 (b), E-ADP method uses the inverse of the sign bit of the 

subtraction result as an enable signal for the 8-bit register used for storing the absolute 

difference result. When an incorrect prediction is done, this 8-bit register is disabled. 

Therefore, instead of a negative value, the previous absolute difference is used for SAD 

calculation. In case of consecutive incorrect comparison predictions, predicting the absolute 

differences as 0 may cause the SAD to be smaller than it should be and this SAD value may 

incorrectly be selected as the minimum SAD. E-ADP method avoids this by using the 

previous absolute difference in case of incorrect comparison prediction. In addition, since E-

ADP method keeps the previous AD value in the 8-bit register, it does not consume dynamic 

power for setting the 8-bit register to 0. 
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CR-ADP method applies the R-ADP method to 128 of the 256 PEs in the PE array. 

CE-ADP method applies the E-ADP method to 128 of the 256 PEs in the PE array. In both 

CR-ADP and CE-ADP methods, the 128 PEs are determined by a checkerboard pattern as 

shown in Figure 3.3. 

 

 

 

3.3 Implementation Results 

The proposed R-ADP, E-ADP, CR-ADP and CE-ADP methods are integrated to 

H.264 JM reference encoder software version 14.2. The average PSNR (dB) and bit rate 

(Kbps) obtained by these methods for several video sequences for 16x16 FBS FS ME in a [-

16, 15] search range with zigzag search flow are given in Table 3.1. The rate distortion curves 

for the video sequences are shown in Figure 3.4. The data for rate distortion curves are 

obtained for quantization parameters 20, 25, 30, 35 and 40. 

 
 

Figure 3.3 Checkerboard Pattern for Standard (S) and Predicted (P) 

Absolute Difference Hardware 
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Table 3.1 Average PSNR and Bit Rate for Several Video Sequences 

 

Comparison 

Prediction 

Accuracy 

Quantization 

Parameter 

Absolute  

Difference 

Proposed Methods 

R-ADP CR-ADP E-ADP CE-ADP 

Bit 

Rate 
PSNR 

Bit 

Rate 
PSNR 

Bit 

Rate 
PSNR 

Bit 

Rate 
PSNR 

Bit 

Rate 
PSNR 

V
id

eo
 S

eq
u
en

ce
s 

Foreman 

(288x352) 
90.9% 

25 

30 

35 

1753 

804 

398 

38.916 

35.588 

32.252 

2088 

1016 

534 

38.893 

35.466 

31.920 

1800 

837 

417 

38.909 

35.556 

32.147 

1814 

1023 

525 

38.902 

35.474 

31.968 

2070 

833 

411 

38.910 

35.563 

32.197 

Mobile 

(288x352) 
86.5% 

25 

30 

35 

9440 

6647 

4444 

38.226 

33.146 

28.074 

9382 

6692 

4496 

38.216 

33.130 

28.036 

9331 

6602 

4376 

38.221 

33.140 

28.069 

9487 

6557 

4481 

38.216 

33.139 

28.048 

9338 

6566 

4383 

38.225 

33.141 

28.071 

Mother & 

Daughter 

(288x352) 

91.3% 

25 

30 

35 

2149 

1198 

658 

39.972 

36.496 

32.966 

2217 

1248 

663 

39.942 

36.437 

32.829 

2170 

1200 

660 

39.966 

36.480 

32.861 

2163 

1203 

699 

39.948 

36.459 

32.834 

2150 

1214 

662 

39.967 

36.462 

32.901 

Akiyo 

(288x352) 
93.3% 

25 

30 

35 

2219 

1447 

955 

41.193 

37.336 

35.183 

2258 

1495 

903 

41.166 

37.254 

35.006 

2211 

1415 

955 

41.183 

37.299 

35.128 

2329 

1444 

955 

41.180 

37.279 

35.100 

2257 

1422 

898 

41.186 

37.300 

35.174 

Paris 

(288x352) 
89.6% 

25 

30 

35 

6102 

4126 

2716 

38.703 

34.155 

29.395 

6288 

4268 

2817 

38.678 

34.129 

29.357 

6243 

4136 

2719 

38.690 

34.145 

29.388 

6170 

4221 

2775 

38.689 

34.139 

29.363 

6121 

4178 

2718 

38.695 

34.145 

29.390 

Average PSNR     

 Loss 

25 

30 

35 

─ 

0% 

0% 

0% 

─ 

0.06% 

0.17% 

0.44% 

─ 

0.02% 

0.06% 

0.17% 

─ 

0.04% 

0.13% 

0.34% 

─ 

0.01% 

0.06% 

0.08% 
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The results show that E-ADP method performs better than R-ADP method, and CE-

ADP and CR-ADP methods perform very close to using standard absolute difference 

operation. 

 

 
(a) 

 

 
(b) 

 

Figure 3.4 Rate Distortion Curves for  

a) Mother & Daughter and b) Mobile Video Sequences 
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The proposed R-ADP, E-ADP, CR-ADP and CE-ADP methods are implemented in 

Verilog HDL and these hardware implementations are integrated to 256 PE ME hardware. 

The resulting Verilog RTL codes are synthesized to a XC2VP30-7 FPGA using Precision 

RTL 2005b and mapped to the same FPGA using ISE 8.2i. The ME hardware 

implementations are verified with post place & route simulations using Modelsim 6.1c. 

 

The power consumptions of the ME hardware are estimated using Xilinx XPower tool. 

In order to estimate the dynamic power consumption of a ME hardware, timing simulation of 

the placed & routed netlist of that ME hardware is done at 50 MHz for a full frame of the 

Foreman video sequence using Mentor Graphics ModelSim 6.1c and the signal activities are 

stored in a Value Change Dump (VCD) file. This VCD file is used for estimating the dynamic 

power consumption of that ME hardware. 

 

The area and power consumptions of ME hardware with standard AD and ME 

hardware with proposed methods are given in Table 3.2. The ME hardware with R-ADP, E-

ADP, CR-ADP and CE-ADP methods use 8%, 9%, 4% and 3% less slices than the ME 

hardware with standard AD. The ME hardware with R-ADP, E-ADP, CR-ADP and CE-ADP 

methods have 8.1%, 9.3%, 6.0% and 6.1% less dynamic power consumption than the ME 

hardware with standard AD. 

 

R-ADP and E-ADP methods reduce the dynamic power consumption and area of the 

ME hardware more than the CR-ADP and CE-ADP methods. However, R-ADP and E-ADP 

methods have a PSNR loss of 0.06% and 0.04% respectively, whereas CR-ADP and CE-ADP 

methods have a PSNR loss of 0.02% and 0.01% respectively. Therefore, one of the four 

methods can be used for ME depending on performance and power consumption requirement 

of the video compression or video enhancement application. 
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Table 3.2 Comparison of Motion Estimation Hardware 

Architectures  

 
AD 

Proposed Techniques 

R-ADP CR-ADP E-ADP CE-ADP 

Value Value % Value % Value % Value % 
A

re
a Slice 9353 8628 8 8934 4 8542 9 9039 3 

LUT 16145 14353 11 15210 6 14217 12 15261 5 

DFF 7377 7633 -3 7505 -2 7633 -3 7505 -2 

Average 
Dynamic 

Power 

(mW) 

775.90 713.39 8.1 729.57 6.0 704.09 9.3 728.77 6.1 
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CHAPTER IV 

POWER REDUCTION TECHNIQUES FOR H.264 HALF-PIXEL MOTION 

ESTIMATION HARDWARE 

4.1 Half-Pixel Motion Estimation Algorithm and Hardware 

The search locations for half-pixel accurate motion estimation are shown in Figure 4.1. 

First, integer-pixel motion estimation is performed at the integer-pixel search locations and 

best integer-pixel motion vector is determined based on minimum SAD criterion. Then, half-

pixel motion estimation is performed at the eight half-pixel search locations around the best 

integer-pixel motion vector with a search range of [-1, 1], and the integer-pixel motion vector 

is refined by the best half-pixel motion vector. 

 

 

                

Figure 4.1 Half Pixel Search Locations 
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Before searching for the best half-pixel motion vector, half pixels in the half-pixel 

search window are interpolated from the neighboring pixels using the following 6-tap finite 

impulse response (FIR) filter: 

 

32/)520205( FEDCBAPixelHalf c             (4.1) 

 

First, the half pixels that are adjacent to two integer pixels are interpolated from 6 

integer pixels. Then, the remaining half pixels are interpolated from 6 horizontal or 6 vertical 

half pixels. A half-pixel interpolation example is shown in Figure 4.2. First, the half pixels a, 

b, c, d, e, f are interpolated from 6 corresponding horizontal integer pixels. For example, half 

pixel c is interpolated from the 6 horizontal integer pixels A, B, C, D, E, and F. Then, the half 

pixels g, h, i, j, k, m are interpolated from 6 corresponding vertical integer pixels. For 

example, half pixel i is interpolated from the 6 vertical integer pixels M, N, C, I, O, P. Finally, 

half-pixel n can be interpolated from either horizontal half pixels g, h, i, j, k, m or vertical half 

pixels a, b, c, d, e, f. 

 

 

 

Figure 4.2 Half Pixel Interpolation 
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According to H.264 standard, there are 41 sub-blocks in a 16x16 MB as shown in 

Figure 4.3. When performing VBS HP ME, each sub-block is searched in the search window 

defined by the integer motion vector of that sub-block. Therefore, for each sub-block, HP ME 

may be performed in a different search window. 

 

 

 

The VBS HP ME hardware proposed in [24] performs HP interpolation and HP search 

for each sub-block. For each sub-block, first, interpolation hardware calculates the half pixels 

in the half-pixel search window of that sub-block. Then, search hardware searches the half-

pixel search locations and determines the best half-pixel motion vector for that sub-block. In 

the VBS HP ME hardware proposed in [24], interpolation datapaths are shared by different 

block sizes. 4x4, 4x8 and 8x4 blocks share 10 interpolation datapaths. 8x8, 8x16, 16x8 and 

16x16 blocks share 18 interpolation datapaths. The block diagram of the half-pixel 

interpolation hardware for 4x4, 4x8 and 8x4 sub-blocks is given in Figure 4.4. The 

interpolation and search for different size sub-blocks run in parallel, while the interpolation 

and search for the same size sub-blocks run sequentially.  

 

  

 

 

Figure 4.3 Variable Block Size Modes 
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Figure 4.4 Half Pixel Interpolation Hardware for 4x4, 4x8 and 8x4 Sub Blocks [24] 

4.2 Vector Dependent SAD Reuse Technique 

In VBS IP ME, SAD value of each sub-block should be calculated for each search 

location. SAD reuse is a commonly used technique that allows calculating the SADs of larger 

sub-blocks by adding the SADs of smaller sub-blocks. As shown in Figure 4.3, SADs of all 

41 sub-blocks for a search location can be calculated by using the SADs of 16 4x4 sub-blocks. 

However, SAD reuse technique is not directly applicable to VBS HP ME. HP MVs of each 

sub-block may be searched in different search windows. Since larger sub-blocks may have a 

different search window than the search windows of smaller sub-blocks, in VBS HP ME, the 

SADs of each sub-block may have to be calculated separately. 

 

In this thesis, we propose vector dependent SAD reuse technique for VBS HP ME in 

order to reduce the power consumption of VBS HP ME hardware by eliminating redundant 

computations. When IP MVs of neighboring sub-blocks are equal, their cumulative search 

window is the same as the search window of the larger sub-block composed of these sub-

blocks. In this case, performing HP ME for the larger block is redundant, because its SADs 

for the half-pixel search locations can be calculated by using the SADs of the smaller sub-
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blocks for the same half-pixel search locations. Vector dependent SAD reuse technique 

requires comparing the IP MVs of the sub-blocks. When the IP MVs of the proper sub-blocks 

are equal, the HP ME hardware can be disabled for the larger blocks, and the SADs of the 

larger blocks for the half-pixel search locations can be computed using the SADs of these sub-

blocks for the same half-pixel search locations. 

 

For each sub-block size, the percentage of the smaller sub-blocks with equal IP MVs 

for a CIF size Foreman video sequence is shown in Table 4.1.  It can be seen that IP MVs of 

the same size sub-blocks are highly correlated and they are likely to have the same IP MV 

with the one larger size sub-block. The probability of having equal IP MVs decreases as the 

number of same size sub-blocks increase, e.g. it is unlikely for 16 4x4 sub-blocks of a 16x16 

MB to have the same IP MV. 

 

In our implementation of the vector dependent SAD reuse technique, HP ME for 8x4, 

4x8 and 8x8 sub-blocks is not enabled if the IP MVs of the corresponding 4x4 sub-blocks are 

equal. Similarly, HP ME for 8x16, 16x8 and 16x16 sub-blocks is not enabled if the IP MVs of 

the corresponding 8x8 sub-blocks are equal. For example, HP ME for sub-block 25 in Figure 

4.3 is not enabled if the MVs of the sub-blocks 1 and 2 are equal. Similarly, HP ME for sub-

block 34 is not enabled if the MVs of the sub-blocks 3, 4, 7 and 8 are equal. 

 

 

 

 

Table 4.1 Average Computation Reduction Obtained from a Foreman CIF (352x288) 

Video Sequence Using Vector Dependant SAD Reuse Technique 

 

Average  

Computation  

Reduction 

Computed Block Size 

8x4 4x8 8x8 16x8 8x16 16x16 

C
o
m

p
ar

ed
 B

lo
ck

 

S
iz

e 

4x4 15.06 % 15.34 % 4.42% 0.88% 1.39% 0.00 % 

8x4     29.92 % 9.22 % 10.35 % 3.79 % 

4x8     28.09 % 8.46 % 9.47% 1.77 % 

8x8       33.84 % 35.86 % 15.66 % 

16x8           45.20 % 

8x16           41.67 % 
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If the IP MVs of the corresponding 4x4 sub-blocks are equal, the SADs of 8x4, 4x8, 

and 8x8 sub-blocks for the half-pixel search locations are computed using the SADs of these 

4x4 sub-blocks for the same half-pixel search locations. Similarly, if the MVs of the 

corresponding 8x8 sub-blocks are equal, the SADs of 8x16, 16x8, and 16x16 sub-blocks for 

the half-pixel search locations are computed using the SADs of these 8x8 sub-blocks for the 

same half-pixel search locations. 

 

The proposed technique requires comparing IP MVs of two 4x4 sub-blocks for each 

4x8 and 8x4 sub-block. Since the comparison results for 8x4 and 4x8 sub-blocks can be 

reused for the 8x8 sub-blocks, 16 comparisons are enough to determine the equality of the 

corresponding 4x4 IP MVs. The proposed technique also requires 4 comparisons for 

determining the equality of the corresponding 8x8 IP MVs. Therefore, 20 comparisons per 

MB are required. 

 

In addition, the proposed technique requires storing the SADs of half-pixel search 

locations for the 4x4 sub-blocks with equal IP MVs in a register file. Similarly, the SADs of 

half-pixel search locations for the 8x8 sub-blocks with equal IP MVs are stored in a register 

file. After the SADs of all corresponding 4x4 sub-blocks are calculated, an adder calculates 

the sum of 2 SADs for 4x8 and 8x4 blocks, and 4 SADs for 8x8 blocks. The same adder is 

used for calculating the sum of 2 8x8 sub-block SADs for 8x16 and 16x8 blocks, and 4 8x8 

sub-block SADs for 16x16 MB. 

4.3 Integer-Pixel Motion Vector Trajectory Based Adaptive Half-Pixel Motion 

Estimation Algorithm 

In order to decrease the power consumption of HP ME hardware, we propose an 

adaptive algorithm that reduces the 2-D search window of HP ME to a 1-D search window. 

This reduction is done if the IP MVs meet a certain criterion so that the trajectory of the MV 

is estimated to be either on the x-axis or y-axis. In this case, 1-D search is performed on the 

estimated trajectory of the IP MV resulting in a significant amount of computation reduction 

for HP ME. If this cannot be estimated, the original 2-D HP ME algorithm is used.  
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HP ME requires both interpolation and search. Since only the half pixels required in 

HP search need to be interpolated, reducing the search window to 1-D reduces the amount of 

computation for both interpolation and search.  

 

The half-pixel interpolation flow for 4x4 sub-blocks is shown in Figure 4.5. Set A 

half-pixels are interpolated from a column of integer pixels, set B half-pixels are interpolated 

from a row of integer pixels, and set C half pixels are interpolated from a row of set A half-

pixels. Set A half-pixels required for interpolating set C half-pixels are also computed. In 2-D 

HP ME, 130 half-pixels should be interpolated, whereas 1-D HP ME requires interpolating 

only the 35 neighboring set A or set B half-pixels depending on the axis chosen. Since set C 

half-pixels are not used in 1-D HP ME, set A half-pixels required for interpolating the set C 

half-pixels are not computed either. Similarly, for a 16x16 MB, 2-D HP ME requires 

interpolating 374 set A half-pixels, 272 set B half-pixels and 289 set C half-pixels, whereas 1-

D HP ME requires interpolating 272 set A or set B half-pixels. 

 

  

 

 

Figure 4.5 Half Pixel Interpolation for 4x4 Sub Blocks [24] 
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The number of search locations required for 2-D and 1-D HP ME are shown in Figure 

4.6. 8 SAD values should be calculated in a search window of [-1, 1] for 2-D HP ME, 

whereas only 2 SAD values should be calculated for 1-D HP ME. 

 

We propose three different methods, Zero (Z), Twice Bigger Than (TBT) and Bigger 

Than (BT), for estimating the trajectory of IP MVs. Z method estimates the trajectory of an IP 

MV only if x or y component of the MV is equal to zero. In case of an IP MV with zero x 

component and non-zero y component, 1-D HP ME on the y axis will be performed. 

Similarly, in case of an IP MV with zero y component and non-zero x component, 1-D HP 

ME on the x axis will be performed. TBT method performs 1-D HP ME on an axis if the MV 

component of that axis has an absolute value at least twice larger than the absolute value of 

the MV component of the other axis. In all other cases, i.e. when x and y components are 

equal or close to each other, 2-D HP ME is performed. BT method estimates the trajectory of 

the IP MV if the x or y component has a larger absolute value than the other component. 

Since this method performs 1-D HP ME unless the x and y components of the IP MV are 

equal, it favors 1-D HP ME the most. 

 

The cases where each method performs 1-D HP ME instead of 2-D HP ME depending 

on IP MV values are illustrated in Figure 4.7. Z method performs 1-D HP search only when 

the MV is on the x or y axis. BT method performs 1-D HP search for almost all MVs unless 

the x and y components of the MV are equal. TBT method performs 1-D HP search for about 

half of all MVs. 

 

 

Figure 4.6 Half Pixel Search Locations for Each Integer Pixel 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 4.7 Vector Trajectory Estimations for (a) Zero, (b) Twice Bigger Than, and (c) Bigger 

Than Criteria 
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The percentage of performing 1-D search and the PSNR results obtained by each 

method are shown in Table 4.2 for both FBS and VBS HP ME. The percentage of 1-D search 

shows the percentage of making trajectory estimation for the IP MV and therefore performing 

1-D HP ME instead of 2-D HP ME. 

 

The results show that all three methods mostly perform 2-D HP ME for the low 

motion video sequence „Akiyo‟. Therefore, they have minor PSNR loss. For the other video 

sequences, both TBT and BT methods have similar results both in computation reduction and 

PSNR loss.  Z method performs 1-D HP ME considerably less than the other two methods, 

therefore it achieves less computation reduction with better PSNR performance. Because of 

the better computation reduction performance of BT technique, we used it in the hardware 

implementation of IP MV trajectory based HP ME. 

 

The proposed IP MV trajectory based HP ME technique is also integrated to VBS HP 

ME hardware proposed in [24]. The integration required adding an absolute difference 

hardware and two comparators, and modifying the control unit. The BT method which 

Table 4.2 Comparison of Estimation Methods (Percentage of 1-D Search and the 

Resulting PSNR) 
 

Algorithm 

Percentage of 

1-D Search 

Original  

PSNR (dB) 

Proposed Techniques   

PSNR (dB) 

FBS HP 

ME 

VBS HP 

ME 

FBS HP 

ME 

VBS HP 

ME  
FBS HP ME  VBS HP ME  

Z
er

o
 

Foreman 40.84% 33.36% 34.87 38.97 34.70 38.76 

Mobile 69.69% 58.18% 27.21 28.13 26.03 27.57 

Akiyo 3.06% 5.51% 44.75 46.16 44.67 46.08 

T
w

ic
e 

B
ig

g
er

 

T
h
an

 

Foreman 58.64% 57.74% 34.87 38.97 34.63 38.67 

Mobile 74.34% 71.22% 27.21 28.13 26.01 27.50 

Akiyo 3.12% 7.94% 44.75 46.16 44.67 46.06 

B
ig

g
er

 T
h
an

 

Foreman 62.22% 68.06% 34.87 38.97 34.62 38.64 

Mobile 74.70% 74.82% 27.21 28.13 26.01 27.48 

Akiyo 3.12% 8.96% 44.75 46.16 44.67 46.05 
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determines whether to perform 1-D HP search or 2-D HP search is implemented as a pre-

computation step before interpolation of each sub-block. The BT method is implemented by 

checking whether x and y components of the MV are equal or one of them is larger than the 

other one. If they are equal, than 2-D HP ME is performed. If one of the components is larger 

than the other one, then a trajectory estimation towards the larger component is done and the 

appropriate control signal is sent to the HP ME module. 

 

Depending on the result of the trajectory estimation, the interpolation module 

interpolates either all the half pixels required for performing 2-D HP ME or only the half-

pixels required for performing 1-D HP ME. Similarly, the search module calculates either the 

SADs of all 8 half-pixel search locations for performing 2-D HP ME or the SADs of 2 half-

pixel search locations on the selected axis for performing 1-D HP ME. The data flow of the 

hardware for 1-D HP ME is similar to 2-D HP ME. But, the input registers of both 

interpolation and search modules, and the accumulator in the processing elements are disabled 

accordingly to reduce power consumption. 

4.4 Implementation Results 

The proposed VBS HP ME hardware architectures are implemented in Verilog HDL 

and mapped to a Xilinx Virtex 6 FPGA using Synopsys Synplify synthesis tool and Xilinx 

ISE 11.4 place and route tool.  

 

In order to estimate the power consumptions of the VBS HP ME hardware 

implementations, timing simulations of their placed and routed netlists are done using Mentor 

Graphics ModelSim SE 6.1c. A frame from CIF (352x288) size Foreman video sequence is 

used as input for timing simulations and the signal activities are stored in VCD files. These 

VCD files are used for estimating the power consumptions using Xilinx XPower Analyzer 

11.4 tool. 
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The power consumptions at 50 MHz and areas of the proposed hardware 

implementations on a Virtex 6 FPGA are shown in Table 4.3. As shown in the table, the 

proposed vector dependent SAD reuse and vector trajectory based HP search techniques 

reduced the power consumption of the VBS HP ME hardware by 6% and 31% respectively. 

 

Since HP ME hardware will be used as part of an H.264 video encoder, only internal 

power consumption is considered, and input and output power consumptions are ignored. 

Therefore, the power consumption of the HP ME hardware can be divided into four main 

categories; signal power, logic power, clock power and BRAM power. Signal power is the 

power dissipated in routing tracks between logic blocks. Logic power is the amount of power 

dissipated in the parts where computations take place. Clock power is due to clock tree used 

in the FPGA. BRAM power is the power dissipated in BRAMs. 

Table 4.3 Area and Power Comparison of Proposed Vector Dependent SAD Reuse 

(VDSR) and Vector Trajectory Based Search (VTBS) Techniques 
 

Area 

 
Original VDSR VTBS 

LUTs 15595 15576 15640 

D Flip-Flops 13921 14021 13921 

BRAMs 37 39 24 

Power Consumption (mW) 

 
Original VDSR VTBS 

Clock 28.39 28.36 26.75 

Logic 5.50 4.09 2.83 

Signal 15.68 11.28 10.51 

BRAM 44.70 44.60 24.67 

Total 94.27 88.33 64.76 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

 

In this thesis, first, we proposed two FS ME hardware architectures which use 256 PEs 

and 64 PEs respectively. The 256 PE ME hardware takes 1091 clock cycles to process a MB. 

Therefore, it can process 89 VGA frames per second. The 64 PE ME hardware takes 4160 

clock cycles to process a MB. Therefore, it can process 22 VGA frames per second. 

 

Then, we proposed CP technique for reducing power consumption of BM ME 

hardware. CP technique replaces the 8-bit comparator in AD hardware with a DFF and 1-bit 

inverter. CP technique can easily be used in all BM ME hardware. In this thesis, it is applied 

to a fixed-block size 256 PE ME hardware implementing full search algorithm. It reduced the 

average dynamic power consumption of this ME hardware by 6.1% with 0.01% PSNR loss 

and by 9.3% with 0.04% PSNR loss on a XC2VP30-7 FPGA. 

 

Finally, we proposed two power reduction techniques for HP ME hardware. Vector 

dependent SAD reuse technique reduced the power consumption of a VBS HP ME hardware 

by 6% with no PSNR loss and minor area overhead. The vector trajectory based adaptive HP 

ME technique reduced the power consumption of the same VBS HP ME hardware by 31% 

with minor PSNR loss and area overhead. 

 

As future work, the proposed CP technique can be improved to have no PSNR loss by 

updating the results after incorrect predictions. The proposed low power techniques for HP 

ME hardware can be applied to quarter pixel accurate ME hardware. The impact of the 

proposed low power techniques on the ASIC implementations of ME hardware architectures 

can be presented. 

 



36 

 

 

 

REFERENCES 

 

 

 
[1] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003. 

[2] B.-D. Choi, J.-W. Han, C.-S. Kim, S.-J. Ko, “Motion-compensated Frame Interpolation 

Using Bilateral Motion Estimation and Adaptive Overlapped Block Motion Compensation,” 

IEEE Trans. on CAS for Video Technology, vol. 17, no.4,  pp. 407–416, Apr. 2007. 

[3] Y. Ling, J. Wang, Y. Liu, and W. Zhang, “A Novel Spatial and Temporal Correlation 

Integrated Based Motion-compensated Interpolation for Frame Rate Up-conversion,” IEEE 

Trans. on Consumer Electronics, vol. 54, no.2, pp. 863-869, May 2008. 

[4] C. Wei, H. Hui, T. Jiarong, and M. Hao, “A High-performance Reconfigurable VLSI 

Architecture for VBSME in H.264,” IEEE Trans. on Consumer Electronics, vol. 54, no. 3, pp. 

1338-1345, Aug. 2008. 

[5] T. Moorthy, and A. Ye, “A Scalable Computing and Memory Architecture for Variable 

Block Size Motion Estimation on Field-Programmable Gate Arrays,” International 

Conference on Field Programmable Logic, pp. 83-88, Sept. 2008. 

[6] R. Li, B. Zeng, and M.L. Liou, “A New Three-step Search Algorithm for Block Motion 

Estimation,” IEEE Trans. on CAS for Video Technology, vol. 4, pp. 438–442, 1994.  

[7] S. Zhu and K.-K. Ma, “A New Diamond Search Algorithm for Fast Block Matching 

Motion Estimation,” IEEE Trans. on Image Processing, vol. 9, pp. 287–290, 2000. 

[8] C. Zhu, X. Lin, and L. P. [30] Chau, “Hexagon-based Search Pattern for Fast Block 

Motion Estimation,” IEEE Trans. on CAS for Video Technology, vol. 12, pp. 349–355, 2002. 

[9] X.-Q. Banh and Y.-P. Tan, “Adaptive Dual-cross Search Algorithm for Block-matching 

Motion Estimation”, IEEE Trans. on Consumer Electronics, vol. 50, no. 2, pp. 766-775, May 

2004. 

[10] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A Novel Motion Estimator 

Supporting Diamond Search and Fast Full Search,” IEEE ISCAS, May 2002. 

[11] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically Variable Step Search 

Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its 

Implementation,” IEEE Trans. on Consumer Electronics, vol. 55, no. 3, Aug 2009. 



37 

 

[12] G. Stewart, D. Renshaw, and M. Riley, “A Novel Motion Estimation Power Reduction 

Technique,” International Conference on Field Programmable Logic, pp. 546–549, August 

2007. 

[13] S. Yalcin, H. F. Ates and I. Hamzaoglu, “A High Performance Hardware Architecture for 

an SAD Reuse based Hierarchical Motion Estimation Algorithm for H.264 Video Coding”, 

International Conference on Field Programmable Logic, August 2005. 

[14] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the 

H.264/AVC Video Coding Standard”, IEEE Trans. on CAS for Video Technology, July 2003.  

[15] K. Minoo, T. Q. Nquyen, “Reverse, Sub-Pixel Block Matching: Applications within 

H.264 and Analysis of Limitations”, IEEE Int. Conf. on Image Processing, 2006. 

[16] T. Dias, N. Roma, L. Sousa, “Efficient Motion Vector Refinement Architecture for Sub-

Pixel Motion Estimation Systems”, IEEE SIPS, 2005.  

[17] T. C. Chen, Y. H. Chen, C. Y. Tsai, L. G. Chen, “Low Power and Power Aware 

Fractional Motion Estimation of H.264/AVC for Mobile Applications”, IEEE ISCAS, 2006. 

[18] J. W. Suh, J. Jechang, “Fast Sub-pixel Motion Estimation Techniques Having Lower 

Computational Complexity”, IEEE Trans. on Consumer Electronics, August 2004. 

[19] Y. J. Wang, C. C. Cheng, T. S. Chang, “A Fast Algorithm and Its VLSI Architecture for 

Fractional Motion Estimation for H.264/MPEG-4 AVC Video Coding”, IEEE Trans. on CAS 

for Video Technology, May 2007. 

[20] Y. Song, Y. Ma, Z. Liu, T. Ikenaga, S. Goto, “Hardware-Oriented Direction-Based Fast 

Fractional Motion Estimation Algorithm in H.264/AVC”, IEEE ICME, 2008. 

[21] H. Nisar, T. S. Choi, “Fast and Efficient Fractional Pixel Motion Estimation for 

H.264/AVC Video Coding”, IEEE ICIP, 2009. 

[22] Degalahal V. and Tuan T., "Methodology for High Level Estimation of FPGA Power 

Consumption", Asia and South Pacific Design Automation Conference, pp. 657-660, Jan 

2005.  

[23] Abdelli N., Fouilliart A.-M., Mien N., Senn E., "High-Level Power Estimation of 

FPGA", IEEE International Symposium on Industrial Electronics, pp. 925-930, June 2007. 

[24] S. Yalcin, I. Hamzaoglu, “A High Performance Hardware Architecture for Half-Pixel 

Accurate H.264 Motion Estimation”, IFIP Int. Conf. on VLSI-SoC, October 2006. 

[25] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G. Chen, “Hardware architecture design 

for variable block-size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264,” IEEE Int. 

Symp. on Circuits Syst., pp. 796–799, 2003. 



38 

 

[26] M. Kim, I. Hwang, and S.-I. Chae, “A fast VLSI architecture for full-search variable 

block size motion estimation in MPEG-4 AVC/H.264,” ASP DAC, pp. 631–634, Jan 2005. 

[27] S. Khawam, et.al., “Efficient Implementations of Mobile Video Computations on 

Domain Specific Reconfigurable Arrays,” DATE Conference, February 2004. 

[28] T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien, and L. G. Chen, “Fast Algorithm and 

Architecture Design of Low-Power Integer Motion Estimation for H.264/AVC,” IEEE Trans. 

on CAS for Video Technology, vol. 17, pp. 568-577, 2007. 


