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Abstract

In this thesis, we implement the existing models for the diffusion of innovation and we present

a novel model for the collective action in complex networks. We also create a new network

called the Robin Hood network using poor get richer approach. The diffusion models are

divided into three components, namely node, link and neighbor diffusion. Each diffusion

model is simulated in ring lattice, small worlds, random networks and scale free networks in

order to analyze the effect of network topology. The simulation results suggest that low level

of clustering coefficient and average path length, as well as the presence of hubs are efficient

for the innovation to become widespread. Comparative results for the collective action show

that the presence of hubs is insignificant for determining the size of the collective subset. On

the other hand, the tightly-knit communities are effective for the collective decision making.

We also provide sufficient parameters for the modelling of networks where both the diffusion

and collective action take place. According to our results, the clustering plays an important

role in both diffusion and collective action. However, the presence of hubs is not a must for

collective action.
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KARMAŞIK AĞLARDA YENİ FİKİR YAYILIMI VE
ORTAKLAŞA DAVRANIŞ

Murat Mustafa Tunç

Endüstri Mühendisliği Yüksek Lisansı

Tez Danışmanı: Ali Rana Atılgan

Özet

Bu tezde karmaşık ağlarda hali hazırda var olan yeni fikir yayılım modellerini kullanıyor

ve yepyeni bir ortaklaşa davranış modeli sunuyoruz. Ek olarak fakirden zengin yapan bir

yaklaşım ile Robin Hood ağı adında yeni bir ağ sunuyoruz. Yayılım modellerini düğüm, bağ

ve komşu yayılımları olarak üç bileşene ayırıyoruz. Her bir yayılım modeli kullanılarak ağ

yapısının etkilerini incelemek için halka örü, küçük dünya, rastlantısal ve orantısız ağlarda ben-

zetim yapıyoruz. Benzetim sonuçları gösteriyor ki hem kümelenme katsayısının ve ortalama

yol uzunluğunun düşük seviyelerde olması hem de merkez düğümlerin varlığı yeni fikirlerin

geniş alana yayılması için etkilidir. Ortaklaşa davranış modelinden elde edilen karşılaştır-

malı sonuçlar ise merkez düğümlerin varlığının ortaklaşa davranan düğümler alt kümesinin

boyutunu belirlemekte yetersiz kaldığını göstermektedir. Öte yandan, sıkı sıkıya kenetlenmiş

topluluklar ortaklaşa karar verme konusunda daha etkilidirler. Ayrıca, hem yayılım hem

de ortaklaşa davranışların olduğu ağların modellenmesi için elverişli değişkenler de sunuy-

oruz. Sonuçlarımıza göre kümelenme hem yayılımda hem de ortaklaşa davranışta önemli rol

oynamaktadır. Fakat merkez düğümlerin varlığı ortaklaşa davranış için olmazsa olmaz değildir.

Anahtar Kelimeler: Ortaklaşa Davranış, Yayılım, Kümelenme, Küçük Dünya, Robin Hood

ağları
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1 Introduction

The structure of relationships shapes the social interactions and decisions. For instance, the

transmission of virus depends on the nearest contacts of the transmitter. Likewise, the job offer-

ings are usually accessed via friends. Therefore, the contacts or friends play a significant role

for decision making. Understanding the local structure of relations can help better prediction

for the outcomes. Thus, the study of networks is important to anticipate the outcomes of the

economic, political and social decisions. In recent years, the study of networks has attracted

many researchers from various disciplines. Sociologists, economics, computer scientists,

mathematicians and statistical physics have studied networks from different perspectives.

Easley and Kleinberg’s book is very influential for the collection of the networks literature [1].

There are so many examples in the literature that prove network influences behavior. In

particular, how people find about their jobs has been studied extensively. Myers and Shultz [2]

surveyed textile workers in the late 1940s. When Myers and Shultz asked the textile workers

about how they found their first job, 62% of the workers replied that they found their first

jobs through a contact who had already been working in the textile industry. In contrast, only

23% of the textile workers found their first jobs by direct applications. Another similar study

by Rees and Shultz [3] suggests that 37% of typists, 65% of janitors, 23% of accountants,

57% of electricians and 73% of material handlers found their jobs through contact. There is

also a famous study by Granoveter [4] that suggests the weak ties (i.e. casual acquaintances

rather than close friends) play an important role for finding jobs. The literature for the network

influence over labor markets can be found in a recent study by Ioannides and Loury [5].
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The diffusion in networks has been also studied extensively. The summary of the diffu-

sion literature can be found in Jackson and Jariv [6]. In particular, Coleman et al. [7] studied

how the new drugs are prescribed by the doctors. They showed that the adoption of new

drugs by doctors differs depending on the degree of the doctors’ contact. Another study for

the diffusion is the adoption of hybrid corn among the farmers [8] [9]. The hybrid corn was

developed by mixing the genetics of different corn species and marketed in the 1930s. The

adoption of hybrid corn took different years depending on the states; however the adoptions

over the years have S-shapes for every state. The adoption starts slowly, but after a threshold it

becomes widespread. These S-shapes can help better predictions for the time that an innova-

tion becomes widespread throughout the network.

The role of individuals for diffusion also shows the influence of local structures in the networks.

The role of opinion leaders in the societies has been studied by several researchers [10] [11].

Katz and Lazarsfeld [10] interviewed women in Illinois for a variety of topics like fashion,

movies, etc. They traced the changes in the opinion which eventually led to the presence of the

opinion leaders. Lazarsfeld et al. [11] studied the voting decisions in Ohio for the presidential

campaign. Their results suggested that the opinion leaders plays significant role in voting

decisions.

The diffusion of new products and the success of new products are also shown to be in-

fluenced by certain individuals in the networks. Fick and Price [12] identified the market

mavens and showed that whether the product reaches to the market mavens affects the success

of the new products. They showed that consumers recognize the market mavens in their social

networks and make use of them. Tucker also [13] analyzed the effect of influence for the

adoption of video messaging technology in the employees of investment banks.

The effect of neighbors for the behaviors has also been studied. The social links and connec-

tions influence the behaviors in various contexts. For instance, pineapple farmers in Ghana are

shown to have a tendency to follow other farmers [14]. Christakis and Fowler [15] studied a

large social network over 32 years and showed that if a person had a friend who became obese,
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then that person’s chances of becoming obese increased by 57%. Likewise, if the person had

a sibling who became obese, then the increase is by 40% and by 37% if the person had a

spouse who became obese. Banerjee et al. [16] studied the peer effects of the diffusion of

microfinance participation in 75 villages in South India. They showed that the information

passing parameters are significant in the social networks. According to their results, if a person

participates, then it is more likely that the person will transmit the information to its neighbors.

In a different setting that the network influences behavior, Glaeser et al. [17] showed evidences

that the social interactions are important for determining who becomes a criminal in youth.

Collective action is another research topic for the influence of networks. Granovetter [18]

suggested a model in which people make choices depending on their neighbors in social

networks. In the Granovetter model, each agent responds to the previous stage’s distribution of

adopters. The shape of the fraction of adopters over time determines the equilibrium, namely

tipping points, such that a slight change in the fraction of adopters can shift the population

significantly. Chwe modeled a coordination game in which people tells their willingness to

participate to their neighbors [19]. Chwe also modeled collective action model in which people

reason about their neighbors before they get into action [20]. In the reasoning model, what the

person knows about what their neighbors’ know play significant role for the decision making.

Acemoğlu et al. studied the opinion fluctuations and disagreement in the social networks [21].

In their study, the results suggest that when the agents decides collectively and collaboratively,

there will be a persistent disagreement and that the network will never reach to a consensus

for the opinions due to the presence of stubborn agents.

In this thesis, we slightly modify the diffusion of innovation models from the literature,

and implement the diffusion models in complex network to analyze the effect of clustering, av-

erage path length and the hubs. To see the hub effect, we introduce a brand new network called

the Robin Hood network using the poor get richer approach. In the Robin Hood network there

are no hubs. We compare the poor get richer approach with the rich get richer approach (i.e.

Scale Free network) in which the hubs are present. Moreover, we present a novel collective

action model. The collective action model is also simulated in complex networks. The results
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indicate that the presence of hubs is not a must for collective action, whereas the tightly-knit

communities positively effect the size of collective subset. On the other hand, the better diffu-

sion comes with lower clustering and smaller paths, in which the presence of hubs is significant.

In the following chapters, we will focus on diffusion and collective action in complex net-

works. In the second chapter, the diffusion with infinite speed will be analytically solved and

simulated in one-dimensional networks. In the third chapter, the focus will be on the two

dimensional networks and diffusion models. In the fourth chapter, more complex networks

namely ring lattice, small world and random networks will be simulated for the diffusion

models. Furthermore, the effect of clustering coefficient, average path length and the hubs will

be analyzed. In the fifth chapter, we will define a model for collective action. The effects of

the structure of networks in the collective action model will also be presented. In the sixth

chapter, we will summarize the findings and remark the future research areas.
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2 Diffusion of Innovation with Infinite

Speed in One-Dimensional Networks

Imagine a one-dimensional (1D) network consisting of N nodes and N - 1 links between the

nodes.

Figure 2.1: A one-dimensional network with N nodes and N − 1 links.

Let us define time as discrete time clicks: t = 1, t = 2, t = 3 and so on. At each time

click an innovation diffuses throughout the network. The innovation can be anything, for

example; adaptation of a new technology, an epidemic, or a new behavior. Let’s assume that

the innovation diffuses only one way, from the left node to the right node. Let us also assume

that the innovation initiates from the left-most node. We can limit the number of nodes that

the innovation diffuses at each time click. For instance, we can assume that the innovation

diffuses to only one node at each time click. Then it will take approximately N time clicks

for the diffusion to cover all nodes in the network. Likewise, if there are only two nodes

that the innovation diffuses at each time click, then in N/2 time clicks all the nodes will be

covered.
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2.1 Active Link Diffusion with Infinite Speed

In the active link diffusion model, the nodes are static, however the links are dynamic. In

other words, at each time click the links are active or not, depending on a random probability

distribution. Let’s assume that the probability of any link to be active is p ∼ (0, 1) and p

is fixed for all the time clicks. Although p is constant at all times, the active links are not

dependent on the previous time’s active link distribution. That is to say, the links are active or

not independent from their previous active status. There is no memory between the active link

distributions at any time clicks. Note that at any time, there will be (N − 1) ∗ p active links on

average.

We consider a diffusion process as follows: At any time, the innovation can diffuse via

the active links with an infinite pace. In other words, the innovation diffuses to all the nodes

that are attached actively (i.e. with active links) to a node that has already been diffused. If a

node is diffused, we say that the node is adopted. Once a node is adopted, then it will stay

adopted for the rest of the time. Initially all the nodes are not adopted. At time t = 1, we start

the diffusion from the leftmost node in the network (i.e. the initial adopter). At time t = 1, all

the nodes that are connected with the initial adopter via active links will be adopted. At time

t = 2, the links active status will change, and the innovation will continue to diffuse through

active links. The simulation stops when all the nodes are adopted. An example is presented in

Figure 2.2.

Before moving to more complicated networks, let us answer a couple of questions here.

The first question that comes to mind is that how many time clicks does it take for the diffusion

to cover all the nodes. In order to answer this, we need to find the number of nodes that

become adopted at any time click. The answer partially boils down to the average node cluster

size connected with active links, since the diffusion has infinite speed over the network. In

other words, if you put your finger to a node at any time click, what is the average size of the

node cluster that is connected via active links?
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Figure 2.2: An example of link diffusion with infinite speed in a one-dimensional network
with 8 nodes and 7 links. The active links are represented as solid lines and the adopted nodes
are represented as filled circles. The active link probability p is 0.8. At time t = 1, the initial
adopter (the leftmost node) diffuses to its neighbor node. Likewise, the neighbor node diffuses
to its neighbor on the right. The diffusion continues until there is no active link. At time t = 2,
there is no diffusion, since the link between 3rd and 4th node is not active. It takes 4 time
clicks for the diffusion to cover all the nodes in the network.

The probability of a fixed cluster size, say a, is the following:

P(Cluster S ize = a) = pa ∗ (1 − p)2 (1)

There are a active links and two inactive links (one in both sides) in a cluster of size a. However,

there are a couple of points to clear. Firstly, in fact a − 1 active links can connect a cluster

of size a. However, this difference becomes very small for the sake of the average cluster

size calculations. Average cluster size is basically the sum over all possible a’s. Therefore,

the difference between a − 1 and a can be negligible for determining the average cluster size.

Secondly, on the edge of the network there can be only one inactive link (since the other side

will be empty). But, if the network size is large enough, the probability of a cluster to be in

the edge of a network is also negligible.

7



There are several intermediate steps before finding the average cluster size which can be

found in Stauffer and Aharony [22]. After following these steps, the average cluster size can

be found as:

Average Cluster S ize (S ) =
1 + p
1 − p

(2)

Why is it important to know the average cluster size? Since, at any time click the innovation

diffuses throughout the whole cluster. However, the average cluster size is not the answer that

we pursue: How many nodes does the innovation diffuse at each time click? Some of the

nodes in the cluster might have already been adopted. So, how can we know the number of

nodes that are not adopted in the cluster?

Let’s consider the example above in Figure 2.2. In the example, the diffusion continues

from the rightmost node of the adopted nodes. The rightmost adopted node is the 3rd node in

t = 1 and t = 2, 7th node in t = 3 and 8th node in t = 4. If we figure out the position of the

rightmost adopted node in any cluster, then we can understand the average number of nodes

that the innovation diffuses.

In fact, the rightmost adopted node can be in any position with the same probability. It

can be at the very beginning, with probability 1/S , where S is the cluster size. In that case, the

innovation will diffuse to S − 1 nodes, excluding the already adopted. Using the same logic,

the following formula can be obtained.

Di f f usion Rate =
1
S
∗ (S − 1) +

1
S
∗ (S − 2) +

1
S
∗ (S − 3) + ... +

1
S
∗ 0 (3)

After a few simplifications, the number of adopted nodes becomes:

Di f f usion Rate =
p

1 − p
(4)

So, how long does it take for the diffusion to cover all the nodes in the network? After finding

the average number of nodes that become adopted at any time, the answer is easy. The number
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of nodes in total divided by the diffusion rate will be the time to cover all the network.

Time to Cover All the Network =
N ∗ (1 − p)

p
(5)

Above we provided exact analytical solution for the time to cover all the network. Now, we

compare our analytical solution with the computational simulation results. The main purpose

for the comparison is twofold: Firstly, we can be confident about the implementation of

the active link diffusion algorithm to the computational environment. Secondly, we can be

sure that our analytical solution is correct. In Table 2.1, the computational results and the

analytical results are presented. Since the numbers are very close, we can conclude that both

computational algorithm and our analytical solution are consistent. As N goes to infinity, both

computational results and analytical solution will converge.

p N
Computational

Time to Cover All
Analytical

Time to Cover All
0.8 100 25.17 25
0.8 200 50.83 50
0.5 100 99.47 100

Table 2.1: The computational results for the time to cover all the nodes in network and
analytical solutions are compared. The computational results are averaged across 1000
simulation runs. Since the numbers are close enough, we can be confident about our analytical
solution and the computational implementation of the proposed algorithm. As N goes to
infinity, both analytical and computational results will converge.

2.2 Active Node Diffusion with Infinite Speed

It is interesting to think what happens if the nodes would be dynamically changing instead

of the links. Therefore, the innovation diffuses through the active nodes, not the active links.

Does the time to cover all change with these settings? The answer is no, there won’t be any

change as long as the time to cover all the network is concerned.

Let’s consider the same network and the same diffusion process with only one change: Instead

of the links, the nodes are dynamically active or not depending on a fixed probability. An

9



example is illustrated in the figure below.

Figure 2.3: An example for the active node diffusion with infinite speed on a one-dimensional
network with 8 nodes and 7 links. The active nodes are circled with solid lines and the adopted
nodes are represented as filled circles. The active node probability p is 0.8. At time t = 1, the
initial adopter (the leftmost node) diffuses to its active neighbor node. Likewise, the active
neighbor node diffuses to its active neighbor on the right. The diffusion continues until there
is no active neighbor node. At time t = 2, there is no diffusion, since the 4th node is not active.
It takes 4 time clicks for the diffusion to cover all the nodes in the network.

We will use a different approach to find the exact solution for time to cover the entire network.

This time the calculations will not focus on the average cluster size, instead we will focus

on the average number of nodes that become adopted at each time click. At any time click

there will be only one node that becomes adopted if there is an active node (neighbor to the

rightmost node of the adopters) followed by a not active node. Likewise there will be only

two nodes that become adopted, if there are two consecutive active nodes followed by a not

active node. So, the average number of nodes that are diffused at any time click can be found
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by the following formulation:

Di f f usion Rate = p ∗ (1 − p) ∗ 1 + p2 ∗ (1 − p) ∗ 2 + p3 ∗ (1 − p) ∗ 3 + ...

= (1 − p) ∗ (
∞∑

i=0

pi ∗ i)

= (1 − p) ∗
p

(1 − p)2

=
p

(1 − p)

(6)

The calculations suggest that there is no difference between the active link diffusion and the

active node diffusion, in terms of the diffusion rate and the time to cover all the nodes in

one-dimensional networks. In the following chapters, we will see that the diffusion rate and the

time to cover the entire network in the node and link diffusion algorithms can vary depending

on the network topology.

2.3 A Different Application: Infection and Vaccination

Now, we implement another application to our model. In the previous model, once the node is

adopted, they stay as adopted in the rest of the time. We relax this assumption. In this model,

the nodes can go back to the stage of not adopted, after they are adopted.

In the previous model the active link probabilities was given and fixed throughout the it-

erations. But, what if the nodes have control over the link probability and can alter the

probability dynamically? It is interesting to think about what would change if the network

adopts itself as the diffusion proceeds in the network.

In the most common epidemic models (e.g. SIR-SIS models [23] [24]), the nodes are either in

one of the following stages, S when susceptible, I when infected and R when recovered. In

recent years, the study for the epidemic models also included the news about the epidemics

and the adaptation of the networks in order to prevent from the infectious diseases [25]. When

the news about an epidemic reaches out to the whole network, the nodes start to adapt to the
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new situation in order to reduce the risk of being infected. After the news, the nodes decrease

the frequency of contacting with their neighbors. We implemented this idea to our diffusion

model. We modeled an adaptation behavior to our network.

Let’s consider a new link diffusion model in one-dimensional networks. In the new model, the

innovation can be thought like an epidemic. Let’s assume that when the epidemic diffuses to

half of the population, the news about the epidemic spreads. For simplicity, we assume that

the news spread immediately to all the nodes in the network. When the news reaches out, the

nodes that are not infected decide to contact with their neighbors less often, so their active

link probabilities decrease. Also, at the same time the vaccination starts to cure the infected

nodes, starting from the very beginning (i.e. the leftmost node). The vaccination also diffuses

as the epidemic but since the infected nodes do not change their active link probabilities, the

vaccination diffuses faster than the epidemic. An example can be seen in the Figure 2.4.

The research question that we pursue in this model is the following: Is there a critical

active link probability p′ so that the vaccination catches the epidemic before it reaches to the

last node in the network? In other words, what is the maximum contact frequency for the not

infected nodes so that the epidemic can be stopped before it reaches to the end of the network?

We will use the analytical solution that we found previously. After news, there are two

time to cover all formulas. First is for the epidemic, the second is for the vaccination.

Epidemic T ime to Cover All =
N ∗ (1 − p′)

2 ∗ p′
(7)

Vaccination T ime to Cover All =
N ∗ (1 − p)

p
(8)

Since we need vaccination should be faster than the epidemic, vaccination time should be

smaller than the epidemic time. Hence, if we do the necessary calculation steps, we get the

following formula.

p′ <
p

2 − p
(9)
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Figure 2.4: An example for the active link diffusion on a one-dimensional network with 8
nodes and 7 links. The active links are represented as solid line and the adopted nodes are
represented as filled circles. Before news, the active link probability p is 0.8. After news, the
active link probability p′ is 0.2. At time t = 1, the initial adopter (the leftmost node) diffuses
to its neighbor node. Since the epidemic diffuses to half of the nodes, the news about the
epidemic decreases the active link probability for the rest of the nodes. At the same time,
the cure for the infected nodes starts to spread. At time t = 2, there is no diffusion for the
epidemic, but two of the nodes recovered from the infection. It takes 3 time clicks for the
vaccination to cure all the infected nodes.

It means that after the news spread, not infected nodes should lower their contact frequency

with their neighbors at most to the calculated number above. We simulated this diffusion

model and the computational results are presented Table 2.2.

In Table 2.2, the percentage of the successful catch shows the percentage of simulations

in which the vaccination reaches to the last node before the epidemic reaches. p′ values are

taken by equating the formula in 9. With these parameters of the active link probabilities,

both epidemic and vaccination reach to the last node at the same time. As the network size N

goes to infinity, the percentage should converge to 50% . Since on average both epidemic and

vaccination have the same time to cover all, in half of the simulations epidemic would be the

first to reach the last node, and in the other half the vaccination would be the first to reach the
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end of the network. Therefore, the results are consistent with our model.

p p’ N
Percentage of the
Successful Catch

0.8 0.66 100 65 %
0.8 0.66 200 51 %
0.8 0.66 300 48 %
0.5 0.33 100 53 %

Table 2.2: The computational simulation results for the vaccination to catch the epidemic
before it reaches to the last (the rightmost) node in a one-dimensional network with N nodes
and N − 1 links. p is the before news active link probability, and p′ is the after news active link
probability. The results are the averages of 1000 simulations. The percentage of the successful
catch will converge to 50% as N goes to infinity. This is consistent with our parameters, since
with these settings of link probabilities both vaccination and epidemic reaches to the end of
the network with the same time. In the half of the simulations, epidemic will reach to the
end faster than vaccination, and in the other half, vaccination will reach to the end faster than
epidemic.

2.4 Future Models

In the future, we will use asymmetric time clicks and active link change. In the previous

models, we assumed that as time changes, the active link distributions also change. In other

words, the active link distributions and the time are synchronized. In the future models, we

will implement a different approach in which the time and links are not in harmony. The

research question for this model can be summarized as the following: Which of the time click

distribution and link distribution couple can minimize the time to cover all and maximize the

diffusion rate?
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3 Diffusion of Innovation with Infinite

Speed in Two-Dimensional Networks

In this chapter, we will focus on the two dimensional regular lattice networks in which every

node has 4 neighbors except the nodes on the sides. Firstly, we will implement the active link

diffusion with infinite speed method to this network. Then, we will simulate the method and

show the experimental results for the time to reach to the target node.

Consider a two-dimensional network that is explained above. In this network, let’s consider

the active link diffusion model with infinite speed that was discussed in the previous chapter.

Assume that the starting point (i.e. the initial adopter) is fixed and it is the upper left node.

Let us also assume that the aim is to reach to the bottom right node (i.e. the target node).

In the first step model, we focus on the time to reach to the target node, instead of time

to cover the entire network. Therefore, we use the term move, instead of diffuse. In our

model, the movements are either to the node on the right or the node on the bottom. The

active link probability p is given and constant throughout the time clicks. The question we

pursue is that how many time clicks are needed to reach to the target node. Be aware that,

instead of time to cover the entire network, here we only want to reach to the bottom right node.

There is another issue that we need to discuss. The answer for the time to reach to the

target node depends on the knowledge of the active link paths. For instance, if a node can see

all the active links in the network, then the node would follow the path which gets the node
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Figure 3.1: An illustrative example of the diffusion model in two-dimensional network with
36 nodes. The active link probability is 0.5 and there are 30 active links at each time click
on average. The active links are represented as solid lines. There is a path with active links
from the upper left node (initial adopter) to lower right node (target node). If there is perfect
information about the active links, it can take only one time click to reach the target node

closer to the target node. On the other hand, if the node can only see the active links with the

nearest neighbors, then the node would choose one of the active links randomly and hope to

end up very close to the target node. Imagine that you are in a maze and try to go to the exit.

If you know which way to follow, then you would exit very fast. However, if your sight is

limited and can only see one road at a time and decide which way to go after you finish the

road, then the time to exit would be very large compared to the previous example. Figures 3.1

and 3.2 are illustrative examples to this discussion.

As the two figures suggest, the time to reach to the target node depends on the limitation of

the information about the active links. Unless there is perfect information about the active link

distribution, it usually takes more than one time click.
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Figure 3.2: An illustrative example of the diffusion model in two-dimensional network with
36 nodes. The active link probability is 0.5 and there are 30 active links at each time click
on average. The active links are represented as solid lines. There is a path with active links
from the upper left node (initial adopter) to lower right node (target node). If there is limited
information about the active links, it can take more than one time clicks to reach the target
node.

3.1 Active Link Diffusion with Limited Information

In the first step, we will assume that only the active links with the nearest neighbors are visible.

Therefore, if there are two active links that connects the node to its neighbors, one of them

will be selected arbitrarily. As indicated before, the only movements are to the node on the

right or to the node at the bottom. When the links with these two neighbors are not active,

then there is no way to move. In that case, the time click is increased by one and the active

links are redistributed. In the next time click, the node who is the closest to the target node

chooses an active link to move closer to the target node. An example is shown in Figure 3.3.

Be aware that in this model, there are intermediate steps within the time clicks. At each

intermediate step, there is only one active link to be choosen. However, the time is constant
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Figure 3.3: An example of the active link diffusion model in two-dimensional networks with
limited information. At t = 1, in the first step the diffusion has only one way to go (to the
bottom node). In the second step, there are two ways and again the bottom node is chosen.
However, in the next step there is no way to go. After the redistribution of the active links at
t = 2, the node who is closest to the target node (i.e. the bottom node at the beginning of t = 2)
has two options and the right node is chosen arbitrarily. In the second step, there is no option
and the right node is chosen again. In the third step, there is no active link to move. The same
process goes on and on until the target node is reached

when the intermediate steps are executed. After all the intermediate steps are executed and

there is no active links to move, then the time click is increased by one and the active links

are redistributed. Also, this model is not exactly diffusion. The only goal here is that to reach

to the target node. Therefore, only the node that is the closest to the target node moves forward.

Now that we explained the model and clarified several points, let’s start finding the an-

swer for the time to reach to the target node. We simulated the algorithm in the computational

environment, and the results are presented in Table 3.1.

It is interesting to see that as the network size grows exponentially, the time to reach the target
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p N
Time to Reach

the Target Node
0.8 625 5.16
0.8 2500 7.74
0.8 5625 10.31
0.8 10000 12.41

Table 3.1: The computational results for the time to reach to the target node in two dimensional
regular lattice networks. The results are the averages of 1000 simulations at each settings.

node increases linearly. However, this is not surprising. Since this is not time to cover all the

network. In order to reach the target node, there are exactly 2 ∗
√

Network S ize (N) links to

move. Hence, the table makes sense in terms of time and link counts.

In the following chapter, we will focus on the diffusion process on the two dimensional

networks.
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4 The Diffusion of Innovation in

Complex Networks

In this chapter, we will analyze the diffusion of innovation in complex networks. In the

previous chapters, we presented the simulation results and analytical solutions for the time

to cover all the network and the time to reach to the target node in one dimensional and two

dimensional networks. Now, we focus on more complex networks like small world, random

and scale free networks. At the same time, another diffusion algorithm namely neighbor

diffusion will also be discussed and simulated in these networks. We will provide insights

about how different types of networks react on different diffusion algorithms. Also, we will

give several explanations about the reasons behind.

Suppose that we are given an undirected network (graph) G, with adjacency matrix A, node

set U, link weights W, and behaviors B. In this network, an innovation diffuses and the nodes

dynamically decide whether to adopt the innovation. The innovation can be an adaptation of a

new behavior, the decision to buy a new model of a smart phone, or voting for a party that

you have never voted before, etc. In this chapter, the innovation is assumed to be adoption

of a new behavior. We define an adoption mechanism as follows: If a particular node u has

adopted to behavior b then Xb
u = 1, if not adopted then Xb

u = 0. However, not every node is

willing to adopt. Each node has a potential (willingness) to adopt the behavior. If a node u has

potential do adopt then Xp,b
u = 1, if the node has no potential then Xp,b

u = 0.
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Now, let us assume that an initial adoption occurred in this network. In the previous chapters,

the initial adopter was assumed to be a fixed node. In this model we relax this assumption. The

initial adopter can be chosen randomly or using a specific selection process (e.g. probability

distribution, among some certain candidates, etc.). Also, the initial adoption can consist of a

certain number of nodes, namely I. Let us define the time as discrete time ticks t = 1, t = 2,

t = 3, and so on. The initial adoption occurs at the beginning of time t = 1. At time t = 1, the

initial adopters start to spread the news about the behavior via their links. The link neighbors

of the initial adopters choose to adopt the behavior depending on the diffusion algorithm. The

decision to adopt the behavior can be dependent on the node potentials that we defined earlier.

Otherwise, we can use a model that the adoption depends on the neighbors’ potentials. At

each time tick, the diffusion can be limited to a certain number of nodes. Like in the previous

chapters, the diffusion can have infinite speed; it can diffuse to every node available in the

blink of an eye. These definitions are for the general model that we will use in this chapter.

Along the chapter, we will use several assumptions and predefined variables that we will

briefly explain.

As time goes to infinity, there can be two resulting equilibria. The first equilibrium is a

fully adopted network in which every node has adopted the behavior. In this case, the fraction

of adopters in the network will be equal to 1. The second equilibrium is an intermediate stage

where there are both adopters and non adopters concurrently. In the second equilibrium, there

might be potential nodes who have not adopted. This is mainly because of the nature of the

diffusion algorithm. No matter how many time ticks pass, the news about the behavior will

never reach to some potential nodes. In some networks although there is a huge potential,

the fraction of the adopters remains relatively low. But in some other networks, most of the

potential nodes adopts in the equilibrium.

There are a number of research goals that we aim to pursue in this model. The main questions

can be summarized as follows. (a) How do the different diffusion models affect the fraction of

adopters? (b) How do different network topologies affect the fraction of adopters? (c) Is there

a threshold for the fraction of potential nodes above which the behavior becomes widespread?
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(d) Do hubs (nodes with high number of connections) always play an important role for the

diffusion? (e) Which one is more efficient: Few hubs with more connections or more hubs

with fewer connections? (f) Does clustering coefficient (i.e. the percentage of the neighbors

who are also neighbors with their selves) affect the diffusion? (g) Which one is more effective

for diffusion: High clustered networks (i.e. tightly-knit networks) or low clustered networks?

(h) On top of that, is there a middle ground for the clustering coefficient that maximizes the

diffusion?

We will use three diffusion models, namely node diffusion, link diffusion and neighbor

diffusion. For each model, we set the network parameters as follows.

Network Topology =



2D Regular Lattice

Ring Lattice

Small World

Random

(10)

Number o f Nodes (U) = 10, 000 (11)

Number o f Links = 20, 000 (12)

Link Weights = 1 (13)

Xb
u =


1, if node u is adopted the behavior b

0, if node u is not adopted the behavior b
(14)

Xp,b
u =


1, if node u has potential to adopt the behavior b

0, if node u has no potential to adopt the behavior b
(15)

Number o f Behaviors (B) = 1 (16)

Number o f Initial Adopters (I) = 1 (17)
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4.1 Diffusion Models

4.1.1 Node Diffusion

The first model is the node diffusion model which is similar to the active node diffusion model

that was explained in the previous chapter. This model is also very similar to Campbell’s

word-of-mouth model [26] (see also [27] for the implementation of Campbell’s model). In

the active node model, the active nodes are chosen with respect to a probability p. In this

model, the nodes have an interest to a behavior. Some nodes might be more interested to adopt

the behavior, whereas some other nodes might not be interested at all. The key thing is that

the interest depends on the behavior. For instance, you might want to buy a new model of a

smart phone only if the price is affordable. Therefore, the price plays an important role for

the node’s interest. The interest is modeled as the potential to adopt as explained previously.

However, depending on the behavior (e.g. price of a smart phone) the fraction of potential

nodes might change.

In this model, the fraction of potential nodes is fixed and the distribution of the potential nodes

follows a uniform distribution U(0, 1). If a node is potential, then it stays potential for the rest

of the simulation. In this model, we assume that the diffusion spreads through only one link at

a time click. An initial adopter is chosen arbitrarily to start the diffusion. At time t = 1, the

link-neighbors of the initial adopter decide whether to adopt the behavior or not. Only the

adopted nodes spread the news. At time t = 2, the adopted neighbors of the initial adopter

spread the news. Then their neighbors decide to adopt, and so on.

The decision process is as follows: If a node has potential and the news about the behavior

reaches to the node, then it adopts. The key here is that in order to adopt there should be at least

one adopted neighbor so that the news about the behavior reaches to the node. The conditional
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probability of a node adopting the new behavior is shown in the formula below.

Prob(Xb
u = 1 | Xb

y = 1 : ∃y ∈ N(u)) =


1, i f Xp,b

u = 1

0, i f Xp,b
u = 0

∀u ∈ U (18)

In the formula 18, N(u) represents the set of neighbors of node u.

In this model, not every node with potential adopts the behavior. In order to adopt the

behavior, the potential node needs to hear about the behavior from a neighbor that has already

adopted. The condition for the above formula is that there should be at least one adopted

neighbor. Hence, when the network reaches to equilibrium, there might be some nodes with

potential who have not adopted. A basic example can be found in Figure 4.1 for the illustrative

purposes.

Now, let’s analyze how the network topology affects the diffusion. Imagine two networks with

N nodes and 2N links. In these networks not only the number of nodes and links are the same,

but also the degree distribution is the same. Every node in these networks has four neighbors.

If you take a node from one network and replace it to the other network, the node wouldn’t

notice the difference. The networks are namely two-dimensional regular lattice and ring lattice.

Figure 4.2 illustrate the 2D lattice and ring lattice.

We simulated the node diffusion model in 2D regular lattice and ring lattice using Netlogo

[28]. We keep track of the fraction of adopters with respect to the fraction of potential nodes

in the equilibrium. The results can be seen in Figure 4.3.

Figure 4.3 shows that the fraction of adopters depends on the network topology, in other word

how connected the network is. Even though the number of nodes, the number of links and the

degree distributions are the same the fraction of adopters can be very different. The adjacency

matrix of the network is very critical for the diffusion.
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Figure 4.1: An example for the node diffusion on two dimensional network. The circles
represent that the node has susceptibility higher than the price. The X’s represent that the node
has potential. At time t = 0, the filled node in the middle is the initial adopter. At time t = 1,
only the potential neighbors of the initial adopter can adopt. Likewise, at time t = 2 there are
two more potential neighbors to adopt. The key thing here is that those who adopted at time
t = 2 could not have adopted at t = 1, since their neighbors had not adopted yet. The network
reaches to equilibrium after t = 2. Although there is one more node who has potential, it can
not adopt since its neighbors will never adopt, no matter how many time clicks pass.

Some potential nodes cannot adopt because they are not aware of the innovation. Although

there is potential in the network, the behavior does not become widespread for some settings.

The fraction of potential nodes plays an important role for the diffusion to spread widely in

the networks. There arises a critical threshold for the fraction of potential nodes above which

the behavior becomes widespread. In Figure 4.3, the critical threshold for the 2D lattice is

0.60. Above that threshold, the fraction of adopters are the same as the fraction of potential

nodes. It shows that whenever there is a potential node, the news have reached to them. For

the ring lattice, the critical threshold is 0.95. Below the threshold, most of the potential nodes

do not become adopted in the equilibrium.
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Figure 4.2: 2D regular lattice and ring lattice with N nodes and 2N links.

In the future chapters, we will dig into the reasons that lead to this difference in the fraction

of adopters. We will analyze the effect of clustering coefficient and average path length. We

will use the rewiring probability to create small world networks and random networks. Thus,

we will be able to analyze the effect of clustering coefficient and average path length in the

diffusion models.

4.1.2 Link Diffusion

The link diffusion is almost the same as the previous active link diffusion. The links are

active or not depending on a probability distribution. The behavior diffuses via the active

links. The percentage of the active links is predefined. The active links are fixed and remain

active throughout the time clicks. Thus, unlike the previous active link diffusion, there is no

redistribution of the active links. Starting from a random initial adopter, if there is an active

link that ties the initial adopter with other nodes, then these nodes also become adopted.

Now, let’s simulate the link diffusion model in 2D regular lattice and ring lattice networks.

The results for the fraction of adopters with respect to the fraction of active links are illustrated

in Figure 4.4. Like in the node diffusion model, link diffusion also suggests that the network

topology plays role for determining the fraction of adopters.
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Figure 4.3: The fraction of adopters with respect to the fraction of potential nodes using the
node diffusion in 2D and ring lattice networks. The parameters of the networks are explained
in the formulas from 10 to 17. The results are averages over a thousand simulations. The
networks are connected. Although the number of nodes, the number of links and the degree
distributions are the same, the fraction of adopters can be very different. The fraction of
adopters depends on the network topology in node diffusion.

4.1.3 Neighbor Diffusion

The neighbor diffusion model takes it’s root from the 19th chapter of Easley and Kleinberg’s

textbook [1] in which they present the best response model. However, it is different from their

model, and the modifications are made because our diffusion models have only one initial

adopter. From one initial adopter, it is almost impossible for the innovation to reach the other

nodes. The algorithm is as follows: Once the news about the behavior reaches to a node, the

node decides to adopt depending on its neighbors. In addition to the previous settings in the

formulas from 10 to 17, we also assume that every node can observe its neighbors’ potential.

Therefore, the decision to adopt the behavior is completely based on the neighbors. If the

proportion of the neighbors with potential is higher than a certain threshold, then the node
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Figure 4.4: The fraction of adopters with respect to the fraction of active links in link diffusion
in 2D regular lattice and ring lattice. The parameters of the networks are explained in the
formulas from 10 to 17. Additionally, the fraction of potential nodes is 1 throughout the
simulations. The results are averages over a thousand simulations. Although the number of
nodes, the number of links and the degree distributions are the same, the fraction of adopters
can be very different. The fraction of adopters depends on the network topology in link
diffusion.

adopts. The conditional probability to adopt the behavior becomes the following.

Prob(Xb
u = 1 | Xb

y = 1 : ∃y ∈ N(u)) =


1, i f

∑
y∈N(u) Xp,b

y /
∑

y∈N(u) wu,y >= threshold

0, i f
∑

y∈N(u) Xp,b
y /
∑

y∈N(u) wu,y < threshold
(19)

In the equation 19 wu,y represents the weight of links (which is by default 1) between node u

and node y.

Above formulation means that if the number of potential neighbors divided by the num-

ber of all neighbors is higher than a predefined threshold, then the node adopts the behavior.

Be aware that the adoption is nothing to do with the node’s own potential. There can be a node

with no potential but adopted as a result of its neighbors’ potential. The simulation results of
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the neighbor diffusion can be seen in Figure 4.5.

Figure 4.5: The fraction of adopters with respect to the fraction of potential nodes in neighbor
diffusion in 2D regular lattice and ring lattice. The parameters of the networks are explained
in the formulas from 10 to 17. The results are averages over a thousand simulations. The
networks are connected. Although the number of nodes, the number of links and the degree
distributions are the same, the fraction of adopters can be very different. The fraction of
adopters depends on the network topology in neighbor diffusion.

According to the simulation results that can be viewed in Figure 4.5, the network topol-

ogy plays role for determining the fraction of adopters in neighbor diffusion.

4.2 The Effect of Clustering Coefficient and

Average Path Length in Diffusion

In the previous sections of this chapter, we showed that the topology of the network is very

crucial for the diffusion. Even though the number of nodes, links and the degree distribution

are the same, how connected the links are is very important for the spread of the behavior.

In this section, we will look more closely to the network topology and in particular we will
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analyze the effect of clustering coefficient and average path length using Wattz-Strogatz model

[29]. A node’s clustering coefficient is basically the percentage of its neighbors who are also

neighbors with each other. For instance, if a node has three neighbors and only one couple of

the neighbors are linked, then the node’s clustering coefficient is 1/3. The average path length

is another measure for the networks. It is basically the average of the number of steps in the

shortest paths of all the nodes in a network.

Firstly, we will use ring lattice to create small world networks by rewiring the links. The ring

lattice with all the nodes have four neighbors, has the clustering coefficient of 0.5. The average

path length depends on the size of the network. However, these two properties can be altered

by rewiring the links. By rewiring the links randomly with fixed probabilities, the clustering

coefficient and the average path length decreases. As the rewiring link probability reaches to

1, the network becomes a random network, similar to the Erdos-Renyi random graphs [30].

The decrease is in the logarithmic scale and can be seen in the Figure 4.6.

Figure 4.6 shows that the small world, where the rewiring probability is 0.01, and ring lattice

have almost the same clustering coefficient, but the average path length is significantly lower

in small worlds compared to ring lattice. On the other hand, the small world and random

network have almost the same average path length, but the clustering coefficient of the small

world is significantly higher than the random network. These results suggest that in order to

understand the effect of the average path length, we need to compare the simulation results

for small world and ring lattice. Likewise, in order to analyze the effect of the clustering

coefficient, the comparison of the small world and the random network is needed. Now, let us

simulate the diffusion algorithms in these networks.

The results in Figure 4.9, Figure 4.11, and Figure 4.13 can be summarized as follows: The net-

work topology has an impact over the diffusion and the experiments suggest that the low level

of clustering coefficient and the less average path length is better for the diffusion. Although in

some diffusion algorithms, the difference can be huge for decreasing the clustering coefficient

(such as in the node diffusion), in other diffusion for instance in neighbor diffusion, lowering

the clustering coefficient has a relatively little impact over the fraction of adopters.
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Figure 4.6: The change in the clustering coefficient and average path length with respect to the
rewiring probabilities. C represents the clustering coefficient and L represents the average path
length and p represents the rewiring probabilities. The change in the rewiring probabilities
has different consequences in the clustering coefficient and average path length. Rewiring
probability being zero represents the ring lattice, and rewiring probability being 1 represents
the random network. When the rewiring probability is equal to 0.01, the average path length is
as low as the random network but the clustering coefficient is as high as the ring lattice. This
network is called the small world.

Figure 4.7: Ring lattice with rewiring probability = 0 (left), the small world with rewiring
probability = 0.01 (center) and random network with rewiring probability = 1 (right).
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Figure 4.8: The effect of rewiring probabilities in node diffusion.

Figure 4.9: The effect of clustering coefficient and the average path length in node diffusion.
The node diffusion is higher when the paths are smaller. Additionally, the node diffusion is
higher when the clustering is lower.
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Figure 4.10: The effect of rewiring probabilities in link diffusion.

Figure 4.11: The effect of clustering coefficient and the average path length in link diffusion.
The results are the same as the node diffusion. Firstly, the less the average path length, the
more the link diffusion. Secondly, low the clustering coefficient suggests better link diffusion.
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Figure 4.12: The effect of rewiring probabilities in neighbor diffusion.

Figure 4.13: The effect of clustering coefficient and the average path length in neighbor
diffusion. The results are the same as the link and node diffusion. The more the clustering
coefficient, the less diffusion. The less the average path length, the more nodes to adopt.
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4.3 The Effect of Hubs in Diffusion

In this section, we will analyze the effect of hubs (i.e. nodes with high number of connections)

in diffusion. The hubs are present in today’s networks, like the airline network, the world wide

web, etc. [31]. In these networks, there are usually several hubs on which most of the shortest

path relies. In this section, we will analyze how efficient the hubs are for the diffusion.

There are several algorithms for creating hub networks. The most common model is called

rich get richer model [32]. In the rich get richer model, the new nodes will be linked to some

node with a probability that is proportional to the number of connections of the particular node.

Therefore, each new node is more likely to form a link with a node that has high number of

connections. As a result, the network that is created using the rich get richer model will have

several hubs. The network has a degree distribution which is called power law distribution.

The degree distribution is linear in the logarithmic scale.

In the rich get richer model, new nodes are linked to a node in the network with a prob-

ability proportional to the number of connections. For instance, if there are only two nodes

in the network with one link that ties them, the new node will be equally likely to form a

link between one of the two existing nodes. After that, when the fourth node is added, the

probabilities to create a link with a node depends on the number of links (connections) of the

nodes. The networks generated with rich get richer model are called Scale Free networks. The

following figure explains the rich get richer model.

Figure 4.14: The rich get richer model is illustrated. The first five images show the inital steps
sequentially. After several iterations, the last image is an example for the hub networks.

The number of hubs in the rich get richer network is very small relative to the network size.

However, the number of nodes with only one connection is more than the half of the network.
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The number of nodes with n neighbors compared to the number of node with n − 1 neighbors

linearly decreases in the logarithmic scale. Therefore, the degree distribution is called the

power law distribution. The fraction of nodes with k connections can be seen in the formula

below:

Fraction o f nodes with k connections, P(k) ∼ k−α (20)

We present another network that is similar with the rich get richer network in terms of number

of nodes and links. However, in this network the hubs are not present. We generate this network

using another model opposite of the rich get richer model, namely the poor get richer model. In

this model, the new nodes are linked with a node proportional to the number o f connections−1.

Therefore, as the number of connections increases the likelihood of creating new connections

decreases. As a result, the poor get richer network has no hubs. Instead, there are lots of nodes

with relatively small number of connections. We will call this network as the Robin Hood

network. An illustrative example of the Robin Hood network is presented in Figure 4.15.

Figure 4.15: The poor get richer model is illustrated. The first seven images show the inital
steps sequentially. After several iterations, the last image is an example for the Robin Hood
networks.

There is one more network model that we would like to introduce that is in between the two

networks presented in this section, i.e. Scale Free and Robin Hood networks. In this model,

the new nodes are linked to a node arbitrarily. The model is called random get richer. One

random node in the network links itself with the new node. The random get richer model has

relatively more nodes with higher number of connections and relatively less nodes with fewer

number of connections when compared to the poor get richer model. Figure 4.16 illustrates

the poor get richer network.

The degree distribution of the Scale Free networks, Robin Hood networks and random get
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Figure 4.16: The random get richer model is illustrated. The first seven images show the inital
steps sequentially. After several iterations, the last image is an example for the random get
richer networks.

richer networks are illustrated in Figure 4.17, Figure 4.18, and Figure 4.19, respectively. The

random get richer model has relatively more nodes with higher number of connections and

relatively less nodes with fewer number of connections when compared with the poor get

richer model.

Figure 4.17: The degree distribution of rich get richer (Scale Free network) model in logarith-
mic scale.

Now, let us analyze the effect of hubs in diffusion. We created three networks that were

described above with 1000 nodes and 999 links. We simulated the node, link and neighbor
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diffusion models with these three networks and calculated the fraction of adopters that is

averaged over one hundred simulations. The results are presented in the figures 4.20, 4.21

and 4.22. The experiments suggest that hubs have a positive effect in all the diffusion models.

Also, there exists a domination in terms of the fraction of adopters in favor of the random get

richer model when compared to the poor get richer model.

Figure 4.18: The degree distribution of poor get richer (Robin Hood network) model in
logarithmic scale (in the large figure) and in regular scale (in the small figure).

The results show that the hubs are effective for the diffusion models. Also, more nodes with

relatively higher connections are also effective for the diffusion. Since in the comparative

results between the random get richer and poor get richer models, there exists a domination in

terms of the fraction of adopters in favor of the random get richer model.

4.4 Time to Equilibrium in Diffusion

Unlike the previous chapter’s diffusion with infinite pace, the innovation diffuses to the closest

link neighbors in one time click for the node, link and neighbor diffusion models. Therefore,
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Figure 4.19: The degree distribution of random get richer (uniform distribution) model in
logarithmic scale (in the large figure) and in regular scale (in the small figure).

Figure 4.20: The effect of hubs in the node diffusion model.
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Figure 4.21: The effect of hubs in the link diffusion model.

reaching to the equilibrium takes time. We analzed the time to equilibrium and the figures

from 4.23 to 4.28 present the results.

The results for the node diffusion suggest that the clustering plays role in time as well

as the average path length. Comparative results for the small world and random networks

presents that clustering is also important for the time to equilibrium. On the other hand, the

hubs make the diffusion faster.

In the link diffusion, the results are similar to the node diffusion. In summary, the hubs,

lower clustering and smaller paths make the diffusion process quicker. However, the time to

equilibrium reaches to maximum between 80% and 90% of the fraction of adopters . Above

0.9, although the fraction of adopters increase, the time to equilibrium decreases. In other

words, it is faster to reach more nodes, which is an interesting result.

The results in neighbor diffusion are mostly the same as link diffusion and node diffusion.

The hubs, lower clustering and smaller paths accelerate the diffusion process. Although the

40



Figure 4.22: The effect of hubs in the neighbor diffusion model. The results are averaged over
a hundred simulations. The experiments suggest that hubs have a positive effect in all the
diffusion models. Also, there exists a domination in terms of the fraction of adopters in favor
of the random get richer model when compared to the poor get richer model.

maximum time to equilibrium is around 0.95 for the ring lattice, the maximum time is around

0.85 for small world networks. Likewise, the time is maximum around 0.95 for the Robin

Hood network, and random get richer model. However, as the fraction of adopters increases,

the time also increases in the rich get richer model.
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Figure 4.23: The time to equilibrium in node diffusion for ring lattice, small world and random
networks. The results are averaged over a hundred simulations, and the number of nodes is
1,000.

Figure 4.24: The time to equilibrium in node diffusion for hub networks. The results are
averaged over a hundred simulations, and the number of nodes is 1,000.
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Figure 4.25: The time to equilibrium in link diffusion for ring lattice, small world and random
networks. The results are averaged over a hundred simulations, and the number of nodes is
1,000.

Figure 4.26: The time to equilibrium in link diffusion for hub networks. The results are
averaged over a hundred simulations, and the number of nodes is 1,000.
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Figure 4.27: The time to equilibrium in neighbor diffusion for ring lattice, small world and
random networks. The results are averaged over a hundred simulations, and the number of
nodes is 1,000.

Figure 4.28: The time to equilibrium in neighbor diffusion for hub networks. The results are
averaged over a hundred simulations, and the number of nodes is 1,000.
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5 Collective Action

In this chapter, we will define the collective action model. The previous diffusion models were

based on node’s potential, link’s active status or neighbor’s potential. In this model, we will

consider a collective action model, in which the nodes will adopt only if a certain fraction

of its neighbors also adopt. Therefore, not only the neighbors are important for the decision

to adopt, but also the neighbors of the neighbors play role in the decision. In fact, by the

same logic, the entire network plays a role in the collective decision making process. So, the

position of the node in the network will be as important as the network topology in collective

action. In this chapter, we will focus on the position of the nodes and in some cases we will

define several node motifs in networks that allow the collective action.

5.1 Definitions

Consider a social network, G = (N, A), in which there are N = {1, 2, ..., n} nodes and the links

are represented by an adjacency matrix, namely A. Nodes are labeled as the following two

states; potentials (P), non-potentials (NP), based on a certain probability distribution.

Let a random node, say r, in the potentials set be an initial adopter. Let us also define

the giant cluster of potential nodes, name it S , and initially S has only one element which

is the random initial adopter (i.e. S = {r} ). We define another set of nodes, namely C, be

the collective subset which is initially empty. If the node u is in the collective subset, then

Xc,b
u = 1. Finally, we define discrete time clicks as t.
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In the collective action model, we aim to find a collective subset of potential nodes. Each node

decides to adopt based on their neighbors. Each node is a part of the collective subset if the

node has potential and a certain fraction of its neighbors are also in the collective subset. We

assume that the nodes know whether their link neighbors’ willingness to adopt. Therefore

collective action is not only dependent on the node itself; it also depends on the node’s position

in the network.

Prob(Xc,b
u = 1 | u ∈ S ) =


1, i f

∑
y∈N(u) Xc,b

y /
∑

y∈N(u) wu,y >= threshold

0, i f
∑

y∈N(u) Xc,b
y /
∑

y∈N(u) wu,y < threshold
(21)

If a node is in the collective subset and the node knows for sure that a certain fraction of its

neighbors are also in the collective subset, then the node become adopted. The nodes that

become adopted will be the elements of the collective action.

5.2 Collective Action Algorithm

5.2.1 Finding the Giant Cluster of Potentials

The first step of the collective action algorithm is to find the giant cluster of potential nodes

to which the initial adopter belongs. At each time click, the potential neighbors of all the

potential nodes in the set S will be added to S . The iterations stop when there are no potential

neighbors that are outside of the set S . The time clicks are also increased by 1 when a neighbor

set is added to the set S . In fact, finding the giant cluster of potentials is exactly the node

diffusion model. An example of this step of the algorithm is presented in Figure 5.1.

5.2.2 Finding the Collective Subset

In the definitions section, we defined a collective subset as C which was initially empty. Now,

we will use the collective subset to find the adopted nodes in collective action. A node is in the

collective subset if the node has potential and the node knows for sure that a certain fraction

of its neighbors are also in the collective subset. But, how does the node know the neighbors
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Figure 5.1: Finding the giant cluster of potential nodes in 2D regular lattice with 81 nodes and
144 links. The potential nodes are drawn as black circles and the non-potentials are drawn
as white circles which are not visible. The potential status of the nodes are determined by a
uniform random distribution U ∼ (0, 1). The green node in the left figure represents the initial
adopter. All the potential nodes that is connected with the initial adopter are illustrated as
green circles in the right figure. There are some potential nodes that are not added to the set S
in the equilibrium on the right. Actually, this step is the node diffusion model defined in the
previous chapter.

of its neighbors are also in the collective subset for sure?

Firstly, in order a node to be in the collective subset, the node should have a potential.

In other words, if the node has no potential, then the node is automatically not in the collective

subset. So, we can start with the following idea: A node is not in the collective subset, if a

certain fraction of its neighbors have no potential.

Secondly, we assume that the nodes know whether their neighbors are also in the collec-

tive subset. Therefore, after a certain time period if at least a fraction of the node’s neighbors

are still in the collective subset, then the node knows for sure that at least a fraction of its

neighbors are also in the collective subset.

In the first iteration of finding the collective subset, all the nodes in the giant cluster of

potential nodes (i.e. S ) are added to the collective subset, C except that the nodes with a
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certain fraction of its neighbors have no potential. Then, for each iteration, the nodes with

a certain fraction of its neighbors are not in C will be deleted from the collective subset.

The iterations will stop either when the collective subset is empty or there are no nodes to

be deleted from C. We also increase the time ticks by 1 at the end of each iteration. The

remaining nodes in the collective subset are the elements of the collective action.

An example for finding the collective subset is presented in the figure below.

Figure 5.2: Collective action in 2D regular lattice with 81 nodes and 144 links. The potential
nodes are drawn as visible circles and the non-potentials are drawn as white circles which are
not visible. The potential states of the nodes are determined by a uniform random distribution.
The threshold is the half fraction of the neighbors (at least 2 neighbors). The green nodes in
the left figure represents the initial willing to adopt set. The red nodes in the left figure was a
part of the giant cluster of potential nodes, but are excerpted from the collective subset since
more than half of their neighbors have no potential (therefore not in the collective subset).
After several iterations, the figure on the right is formed. The blue nodes in the right figure
represents the collective subset.

5.3 The Effect of Clustering Coefficient and

Average Path Length in Collective Action

In this subsection, we will analyze the effect of clustering coefficient and average path length

in collective action. The network topology is worth testing for the collective action, and we
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will analyze the effect of clustering, path lengths and hubs, like in the previous chapter’s

diffusion algorithms.

We simulated the ring lattice, small world and random networks to analyze the effect of

clustering coefficient and average path lengths. The number of nodes are 1000 and the number

of links are 2000 for these networks. The results are averaged over a thousand simulations.

Also, we normalized the collective subset with the giant cluster of potential nodes. The nor-

malization was necessary due to the difference in the giant cluster size for these networks. It

would be unfair to compare the adopted nodes in collective action given that the sizes of giant

potential nodes are different. The following figure shows the effect of clustering coefficient

and average path length in collective action.

As explained previously, the ring lattice and small world have the same clustering coeffi-

cient (which is very high), whereas their average path lengths are different. On the other

hand, the random network has the same path length with small world but random network has

a lower clustering coefficient relative to the small world and ring lattice. The figure above

suggests that the networks with tightly-knit small groups are effective in collective action. The

effect of clustering coefficient is exactly the opposite compared to the diffusion algorithms. On

the other hand, the path length has no effect in collective action. Small world and ring lattice

has the same size of collective subsets, although their path lengths are significantly different

from each other.

5.4 The Effect of Hubs in Collective Action

In this section, we will analyze the effect of hubs in collective action. The hub networks are

explained in the previous chapter. We will use the same networks, namely poor get richer

(Robin Hood), random get richer and rich get richer (Scale Free) networks. The effect of hubs

in the collective action can be seen in the following figure.

As the figure suggests, the hubs have little impact (almost negligible) over the collective

action. Although, it is interesting to see that below 0.5 the poor get richer (Robin Hood)
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Figure 5.3: The effect of clustering coefficient and average path length in collective action. The
number of nodes are 1000 and the number of links are 2000. The results are averaged over a
thousand simulations. The y axis represents the number of nodes involving in collective action
divided by the giant cluster of potential nodes. The normalization is needed to understand the
effect of collective action, since the number of adopters can be biased due to the difference
in the giant cluster of potentials. The average path length has no effect in collective action,
however the clustering coefficient has a huge affect. The tighly-knit communities where the
clustering coefficient is high are more effective in collective action.

network works relatively well, but above 0.5 the rich get richer (Scale Free) network works

well compared to the other networks.

5.5 Conclusions

The first conclusion is that the collective subset is independent from the position of the initial

adopter. In other words, the initial adopter does not affect the size of the collective subset.

Secondly, the collective subset is independent from the size of the giant cluster of poten-

tial nodes. It is possible that the size of the giant cluster of potentials in a network can be
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Figure 5.4: The effect of hubs in collective action. The number of nodes are 1000 and the
number of links are 999. The results are averaged over a thousand simulations. The y axis
represents the number of nodes involving the collective action divided by the giant cluster of
potential nodes. As seen in the figure, the hubs have negligible impact in collective action.

larger than another network’s size of giant cluster; however number of adopters can be smaller

than the other. An example can be viewed below.

Thirdly, the collective subset depends on topology of the underlying network. The clustering

coefficient does have an impact for the size of the collective action. The tightly-knit communi-

ties are very effective in collective action. On the other hand, the average path length and hubs

do not effect the collective action.

The fourth conclusion is that the collective subset is subject to the position of the poten-

tial nodes in the network. Even when a couple of nodes with opposite potential status change

their positions, the number of adopters changes dramatically. To illustrate this, below figure is

presented.
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Figure 5.5: An illustrative example that the collective subset is independent from the size of
the giant cluster of potential nodes in 2D regular lattice with 81 nodes and 144 links. The
potential nodes are drawn as visible circles and the non-potentials are drawn as white circles
which are not visible. The potential states of the nodes are determined by a uniform random
distribution U ∼ (0, 1). The threshold is the 0.5 fraction of the neighbors (at least 2 neighbors).
The blue nodes represent the collective subset. The figure on the left has the giant cluster size
of 34, but the number nodes involving in collective action is 7. On the other hand, the right
figure has the giant cluster size of 31, but the number nodes involving in collective action is
20.

The fifth conclusion is that finding the collective subset takes time. The time for finding

the collective subset is bounded above by two times the diameter of the network (i.e. the

largest shortest path). Finding the giant cluster of potential nodes takes at most the diameter

time clicks. Since the initial adopter can only be far away from any node at most by the

diameter. By the same logic, finding the collective subset from the giant cluster of potential

nodes is bounded above by the diameter. Therefore, two times the diameters of the network is

the upper bound for finding the collective subset.

The sixth conclusion is that the giant cluster of the potential nodes is the equilibrium of

the node diffusion. This is already mentioned in the first step of the algorithm.

The last but not least conclusion that we will mention is that the collective subset is the

largest subset in which every node in the giant cluster of potentials has at least a threshold of

their neighbors are also in the subset. The last point is very important for understanding the
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Figure 5.6: An illustrative example that the collective subset is subject to the position of
the potential nodes in the network in 2D regular lattice with 81 nodes and 144 links. The
potential nodes are drawn as visible circles and the non-potentials are drawn as white circles
which are not visible. The potential states of the nodes are determined by a uniform random
distribution U ∼ (0, 1). The threshold is the half fraction of the neighbors (i.e. at least 2
neighbors. The blue nodes represent the collective subset. Everything is the same between
the two figures, except there is only a positional change of a potential and a non-potential
node. Even with a single positional change, the number of nodes involving in collective action
changes dramatically (from 7 to 20). The position of the potential nodes is very important in
collective action.

collective action.

5.5.1 Motifs for Collective Subset in 2D Regular Lattice

In this section, we will analyze the collective subset motifs in the 2D regular lattice. There are

certain motifs that can be used to find the collective subset in 2D regular lattice. As mentioned

before, the collective subset is the largest subset of the giant cluster of potential nodes where

every node in the collective subset has at least a threshold of their neighbors are also in the

collective subset. Then, we can actually come up with some motifs in the 2D regular lattice.

We will assume that the threshold is 0.5, in other words at least 2 neighbors is necessary for

collective action.

First motif is that every cycle forms a collective subset. Since, at any cycle in 2D regu-

lar lattice every node has at least two neighbors in the cycle. Secondly, every path with cycles
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in both ends forms a collective subset. The logic behind is the same as the cycle. The two

motifs can be seen in the figure below.

Figure 5.7: Collective subset motifs in the 2D regular lattice. The potential nodes are drawn
as visible circles and the non-potentials are drawn as white circles which are not visible. The
threshold is the half fraction of the neighbors (i.e. at least 2 neighbors). The blue nodes
represent the collective subset. The figure on the left has a cycle that forms a collective subset.
In the second figure (on the right), the collective subset motif is that a path with cycles in both
ends. These two motifs always form a collective subset in 2D regular lattice. Since, every
node in these motifs has at least two neighbors that are also in the collective subset.
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6 Conclusion & Future Research

In this thesis, we first analyzed the diffusion of innovation in one-dimensional networks. Two

diffusion algorithms were defined, namely active link diffusion and active node diffusion.

We analytically solved the time to cover the entire network. Then, we have compared the

analytical solution and computational results. The comparison of the analytical solution and

simulation results suggested that analytical solution and computational results were consistent.

In the consecutive chapter, we changed our focus to two-dimensional networks. We simulated

the aforementioned algorithms for the diffusion of innovation in two-dimensional networks.

We defined the concept of limited information and analytically solved the time to reach to the

target node. The simulation results showed that although the network size grows exponentially,

the time to reach to the target node increases linearly.

In the next chapter, we analyzed the diffusion algorithms in complex networks. The main

purpose was to analyze the effect of topology of the network, especially the clustering coeffi-

cient, average path length and degree distribution. We further introduced another diffusion

algorithm, namely neighbor diffusion. Three diffusion algorithms were implemented into

several well known networks. In particular, ring lattice, the small world and random networks

were used for the simulations. The results suggested that lower clustering coefficient leads

to more diffusion. Likewise, the average path length affects the final adopters. If the average

path length is large, then the diffusion will not be effective relative to the smaller average path

length. Finally, we showed that the hubs (the nodes with high number of connections) play a

significant role in the diffusion processes.
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After the diffusion algorithms, we focused on the collective decision making. In collec-

tive decision making, the nodes’ decisions were dependent on the neighbors’ decisions. If

at least a certain threshold of neighbors adopts the behavior, then the particular node also

adopts. The collective decision making algorithm was presented. The collective decision

making consisted of two steps. The first step was basically the node diffusion. The second

step consisted of several intermediate steps. It started with the giant cluster resulted from the

node diffusion. Then the collective subset was computed in which every node in the subset

had at least a certain fraction of its neighbors also in the collective subset. Finally, the effect of

clustering coefficient, the average path length and the hubs also analyzed for the collective

action. Despite of the diffusion results, higher clustering coefficient led bigger collective

subset. Also, the average path length did not affect the collective subset. Lastly, the hubs

didn’t seem to play a significant role for the size of the collective subset.

The main purpose for this thesis was to present the importance of the network structure

for the diffusion and collective decision making. For both the diffusion and collective action,

the results suggested that network structure plays an important role. However, the results for

the diffusion and the collective action were partially the opposite. In the diffusion models the

tightly-knit communities where the clustering coefficient is high did not lead to large number

of adopters. However, in the collective action the tightly-knit communities led to bigger sized

collective subsets. In order to maximize the final adopters in the diffusion models and the size

of the collective subset, our results suggest that the clustering coefficient needs to be in an

intermediate level. Higher clustering coefficient leads to higher number of adopters for the

diffusion, but lower collective subset size. For the average path length and hubs, collective

action is indifferent, but the maximum adopters for the diffusion models prefer lower average

path length and several hubs in the networks.

For the future research, we will analyze the effect of the initial adopter. The initial adopter was

taken randomly in this thesis; however a specific selection might lead to different outcomes.

Also, the time for the collective action was shown to be bounded above by two diameters.
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However, further analysis on the time for the collective action remains a direction of the

future research. Furthermore, the limitation for the information about the neighbors might

be interesting to analyze. For instance, only a fraction of the neighbors might be visible

for a particular node, and the node might have to guess or reason the remaining neighbors.

Therefore, the decision whether to adopt the behavior can depend on how well the guess or

the reasoning is.
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[30] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae Debrecen,

6:290–297, 1959.

[31] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

Science, 286(5439):509–512, 1999.

[32] Robert K Merton. The matthew effect in science. Science, 159(3810):56–63, 1968.

60


	Introduction
	Diffusion of Innovation with Infinite Speed in One-Dimensional Networks
	Active Link Diffusion with Infinite Speed
	Active Node Diffusion with Infinite Speed
	A Different Application: Infection and Vaccination
	Future Models

	Diffusion of Innovation with Infinite Speed in Two-Dimensional Networks
	Active Link Diffusion with Limited Information

	The Diffusion of Innovation in Complex Networks
	Diffusion Models
	Node Diffusion
	Link Diffusion
	Neighbor Diffusion

	The Effect of Clustering Coefficient and Average Path Length in Diffusion
	The Effect of Hubs in Diffusion
	Time to Equilibrium in Diffusion

	Collective Action
	Definitions
	Collective Action Algorithm
	Finding the Giant Cluster of Potentials
	Finding the Collective Subset

	The Effect of Clustering Coefficient and Average Path Length in Collective Action
	The Effect of Hubs in Collective Action
	Conclusions
	Motifs for Collective Subset in 2D Regular Lattice


	Conclusion & Future Research

