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Abstract

The shape of an object lies at the interface between vision and cognition, yet the field of

statistical shape analysis is far from developing a general mathematical model to

represent shapes that would allow computational descriptions to express some simple

tasks that are carried out robustly and e↵ortlessly by humans. In this thesis a novel

perspective on shape characterization is presented: encoding shape information inside

the shape. The representation is free from the dimensions of the shape, hence the model

is readily extendable to any shape embedding dimensions (i.e 2D, 3D, 4D). A very

desirable property is that the representation possesses the possibility to fuse shape

information with other types of information available inside the shape domain, an

example would be reflectance information from an optical camera.

Three novel fields are proposed within the scope of the thesis, namely ‘Scalable

Fluctuating Distance Fields’, ‘Screened Poisson Hyperfields’, ‘Local Convexity Encoding

Fields’, which are smooth fields that are obtained by encoding desired shape

information. ‘Scalable Fluctuating Distance Fields’, that encode parts explicitly, is

presented as an interactive tool for tumor protrusion segmentation and as an underlying

representation for tumor follow-up analysis. Secondly, ‘Screened Poisson Hyper-Fields’,



provide a rich characterization of the shape that encodes global, local, interior and

boundary interactions. Low-dimensional embeddings of the hyper-fields are employed to

address problems of shape partitioning, 2D shape classification and 3D non-rigid shape

retrieval. Moreover, the embeddings are used to translate the shape matching problem

into an image matching problem, utilizing existing arsenal of image matching tools that

could not be utilized in shape matching before. Finally, the ‘Local Convexity Encoding

Fields’ is formed by encoding information related to local symmetry and local

convexity-concavity properties.

The representation performance of the shape fields is presented both qualitatively and

quantitatively. The descriptors obtained using the regional encoding perspective

outperform existing state-of-the-art shape retrieval methods over public benchmark

databases, which is highly motivating for further study of regional-volumetric shape

representations.
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Özet

İnsan beyninde görmek ve algılamak arasında gerçekleşen henüz tam belirli olmayan bir

süreçle tanımlandırılan ’şekil’ için mevcut matematiksel modeller, halen insanların kolayca

çözdüğü tanımlama problemlerinin çözülmesini sağlayacak temsiliyeti sağlayamamaktadır.

Bu tez kapsamında şekil tanımlama ile ilgili yeni bir bakış sunulmaktadır. Bu yeni şekil

tanımlaması (temsili), şekil ile ilgili hesaplanan bilgileri şeklin içerisine kodlanması ile

oluşturulmaktadır. Elde edilen şekil temsili, şeklin boyutu ile alakalı değildir. Bu yönüyle

önerilen model farklı boyutlardaki şekiller için geçerlidir (ör. 2B, 3B, 4B). Yaratılan tem-

silin bir başka önemli özelliği ise, şekil ile ilgili niteliklerin bölgesel olarak erişilebilir ol-

ması sebebiyle, şekil bilgisinin şekil üzerinde tanımlanmış olan başka türden bilgilerle

birlikte kullanılmasına elverişli olmasıdır. Tez kapsamında üç farklı şekil temsil yöntemi

önerilmektedir: Sönümlü Poisson Hiper-Alanları, Ölçeklenebilir Dalgalı Mesafe Alanları,

Bölgesel Konveksite İşleyen Alanlar. Önerilen şekil nitelendirme yöntemleri görsel sonuçların

yanında çeşitli uygulamalarda sayısal sonuçlar ile sunulmaktadır. Sunulan uygulamalar-

dan bazıları: şekil parçalama, şekil sınıflandırma, şekil yakınlığı belirleme, şekil eşleştirmesi

ve tümör şekli çakıştırmasıdır. Sayısal sonuçlar önerilen bölgesel temsil yöntemlerinin bazı

problemlerde bütün modern metotlardan daha gürbüz ve başarılı çalıştığını göstermektedir.
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1

Introduction

Perception of visual information occupies about 70% of our cortex activity. Apparently,

about the same percentage of visual content occupies communication networks over the

world [3]. Geometric information regarding the shape of objects constitutes a large portion

of the visual information and has been studied for decades by scientists from many di↵erent

fields.

1.1 On Shape Analysis

Shape analysis is currently playing a pivotal role in many applications from a variety

of fields. It has become one of the major topics in the field of Computer Vision. Char-

acterization of complex objects using their global shapes is fast becoming a major tool

in computer vision and image understanding. [4], eg. applications like classification of

objects or content-based object retrieval. Introducing shape information to problems in

computer vision is very desirable, considering other sources of information like reflectance,

lighting, texture can get quite uninformative. With improvements in sensor technologies,

it is possible to obtain shape information from RGB-D cameras, which helps discard-

ing the segmentation problem and provides valuable shape information. Another field

of study that is highly connected to shape analysis is medical image analysis. Some

existing approaches and current problems are presented in Gao’s work[5]. Various neu-

rodegenerative and neurodevelopmental brain disorders are successfully linked to brain

1



morphometry[6, 7, 8, 9, 10, 11, 12, 13, 14]. Shape analysis has also been of great inter-

est to computer graphics community, where shapes are analyzed as 3D boundary meshes

in applications involving shape segmentation/partitioning[15], shape retrieval[16], shape

correspondance[17], and so on. Shape analysis techniques has been utilized in many other

fields, some of which are paleanthology[18], archeology[19] and biology[20]. For a more

detailed, in-depth summary of existing problems concerning shape analysis and its appli-

cations, the readers are referred to books by Small[21], Dryden and Mardia[22], Krim and

Yezzi[23], Kendall, Barden and Carne[24].

1.1.1 Links to Human Perception of Visual Form

Research on shape analysis has been greatly influenced by the human perception of

visual form. Findings on human visual system by disciplines of psychology, cognitive

science, art and more recently neuroscience[25] have motivated some of the seminal works

in the field. According to Pylyshyn[26](and many others), analysis of shape lies in interface

between vision and cognition as a part of the early vision system. Outlining existing

relations or the parallelism between human cognition and shape analysis literature is

certainly out of the scope the thesis, yet due to crucial relevance, the seminal work is

introduced following the di↵erentiation: classical - modern theories of visual perception

by Loncaric[27].

The revolutionary Gestalt school of psychology[28, 29, 30] provides principles (laws)

on properties of visual forms. The central principle of Gestalt psychology is that the mind

forms a global whole with self-organizing tendencies. Even though the parts change the

whole can remain unaltered. Ko↵ka portrays this by saying “the whole is other than the

sum of its parts”. Other classical theories of visual form are Hebb’s theory[31], where

form is not perceived as a whole but consists of parts, and theory of Gibson[32], where

monocular cues(stimulus) like texture, saturation of colors, shading, parallel lines are

used in perceiving real three-dimensional objects. The latter is in contrast to the Gestalt

theory, where the dynamism of real world objects is analyzed as an ambiguity of the

interpretation of images projected into a two-dimensional space. These classical theories

of visual form are non-computational. This aspect poses a disadvantage for practical

2



engineering applications[27].

As for modern theories of the human visual perception system, in Marr’s work[33, 34]

the focus of research is shifted from applications to topics corresponding to modules of

the human visual system. The computationally supported work opened new directions to

the field of shape analysis[27], specifically to the concept: shape from x, which deal with

reconstructing shape from cues including shading[35, 36, 37], stereo[38], texture[32, 39],

contour[40], focus[41], etc. Lowe[42] with a similar motivation, introduced methods for

recognition of three-dimensional objects from unknown viewpoints solely using a two-

dimensional image. A dynamical shape model was proposed by Koenderink et al.[43, 44],

where on several scales of resolution was considered for the modeling of visual perception.

Such a hierarchical representation for shapes was also considered in art before and the idea

is in the core of many recent successful computational approaches of shape representation.

Attneave performed psychological experiments[2] to demonstrate that visual data is highly

redundant and portrays that points of high curvature on shape boundaries are informative

and perceptually relevant.

1.1.2 On Shape Representation

Representation of the shape is in the heart of any shape analysis approach. A large

number of shape representation techniques are proposed to address di↵erent problems. A

shape representation is modeled with a preconception of the application and invariance

properties desired. The fact that there is no verbal definition of “Shape” that applies for

every shape analysis scenario, is highly coherent with the large quantity of existing shape

representations.

Kendall’s definition[45] of shape:“all the geometrical information that remains when

location, scale and rotational e↵ects are filtered out from an object.” is well acknowledged,

yet there is no default invariance group to address all problems. For instance, rotation

invariance is not desired in a optical character recognition task, since letters p and d

would be identical according to the representation. The representation is expected to be

invariant to bending or articulated motion for applications like retrieval of perceptually

similar shapes. On the other hand, bending invariance and scale invariance is not desired in
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analysis of anatomical organs, because bending and global scale change could be symptoms

of interest.

Shape analysis of 2D silhouettes as perspective projections of real world 3D objects

is of great interest for the computer vision community. Representation in this case be-

comes crucial because one dimension of geometric information is lost. Real world objects

undergoing slight pose changes might cause severe topological changes in the projected

planar shape, which only partially represents the actual object. Additionally e↵ects like

occlusion, distortion and noise further complicate the problem. The problem of noise

also occurs in the field of medical imaging, where some of the medical data acquisition

methodologies provide insu�cient resolution. A shape representation technique should

be robust against these undesired e↵ects and should be equipped with desired invariance

properties. The representation is commonly used to declare a shape similarity measure,

some examples are [46, 47, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], which are

utilized to retrieve perceptually similar shapes from a database to a given query shape or

to evaluate the quality of various medical imaging tasks such as image registration and

segmentation as in [60].

An earlier classification of shape representation techniques was made by Pavlidis, [61].

Zhang et al.[62] also follows classification of Pavlidis as boundary and internal(region based)

shape representation techniques. A more recent classification is presented as a survey by

Yang et.al.[63]. Boundary based approaches are contour-based shape representation tech-

niques that exploit shape boundary information. The information is generally encoded in

the form of a string, tree or graph, so that a similarity measure can be extracted using

string or graph matching techniques. In the earlier classification [61, 62],the regional shape

representation techniques are mainly centered around the medial axis transform(MAT) by

Blum[64, 65]. The revolutionary idea of Blum is representing the shape using the local sym-

metry axes, which encode regional characteristics of shapes. The non-computational idea

of Blum was interpreted(computationally) by many di↵erent methodologies including mor-

phological operations and voronoi cells, but perhaps the best computational analogy[66]

to Blum’s prairie-fire definition is the level-set methods, which will be described next.

For a more detailed analysis of general shape representation techniques, especially on
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boundary-based approaches the readers are referred to the surveys[61, 62, 63]. Some of

the shape representation approaches that have relevance for the work will be introduced

more extensive throughout the thesis .

In the 90’s, it was observed that shapes can be embedded as zeros of a function defined

over the shape domain, opening the way to an active research area in implicit shape

representations ([67], [68]). In this area of research, the signed distance transform was

popularized heavily by the level-set framework [69] and its fast implementation [70].

The distance function is created via solution of the Eikonal equation |ru(x)| = 1, x 2 ⌦

subject to boundary condition u|
@⌦ = 0. The governing equation forces the absolute value

of the gradient to be constant. Equipped with a suitable boundary condition, the solution

u(x) is interpreted as the shortest time needed to travel from the boundary to the point

x. Signed Distance Transform (SDT) is formed by setting positive and negative of the

distances exterior and interior to the shape or vice versa, facilitating regional encoding of

shape domain and its exterior by minimal distances to the shape boundary. The shape

is then represented as the zero level set of the signed distance transform (SDT). This

representation of the shape, i.e. via embedding the shape boundary as the level set of

SDT, became quite instrumental in developing approximate schemes for segmentation

functionals and introducing shape knowledge in segmentation problems[71].

Perhaps the most significant property of the level-set representation is that the infor-

mation regarding shape is in a space where other sources of information can be reached,

thus integrated to the problem. This has been utilized in segmentation applications where

shape information is fused with other types of low-level information such as edge consis-

tency [72, 73, 74], intensity homogeneity[75, 76], texture information[77, 78, 79, 80, 81]

and motion information[82, 83]. For a more detailed analysis on how information regard-

ing color, texture, motion and shape are integrated to the framework, the readers are

referred to the survey[84]. Work of Tari et al.[85] provides an alternative regional encod-

ing approach, similar to the reaction-di↵usion process, used by Kimia et al. [66]. A field

inside the shape is obtained whose iso-contours mimic curvature dependent evolution. The

field is used for extracting skeletons from gray-scale images, which is a sound example on

how shape information and other cues can be tied thanks to the regional distance-like
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underlying representation.

1.2 Contributions and Thesis Outline

Within the scope of the thesis, three novel shape representation methods are intro-

duced, which share a common property:

Information regarding shape, extracted from internal distance relationships, is

encoded inside the shape domain in a smooth manner.

Since the information is coded inside the shape, it is the possible to fuse shape infor-

mation with other types of information available inside the shape domain. For instance,

reflectance information regarding an object obtained from an optical camera or informa-

tion regarding water content, functional activity or di↵usion characteristics from various

MRI acquisition methods could be fused with shape information. Unlike the SDT used

in level-set methods, our fields are very informative, as we will show throughout the

thesis, so such information could be useful in various tasks including characterization.

Another acknowledged advantage of the presented shape representation, which is valid for

all distance-based shape representations, is that the shape model is free from the dimen-

sions of the shape: the volumetric description of the hyper-fields we propose is readily

extendable to any shape embedding dimensions in Rn for n = 2, 3, 4....

Chapters in this thesis include an analysis of existing work that has relevance for the

content of the chapter and conclusions regarding the content of the chapter. Next, the

contents of the chapters are described. Finally, at the end of the thesis, conclusions in a

general manner and remarks on future work will be stated.

1.2.1 Scalable Fluctuating Distance Fields

The first shape encoding field is designed with a motivation to represent tumor shapes.

Tumor growth involves highly complicated processes and complex dynamics, which typi-

cally lead to deviation of tumor shape from a compact structure. Motivated from physical

significance and clinical relevance in follow-up problems, we proposed a method to analyze
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the protruded and peripheral regions of tumor shapes. The modified field is introduced in

C.21, along with analysis of relevant work.

In the earlier work of fluctuating distance fields [1], the shape field consists of positive

and negative values whose zero crossing separates the central and the peripheral volumes

of a silhouette. We add a non-linear constraint upon the original fluctuating field idea in

order to introduce a “fluctuation scale”, which indicates an assumption about peripher-

ality. This provides the induction of an hierarchy hypothesis onto the field. By varying

the fluctuation scale from low to high values, it is possible to observe the coarse to fine

levels of hierarchy both in the field and its segmentations even by utilizing a very simple

segmentation method. We discuss the scale-space arising from the aditional parameter.

When the parameter is fixed, the field becomes robust for scale changes for analysis of

correspondence, albeit the loss of the linearity of the original shape field model.

The proposed modification leads to an interactive framework for segmenting the protru-

sions and partitioning tumorous structures In order to quantify the tumor shape variations

in a follow-up scenario, a shape registration based on a scalable fluctuating shape field

is described. The representation performance of the scalable field for a fixed ’fluctuation

scale’ is demonstrated in comparison to the conventional distance transform approach for

the registration problem. The scalable shape field becomes a potentially powerful underly-

ing shape representation for shape registration procedures, due to an increased robustness

to scale changes without losing the information it inherits particularly in terms of the

parts of a shape.

1.2.2 Screened Poisson Hyper-Fields

The second regional representation presented in the thesis is the shape hyper-fields.

This is a novel perspective on shape characterization using the screened Poisson equation,

which was first used for disconnected skeleton extraction from shapes. We discuss that the

e↵ect of the screening parameter is a change of measure of the underlying metric space;

also indicating a conditioned random walker biased by the choice of measure. A continuum

1Scalable Fluctuating Distance Fields is published at Springer Book Series: Research in Shape Mod-

elling
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of shape fields is created, by varying the screening parameter or equivalently the bias of

the random walker. In addition to creating a regional encoding of the di↵usion with a

di↵erent bias, we further break down the influence of boundary interactions by considering

a number of independent random walks, each emanating from a certain boundary point,

and the superposition of which yields the screened Poisson field. Probing the screened

Poisson equation from these two complementary perspectives leads to a high-dimensional

hyper-field: a rich characterization of the shape that encodes global, local, interior and

boundary interactions. We discuss two low-dimensional embedding schemes, one to unveil

parts using non-negative sparse coding[86] and the other to produce consistent mappings,

which we call Screened Poisson Encoding Maps (SPEM), for the purpose of shape matching

and shape retrieval. Details regarding the Hyper-Fields are given in C.32.

The potential of extracting various shape descriptors from the introduced shape hyper-

field was demonstrated over both a 2D ”1000-shape” database with a moment based

approach. For 3D non-rigid shape retrieval, we use the benchmark dataset SHREC’11 [87]

. The SPEM performance was evaluated by using the VLAD method [88] for volumetric

feature encoding. The SPEM consistently ranked the first or the second in all measures,

and ranked the first when a hybrid combination with top surface-based methods was

computed. The results of SPEM suggest that extracting volumetric information in a

robust way can lead to enhancement in the non-rigid shape retrieval performance when

compared to extracting information regarding only intrinsic surface properties, which is

very motivating for further study of volumetric representations.. Moreover, as expected,

combining volumetric information and surface information results in a significant boost in

performance in 3D shape retrieval.

Contrasting to boundary-based approaches, our shape-interior based representation

allows the landmarks to be obtained from the whole shape domain, which leads to ro-

bustness to artifacts that can occur in shape boundaries. In addition, correspondences are

obtained by combination of almost local (shape field measurements) and global (eigenvec-

tors) cues due to the characteristics of the projections. The fact that SPEM’s are robust

2Screened Poisson Hyper-Fields: A New Perspective In Shape Representation is currently in second

revision round for SIAM, Journal on Imaging Sciences
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to scale changes and show consistency across various scenarios: di↵erent shape poses,

deformations, occlusions and clutter, motivates their use in 2D shape matching. Yet us-

ing SPEM’s for nodes as features or VLADS is not enough considering the alterations of

regional shape characteristics due to projective transformation.

In the last few decades, significant advances in image matching are provided by rich

local descriptors that are defined through physical measurements such as reflectance. As

such measurements are not naturally available for silhouettes, existing arsenal of image

matching tools cannot be utilized in shape matching. We advocate use of SPEM’s to

translate shape-matching problem into image-matching problem. We devise a shape simi-

larity measure based on the SIFT[89] descriptors of the projections, which is later utilized

in a matching scheme refined by RANSAC[90] to yield state-of-the-art retrieval results.

Details regarding this method is given in C.43.

Thanks to both the holistic and regional nature of the provided shape representation, a

SIFT-based image matching framework, could be used in 2D shape matching, for the first

time to our knowledge. Even the surprisingly simple idea employed as the shape similarity

measure, which is the total number of retained correspondences across corresponding shape

projections of the two shapes being compared, achieves very good performance in matching

as demonstrated by the performance over three common shape datasets. The presented

shape matching scheme performs favorably among some popular shape retrieval methods.

1.2.3 Local Convexity Encoding Fields

Finally, we propose a shape field that encodes convexity and concavity inside the shape

domain. The motivation is noticing that most of the variance in the hyper-field is related

to the distance of the nodes to the boundary. We estimate a reference field by forming a

relationship between the distance of a node to boundary, i.e. the distance transform ( D

) and the solution to the poisson equation. The proposed field is formed by aggregating

the deviation of the field from the reference field in time. The reference field is is modeled

as an answer to the following question for a node at point (~x):

3Manuscript SIFT for Shapes under preparation
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Considering the distance of the node to boundary, D(~x), how di↵erent would

the intensity of node (v(~x, ⇢)) be at time t if the source(shape boundary) was a

perfect circle.

The new field directly separates external parts from the central region. The isocontours of

the field reveals that rich shape information is encoded, when potential just arising from

distance to source is discarded. The partitioning of the shapes is obtained using a very

natural and perceptually coherent manner. A new hyper-field is formed from the evolution

of this field in time, whose projections give a hint of the information encoded.We observe

medial loci of the shapes and concave regions explicitly. The results are also consistent

for the shapes of the same class. The field is introduced in C.54.

4Manuscript Local Convexity Encoding Fields under preparation
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2

A Scalable Fluctuating Distance

Field

2.1 A Part-Based Representation for Tumor Shapes

Tumor growth modeling is extensively studied using theoretical and experimental ap-

proaches by a variety of disciplines. While majority of the current studies are focused

on modeling microscopic phenomena, mathematical models that operate at a macroscopic

level are increasingly investigated through the analysis of clinical medical images [91]. In-

homogeneous and anisotropic tumor growth mechanisms lead to deviations of the tumor’s

shape characteristics from a compact structure and include protrusions. It is clear that

extracting and quantifying the spatial information that irregular tumor shape parts carry

would be a helpful macroscopic research tool for a better understanding of the dynamics

of tumor growth.

As for clinical usage, the quantification and segmentation of the protruded and periph-

eral tumor regions could play an important role in radiosurgical applications. The goal

of radiosurgery is to deliver a necrotic dose of radiation to the tumor while minimizing

the amount of radiation to healthy brain tissues, especially to dose-sensitive tissues [92].

Series of beam configurations are determined as an optimization problem for treatment

planning process such that beams will intersect to form a high dose at the tumor ROI.

The rapid decrease at the edges of the radiation beam, which corresponds to the between
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80% and 20% isodose lines, is called the penumbra region and is generally located on the

peripheral regions of the tumor [93]. A model that allows the distinguished analysis of the

peripheral regions and segmentation of these parts that receive less radiation dose would

not only be useful for isodose planning, but also for evaluating the success of the opera-

tion on protrusions and peripheral regions that are in close relation to critical anatomical

structures. We propose an interactive method to distinguish protruded-peripheral parts

using solely distance relations.

2.1.1 Related Work

Segmentation or partitioning of shapes as boundary meshes is a problem of great in-

terest for geometric modeling and computer graphics fields. The partitioning of the object

represented by the mesh into meaningful parts, referred to as part-type segmentation by

Shamir[15], is highly motivated by the study of human cognition [94, 95]. For an in-detail

analysis of existing mesh segmentation methods we refer to [15, 96], along with recent

successful approaches [97, 98] and a comparison of part-type segmentation techniques can

be found in [99]. Distance functions described on the shape surfaces are commonly uti-

lized for shape decomposition. There is a variety of surface metrics, e.g. geodesic [100],

isophotic [101, 102], di↵usion [103, 104, 105], volumetric part aware [106]. Though suc-

cessful with a mesh representation, adaptation of these decomposition methods that use

distance metrics to a volumetric representation would not be plausible. Additionally, par-

titioning the protrusions of tumors would require the abstraction of peripheral regions

beforehand, else the association of partitioned boundary segments to the tumor volume

would not be possible.

A sound approach for regional shape partitioning is utilizing the medial axis of sym-

metry, i.e. skeleton representation [64]. Partitioning shapes by associating regions with

medial locus branches is very common and also successfully utilized in medical imag-

ing [107, 108, 7, 8]. However, skeletal representations commonly su↵er from certain insta-

bilities. One of the instabilities is due to boundary perturbations, which are commonly ad-

dressed using smoothing or branch pruning approaches, which involve discarding branches

that contribute little to the reconstruction of the shape[109, 110, 57]. For partitioning,
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choice of branches to prune would a↵ect the resulting decomposition drastically consider-

ing the highly compact shapes of tumors, which also tend to inherit symmetries. Another

kind of instability occurs in the regions near the junctions, which is mainly referred to

as the ligature problem [111, 112]. A variety of methods have been proposed to cope

with the ligature problem, including detecting transitional areas [113], a Bayesian formu-

lation for estimating likely branches that would produce the shape [114] or disconnected

skeleton approaches [115, 85, 116]. Additional to these inconsistencies, the association of

branches with protrusions is not straightforward and even under slight deformation the

abstraction of the centrality of the shape is not possible for fold-symmetry cases, which

are highly possible for tumor shapes. Tari’s model of Three-Partite-Skeleton, which arises

from fluctuating distance fields [117] adresses this problem, which is highly motivating for

the purpose of protrusion segmentation.

The fluctuating distance field [1, 117] contains both positive and negative values, and

its zero crossing separates central and peripheral volumes. The maximum value of the field

can be considered as a rough approximation of the center point for the shape in question,

for instance the tumor, whereas the local minima correspond to rough approximations of

center points for the protruded parts on the shape. The level curves encode the spatial

relationships so explicitly that the separate protruded parts can be segmented even using

a watershed segmentation without any additional processing. The extracted central region

is compact and the peripheral region is always partitioned, unless it is a perfect annulus.

In this model, no control exists over the ratio of region cardinality of positive field values to

that of the negative field values. However, such a property can be an advantage in forming

a shape field that respects a certain scale of central to peripheral regions of the shape.

Particularly for shapes of tumorous structures, where boundaries between peripherality

versus centrality is rather vague, variation of such a scale will introduce a flexibility in

following shape analysis stages.

2.1.2 Our Contribution

In this paper, we describe a scalable fluctuating distance field as a tumor description

model. This model allows the user to interactively adjust the ratio of positive and neg-
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ative domain sizes. The corresponding parameter can be set according to nature of the

application. Thanks to this addition, a hierarchy of parts is not to be abstracted from the

field as in [1]. Instead, fields that represent di↵erent hierarchical assumptions are formed,

with the trade-o↵ of losing linearity of the formulation. Details about the formulation and

implementation of the shape field will be described in Section 2.2, where the fluctuation

scale space that arises with the new parameter is introduced and exemplified on 2D shapes

and 3D tumor volumes.

The constructed shape fields will be used for an alignment of baseline and follow-up

tumor structures. In this registration problem, the distance transform is often used as a

shape representation that describes the spatial relationships within the moving and fixed

shapes[118]. The adjustment of the location of the zero-level set of the new distance

field impairs the e↵ect of scale changes to the resulting field for a fixed fluctuation scale,

making the field a robust underlying shape representation for registration purposes. The

registration process is described in Section 2.3 and experiments using both synthetic data

and patient data are evaluated in Section 2.3.1, where the scalable fluctuating distance

representation is compared to the conventional distance transform representation.

2.2 Scalable Fluctuating Distance Field

The concept of fluctuating distance fields, introduced by Tari [1], involves the exploita-

tion of local and global spatial interactions to achieve a field that consists of both negative

and positive values. The zero-level set partitions the shape domain into ⌦+ and ⌦�, which

corresponds to the central region, a coarse and compact shape, and the peripheral region,

which includes all the protrusions of the tumor, respectively. The ridge points on the

surface yields the Three-Partite skeletons indicated. Our main motivation in using the

fluctuating distance field is the information inherently coded in the resulting level curves

at the peripheral regions, which will allow the explicit treatment to peripheral regions

for further analysis. In this section we will describe our modification of this method,

which will provide the required flexibility and interactivity for our purpose. We will follow

by introducing the arising scale-space and illustrating segmented protruded parts using
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di↵erent fluctuation scales for 2D shapes and 3D tumor volumes.

The fluctuating distance field, ! : ⌦ ! R is a real valued function on a discrete lattice,

⌦ ⇢ Z ⇥ Z ⇥ Z, with a neighborhood system, N . ! is generated by the minimization of

linear combinations of regional and boundary energies, which are described over the shape

domain ⌦, as a function of !.

2.2.1 Energy Terms

The regional energy consists of local and global terms that function as spatial regu-

larizers. Tari [1] proposed a global regional energy, which is the squared average over the

domain, connecting all the nodes using a global mean constraint:

E
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Di↵erentiating the sum of E
Global
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) over ⌦ leads to the following expression:
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which would be minimized if ! is composed of all zeros or is a fluctuating function, where

positive and negative values cancel each other.

The local regional energy functions as a smoothness term. We use the sum of squared

di↵erences between neighboring pixels in a 6 neighborhood system, N (i, j, k) to obtain

the required spatial smoothness for the ! field:

E
Local

(!
i,j,k

) =
X

(l,m,n)2N (i,j,k)

(!
l,m,n

� !
i,j,k

)2 (2.3)

Di↵erentiating this energy w.r.t !
i,j,k

results in the following expression, where  L corre-

sponds to the seven-point discretization of the laplacian operator:
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The boundary energy is defined for formulating the interactions along the level surfaces.

The preservation of interactions between the nodes is imposed on the ! field using the
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usual distance transform as a bridge [1]. Thanks to this constraint, central regions of

the shape, where the distance transform has larger values have much higher tendency to

get positive ! values. The similarity to the distance transform function is formulated as

follows:

E
Bdry

(!
i,j,k

) = (!
i,j,k

�D

i,j,k

)2 (2.5)

where D denotes the distance transform of the shape. The derivative of E
Bdry

w.r.t !
i,j,k

is then given as follows:
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Minimization of the combination of these energies results in a ! field that has low

expected value, thus fluctuating (2.2), locally smooth (2.4) and resembling the distance

transform of the shape (2.6).

2.2.2 A Sign Constraint to Control Fluctuation Scale

The natural location of the zero-level curve under the given constraints often becomes

too close to the tumor boundaries, turning out to be a disadvantage while estimating a

deformation between two ! fields. In addition, the ability to control the location of the

zero crossing turns the ! field to a robust feature for an interactive tool for segmenting

the protrusions on the tumor. Therefore we describe an additional global constraint to

adjust the position of the zero crossing. The term is constructed as a quadratic expression

forcing the sum of the signs of all nodes to be close to a predetermined ratio of the domain

size, |⌦|:
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where ⌘ 2 [�1, 1] corresponds to the ratio of the intended sum of the signs of all ! points

to the number of points in the shape domain |⌦|. While minimizing (2.7), ⌘ is chosen as

the desired ratio of :
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Di↵erentiating the sum of this energy w.r.t. !
i,j,k

would give :
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For the approximation of the signum function in a di↵erentiable manner, we used a

regularized Heaviside function, then the impulse function �(z) was approximated as the

derivative of H(z):
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where ✏ determines the steepness of the smoothed step and the impulse functions.

A Formulation

The computation of ! is achieved by calculating the steady state solution to the linear

combinations of the energy derivatives, which are described above. The combination of

the energies is presented in a continuous formulation as follows:
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The solution is obtained by applying the method of gradient descent in the following

expression:
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where � and � values are Lagrange multipliers for the given energies. As natural choices,

�1, �2, �3 parameters can be interpreted as 1 [1] . � is the only Lagrange multiplier that

calibrates the relationship between the values of E
Bdry

(!
i,j,k

) and E
Sign

(!
i,j,k

). � only

a↵ects convergence speed when it is within appropriate limits, that is not larger than the

maximum value of the D. We choose it as a normalization to the E
Sign

of the ! field with

the desired size of |⌦+
| using roughly a spherical zero-level set assumption. The iterative
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scheme on ! is revealed after an artificial time discretization in ⌧ :
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For the third term above, as ! is calculated up to a scale, a weight of 1/|⌦| is used as a

weighting between the D and the ! field.

2.2.3 A Space of Fluctuation Scales

The e↵ect of the parameter ⌘ of the E
Sign

term is not only to change the location of

the zero-level set. Its combination with the zero-mean constraint changes the encoding

characteristics of the whole domain. For instance, positive ⌘ values force the negativity

of the nodes that belong to ⌦� much more compared to ⌘ = 0 to satisfy the zero mean

constraint. The reason is that there are less number of nodes that are negative, so those

have to be more negative to satisfy the zero mean condition. The opposite goes for the

negative ⌘ values. This causes a diversity in the characteristics of the fields as ⌘ changes.

A separate normalization can be applied to the positive and negative parts of the fields,

which diminishes this e↵ect if not desired.

We depict the resulting fluctiation scale-space for a hand shape in Fig. 2.1(a), where

!(x̃, ⌘) is presented for x̃ on a vertical line on the hand shape domain and the surface

plot for the zero-crossing contour as a function of ⌘ is presented in (b) . Notice that the

zero-level set sweeps the whole domain smoothly from boundary to central regions, as the

information regarding ⌦ is encoded for di↵erent scales of peripherality.

The computed field is shown for three di↵erent ⌘ values (> 0,= 0, < 0) for the sym-

metric shape silhouette in Fig. 2.2. Note that there are two levels of hierarchy in the

peripheral regions of the shape, which can be seen as five di↵erent parts at a coarser level,

later which are further di↵erentiated into two separate parts. Varying the fluctuation scale

parameter, one can capture those two levels of scale (coarser and finer) as can be observed

in the resulting field with positive and negative ⌘ values, respectively.
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Figure 2.1: Left The normalized field !(x = x̃, ⌘), where x̃ is shown by horizontal(top)

and vertical(bottom) red lines. Image obtained by sweeping ⌘ from 1 to -1. Right Surface

plot for !(x, y, ⌘) = 0

A similar e↵ect is achieved for the leaf silhouette in Fig. 2.3. Using a simple watershed

segmentation [119], the resulting partitions reveal the three main leaves with ⌘ = 0,

whereas the partitioning with the ⌘ > 0 field reveals the smaller protrusions on those

three leaves. Here, the encoding of coarse to fine shape details nicely demonstrates the

hierarchical aspect introduced into the fluctuating distance field.

Figure 2.2: From left to right: Input shape, ! for ⌘ > 0, ! for ⌘ = 0, ! for ⌘ < 0

We show the original w field and the scalable w field for various ⌘ values in Fig. 2.4

for an elephant and a cat silhouette. The first columns next to the silhouettes show the

original field followed by the fields with increasing values of the fluctuation scale. The top

picture is the whole w field, whereas the lower depicts only its ⌦� partition. Looking at the
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Figure 2.3: ⌦� domain and watershed segmentation results for: left ⌘ > 0, right : ⌘ = 0

details at the legs of the fields more closely, for instance, the elephant’s both front legs are

merged in the original w field, as well as for the scalable field for smaller ⌘ values. When ⌘

is increased (e.g. see the rightmost field), the legs are separated, as can be observed in the

⌦�-part of the field. This is because where the two legs are joined, there is a single local

maximum with the original and low scale parameter fields, whereas there are two separate

local maxima for each leg with the high-scale-parameter field. The same observation holds

for the various shape fields over the cat. Note the rear-most leg of the cat and its tail

which share a joint single maximum, whereas that extremum separates into two separate

maxima for the tail and the rear leg towards the higher ⌘-scale. Another point to remark

over these experiments is the interesting feature of the low-⌘-fields when compared to the

original w-field. Note the cat’s front legs, and elephant’s rear legs, which seem to have a

separate maximum for each leg in the original shape field. However, the low ⌘ shape fields

facilitate to peek at those same features first jointly then separately as the fluctuation

scale varies from low to high. As these experiments demonstrate, the hierarchy over the

shape is not built from the w-field as in [117], however, we modify the field itself to create

the hierarchy that is sought for.
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Figure 2.4: The original ! field(left)[1], where the Lagrange multiplier � is chosen as

zero in Eq.2.12 and five ! fields (right) calculated using increasing values for ⌘, where

⌘1 < ⌘2 < ⌘3 = 0 and ⌘5 > ⌘4 > ⌘3 = 0. Upper row for both shapes is a contour plot of

normalized ! and bottom rows depict ! for solely ⌦�.

2.2.4 Interactive Tumor Protrusion Segmentation

The segmentation of the protruded tumor regions is achieved using the information in

the negatively-valued regions of the ! field, which encapsulates local minima that depicts

separate protrusions. The tumor should be segmented prior to the calculation of !, for

this purpose we use the Tumor-Cut method [120]. A contrast enhanced T1 MRI axial

slice is depicted in Fig.2.5, along with the ! field calculated on the tumor shape domain.

Partitioning of the negatively-valued domain into protruded parts can be performed using

the watershed transform [119] on the ⌦� field. The parts segmented from the resulting !

field can be observed Fig. 2.6 for a sample 3D tumor volume.

With the flexibility that E
Sign

provides, the size of the positive compact part ⌦+ can be
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Figure 2.5: Left: An axial slice of contrast enhanced T1 MRI of a patient with a tumor.

Middle: ! field isocontours for the corresponding tumor slice. Right: ! field visualized.

Figure 2.6: From left to right: Tumor volume. Positive and negative parts of the proposed

field. Positive part of the field. Negative part of the field. Segmented protrusions of the

tumor enveloped in the negative part of the field. Segmented protrusions visualized with

the positive part of the field.

adjusted with user interference by medical experts or can be calculated automatically by

relaxing the ⌘ parameter until a predetermined hypothesis regarding the separated volumes

are satisfied. The e↵ect of ⌘ parameter on the resulting protruded parts is presented in

Fig. 2.7.

2.3 Tumor Follow-Up Registration Using ! fields

In order to obtain a valid and unbiased comparison between the performances of ! field

and the conventional distance transform D as underlying shape representations, we chose

attributes that are essential in many of the registration algorithms that were proposed
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Figure 2.7: Visualizations of positive(opaque) and negative(transparent) parts of the tu-

mor field paired with corresponding segmentation results. The fluctuating distance field

for each pair were generated using the corresponding ⌘ value.

to calculate such deformations and combine them to end up with a basic yet powerful

registration routine.

As linear data terms are not capable of performing well in case of large displacements,

we used non-linear data terms and a coarse to fine warping approach which is a well

studied combination in the area of optical flow estimation [121]. We follow the traditional

model, formulated by means of an energy optimization problem, where deformation is

calculated as a mapping between domains of shape fields !1 and !2. The displacement

field u 2 R3 = (u1, u2, u3) describes the deformation between the tumor and the follow-up

shape domains: u : ⌦1 2 R3
! ⌦2 2 R3. In the following: x 2 R3 = (x1, x2, x3). The

assumption of constancy of the underlying shape representation is formulated as:

!1(x)� !2(x+ u) = 0

In addition to this data term, a regularization term based on the gradient of the defor-

mation field is utilized. Following the original Horn and Schunck optical flow model [122],

the combined functional F, where ↵ is a parameter that controls the smoothness term :

F (u) =

Z

⌦1

(!1(x)� !2(x+ u))2 + ↵2(|ru1|
2 + |ru2|

2 + |ru3|
2)dx (2.13)

is minimized to yield the Euler-Lagrange equations, which are non-linear due to the !2(x+

u) terms they contain. The first order Taylor expansions are used for those terms to

obtain the linear system of three equations. First one of those three equations (for each

coordinate) is written as:

(!1(x)� !2(x+ u)�r!2(x+ u) du)!2
x1

+ ↵2div(ru1) = 0 (2.14)
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where !2
x

i

is the spatial derivative of !2 w.r.t xi

and du 2 R3 describes an unknown update

to the known variable u. In its solution, we adopted the warping scheme, introduced in

[121], where the deformation field u is set to zero at the coarsest level and updated by

un+1 = un + du, as soon as du is computed at each finer scale using an inner loop of SOR

iterations. !2(x + u) is computed at the beginning of each outer iteration by applying a

warping process to !2(x) using the deformation field, un. The number of outer iterations

depends on the downsampling factor. In order to achieve the full potential of the model,

instead of the conventional 0.5 downsampling factor, we used a fixed value of 0.95 and a

large number of outer iterations.

2.3.1 Registration Results and Discussion

Using both 2D synthetic shapes and real patient 3D tumor volumes, the performance

of the ! field as an underlying shape representation for tumor follow-up registration is

demonstrated against the distance transform, which is the conventional method to impose

spatial shape relationships to the registration procedure.

Synthetic data results for pre-smoothed distance transform, pre-smoothed normalized

distance trasform and fluctuating distance fields are respectively demonstrated in Fig. 2.8.

On the top row for each of the experiments, the white and gray shapes denote the fixed

and moving objects respectively, where the displacement vector field is demonstrated using

arrows. Local volume change for each of the corresponding displacement field is generated

using the determinant of the deformation gradient (det(I + r

x

u)) and presented below.

The values of the determinant that are greater than 1 indicate a local expansion, whereas

values less than 1 indicate a local contraction.

The distance transform, D is invariant to rotation and translation, but it is quite sen-

sitive to scale changes[118]. Without a normalization, D representation can perform well

for deformations without scale changes only, which certainly is not the case for tumor

followup analysis. On the other hand, normalization causes an ambiguity in the infor-

mation preserved in D, leading to an estimation of the deformation field that does not

fully describe the change between the shapes. However the ! field adopts less ambiguity,

since the information is partitioned to separate parts, which leads to a robust estimation
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of the deformation. E
Sign

constraint contributes highly to this robustness to scale change,

for the ratio ⌘ will be the same in ⌦1 and ⌦2. Our experiments are highly coherent with

this description. In Fig.2.8, it is clear that D without a normalization fails to produce a

smooth vector field. In addition while the local volume change in the deformation fields

estimated using ! is in accordance with the change in the shapes, the normalized D repre-

sentation approaches fail to generate intuitive results. The expansions and contractions at

the peripheral regions in Fig. 2.8 reveal the counter-intuitive nature of the displacement

vectors generated using normalized D.

Our experiments with patient data are demonstrated in Fig. 2.9, where the estimated

3D vector fields are visualized (on the left) for two pairs of tumor volumes on each row.

Those pairs of tumor volumes are obtained after a segmentation on a pre-therapy and

follow-up MRI scan and undergo a large change in terms of global scale. In addition, we

present the displacement fields to a specific protrusion (Fig. 2.9 in the middle), which was

segmented as described in Section 2.2.4. Various 2D cross sections are also depicted on the

right along with the local volume change maps using deformation gradient determinants as

explained above. Considering the large motion, necessity of regularization is quite larger

in 3D tumor volumes compared to the phantom data in Fig. 2.8. For that reason the

di↵erences in the volume change maps are not as distinctive for the 3D volumes. But

when these subtle changes are analyzed, they reveal the strength of the ! field in contrast

to D. The volume change maps of the second tumor shape in Fig. 2.9 is a convincing

example: When the upper slice is analyzed it is clear that the deformation calculated

using ! field (on the right) describes the compression smoother, yet on the bottom slice

(right), it successfully represents the expansion while the distance transform approach is

too smooth to describe an expansion. A similar robust behavior can be observed on the

given local volume changes of the first tumor pair in Fig. 2.9.

2.4 Conclusions

Motivated from physical significance and clinical relevance in follow-up problems, we

proposed a method to analyze the protruded and peripheral regions of tumor shapes. In
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order to introduce a parameter to control the fluctuation scales, we modified the fluctuat-

ing distance field [1] with an additional constraint on the ratio of sizes of the positive and

negative domains which indicate central and peripheral shape regions respectively. This

modification led to an interactive framework for segmenting the protrusions and partition-

ing tumorous structures, albeit the loss of the linearity of the original shape field model.

The introduced nonlinear term due to its variable scale parameter, i.e. the ”fluctuation

scale”, facilitates a hierarchical encoding of parts of the shape silhouette. By varying

the fluctuation scale from low to high values, it is possible to observe the coarse to fine

levels of hierarchy both in the field and its segmentations even by utilizing a very simple

segmentation method.

The scalable shape field becomes a potentially powerful underlying shape representa-

tion for shape registration procedures, due to an increased robustness to scale changes

without losing the information it inherits particularly in terms of the parts of a shape.

For the registration application, the representation performance of the field was demon-

strated in comparison to the conventional distance transform by observation of local vol-

ume changes in a tumor follow-up problem. Some counter-intuitive local changes were

obtained by the latter, while the expected expansion and compression properties between

pre-therapy and follow-up tumor volumes were provided by the deformation field estimated

between the part-based shape fields.
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Figure 2.8: (a,b,c): Visualizations of deformation field vectors and volume change pairs

for registration of each synthetic shape couples, generated using Left:Distance Transforms

Middle: Normalized Distance Transforms. Right: Scalable Fluctuating Distance Fields.
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Figure 2.9: For both parts of the figure: Left: Displacement field vectors from gray initial

tumor to blue followup tumor. Middle: The displacement vectors to a specific segmented

protrusion. Right: Local volume change maps in initial tumor domain for selected axial

slices of the tumor shapes, the black contours denote the followup tumor. The maps on

the left and right are generated from the deformation fields calculated using normalized

D and ! fields respectively.
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3

Screened Poisson Hyper-Fields

3.1 Introduction

A novel perspective on shape characterization is presented using the screened Poisson

equation. We discuss that the e↵ect of the screening parameter is a change of measure of

the underlying metric space; also indicating a conditioned random walker biased by the

choice of measure. A continuum of shape fields is created, by varying the screening pa-

rameter or equivalently the bias of the random walker. In addition to creating a regional

encoding of the di↵usion with a di↵erent bias, we further break down the influence of

boundary interactions by considering a number of independent random walks, each ema-

nating from a certain boundary point, and the superposition of which yields the screened

Poisson field. Probing the screened Poisson equation from these two complementary per-

spectives leads to a high-dimensional hyper-field: a rich characterization of the shape that

encodes global, local, interior and boundary interactions.

3.1.1 Related Works

In the late 90’s and the following decade, elliptic PDEs started to appear as alternative

models for computing smooth distance fields. In [85], screened Poisson PDE is employed:

�v �
v

⇢2
= 0 (3.1)

v|
@⌦ = 1,
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where 1
⇢

2 is the screening parameter that controls the level of smoothing. The approximate

distance field created by this PDE is smooth and di↵erentiable, and has smooth level sets,

in contrast to the level sets of the distance transform obtained from the Eikonal equation.

With any given ⇢ value, the field’s value of 1 at the shape boundary drop towards the

interior of the shape. While a motivation in [85] was to create a shape scale space, demon-

strated particularly for shape skeletons via the controlled smoothing parameter, in [52],

the intuition of a random walker starting at an interior point and its mean hitting time

required to reach the shape boundary led from its discrete interpretation to the contin-

uous Poisson equation with zero Dirichlet boundary conditions on the shape boundary.

Various measures based on the solution field were extracted and shape properties were

used for classification of shapes as well as actions [123]. In [124], the authors also utilized

the Poisson equation to derive a shape characteristic measure based on the variation over

the streamlines of the solution field, and used it to di↵erentiate between the shapes of

anatomical structures for healthy and diseased populations. Recently, Poisson equation is

revisited as a tool for robust skeletonization [125, 126]. In [127, 128], a connection between

nonlinear Hamilton-Jacobi equations, for which the Eikonal equation is a special case, and

the screened Poisson equation by taking ⇢ �! 0 is presented, along with an e�cient ap-

proximate distance transform computation using FFT. The importance of the linearity of

shape embedding space was brought into attention by the work of [129], [130] that rep-

resented contours as zero level set of a harmonic function in the solution of the Laplace

PDE. The linearity property, which was also emphasized in [127], enables proper addition

of shape fields, facilitating creation of shape template or atlas representations that stay

within the original spaces of shapes. [103] solved heat flow with a fixed time parameter

and used its normalized gradient field to obtain the closest scalar potential field with the

same gradient. In [131], smooth distance fields are considered as L
p

distance fields, where

p is the control variable. A recent shape field related to the screened Poisson [1] is a fluc-

tuating one consisting of both negative and positive values inside the shape by addition

of a zero-mean constraint to the shape field. The zero-level set then partitioned the shape

domain into two: one that corresponds to the central region, a coarse and compact shape,

and one to the peripheral region, which included protrusions from a shape.
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The screened Poisson PDE was employed for several other applications with a typ-

ically fixed screening parameter: for image processing applications as in image filtering

and sharpening of [132]; for mesh filtering applications as in anisotropic and interactive

geometric filtering over meshes of [133]; and for surface reconstruction in [134]. [132]

started from a variational perspective by writing out the gradient of an unknown function

to be close to a given vector field as well as a term of data fidelity to a given function

which ”screens” the 2D Poisson equation. This was then Fourier transformed to show that

the screened Poisson can be interpreted in frequency domain as a filtering operation for

images, while it can be solved using an FFT or DCT. [133] extended [132] to meshes for

localised editing by changing the Riemannian metric of the underlying space, proportional

to surface curvature, as well as a multi-grid implementation of the equation. The e↵ect of

the fidelity value, i.e. the screening parameter, was also discussed to result in more damp-

ening and amplification at low frequencies with smaller parameter values. [134] modified

this method by putting positional constraints, i.e. the data fidelity, only over a set of input

points rather than over the full domain. Adding a screening term to the Poisson surface

reconstruction framework, the screening parameter was also adjusted to the resolution in

a multi-grid implementation.

In a parallel line of research, from the heat equation perspective, the multi-scale prop-

erty of the heat kernel led to development of shape signatures that take advantage of heat

di↵usion process on surfaces [135]. This line of work makes use of the spectral proper-

ties of the Laplace-Beltrami operator, which is the generalization of the Laplace operator

from the Euclidean space to a Riemannian manifold. In [135], the heat kernel signature

(HKS) at a point on the shape manifold is defined in terms of the weighted sum of the

squares of the eigenfunctions at the point. The weights are given by the exponentials of

the negated eigenvalues multiplied by the temporal variable t in heat flow. It was shown

that under certain conditions (i.e., if the eigenvalues of the operator are not repeated) the

heat kernel signature is as informative as the family of heat kernel functions parameterized

both in space and time. The HKS also relates to global point signatures [136], which are

based on eigenfunctions normalized by square root of the corresponding eigenvalues, and

to di↵usion distance [137, 105, 138] between two points over the shape manifold, which is
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defined by the distances between the eigenfunctions at those two points. [139] constructs

a scale-invariant HKS (SI-HKS) by logarithmically sampling the time-scale that translates

into a time shift, which is then removed through taking a Fourier transform modulus to

overcome the scale sensitivity of HKS. A volumetric extension of HKS was shown in [140].

Recently, Wave Kernel Signature [141] based on complex Schrodinger equation is pre-

sented as an alternative to HKS. The authors make the point that HKS employs a col-

lection of low-pass filters parameterized by time variable, causing the suppression of high

frequency shape information whereas the WKS captures both the high and the low fre-

quency shape information.

Meanwhile, works such as Shape DNA [59] showed the utility of the eigenvalues of the

Laplace operator, where the distances between shapes were expressed as the p-norm of

the di↵erence between the truncated eigenvalue sequences for the two shapes. In [58], a

normalized shape DNA distance, called the weighted spectral distance is proposed.

Laplace-Beltrami eigenfunctions of surfaces proved to be extremely useful in applica-

tions of 3D shape matching and retrieval. In [142], it was shown that a bijective mapping

between a given pair of shapes induces a transformation of a function of derived quan-

tities between them. Furthermore, this transformation can be written as a linear map

between selected basis functions over both surfaces, exemplified by the Laplace-Beltrami

eigenfunctions. [143] presented a method to perform shape matching in a reduced space in

which the symmetries of shapes were identified and factored out. This was achieved within

the functional maps framework of [142] where the functional linear map was decomposed

into its symmetric subspace and its orthogonal subspace, and the former was utilised to

carry out the shape matching between symmetric shapes. For joint analysis of multiple

shapes, [144] presented a coupled construction of common Laplacian eigenfunctions using

approximate joint diagonalizations.

In [145], a shape-aware interior-mesh distance was defined by propagating a distance

measure defined on the mesh to the surface interior, while preserving distance properties.

This was exemplified by the di↵usion distance and mean-value coordinates selected as the

barycentric coordinates. [146] later applied this idea to interpolating the Laplace-Beltrami

eigenfunctions of the boundary into the interior volume by using barycentric coordinates.
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This way, a volumetric measure was constructed from the HKS, i.e. the interior HKS, and

adopted to finding correspondences between volumes and shape retrieval.

3.1.2 Our Contribution

Both the Poisson and the screened Poisson equations found increased utility in various

shape descriptors. As the screening parameter in (3.1) tends to 1, the screened Poisson

equation approaches to the Poisson equation. The controlled smoothing provided by the

screening parameter is advocated by some researchers and recent works [132, 126, 128, 1,

103, 134] rejuvenated the model.

Our work di↵ers in several aspects. We consider multiple instances of the screened

Poisson equation to decompose the sources of variability due to several factors including

the boundary sources and the screening parameter, both of which are novel. We discuss

that the e↵ect of screening parameter is a change of measure of the underlying metric

space, hence, fixing ⇢2 fixes the measure. Suitably sampling N values for the screening

parameter and m points for the shape boundary @⌦, we form a stack of N ⇥m screened

Poisson fields. We call this collection as a screened Poisson hyper field. This is not a scale-

space in the usual sense but hides in it a two-dimensional scale space of shapes, coarsening

in the direction of increasing ⇢2 and decreasing field values. We argue that the hyper field

is a full characterization of all sorts of interactions between shape elements: local-global

and boundary-interior. Then we discuss two low-dimensional embedding schemes, one to

unveil parts and the other to produce consistent mappings, which we call Screened Poisson

Encoding Maps (SPEM), for the purpose of shape matching and shape retrieval.

Encoding a change in the di↵usion using the varying screening rates in the screened

Poisson equation forms a remarkable parallelism with the class of methods in spectral

shape analysis. We argue that a coverage of ⇢2 parameter space for (3.1) over the shape

domain brings advantages over the coverage of the temporal parameter space for the

heat kernel over the shape in terms of producing a direct volumetric shape representation.

[140], extending the heat kernel signatures to volumes, noted that the boundary isometries

of the HKS do not carry over to volume isometries, however, volumetric HKS can still

faithfully model nearly isometric deformations, which are argued to be more suitable in
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modelling of natural articulations and deformations of solid objects. On the other hand,

[146] propagated HKS on the surface towards the interior of the shape to be able to

construct volumetric measures to benefit from nice properties of the HKS, including the

surface isometry, the multi-scaleness and insensitivity to topological noise at small scales

however at the expense of its sensitivity to scale of the shape [140, 147]. Di↵erent from

these earlier heat-kernel based approaches, here, we directly compute volumetric distances

from the solution to the volumetric screened Poisson PDE, which enjoys properties such

as multi-scaleness based on a varying screening-parameter that tunes smoothness of the

level curves of the field, an adaptation to scale by an appropriate mapping, and a near

isometry-invariance as demonstrated experimentally by the robustness of the proposed

method under a 3D nonrigid shape retrieval application (§ 3.5.5).

As an alternative to the heat equation and its kernel, our work presents a di↵erent

di↵erential operator, a di↵erent kernel, and demonstrates the high-ranking performance of

the SPEM to articulated pose and deformation in a publicly available large-scale bench-

mark data set: SHREC’11 Shape Retrieval on Non-Rigid 3D Watertight Meshes [87]. Our

method, as shown in the presented 3D shape retrieval application, provides a robust and

high-performance alternative to those methods based on shape’s intrinsic surface proper-

ties. Furthermore, existence of fast solvers for the screened Poisson PDE, as realised by

[132, 133, 128, 134] in other applications of image filtering and mesh processing, is another

factor that makes it attractive to be adopted in a new shape representation idea as in this

paper.

The organization of the paper is as follows. In § 3.2, we show separation of the sources

of variability in the v-field, and present the construction of the new shape hyper-field. We

expound properties of the new hyper-field and the SPEM in § 3.3 through a random walk

interpretation, relation to geodesic distances, and a connection to spectral methods. In

§ 3.4 we present how decompositions on shape hyper fields via two alternative techniques

produce consistent mappings and part decompositions. Finally in § 3.5, we present our

experimental results followed by conclusions.
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3.2 A new hyper-field

In this section, first the existing two-dimensional scale space parameterized by ⇢ and

the values of v (§ 3.2.1) is explained. Then we describe the two dimensions of the new

shape representation: the varying of the ⇢ (§ 3.2.2), and decomposition of the boundary

sources (§ 3.2.3). The new hyper-field thus includes two dimensions of variability: (i)

by variation of ⇢, it covers the internal smoothing characteristics of v; (ii) by variation

of boundary sources, it covers interactions between individual boundary nodes versus all

internal nodes. We note that the decomposition into those two dimensions do not create

a true scale-space per se, however, creates a rich shape hyper-field representation from

which descriptive volumetric shape encoding maps (SPEM) can be extracted.

3.2.1 A two-dimensional Scale Space

The information encoded in the resulting field v, as a shape representation, is highly

dependent on the value of ⇢2. The influence of the parameter ⇢2 can be observed in Fig.

3.1, where di↵erent fields that arise using di↵erent ⇢2 values are presented for a cat shape.

Smaller ⇢2 values lead to fields where distinct relations in the regions that are close to shape

boundary (protrusions, indentations) are extracted, but are clueless about the central part

of the shape and global interactions. In contrast, larger values of ⇢2 generate fields that

are coarse in the regions close to the boundary, but able to capture global interactions

within the shape. Unlike the level curves of the solution of the Eikonal Equation, the level

Figure 3.1: v fields for di↵erent values of ⇢2.

curves of v (the solution of screened Poisson Equation) has smooth level sets, and as one

moves along the gradient lines, the level curves gets smoother. As discussed in [148, 85]

v(x ) ⇡ ⇢

✓
1 +

⇢

2
curv(x )

◆
@v

@n
+O

✓
⇢3
◆

(3.2)
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where curv(x ) is the curvature of the level curve of v passing through the point x at x ,

and n is the direction of the normal. Thus, one can imagine a two-parameter family of

level curves parameterized by v and ⇢. Smoothing increases with a decrease in v and an

increase in ⇢2. This is a very interesting property. This explains how the linear screened

Poisson mimics a non-linear reaction-di↵usion. Though this observation was made in the

early work of [85], the follow up work on screened Poisson typically focused on isolated

treatment of the ⇢2. Rangarajan [128, 127] took a very small value to approximate the

Eikonal Equation, while Tari [126, 1] and Shah [149] used very large values.

We believe that isolated treatment is hindering full utilization of the controlled smooth-

ing o↵ered by the model. As we show in §3.4.2, once the entire scale space is utilized,

both local and global interactions can be realized and a natural hierarchical central to

peripheral decomposition of the shape domain is achieved without requiring the recent

non-local term in [1].

3.2.2 Varying ⇢2: Sweeping Internal Smoothing Characteristics

In a setting where the screening parameter is considered as an additional dimension

to the spatial ones, it is clear that the n + 1-Dimensional field calculated for a shape

embedded in Rn, where the parameter ⇢2 is swept from 0 to 1 inherits all the information

that is possible to be extracted using such a method about the shape. The collection of

fields {v⇢}
⇢

2 consists of a 1D family of functions that sweeps the ⇢2 dimension for each

node on the lattice that the shape is described on. A field created using only one of these

values would explain only limited portion of the variance. In order to capture this high

dimensional information, we linearly sample ⇢2 values to N bins, and calculate v⇢ for each

⇢2
j

value for j = 1, ..., N . Each v⇢ field as a single instance explain relatively little variation

of the shape in comparison to the whole family.

We depict via an example that the v function is coding characteristics that extend

beyond the distance to the nearest boundary point as well as curvature (Fig 3.2). We

consider several nodes in a shape domain. They are marked with colored crosses. Each

node has a di↵erent character: The blue one is central; the other four are closer to shape

boundary, pink being the closest; and red is on a peripheral part (finger). The v versus ⇢
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plot on the right depicts striking di↵erences among v(·, ⇢) profiles for these di↵erent shape

nodes. For example, the two points colored red and pink respectively have closer profiles

as they have comparable proximity to the shape boundary. However, the profiles are not

nearly identical because the red node is residing in a thin part of the shape while on the

contrary the pink one is not.

Figure 3.2: Field value versus ⇢ at five selected nodes of distinct characters. v function

is coding characteristics that extend beyond usual distances. A dense linear sampling is

used between ⇢ = 2 and ⇢ = 30.

Fig. 3.3 demonstrates further coding characteristics of the v⇢ field. A set of 1D profiles

(v⇢(x̃ )) for a set of locations x̃ on a hand silhouette are depicted. Here, the point we

emphasise is that the selected locations, x̃ 2 ⌦ are equidistant to the shape boundary.

Observe that the 1D curve describing the relation between v and ⇢ shows a quite di↵erent

character for each point, which has the same Euclidean distance to the boundary, while

the v-field is able to encode the diversity of the geometric shape information among those

points.

3.2.3 Fixing ⇢2: Decomposition of Boundary Sources

The two-dimensional scale space is a continuous collection of simple closed curves

parameterized by [1, 0)⇥{1, 2, · · · , N}. For a fixed screening parameter, a one-dimensional

scale space is formed by the collection of the level curves of the field v⇢, which is a union

of these level curves. This is not the only way to envision v⇢. Thanks to the linearity
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Figure 3.3: Behavior of v⇢ in ⇢ dimension for sampled points on the domain that are

equidistant to the boundary.

of the equation, it is also possible to express v⇢ as a superposition of basis fields each of

which is expressing the contribution due to a single “unit” of inhomogeneity.

In order to elaborate on the super-positioning aspect of the screened Poisson PDE for a

fixed ⇢2 and better understand geometric properties induced by boundary interactions, we

consider decomposing the sources of inhomogeneity in the boundary condition. Assuming

that the shape boundary is given as a set of points @⌦ = {p1 ,p2 , ..pm }, we consider m

independent PDEs:

�vpi (x )�
vpi (x )

⇢2
= 0

vpi (p )|
p2@⌦ = �(p � pi )

(3.3)

where vpi denotes the solution when the only inhomogeneity is due to the point pi 2 @⌦.

Thanks to the linearity of the equation, these “sub-fields” are the building blocks that

make up the field v described in (3.1):

v =
mX

i=1

vpi (3.4)

The super-positioning of the sources is demonstrated on a 1D example in Fig.3.4. The

boundary condition on the third column is an addition of the two boundary conditions

used in the first two columns. Hence the solutions in the third column are superpositions

of the pair of solutions given on the respective row of the first two columns.

In Fig. 3.5, the logarithm of the field vpi obtained from a boundary point pi on the

hand shape is visualized on the left. It can be observed that the v field shows a sharp fall
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Figure 3.4: Solutions of the screened Poisson equation for a 1D experiment using three

di↵erent boundary conditions (columns) and three di↵erent ⇢ values (rows).

of its values over the fingers whereas a much less steep slope of fall is observed from the

boundary points of the hand’s side palm regions (e.g. close to the wrist). This di↵erent

behaviour is expected. To analyse it on a simpler case, assume a spherical geometry with

a source term s(r ) at the origin, and consider the Poisson equation: �v = s(r ), the

fundamental solution is: g(r ) / 1
r

, whereas for the screened Poisson equation: �v� v

⇢

2 =

s(r ), the fundamental solution reads: g(r ) /

e

�r
⇢

2

r

[150]. Hence with a nonzero source

term the solution is given by:

v(r ) =

Z

⌦

dr 0s(r )
1

|r � r

0
|

e
� |r�r 0|

⇢

2 . (3.5)

For a spherical symmetric case, the source is di↵used to its surrounding points by

a convolution with a kernel inversely proportional to the distance between the source

and the given point for the standard Poisson case, whereas for the screened Poisson the

convolving kernel is in addition weighted by a decaying exponential. Although for the

arbitrary geometric configuration of our boundary conditions we cannot write an integral

equation to solve for the result, we can observe the exponential decay e↵ect in our v-field

from a single source point to other points. With a union of all boundary sources, the e↵ect
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Figure 3.5: Restricting the boundary inhomogeneity to a single point pi on the little

finger. a) Iso-contours (bottom) and values of v-field using log(vpi ) visualised as a point

cloud; b) Normalized gradient, rv

pi

|rv

pi |
for the ’thumb’; c) Streamlines obtained by tracking

along the normalized gradient directions.

is even more pronounced. Similarly in § 3.2.2, we changed the rate of decay by varying

⇢ to probe this property. We will further discuss the relation of the v-field to geodesic

distances in § 3.3.2.

3.2.4 Putting it altogether: The New Hyper-field

By considering a total of N ⇥m screened Poisson equations, we form a stack of fields.

This stack of fields hides separation of several sources of variability due to all kind of

interactions: local, global, region and boundary. The schematic depiction is given in Fig.

3.6. Intuitively, this can be best explained as simultaneous decomposition layers.

In the first decomposition layer, ⇢2 is varied to obtain a stack of fields {v⇢i}
i=1···N . Each

slice in the stack is an interpretation of the shape with a certain bias – choice of measure,

and is a collection of shape boundaries embedded as level curves hence parameterizable by

a continuous parameter s 2 (0, 1]. This is the second layer of decomposition. The stack of

fields {v⇢i}
i=1···N as parameterized by (0, 1]⇥{1, · · · , N} defines a 2D scale space of shapes,

coarsening in the direction of increasing ⇢2 and decreasing s. At the final decomposition
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Figure 3.6: Separating sources of variability in the shape hyper-field.

layer, the e↵ect of inhomogeneity (note that the solution to the PDE in (3.1) is the trivial

solution in the absence of inhomogeneities) is individuated by considering m-fields v⇢i,pj

for j = 1 · · ·m, which add up to v⇢i =
P

m

j=1 v
⇢

i

,pj . This last layer added by the boundary

source sweep is built on top of the nonlinear scale-space of ⇢ and level curves of v, hence

maintains a more complex structure.

The hyper field provides a rich characterization of the shape. We will present how to

extract this information in a robust way in §3.4.

3.3 Screened Poisson: Properties

3.3.1 Screened Poisson as a conditioned random walk

In this section, we expound the underlying stochastic interpretation of the v⇢ field in

order to gain more intuition into its coding properties. Specifically, we are interested in

understanding better the e↵ects of 1) the change of ⇢, and 2) the boundary interactions.

First, let us shift the inhomogeneity in the boundary condition in (3.1) to the right

hand side as a source term, and then consider an inhomogeneous heat equation: (� +
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@

@t

)u(x , t) = f(x ). On one hand, the steady state solution as t ! 1 is 1� v⇢ for ⇢ ! 1

(i.e., the solution of the Poisson Equation). On the other hand, the transient solution is

u(x , t) =

Z
p
t

(x ,y )f(y )dµ(y ) (3.6)

where µ is the Lebesgue measure and p
t

(x ,y ) is the transition probability from point x

to y in time t. The transition probability (also called heat kernel) is given by the Gaussian

function:

p
t

(x ,y ) =
1

(4⇡t)/2
exp

✓
�

|x� y|2

4t

◆
(3.7)

Now let µ be a measure on a Riemanian manifold M. The inhomogeneous heat equation

with the corresponding Laplace (-Beltrami) operator on the manifold is

(�
µ

+
@

@t
)u(x , t) = f(x )

The transient solution is given by (3.6). Let us examine the e↵ect of screening following

Grigoryan [151]. We note that introducing screening to the Poisson equation corresponds

to a change of measure. Let eµ be the new measure, then �eµ is related to (�
µ

�

1
⇢

2 ) by

the Doob h-transform.

�eµ =
1

h
� (�

µ

�

1

⇢2
) � h �! �eµv =

1

h
(�

µ

�

1

⇢2
)(vh) (3.8)

To summarize, di↵usion is a stochastic Markov process, indeed a Brownian motion with

heat kernel as its transition probability. In the case of the di↵usion governed by screened

Poisson, the new transition kernel ep
t

that relates to the original transition kernel is the

heat kernel on the Riemannian manifold with measure deµ = h2dµ [151]. For a random

walk on a network, when p
t

(x ,y ) is induced by conductances c
xy

, then ep
t

is induced by

conductances ec
xy

= h(x)h(y)c
xy

[152] [153]. This means that the conditioned random walk

behaves like the unconditioned walk but is biased by an isotropic drift h.

The conditioned random walk with a certain ⇢2-value a↵ects a point in the shape

domain with a certain bias, making it possible to probe multiple random walkers going

through di↵erent conductances over the shape. We believe that this is how the contin-

uum of fields encodes the shape characteristics both locally and globally with its varying

screening rates or biases. This can also be interpreted as Brownian motions with di↵erent
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drift amounts, the zero drift corresponding to the unconditioned random walk, hence pure

di↵usion without any screening term of the standard Poisson equation.

For a fixed ⇢2, the field 1�v⇢ is a superposition of multiple random walks on a manifold

with a measure eµ. Note that the transient solution (after the change of measure) for the

time-dependent equation then would be given by

1� v⇢(x , t) = h
⇢

(x )

Z
ep
t

(x ,y )f(y )h
⇢

(y )dµ(y ) (3.9)

At the steady-state, the transition kernel becomes only a function of distance independent

of t. Thus, separating the boundary condition to a set of points, and solving the screened

Poisson PDE for each single point as in Eq. (3.3), each field value vpi (x ) (after a normal-

ization) is interpreted as the probability that the biased random walker emanating from

pi to arrive at the locations x . We note that the intuition of the boundary condition on a

random walker was mentioned by [103] for the heat flow, with the zero Dirichlet boundary

condition implying absorption of heat that leads to random walker ”falling o↵” the grid.

With this interpretation, the way we set the point source on the boundary to unity while

setting all other boundary points to zero implies that the probability of the walker falling

o↵ the grid di↵ers substantially for di↵erent local geometric regions of the shape (see Fig.

3.3 for this e↵ect).

3.3.2 Relation to Geodesic Distances

There is a strong link between the values of the vpi field and the geodesic distance

from pi to another shape node, with the underlying Riemannian metric. A prominent

aspect that forms this link is the gradient directions of vpi , which are parallel to geodesics.

The choice of boundary conditions configures the resulting gradient field. For instance,

Dirichlet boundary conditions attract the flux to the medial locus. In Fig. 3.5 (middle

and right figures), we show normalized gradient directions along with streamlines obtained

by tracking points in the gradient direction. The link between the heat flow kernel (i.e.

the ⇢ ! 1 case) and geodesic distances was established by Varadhan: �

p
�4t log(p

t

),

where t corresponds to the amount of time that passes after heat di↵usion starts [154].

Simply taking the logarithm of the v field leads to an encoding of the local relationships
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in a rather useful manner and preserves the gradient directions. The choice of logarithm

stems from the exponential decay of the field (Eq. 3.5) also noted by [85], [127], and the

logarithm of the field values become strictly negative, decreasing as the probabilities for

the random walkers get less likely. We note that this is not an attempt to make the v-field

values similar to Euclidean distances. Taking the square-root as in Varadhan’s formula

[154] also preserves the gradient directions but suppresses high rates of decay. This sort of

treatment would compromise a very desirable property for part based analysis of shapes:

at nodes that belong to articulated regions on the shape domain, as the probabilities

for random walkers to go o↵ the grid increases, the rate of decay increases drastically.

This property was observed in Fig. 3.5 (on the left). Therefore, with the v-field, we are

exploiting an exponential decay e↵ect with a complementary contribution from the shape

boundary conditions, to construct a beneficial ”geodesic distance” from the given shape

geometry. Observe the e↵ect of this complementary contribution in Fig. 3.3, where the

points that have equal Euclidean distances to the boundary have v⇢ field values which

encode a geodesic distance that both shows an exponential character and is more global

in the sense that it is a↵ected by the full shape boundary conditions.

3.3.3 Relation to Spectral Methods

The popularity of the heat-kernel-based methods in non-rigid shape matching is due

to the usefulness of the heat kernel function in finding near-isometric correspondences

between shapes. This is appealing because many expected deformations between shape

surfaces, particularly the articulated motion, can be approximated by an isometric map-

ping. Because the isometry of a manifold preserves the heat kernel [151], heat kernel

signature was shown to be isometrically-invariant in [135]. However, a volumetric isomet-

ric invariance was not sought for in the volumetric HKS of [140], and it was argued that

the articulations and non-rigid deformations of solid objects do not follow a boundary

isometry. Similarly, although we do not show an isometry property for our volumetric

Screened Poisson Encoding Maps (SPEM), we discuss our approach against the heat-

kernel-based approaches next. With µ as the Lebesgue measure, the heat kernel in (3.7)
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can be expressed as [151]:

p
t

(x ,y ) =
1X

k=1

e��

k

t'
k

(x )'
k

(y ) (3.10)

where '
k

are the eigenvectors and � are the eigenvalues of the Laplace operator: �
µ

' +

�' = 0. Based on the heat kernel, Ovsjanikov [155] defined the heat kernel map ⇥
q

(x ) =

p
t

(q ,x ), which measures the amount of heat transferred from a source point q to other

points x over a given shape surface. The idea is to match the point from the target

surface whose heat kernel map is closest to that of the given point in the reference surface.

Hence, a correspondence between the two shapes can be established. On the other hand,

by varying the t parameter, the heat kernel signature (HKS) [135] creates a 1-parameter

family of functions from the diagonal of the heat kernel, also called the auto-di↵usivity

function: p
t1(x ,x ), ..., p

t

n

(x ,x )).

The constructed 1-parameter family of functions based on time t in the heat kernel

approaches is similar in spirit to our method. However, rather than the time variable t, we

vary ⇢ variable in the screened Poisson operator. In the former, the temporal evolution of

the heat operator is considered, hence the multi-scale heat di↵usion characteristic in time

is taken into account, whereas in our approach, the 1-parameter family of solution fields to

the screened Poisson PDE with varying screening parameters provides the biased di↵usion

of the boundary sources, from the boundary towards the shape interior. Similar to the Heat

Kernel Map [155], it would be possible to match shapes by sampling a set of source points

qj inside the shape and using directly the 1-parameter family of the screened Poisson

hyper-fields {v
⇢

i

,qj
i=1···N} at points x on the shape surface. Our work di↵ers by the following:

(i) in contrary to the heat kernel map approach, we put the sources on the boundary and

di↵use those towards the inside of the shape with a di↵erent di↵erential operator, i.e. the

screened Poisson; (ii) instead of directly using the 1-parameter screened Poisson fields, we

create a low-dimensional embedding of these functions over the ⇢-dimension (§3.4.2). The

embedding unveils the di↵usion bias in projection maps which provide beneficial properties

like scale adaptation, compactness and representation power, which are experimentally

verified (§3.5.4,3.5.5).
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3.4 Extracting information from Hyper-fields

3.4.1 Unveiling parts from the hyper field via sparse coding

We first focus on a single slice of the hyper-field (a fixed measure). This is a collection

of m fields that forms a vector field and contains individuated boundary-internal node

interactions of the shape. One may construct di↵erent useful measures from these interac-

tion vectors. For instance, analysis of correlation between two internal nodes either inside

the shape domain or between two boundary nodes, or between a boundary and an internal

node are all possible using this collection. Even basic clustering methods such as k-means

or Gaussian mixture models will lead to intuitive clusters of internal nodes. However, we

chose to employ a specific matrix factorization technique (non negative sparse coding) to

portray the decomposability of the global-local information to unveil the parts of shape.

In order to decompose the collection onto a set of components, we start with a nor-

malized log field which has zero mean at each point:

V

pi (x ) = log(vpi (x ))�
1

m

mX

j=1

log(vpj (x)),

= log(vpi (x ))� log
m

p

vp1 vp2 ...vpm (x) (3.11)

Note that centering the log-field by its mean is equivalent to centering the field by its

geometric mean:

V (x ) = log{
v

m

p

vp1 vp2 ...vpm
}(x ) (3.12)

In order to apply the non-negative matrix factorization, the vector elements that are lower

than the mean are replaced by zeros. Though this normalization procedure ignores a region

within a certain proximity to the boundary node of interest, thanks to the centering of the

data, remaining regions are encoded in a manner that allows distinction of prominent parts.

The resulting non-negative vector field can now be analyzed as an additive combination

of some bases, leading to a part-based representation. The non-negative measurements

obtained by a normalization with the mean and median are depicted in Fig.3.7.

Arranging the measurements V (x ) into columns of a matrix Y m⇥|⌦| for each shape

node x , would allow the linear decomposition of the data as Y ⇡ AS, where the matrix A

46



Figure 3.7: Non-negative measurements: y
j

(i), where the same pi in Fig. 3.5 is used.

Left: Normalization by median. Right: Normalization by mean.

is the mixing matrix with basis vectors as its columns. The rows of S contains the hidden

components that encodes the contribution of each mixing vector while reconstructing the

input vectors. When both factors A and S are forced to be non-negative, the decomposition

corresponds to the method of non-negative matrix factorization (NMF) [156][157]. The

non-negativity of the factors makes the representation additive as desired.

Many variants of NMF have been proposed since the pioneering work of Lee and Seung

[157]. Due to its additive nature, NMF produces a sparse representation of the data, where

the data is represented using inherent active components. Non-negative sparse coding

(NNSC), introduced by Hoyer[158], forms an analogy between NMF and sparse coding

[159]. NNSC provides control over the sparseness of the hidden components by adding

a sparsity-inducing penalty to the objective function, which is very desirable feature for

obtaining shape parts as active components that are described on the shape domain. By

selecting k mixture elements, the objective function of the NNSC is formulated as:

min
A2Rm⇥k

,S2Rk⇥|⌦|

|⌦|X

i=1

⇣1
2
ky

i

� AS
i

k

2
2 + �kS

i

k1

⌘
s.t. A � 0, 8i, S

i

� 0, (3.13)

where the first term forces minimization of reconstruction error and the second term forces

the sparseness. � controls the tradeo↵ between sparseness and accurate reconstruction of

Y . Sparsity is enforced by using the L1 norm, this formulation can also be considered as

the constraint in the Lasso problem [160]. � = 0 case is equivalent to NMF formulation

(i.e. no additional sparsity). The problem is solved using the method of Mairal et al.
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(a)

(b)

Figure 3.8: a) NNSC components obtained using a large � and k = 5; b) NNSC compo-

nents obtained using a low � and k = 12.

[161][162], which outperforms method of Hoyer [158] in minimizing the objective function

in batch mode.

The resulting shape decomposition as NNSC components for a hand shape is presented

in Fig.3.8. The results are produced using the slice corresponding to ⇢ ! 1. In the first

experiment (Fig.3.8.a), the shape is decomposed into six components, with a larger �

value. The fingers and the central part of the hand are separated as expected. In the

second experiment (Fig.3.8.b), twelve components are obtained with a relaxed sparse-

ness constraint. Notice that the components that represent fingers, which are the most

prominent parts, are preserved. Additional components represent the connection points

of articulated parts to the central part of hand. Also, the central part of the hand is par-

titioned into three di↵erent parts. The fact that important parts are preserved even when

the separation settings are relaxed illustrates the nature of the information preserved in

the measurements and robustness of the representation.
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3.4.2 Producing consistent mappings for shape correspondence:

SPEM

In the previous section, we have concentrated on a single slice in the hyper-field and

demonstrated that sparse coding unveils parts by integrating local-global interactions. In

this section, we focus on a complementary problem in shape analysis: defining real-valued

functions on a shape domain that can be used for the purpose of matching or registration.

In the other dimension of the hyper-field, the 1-parameter space that is spanned by varying

⇢-values encodes the boundary-interior di↵usion characteristics. Although it is possible

to utilize this 1-parameter field directly for shape matching, we take one step further

and we compactly code the variation in the ⇢ dimension to produce consistent mappings

through a low-dimensional embedding. There is a vast number of dimensionality reduction

approaches. We advocate use of principal component analysis (PCA) which produces

consistent maps that exhibit adaptation to scale (see Fig. 3.9 and Fig. 3.10).

We find the linear PCA very intuitive as compared to some other popular decompo-

sition methods. Orthogonality of the bases provides quite a consistent mapping across

shapes. Independent component analysis based methods form inconsistent mappings. We

have observed that non-linear methods such as locally linear embedding [163] or Di↵usion

Maps [105] over-learn the ⇢-space, leading to less number of features and less consistency.

Linear PCA also outperforms latent variable methods such as Probabilistic PCA solved

by maximum likelihood estimation [164]. The data is created by a linear operator, and

it is extremely smooth. We have observed consistency (among di↵erent poses of similar

shapes) using a direct singular value decomposition even for the projections that explain

variance as small as (10�14).

Consider the |⌦| ⇥ N matrix Y . Each column of Y is a v field (v : ⌦ �! R) for

a certain choice of ⇢2 and is normalized by the mean of the field in ⇢ dimension. The

covariance matrix of Y is computed, and then decomposed to yield an orthogonal set of

bases: the eigen maps �
k

, k = 1, ...N of the field. After the new bases are calculated,

the field can be projected to form N mappings, where each mapping P

k

is related to a
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measure of the variance explained by the kth basis:

Y|⌦|⇥N

=

2

6666664

v⇢1(x1) v⇢2(x1) . . . v⇢N (x1)

v⇢1(x2) v⇢2(x2) . . . v⇢N (x2)
...

...
...

v⇢1(x|⌦|) v⇢2(x|⌦|) . . . v⇢N (x|⌦|)

3

7777775
�

2

6666664

1
N

P
N

i=1 v
⇢

i(x1) . . .

1
N

P
N

i=1 v
⇢

i(x2) . . .
...

1
N

P
N

i=1 v
⇢

i(x|⌦|) . . .

3

7777775

Y TY = �⇤�, P

k

= Y �
k

(3.14)

The low-dimensional embedding facilitates a principled selection of a handful of pro-

jections maps, as we call them the SPEM (Screened Poisson Encoding Maps). We note

that we observe some interesting properties such as almost perfect representation of the

variability in just several bases (or projections). We relate this to the linearity and smooth-

ness of the screened Poisson operator. Using these bases, we observe visual correspondence

even in 2D shapes under a perspective transform.

3.4.2.1 Adaptation to Scale

The resulting eigenvectors �
n

for a hand shape can be observed in Fig. 3.9. The

eigenvectors adapt to global changes of the shape, leading to a robust representation. This

is exemplified by scaling the hand shape. Notice that the eigenvectors change because a

specific characteristic that is detected for a larger distance corresponds to a larger ⇢ value.

This adaptation does not mean that the field is scale invariant, because discretization in

spatial and ⇢ domains would not allow direct invariance. However, the representation

does not change abruptly as scale increases. In order to show this, we computed peak-

SNR (PSNR) values (in dB) between the original hand shape (maximum value of distance

transform is 20 pixels) and its scaled versions up to scale 4 (Fig. 3.9 scale changes are

coded by colour on the bottom right). Note the slow monotonical change across scale for

the projections, which provides coherence against shape scale changes.

Adaptation of the principal directions in ⇢-space to scale is also presented in Fig.

3.10. Class of {n/4} regular star polygons for n = 9, .., 20 are depicted, where all the

vertices are lying on circles of a constant radius. As n increases, the shapes become more

circular. This change of internal distance relationships a↵ects the characteristics of the
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Figure 3.9: For the hand shape: Left: calculated �
n

colored according to corresponding

scale ratios; Right: PSNR values for projections obtained using �
n

across di↵erent shape

scales show a slow monotonically changing behaviour, which provides a desired robustness

to scale changes, color coded as shown on the bottom right.

hyper-field in its ⇢-dimension. The eigenvectors of the covariance matrices are altered

in accordance, leading to robustness to scale changes. The six eigenvectors on the right

are almost identical and they are calculated for the shapes that are scaled to have the

same maximum distance to boundary. This property of the projections imply that the

discriminability of the projections originate from local and global spatial relationships. The

model o↵ers a framework where globally similar shapes should have similar projections

in locally similar regions, which makes it a promising tool for shape analysis along with

robustness to global scale e↵ects.
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Figure 3.10: Top:{n/4}regular star polygons, for n = 9, .., 20 Left: First six eigenvectors

�1, ..�6 for the shapes colored accordingly. Right: The first six eigenvectors �1, ..�6 for

the shapes after re-scaling with respect to the maximum value of the shortest distance to

the boundary.

52



3.5 Results and Discussions

In this section, we demonstrate the expressive power and robustness of projections

of the new hyper-field. After discussing computational issues, we first present qualitative

results with sparse coding over boundary decomposition of the shape hyper field. Next, we

show first a study on 2D shape classification that demonstrates the usefulness of the SPEM

with a moment-feature based evaluation. Finally, we validate the new SPEM descriptor

over the 3D SHREC benchmark data set [87].

3.5.1 Computational Aspects

Computation of each field v
⇢

or v
p

⇢

can be done in parallel in both approaches that

we presented. Notice that we calculate projections P
i

using all the boundary nodes used

as sources. Also, we fix ⇢ for the calculation of the fields for the sparse coding (NNSC)

application. Calculating a field for each boundary node taken as a source for a 3D shape is

not feasible, yet it is possible to apply a similar approach to calculation of fields over seg-

mented regions on the boundary. This requires a fast initial partitioning of the boundary

nodes with large granularity.

Each field is a solution to an elliptic linear PDE, which is a problem that occurs in

various fields, and many fast alternative solvers exists. Adaptation of GPU’s is an ongoing

study for more than a decade [165]. While sparse Cholesky decomposition and FFT based

approaches work in subquadratic time [132, 103], multifrontal methods [166, 167] and

multigrid methods [52, 168] can reach O(N), which is the lower bound for the problem. We

implement the algorithm as a sparse matrix vector multiplication on a NVIDIA Tesla K20c

GPU. In our implementation we use MATLAB Parallel Processing Toolbox and CUSP

library [169], which is a generic CUDA library for sparse linear algebra. Certainly, a more

customized and e�cient GPU implementation would lead to much faster computation, yet

we find ours satisfactory for the 2D and 3D experiments we present. The computation

time of each field for a shape of 250.000 voxels is 2 seconds. For 2D shapes, we concatenate

sparse matrices of the operators � �

1
⇢

2 and solve the fields simultaneously, which is not

an option for 3D shapes due to memory constraints. The calculation of the projections
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for the shapes in 1000 shape database [126] takes approximately 3 seconds.

3.5.2 Boundary Decomposition Based on Regional Information

As described previously in §3.4.1, a natural application of the non-negative sparse

decomposition of the shape hyper-field was partitioning of the shape domain into its

“meaningful” components. The decomposition is applied to nodes on the shape domain

based on their random walk distances to all the boundary nodes as in the demonstration

on the hand shape in Fig. 3.8 in §. 3.4.1.

Here, we demonstrate another setting where the shape decomposition is achieved by

minimizing the objective function in (3.13) in §.3.4.1 using the transpose of the measure-

ment matrix Y without normalization (3.12). In this setting, in contrast to the previous

setting §. 3.4.1, the boundary nodes are decomposed based on their random walk dis-

tances to all the nodes in the shape domain. Minimization of the reconstruction error

in the objective function depends on boundary nodes and the regions that are associated

with each node. That is, the boundary nodes that relate to similar regions are more likely

to belong to the same boundary partition. Hence, the resulting decomposition of the

boundary inherently depends on a regional partitioning of the shape. An example on a

human figure is presented in Fig. 3.11, where decomposed parts and corresponding regions

can be observed as active components and basis vectors (respectively) that are factorized

from the hyper-field using NNSC.

Figure 3.11: Decomposition of the human figure and associated regions. k = 8.

Introducing information about regional characteristics of a shape for decomposition

of its boundaries leads to rather consistent results. We demonstrate this in Fig. 3.12
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for three distinctively di↵erent cat poses. The structures after decomposition are very

coherent. The sparse decomposition into eight boundary segments reveals the head, the

front and rear parts of central body, the tail and four legs. In the third pose only, an

additional segment is included in the leg whose regional characteristics are altered due to

the significant articulation and deformation, however the inconsistent segment can easily

be detected and eliminated considering its low intensity.

Figure 3.12: Non-negative sparse decomposition over shape hyper-fields of three highly

di↵erent cat poses partition shape boundary into: the head, the cat frontal body, the back

body, its tail, and its legs in a consistent manner.

3.5.3 Orthogonal Projections Based On ⇢2 Sweep: SPEM

For the SPEM, we experimented with a set of shapes that are not necessarily related by

isometry. In Fig. 3.13, the projections obtained using the first five principal components

are presented for six di↵erent cat shapes. The first two projections, which explain most of

the variance in the data, are much smoother compared to the remaining projections. In the
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first projection, it is observed that the nodes in the vicinity of the boundary attain highly

positive values, hence, can be distinguished from the interior nodes, giving only a rough

sense of central/peripheral separation. The second projection, on the other hand, exhibits

a much stronger central/peripheral separation similar to [1]. The projections(SPEM)

obtained using the third or higher eigenvectors encode more subtle details. For example,

the third projection reveals ears, head, legs and tail of the respective cat. Notice that

these explicitly expressed parts are intuitive and consistent across deformations of the cat

shape.

Figure 3.13: Left-Right: First five projections(SPEM): P1,...,5 for 6 di↵erent poses of a cat

shape, depicted in each row. Each column corresponds to a di↵erent projection mode.

Hotter colors indicate positive and high values while colder colors indicate negative and

low values. Consistency of projections across deformations of the cat shape is observed.

Figure 3.14 demonstrates two things: (i) human figure, with di↵erent articulated mo-

tion as well as small local deformations shows the projections preserve their character
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across those nonrigid deformations; (ii) hand figure with occlusion, local deformation and

noise e↵ects show robustness of the projections against noise. The consistency, which can

be observed among the projections over each row across the varying instances of the human

and the hand shapes, is poised to provide the desired robustness in shape representation

required for shape matching and recognition.

Figure 3.14: First six projections(SPEM): P1,...,6 (on each row) for five di↵erent instances

(on each column) of a human and a hand silhouette. Human figure displays articulated

motion and local deformations. Hand figure displays di↵erent noise conditions: occluding

a finger; shortening of fingers; protruding two new parts from the hand. Hotter colors

indicate positive and high values while colder colors indicate negative and low values.

Robustness of projections against occlusion, local deformation, and noise is observed.

In Fig. 3.15, a 3D example of the SPEM is presented. The projections of the 4D hyper-

field computed from a 3D horse form onto second to sixth projections are depicted. Since
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a 3D form conveys the exact geometry of a real world object as opposed to a 2D shape,

which is a perspective projection, our projected fields are naturally more consistent across

arbitrary pose changes. In order to be able to visualize di↵erent sections distinguished by

each projection, we applied a histogram based thresholding procedure. For each projection,

one positive and one negative threshold is selected and the surfaces corresponding to the

level-sets of those thresholds are visualized. Thresholds were selected at the first jump

in the histogram for all the projections and the same threshold was used for the same

projections of shapes under di↵erent poses. The same remark that was made about the

smoothness of the projected fields in the 2D case holds for the 3D case as well. Although

some of the thresholded parts can be detached, as in the blue neck part in the sixth

projection, the consistency and the similarity of the 3D fields even after the thresholding

are notable.
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Figure 3.15: Top-Down: Second to sixth projections(SPEM): P2,...,6 for three di↵erent

poses of a 3D horse. Consistency of each projection across a row for di↵erent poses can

be observed. 59



3.5.4 A Moment Based Evaluation of Consistency and Corre-

spondence

In order to quantitatively demonstrate the consistency of the projections, we conducted

a classification experiment on the 2D ”1000-shape” database, which is an extended ver-

sion of [126]. The database consists of 50 classes, each containing 20 shapes varying

significantly with severe deformations and articulations. From each class, 10 shapes are

randomly selected as training data and remaining 10 is used for testing. In order to experi-

ment with the classification performance using a moment-based representation, we extract

a group of shapes with disjoint parts from each input single connected binary shape in the

database.

The shapes in the database are scaled to a fixed maximum distance to boundary of 20

voxels. Next, the hyper-fields are created, and principal directions are calculated in the ⇢

dimension. To each projection obtained from a given shape, a basic k-means clustering is

applied (k = 3) using the intensities of the projections. Thanks to the nature of the SPEM,

the resulting cluster centers are very similar: One of the cluster means is very close to zero

in terms of projection intensity value and the other two are from the shape nodes that

have positive and negative intensity projections, characterizing positive and negative nodal

domains. We use the mean of the corresponding cluster for both the negative and positive

clusters to generate two new shape maps for each projection. This can be considered as a

rough yet straightforward approach for detecting regions that behave similar in ⇢2 space,

specifically in a certain principal direction of the hyper-field. We note that a common

positive and a negative threshold value is utilized for all shapes in the database. In

Fig.3.16, we exemplify the positive and negative shape clusters obtained by thresholding

the first five projections on several cat shapes from the database.

As features, we computed Hu’s seven invariant moments [170], which are invariant

to translation, scale and orientation as features for the classification. The weak sense of

similarity that these simple moments provide allows us to evaluate the correspondences

more clearly. We train linear Support Vector Machines (SVM’s) using moments of each

generated shape both by stacking features in a cumulative manner and individually to each
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Figure 3.16: Each row contains the negative-positive nodal domain clusters for correspond-

ing to first 5 projections of 7 cat shapes.

projection. The classification results for both experiments that are repeated 100 times,

randomized over selection of 10 training and 10 test shapes, can be observed at Fig.3.17.

From the experiments where the SVMs are trained using features from individual

shape projections (red), it is clear that the moments for the newly generated shape maps

are much more informative compared to only the input shape’s moments (blue). This

alone shows that level curves of the SPEMs are consistent among shapes of same category

and corresponding regions on shapes of the same category have similar projections. The

moments obtained from even the ninth projections, which explain very little portion of the

variance in the hyper-field, are almost twice as descriptive compared to the original shapes

moments (see Fig.3.17). The monotonic behavior in classification performance obtained

using the combinations of the moments (black) as features implies that new projections

introduce new information (that even the moments can express), which is an observation

that is greatly in accordance with orthogonality of the projections.
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Figure 3.17: SVM Classification accuracies using moment features of: binary shape mo-

ments (blue); individual thresholded projections (red); and cumulatively adding thresh-

olded projections (black). Notice that the success rate jumps from %30 (blue) to %80

(blacks) when our approach is used.

3.5.5 Non-Rigid Shape Retrieval Using Screened Poisson En-

coding Maps

To address the problem of retrieving similar shapes from a database given a query

shape, we utilize the information extracted from the Screened Poisson Encoding Maps

(SPEMs). We use a feature-based approach to obtain a compact global shape descriptor

from SPEM using feature encoding methods.

An analogy between feature-based 3D shape retrieval and image retrieval was made in

[16], where an image is treated as a collection of primitive elements, namely, local image

descriptors as visual words. The analogy is formed by obtaining geometric words using

multiscale di↵usion heat kernels, which are represented by a geometric vocabulary using

soft vector quantization. A similar feature-based approach is used in [146], where Interior

Heat Kernel Signatures (iHKS) are used as geometric words with a similar representation
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proposed in [16]. Our retrieval approach is mainly similar to those in perspective, yet it

di↵ers in the way geometric words are obtained and the way the features are encoded.

As features, we use the SPEMs explained in § 3.4.2. Considering the nature of the

problem, due to large variability of the shapes undergoing non-rigid deformations, the

features should be robust to bending and articulations, which cause topological changes in

the volumetric representation. In Fig. 3.18, we present joint histograms of projections for

several shapes that go through large pose changes. The shapes belong to the SHREC’11

benchmark[87]. The histograms are obtained from the values of SPEMs: P4(x )(horizontal

axis) and P3(x )(vertical axis) for all x 2 ⌦, the logarithm of the number of nodes in the

bins are visualized. The choice of fourth and third projections is purely arbitrary, other

projections also give coherent results.

The histograms visualized in Fig.3.18 provide only a hint of what the feature space

looks like, yet the distinctiveness of the volumetric information encoded is clearly revealed.

Even for the shapes that go through large articulated motion and deformation, the rep-

resentation remains unaltered. Also notice that the representation of woman and man

shapes are more similar (yet still distinguishable) in comparison to the representation of

other shapes that are less related.

In order to compactly represent a shape for the retrieval application, we use the feature

encoding method: Vector of Locally Aggregated Descriptors (VLAD)[88]. VLAD charac-

terizes the distribution of vectors with respect to the pre-computed centers, words that

belong to a vocabulary. Unlike the Bag of Features or soft vector quantization approaches,

where the distances of the features to centers are accumulated, the di↵erence vectors from

each feature to assigned center are aggregated.

For a node in the shape domain x 2 ⌦, the SPEM S(x ) consists of the projections

P(x ): S(x ) = {P1(x ), . . . ,P
d

(x )} where d is the number of projections used. A code-

book, C = {c 1, , . . . , c k

}, of k representative points c

i

2 Rd is acquired using k-means

clustering algorithm. Each node in the shape domain is assigned to the nearest cluster

center, as a hard vector quantization to obtain NN 2 Rd:

NN (x ) = argmin
c

i

2C
kS(x )� c

i

k (3.15)
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Figure 3.18: Joint histograms inside SPEMs: P4 vs P3 for corresponding shapes on the

right. The histogram intensities are displayed using a logarithmic scale. The articulations

have almost no e↵ect on the joint histograms and there is large variation in histograms of

shapes with di↵erent volumetric structures.

The di↵erences S(x ) � c

i

of the vectors assigned to each center c
i

are accumulated

to obtain d dimensional residual sum vectors R
i

:

R

i

=
X

x2⌦ : NN (x )=c i

S(x )� c

i

(3.16)

The aggregated residual vectors R

i

are then normalized so that they have unit L2

norm. This is followed by a power normalization, which can be considered as a variance

stabilizing transform:

✓
i

= sign(R
i

)

✓
R

i

kR

i

k

◆
↵

(3.17)

where the power operates element wise on the given vector. This normalization helps cop-
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ing with the undesired burstiness of the encoded vectors. One of the sources of burstiness

is the di↵erent number of nodes assigned to each center. In [171], several approximations

are introduced that associate (3.17) to earlier work on variance stabilizing transforms on

a compound Poisson distribution [172, 173]. Another source of variance in our case is the

di↵erences in the intensities of the projections. The SPEM projections that correspond to

eigenvalues that express little variance have much lower intensities, hence little contribu-

tion in comparison to, say, P1. The power transform enhances their contribution in the

overall representation. The vectors ✓ are concatenated and again normalized to have unit

L2 norm as a vector of length k ⇥ d to form the final representation of a shape.

We conducted the retrieval experiment using the SHREC’11 Shape Retrieval on Non-

Rigid 3D Watertight Meshes benchmark[87]. The database consists of 30 classes, each with

20 samples that inherit large intra-class variation in terms of articulated motion and non-

rigid deformation. In our implementation, all of the shapes in the database were normalised

to a constant scale of ⇠ 250, 000 voxels. We used first six projections d = 6, and trained

a vocabulary C of size k = 32 words, resulting into a 192 dimensional vector as a global

descriptor of shape. The vocabulary is learned from 50000 randomly sampled nodes from

each shape in the database. Standard deviations for the SPEM projections that belong

to each projection index are also estimated using this training data. While evaluating,

each SPEM projection is first L2 normalized then multiplied by the standard deviation

estimated for that projection index. The nodes that are next to the boundary are discarded

while encoding, since they are less informative and might get a↵ected from boundary

discretization. The idea is to normalize the projection intensities, without changing the

intensity range of the projections. We observed that such a normalization causes an

increase in retrieval performance. For power normalization of VLAD, we use ↵ = 0.25 in

Eq.(3.17). Correlation distance between the 192 dimensional global descriptor is used as

a measure of dissimilarity between query shape and all shapes in the database.

The retrieval performance is demonstrated in Table 3.1 using five standard retrieval

statistics: nearest neighbor (NN), first tier (FT), second tier (ST), E-measure (E), and

discounted cumulative gain (DCG). For the details regarding the measures, we refer to

[174]. Results for best four methods from the participants in the contest are presented.

65



The results for these are taken from [175], where the methods are also briefly presented.

Additional results in the table are taken from the work of Rustamov: iHKS [146] and

Konukoglu’s spectral distance method: WESD [58]. Hybrid method results are obtained

the way SD-GDM + MeshSift hybrid method is presented in [87], specifically, by applying

a min-max algorithm to distances obtained using two methods and adding them up to

obtain the final distance matrix. We merge our results with other methods in the proposed

manner, using the distance matrices participated in SHREC contest, to demonstrate how

combination of our work and existing work performs. We also present the precision-recall

performance of our retrieval approach and the top four contestants in SHREC’11 track in

Fig.4.5.

Table 3.1: SHREC’11 Retrieval on Non-Rigid 3D Watertight Meshes Database Results

NN FT ST E DCG

Methods: Our Method (SPEM) 99.8 97.4 98.6 73.3 99.3

SD-GDM [176] 100.0 96.2 98.4 73.1 99.4

iHKS[146] 99.5 92.2 95.5 71.0 98.0

MDS-CM-BOF[177] 99.5 91.3 96.9 71.7 98.2

ShapeDNA[59] 99.2 91.5 95.7 70.5 97.8

WESD[58] 99.3 90.2 93.05 69.0 97.1

MeshSIFT [178] 99.5 88.4 96.2 70.8 98.0

Hybrid SPEM+SD-GDM 100.0 98.4 99.5 74.0 99.7

Methods: SPEM+MDS-CM-BOF 100.0 97.5 99.1 73.7 99.6

SPEM+MeshSift 99.7 97.6 98.9 73.5 99.5

SD-GDM+MeshSift 100.0 97.2 99.0 73.6 99.6

Our method outperforms existing methods in terms of first-tier, second-tier and E-

measure performance. It ranks the second for the NN and DCG measures with very close

numbers. Only one of the nearest neighbor results out of 600 is retrieved falsely, which
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is a sample from the ants class. Generally, the method only fails when internal distance

relations undergo large changes, which occasionally happen in ants class deformations.

Among the methods compared, only iHKS uses volumetric information. Our method

clearly outperforms iHKS with respect to all of the performance measures.
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Figure 3.19: Precision - Recall Performances in Shrec’11 Non-Rigid Database

The results suggest that extracting volumetric information in a robust way can lead to

enhancement in the non-rigid shape retrieval performance when compared to extracting

information regarding only intrinsic surface properties. Moreover, as expected, combining

volumetric information and surface information results in a significant boost in perfor-

mance, as observed in resulting hybrid performance of SPEM in Table 3.1.

3.6 Conclusion

In this paper, we provided a novel distance hyper-field representation for shapes via

screened Poisson PDE. An acknowledged advantage of the presented shape representation,

which is valid for all distance-based shape representations, is that the shape model is free

from the dimensions of the shape: the volumetric description of the hyper-fields we propose

is readily extendable to any shape embedding dimensions in Rn for n = 2, 3, 4....

For an n � d shape with m boundary points, the hyper-field is a scale-space stack
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parameterized by the screening parameter, where each member of the stack v⇢ is a super-

position of m fields, each of which is the solution of the PDE with a point source placed

at a boundary point. The shape hyper-field captures all sorts of characteristic informa-

tion within and on the boundary of the shape, therefore encodes both local-global and

interior-boundary interactions.

The new representation is also tied to a collection of conditioned random walks, each

walk emanating from a fixed boundary point and walking with a bias controlled by the

screening parameter; and, the e↵ect of the screening parameter is a change of measure.

Furthermore, we demonstrated extraction of shape information from the hyper-field,

which is a rich high-dimensional representation, by two felicitous compact decompositions

to exemplify: (i) natural shape partitions (NNSC); (ii) consistent shape maps through

SPEM. The potential of extracting various shape descriptors from the introduced shape

hyper-field was demonstrated over both a 2D ”1000-shape” database[126], and a bench-

mark dataset SHREC’11 [87]. The SPEM performance was evaluated by using the VLAD

method [88] for volumetric feature encoding. The SPEM consistently ranked the first

or the second in all measures, and ranked the first when a hybrid combination with top

surface-based methods was computed. Another interesting property of the SPEM was

its adaptation to scale, which was experimentally verified by its performance over the

benchmark.

The shape hyper-field representation presented in this paper is constructed over the

whole shape domain, therefore, it is certainly possible to either define new shape measures

or adopt existing popular descriptors, even image descriptors, in order to apply the intro-

duced hyper-field framework to shape matching, classification or partitioning problems.

68



4

Shape Matching using Image

Descriptors

4.1 Introduction

In this chapter, we will introduce the SIFT-based image matching framework, which

is for the first time adopted to the planar shape-matching problem. This proves to be an

intuitive and e↵ective method for which performance will be demonstrated compared to

state-of-the-art shape retrieval methods over various shape databases.

4.1.1 Related Works

The idea of matching shapes from the same class using correspondences that can be

related via geometric transformations, stemming from the work of D’Arcy Thompson [179],

motivates landmark-based methods for shape matching. Typically, the landmark points

are acquired by sampling either from shape boundary [180, 55] or medial axes [181, 182,

85, 46, 183, 50]. Such landmark-based shape representations have been succesfully used in

shape matching, also several robust methods for point-based matching are presented [184,

185, 186, 187].

In a di↵erent and very active line of research, local detectors that are covariant to a

class of transformations as support regions to compute invariant descriptors have proven
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to be very successful in image retrieval and object recognition [188, 189, 190, 191, 192,

193]. Matching using such a representation is commonly followed by a spatial verification

procedure [194], where a planar homography transformation hypothesis is formed and

agreeing matches are kept as inliers. This powerful framework progressively evolved over

the years and adopted for matching images of objects.

There are, nonetheless, applications where matching silhouette data rather than image

data is needed. For example, in computational anatomy, alignment of shapes (via silhou-

ettes or silhouette boundaries) is crucial in constructing anatomical atlases for organs or

characterizing change that may be a precursor to certain diseases or defects. Furthermore,

availability of depth images via RGB-D cameras made it possible to extract the silhouette

data for problems where color and texture may be uninformative. Hence, adopting the

highly evolved body of works available for matching images to matching silhouettes is

important for not re-inventing equivalent tools for silhouette matching.

4.1.2 Our Contribution

The reason that this framework has never been proposed to work with silhouettes of

objects is the lack of a shape representation that encodes pure shape information on the

shape domain and is both consistent and expressive. On one hand, smooth distance fields

given for instance by solutions to the Poisson equation are consistent, but they are highly

smooth and not su�ciently expressive; hence, the schemes based on Poisson type shape

representations employ secondary level representations in the form of skeletons [126] or

descriptors such as weighted moments [52]. On the other hand, representations based on

Laplace eigenfunctions are richer yet inconsistent for non-isometric changes unless jointly

computed for pair of shapes to be matched [144].

We propose that the SPEM features in the form of a shape field are both consis-

tent and expressive so that descriptors and geometric assumptions proposed for object

images can be used for object silhouettes. Via the presented field representation utiliz-

ing the whole shape domain, matching becomes possible without being plagued by the

high-dimensionality and redundancy of region-based representations. We demonstrate the

e↵ectiveness of our representation using SIFT descriptors by performing shape retrieval
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experiments on widely experimented common shape datasets and compare retrieval ac-

curacy using precision/recall and Bull’s eye scores. In all the experiments our scheme

outperforms the related work.

The solution to the screened Poisson equation, v, is an exponentially decaying smooth

distance function which has been shown to implicitly code curvature in [85], where the

first time the model has been proposed as a means of shape representation. Both [85] and

the follow-up work utilised v for extracting more abstract representations such as shape

skeletons or parts. None of the works approached the problem as densely sampling the

parameter space to obtain consistent and expressive maps(SPEM), hence, translating the

shape matching task into image matching task for which a highly evolved rich machinery

is available.

4.2 2D Shape Matching and Retrieval Using Consis-

tent Projections

Due to the orthogonality aspect of the PCA, the values of the projections are fluctuating

between positive and negative. The nodal domains emphasize internal parts of shapes (not

necessarily semantic). Within these parts, the behavior of a shape point under varying ⇢

are similar in the direction of a specific principal component. These internal parts can be

analyzed as blobby structures in P

i

. A local extemum of a projection can be considered as

an approximate center of an internal part, where the specific behavior in ⇢ space is the most

prominent. We propose a shape matching procedure where corresponding internal parts

of shapes are matched under the constraints of having similar projection characteristics

and a geometrically likely configuration.

The first step toward shape matching using projections is detecting regions that are

relevant (local feature frames). In our application, we used the Hessian-Laplace detector

along with the a�ne adaptation process [190][191]. Many scale and a�ne invariant region

detectors have been proposed and a comparison can be found in [191]. Among these, the

ones of interest to us are those designed for blob detection: In [195], Lindeberg used the

maximum of the normalized Laplacian in scale-space, whereas Lowe [89] approximated the
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Laplacian with di↵erence-of-Gaussian(DoG) to detect local extrema in scalespace. Linde-

berg and Garding [196] also introduced an a�ne adaptation process that makes use of the

second moment matrix. Hessian-Laplace region detector [190] is invariant to orientation

and scale changes. The local maxima of the determinant of the Hessian indicate a presence

of a blob structure. Scale selection is via Laplacian-of-Gaussian. Hessian-Laplace scheme

yields higher localization accuracy in scale-space compared to DoG detector. Moreover,

the number of detections returned by the Hessian-Laplace detector is larger, leading to en-

hanced information for geometrical assessment. Overall, our choice of the Hessian-Laplace

as the detector is supported experimentally. Considering that the forms of the internal

parts defined by projections can be better estimated as ellipses rather then circles, further

justifies the choice of a�ne adaptation. In order to detect signal variations that lie on the

blob boundaries, the measurement region is set as three times larger than the detected

region. The projections are zero mean and the regions outside shape boundaries are taken

as zeros. The detected regions may also be centered outside the shape domain point.

This might at first seem counter-intuitive; however, the exterior regions close to the shape

boundary also encode shape.

Detection of local feature frames is followed by generating descriptors that are well

suited for the matching process. We employ the SIFT descriptor of dimension 128 in

its original form with Hessian-A�ne support regions. This is calculated using VLFeat

library [197]. In the matching process, an initial set of correspondences are established

using the 2NN (2-Nearest-Neighbor) [188], and then refined using a RANSAC based [90]

scheme under planar homography assumption. The idea is to retain the correspondences

that are in accordance with the estimated homography as inliers while discarding the rest.

Finally, inliers detected for each projection pair are combined to yield the final refined

set of correspondences. In Fig. 4.1, 2NN matches between two cat shapes are presented.

Fig. 4.1 (a) depicts the initial set of correspondences, while (b) and (c) depict final set

of correspondences refined via relaxed and strict homography assumptions, respectively.

The total number of retained correspondences is employed as a similarity measure. At a

first glance, it may seem that a planar homography assumption would not be su�cient to

represent deformations that a shape may go through, especially articulated motion. Nev-
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(a)

(b)

(c)

Figure 4.1: (a) 2NN SIFT Matching results for P
i

, i = 1, 2, .., 6 for two cat shapes. (b,c)

Refined matches after geometric verification with a (b)relaxed (c) strict planar homog-

raphy assumption. For solely visualisation purposes, the matches are clustered using a

k-means algorithm based on spatial distances.

ertheless, the existence of the articulated part is encoded in the representation, not only

on the shape locations belonging to articulated parts but also on central parts. Further-

more, the comparison between two local feature frames of which centers lie in an internal

region also uses the information from possible articulated structures nearby since the fea-

ture measurements are from a much larger area than the detected region. The ellipse-like

(elongated) shape of the blob contributes to the robustness, too. For the evaluation of

similarity, the relaxed homography assumption acts rather as a regularizer. Especially

considering that planar shapes are perspective projections of non-planar objects, the ho-

mography assumption is well suited. The key to good performance under a broad range

of geometric configurations is the consistency of the underlying representation. Notice

that there are large number of matches where the limbs connect to the main body and
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near the neck even for the strict homography assumption in Fig.4.1 (b). It is less relevant

whether we can match the articulating head or not, as long as we can match the neck re-

gion which contains information that di↵use from the head and as long as SIFT detectors

notice that there is the head outside the detected region which has gone through an a�ne

transformation.

In our scheme, unlike in several other methods such as SC [180], IDSC [55], graph

editing [50], how much a shape is transformed does not a↵ect the similarity score (other

than refining matches). That is we do not penalize deformations due to perspective pro-

jections. This smoothly extrapolates to wider range of visual transformations: In Fig.

4.2, four illustrative matching examples are depicted. The first pair is two jet planes that

cannot be related by a group transformation. The local structures are very di↵erent and

the matching is further complicated by an occluding part in the input shape. In the bot-

tom two, the input shape (shown in green colour on the left) is projected on the target

(shown in blue colour on the right). The projection of the green target using the estimated

homography is shown as red colour drawn on the target. We remark that the regions that

are locally di↵erent due to occlusions play no role in the matching procedure and do not

contribute to the similarity measure. The second pair is two wrenches, one with a single

open end and the other with two. In this case there are two alternatives, both of which

will yield a partial match. The one which yields relatively a better match is chosen. In

the third example, a pair of shark shapes are given. Majority of the matches are due to

rear sections, which contain the most partially similar structures. The method’s ability

to handle partial matches is also visible in the last example. Notice that almost no in-

formation is employed from the tail regions where the two shapes are dissimilar. These

illustrative examples provide an intuition on how the homography assumption corresponds

to a regularization that favours the best possible partial match.
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Figure 4.2: Matching results for four pair of shapes. First Row: Input and target shapes.

Second Row: Inlier matches within planar homography. Third Row: Input shape projected

onto the target using the estimated homography.

4.2.1 Shape Retrieval Approach

Figure 4.3: Proposed Shape Matching Scheme

In order to find a pairwise similarity measure between a given query shape and all of

the shapes in a given database, we utilize the matching procedure depicted in Fig.4.3. All

shapes are scaled to have the same maximum distance to boundary (maximum distance

transform) prior to the generation of the projections. In the course of our experiments, we

have observed that the strictness of the homography assumption (allowed deviation from

hypothesis to be accepted as an inlier) does not significantly a↵ect the overall retrieval

accuracy as long as the same assumption is used in all geometric verifications. For the

2NN test [89], we declare a match if the distance ratio between first and second closest

neighbors are below 0.85.

The individual contributions of the projections in the matching procedure involving

the first nine projections are presented separately for shapes of di↵erent categories(left)

and shapes of the same category(right) in Fig.4.4. The contributions are depicted as the
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distributions of the ratio of the 2NN matches of a specific projection among all matches

(x-axis) and ratio of matches that are in agreement with the geometric verification hy-

pothesis among 2NN matches (y-axis). The distributions obtained from the 180-shape

dataset [126] are approximated with Gaussian functions and displayed with standard de-

viation � = 1. Notice that the ratio of inliers is significantly larger for the matches between

the shapes of same category. Also note that the contribution of each projection decreases

as the projection index increases. When both the match contributions ( 2NN(P
i

)
2NN

Total

), and in-

lier ratios ( INLIERS(P
i

)
2NN

Total

) are relatively large, they would indicate that the informativeness

of a projection is high. Larger indexed projections, e.g. P9, have lower inlier ratios, which

have similar characteristics regardless of whether the shape is from the same category or

not. Notice the overlap of P9 samples on the right to those on the left. In the experi-

ments, we use projections P1, . . . ,P7 for the matching procedure. This choice is verified

experimentally as the retrieval accuracies stabilize around P7, and start to drop slightly

after P9, which is in line with the observations in Fig.4.4.

Figure 4.4: Distributions of match contributions versus inlier ratios from each projection.

Left: Matches between shapes of di↵erent categories. Right: Matches between shapes of

same category.

4.2.2 Shape Retrieval Experiments

In this section, we present our results in comparison to results of the state-of-the-

art shape retrieval methods on three commonly employed datasets of sizes 490, 180 and

1000. The selected methods are Poisson features, MPEG-7 descriptors, as well as recent

axial or boundary landmark-based representations. We also experiment with the methods
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based on a modern idea of going beyond pairwise similarities. These methods learn the

manifold structure of shapes in the database by further processing of the similarity matrix,

in particular, by spreading the a�nities on the set of shapes. There are several successful

methods for imposing beyond pairwise information to retrieval task e.g. [198, 199, 200,

201, 202, 203]. We will refer to the collection of methods that employ more than a pair of

shapes in defining pairwise similarly as context based similarity methods and will include

several variants in this group.

As reported in Ling et. al [204], improving pairwise similarity measurements does not

always imply a better bull’s eye score. Perceptual closeness of the retrieved shape to the

query is also critical to form a reasonable graph structure constructed by similar shapes to

be further processed by a�nity spreading in order to learn the manifold structure of shapes

in the dataset. To point out that our pairwise approach provides successful perceptual

resemblance to the query, we also report our results for the context-imposed retrieval by

using the method of Donoser and Bishof [203].

4.2.2.1 490-Shape Dataset

The 490-Shape Dataset [52] is a collection of natural silhouettes expanded by variable

classes from Kimia Dataset [205]. It contains 12 classes with unevenly distributed samples.

In [52], features that are extracted from a Poisson field are employed to compute pairwise

shape similarity for matching. These Poisson features are called PF for short, and they are

weighted inversely proportional to the ratio of the within class variation and between class

variation. Then the weighted Euclidean distances between features are used as a measure

of shape similarity. In [52], the performance is measured as the number of correct matches

in the top 1 and 15 retrievals. Based on this performance measure, it has been compared

to geometric moment descriptors (GMD) and Zernike moments descriptors (ZMD) using

weighted Euclidean distances and city block distances [206]. It has also been compared to

the MPEG-7 descriptors: Angular Radial Transform Descriptor (ARTD) [207, 208] and

Curvature Scale Space Descriptor(CSSD) [209][208].

To be comparable, we repeat the same experiment and report comparative results in

Table.4.1. We obtain nearly %15 improvement over Poisson features (from %84 to %96.05).
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Table 4.1: Retrieval Performance for 490 shape database for 15 closest shapes.

ARTD[207] GMD[206] CSSD [208]. ZMD [206] PF[52] Our Method

# hits in top 1 86 89 89 93 93 99.59

# hits in top 15 64 72 76 77 84 96.05

Our method also significantly over performs Poisson features in terms of precision-recall

values. We can only compare up to nearly %30 recall since the results beyond this recall

level are not reported. At %30, our method using SIFT features yields %96 percent

precision whereas the method based on Poisson features yields %85. At %20 recall, the

precision with our method reaches to nearly %100 whereas the precision of the Poisson

features remains around %87.

As a final performance measure, we plot complete precision-recall graph for our method

using SIFT features (Fig. 4.5 (left)). At high recall levels, the precision is lower compared

to other datasets. This is because the number of shapes in most confused classes (cats,

dogs and horses) are larger compared to the number of shapes in the other classes. This

does not pose a problem if the same number of shapes are being retrieved for all queries

(as in Table.4.1), but lowers the overall precision at high recall levels. To examine further,

we perform a second retrieval experiment where all the four-legged animals are combined

and considered as a single class as done by Kimia [205]. After this lumping, the retrieval

performance increased drastically. If we further impose context using [202], the precision

at %100 recall reaches to %97.40 using original classes and %99.47 using combined classes.

4.2.2.2 180-Shape Dataset

This dataset by Aslan and Tari [126] includes 6 shapes from 30 categories. Within each

category, the samples go through significant articulations in addition to changes in scale

and orientation. This is the most articulated shape dataset, thus, a planar homography

transformation assumption is expected to fail. Nonetheless, as we have argued in Section

4.2 introduction, due to the high expressive power of our representation and descriptiveness

of SIFT, the partial correspondences accepted within homography are quite capable of

distinguishing shapes of di↵erent categories.
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The retrieval performance of our method is compared to those of Inner Distance Shape

Context (IDSC) [55], Disconnected Skeletons [126] and its context induced version [210],

as the highest performance on this dataset has been reported by these three methods. Our

method outperforms all the three (Table.4.2). At %100 recall, our precision is %97.69 and

non of the top 3 retrievals contains error, while the precision of IDSC [55] is %95.83. With

the context information, the precision reaches to %100 at full recall.

4.2.2.3 1000-Shape Dataset

The 1000-Shape dataset is an extended version of the Aslan-Tari dataset. It consists

of 50 classes, each containing 20 shapes with large deformations and articulations. The

retrieval performance is again compared to the state-of-the-art boundary and axis based

methods (Table.4.3, Table.4.4, and Fig. 4.5 the middle and the right). The scores for Shape

Context(SC) [180] and Inner-Distance Shape Context (IDSC) [55] where the a�nities are

computed using dynamical programming [55] are taken from [211]. The scores for Aspect

Shape Context(ASC) descriptors are from Ling et. al [204] who presented the best available

result on Tari-1000 dataset by using the context information. As reported in Table.4.3,

when only pairwise matches are considered, our method yields the highest precisions at all

the four recall levels, though the performance of shape context based descriptors are still

comparable. In Table.4.4, we report scores for ASC improved with Locally Constrained

Di↵usion Process(LCDP) [199], SC and IDSC improved using Label Propagation(LP) [201]

and Tree Edit improved using category knowledge [210]. For each method, the precision

at 100% recall as well as the Bull’s Eye score are listed. The complete precision-recall

graphs are given Fig. 4.5 for both pairwise and context imposed experiments.

Table 4.2: Retrieval Performance for 180-shape dataset

Tree

Edit[210]

Disconnected

Skeleton[126]

IDSC[55] Our

Method

at 100% recall 87 88 95.83 97.69

Tree Edit

+Context[210]

Our Method

+Context

99.41 100
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Table 4.3: Retrieval Performance for 1000-shape dataset

Tree Edit[210] SC[180] ASC[204] IDSC[55] Our Method

at 25% recall 88 98 98 97 98.62

at 50% recall 78 95 96 94 96.61

at 75% recall 65 91 90 91 93.45

at 100% recall 31 85 68 84 87.45

Table 4.4: Retrieval Performance using context methods for the 1000-shape database.

Tree Edit

+Context[210]

SC+LP

[180] [201]

IDSC +LP

[55] [201]

ASC

+LCDP[204]

Our Method

+Context

at 100% recall 51 93 94 95 98.18

Bull0sEye - 97.79 99.35 99.79 99.91

4.2.3 Discussion

To summarize, evaluations of the proposed shape matching method were performed on

three common datasets. Comparisons were against methods that used regional features

such as Poisson features [52] or more compact landmark-based methods such as [180, 126]

to exemplify two main categories of shape descriptors. For the 490-shapes dataset, our

method improves the retrieval performances with respect to those of the closest Poisson

Figure 4.5: Precision Recall graphs for retrieval experiments on three datasets.
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features method. Similarly, for the 180- and 1000-shapes datasets, both with and without

using context information, favorable precision-recall results are obtained.

On the other hand, recently, there is an increased number of shape description methods

based on eigenfunctions and/or eigenvalues of the Laplace-Beltrami operator computed

over the shape silhouette [137, 59, 135, 140, 141]. However, it is known that Laplacian

eigen-bases computed independently on shapes going through general visual changes are

often incompatible with each other [144]. Therefore, approaches such as heat kernel sig-

nature [135] will not be able to perform well in a shape retrieval scenario with shapes

of non-isometric changes. To overcome this shortcoming of inconsistency across shape

variations, Laplacian eigenfunctions were computed jointly for multiple shapes in [144].

However, this approach requires re-computation of a joint Laplacian eigen-bases set be-

tween each pair of shapes along with pre-computed shape correspondences, which would

constitute a limitation in a generic and practical shape retrieval application.

4.3 Conclusions

We presented a consistent and expressive shape representation, which is based on a

1-parameter family of shape field that is constructed by adding the ⇢-dimension to the

solution field of screened Poisson equation. The introduced increase in dimensions is

followed by a reduction through projection onto principal modes of variation along the ⇢-

dimension. Contrasting to boundary-based approaches, this region-based representation

allows the landmarks to be obtained from the whole shape domain, which leads to ro-

bustness to artifacts that can occur in shape boundaries. In addition, correspondences are

obtained by combination of almost local (shape field measurements) and global (eigenvec-

tors) cues due to the characteristic of the projections. The projections show consistency

across various scenarios: di↵erent shape poses, deformations, occlusions and clutter.

Thanks to both the holistic and regional nature of the provided shape representation, a

SIFT-based image matching framework, could be used in shape matching, for the first time

to our knowledge. Thus, the SIFT descriptors constructed from the local feature frames

detected over a given set of shape projections are utilized in shape matching. Moreover,
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in addition to matching projection characteristics, in order to enforce geometrically likely

configurations for 2D shapes, outliers are rejected through a planar homography assump-

tion, which acts as a regularizer for the matching procedure. Even the surprisingly simple

idea employed as the shape similarity measure, which is the total number of retained cor-

respondences across corresponding shape projections of the two shapes being compared,

achieves very good performance in matching as demonstrated by the performance over

three common shape datasets. The presented shape matching scheme performs favorably

among some popular shape retrieval methods.
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5

Local Convexity Encoding Fields

In this chapter, a shape field that encodes convexity and concavity inside the shape

domain is introduced. The proposed field is smooth, fluctuating(except for circle shape)

and scale invariant. The distance properties of external parts are encoded explicitly, while

isocontours in the central regions lay emphasis on concave regions near the boundary.

5.1 A new gaze into the hyper-field

When the whole variance in the field v(~x, ⇢) is considered, it should be noted that most

of the variance can be accounted for the distances of nodes to the boundary of the shape,

the source in the Poisson PDE. The appropriate example would be the case for a circle

shape in R2, where v(~x, ⇢) R3
! R can be expressed as v

Circle

(D(~x), ⇢) R2
! R, since the

field is constant on points equidistant to the boundary �:

v(x , ⇢) = v(x , ⇢) {8(x ), (x ) 2 ⌦ | D(x ) = D(x )} , (5.1)

where D is the Distance Transform for the shape. So, the field v
Circle

(D(~x), ⇢) does not

contain any shape information other than a monotone relationship between values of the

distance transform and v field. Of course this is not the case for the v field calculated on

any shape domain. Motivated from this, it would be natural define the shape information

preserved in the field as deviations from the relationship between v(x , ⇢) and D(~x).

Keeping in mind the definition above, consider the first iterations of di↵usion procedure
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(⇢ = 1), the values of v(~x) will mimic an exponential function of distance to boundary

of each node, similar to very low values of ⇢ as indicated in §3.3. This analogy holds until

the propagating fronts of di↵usion emanating from di↵erent sources meets at the local

symmetry points. After this instance of the di↵usion procedure for each symmetry point,

the deviation described starts and encryption of valuable shape information begins.

Remarkably, the separation of the sources of variance of log(v(~x, ⇢)) using PCA results

in projections that are greatly in accordance with this description. A projection using the

first eigenvector always leads to a field that encrypts distance relations w.r.t the boundary

up to a scale in a smooth fashion. Whereas the second eigenvector projects the data

such that the nodes near a local symmetry locus are distinguished from the rest of the

nodes. The rest of the eigenvectors, which explain very little variance in comparison

expose secondary details that rise from symmetry axis. Projections obtained using first

two principal components of log(v(~x, ⇢)) are given in Fig. 5.1.

Figure 5.1: Projections using first two principal components of log(v(x2, y2, ⇢)) on various

shapes of closed contours.

As expected, distance to boundary constitutes the largest portion of the variance in

the data. The fact that the shape information is separated by the second basis in this

manner in the log domain confirms the consistency observed in the principal components

of the original field. Additionaly, this point of view reinforces the relationship[85][126]

established between screened Poisson PDE and Medial Axis Transform(MAT)[64].
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5.2 Local convexity encoding fields

The numerical estimation of the deviations from the relationship between v(~x, ⇢) and

D(~x), is modeled as an answer to the following question for a node at point (~x):

Considering the distance of the node to boundary (D(~x)), how di↵erent would

the intensity of node (v(~x, ⇢)) be at time t if the source(shape boundary) was a

perfect circle.

The answer to this question for each node separately, leads to the di↵erence of the field

v(~x, ⇢, t) from a reference shape field(v
Ref

(D(~x), ⇢, t)), which is described on the shape

domain and is a non-linear function of the distance transform for all ⇢. For computational

convenience we will do it for one rho (i.e. ⇢ = 1). We calculate v
Ref

= v
Circle

by solving

the screened Poisson PDE for a circle given radius r and use the values of v
Circle

(D(~x), ⇢) as

a look-up table. The ⇢ parameter and time step used should be the same as the parameters

used while solving for v(~x, ⇢). The values of v
Ref

(D(~x), t) are of course highly dependent

on the radius of the circle. How the values of v
Ref

changes in time for several radii are

given in Fig. 5.2. Notice that the values for D(~x) = 15 becomes much lower at any t, as

radius of the reference circle increases. This is due to decreasing perimeter

area

ratio.

Figure 5.2: V
Ref

(D(~x)) vs time as reference radius increases.

We choose the maximum value of D(~x) as the radius of the reference circle. With this

choice, the di↵erence of the Poisson PDE field and reference fields separates the external
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parts and the core of the shape with its zero crossing. The resulting field at time t is

formulated as:

 (~x, t) = v
⇢

(~x, t)� v
Ref

(D(~x), t) (5.2)

The separation of parts using the field  (~x, t) is scale invariant. This is due to the

selection of max(D(~x)) as a radius to calculate V
Circle

. Yet, the separation by the zero-

crossing of the field alters in time, the invariance can be analysed as instances of time

selected identical to the minimum of the v field. In Fig. 5.3  (~x, t) for two cat shapes are

presented along with separated parts.

Figure 5.3:  (~x, t) and partitioning by the zero level curve are presented for two cat shapes

in five time instances. Time instances are matched by the minimum vale of v
⇢

(~x, t). The

values used are 0.1 for t1, 0.25 for t2, 0.5 for t3, 0.75 for t4 and 0.9 for t5.

At low values of t, the field is not yet fully influenced by the boundary condition, and

for very large values of t, the precision becomes problematic for both terms used for the

calculation of  (~x, t) are very close to 1. In order to extract external parts in a robust

manner, we use  (~x, t) as a source term for an inhomogeneous heat equation. The field

for robust part extraction is formulated as:

@A(~x, t)

@t
= ↵

✓
nX

i=1

@2

@x2
i

A(~x, t)

◆
+ f( (~x, t)) (5.3)
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where ↵ is the factor to control the influence of the di↵usion term. We use the function

f to regularize  (~x, t), such that the influence of  (~x, t) as a source will be lowered if the

minimum value of v(~x, t)(can be considered as approximation to the shape center) is very

low or very high. This is accomplished by multiplication with a factor that is normally

distributed with a mean of 0.5. f is formulated below, where � should be specified a priori.

f( (~x, t)) =  (~x, t)e
�(min(v(~x,t))�0.5)2

2�2 (5.4)

The field is solved by a finite di↵erence method using Neumann boundary condition.

The solution, A
final

(~x) is A(~x, t
final

), where t
final

corresponds to the time of convergence

for v
⇢

(~x, t). A
final

is the best harmonic approximation of the hyper-field f( (~x, t)). The

steady state of the inhomogeneous heat equation can be expressed as the sum of the

source term,  (~x, t)’s on considered t instances, with more influence on the instances

where min(v
⇢

(~x, t)) is close to 0.5. This is the region where  (~x, t) is more informative

(Fig. 5.2) and less a↵ected by precision related problems. A
final

(~x) fields and extracted

parts for various shapes are presented in Fig. 5.4.

Figure 5.4: A
final

(~x) fields and extracted parts for various shapes.
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The parameters that should be considered for part extraction are the standard devia-

tion � in the robustness function f and ↵. The e↵ect of the � parameter is not a↵ected

by scale also, since it takes values with respect to v
min

. The fields for two shapes will

be consistent as long as the same value � and ↵ is used for calculating both fields. For

obtaining the results in Fig.5.4, we used � = 0.5 and ↵ = 0.005.

Gorelick et.al. [52] also proposed a method for part extraction, which requires the

thresholding of an all positive field. This method would give very unstable results for

shapes with protrusions of di↵erent kinds. Although our method results into a field whose

level curves are slightly dependent on ↵ and �, the separation of the variables do not

get a↵ected from these parameters. In addition while Gorelick’s approach would require

di↵erent thresholds for di↵erent scales even for the same shape, the separation in our field

is robust to scale changes.

The distinction has a hierarchical aspect also. Considering the intensities of the re-

sulting fields, the parts that have higher maximum intensities can be considered relatively

significant compared to other parts. For example, in Fig.9, the front and the rear parts

of the F-16 are more significant compared to wings, head and tail of the horse is more

significant compared to legs, fingers are more significant compared to parts of the wrist

that is cut, the head and ears of the bunny can be separated and are more significant

compared to legs, head of the bug is more significant compared to four legs. In this de-

scription, significance implies a larger region that is a↵ected by symmetry points and not

a↵ected by concavities(will be clearer in the following), which is obviously not the only

way to form a hierarchy.

The factors that cause the distinction of parts in the field are the (i)local symmetry

points, which tend to have larger values locally, and (ii)concavities, which tend to have

lower values locally (compared to a circular boundary at same distance). This fact can

be observed at Fig.5.5, where A(~x, t) is projected via the process in §3.4.2, replacing

the hyper-field v(~x, ⇢) with A(~x, t). The hyper-field A(~x, t) is obtained by measurements

sampled from the time domain as field A is evolving. The first principal direction leads to

a projection that is very similar to A field. The second principal component demonstrates

the race between symmetry points and concavities.
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The detection of the concavities is also proposed by Gorelick et.al. [52] but the results

also include the concavities in the external parts, additionally the detection depends on

a soft threshold parameter. In our method, the concavities detected are regularized by

the e↵ect of the local symmetry points. The detection is also a↵ected by the global

distribution of concave points (not spatially but as the number of concave points and

intensities because of the way we use PCA). This framework would allow the use of the

intensities of the concave points to include a hierarchical discrimination. For example the

concavities separating the head of the bug in Fig.5.5 are much significant in comparison

to concave points that separate legs. Also the leaf shape (from MPEG-7 database) can be

analyzed hierarchically. Two leaves stem from the same base which stems from a circular

base. The concave points in the connection of two smaller leaves are less significant

compared to the concavities that connect the larger segments near the circular base.

Figure 5.5: Projections using the principal components of the hyper-field A(~x, t) in the

time domain for two shapes.

5.3 Discussion and Conclusion

The proposed shape field, A, is mainly motivated from the continuum of fields described

in Chapter 3, specifically it is modeled as the deviation from the circle (or sphere for 3d)

case, where the potential in any node inside the shape domain can be parameterized by a

single variable: radius. When the radius is selected as the maximum distance to boundary,

the deviations encode external parts explicitly.

In his seminal work, Some Informational Aspects of Visual Perception,1954 [2], Fred

Attneave performed psychological experiments to demonstrate that visual data is highly

redundant and portrays that points of high curvature on shape boundaries are informative
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and perceptually relevant. The famous cat experiment was created by abstracting 38

points of maximum curvature from the contours of a sleeping cat, and connecting these

points appropriately with a straightedge. Even the very simple representation of the cat

could be reliably recognized in the drawing. It has been suggested that such points have

high information content, which was a motivation for earlier methods in partitioning shape

boundaries based on high curvature [212, 213, 214, 215, 216]. Another experiment, perhaps

one that did not recieve as much attention as the cat experiment, involves eighty subjects

that were instructed to draw, a pattern of 10 dots which would resemble the shape of

closed contours as closely as possible. The local convexity encoding field is calculated for

the shape used in this experiment to demonstrate how the proposed regional representation

respects the perceptually important cues on the shape boundary in Fig.5.6.

(a) A(x , t|vmin = 0.1) (b) Afinal(x )

Figure 5.6: A(~x, t) at two di↵erent t values, for the shape presented in Attneave’s work[2].

Subjects attempted to approximate the closed figure shown above with a pattern of 10

dots. Radiating bars indicate the relative frequency with which various portions of the

outline were represented by dots chosen. Note how the A hyperfield simulates the human

subjects in marking convex and concave points on the boundary of the shape.

Attneave’s findings:

It is clear that subjects show a great deal of agreement in their abstractions
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of points best representing the shape, and most of these points are taken from

regions where the contour is most di↵erent from a straight line. This conclusion

is verified by detailed comparisons of dot frequencies with measured curvatures

on both the figure shown and others.

were greatly in accordance with Hebb’s observations[31], that the regions on the bound-

ary that have high curvature are informative: information is further concentrated at points

where a contour changes direction most rapidly. The locally convexity encoding field, as

shown in Fig.5.6(a), is highly related to those points. In fact, the negative and positive in-

tensities are almost leaking inside the shape from those significant points and as time goes

by, an agreement of those are declared as the smooth shape representation: A
final

(x ). The

field provides very intuitive results as a non-parametric external part extraction, which

is consistent across pose changes. Note that consistency claim is currently solely obser-

vational. Moreover, the rich local information encoded is completely novel and can be

considered promising to be utilized in a variety shape analysis applications.
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6

Conclusions and Future Directions

To sum up, the foundations of the new scalable fluctuating distance fields, shape hyper-

fields and the local convexity encoding fields are introduced. The strength of the methods

is demonstrated in numerous applications:

• Interactive tumor protrusion segmentation via fluctuating distance fields

• Tumor follow-up registration based on constancy assumption of fluctuating distance

fields as underlying shape representation.

• Regional shape partitioning and boundary decomposition using non-negative sparse

coding to screened Poisson hyper-fields.

• Planar shape classification using primitive moments of nodal structures of SPEM’s.

• 3D Shape retrieval using VLAD descriptors applied to SPEM’s.

• Planar shape matching and retrieval using SIFT descriptors.

• Shape partitioning and representation using local convexity encoding fields.

Representations presented in this thesis are constructed over the whole shape domain,

therefore, it is certainly possible to either define new shape measures or adopt existing

popular descriptors. We believe that they will find ubiquitous use in various shape analysis

applications.
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For future directions of research, invariance properties of the representations will be

investigated in more detail. The non-rigid retrieval experiments reveal that the SPEM rep-

resentation for instance is highly robust for encoding articulated motion. Such a property

could very well be undesired in some applications, for instance modelling of anatomical

structures. We will investigate spatially varying conditioning methods for random walkers

in order to obtain an isometry-varying representation. The spatial variation of condi-

tioning could be obtained by curvature or surface properties. An alternative direction of

research is compositing the shape fields with other available measurements from inside the

shape domain to address problems of object characterization.
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