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Abstract

As biometric applications are gaining popularity, there is increased concern over the loss

of privacy and potential misuse of biometric data held in central repositories. Biometric

template protection mechanisms suggested in recent years aim to address these issues

by securing the biometric data in a template or other structure such that it is suitable

for authentication purposes, while being protected against unauthorized access or cross-

linking attacks.

We propose a biometric authentication framework for enhancing privacy and template

security, by layering multiple biometric modalities to construct a multi-biometric tem-

plate such that it is difficult to extract or separate the individual layers. Thus, the

framework uses the subject’s own biometric to conceal her biometric data, while it also

enjoys the performance benefits because of the use of multiple modalities. The resulting

biometric template is also cancelable if the system is implemented with cancelable bio-

metrics such as voice. We present two different realizations of this idea: one combining

two different fingerprints and another one combining a fingerprint and a spoken pass-

phrase. In either case, both biometric samples are required for successful authentication,

leading to increased security, in addition to privacy gains.

The performance of the proposed framework is evaluated using the FVC 2000-2002 and

NIST fingerprint databases, and the TUBITAK MTRD speaker database. Results show

only a small degradation in EER compared to a state-of-the-art fingerprint verification

system and high identification rates, while cross-link rates are low even with very small

databases.
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Abstract

Biyometrik uygulamaların kullanım alanı genişledikçe merkezi veritabanlarında tutulan

biyometrik bilgininin mahremiyeti ve olası kötüye kullanımı noktasında endişeler art-

maktadır. Son yıllarda biyometrik şablon muhafazası konusunda yapılan çalışmalar bu

problemleri şablonun kendi içinde veya doğrulama mekanizmalarını etkilemeyecek başka

bir veri yapısı ile izinsiz kullanım ve çapraz karşılaştırma saldırılarına karşı korumaya

yönelik çözümleri kapsamaktadır.

Bu tez çalışmasında birden fazla biyometrik bilgiyi tek bir şablon üzerinde katmanla-

yarak bir çoklu biyometrik yapı oluşturma ve bilgilerin karışımından faydanlanarak bu

bilgilerin güvenliğinin ve mahremiyetinin korunması amacı ile bir yöntem sunulmak-

tadır. Bu yöntem kişilerin biyometrik bilgilerini yine aynı kişilerin biyometrik bilgileri

ile korumayı amaçlamaktadır ve böylece sadece biyometrik temelli bir çözüm sunmak-

tadır. Kullanılan yöntem çoklu biyometrik bilgiyi işleyip değerlendirdiği için geleneksel

tek biyometrili yöntemlere göre daha başarılı sonuçlar vermektedir.

Sunulan yöntem değiştirilebilen biyometrik bilgi ile icra edildiği durumlarda biyometrinin

iptal edilebilirliği (yenilenebilirliği) de sağlanmış oluyor. Değiştirilebilen biyometrik bil-

giye örnek olarak bu çalışmada ses biyometrisi kullanılmaktadır. Kişilerin kendi seslerini

kullanarak kendi belirledikleri bir gizli sözcüğü söylemesi ve bu bilginin biyometrik kat-

mana karıştırılması ile oluşturulan kayıtlar, ileride kişinin başka bir gizli sözcüğü tercih

etmesi neticesinde değiştirilebilir, iptal edilebilir ve yenilenebilir olma özelliklerine de

kavuşmaktadır.



Önerilen çoklu biyometrik katmanlama yöntemi FVC 2000-2002 ve NIST parmak izi

veri kümelerinin yanısıra TÜBİTAK MTRD ses biyometrisi veri kümesi kullanılarak

deneylerden gerçirişmektedir. Test sonuçları önerilen yöntemin, alanında öncü biy-

ometrik doğrulama sistemleri ile karşılaştırılınca Eşit Hata Oranı’nda (EHO) çok yakın

sonuçlar elde edildiği gözlenmektedir. Mahremiyetin korunması noktasında tekli biy-

ometrik bilgi ile yapılan veritabanı saldırılarının ve çapraz karşılaştırma ile kimlik teşhisi

saldırılarının oldukça düşük sonuç verdiği; böylece sunulan yöntemin beklenilen perfor-

mansı sergilediği gözlemlenmiştir.
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Chapter 1

Introduction

1.1 Background

Biometrics is the science of establishing the identity of an individual based on the phys-

ical, chemical and behavioral attributes of the person [5]. The term is derived from

the words “biology” and “metrics”. In todays technology, various biologic attributes

(i.e. biometric traits) have started to be used as biometric discriminators. The grouping

of biometric systems, depending on the type of the trait that its based on, are called

biometric modalities. There are various biometric modalities used in both industrial

products as well as the academic research. In Figure 1.1 various biometric systems built

on different biometric modalities have been depicted.

Biometric modalities are mainly grouped into two types: i) physical/physiological and ii)

behavioral modalities [6, 7]. Physiological biometric modalities depend on the physical

characteristics of the human body and they either don’t change or change very little

with respect to the actions-movements of the subject. On the other hand, behavioral

modalities emerge with respect to the subjects actions. While they also depend on the

physiological characteristics, they still require an action to be detected. A list of different

modalities along with the research work based on the corresponding modaility has been

given Table 1.1. The modalities are given with respect to their types.

Biometric Systems consist of components such as signal acquisition media (eg. finger-

print scanner, camera, iris scanner) for biometric information retrieval, storage media

(eg. databases, smart-cards, secure execution environments) for storing the biometric

1
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Figure 1.1: Various biometric modalities and their applications

Physiological Behavioral

Face [8]
Fingerprint [9]
Fingervein [10]
Palmprint [11]
Ear [12, 13]
Hand Geometry [14]
Iris [15–17]
Retina [18]

Voice [19, 20]
Signature [21–23]
Handwriting [24]
Keystroke [25]
Gait [26]

Table 1.1: Different biometric modalities and the related research work grouped with
respect to their types

information for later use and a biometric feature extraction and decision software that

might be on the sensor, a central server, a smart-card or a device with/without a secure

execution environment.

The use cases for the biometric matching software are either about verifying that a

subject is really who she claims to be or searching the identity of a possibly unknown

subject from a collection of biometric samples (i.e a biometric database) with respect to

the traits that are provided later. The confirmation of a claimer about her identity, given

her biometric sample, is called biometric verification and the identity search against a

database for a subject is called biometric identification. In other words, a person is

verified whether she is the one who she claims to be, or identified via her biometric

information from a database. A sample biometric verification scheme can be a smart-

card based identity verification event where the person inserts her card into the reader
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where the personal information is retrieved, and biometric verification is performed

between the biometric data that is stored in the smart card and the biometric data

that she provides to the sensor attached to the card reader. An example to biometric

identification is the retrieval of a list of suspects from a database with respect to a latent

fingerprint found in a crime scene.

Biometric data is generally processed and converted to a format that is understood by

the decision software prior to being saved in the database. This processing is called

feature extraction and the newly created data is generally called a biometric template.

Some systems purge the original (raw) data after the biometric tempalte extraction since

it will not be used again.

Biometric authentication systems work in two phases: i) enrollment phase and ii) ver-

ification/identification phase. In the enrollment phase the acquired biometric signal is

processed and stored in the target storage medium (smart-card or central database). In

the verification/identification phase the matching of a newly obtained candidate tem-

plate (i.e. probe template) is compared to either the stored template (if the use is known)

or the entire database (if the user is to be found). A sample biometric verification scheme

has been depicted in Figure 1.2.

The matching decision routine compares the probe biometric sample to the template

that has previously been stored in the database and generates a similarity score as the

matching result. After obtaining a similarity score, the two candidate sets are considered

as a match if this score is above a certain threshold. The thresold can be determined by

several experiments on a training set, or may be adjusted with respect to the precision

requirements of the biometric system.

The value of the threshold determines the false reject rate (FRR), which is the probability

for a true user identity claim to be rejected, which is considered inconvenient, and false

accept rate (FAR), which is the probability for a false (impostor) identity claim to be

accepted, and fraud condition to occur [27]. There are also two other complementary

measures, namely genuine accept rate (GAR), which is the probability for a true identity

claim to be accepted and genuine reject rate (GRR), which is the probability of a false

identity claim to be rejected.



Introduction 4

Figure 1.2: A sample biometric verification scheme that consists of two phases: En-
rollment and verification

Biometric system performances may be measured with respect to FAR and FRR values.

Their values tend to increase and decrease inversely due to the changes in the threshold.

Usually, low FAR values indicate high FRR values and vice versa. However, an ideal

biometric system is the one that keeps very low rates for FRR and FAR, and this has

been a challenge for both the academic research and the industry.

It is possible to determine the success (i.e. performance) of a biometric system by

inspecting FAR and FRR values it emits with respect the to varying threshold values.

As mentioned before, when FAR increases, FRR tends to decrease. At a specific point,

these two values cross each other, where they become equal and the equal error rate

(EER) value is observed.

A sample score distribution graph is given in Figure 1.3 as probability density functions

for impostor and genuine verification attempts where the horizontal axis refers to the

value of the score. The point of intersection of the two graphs corresponds to the EER

value. The fraction of the impostor scores that stay above the threshold determine the
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0,2 0,3 0,4 0,5 0,6 0,7 0,8
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Figure 1.3: An illustration of a score distribution
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FAR and the fraction of the genuine values that fall below the threshold determine the

FRR value.

A sample DET (Detection error tradeoff) curve that depicts the relation between FAR

and FRR, has been given in Figure 1.4. It can be observed that the two values are

inversely proportional. The 45◦ line is the EER line, intersection of which with the DET

graph is the point where the FAR and FRR values are equal to each other.
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1.2 Motivation

The tremendous speed in the evolution of technology has caused the computers and

networked systems to enter our daily lives. With the increasing use of computers and

networked systems, the identification, authentication and authorization of the system

users have gained a level of extreme importance. As the academic research has advanced,

it has provided users with the ability to use several security and privacy factors (i.e.

personal passwords, tokens, PIN codes, SMS codes, one time passwords, etc. . . ) and

access regions that are restricted to their private posession (e.g online bank account,

personal-work email).

An important security factor that has also been used in such systems is biometric au-

thentication. It is increasingly being employed in authentication and identification of

individuals. It might be considered as either a candidate for replacing the token and

password-based security systems or a brother in arms for those security factors in the

aim of establishing a more solid and secure system.

The usage of biometric data as a security factor is possible after a process called “Ex-

traction”, which involves the removal of unnecessary data and attainment of the useful

data, called “Biometric template”, from the raw (unprocessed) data. In biometric au-

thentication, a questioned biometric template (i.e. probe template) is verified against the

previously registered biometric template (i.e. target template), which has been captured

and stored during the registration (“Enrollment”) phase.

There are two approaches for storing biometric templates during the enrollment phase.

In one alternative, the user carries a smart card containing her biometric template, and

the verification of questioned sample is done within the smart card, without ever being

stored in a repository (i.e. match-on-card). In the second alternative, the enrolled users’

biometric templates are kept at a central repository and authentication is carried out by

matching the query template with the target template stored at the repository. There

are advantages and disadvantages associated with each of these two approaches.

The advantage of the match-on-card scheme is the privacy of the biometric template.

Since the matching process takes place on the smart card, it does not disclose the

biometric data to the outer world. This is valid even if the smart card is somehow

compromised. Since the smart card application is set up not to reveal the biometric
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data during the life-cycle of the card, even if the PIN number is known, or any other

authentication scheme like (e.g. symmetric authentication) is achieved, it provides full

privacy protection for the users’ biometric templates. However, this scheme has some

disadvantages that cause the real life adoption of it to fall short. The most commonly

known disadvantages of this scheme are i) low matching performance due to the limited

processing power and memory of the smart card chip, ii) vulnerability to man-in-the-

middle attacks if the card generates plain matching results, iii) inconvenience of carrying

the card and maintaining its physical security and iv) overhead associated with card

issuance.

The usage of a central repository for the enrolled biometric data overcomes the draw-

backs introduced by the match-on-card scheme. Since the space is not limited, the

processing power is not limited to a simple smart card chip and much more powerful

processing power and memory space can be employed during the verification of a bio-

metric entity. Therefore, the use of central repositories are by far the more common

of the two alternatives; however there is increased concern over the loss of privacy and

potential misuse of biometric data held in central repositories. In this manner, it can

be said, the match-on-card scheme and central repository schemes seem to complement

each other. However, it is technically not convenient to use the two schemes at the same

time since the addressed problem (storing information) is the same for both schemes.

Therefore, the research goes in two diverse directions, i) increase the processing power

of the smart cards or find better algorithms that will require minimal processing power

and high accuracy or ii) finds solutions for ensuring the security of the biometric data

residing on a central server, consequently preserving the privacy of the user and maintain

the ability to use high processing power.

The term security is defined as the computational hardness to obtain the original bio-

metric data from the data saved in the database [28]. On the other hand, the term

privacy is difficult to precisely define, as it has different meanings in different contexts

and cultures. The common denominator can be stated as keeping personal information,

such as one’s actions, whereabouts, or personal information, from others’ view. Within

the biometric domain, loss of privacy occurs if the biometric data is compromised or ac-

cessed to obtain unintended information about a person (such as their health condition).

Loss of privacy also occurs if the biometric data is used to track individuals by linking

biometric databases belonging to different applications. On the other hand, keeping
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biometric data in smart cards has its own problems. In particular, it is not applicable to

remote applications and forgers can claim that their card is broken and avoid biometric

verification altogether.

While the privacy definition is elusive, biometric template protection is seen as a direct

way to address privacy concerns and has been an active research area in biometrics

for the last 10 years. Template protection refers to storing a transformed or modified

version of a biometric template in such a way that it is impossible to reconstruct or

reveal the original biometric template from the stored version. Ideally the protected

biometric template need not be revealed and verification should be done in the protected

template domain. This may be possible with one-way functions that are applied to

both the reference and the query biometrics which allow matching to be done in the

transformed space [29]. While this is a novel idea, finding such one way functions that

are applicable to noisy/fuzzy biometrics has been challenging, along with the need to

register the biometrics before applying the transform. Similarly, the biometric data

can not be directly used as an encryption key within the framework of well-established

cryptographic algorithms because of the noisy/fuzzy nature of biometrics. Providing

cancellability and renewability are two other important properties. Since people can not

change their biometrics as they can change their passwords, if the existing template is

compromised, it should be cancelled or revoked, and ideally a new template is generated

from the same biometric data. A good treatment of these concepts is given in [30].

1.3 Contributions

This thesis is concerned with the privacy protection and security of biometric templates.

Biometric layering is proposed as a solution to this problem and is analyzed both theo-

retically and empirically. For the empirical tests, a state of the art fingerprint minutiae

matcher is implemented to handle the cases where the minutiae orientations are modified

for additional security.

The idea of layering multiple-biometrics has been suggested before [31, 32], although

with limited experimental and theoretical evaluation that would show the viability of

the system.

In this thesis, the mentioned works are extended by:
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• introducing three new methods that aim to i) make it more difficult to separate

the multi-biometric template into its constituent biometric samples (Method2), ii)

prevent the possibility of full leakage of the original template (Method3) and iii)

explore the limits of biometric layering with 3 modalities (Method4);

• presenting new theoretical and experimental evaluation of security and privacy

aspects of the proposed method;

• using state-of-the-art fingerprint matchers for improved results: one commercial

([33]) and the other one being the TPS Matcher as explained in Chapter 3 in

order to work with minutiae locations only (i.e. ignoring the minutia orientation

information), as required in the algorithm;

• performing experiments on large and public databases (all subsets of FVC and

NIST databases, as well as the TUBITAK MTRD Voice Database);

• achieving results that are close to the state-of-the-art verification performance

using the FVC dataset, while demonstrating increased difficulty in cross-linking

databases.

1.4 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, the previous state-of-the art

research on privacy preservation and protection for biometric systems is reviewed. The

enhanced triplet based template matcher called TPS Matcher is described in Chapter

3 by providing experimental results with a common rolled-scanned fingerprint database

(NIST). Then, the Biometric Layering (multi-biometric template fusion) method is de-

scribed for two separate implementations (i) using two fingerprints and ii) using a finger-

print and voice pass-phrase) in Chapter 4 with four different variations in constructing

the multi-biometric templates. The experimental results of the two implementations are

provided and discussed in detail in Chapter 5. Finally, the strengths and weaknesses of

the proposed system and the conclusions are summarized in Chapter 6.



Chapter 2

Related Work

Several schemes have been proposed in recent years for protecting the biometric tem-

plates [34? –37]: in particular the fuzzy vault [38], fuzzy commitment [35] and biohash

[37] schemes are successfully implemented with many biometric modalities. However,

research is active in finding better methods that provide template protection, while not

inconveniencing the user or degrading system performance.

In one of the earliest works, Tomko proposed the use of biometric data as an encryption

key that would be used to encrypt/decrypt his/her PIN number (of which there can be

many) [39, 40]. In this way, the fingerprint, which uniquely identifies the person, is not

stored in the database, eliminating any privacy concerns. Indeed, this would be ideal

method, however obtaining a unique encryption key from a biometric data, such as a

fingerprint, remains a challenge. Each impression of a fingerprint for instance is slightly

different from another, due to many factors, such as cut marks, moisture, finger being

pressed differently, different sensor types etc., making the task of key generation less

than straightforward.

Ratha et al. [29] suggested a framework of cancelable biometrics, where a biometric

data undergoes a predefined non-invertible transformation during both enrollment and

verification phases. If the transformed biometric is compromised, the user is re-enrolled

to the system using a new transformation. Likewise, different applications are also

expected to use different transformations for the same user. While this work has been

influential, finding one-way transformations that preserve distances has been elusive.

Furthermore, managing the transform functions is also an issue. Those functions must

11
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either be kept in a smart-card at the user’s possession or in a central database and

protected with a user specific password. In these cases, a stolen card or password and a

stored transformed biometric will lead to compromise. This framework also introduces

the management of transform databases.

Among the practical template protection schemes is the fuzzy commitment, a secure key

release scheme proposed by Juels and Wattenberg [35], which has been inspired by error

correcting codes and has shed light to many research efforts afterwards. Their idea is

based on error correcting codes, where the biometric template is seen as a “corrupted

codeword”. Let c be a randomly selected codeword from a set W of evenly distributed

codewords in a d dimensional space. Then a difference vector δ = t−c is calculated from

a biometric template t and c. Then, the tuple (h(c), δ) is saved as the biometric record

into the database, where h is a hash function. During verification, a probe template t′

is used to obtain a probe word as w′ = t′ + δ. Then c′, the closest codeword to w′ is

selected from W . If h(c′) = h(c) then the verification succeeds. The calculation of the

difference vector and selection of the random codeword has been depicted in figure 2.1.

Figure 2.1: Random codeword selection and δ calculation in fuzzy commitment

In traditional biometric systems, the information is noisy and thus one cannot create

exactly the same vector at each enrollment. Whereas, in fuzzy commitment, since bio-

metric verification requires a fuzzy match, the two codewords will match if the error is

small. In this sense, it can be thought of as a cryptographic key release scheme.
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Fuzzy commitment is used in several studies. Hao et al. [41] have used iris biometrics

to generate a repeatable and thus reliable cryptographic key up to 140 bits which is

enough to be used in AES-128 symmetric encryption system. Bringer et al. seek for the

best error correcting code and show that two-dimensional iterative min-sum decoding

leads to results near the theoretical limits[42]. The enrollment and verification methods

described in this study are inspired by and modified on the original Fuzzy Commitment.

A random codeword c is selected in a Hamming space H(0, 1)n and saved z = c⊕b in the

database, where b is the biometric template obtained from the user. During verification,

c is decommitted as c = z⊕b′ which is (c⊕b)⊕b′ = c⊕(b⊕b′). If the Hamming distance

dH(b, b′) is small, recovering c is possible.

Juels and Sudan introduced the scheme called fuzzy vault which is another important

template protection scheme [38]. The fuzzy vault is a general scheme to hide some

data in a vault, such that it can only be released when a sufficiently matching data

is provided; as such, it is very suitable for biometric template protection and indeed

several applications have been implemented using fingerprints [43–46]; face [46]; and iris

[45, 46]. To obtain a fingerprint vault, the minutiae are stored among a large number

of chaff points that are generated to hide the minutiae, such that a user who provides a

certain number of genuine minutiae points can unlock the vault.

Another important method is the Biohash scheme that projects the biometric features

onto a lower dimensional space using a random key [37]. Randomness (and secrecy) of

this key, that can be stored in a user-specific physical token, provides non-invertibility.

Furthermore, matching accuracy increase is also gained, as the biometric signal is com-

bined with an added source of entropy. However, (i) the need to store/access a random

bit string which requires a token (with the well-known disadvantages of token-based

authentication, such as loss, theft, etc. of the cited token) and (ii) the assumption that

the keys are not known, are pointed out as the problems of these schemes [47].

The privacy protection and security methods provided above are focused on a single

biometric modality (mostly fingerprint minutiae). There are also several studies that

make use of multiple biometric modalities in order to create better biometric systems

in terms of privacy protection and/or higher biometric authentication performance. Es-

pecially fuzzy commitment and fuzzy vault schemes have been extensively studied on

multi-modal biometrics. We provide some of those works below.



Related Work 14

Nagar et al. propose a framework for multi-modal template protection, which utilizes

secure sketch and feature level fusion of participating biometric traits [46]. The work

outlines building blocks of the framework and demonstrates preliminary implementa-

tions using fuzzy commitment and fuzzy vault based template protection for the iris,

fingerprint and face multi-modal system.

Sutcu et al. [48] use fuzzy commitment in a multi-biometric system comprised of finger-

print and face biometrics. They use a method proposed in [49] to obtain a fixed length

feature vector from fingerprint minutia and obtain face features using an SVD based

algorithm. They finally perform a feature level fusion to obtain a combined template

later used in Fuzzy Commitment scheme.

In [31], Yanikoglu and Kholmatov proposed to combine multiple biometrics in order to

increase both privacy and security. Specifically, minutiae points from two distinct fingers

of the same person were superimposed to create a multi-biometric template, which was

shown to be more robust against privacy leaks. They also showed that the system

provides higher level of security as well, because of the multi-biometric nature where the

contribution of multiple biometric data or modalities introduced extra information to the

verification phase, eventually increasing the performance of the overall system. However,

the algorithm they used for verification does not use the orientation information which

has an extreme significance in modern fingerprint matchers.

There exist several studies aiming to increase accuracy by applying fusion, at decision,

score or feature level, with score level fusion being the most common method [9, 50–57].

However, the difference is that motivation in these works is increased security only, not

template protection. In this thesis, we also provide a score level fusion test in parallel

to the proposed method, which is based on feature level fusion, so as to measure the

performance loss introduced to the system due to the fusion of the features.

Brunelli and Falavigna used the hyperbolic tangent for normalization and weighted ge-

ometric average for fusion of voice and face biometrics [51]. These modalities have also

been fused by Ben-Yacoub et al., who considered several strategies such as support

vector machines, tree classifiers and multilayer perceptrons [55]. Kittler et al. have

experimented with fusion techniques of face and voice on the matching score level [56].

Hong and Jain proposed an identification system using face and fingerprint, where the
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database was pruned via face matching before fingerprint matching [58]. The multibio-

metric scheme presented in this thesis will contribute to the literature as it effectively

fuses multiple fingerprints and fingerprint and voice biometrics at feature level and ben-

efits from a second biometric modality to conceal the first one for better cancelability.

The use of multi-biometric templates provides another alternative for template pro-

tection [31, 32, 59, 60]. In this approach, the template is constructed from multiple-

biometrics or one biometric is used to hide another biometric data, rather than using

data hiding or cryptographic techniques.

Yanikoglu and Kholmatov proposed multi-biometric templates in order to increase pri-

vacy as well as security in [31]. They combined minutiae points from two distinct fingers

of the same person using superimposition, creating a template with two biometric lay-

ers. The created multi-biometric template was shown to be more robust against privacy

leaks. While multi-biometric systems were proposed for increased security before [9, 50–

57], to the best of our knowledge, this was the first work that used multi-biometrics for

increased privacy and template protection.

As an extension of this work, Camlikaya et al. combined fingerprint minutiae with a

spoken password [32]. In this way, cancelability was introduced to the system; since the

spoken password can be replaced, if the template is compromised.

Along this line of work, Othman and Ross proposed an approach for creating synthetic

fingerprint images for a person, by mixing complementary phase components of two

corresponding fingerprints [59]. The advantage of this method is that it can be easily

integrated to any existing fingerprint verification system, where the created virtual fin-

gerprints would be used for authentication instead of real ones. Mixing two different

fingers from the West Virginia University database, authors report a rank-1 accurracy

of ∼85% and an EER of ∼6% on a data set with a total of 500 fingers. In another

experiment, they evaluated a property named changeability and showed that the mixed

fingerprints do not match well (30% rank-1 accuracy) with the original ones. To evalu-

ate cancelability, they ran matching and identification tests involving templates obtained

from two impressions of the same fingerprint that were combined with 500 separate fin-

gerprints. They obtained a high 85% identification rate, and 7% EER, showing the

promise of the model, despite having similar templates in the gallery. One issue is
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that to obtain realistic looking fingerprints, their constituents must pass a compatibility

criterion.

In another work combining two fingerprints, Li and Kot propose an approach where

the combined fingerprint template is created using minutiae locations of one of the

fingerprints whose angles are replaced with ridge orientation angles from the other one

[60]. The coupling between the minutiae and their replaced angles is performed after

alignment of both fingers about their corresponding reference points. During verification,

two candidate fingerprints are similarly combined and matched against the template,

obtaining 0.4% false reject rate at 0.1% false accept rate using the FVC 2002-DB2-A

database.

To evaluate privacy of their proposed methods, Li et al. defined two types of attacks

based on their scheme: using the combined template to attack a database that contains

(i) the first fingerprint (using the minutiae location correlation) and (ii) the second

fingerprint (using the minutiae angle correlation). They call the two attacks Attack Type

A and Attack Type B respectively. Using FVC 2002-DB2 A and generating databases

of 100 combined templates, they report low rank-1 rates of 25% for Attack Type A and

57.5% for for Attack Type B, showing the promise of the system. The main issue with

this technique is the need for detecting reference points, which may not exist or be

located reliably. The main benefit of the algorithm is that it theoretically augments

the number of possible enrollments for a person. However, the created template reveals

minutiae locations and may thus be susceptible to cross linking attacks.

Finally, the visual cryptography method that decomposes a private image into desired

number of noise like images (sheets), was applied to protect fingerprint, iris and face

biometrics, by Ross and Othman [61]. When a predetermined number of sheets are

superimposed, the encrypted image is revealed with some degradation in its quality;

otherwise reconstruction is computationally hard. To assure privacy of corresponding

biometrics the use of separate servers that would store constituent sheets is proposed.

As can be deduced, the need for separate servers is the main technical drawback for that

approach.
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Thin Plate Spline (TPS) Matcher

3.1 Overview

Many biometric systems use fingeprint biometrics as their authentication building block.

Fingerprints are shaped by the ridges and valleys that resemble to a stream of regular

liquid flow. This is due to the nature of the fingerprints as the cells that form them are

randomly moved by the amniotic fluid during the fetal phase [62]. The ridges start and

end at different locations harmoniously. These discontinuities of the ridges are called

fingerprint minutiae [9].

There are two types of fingerprint minutiae. When a ridge ends at a certain point and

forms a minutia, it is either forked and two new ridges are emerged from it, in which case

the minutia is a bifurcation, or the ridge is simply finished and there is no continuation,

in which case it is an ending. The fingerprint minutiae also emit other properties such

as their 2D location and the angle of the ridge tangent at the minutia location (i.e.

orientation). Consequently, a fingerprint minutia M is a 4D feature vector such that

M = (x, y, θ, type)

where (x, y) is its location on the 2D coordinate system, θ is the orientation (in radians

or degrees), and type is a boolean (i.e. type ∈ {0, 1}) value indicating an ending or a

bifurcation. A sample fingerpint annotated with two sample minutiae is given in Figure

3.1

17
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Figure 3.1: A sample fingerprint and two minutae

A common approach for fingerprint minutiae matching is to find the best alignment

between two different minutiae sets and measure the similarity between the two sets

[63]. A simple similarity measure is the number of well aligned minutiae pairs divided

by the number of total minutiae in the two candidate sets. In other words, let A and

B be the two minutiae sets to be verified against each other; then after an optimal

alignment,

Score = 2× |Pairs|
|A|+ |B|

where |X| is the number of minutiae in set X [31]. Multiplication by 2 ensures a scale

between 0 and 1.

There are also other score calculation techniques, such as using multiplication instead

of averaging [64, 65], introducing additional similarity measures to the overall averaging

fraction [66] and so on.

During fingerprint matching, most modern minutiae based matchers use the orienta-

tion information as a mandatory building block for their algortihm. The commercial

Nuerotechnologia (NT) matcher that was employed throughout this work does not have

a software mode, or a setting to disable the usage of orientation angles. Altough the

orientation information positively contributes to the performance of the matchers, in

some cases that will be explained in the following chapters, this information needs to
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be discarded. This requirement can be satisfied by a minutia matcher does not use the

orientation information and works accurate enough to compensate the information loss.

The triplet based matcher that is proposed by Bazen and Gerez [65] has been chosen

in this thesis as the best fit for the afforementioned requirement, because this novel

approach is based on the comparison of minutiae triplets (triangles that are created

with the minutiae) and does not need the orientation information during 2D point set

registration. While the original study does not use the orientation information, the

method has been improved here so that the minutia orientation information can still

be included in the matcher for extra accuracy. This provides with the flexibility of

enabling/disabling orientation check during tests.

Another novel side of Bazen and Gerez’s work is the way it handles the elastic deforma-

tions that occur on fingerprints. The matcher uses Thin Plate Splines for modelling the

elastic deformations that occur mainly due to the mapping of a 3D surface (i.e. finger

surface) to a 2D plane (the surface of the sensor). The deformations become even more

important when the user accidentally or intentionaly skews her finger in an arbitrary

direction as in Fig. 3.2 during the enrollment.

Figure 3.2: Elastic Deformation Model [1]

While adopting their baseline approach, in order to increase and speed, we provided

improvements and introduced assumptions (e.g assume a maximum rotation of 45n both

sides during fingerprint image acquisition)
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3.2 Mathematical Background

TPS Stands for Thin Plate Spline. It is a 2D analog of 1D cubic splines [67].

A linear transformation of an image can be described with a translation vector, a rotation

matrix and a scaling matrix. The combination of the three matrices introduces an LTI

system (T being Space here rather than time). Consider the following setup:

T =

tx
ty



R =

cos(θ) − sin(θ)

sin(θ) cos(θ)



S =

sx 0

0 sy


Combining all together, we will have an affine transformation matrix that performs the

given operations at once an source points.

AF =

∣∣∣∣∣∣∣∣∣
sx ∗ cos(θ) −sy ∗ sin(θ) tx

sx ∗ sin(θ) sy ∗ cos(θ) ty

0 0 1

∣∣∣∣∣∣∣∣∣
The matrix given above can handle any kind of linear transformation as in Figure 3.3.

However the problem becomes more complex when the transformation is not linear. In

other words if there are nonlinear displacements on specific points, then we have to fit

another model that will also handle these nonlinear warps in the grid.

This is where TPS modelling comes into play. When we have n source points called as

landmarks on a 2D function and if we know their exact mapping as n target points called

as targets on another 2D funtion, it is possible to model existing nonlinear deformations

with TPS. In other words, if we warp a smooth surface by moving some artbitrarily

selected points and create a new nonsmooth surface, we could model the deformation via

TPS. In this sense, we define an interpolation between landmarks and targets. Altough

we may not represent the actual underlying function in the new mapping exactly, we
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Figure 3.3: Simple Affine Transform (Only shear)

perform an approximation using TPS modeling. That is why the term Spline is used here.

We are interpolating the predefined destination points so that we get an approximation.

TPS modelling provides an approximation that minimizes the bending energy defined

on a surface as follows:

I(f) =

∫∫
R2

(f2xx + f2yy + f2xy)dxdy

In other words, we get the smoothest approximation that has one basis vector for trans-

lation, two for affine transform and at most n radial basis vectors that of each are defined

by the landmarks.

The approximation funtion looks like:

f(x, y) = a1 + ax ∗ x+ ay ∗ y +

n∑
i=1

wi ∗ U(|Pi − (x, y)|)

where a1 is translation vector, ax and ay are affine transformations and the rightmost

term is the weighted sum of the nonlinear deformation effect of each landmark on the

current variable (x, y). U(r) = r2 log(r2) is the kernel function - the radial basis function.

The P matrix constitutes of each landmark point as given below, and |Pi− (x, y)| is the
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Euclidean distance between landmark (xi, yi) and (x, y).

P =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2
...

...
...

1 xn yn

∣∣∣∣∣∣∣∣∣∣∣∣
The points given as (xi, yi) in the P matrix are the landmarks that cause the deformation

to occur on the source surface. This can be imagined as placing an arbitrary number

of pins on an elastic surface and moving each pin to a different location. If we have at

most three pins, we will obtain an Affine transform. However, for at least four pins, we

get a non-linear deformation and for each new pin, we have to put a new U - (kernel)

into the equation.

As can be seen, the only unknowns in the equation f(x, y) are the weights (wi) of each

non-linear components. We can obtain the unknowns using the Least Squares method.

We know that every landmark has a specific effect defined by the U(r) function, whereas

we do not know how much this effect is.

To calculate the weights, we first have to represent the function in matrix notation and

solve the obtained system. To do this we first define a K matrix as follows:

K =

∣∣∣∣∣∣∣∣∣∣∣∣

0 U(r12) U(r13) · · · U(r1n)

U(r21) 0 U(r23) · · · U(r2n)
...

...
...

. . .
...

U(rn1) U(rn2) · · · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
where each of rij is the Euclidean distance between source landmarki, and landmarkj .

We also define

ω =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1x w1y

w2x w2y

...
...

wix wiy
...

...

wnx wny

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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as the collection of weights for each landmarki and

W =

∣∣∣∣∣∣∣∣∣
ω

T

AF

∣∣∣∣∣∣∣∣∣
where T is the translation tx, ty and AF is the affine transformation matrix. We also

define the targets as

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̂1 ŷ1

x̂2 ŷ2
...

...

x̂i ŷi
...

...

x̂n ŷn

0 0

0 0

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where each x̂i, ŷi is a point on the destination transformation that corresponds to

landmarki.

Next, we define matrix L as follows:

L =

K P

P T

0 0 0

0 0 0

0 0 0

where [P T |0] ∗ W = 0 is the boundary condition for TPS which provides the energy

minimizing factor. Now we are ready to express the function in terms of L, W and V

which is indeed as follows: L ∗W = V . To solve this linear equation, we can invert

the equation: L ∗W = V → W = L−1 ∗ V . Having obtained the W , we decompose it

easily to ω, T and AF . T and AF provide three basis vectors. To compute the degree

of freedom on ω, we can apply Eigen Value Decomposition on W . This will provide us

the actual underlying nonlinear warping vectors. And the eigen vectors will represent

the principal warps. The correspondence between the number of landmarks (n) and
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the number of eigen-vectors (N) is as follows:

n N

1 0

2 0

3 0

4 1

5 2
...

...

m m− 3

The table above implies the fact that, when n ≤ 3 there is no principal warp. But when

n > 3 there should be at most n−3 principal warps. That is because for n ≤ 3 an affine

transformation is sufficient to model the function.

3.2.1 Sample Applications with TPS Modelling

The first sample constitutes of only a shear (See Figure 3.3). In this sample, there

are only three landmarks and three targets. Two of the landmarks move on the same

direction with the same magnitude, whereas one of them moves down. Since we have

three points, there is actually no nonlinear deformation here. The setup is represented

as only a shear.

In the next sample there ware 4 landmarks where 3 of them have been stabilized (i.e.

kept in their position), and one of them moves along a direction. This causes a warp to

occur in the direction of that moving point See Figure 3.4.
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Figure 3.4: Three Constant, One Moving points

In the final example only one point remains stationary while others move randomly. The

result is given in Figure3.5.

Figure 3.5: Extreme Warp

3.3 Minutiae Matching Using Thin Plate Splines

Another application of the TPS model, and as anticipated, the actual reason of adoption

of this model is its application to fingerprint minutia matching. The initial work was

proposed by Bazen and Gerez [65], who provided a baseline algorithm to represent the

proof-of-concept. We adopted and improved the algorithm both in terms of its logic
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and implementation to handle larger databases faster. The TPS matcher works in two

pahases, namely Local and Global Matching.

3.3.1 Local Matching

Our algorithm is essentially a 2D point set registration and closest pair counting algo-

rithm. Our points are fingerprint minutia set with their location (x, y) and orientation

(θ) information. In order to find an optiomal alignment between two different point sets

we have to search and find the best alignment (registration) parameters, namely scale,

rotation and translation. This operation is performed during the the local matching

phase in three steps.

Step 1: The minutia neighborhoods for each minutia in the target template (A) and

the probe template (A′) are determined. A neighborhood for a minutia m is

defined as “the triangle that a minutia m creates using two of its close neigh-

bors” (see Figure 3.6). We collect ten neighborhoods for each minutia as fol-

lows: Let {m1,m2,m3, . . .mn} be the neighbors of m in increasing Euclidean dis-

tance, the neighborhoods we choose are {m,m1,m2}, {m,m1,m3}, {m,m1,m4},

{m,m1,m5}, {m,m2,m3} . . . {m,m4,m5}. In fact the number of selected neigh-

bors depends on the performance expectations and computational power. In the

original proposal, the authors use the three smallest neighborhoods. Although

this speeds up the algorithm, the verification performance does not meet the re-

quirements of our multi biometric scheme. We compensated the speed decrease by

modifying the original algorithm to work in a parallel fashion on multicore CPU’s.
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Figure 3.6: A minutia (m) and its five nearest neighbors forming neighborhoods
(triplets-triangles).

Step 2: The neighborhoods of A are locally aligned to those of A′ to obtain local reg-

istration parameters. For each comparison, a t (translation), r (rotation) and s

(scale) triplet is calculated in a least squares manner and the triplet pairs that emit

high alignment error are omitted. Another contribution to the original proposal

is the different technique we apply for triplet pair alignment error measurement.

In the original study, they omit the triplet pairs for which the sum of the squared

distance between the corresponding minutiae locations and the difference of an-

gles of minutiae is above a threshold. In addition to this, we also employ the

geometric definition of triangular similarities to make sure that correct triplets

are aligned. This is achieved by first calculating the Edge-Angle-Edge Similarity

between triplets and ignore the ones that are not similar in the sense of a prede-

fined threshold. Consider the example given in Figure 3.7; where the triangles 4Y

(y1, y2, y3) at the lower left and 4C (z1, z2, z3) at the lower right corner are com-

pared to the triangle 4X (x1, x2, x3) at the top of the figure. By Edge-Angle-Edge

Similarity, we can conclude that 4X ∼ 4Y (i.e. ̂x1, x2, x3 ∼ ̂y1, y2, y3) whereas

4X � 4Z (i.e ̂x1, x2, x3 � ̂z1, z2, z3).
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Figure 3.7: Three sample triangles compared in terms of Edge-Angle-Edge Similarity

As a result of this step a selected parameter set, that contains the candidate reg-

istration parameters (t, r, s) triples is accumulated.

Step 3: Finally the most voted translation, rotation and scaling values (t, r, s) are

selected from the good parameter set. This is done by running a window for each of

registration parameters. Then all the triplets that stay within the boundaries of the

most frequent registration parameters are selected. The corresponding minutiae in

all the triplets are considered as the matches and they are aligned in a least squares

sense. At this point, we obtain the optimal global affine transform parameters,

and are ready to perform global matching.

3.3.2 Global Matching

After the local matching phase, minutiae pairs are aligned via the optimal registration

parameters. For each minutia in A′ the nearest minutia of A that stays within a radius

of r = 15 pixels is selected to be the match. Here an elimination is again performed

using the angle values of the minutiae if the angles are configured to be checked. Then

the TPS model is applied to A′ where the landmarks correspond to minutiae in A′; the

targets correspond to minutiae in A; and A′ is warped onto A.
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The application of TPS model is as follows:

1. For the landmarks on A′ and the targets on A, a TPS approximation is applied,

as described in Section 3.2.

2. The proximity radius (r) is decreased and the matches staying within the new r

are counted and stored again for a new landmarks and targets set pair.

The above alignment and r reduction procedure is applied in a loop until the number of

the minutiae within the radius for each landmark minutia converges.

The final matching score Stps is calculated over the number of matches n as follows:

Stps =
n2

|A| ∗ |A′|

The advantage of applying the TPS Model is that it provides more robustness by han-

dling the elastic deformations. Since Bazen et. al. performed bad quality fingerprint

image elimination, providing results in comparison to their original proposal will not be

healthy. However, in order to provide measurement of the contribution of TPS Model

to the system, we provided a baseline implementation called the Rigid Matcher, that

uses the same procedure in the local matching phase and differs in the global matching

phase by only counting the matches for the landmark minutiae within their r = 15 pixel

proximity for once (i.e. does not apply any TPS modelling).

Below we have provided figures for a Rigid Matcher vs. TPS matcher comparison. The

figures belong to two imprints of the same subject taken from the NIST Fingerprint

Database (See section 5.2). i) A figure with two non-aligned fingerprints given in Figure

3.8, ii) an alignment is done using the Rigid Matcher in Figure 3.9, and iii) another

alignment performed via the TPS Matcher in Figure 3.10. It may be seen that in the

TPS modelled matching scheme, the points are registered better.
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A

B

Figure 3.8: Non-Aligned fingerprints
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A

B-RIGID

Figure 3.9: Fingerprints aligned using Rigid Matcher

A

B-TPS

Figure 3.10: Fingerpints aligned by using TPS Matcher
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We performed a test on the NIST Fingerprint Database (See section 5.2) to measure the

improvement of TPS Modelling by comparing the Rigid Matcher to the TPS Matcher.

The selection of the NIST database was because the fingerprints in this database are

rolled-scanned, which implies that we expect high amount of elastic deformations com-

pared to a regular database such as FVC. We created a genuine test set of 2000 records

and a forgery test set of ∼100000 records.

The Rigid Matcher and the TPS Matcher performed an EER of 4.5% and 4.3% respec-

tively. The experiment showed the superiority of TPS Modelling for handling the elastic

deformations in fingerprint matching. The EER/FAR/FRR values of this test have been

provided in Table 3.1. A ROC plot that shows the difference between the TPS matcher

and the Rigid Matcher is given in Figure 3.11. We also provide the verification and

identification performances of the TPS matcher in comparison to the commercial NT

Matcher in Section 5.4.2.

Matcher ERR FAR FRR

Rigid Matcher 4.5 3.0 6.0

TPS Matcher 4.3 2.7 6.0

Table 3.1: Error rates obtained from the Rigid vs. TPS Matcher on the NIST Fp.
Databese
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Figure 3.11: An ROC plot displaying the GAR-FAR performance of the Rigid
Matcher and TPS Matcher

On a 4-core CPU, our TPS matcher has an average matching speed of 3 ms/match, (i.e

a frequency of 330 matches/second).



Chapter 4

Biometric Layering with multiple

biometrics

4.1 Overview

In this thesis, we propose a multi-biometric authentication framework to increase se-

curity of the biometric system and as well as the privacy of the enrolled biometric

templates. The framework is based on feature level fusion of multiple biometric tem-

plates represented as fingerprint minutia. The main principle of the framework is to

conceal the biometric of a person using another biometric, rather than a cryptographic

construct to protect the constituent modalities.

In particular, we demonstrate two implementations of the proposed framework: one,

combining multiple fingerprints and another one, combining one or two fingerprints

along with a spoken password (voice biometric). With the latter implementation, one

further obtains a cancelable template that can be renewed/reissued by simply uttering

a different password.

As will be seen in Chapter 5, the proposed method, called Biometric Layering, is robust

against privacy leaks and achieves a higher level of security due to its use of multiple

modalities, in comparison to corresponding unimodal systems.

The proposed scheme consists of combining multiple biometric modalities into a sin-

gle multi-biometric template, concealing the constituent biometrics within each other.

34
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While the main aim is to protect the biometric data, the scheme also enjoys increased

security for the overall system due to the multi-modal biometric paradigm. It can also

be used to create different biometric templates for different security applications, by

combining different constituent biometrics (e.g. two different fingerprints) for each ap-

plication or by using behavioral biometrics that can be changed for each application

(e.g. a spoken password). The scheme is based on the fact that without possession of

genuine biometric data, it is computationally hard for a forger to separate the combined

template into its constituent layers. Moreover, additional modification on the source

template such as randomizing minutia angles and randomly deleting some minutia cre-

ates a securer multi-biometric template, at some cost in performance.

In one of the implementations shown in this thesis, two fingerprint minutiae sets are

superimposed to form a multi-biometric template comprised of two biometric layers. In

the second implementation, the first layer is obtained from a fingerprint and the second

layer from voice, providing cancellability for the created templates. Furthermore, three

biometrics are layered (three fingerprints or two fingerprints and a voice template) to

explore the capacity of the proposed system.

The overall workflow of the system can be defined in two phases; namely Enrollment

and Verification. In the Enrollment phase, the acquired biometric signals are processed

and each one is converted into a set of feature points (e.g. minutia points of fingerprints)

and mixed together to create the multi-biometric template. In the Verification phase,

the user is verified when she presents query samples of each of the constituent biometric

modalities; whose features are matched and removed from the multi-biometric template,

each match resulting in a match score.

The matching scores obtained at each step are then linearly combined to obtain a final

matching score. The overall process is depicted in Fig. 4.1.

The implementation is explained in detail for the case of multiple fingerprints in Section

4.3, and for fingerprints with a spoken password in Section 4.4. The fusion method for

both cases is the same except for voice (as well as any other possible modality other than

fingerprints) where an additional phase of conversion of the raw biometric to fingerprint

minutiae takes place. The newly created template is called voice minutiae.
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Multibiometric Template 
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Figure 4.1: Overview of the proposed system.
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4.2 Symbols

The symbols provided in this section are used consistently from Chapter 4 until the

end of the thesis, in order to assist the reader with the coherence in the terminology.

Symbols that are not included below, are explained immediately before they are used

the their context. The list of symbols is given below.

• A: First minutiae set obtained from a fingerprint during enrolment.

• B: Second minutiae set obtained from a fingerprint during enrolment.

• Σ: Multi-biometric template created: Σ = A ∪B.

• A′: Second impression of the first fingerprint used in query.

• B′: Second impression of the second fingerprint.

• ∆: The remaining template after removing the first layer: ∆ = Σ−A′

• SNT : Proprietary integral score returned by the NT matcher. It has a minimum

of 0, a threshold value that mostly occurs on the range [0− 50] and no maximum.

It represents the similarity between two different templates.

• STPS Fractional score obtained from the match with ∆ vs. B′, using the TPS

matcher (Section 4.3.2).

• SHD Hamming distance score obtained from ∆ vs. B′, when B and B’ are voice

minutia (see Section 4.4.2).

• T (SNT ) A hyperbolic tangent function used for normalization of SNT to the range

[0− 1) so that it can be fused with STPS to obtain the final score (Section 4.3.2).

• Method1: Template construction with the superimposition of two minutiae sets.

• Method2: Template construction method with the superimposition of two minutiae

sets where the second minutiae set is assigned pseudo-random angles.

• Method3: The proposed method, same as Method2 except for using only 75% of

the minutiae from the first template (A).

• Method4: Same as Method1 except for using 3 fingerprints and 75% of each minu-

tiae set.
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4.3 Multi-biometric templates using multiple fingerprints

4.3.1 Enrollment

In order to achieve a successful enrollment, a person provides impressions from two dif-

ferent fingers, (i.e. A and B). Minutiae points defined by ridge endings and bifurcations

on the fingerprint pattern are used as features (see Section 4.3.1.1). Then, the center of

masses of the two minutiae sets are aligned and one set is superimposed on the other so

as to minimize the number of the overlapping minutiae (see Section 4.3.1.2). Therefore,

the created multi-biometric template (Σ) consists of two biometric layers and becomes

the biometric ID/template of the person, stored into the database.

A sample biometric template is shown in Fig. 4.2, where the two distinct fingerprint

minutiae templates A and B, given in a) and b) form the multi-biometric template. In

c), the template Σ is obtained using superimposition (Method1). In d), the template Σ

is modified so as to hide the angles of B (Method2). In e), the template Σ is modified

so as to randomly contain only 75% of the minutiae of A (Method3). ’�’ is used for A

and ’�’ is used for B, but this information is only for visual depiction only and is not

stored in the final template.

4.3.1.1 Feature Extraction

We extract and use minutiae points as the features representing a fingerprint. In our case,

we only keep the 2-dimensional coordinates and the ridge orientation of a minutiae point,

while other systems may use more information, such as the type of the discontinuity.

In the literature, there are several methods proposed for the automatic extraction of

minutiae points [71, 72], which commonly follow well-known image enhancement, bina-

rization, thinning and detection steps. This process can sometimes result in spurious

minutiae; hence it is also common that minutiae points found through image processing

operations are later verified using various post-processing techniques [73]. After minutiae

extraction, minutiae alignment and matching steps are performed for two fingerprints.

In this process, the main challenges are partial-overlap between two fingerprints and

the non-linear deformation of the fingerprint that unevenly alters minutiae positions.



Biometric Layering 39
6 Yildiz et al

a) Minutiae set A b) Minutiae set B

c) Σ construction in Method1 d) Σ construction in Method2 e) Σ construction in Method3

Fig. 2 Two distinct fingerprint minutiae templates A and B, given in a) and b) form the multi-biometric template. In c), the template Σ is obtained

using superimposition (Method1). In d), the template Σ is modified so as to hide the angles of B (Method2). In e), the template Σ is modified so as

to randomly contain only 75% of the minutiae of A (Method3).? is used for A and? is used for B, but this information is only for visual depiction

only and is not stored in the final template.

5.4 Hiding Angle Information

Considering that it may be possible to separate the minutiae

of Σ into their corresponding source sets using the coher-

ence of minutiae angles within local regions [9], we pro-

pose an alternative method for template generation. In this

method, we use an extra step wherein the minutiae angles

of the minutiae set B are replaced to mimic those of A. This

method enhances the privacy of the user since it should be

more difficult to separate the two fingerprint templates A and

B apart.

In this method (called Method2 from now on), in addi-

tion to the template creation step given in 5.3, we take the

following steps to replace the orientation angles of the B’s

minutiae:

For each minutia m of B in Σ :

1. Find the minutia of A within an arbitrarily chosen prox-

imity of 30 pixels to m and create a histogram of their

angles (L).

2. Quantize the angles of the minutia in L to 8 directions

and find the most frequent quantized angle q.

3. Set m’s angle to a random angle in the range [q-22.5,

q+22.5] (A total range of 45’ corresponding to 8 direc-

tions).

The perturbation is done so as to reduce the chances of

clustering minutiae points of the same source fingerprint us-

ing minutiae angle coherence.

The multi-biometric template obtained in this way is shown

in Fig 2.d. Note that this template is similar to the one gener-

ated by Method1 (shown in Fig 2.c) except for the modified

angles of the second minutiae set.

Figure 4.2: Sample multi-biometric templates

Please see Chapter 3 where a matching algorithm that handles non-linear deformations

has been provided.

Since the aim of this thesis is to demonstrate the concept of multi-biometric security and

privacy, we preferred to use a commercial, state-of-the-art fingerprint minutiae extractor

[33]. In this way, we can demonstrate real life feasibility of the proposed concept, while

avoiding errors due to a sub-optimal feature extraction system. After the extraction

process, all of the information, except the coordinates and ridge angles of the minutia

(e.g. core type and location), are discarded in order to get minutiae only templates.

4.3.1.2 Multi-biometric Template Generation

The creation of a multi-biometric template (Σ) is a simple analytic process where the two

minutiae sets (A and B) are mixed with respect to their x, y coordinates. The important

issue in creating the multi-biometric template is that the constituent biometrics should
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not be easily separated. In order to merge the two minutiae sets as much as possible,

we follow these steps:

• Create an empty template that will include both A and B

• To minimize the number of overlapping minutiae in Σ, we translate B with respect

to A by 50 pixels in each of the four directions. The translation amount was

decided to allow some flexibility, while still overlapping the majority of the two

minutiae sets.

• Superimpose the two minutiae sets (A and B) with respect to the optimal transla-

tion found in the previous step and store that combined point set as the combined

multi-biometric template (Σ).

A sample multi-biometric template generated using this procedure is shown in Fig. 4.2.c,

for two minutia sets shown in 4.2.a-b. This method forms the first and simpler template

creation method (called Method1 from now on).

4.3.1.3 Hiding Angle Information

Considering that it may be possible to separate the minutiae of Σ into their corre-

sponding source sets using the coherence of minutiae angles within local regions [74], we

propose an alternative method for template generation. In this method, we use an extra

step wherein the minutiae angles of the minutiae set B are replaced to mimic those of

A. This method enhances the privacy of the user since it should be more difficult to

separate the two fingerprint templates A and B apart.

In this method (called d Method2 from now on), in addition to the template creation

step given in 4.3.1.2, we take the following steps to replace the orientation angles of the

B’s minutiae:

For each minutia m of B in Σ:

1. Find the minutiae of A within an arbitrarily chosen proximity of 30 pixels to m

and create a histogram of their angles (L).

2. Quantize the angles of the minutiae in L to 8 directions and find the most frequent

quantized angle as q.
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3. Set m’s angle to a random angle in the range [q-22.5, q+22.5] (A total range of

45’ corresponding to 8 directions).

The perturbation is done so as to reduce the chances of clustering minutiae points of

the same source fingerprint using minutiae angle coherence.

The multi-biometric template obtained in this way is shown in Fig 4.2.d. Note that this

template is similar to the one generated by Method1 (shown in Fig 4.2.c) except for the

modified angles of the second minutiae set.

It important to note that the previous studies [31, 32] don’t make use of minutiae

orientation information during the verification step and therefore ignore this information.

However, most modern minutiae based biometric systems use this information.

4.3.1.4 Using a Subset of the Minutiae

Modifying the angles of the second the fingerprint (B) makes it more difficult to isolate

constituent fingerprints; something that could be done with some success, by considering

minutiae angles [74]. However the minutiae of the first fingerprint (A) are used as is, in

the multi-biometric template. Therefore, after a successful verification, this fingerprint

is exposed to the system, to a large extent (except for extra and missing minutiae points

resulting from an error-prone matching of the first template (A).

To remedy this situation, in this section we propose a new method called Method3 that

is identical to Method2, except for the fact that it only uses a subset of A’s minutiae.

In the experiments (see Chapter 5), we have tried using 50% and 75% of the minutiae

points, with acceptable verification performance being obtained with the latter.

4.3.1.5 Layering Three Fingerprints

In order to explore the capacity of biometric layering, we propose a new method,

Method4 that combines three fingerprints into one multi-biometric template.

In this method, 75% of the minutiae points in each fingerprint is used so as to prevent

full leakage of any of them during a successful match. Since an attack in the form of

separating the three fingerprints using minutiae orientation angle coherency, is deemed
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very difficult if not impossible, the minutiae angle orientations are kept intact, unlike

Method2 and Method3.

The tests for Method4 are performed only with the FVC database, as the NIST database

fingerprints contain very large number of minutiae points (average of 195 minutiae points,

compared 32 in FVC database), so that combining three of them is not feasible.

4.3.2 Verification

When a subject is to be authenticated, she gives two query fingerprint impressions (A′

and B′) (and a third one as C ′ in case of Method4). These impressions are matched

against the combined template Σ. The matching is done by finding the correspondence

between the minutiae of these two query fingerprints and multi-biometric template Σ:

Each query fingerprint is successively matched to and subtracted from the multi-biometric

template. At each subtraction step, a matching score is obtained. Finally, all the match-

ing scores are linearly fused to obtain a final matching score. The person is authenticated

if the fusion of the scores obtained from the two steps is above a certain threshold. This

process is depicted in Figure 4.3.

In Step 1, the Neurotechnology Fingerprint Matcher (NT Matcher) is used for matching

A′ against Σ. The proprietary match score SNT is obtained for this first match and the

matching minutiae are then removed from the template, unleashing ∆:

Σ vs. A′ −→ SNT

Σ−A′ −→ ∆

Step 2 continues with furthermore processing of ∆ to produce the second ingredient of

the final score (i.e. the TPS Matcher Score). The remaining template ∆ is matched

to B′ using the TPS Matcher having been adjusted to ignore the orientations of the

minutiae during the matching procedure. In fact, this is the reason for using different

matchers for the two steps; the NT Matcher depends on minutiae angles for its successful

performance, while the minutiae of the second fingerprint are modified in Method2. The
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Figure 4.3: Verification Process

STPS score is calculated to measure the success of this second step.

STPS =

√
|∆ ∩ B′|2
|∆| ∗ |B′|

The |∆ ∩ B′|2 is the the square of the number of matching minutia between ∆ and B′

In the final step (Step 3 ) the final score is obtained by linearly combining the two match

scores after normalizing SNT , to bring it to the same scale with STPS :

S = α ∗ STPS + T (SNT )

T (SNT ) =

(
2

1 + eσ∗SNT
− 1

)
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While the combination is essential to bring together all the sources of information, the

accuracy is not very sensitive to the weighting coefficient α, and we have obtained the

reported results with α = 1.

In Method4, the final score is the average of three matching scores from the NT matcher.

4.4 Multi-Biometric Templates Using Fingerprints and Voice

4.4.1 Enrollment

During the enrollment phase, the user submits a fingerprint and utters her selected

password, from which minutiae points and voice minutiae are extracted respectively.

The main steps of the enrollment and verification stages are similar to the case of two

fingerprints (see 4.3), except for their implementations. In particular, the extraction

of the voice features from which voice minutiae are generated, as well as the template

generation and matching stages, are described in the following sections.

4.4.1.1 Feature Extraction

The features employed in speaker recognition systems should successfully be able to

define the vocal characteristics of the speaker and distinguish it from the voices of other

speakers. Short spectra of speech signals give information about both the spoken words

and the voice of the speaker.

Short-time spectral analysis is the most common way to characterize the speech signal

[75]. Although, wide range of possibilities exist for parametrically representing the

speech signal for the speaker recognition task, such as Linear Prediction Coding (LPC),

perceptual linear predictive (PLP) codes [76] or maximum likelihood linear regression

(MLLR) coefficients [77], Mel-Frequency Cepstrum Coefficients (MFCC) are perhaps

the best known and most popular voice features used in speaker recognition. MFCC’s

are based on the known variation of the human ear’s critical bandwidths with frequency

[78]. Due to their representation capability and simplicity, we use the MFCC features of

the enrolment pass-phrase, and use them in one layer of the multi-biometric template.
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After all the spoken passwords are collected from the speakers, each utterance of every

speaker is divided into 25ms frames with 10ms overlap and cepstral analysis is applied

to each frame. As a result, each 25ms frame is represented by a 13 dimensional vector

< c1, ..., c13 > consisting of MFCCs.

Since speech signals can vary in length, each password is then aligned with a Hidden

Markov Model (HMM) of the corresponding password, in order to determine the corre-

spondence between individual frames and phonemes. The HMM used for this alignment

is obtained by concatenating previously trained, speaker- and text-independent phoneme

models corresponding to the phonemes of the password. This way, each frame in each

utterance is identified as one of the phonemes that may occur in the utterance of the

passwords.

The global phonetic Hidden Markov Models used for the alignment are 3-state mono-

phone phonetic models which have previously been trained using voice samples collected

from various users. After this alignment, frames which correspond only to the middle

(2nd) state are kept while the first and final (1st and 3rd) states of phonemes are deleted.

This step is done to reduce the effects of noise and speech variations.

At this point, mean vectors of cepstral coefficients for each phoneme are calculated by

averaging the 13 dimensional vectors representing the frames within the same phoneme

(middle state). Hence, the nth segment (middle state of a phoneme) is represented by a

13-dimensional mean vector Fn. During the training and testing phases for the system,

mean vectors of the phonemes will be used instead of single frame vectors. The feature

extraction process is shown in Fig. 4.4.

In order to finish the feature extraction phase, the aligned voice features are binarized

by thresholding them using a global threshold depending on the gender of the claimed

speaker. The threshold is chosen such that approximately equal number of zeros and

ones occur in the binarized feature vector. When there are multiple training utterances

for a person, a single binary feature vector is obtained by majority voting of all binary

feature vectors extracted from all utterances.
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Figure 4.4: Feature extraction through HMM alignment of the MFCC features.

4.4.1.2 Minutiae Generation

For combining the voice features with the fingreprint minutiae, ”voice minutiae”, the

points on the 2D Euclidean space, similar to fingerprint minutiae, are extracted. To

achieve this task, the binarized voice features are divided into groups of 16 bits. Each

group is then divided into two 8 bit numbers, namely (x, y), defining a point on the 2D

plane. This point set comprises the voice minutiae. The voice minutiae generation from

the binary voice feature is shown in Fig.4.5.

Binarized MFCC String︷ ︸︸ ︷
10100111︸ ︷︷ ︸

x1

01101001︸ ︷︷ ︸
y1

00111010︸ ︷︷ ︸
x2

10100111︸ ︷︷ ︸
y2

01001010︸ ︷︷ ︸
x3

01001011︸ ︷︷ ︸
y3

. . .

−−−−−−→ {(x1, y1), (x2, y2), (x3, y2), . . .}

Figure 4.5: Transformation of the binarized MFCC feature into voice minutiae.

4.4.1.3 Multi-biometric Template Generation

The obtained voice minutia is scaled to match the width and height of the primary

template and then combined with it as described in Section 4.3.1.2, with the fingerprint

minutiae being A and the voice minutiae being B this time. The scaling step here is

important; because the dimensions of the voice minutiae ranges in [0-255], while the

fingerprint minutiae coordinates may span a different, typically larger, range. Scaling

thus guarantees that the voice minutia distribution is in the same range as the fingerprint
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minutiae. Since we already know the size of the fingerprint templates, the scaling step

is trivially undone during matching phase.

Since voice minutiae have no angle information, pseudo angles are assigned instead, as

described in Section 4.3.1.3, in all methods. As a result, there is no Method1. On the

other hand, Method2, Method3 and Method4 are exactly the same as with fingerprints

except for the fact that voice minutiae is used instead of the last fingerprint.

4.4.2 Verification

During authentication, the user gives her fingerprint/s and utters the claimed person’s

password, which are then matched successively to the stored template. This scenario is

a variant of the matching method explained in 4.3.2. The verification process is depicted

in Figure 4.6.

In Step 1, the minutiae matched to the first fingerprint from Σ are deleted. This is

done exactly the same way described in Section 4.3.2. For Method4 this subtraction is

repeated for the second fingerprint as well, and the remaining minutiae in ∆ are matched

to the minutiae obtained from the query utterance. NT fingerprint matcher is used to

match and remove the matching minutiae from Σ:

Σ vs. A′ −→ SNT

∆ = Σ−A′

In Step 2, the remaining voice minutiae are transformed back into 8-bit binarized MFCC

features, to match them to the feature vector obtained from the query password. For

this, the coordinates of ∆ is transformed (scaled down to) ∆s, to undo the original

scaling, using:

W = Width(A), H = Height(A)

sx =
256

W

sy =
256

H

∆s = ∆ × (sx, sy)
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Figure 4.6: Verification Process for FP+Voice

In Step 3, the minutia coordinates of ∆s (i.e. the (x, y) pairs) are bitwise concatenated

as x|y to obtain 16-bit sequences for all the minutiae in ∆s. Note that since the relative

order of these voice minutiae points are lost, every 16-bit sequence obtained from ∆ is

compared to every 16-bit sequence in B′ using Hamming Distance and the sequences

that emit the smallest distance are marked as a match. A distance of at most 3-bits of

Hamming distance is considered a match and the ratio of the number total matches to

the total number of the voice minutiae in ∆ and B′ form the matching score of this step

(SHD). For this matching phase, the Hamming distance is used, since the Euclidean

Distance is not meaningful for comparison of bit strings.
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SHD = ∆s vs. B
′

Step 4 consists of the calculation of he final score S as a linear fusion of SHD and the

normalized SNT ’s obtained from the first step.

S = α ∗ SHD + T (SNT ).



Chapter 5

Evaluation

5.1 Overview

In this chapter the proposed multi-biometric layering method and its four different vari-

ants (Method1−4) are evaluated in terms of their verification and identification perfor-

mances, along with some measures of privacy enhancement. The method is implemented

using two main models: i) multiple fingerprints and ii) fingerprint + voice and evaluated

with four types of tests given below:

1. Uni-modal System Performance: These tests are performed to assess the

baseline performance of matching algorithms employed in the proposed scheme,

when applied to a single modality. Their results are compared against the multi-

biometric tests in order to measure the performance enhancement of the proposed

methods.

2. Multi-modal Verification with the Proposed Scheme: These tests measure

the verification performance of the proposed schemes, where two query biometric

samples (A′ and B′) are matched against the claimed multi-biometric template as

described in Section 4.3.2.

3. Multi-modal Identification with the Proposed Scheme: In order to explore

the identity discovery capabilities and the privacy protection power of the proposed

scheme against attacks, genuine identification as well as identity search attacks

(e.g. latent fingerprint attack) against a biometric gallery are applied with the

50
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expectation of identification rates to be high and low for genuine and impostor

searches respectively.

4. Multi-modal Score Level Fusion: Bio-layering method is based on the feature

level fusion of the multiple biometric modalities represented as fingerprint minu-

tiae. While it provides privacy and performance enhancements compared to a

uni-modal biometric system, the feature level fusion of the biometric information

is expected to introduce information loss compared to a multi-biometric system

where the information is not mixed and is used separately. In order to evaluate

the performance loss in this case, a multi-modal verification system based on score

level fusion is implemented utilizing the same feature extraction and matching

algorithms with the proposed system.

Using the results of the above evaluations, it is demonstrated that in terms of technical

performance, as defined by Simoens et al. [30], the proposed framework achieves in-

creased accuracy and privacy due to multi-biometric verification and encounters only a

two-fold degradation in storage requirements and throughput, compared to the case of

using a single biometric template, as a direct consequence of verifying two biometrics.

5.2 Databases

5.2.1 Fingerprint Databases

Three different fingerprint databases are used for evaluating the proposed system. First

two databases are the FVC 2000 [2] and 2002 [3] databases, which are commonly used,

including the public fingerprint verification contests. Each of these two databases con-

sists of 4 subgroups (namely DB1, DB2, DB3, DB4), where each subgroup consists of

880 images (subjects(11) x fingers(10) x impressions(8)).

Sample images taken from FVC2000 and FVC2002 data sets are depicted in Figures 5.1

and 5.2, respectively. The properties of each subgroup for FVC databases are outlined

in the Table 5.1.
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FVC 2000 FVC 2002
NIST

DB1 DB2 DB3 DB4 DB1 DB2 DB3 DB4

Sensor Type
Low-cost
Optical

Low-cost
Capacitive

Optical Synthetic Optical Optical Capacitive Synthetic Rolled&Scanned

Image Size 300x300 256x364 448x478 240x320 388x374 296x560 300x300 288x384 512x512

Num. Images 11 subjects × 10 fingers × 8 impressions 2000x1x2

Resolution 500 dpi 569 dpi 500 dpi

Table 5.1: Fingerprint databases used in this thesis (FVC 2000,2002 and NIST).
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Figure 5.1: FVC2000 Sample images of four subgroups of FVC2000 [2].

Figure 5.2: FVC2002 Sample images of four subgroups of FVC2002 [3].

The third data set used in the evaluations is the NIST’s fingerprint database-4 [4]. In

this database there are a total of 2000 subjects, where each subject has provided 2

impressions of only a single finger.

The main purpose of using the FVC databases is to measure the verification perfor-

mance of the proposed method and compare it to the state-of-the-art, whereas the

NIST database is used for the identification and cross-linking tests, as it includes more

subjects compared to FVC data sets. Please see Section 5.4.4 for further details.

5.2.2 Voice Database

The voice tests are performed using TUBITAK’s speaker database [79]. The database

is comprised of two subsets that differ by the types of the uttered phrases.
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Figure 5.3: Two sample fingerprints from NIST fingerprint database-2 [4].

The first subset is the Fixed Password Set (FPS), which consists of 106 people (27

female and 79 male) all uttering the same numerical phrase 16 times. The phrase has

been uttered as two three-digit numbers (815-364) both spoken in Turkish. The average

number of voice minutiae obtained from this password set is 24; while the minimum

and maximum number of voice minutiae obtained from the fixed password uttered by

different people are 24 and 26, respectively.

The second subset, called the Private Password Set (PPS), consists of the same 106

subjects. In this set, each speaker has uttered his/her own name and surname 16 times

(same names were replaced with a randomly selected different name). The average

number of voice minutiae obtained from this password set is only 10, which is much

smaller than the number obtained from the 6-digit fixed password string. This indicates

that the names are much shorter on average, with the minimum and maximum number

of voice minutiae obtained from the private passwords when uttered by different people

are 7 and 18, respectively.

All utterances have been recorded in TUBITAK’s semi-anechoic recording rooms utiliz-

ing the Roland UA-100 USB speech processing unit at 44100 Hz and 16-bit resolution

in silent conditions.

Since the number of the minutiae points obtained from the voice data is small compared

to the fingerprints, the fixed and private passwords of the users are employed in con-

catenation as well, to obtain longer voice samples. This set is referred to as Combined

Password Set (CPS), in Tables 5.9 and 5.8.
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FPS PPS

Language Turkish

Content ”815-364” Subject’s first and last name

Num. Subjects 107 106

Num. Samples 107 subjects × 16 recordings 106 subjects × 16 recordings

Table 5.2: Voice databases used in this work (TUBITAK Speaker Database).

5.3 Template Security and Privacy Evaluation

Using the biometric criteria defined in [30], the following claims that are explained here

or in the subsequent experiments can be made:

• Full-leakage irreversibility: refers to the difficulty of determining, exactly or

with tolerable margin, from the multi-biometric template, the biometric sample(s)

or features used during enrolment to generate that template. Full-leakage irre-

versibility cannot be guaranteed with Method1, as it may be possible to use minu-

tiae angle coherence, using techniques similar to ones used in [80] to reconstruct

the fingerprint image from minutiae angles. On the other hand, for Method2 and

Method3, where the minutiae angle of the second template is modified, this re-

quirement is satisfied as it is not feasible to split the multi-biometric template into

its two constituent fingerprint minutiae sets since there are too many combinations

to try in the abscence of other information such as minutiae angles; and there is no

way to verify that a successful split has been achieved. With these two schemes,

the minutiae angle of the second template matches that of the first template lo-

cally, thus eliminating the potential use of minutiae angle information for finding

the right split; or recovering the second template at all.

Altogether there are C(2N,N) potential splits of the multi-biometric template into

two equal parts, where N is the average number of minutiae in a single template.

Hence the probability of finding the correct split is 1/C(2N,N). This number is

roughly 0.56× 10−18 for N = 32 which is the average number of minutiae in FVC

fingerprint databases.

Moreover, in addition to modifying the angles of the second template (namely B),

Method3 randomly deletes a quarter of minutia in A while creating the multi-

biometric template. Thus, both templates are modified in this method and it is
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impossible to fully recover any of the individual templates. Since there will always

be an uncertainty about the leaked information about the constituent biometrics

even if the right split was found, the irreversibility is unconditional, according to

the definition of [30].

As for Method4, since only a portion of each of the constituent minutiae sets is

used, it is guaranteed that there is no full leakage.

On average, only 55% of the minutiae points in the first matched template (A)

are correctly identified during the verification step, as measured over the FVC

dataset using Method2 with two fingerprints. This is partly due to usual matcher

errors and also the existence of the second template. Hence, it can be said that

the original templates are not revealed fully, even after a successful matching step.

Nonetheless, Method3 is suggested to prevent this situation with certainty (all of

minutiae points will not be revealed in full to the system that may potentially be

unreliable.

• Authorized-leakage irreversibility: refers to the difficulty of determining a

biometric sample or features from the multi-biometric template, that would be

useful for an attacker to break into an unprotected system (i.e. an unprotected

uni-modal system).

The probability of one of the random splits to have K or more of its constituent

minutiae points coming from the same fingerprint, when splitting a template with

N points, is:

P (K) =
N∑

k=K

(
N

k

)
pk × (1− p)(N−k)

where p is 0.5. This probability is 0.0035 for N=32 and K=24 (if 75% or more of

the minutiae in the chosen set is required to be correct); but drops sharply as K

approaches N , as listed in Table 5.3.

K P(K)
24 0.003500
25 0.001050
26 0.000270
27 0.000057
28 0.000010
... ...

Table 5.3: Probability P (K) of K or more correct minutiae points in a given random
split, for N = 32.
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• Revocability is best seen as an aspect of operational performance that can be

achieved by removing a compromised template from the system or by blacklisting

it [30]. In this sense, the proposed system provides revocability.

• Unlinkability is demonstrated via cross-link tests involving templates sharing one

of the constituent biometric samples and differing in the other (e.g. Σ = A + B

versus Σ′ = A′ + X). Moreover, uni-modal identification tests are done by cross-

linking with an unprotected database (e.g. Σ = A + B versus A′). Genuine

identification rates are also reported as comparison. It is desirable for the system

to obtain high genuine identification rates, while obtaining low cross-link and uni-

modal search rates.

• Renewability refers to the ability to generate new templates from a biometric

sample, in order to renew a revoked template. In this sense, renewability is avail-

able when the method is used with voice features; since the user can enrol with

a new pass phrase to renew his/her biometric template. When the user provides

a new pass phrase with a new impression of the subjects previous finger, it must

be hard to link the new template to the old one. The cross-link tests given in

Table 5.9 with different voice templates provide a measure of how different the

new template is from the revoked one. The low cross link rate (33%) shows that

generating a new multi-biometric template by just changing the voice pass-phrase

is quite successful. Renewability does not directly apply to the FP-FP method as

the number of fingerprints of an individual is limited.

5.4 Evaluation Results Using Fingerprints (FP-FP)

5.4.1 Uni-modal Verification Results

The uni-modal verification performance results of the fingerprint matchers used in the

proposed framework are reported here in order to establish the baseline performances

of both the TPS matcher and the selected commercial fingerprint matcher from Neu-

rotechnology (NT ) [33].

The reason for utilizing this particular commercial matcher is two-fold. First of all, it

demonstrates the adaptability of the proposed framework to already available systems.
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The other reason is that the NT has demonstrated a successful performance at FVC-2000

and 2002 evaluations, making it a good candidate to compare against. In particular,

the average EER values reported for NT in FVC 2000 and 2002 are 1.37% and 0.99%

respectively. The evaluations in this thesis show similar results for this matcher.

For these tests, all of the available impressions of genuine fingerprints are used in

FVC2000 and FVC2002 databases. Since there are 110 different fingers and 8 impres-

sions per finger in each database (11 persons × 10 fingers), matching all impressions of

the same finger to each other results in 28 genuine tests per finger. This gives a total of

3080 (= 110× 28) genuine tests for each FVC group. As for forgery tests, for each FVC

group, every first impression of all the fingers is matched to the first impressions of all

the other fingers, resulting in 5995 (= 110× 109) forgery tests.

The top two rows of Table 5.4 indicate the NT and TPS matcher performance on the

FVC and NIST databases, with an average EER value of 1.9% versus 3.7% for the

FVC databases, respectively. The NT system has state-of-the-art performance and the

TPS matcher has a moderate performance and is included here for completeness. In the

proposed system, the TPS matcher is only used when the NT matcher does not perform

well; namely when matching minutiae sets for which the angles are modified.

In that case, performance results are lower as expected: the average EER increases by

about a factor of two for each database, becoming 7.5% and 9.7% for the FVC and NIST

databases, respectively. The results for the case of modified angles are not reported for

the NT system as it does not have an option to disregard the minutiae angle information.
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Methods
FVC 2000 FVC 2002

FVC Avg. NIST
DB1 DB2 DB3 DB4 DB1 DB2 DB3 DB4

UMV-NT 2.4 1.1 4.7 1.6 0.7 1.4 2.1 1.4 1.9 2.8

UMV-TPS 3.6 2.3 7.1 5.1 2.0 1.8 5.2 2.8 3.7 4.3

UMV-TPS-NAI 8.8 5.8 13.3 7.3 4.5 4.4 10.0 6.3 7.5 9.7

MMV-Method1 0.9 0.1 1.4 0.4 0.1 0.1 1.9 0.4 0.5 4.6

MMV-Method2 3.6 1.0 5.0 1.8 0.6 0.3 3.1 1.1 2.1 9.0

MMV-Method3 5.1 2.1 7.6 4.1 2.3 0.8 5.8 3.3 3.9 12.2

MMV-Method4 3.8 2.9 5.3 3.1 2.9 2.9 3.1 3.0 3.4 -

Table 5.4: Verification performance (% EER) with FP-FP layers.

Methods
FVC 2000 FVC 2002

FVC Avg. NIST
DB1 DB2 DB3 DB4 DB1 DB2 DB3 DB4

Multi-modal SLF 0.4 0.0 1.0 0.4 0.0 0.0 0.8 0.0 0.3 1.2

SLF (NAI) 0.8 0.4 3.2 1.2 0.0 0.0 2.0 0.8 1.0 1.8

Table 5.5: Verification performance (% EER) of a multi-biometric system with score level fusion.
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5.4.2 Multi-modal Verification Results of the Proposed Scheme

The lower part of Table 5.4 reports the verification rates for the proposed scheme where

multi-biometric templates are created with two fingerprints, using all four methods de-

scribed in Section 4.3. Method1 constructs the template by simple layering, while in

Method2 and Method3 the minutiae angles of the second constituent fingerprint are

replaced, with or without using all the minutiae points, respectively. Finally, Method4

explores the capacity of biometric layering by combining three biometrics into one multi-

biometric template.

For these tests, a gallery of 55 templates is created for each FVC subgroup, by pairing

each two consecutive template into one multi-biometric template. As for the NIST

database, it is possible to create a gallery of 2000 multi-biometric templates by following

the same strategy used for each FVC subgroup. However, to accomodate cross-link tests

as well, a gallery of 2000/3=666 templates was created to be used in verification tests.

As can be seen in Table 5.4, using Method1, the proposed method provides a 0.5%

average EER over the eight FVC datasets on average, which is significantly better than

the state-of-the-art uni-modal performance of the NT system.

Using Method2 that provides higher template security, the results are close to the state-

of-the-art uni-modal performance, with 2.1% average EER on n the FVC database.

With Method3 and Method4 that trade verification performance for additional template

security, the results are 3.9% and 3.4% average EER on the FVC datasets, respectively.

For all three methods, there is a significant decrease in comparison to the uni-modal

systems, when using the NIST database. This can be explained by the fact that the

fingerprints in the NIST database typically contain a very large number of minutiae

points (195 versus 32 in FVC databases, on average), which causes a higher number of

minutiae collision during multi-biometric template creation. Method4 was not tested

with this database, because it was not deemed suitable due to the large number of

minutiae points in the fingerprints in this database.

Although, there is performance degradation when using Method2 and even more in

Method3, compared to Method1, the minutiae angle replacement and additional random

removal of minutiae from the first template provide a stronger template security and

resilience to privacy threats, which is discussed in Section 5.4.4.
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An observation was that in the first match (Σ vs. A′), on average, 92% of all matched

minutiae are correct, while 8% of the matched minutiae come from the second finger-

print, as calculated over the FVC datasets using Method2. On average 55% of the

minutiae points in A are correctly identified. Hence, the first match performance can be

summarized as 0.92 precision and 0.55 recall.

DET plots for the performances of the three methods are given in Figure 5.4, along with

uni-modal systems. In order to facilitate a better comparison of the performances of

NT to Method2 and Method3 on FVC-2000 and FVC-2002, DET graphs are provided

Figures 5.4-a,c and 5.4-b,d respectively. It can be observed from these two figures that

the proposed schemes provide a verification performance comparable to the state-of-the-

art uni-modal performance of the NT system.

As reported, the multi-modal matching performance forMethod1 are higher thanMethod2

and Method3 for all different FAR vs GAR data points.
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Figure 5.4: DET Plots for the uni-modal and suggested multi-biometric system with
FP-FP layers for FVC 2000 in (a,c) and FVC 2002 in (b,d). For ease in comparison,

corresponding plots share the same color, with different markers.
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5.4.3 Multi-modal Score Level Fusion

For the sake of completeness and comparability with other multi-modal approaches, a

multi-modal verification system using a simple score level fusion is also implemented

using the TPS Matcher. Everything in this system is done the same way as for the

proposed system whenever applicable. For instance the same feature extraction and

matching algorithms are used as in the proposed system. During matching, two alterna-

tives are tested in line with the proposed method: using the minutiae angles or ignoring

them. In either case, the match score between two fingerprint templates is calculated

as the ratio of the matched minutiae in the reference fingerprint. The individual scores

obtained from the two matches are linearly combined for the final decision.

The EER results shown in Table 5.5 are the lowest error rates for both the FVC and NIST

databases, with 0.3% and 1.2% EER, respectively. The success of the fusion system is

as expected, because on one hand it benefits from twice the discrimination power of two

fingerprints (i.e. the multi-biometric nature) and on the other hand, it does not sacrifice

anything for the sake of privacy and template security. The performance degradation

that comes with the lost angle information in the fusion system (1.0 versus 0.3% for

FVC) parallels that observed with the proposed schemes.
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GID UMS Cross Link Search

Σ vs. (A′, B′) Σ vs. A′ Σ vs. B′
Σ = (A+B)

vs. (A′ +X)

Σ = (A+B)

vs. (X +B′)

Method1

Top-1 93 75 75 21 32

Top-5 93 75 75 37 39

Top-10 93 75 75 38 39

Method2

Top-1 82 74 40 20 10

Top-5 85 75 46 33 16

Top-10 86 75 51 34 19

Method3

Top-1 79 58 48 1 37

Top-5 82 59 55 5 47

Top-10 83 59 60 6 50

Table 5.6: Identification and cross-link results for the NIST gallery consisting of 666 multi-biometric templates with FP-FP layers.
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GID Uni-Modal Search Cross Link Search

Σ vs. (A′, B′) Σ vs. A′ Σ vs. B′ Σ s. C ′
Σ = (A+B)

vs. (A′ +X)

Σ = (A+B)

vs. (X +B′)

Σ = (A+B + C)

vs. (A′ +B′ +X)

Method1

Top-1 99 93 92 - 82 85 -

Top-5 99 94 93 - 84 86 -

Top-10 99 95 95 - 87 88 -

Method2

Top-1 97 96 81 - 85 5 -

Top-5 98 96 82 - 87 16 -

Top-10 98 96 96 - 90 29 -

Method3

Top-1 96 83 74 - 53 6 -

Top-5 98 86 81 - 60 16 -

Top-10 98 87 87 - 67 30 -

Method4

Top-1 100 76 77 77 - - 63

Top-5 100 78 80 79 - - 68

Top-10 100 80 83 82 - - 75

Table 5.7: Identification and cross-link results for the FVC gallery consisting of 55 multi-biometric templates with FP-FP layers (36 Templates in
Method4).
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5.4.4 Template Security and Privacy Test Results

Irreversibility, revokability, and renewability issues were addressed theoretically in Sec-

tion Section 5.3; here the results of three types of tests are reported to demonstrate

unlinkability, by showing decreased success in cross-link rates in comparison to genuine

identification rates:

• Genuine identification-Σ vs. (A′, B′): The aim of this evaluation is to measure

the genuine identification rate of the system, when the multi-biometric template is

searched using a genuine pair of query fingerprints within a gallery of templates.

The identification is performed by sequentially matching the query pair to each of

the multi-biometric templates in the gallery, using the method described in Section

4.3.2.

• Uni-modal search attack-Σ vs. A′, Σ vs. B′ or Σ vs. C ′: This attack measures how

easily one can identify a person’s template having only one matching fingerprint.

Since the roles of all the fingerprints used in the template are not symmetric, the

scenario is evaluated separately for the first, second and third templates, using the

commercial NT matcher. Searching with the third template (C ′) is only mean-

ingful for Method4 where the multi-biometric template consists of three layered

fingerprints and the attacker has access to an imprint of the third fingerprint.

• Cross-link attack-Σ = (A + B) vs. Σ′ = (A′ + X) or Σ′ = (X + B′): This is an

attack scenario where the attacker is assumed to have access to two different multi-

biometric databases and would like to find corresponding identities. During this

attack, each multi-biometric template of a database is matched to all templates

of the other database, as if they are uni-modal templates. In this attack scenario,

corresponding templates may share the first fingerprint (A) or the second finger-

print (B), as in the two uni-modal attack types. Cross-link attack is also used

to measure how different a new template is from a revoked one if the secondary

template is a voice pass-phrase.

Identification of a correct template with only a single fingerprint is undesired, as it

would lead to the identification of the user by searching with a latent fingerprint, or

cross-linking with an unprotected database. Similarly, if a user is enrolled in multiple
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databases, cross-linking may identify which templates in the two databases belong to

the same person, posing a privacy threat.

FVC and NIST databases are used throughout these evaluations, with results given in

Tables 5.7 and 5.6. While both databases are commonly used in the literature, they

both present some challenges for these tests. The FVC database is very small to run

multi-biometric tests (especially cross-link tests), while the NIST fingerprints contain

very large number of minutiae points, which is not very amenable for the proposed

method. Nonetheless, all the tests are included for both databases as applicable, with

the only exception that Method4 is omitted on the NIST database.

To maximally use the NIST database, the 2000 fingers are grouped such that 3 fingers

are used as if they belong to the same user. The two fingerprints (A and B) of one

user are used to construct one multi-biometric template for the main gallery, for which

the matching impressions (A′ and B′) are used for genuine identification and uni-modal

search tests. Then, a third fingerprint (X) from another user is used to create two

matching galleries (A′ + X and X + B′). In this way, a total of 2000/3=666 multi-

biometric templates are obtained in the three matching galleries.

Since there are only 11 subjects and 110 different fingers in each of the FVC subgroups,

the genuine identification and uni-modal search attacks are run with a gallery of 55

templates, obtained by pairing fingerprint pairs (i.e. two-by-two), for each subgroup.

For cross-link tests, the fingers are paired in triples (i.e. 3-by-3 such that 3 fingers are

used as if they belong to the same subject), as was done for the NIST database. In this

way, a very small gallery of 36 templates is obtained.

As an evaluation metric, the percentage of cases where identification returns the correct

template among the top-k candidates is reported for top-1, top-5 and top-10.

During the fingerprints matching tests, the state-of-the-art NT matcher is used whenever

possible, in order to obtain the most competitive results; however this matcher performs

poorly when the minutiae angle is missing. Hence, the TPS matcher is used when

angle information is missing or altered; namely in matching B and B′, in Method2 and

Method3.

For the larger NIST gallery, genuine identification rates of 93%, 82% and 79% are

achieved using Method1, Method2 and Method3 respectively, showing the premise of the
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scheme for providing high identification performance. The genuine identification rate

decreases as expectedly as more information is omitted in the template creation. The

genuine identification rates are not very high, since fingerprints in the NIST database

typically contain a very large number of minutiae points (195 on average), which is not

very suitable for layering. However, results are comparable to the rank-1 identifica-

tion rates (∼85% and ∼83%) reported in [59], obtained using a similar and alternative

multi-biometric template creation scheme and a similar size database.

The uni-modal search evaluation that tests whether a multi-biometric template database

can be searched with a single fingerprint, results in low identification rates as desired.

When the test is carried out with an impression of the first constituent fingerprint (A′),

the top-1 results are 75%, 74% and 58%, using Method1, Method2 and Method3 respec-

tively. Compared to genuine identification rates, there is about 20% points difference

between genuine and uni-modal identification rates, for Method1 and Method3.

Uni-modal search with the second fingerprint achieves roughly the same rate as for the

first fingerprint using Method1, as the two fingerprints have a symmetric role in this

method. However the top-1 identification rates drop even further, to 40% and 48%, using

Method2 and Method3, respectively. As discussed before, with these two methods, the

minutiae angles of the second fingerprint are modified to match the angles of the first

fingerprint, when constructing the multi-biometric template.

Finally, both types of cross-link evaluations result in very low identification rates end

up in low success rates, 20% and 10% using Method2 and 1% and 37% for Method3,

supporting the claims that the proposed methods are strong against cross-linking attacks.

As for the FVC gallery, genuine identification rates are very high (99, 97, 96 and 100%

for the four methods), as shown in Table 5.7. However, uni-modal identification rates

are also very high except for Method3 and Method4. For these two methods, it can be

observed that the uni-modal identification rates (83% and 74%) are significantly lower

compared to genuine identification rates, as desired.

Cross-link rates are also low in this database; in particular for Method3, a 53% rate is ob-

tained when the first fingerprint is shared among the two corresponding multi-biometric

templates and 6% when the second fingerprint is shared. Method4 that combines three
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fingerprints obtains even higher genuine identification rates and lower uni-modal search

and cross-link rates (77% and 63% top-1 rates, respectively).

In summary, the results show that Method3 obtains significantly lower uni-modal search

rates compared to genuine identification rates, as well as very low cross-link rates for

both databases. While not applicable in all applications and databases, Method4 obtains

even better results, with higher genuine identification rates and lower cross-link rates.

5.5 Evaluation Results of Multi-Biometric Templates Us-

ing Fingerprint and Voice

In this section, verification performance results of the system that combines fingerprint

and voice templates are reported, so as to demonstrate applicability of the proposed

framework to other biometric modalities and to demonstrate cancelability. Being a

behavioral modality, the utilization of the voice biometric has the advantage of rather

simple revocation if compromised and almost unlimited number of realizations due to

the fact that user can have as many spoken passwords as she wishes to have.

For the evaluations, the FVC 2000-A fingerprint database discussed in Section 5.2 was

combined with TUBITAK voice data subsets discussed in Section 5.2.2. For each voice

subset, a gallery of 100 multi-biometric templates was generated, by pairing one voice

sample of each user with a fingerprint from the FVC 2000-A database and repeating

this for the whole database. This gallery is used in genuine identification tests, as well

as uni-modal search tests.

In addition, two other galleries were created to be used in cross-link tests with the

first gallery. For each multi-biometric template in the first gallery (A + B), a different

fingerprint is combined with another utterance of the same voice sample used in the

template, to obtain the template (X + B′) in the second gallery. Similarly, another

impression of the fingerprint used in the template in the first gallery is combined with a

different voice sample to obtain the matching template (A′+X) in the third gallery (See

Section 5.4.4). Since Method4 contains three biometric layers, where two of them are

fingers and one is voice, the galleries generated for Method4 contain 55 multi-biometric

templates.
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5.5.1 Uni-modal and Multi-modal Verification Results

The first two rows of Table 5.8 show the uni-modal verification performances of the

Hamming distance based matcher (see Section 4.4) using only the voice minutiae and

the Neurotechnology’s matcher using only fingerprint minutiae, as the two components

of the multi-modal system. The NT system using the fingerprint minutiae has a similar

performance to what was obtained in Section 5.4.1, where another pool of fingerprints

from the same dataset was used. Since, the same fingerprints are combined with all

the multi-biometric galleries, the matcher performance is the same (2.1%) for all. With

12.1% and 8.7% and 7.8% accuracies on the three subsets, the verification results using

voice features are roughly comparable with state-of-the-art speaker verification results.

Note that during conversion of the voice templates to voice minutiae, the order of the

actual bytes in the voice template are lost, necessitating that the Hamming distance

comparison is performed in a brute force manner, which in turn leads to sub-optimal

registrations.

Method Modality FPS PPS CPS

Hamming Voice 12.1 8.7 7.8

NT Fingerprints 2.1

Method2 Both 1.9 1.6 2.0

Method3 Both 4.8 1.9 4.0

Method4 Both 3.0 3.0 3.0

Table 5.8: EER percent results for verification tests using fingerprints and voice.

Verification results for the multi-biometric system are shown in the last two rows of

Table 5.8. The system obtains less than 2% EER with the three voice database subsets

for Method2. The error rates almost double with Method3 that does not use all of the

fingerprint template; but drop to 3.0% for all subsets, using Method4. It is also impor-

tant to note that the performance obtained for the second subset (Private Passwords) is

better than the first subset (Fixed Password Set) where everyone utters the same string

and the only distinguishing part is the vocal characteristics of the user.

In summary, the proposed multi-biometric template scheme implemented with a finger-

print and a voice password, obtains an improvement over both of the uni-modal systems
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and comparable to those obtained with the implementation with two fingerprints. How-

ever the real benefit with this case is the renewability of the multi-biometric templates

constructed with voice pass-phrases that can be easily changed.

5.5.2 Template Security and Privacy Test Results

To evaluate privacy enhancements, it important to apply identification tests (genuine

identification and attacks) on the the fingerprint + voice case see ’Multi-modal Identi-

fication with the Proposed Scheme’ in Section 5.1. The databases for this test are con-

structed using FVC fingerprint databases and TUBITAK voice database as described in

Section 5.2.2.

As can be seen in Table 5.9, top-1 genuine identification rates are very high for all three

methods with 99% for both methods, as desired. As for the uni-modal searches, identi-

fication rates drop to 95% for Method2 and 88% for Method3, when the fingerprint (A′)

is used as query. The uni-modal search with voice (B′) obtains even higher identification

rates of 89% and 91%, using Method2 and Method3, respectively. The drop between

genuine and uni-modal identification rates are small for Method2 and moderately good

(around 10%) for Method3; however it is expected that as the gallery size increases,

uni-modal identification rates would drop much faster than genuine identification rates.

Method4 that combines two fingerprint and voice shows the best results, with 99% gen-

uine identification rate and only around 65% uni-modal search rate using fingerprints,

and 77% using voice as the query.
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GID UMS XLNK

Σ vs. (A′, B′) Σ vs. A′ Σ vs. B′ Σ vs. C ′
Σ vs Σ′

w/ different Voice

Σ vs Σ′

w/ different FP

Method2

Top-1 99 95 89 - 83 65

Top-5 99 95 95 - 87 85

Top-10 100 95 99 - 88 88

Method3

Top-1 99 88 91 - 33 72

Top-5 100 89 99 - 39 89

Top-10 100 90 99 - 43 93

Method4

Top-1 99 64 66 77 33 11

Top-5 100 66 68 95 48 30

Top-10 100 69 70 98 59 52

Table 5.9: Identification and Cross-Link results with a gallery consisting of 100 multi-biometric templates with fingerprint-voice layers. A and A′

refer to fingerprint impressions and B, B′ and C ′ are voice minutiae (FP+PP).
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As for cross-link rates, both Method3 and Method4 achieve a very low rate of 33% when

the templates share a fingerprint and differ in the voice sample. This means that the

voice data indeed works well to hide the original fingerprint template. The cross-link

rate is higher for Method3 (72%) when the voice sample is shared (last column); but

it is still significantly lower than the genuine identification rate in this case. However,

notably this is a less likely scenario as the voice is expected to be different in different

galleries. The ROC plot for these tests is given in Figure 5.5.
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Figure 5.5: ROC Plots corresponding to Table 5.8 (FP=Fixed Password, PP=Private
Password, FP+PP=Concatenated voice).

5.6 Entropy and Information Leakage Analysis

The proposed multi-biometric template fusion methods described in this thesis are ana-

lyzed in terms of biometric system performances (i.e. verification and identification). It

is also important to provide an information theoretical perspective on the claimed privacy

protection scheme. This is achieved by calculating the entropy of the multi-biometric

templates and comparing them to the randomly generated counterparts. Since the fo-

cus of this thesis is to show that multi-biometric templates that are generated with the
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proposed scheme possess high entropy values, a rather simple and comparative approach

has been taken.

A fingerprint template is divided into a grid of d× d pixels sized cells. The probability

of the grid cell i to be occupied by at least one minutia is estimated by considering all

the records in the dataset, as:

P (Yi = 1) =
n(i)

N

where n(i) is the number of times grid cell i is found to contain at least one minutiae,

over the total number of considered templates N. The random variable Yi takes on value

1 if there is at least one minutia in grid cell i; 0 otherwise.

A sample template divided into a grid is given in Figure 5.6. For a template of size

W ×H, the total number of grid cells:

S =
W ×H
d2

Figure 5.6: A sample template divided into a grid of d× d sized cells.
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Assuming independence between Yi and Yj , the Shannon Entropy of the fingerprint

template is estimated as:

H(Y ) =

S∑
i=1

P (Yi = 1) log2 P (Yi = 1) + P (Yi = 0) log2 P (Yi = 0)

It should be noted that the entropy value depends on the value of d and we believe that

a value between 10 and 20 may give a reasonable coarse estimate for the true entropy.

As the main focus here is the change in entropy with respect to different templates (e.g.

random vs. actual), a relatively simple approach has been employed.

The entropy analysis is performed on the FVC 2000-a and NIST datasets. The FVC

dataset contains 55 records, whereas the NIST dataset contains 1000 records. Each

record in a dataset is a vector {A, Ar, Σ, Σ′, Σr}, where A is the primary template

and Σ is the multi-biometric template (i.e. Σ = A ∪ B). Ar and Σr are minutiae

templates that contain randomly generated minutiae (chaff points) having the same

number of minutiae as their counterparts A and Σ respectively. Σ′ is a multi-biometric

template Σ′ = A + Br where Br is a randomly generated template having the same

number of minutiae points as B (i.e. the secondary template). The estimated entropy

vales are provided in Table 5.10, The absolute entropy values have been provided in the

upper part, and the differences are provided in the lower part of the table. For instance

for d = 20 we report the entropy of a single biometric template and a multi-biometric

template as 108 and 220 respectively. For comparison, Ratha et. al report entropy for

a fingerprint template of 30 minutiae to be around 100 bits [81].

The aim of the analysis is to estimate the randomness of the actual fingerprint templates.

To achieve this, the entropy values of the actual fingerprint templates are compared to

the random counterparts. In other words, we focus on the entropy differences. In

particular, Ar − A estimates the randomness of a single minutiae template, Σ′ − Σ

measures the contribution of the secondary template (B) in terms of randomness, and

Σr −Σ provides information about the randomness of a multi-biometric template. The

differences are important because they provide a measurement of the information leakage

that might occur in a template compared to its random counterpart.

It can be seen that the entropy difference between the random data and the actual

fingerprint data is mostly below 10%. The differences increase with respect to the
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FVC NIST

d (pixels) 1 5 10 15 20 1 5 10 15 20

A: 206 191 160 131 108 1034 737 552 439 357

Ar: 206 195 169 143 120 1043 769 585 473 392

Σ: 450 387 294 220 160 2010 1312 932 696 511

Σ′: 452 398 312 240 182 2028 1346 967 733 555

Σr: 452 403 316 246 188 2036 1359 980 749 575

Ar −A (bits) 0.3 4.1 9.0 11.7 12.6 8.9 31.5 33.4 33.9 35.6

Ar −A (%) 0.1 2.1 5.3 8.2 10.5 0.9 4.1 5.7 7.2 9.1

Σ′ − Σ (bits) 1.4 11.4 18.2 20.0 22.6 17.9 34.1 34.6 37.4 43.8

Σ′ − Σ (%) 0.3 2.8 5.8 8.1 12.0 0.9 2.5 3.5 5.0 7.6

Σr − Σ (bits) 1.6 16.4 22.5 25.5 28.1 25.9 46.4 48.5 52.9 63.4

Σr − Σ (%) 0.4 4.1 7.1 10.4 15.0 1.3 3.4 4.9 7.1 11.0

Table 5.10: Estimated entropies according to different grid cell sizes (d× d)

increasing d values (i.e. larger cells). This can be explained by the fact that while a

random template can have minutia at almost any location, the minutia tend to be closer

to the center of the mass in an actual template due to the shape of the finger impression.

The Ar−A values have been provided for comparison to the Σ′−Σ and Σr−Σ values. The

closeness of the Σ′−Σ values to the Ar −A values implies that the information leakage

caused by the inclusion of the secondary template is ignorably small when d = 1, 5, 10, 20

for FVC, and even decreased for d = 15 for FVC, and d = 5, 10, 15, 20 for NIST. On the

other hand, the Σr −Σ values are close to Ar −A, implying that the randomness of the

multi-biometric template is sufficiently close to a single template.

Consequently, it can be stated that the proposed multi-biometric template protection

method provides sufficient security of the constituent templates, hence protecting the

privacy of the users.

5.7 Time Cost for Enrollment and Verification

The enrollment and verification phases take different amount of time for processing.

Since the enrollment phase includes image processing steps as well (e.g. extracting the

minutiae from the raw image), it takes much longer than the verification.
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However, as the feature extraction process has been declared to be out of scope of this

thesis, the enrollment times reported here include only the multi-biometric template

creation from two existing minutae templates and the feature extraction costs are left

out.

The multi-biometric template creation process takes 300ms for the FVC DB and 1s

for the NIST DB. The matching process takes less than 10ms with the FVC DB for

Method1, and up to 50ms for Method2 and Method3; and for the NIST DB it takes

less than 50ms for Method1, and up to 500ms for Method2 and Method3. Note that,

while verification times are longer than the commercial uni-modal system, they are still

acceptable for use in a commercial application.

While the multi-biometric template creation process is fast, it is not regarded as the bot-

tleneck of the system as it will be done rarely for a biometric system. On the other hand,

for traditional fingerprint based biometric systems where the impressions are static (i.e.

not rolled-scanned) the average number of minutiae (∼ 32) allows quite fast matching

1s ( 1000 matches/second), which in turn proves that the system is suitable for both

verification and identification scenarios. However, this speed decreases as the average

number of the minutiae in a template increases, yielding a 10ms ( 100 matches/second)

matching time and speed. Consequently, it can be summarized that although the algo-

rithm provides high accuracy matching performance as shown throughout this chapter

and is fast for small sized templates, it might need to be improved in terms of speed for

larger templates such as the ones of the NIST DB.
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Summary and Conclusion

6.1 Summary

This thesis proposes and evaluates different variations of the suggested multi-biometric

template construction method. The discussions about the relative merits of these varia-

tions, based on results observed on the FVC datasets are given below. These observations

apply to the NIST database for the most part as well.

Using two fingerprints, Method1 (first proposed in [31]) has very good verification rates

that are better than the state-of-the-art fingerprint verification rates of the NT matcher

(see Table 5.4) and its genuine identification rate is high, but its uni-modal search

rates are also high (see Table 5.7). Furthermore, since the two fingerprints are layered

without extra precaution, there may be a possibility of separating the two fingerprints

using minutiae angle coherence.

As the methods try to protect the template more (Method2 and Method3), verification

and identification rates fall, but unimodal search and cross-link rates also decrease as

desired. In particular in Method3, which is the suggested layering method for two

fingerprints, the average verification rate for the FVC databases is quite good (Table

5.4) and the unimodal search (Table 5.7) and cross-link rates (Table 5.6) are very low

as desired. Considering that the gallery sizes used for uni-modal search is very small

and cross-link tests identification rates are already very low, the significant difference

between these rates and the genuine identification rates show the potential of the method

in increasing biometric privacy.

77
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Finally, in Method4, three different fingerprints are combined and even better results

than Method3 are obtained. Hence, if the application is suitable, at the cost of some

inconvenience to the user, this is the proposed method. However due to a large number

of minutiae in the template, this method is not suitable for applications requiring very

low false accept rates (Fig. 5.4).

As for the fingerprint and voice combination, the best results are obtained when a longer

voice pass-phrase is used (combination of fixed-password and user’s name), as expected.

In this case, all methods obtain better verification results compared to only unimodal

verification with voice (see Table 5.8), while Method3 also has low cross-link rates as

given in (Table 5.9).

As with three fingerprints, combining two fingerprints and a voice pass-phrase, as done

in Method4 is the most successful and suggested method, if the application allows for

the use of three modalities.

For the NIST database where the fingerprint templates contain an excessive number of

minutiae points, identification and cross link rates are lower in general compared to the

FVC database. Hence, while genuine identification rates are not as high as desired, cross

linking rates are very low.

The NIST database wasn’t used in fingerprint and voice combination, because the rela-

tively small number of voice minutiae (average 19 per template) compared to the large

NIST templates (average 195 per template) was not sufficient for protecting the finger-

print template.

In terms of comparison to other similar systems, the works of Othman and Ross [59] and

Li and Kot [60] are considered. As summarized in Chapter 2, these two systems obtain

high identification and verification rates and much lower cross-link rates as desired;

however the bio-layering method proposed in this thesis does not have any requirements

such as the need to have compatible fingerprints or locate reference points.

In [59], Othman and Ross report a rank-1 accurracy of ∼85% and an EER of ∼6% on

a data set with a total of 500 fingers, obtained by mixing two different fingers from the

West Virginia University (WVU) dataset. In another experiment, where they mix two

different datasets (FVC 2002-DB2 A and WVU) creating a dataset of 200 test instances,

they report a rank-1 accurracy of ∼83% and an EER of ∼7%.
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In [60] the authors create a multi-biometric template by combining the minutia locations

of one finger with orientation information of another one. They use FVC 2002-DB2 A

for their experiments, and report the lowest error rates with FRR=6% at FAR=0.1%.

To evaluate privacy of their proposed methods, Li et al. define two types of attacks based

on their scheme: using the combined template to attack a database that contains (i) the

first fingerprint (using the minutiae location correlation) and (ii) the second fingerprint

(using the minutiae angle correlation). They call the two attacks Attack Type A and

Attack Type B respectively. Using FVC 2002-DB2 A and generating databases of 100

combined templates, they report 25% for Attack Type A and 57.5% rank-1 hits for Attack

Type B.

The bio-layering method superimposes the minutiae of two different templates on the

same coordinate system. As a result, the generated multi-biometric template might look

like a fuzzy vault with fewer minutia points, considering A as the primary template and

B as the chaff point set.

As one of the prevalent template protection methods, the fuzzy vault is well-studied in

terms of its practicality, security and privacy aspects [82]. The proposed technique may

have two advantages over the fuzzy vault. One advantage comes naturally due to the

multi-biometric use. However, the main advantage is that in the proposed scheme, the

verification does not reveal one of the two biometric templates with certainty.

To unlock a fuzzy vault, a sufficient quality probe template (A′) is provided by the user.

If a sufficient number of genuine points in the template are matched, the polynomial can

be reconstructed in some number of attempts. This in turn releases the secret encoded

in the polynomial. As a result, the matching minutiae points in A are identified as being

genuine, which constitutes an information leak.

In the bio-layering method, the secondary template B is analogous to the chaff points

in the fuzzy vault. While trying to remove A using A′, as ∆ = Σ − A′, the system

may incorrectly miss some minutiae points from A and remove some others from B.

Moreover, ∆ will be different every time a new A′ arrives. Since there is no way to fully

guarantee that the matched points belong to A or that the remaining points belong to

B, it is not possible to fully recover the constituent biometrics (see Section 5.3). That
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is why it can be claimed that the original templates are protected in a multi-biometric

vault.

The weakness of the proposed method against the fuzzy vault is that the secondary

template has a number of minutiae close to the size of the primary template. Since

there is no way to guarantee a full recovery of the primary template (as in fuzzy vault)

the secondary template that is used for hiding cannot be as large as the random set

created for a fuzzy vault, as the verification performance would be poorer (consider

FVC vs. NIST test results).

Another potential weakness is that if Σ is compromised, the attacker can break it into

two templates in a random manner, obtaining two dummy constituent templates C

and D. She can then use these two templates to break into the system, in unattended

scenarios. However, note that the attacker does not obtain the real fingerprints and the

success would be limited with Method2 or Method3 due to the replaced angles.

6.2 Conclusions

In this thesis a multi-biometric templates protection scheme is proposed for increased

performance, template security and enhanced privacy. In this work, two realizations

of this idea are demonstracted by combining two fingerprints in one realization and a

fingerprint and voice pass-phrase in the other one. In each case, three different methods

of constructing the multi-biometric template using fewer information of the constituent

fingerprints are evaluated in order to explore different performance and template security

levels; and a fourth method combining three biometric modalities.

Additionally, a fast and novel fingerprint matcher (TPS Matcher) has been developed

that can be adapted to situations where minutia angles don’t exist or might be ignored

(see Chapter 3).

The results showed that the proposed method (Method3) with two fingerprints pro-

vides near state-of-the-art verification performance on public databases. Furthermore,

it was shown that the proposed method is highly resistant to attacks where an adversary

might want to identify a person from a latent fingerprint or match users in two different
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databases (cross-correlation attack), while providing high genuine identification rates

(see Tables 5.7,5.6,5.9).

The alternative realization the multi-biometric template idea was provided by layering a

fingerpring with a spoken password (see Section 4.4), in order to explore the multi-modal

nature as well as to achieve cancelability. In this case, the system obtains very good

verification performance, but more modest template security and privacy enhancements.

In both cases, using a third biometric improves the success of the method (Method4).
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