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Abstract—Segmentation of biomedical images is a challenging
task, especially when there is low quality or missing data. The
use of prior information can provide significant assistance for
obtaining more accurate results. In this paper we propose a
new approach for dendritic spine segmentation from microscopic
images over time, which is motivated by incorporating shape
information from previous time points to segment a spine in the
current time point. In particular, using a training set consisting
of spines in two consecutive time points to construct coupled
shape priors, and given the segmentation in the previous time
point, we can improve the segmentation process of the spine in
the current time point. Our approach has been evaluated on 2-
photon microscopy images of dendritic spines and its effectiveness
has been demonstrated by both visual and quantitative results.

Index Terms—Dynamic segmentation, dendritic spine seg-
mentation, 2-photon microscopy, nonparametric shape priors,
coupled shape priors.

I. INTRODUCTION

Dendritic spines are small protrusions covering the surface
of a dendrite and have two main parts, spine head and spine
neck [1]. Spines are one of the crucial components of neurons
and have been widely studied over the last century. It has
been observed that spines have spontaneous and rapid changes
in their structure [2], [3] and it has also been suggested that
morphology and density of spines are highly correlated with
their cognitive functionality, such as memory and learning [4],
[5], [6]. Considering the importance of deducing the crucial
role of spines in those functionalities, analysis of spines has
become a major topic of interest in neurobiology. Automating
dendritic spine analysis can aid neuroscientists in their studies,
since performing manual analysis can be a tedious task and
subject to human bias.

Proper analysis of morphological changes of a spine over
a time interval requires efficient and accurate processing of
time-lapse neuron images, particularly to obtain the spine
contour through segmentation. 2-photon microscopy images
of a dendrite in consecutive time points is shown in Figure 1.
In the case of spines with neck, the segmentation problem is
even more challenging, since in 2-photon microscopy images,

Fig. 1: 2-photon microscopy images of a dendrite in consec-
utive time points.

the neck does not exhibit strong contrast. Overall, purely data-
driven segmentation of spines is challenging and prior infor-
mation about the shape of the spine leads to more successful
segmentation.

Several methods have been proposed for spine segmentation
in 2-photon microscopy images in the literature. Thresholding-
based segmentation is performed in [7], [8]. As mentioned
before, since the neck part of the spine has low contrast, these
methods are not successful in finding the appropriate threshold
in such cases.

Shape prior based methods were introduced before for
segmentation of deformable objects. A typical active-contour
model enforces a curve length penalty on the underlying
shapes. This constraint is not sufficient in many applications
and more structured prior knowledge is required.

Early shape-based segmentation algorithm employ principal
component analysis (PCA) of the signed distance function
representation of training samples to characterize shape vari-
ability [9]. A nonparametric shape prior model has been
proposed by Kim et al. [10] which estimates the underlying
shape distribution by extending a Parzen density estimator
to the space of shapes. Then, an optimization problem for
maximum a posteriori (MAP) estimation is solved by active
contours. Erdil et al. [11] present a joint classification and
segmentation approach for dendritic spine segmentation which
infers the class of the spine during the segmentation process978-1-5090-6494-6/17/$31.00 2017 IEEE



and continues the remaining process adaptively. Another work
by Erdil et al. [12] proposes nonparametric joint shape and
feature priors for segmentation of dendritic spines. They add
discriminative features to the density estimation process and
incorporate the learned joint shape and feature prior distribu-
tion into a maximum a posteriori estimation framework for
segmentation.

While two-photon microscopy involves collecting spine
images over a time interval, existing techniques are concerned
with segmenting spines at a single time point without regard
to the data at other time points. In this paper, we view spine
segmentation over time series images as a dynamic estima-
tion problem, and propose a preliminary approach with this
perspective. Spine shapes evolve over time and information
about the spine contour from the previous time points would in
principle provide useful prior information for segmentation of
the spine at the current time point. To this end, from manually
segmented training data, we learn joint (or coupled) nonpara-
metric shape densities of spines in consecutive time points.
Then in the process of segmenting a spine at a particular
time point, given its segmentation in the previous time point,
we use such learned densities to incorporate information from
the previous segmentation as prior shape information into the
segmentation process.

II. PROPOSED APPROACH

In this section, the derivation of the mathematical formula-
tion and a detailed explanation of our proposed approach is
provided.

Let us assume that we have n training shapes C(t−1) =

{C(t−1)
1 , C

(t−1)
2 , . . . , C

(t−1)
n } at time (t − 1). Let us

also assume that we have n training shapes C(t) =

{C(t)
1 , C

(t)
2 , . . . , C

(t)
n } at time (t)1. Note that C(t−1)

i and C(t)
i

are boundaries of the same spine in consecutive time points for
each i ∈ [1, n]. Then, the posterior probability of C(t) given
intensity images y(t−1) at time point (t− 1) and y(t) at time
point (t) is written as

p(C(t)|y(t−1), y(t)) =
∫
p(C(t), C(t−1)|y(t−1), y(t))dC(t−1).

(1)
Using Bayes’ rule and the assumption that y(t−1) and y(t) are
independent conditioned on the corresponding spine bound-
aries,we get

p(C(t)|y(t−1), y(t))

∝
∫

p(y(t−1), y(t)|C(t), C(t−1))p(C(t), C(t−1))dC(t−1)

=

∫
p(y(t−1)|C(t−1))p(y(t)|C(t))p(C(t)|C(t−1))p(C(t−1))dC(t−1)

∝ p(y(t)|C(t))

∫
p(C(t)|C(t−1))p(C(t−1)|y(t−1))dC(t−1).

(2)

From this point on, one can proceed with various assumptions
on the probability densities in Equation (2). In this paper, we
learn p(C(t)|C(t−1)) nonparametrically from the training data

1Note that the shapes in both C(t−1) and C(t) have already been aligned
to remove the shape variations due to pose differences

and use the data term proposed in [13] for p(y(t)|C(t)) which
we explain in detail later in this section. For the posterior
density p(C(t−1)|y(t−1)), in this preliminary work we assume
that it is a delta function which can be written as follows:

p(C(t−1)|y(t−1)) = δ(C(t−1) − C ′) (3)

where δ(.) is the Dirac delta function and C ′ is the perfect
segmentation of the spine at time point (t−1) which we further
assume that we already have. Then, Equation (2) becomes

p(C(t)|y(t−1), y(t)) ∝ p(y(t)|C(t))p(C(t)|C ′). (4)

Finally, the energy function to be minimized can be written
by taking the negative logarithm of Equation (4) as

E(C(t)) = − log p(y(t)|C(t))− log p(C(t)|C ′). (5)

For the first term − log p(y(t)|C(t)) in Equation (5), we use
the piecewise-constant version of the Mumford functional [14]
proposed in [13] which is given by:

− log p(y(t)|C(t)) =

∫
C

(t)
in

(I(x)−min)
2dx

+

∫
C

(t)
out

(I(x)−mout)
2dx

(6)

where min (mout) are the mean intensities inside (outside) of
curve C(t). We learn the second term p(C(t)|C ′) in Equation
(5) nonparametrically from the training data using Parzen
density estimation as follows:

p(C(t)|C ′) ∝ 1

n

n∑
i=1

k(dL2(C
(t), C

(t)
i ), dL2(C

′, C
(t−1)
i ), σ)

(7)
where k(., ., σ) is a 2D Gaussian with standard deviation σ
and dL2

(., .) is the L2 distance metric.
We minimize the energy function in Equation (5) using

gradient descent. In order to propagate the curve, we use level
set representation of binary shapes which we denote by φ. We
use the sign convention φ < 0 for inside the curve and φ > 0
for outside the curve. The overall gradient flow of the energy
function is the sum of the two terms, one based on the data
term and the other based on the coupled shape prior term. The
partial derivative of the data term is computed as follows:

−∂ log p(y(t)|φ(t))
∂φ(t)

= β
[
−(I(x)−min)

2+(I(x)−mout)
2
]
~N

(8)
where ~N is the outward curve normal. Also, the partial
derivative of the coupled shape prior term is given by

∂ log p(φ(t)|φ′)
∂φ(t)

=
1

p(φ(t)|φ′)
1

σ2

1

n
n∑

i=1

k(dL2(φ
(t), φ

(t)
i ), dL2(φ

′, φ
(t−1)
i ), σ)(φ

(t)
i − φ

(t)).

(9)

In our approach, we start the segmentation with the level
set representation of an initial curve and update the curve with
the gradient of the energy function in Equation (5). Finally,
when the curve converges at some point, C(t) can be found
from φ(t) by thresholding at zero.



Fig. 2: The dendritic spine data set. First row: manual segmentations in the first time point, second row: manual segmentations
in the second time point, third row: intensity images in the second time point.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
dynamic segmentation approach on the dendritic spine data
set. The dendritic spine data set contains 23 spine images in
consecutive time points together with their manual segmen-
tations as shown in Figure 2. We perform experiments on a
leave-one-out fashion by using an intensity image for test and
the remaining 22 binary images in consecutive time points for
training.

We compare the performance of the proposed approach
with the approach proposed in [10] which does not use
any shape priors from the previous time point. We evaluate
the performance of the proposed approach and the approach
in [10] by comparing the segmentation results with manual
segmentations of a domain expert using Dice score [15]. Dice
score measures the similarity between two sets X and Y which
are in our case binary images representing the ground truth
and segmentation results of the segmentation algorithm. Dice
score takes values between 0 and 1 where 1 indicates perfect
match between X and Y . Dice score is computed as follows:

D(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

. (10)

We provide the quantitative results of both the proposed
approach and the approach of Kim et al. [10] in Table I. The
quantitative results demonstrate that the proposed approach
improves the segmentation results by using the segmentation
from the previous time point as prior information.

We also provide some visual results obtained by the pro-
posed approach (see Figure 3) and the approach of Kim et
al. [10] (Figure 4). The visual results also demonstrate that
the proposed approach improves the segmentation results of
the approach proposed in [10].

IV. CONCLUSION

In this paper a dendritic spine segmentation method that
employs coupled shape priors exploiting information about
the boundary from the previous time point is proposed. Our
approach is motivated by the assumption that over a time
period, there are co-dependencies between changes of spines
whose shapes are similar initially. Based on that, a coupled
shape prior term has been constructed for providing the shape
force in the curve evolution process. The resulting energy
function has been minimized using gradient descent and level
sets. We evaluate the effectiveness of the proposed method

TABLE I: Dice Score results.

Proposed Method Kim et al. [10]
Spine 1 0.6386 0.6379
Spine 2 0.7520 0.7470
Spine 3 0.6343 0.6366
Spine 4 0.7847 0.6727
Spine 5 0.6627 0.6655
Spine 6 0.7937 0.6673
Spine 7 0.6689 0.6906
spine 8 0.7905 0.6789
Spine 9 0.7488 0.6414
Spine 10 0.7414 0.6643
Spine 11 0.7536 0.6693
Spine 12 0.7299 0.6435
Spine 13 0.7703 0.6753
Spine 14 0.7523 0.5977
Spine 15 0.6872 0.7057
Spine 16 0.6908 0.7145
Spine 17 0.6965 0.5955
Spine 18 0.8041 0.7352
Spine 19 0.8079 0.6626
Spine 20 0.7230 0.6473
Spine 21 0.7963 0.6566
Spine 22 0.7903 0.7696
Spine 23 0.7162 0.6700
Average 0.7362 0.6715

Fig. 3: Visual segmentation results obtained by the proposed
method.

on 2-photon microscopy images of spines. According to both
visual and quantitative experimental results, our method is
more successful in the segmentation process of the spine in
comparison with Kim et al. [10], which uses static shape priors
rather than dynamic priors based on the previous time point.

A possible future approach would be to extend this prelim-
inary study to a complete dynamic estimation setting which
uses imperfect segmentations from previous time points. This



Fig. 4: Visual segmentation results obtained by the approach
of Kim et al. [10].

can be achieved by characterizing the posterior distribution in
the first time point using a shape sampling approach [16].
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