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ABSTRACT: There exists a variety of electroencephalo-
gram (EEG) based brain-computer interface (BCI) as-
sisted stroke rehabilitation protocols which exploit the
recognized nature of sensorimotor rhythms (SMRs) dur-
ing motor movements. For novel approaches indepen-
dent of motor execution, we investigate the changes in
resting-state sensorimotor EEG with motor learning, re-
sembling the process of post-stroke recovery. In contrast
to the neuroimaging studies based on visuomotor tasks,
we study motor learning during an actual physical mo-
tor adaptation learning experiment. Based on analysis of
EEG data collected throughout a force-field adaptation
task, we observed a spectral power increase of resting
SMRs across subjects. The modulation across resting-
states in an early adaptation phase of the motor task was
further shown to predict individual motor adaptation per-
formance measures.

INTRODUCTION

Over the last few decades, EEG activity of the human
sensorimotor cortex is widely targeted as a biomarker
in BCI-assisted stroke rehabilitation protocols to support
motor restoration and induce neural plasticity [1− 3].
In general, these approaches utilize congruent haptic
feedback of neurally decoded movement intent through
SMRs, by a rehabilitation robot [4− 6], and were shown
to support modulation of SMRs during training and en-
hance post-stroke recovery [7]. Stroke recovery involves
a form of motor learning, which has also motivated stud-
ies aimed at gaining insights into the neural processes un-
derlying human motor behavior [8]. In this context, var-
ious brain imaging studies focus on analyzing recorded
neural data during motor learning experiments [9, 10].
However, motor learning related sensorimotor activity
changes in the resting brain, independent of motor exe-
cution, are yet to be studied.
Within this scope, several pieces of previous work have
studied the concept of visuomotor learning [11− 13].
However visuomotor tasks generally require learning of
an underlying mapping between the actual motor task
space and the visual feedback environment. Hence as
a confounding factor, this further incorporates separate

processing of different visual mapping aspects into the
learning process [14, 15]. We argue that such neuroimag-
ing studies should dissociate learning of an underlying vi-
sual mapping from the pure motor learning process. Con-
ventionally in motor rehabilitation literature, motor learn-
ing is studied either in the form of motor adaptation or
skill learning [16], particularly with force-field adaptation
tasks [17, 18]. Accordingly, we investigate resting-state
sensorimotor EEG changes with pure motor learning dur-
ing a force-field adaptation task performed within an ac-
tual physical environment using a robotic setup, without
a separate artificial visual feedback environment.

Based on statistical analysis of experimental data from
twenty-one healthy subjects, we observed an increase
of resting-state α-band (8–14 Hz) sensorimotor activity
across subjects throughout motor learning. Moreover,
regression analysis demonstrates that the amount of the
observed increase in sensorimotor activity across resting
stages in an early adaptation phase of the motor task is
predictive of individual motor adaptation learning perfor-
mances. Finally we discuss how these motor learning re-
lated changes in resting-state EEG can be exploited in
future BCI-assisted stroke rehabilitation protocols.

MATERIALS AND METHODS

Subjects and Experimental Data: Twenty-one right
handed healthy subjects (14 male, 7 female; mean age
23.8 ± 3.1) participated in this study. All subjects were
naive to the force-field adaptation task. Before the ex-
periments, all participants gave their informed consent
after the experimental procedure was explained to them
in accordance with guidelines set by the research ethics
committee of Sabancı University. Throughout the ex-
periments, the robotic setup recorded data at 500 Hz
sampling rate and a 64-channel EEG was recorded at
512 Hz sampling rate, using active EEG electrodes and
a BioSemi ActiveTwo amplifier (Biosemi Inc., Amster-
dam, The Netherlands). Electrodes were placed accord-
ing to the 10-20 system. All data were re-referenced to
common average reference offline.
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Figure 1: Illustration of the task workspace. Four target lo-
cations are placed on the board at the northeast, northwest,
southeast, and southwest positions with equal distances of 200
mm from the center.

Study Design: Participating subjects performed a
force-field adaptation task under simultaneous EEG
recordings. The goal of the task was learning to perform
planar center-out reaching movements under an unknown
force-field, as straightly as possible. During the experi-
ments, subjects sat in front of a horizontally placed board
constructing the task workspace. Subjects were hold-
ing a handle, henceforth referred to as an end-effector,
with their right hands that was suspended from above
onto the board. The end-effector was attached to a 3
degrees-of-freedom modified delta robot which had con-
strained motion on z-axis and was only capable of two-
dimensional movements that were restricted to fall within
a circle with a radius of 200 mm. Idle starting position of
the end-effector corresponded to the center of this circle.
There were four target locations placed on the circle at
the northeast, northwest, southeast, and southwest posi-
tions. The target locations were indicated with holes over
the board containing LEDs inside. An illustration of the
task workspace is provided in Fig. 1.
Before the experiments, all subjects performed a pre-
flight phase of eight trials (i.e., reaching movements)
without any force-field to get familiar with the task
workspace and trial flow. As part of the force-field adap-
tation task, each subject performed 200 trials in total,
which were divided into three blocks of 40, 80, and 80 tri-
als. Within each of these blocks, there were equal number
of trials per target location.
In order to investigate the changes in resting-state sen-
sorimotor activity with motor adaptation learning, along-
side the force-field adaptation task, five-minute resting-
state EEG recordings were performed throughout the ex-
periment. First resting-state recording was performed be-
fore the force-field adaptation task, second recording af-
ter the first block of 40 trials and a third resting-state
recording after completion of the force-field adaptation
task. During these recordings, subjects were placed ap-
proximately 1.5 meters in front of a computer screen and
instructed to relax with eyes open, looking at a fixation

cross displayed in the middle of the screen. Resting-state
recordings were performed with subjects’ eyes open to
construct a baseline condition for the force-field adapta-
tion task that involved visual processing [19]. Same ex-
perimental setup and data were also presented and used
in our previous work for different analyses [20, 21].

Force-Field Adaptation Task: The task involved two-
dimensional center-out reaching movements within the
task workspace, while a velocity dependent external
force-field was applied to the end-effector by the robotic
setup to disturb subjects’ motions. Specifically, end-
effector velocity vector ~v was multiplied with a constant
matrix B, representing the viscosity of the imposed envi-
ronment, to compute ~f = B~v at each time point, where
~f represented the forces that the robotic setup is pro-
grammed to produce on the end-effector as the subject
performed reaching movements. The constant matrix B
was the same as in [22].

Throughout the experiments, subjects performed 200 tri-
als with a randomized order of 50 trials for each of the
four target locations. At the beginning of each trial, the
target location was indicated with a blinking LED light.
As the subject reached for the target location using the
end-effector and then moved back to the starting position,
a calculated score within a range of 0–100 was read out
to the subject through a speaker. The score in each trial
indicated how straight the movement trajectory was in the
corresponding trial. To calculate the score, we first com-
puted the sum of perpendicular distances of each point
on the movement trajectory to the ideal path (i.e., straight
line from center to target) [23]. Secondly, this sum served
as an input variable to a sigmoid function, indicating a
gradually diminishing increase [24]. Third, the value of
the sigmoid function was multiplied by the elapsed time
of the trial as a penalty on the score. At the end of each
trial, the subjects were informed about their movement
performance by inversely mapping this value to a range of
0–100; a higher score denoting a faster and more straight
reaching movement. Aim of the subjects was to increase
the score throughout trials.

Resting-State Sensorimotor EEG Processing: For all
analyses in this study, from the 64-channel EEG data
recorded during the experiments, we only used the C3,
CP3, C4, and CP4 electrodes that are known to mainly
represent sensorimotor activity of the brain [25− 28].
As each resting-state five-minute time-series data consti-
tuted a high dimensional matrix (4 channels x 153600
samples), we implemented dimensionality reduction in
the temporal domain. Specifically, we transformed EEG
data of each electrode into the spectral domain and com-
puted log-bandpowers in four main frequency bands; θ-
band (4–7 Hz), α-band (8–14 Hz), β-band (15–30 Hz),
and γ-band (55–85 Hz). We computed resting-state log-
bandpowers using an FFT in conjunction with a Hann
window spanning the whole five-minute resting phase.
This analysis resulted in resting-state powers in four main
frequency bands and four electrodes for each subject.



Changes in Resting Sensorimotor Activity: We used
a Wilcoxon signed-rank test to investigate if there is a
significant frequency-specific change in the resting-state
sensorimotor activity across subjects from first to the sec-
ond resting-state with an early adaptation, or from first to
third resting-state throughout the complete adaptation pe-
riod. In particular, for all frequency bands and four elec-
trodes separately, differences of bandpower values be-
tween first and second resting-state recordings, and first
and third resting-state recordings were computed and was
used to test the null hypothesis of zero median across
twenty-one subjects.

Relation with Motor Adaptation Learning: Resting-
state sensorimotor activities that showed significant
power changes across subjects were further inspected on
whether these changes are related with the motor adapta-
tion learning process. As trial-to-trial variability in per-
formance is not of interest in this context, individual rate-
based motor adaptation learning metrics were quantified
from the feedback scores for each subject. Specifically,
in order to represent an early motor adaptation learning
performance in the first block of 40 trials, where the ini-
tial exposure to the force-field occurs, the ratio of average
scores of the first ten trials over average scores of the last
ten trials of the first block is computed. Similarly to rep-
resent the complete adaptation period, the ratio of average
scores of the first ten trials over average scores of the last
ten trials of the whole experiment is computed. A smaller
value of these metrics indicates greater motor adaptation
in the corresponding time period. These measures served
as the dependent variables in separate multivariate linear
regression models, where the changes in resting sensori-
motor activity were used to predict learning performance
in the corresponding time period.

Before regression analyses, we checked all subjects’ per-
formance measures and EEG features on whether it ex-
ceeded three standard deviations of the median across
subjects, as an outlier rejection criterion. The differences
of the four electrode powers between the first and the sec-
ond resting-state blocks served as the independent vari-
ables to the regression model to predict early motor adap-
tation learning rates using a leave-one-subject-out cross-
validation protocol. Similarly the differences between
first and third resting-state EEG features were used to pre-
dict the complete adaptation learning metrics.

Statistical Significance Testing: To quantify the
strength of a prediction model, the correlation coefficient
between actual and predicted performance measures was
computed. Significance of this correlation was tested
with a permutation test. To test the null-hypothesis of
zero correlation, we randomly permuted the assignment
of performance measures to EEG features across subjects
10,000 times and estimated the frequency at which the
prediction model achieved a higher correlation coefficient
than with the true assignment of EEG features to perfor-
mance measures as the p-value.

RESULTS

Obtained p-values of the Wilcoxon signed-rank tests on
potential frequency-specific changes of resting-state elec-
trode bandpowers across subjects from first to the sec-
ond resting-state with early adaptation, or from first to
third resting-state with complete adaptation, are given in
Tab. 1. In particular, we observe a significant increase
of α-powers across twenty-one subjects in all four elec-
trodes (C3, CP3, C4, and CP4) located over sensorimotor
areas (i.e., SMRs) with early adaptation. Moreover, this
across-subjects increase in SMR activity is preserved in
C3 and CP4 electrodes, but not still statistically signif-
icant in CP3 and C4 (p = 0.06) after the experiment,
with complete adaptation. We do not consider the other
two statistically significant p-values obtained by the elec-
trode C3 as notable due to lack of consistency. For all
four electrodes, resting-state α-power levels of all sub-
jects and the mean across subjects are presented in Fig. 2,
mainly showing an increase of α-powers resulting in the
significant p-values of Tab. 1.
Subjects explicitly show motor adaptation learning ef-
fects in terms of the feedback score metric they are pro-
vided (see Fig. 3a). In particular, we observe that most
of the adaptation occurs in the first block of 40 trials
with the initial exposure to the force-field. Investigating
the relation between the observed resting-state α-power
changes and individual adaptation rates, the early adap-
tation linear regression model shows statistically signifi-
cant results. Specifically, the differences of the four elec-
trode α-powers between the first and the second resting-
state blocks (i.e., through early adaptation) of the sub-
jects were found predictive of individual early adaptation
learning rates, which span a wide range of performance
measures across subjects (ρ = 0.55, p < 0.01, see Fig. 3b
and 3c). On the other hand, difference of α-powers be-
tween the first and third resting-state recordings was not
able to predict the complete adaptation learning rate met-
rics (ρ = −0.30, p > 0.05).

Table 1: p-values of the Wilcoxon signed-rank test on observed
changes of bandpower activity in the early or complete adapta-
tion phases across subjects. Colored cells indicate statistically
significant results (p ≤ 0.05).

Bandpower Adaptation C3 CP3 C4 CP4

θ-band
Early 0.01 0.37 0.90 0.15

Complete 0.76 0.47 0.56 0.98

α-band
Early 0.03 0.01 0.04 0.05

Complete 0.02 0.06 0.06 0.05

β-band
Early 0.84 0.52 0.76 0.33

Complete 0.04 0.06 0.09 0.66

γ-band
Early 0.47 0.82 0.68 0.59

Complete 0.41 0.18 0.16 0.45
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Figure 2: Normalized α-power levels of the four electrodes during three resting-state recordings of all subjects. Mean α-powers across
subjects are presented at the rightmost slot.

DISCUSSION

In this study, we investigate resting-state changes in
sensorimotor EEG activity throughout motor adaptation
learning by a force-field adaptation task. The task was
performed within an actual physical environment to dis-
card any visual mapping confounders that potentially ex-
ist in most visuomotor task based neuroimaging studies.
Subjects showed apparent motor performance increases
throughout the task. We observed explicit increase in
resting-state α-powers across subjects both after an early
adaptation and after the adaptation was complete. More-
over, the changes in resting α-power was found predictive

of individual measures of distinct adaptation rates during
an early adaptation time period of the experiment.

We hypothesize that the observed SMR-power increase
across subjects, which is mostly evident after an early
adaptation, is likely to indicate a cortical reorganization
of the SMR activity. Even though there exist a variety of
studies indicating the relation of SMRs and human motor
behavior, a non-invasive neuroimaging based evidence on
resting activity modulations was not reported with a pure
motor learning task before. While the continuity of these
resting-state changes for longer durations is not estab-
lished on one hand, on the other hand, these results can be
further exploited in novel stroke-rehabilitation paradigms

1 2 3 4 5 6 7 8 9 10

75

80

85

90

95

Trial Group

A
ve

ra
ge

 F
ee

db
ac

k 
S

co
re

(a)

Early Adaptation Performance Measures

N
um

be
r 

of
 S

ub
je

ct
s

0.80 0.85 0.90 0.95 1.00 1.05
 0

 1

 2

 3

 4

(b)

0.8 0.9 1.0 1.1

0.8

0.9

1.0

1.1

Observed Measures

P
re

di
ct

ed
 M

ea
su

re
s

(c)

Figure 3: (a) Average subject feedback scores learning curve. Trial groups represent the sequential order of the 200 trials grouped in 20
trials each. Each point on the red curve represents an average score of 20 trials. Shaded region indicates the standard deviation. (b) Dis-
tribution of the early adaptation performance measures used in regression across subjects. (c) Observed versus predicted performance
measures of the early adaptation regression model (ρ = 0.55, p < 0.01). One dot represents one subject.



that can potentially incorporate neurofeedback [29] or
stimulation based alterations of the electrical activity of
the brain [30, 31] by subject specific SMR localization.
With a similar approach, several studies have previously
focused on BCI-based sensorimotor training to improve
motor behavior during a reaction-time task [27] or a
joystick-based cursor-movement task [28]. Nevertheless,
it is important to note that the evidence presented here
is not sufficient to claim that modulating such brain ac-
tivity ensures an increase in motor learning performance
[32]. The present work solely focuses on investigating
SMR activity, however we have recently studied EEG
correlates of motor adaptation learning in a broader range
of brain regions both during resting-state and movement
preparation phases with a different analysis approach on
this collected data [33]. These evidences can potentially
be exploited in mentioned novel BCI-assisted stroke re-
habilitation protocols.
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