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Abstract— Future Video Coding (FVC) is a new international 

video compression standard offering much better compression 

efficiency than previous video compression standards at the 

expense of much higher computational complexity. In this paper, 

an FPGA implementation of FVC 2D transform is proposed. The 

proposed FVC 2D transform hardware can perform 2D DCT-II, 

DCT-V, DCT-VIII, DST-I, DST-VII operations for 4x4 and 8x8 

transform units. It uses two reconfigurable datapaths for all 1D 

transforms. It implements multiplications with constants using 

DSP blocks in FPGA. The proposed FPGA implementation, in 

the worst case, can process 54 8K Ultra HD (7680x4320) video 

frames per second. The proposed FPGA implementation has up 

to 29% less energy consumption than the FPGA implementation 

of FVC 2D transform hardware in the literature.  
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I. INTRODUCTION 

ITU and ISO standardization organizations are jointly 

developing a new international video compression standard 

called Future Video Coding (FVC) [1]-[3]. FVC will provide 

much better compression efficiency than the previous High 

Efficiency Video Coding (HEVC) video compression standard 

at the expense of much more computational complexity [4]-

[9]. 

HEVC uses Discrete Cosine Transform (DCT) / Inverse 

Discrete Cosine Transform (IDCT). In addition, it uses 

Discrete Sine Transform (DST) / Inverse Discrete Sine 

Transform (IDST) for 4x4 intra prediction in certain cases. 

DCT and DST have high computational complexity, and they 

are heavily used in an HEVC encoder [10]. DCT and DST 

operations account for 11% of the computational complexity 

of an HEVC video encoder. They account for 25% of the 

computational complexity of an all intra HEVC video encoder. 

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 

32x32 Transform Unit (TU) sizes. In order to improve the 

compression efficiency, FVC uses DCT-II, DCT-V, DCT-

VIII, DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32, 

64x64 TU sizes [11], [12]. Therefore, FVC transform 

operations have much higher computational complexity than 

HEVC transform operations. 

In this paper, an FPGA implementation of FVC 2D 

transform is proposed. The proposed hardware performs 2D 

DCT-II, DCT-V, DCT-VIII, DST-I, and DST-VII operations 

for 4x4 and 8x8 TU sizes by applying 1D transforms in 

vertical and horizontal directions. It processes two 4x4 TUs in 

parallel or one 8x8 TU. Therefore, it can calculate 8 

DCT/DST coefficients per clock cycle. The proposed 

hardware uses one reconfigurable datapath for all 1D column 

transforms and one reconfigurable datapath for all 1D row 

transforms.  

Xilinx FPGAs have built-in full-custom DSP blocks which 

can perform constant multiplications faster and with less 

energy than adders and shifters. A DSP block can be used to 

perform different constant multiplications by providing proper 

constant value to its input. Therefore, it is more efficient to 

implement constant multiplications using DSP blocks instead 

of using adders and shifters in an FPGA implementation. 

Therefore, the proposed hardware implements 

multiplications with constants using DSP blocks in FPGA 

instead of using adders and shifters. It uses data gating to 

reduce energy consumption. The proposed FVC 2D transform 

hardware is implemented using Verilog HDL. The proposed 

FPGA implementation, in the worst case, can process 54 8K 

Ultra HD (7680x4320) video frames per second.  

Two FVC 2D transform hardware are proposed in the 

literature [13]. They implement FVC 2D transform operations 

for 4x4 and 8x8 TU sizes by applying 1D transforms in 

vertical and horizontal directions. The baseline hardware uses 

separate datapaths for each 1D transform. The reconfigurable 

hardware uses two reconfigurable datapaths for all 1D 

transforms. Since it is more efficient to implement constant 

multiplications using adders and shifters instead of using 

multipliers in an ASIC implementation, they both implement 

multiplications with constants using adders and shifters. 

Therefore, the proposed FPGA implementation of FVC 2D 

transform has up to 29% and 59% less energy consumption 

than FPGA implementations of baseline and reconfigurable 

hardware, respectively. 

Several HEVC 2D DCT hardware are proposed in the 

literature [14]-[16]. Their FPGA implementations are 

compared with the proposed FPGA implementation of FVC 

2D transform in section IV. 

The rest of the paper is organized as follows. In Section II, 

FVC transform algorithms are explained. In Section III, the 

proposed FVC 2D transform hardware is explained. The 

implementation results are given in Section IV. Finally, 

Section V presents the conclusion. 
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TABLE I 

DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII BASIS FUNCTIONS 

Transform Type Basis Function 

DCT-II T�� = ω� ∙ �	
 ∙ cos ��∙�∙�	����	
 �, ω� = ��	
 i = 01 i ≠ 0 
DCT-V T�� = ω� ∙ ω� ∙ � 		
�� ∙ cos �	�∙�∙�	
���, ω� = ��	
 i = 01 i ≠ 0,	ω� = ��	
 j = 01 j ≠ 0 
DCT-VIII T�� = � 42N + 1 ∙ cos$π ∙ �2i + 1� ∙ �2j + 1�4N + 2 & 
DST-I T�� = � 2' + 1 ∙ sin $) ∙ �* + 1� ∙ �+ + 1�' + 1 & 
DST-VII T�� = � 42' + 1 ∙ sin $) ∙ �2* + 1� ∙ �+ + 1�2' + 1 & 

II. FVC TRANSFORM ALGORITHM 

Basis functions for 1D DCT-II, DCT-V, DCT-VIII, DST-I 

and DST-VII for an NxN block are shown in Table I, where i, 

j = 0, 1, … , N-1.  

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 

32x32 TU sizes for DCT [16]. It also uses DST for 4x4 intra 

prediction in certain cases. HEVC performs 2D transform 

operation by applying 1D transforms in vertical and horizontal 

directions. The coefficients in HEVC 1D transform matrices 

are derived from DCT-II and DST-VII basis functions. 

However, integer coefficients are used for simplicity. HEVC 

1D DCT-II and DST-VII matrices for 4x4 TU size are shown 

in (1) and (2). 

In order to improve the compression efficiency, FVC uses 

DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII, and it uses 4x4, 

8x8, 16x16, 32x32, 64x64 TU sizes. FVC also performs 2D 

transform operation by applying 1D transforms in vertical and 

horizontal directions. The coefficients in the FVC 1D 

transform matrices are derived from DCT and DST basis 

functions. However, integer coefficients are used for 

simplicity. FVC 1D transform matrices for 4x4 TU size are 

shown in (3)-(7). 

HEVC uses the same transform type for vertical and 

horizontal 1D transforms for performing a 2D transform. 

However, FVC may use different transform types for vertical 

and horizontal 1D transforms. It uses an adaptive multiple 

transform (AMT) scheme to determine 1D transform types. 

AMT is enabled or disabled for each coding unit (CU). When 

AMT is disabled for a CU, only DCT-II is used for this CU. 

When AMT is enabled for a CU, 1D transform types for 

vertical and horizontal directions are selected based on 

prediction type, intra or inter prediction, for this CU.  

In FVC, as shown in Table II, three different 1D transform 

sets are defined. Each transform set consists of two transform 

types. In intra prediction, transform set is selected based on 

intra prediction mode. In inter prediction, transform set 2 is 

used for all inter prediction modes. 

 

 

,-. − 00121 =	 364 64 64 6483 36 −36 −8364 −64 −64 6436 −83 83 −367            (1) 
 

,8. − 900121 =	 329 55 74 8474 74 0 −7484 −29 −74 5555 −84 74 −297            (2) 
 

,-. − 00121 =	 3256 256 256 256334 139 −139 −334256 −256 −256 256139 −334 334 −1397            (3) 
 

,-. − 9121 =	 3194 274 274 274274 241 −86 −349274 −86 −349 241274 −349 241 −86 7            (4) 
 

,-. − 9000121 =	 3336 296 219 117296 0 −296 −296219 −296 −117 336117 −296 336 −2197            (5) 
 

,8. − 0121 =	 3190 308 308 190308 190 −190 −308308 −190 −190 308190 −308 308 −1907            (6) 
 

,8. − 900121 =	 3117 219 296 336296 296 0 −296336 −117 −296 219219 −336 296 −1177            (7) 
 

TABLE II 

TRANSFORM SETS 

Transform Set Transform Types 

0 DST-VII, DCT-VIII 

1 DST-VII, DST-I 

2 DST-VII, DCT-V 

 



 

Fig. 1. Proposed FVC 2D Transform Hardware

III. PROPOSED FVC 2D TRANSFORM HARDWARE  

The proposed FVC 2D transform hardware for 4x4 and 8x8 

TU sizes is shown in Fig. 1. The proposed hardware performs 

2D DCT/DST by first performing 1D DCT/DST on the 

columns of a TU, and then performing 1D DCT/DST on the 

rows of the TU. After 1D column DCT/DST, the resulting 

transformed coefficients are stored in a transpose memory, and 

they are used as input for 1D row DCT/DST.  

The proposed hardware uses one reconfigurable datapath 

for implementing all 1D column DCT/DST types and one 

reconfigurable datapath for implementing all 1D row 

DCT/DST types. The proposed hardware calculates eight 

transformed coefficients per clock cycle for both 4x4 and 8x8 

TU sizes. When the proposed hardware processes 8x8 TU 

size, eight inputs are eight residuals in one column of an 8x8 

TU. When it processes 4x4 TU size, eight inputs are four 

residuals in one column of a 4x4 TU and four residuals in one 

column of another 4x4 TU. 

An N-point 1D transform can be performed by performing 

two N/2-point 1D transforms with some preprocessing for 

FVC DCT-II and DST-I. FVC DCT-V, DCT-VIII and DST-

VII do not have this property. Since the proposed hardware 

uses one reconfigurable datapath for all 1D transforms, N-

point DCT-II and DST-I are also performed by performing 

one N-point DCT-II and DST-I same as DCT-V, DCT-VIII, 

DST-VII.   

The proposed reconfigurable 1D column datapath is shown 

in Fig. 2. Column and row datapath have the same hardware 

architecture. Since each 1D DCT/DST uses different 

transform coefficients, different constant multiplication 

operations should be performed for each 1D DCT/DST. Xilinx 

FPGAs have built-in full-custom DSP blocks which can 

perform constant multiplications faster and with less energy 

than adders and shifters. A DSP block can be used to perform 

different constant multiplications by providing proper constant 

value to its input. Therefore, the proposed hardware 

implements constant multiplications using DSP blocks in 

FPGA instead of using adders and shifters. 

For implementing constant multiplications, 8x8=64 DSP 

blocks are used in 1D column datapath and 8x8=64 DSP 

blocks are used in 1D row datapath. In the column datapath, 

each transform input sent to 8 DSP blocks in the same column. 

Each DSP block takes one transform input and one transform 

coefficient as input, and it performs constant multiplication. 

64 and 32 DSP blocks are used for one 8x8 TU and two 4x4 

TUs, respectively. Since the proposed hardware can perform 5 

different DCT/DST operations for 2 different TU sizes, a 

multiplexer is used at the input of each DSP block to select 

proper transform coefficient. 1D transform type (TR_Type_ 

Vertical) and TU size (TU_size) are used as select signals for 

the multiplexers. 

In order to calculate each output of 1D DCT/DST for an 

8x8 TU, outputs of DSP blocks in the same row are added. 8 

DSP blocks in the same row and their adder tree structure is 

shown in Fig. 2. 8 DSP blocks in the other rows have the same 

structure. In the figure, only one of them is shown for 

simplicity. 

In order to calculate each output of 1D DCT/DST for a 4x4 

TU, outputs of DSP blocks in the same row are added. Since 

two 4x4 TUs are processed in parallel, outputs of first 4 DSP 

blocks in the same row are added for the first 4x4 TU. Outputs 

of last 4 DSP blocks in the same row are added for the second 

4x4 TU. 

In order to reduce energy consumption of the proposed 

hardware, data gating is used for the inputs of DSP blocks in 

1D column datapath and 1D row datapath. 1D DCT/DST 

operation for an 8x8 TU uses 64 DSP blocks. 1D DCT/DST 

operation for a 4x4 TU uses 16 DSP blocks. Therefore, when 

two 4x4 TUs are processed in parallel, the input registers of 32 

DSP blocks are not updated. This prevents unnecessary 

switching activities in the DSP blocks and therefore reduces 

energy consumption. 

As shown in Fig. 3, the transpose memory is implemented 

using 8 Block RAMs (BRAM). 4 and 8 BRAMs are used for 

4x4 and 8x8 TU sizes, respectively. Since a BRAM address 

can store 32-bits and one transformed coefficient of 1D 

column DCT/DST is 16-bits, each BRAM address can store 

two transformed coefficients. When the proposed hardware 

processes 4x4 and 8x8 TU size, each BRAM address stores 

two and one transformed coefficients, respectively. 

In the Fig. 3, the numbers in the each box show the BRAM 

that coefficient is stored. The results of 1D column DCT/DST 

are generated column by column. For 8x8 TU size, first, the 

coefficients in column 0 (C0) are generated in a clock cycle 

and stored in 8 different BRAMs. Then, the coefficients in 

column 1 (C1) are generated in the next clock cycle and stored 

in 8 different BRAMs using a rotating addressing scheme. 



  

 

Fig. 2. 1D Column/Row Datapath 

 

Fig. 3. Transpose Memory 

 

This continuous until the coefficients in column 7 (C7) are 

generated and stored in 8 different BRAMs using the rotating 

addressing scheme. This ensures that the 8 coefficients 

necessary for 1D row DCT/DST in a clock cycle can always 

be read in one clock cycle from 8 different BRAMs.  

Column clip and row clip hardware are used to scale the 

outputs of 1D column DCT/DST and 1D row DCT/DST to 16 

bits, respectively. Column clip hardware shifts 1D column 

DCT/DST outputs right by 3 and 4 bits for 4x4 and 8x8 TU 

sizes, respectively. Row clip hardware shifts 1D row 

DCT/DST outputs right by 10 and 11 bits for 4x4 and 8x8 TU 

sizes, respectively. 

The proposed hardware performs 1D DCT/DST for 4x4 and 

8x8 TU sizes in 4 and 8 clock cycles, respectively. 1D column 

DCT/DST and 1D row DCT/DST operations are pipelined. 

While 1D row DCT/DST for current TU is performed, 1D 

column DCT/DST for next TU is also performed. Because of 

the input data loading and pipeline stages, the proposed 

hardware starts generating the results of 1D row DCT/DST in 

16 clock cycles. It then continues generating the results row by 

row in every clock cycle until the end of the last TU in the 

video frame without any stalls. 

IV. IMPLEMENTATION RESULTS 

The proposed FVC 2D transform hardware is implemented 

using Verilog HDL. The Verilog RTL codes are verified with 

RTL simulations. RTL simulation results matched results of 

FVC 2D transform implementation in Joint Exploration Test 

Model (JEM) 4.0 reference software encoder [2]. The Verilog 

RTL codes are synthesized and mapped to a Xilinx 

XC6VLX550T FF1759 FPGA with speed grade 2 using 

Xilinx ISE 14.7.  

The FPGA implementation is verified to work at 222 MHz 

by post place and route simulations. Post place and route 

simulation results matched results of FVC 2D transform 

implementation in JEM 4.0 reference software encoder. 

Therefore, it can process 54 8K Ultra HD (7680x4320) video 

frames per second. The FPGA implementation uses 3332 

LUTs, 2082 DFFs, 128 DSP Blocks and 8 BRAMs.  

An HEVC 2D DCT hardware for all TU sizes is proposed in 

[16]. In this paper, for fair comparison, this hardware is 

implemented for 4x4 and 8x8 TU sizes by using DSP blocks 

in FPGA for implementing multiplications with constants. The 

FPGA implementation uses 2069 LUTs, 665 DFFs, 44 DSP 

Blocks and 8 BRAMs. The FPGA implementation is verified 

to work at 222 MHz by post place and route simulations. 

Therefore, it can process 54 8K Ultra HD (7680x4320) video 

frames per second. In this paper, this FPGA implementation is 

called as HEVC 2D DCT hardware.  

 



  

 
Fig. 4. Energy Consumptions of FVC 2D Transform and HEVC 2D DCT Hardware 

TABLE III 

MULTIPLIER, ADDER, MUX AMOUNTS IN 1D DATAPATH 

 
HEVC 

Hardware [16] 

Proposed FVC 

Hardware 

Multiplier 22 64 

Adder 28 56 

10-bit 2-to-1 

MUX 
- 342 

 

Number of multipliers, adders and multiplexers used in 1D 

(column or row) datapath of the proposed FVC 2D transform 

hardware and the HEVC 2D DCT hardware are shown in 

Table III. Since FVC 2D transform operations have much 

higher computational complexity than HEVC 2D DCT 

operations, the proposed FVC reconfigurable 1D column/row 

datapath uses more multipliers, adders and multiplexers than 

the column/row datapath in the HEVC 2D DCT hardware.  

Power consumptions of the FPGA implementations are 

estimated using Xilinx XPower Analyzer tool. Post place and 

route timing simulations are performed for Tennis, Kimono 

and Park Scene (1920x1080) videos at 100 MHz [17], and 

signal activities are stored in VCD files. These VCD files are 

used for estimating power consumptions of the FPGA 

implementations.  

Energy consumptions of the FPGA implementations of 

FVC baseline and reconfigurable 2D transform hardware 

proposed in [13], the proposed FVC 2D transform hardware 

and the HEVC 2D DCT hardware for one frame of each video 

are shown in Fig. 4. Since FVC 2D transform operations have 

much higher computational complexity than HEVC 2D DCT 

operations, the proposed FVC 2D transform hardware 

consumes more energy than the HEVC 2D DCT hardware. 

Since the proposed FVC 2D transform hardware implements 

multiplications with constants using DSP blocks in FPGA 

instead of using adders and shifters, the proposed FPGA 

implementation of FVC 2D transform has up to 29% and 59% 

less energy consumption than FPGA implementations of FVC 

baseline and reconfigurable 2D transform hardware, 

respectively. 

The proposed FPGA implementation of FVC 2D transform 

is compared with FPGA implementations of FVC 2D 

transform hardware and HEVC 2D DCT hardware in the 

literature [13]-[16]. The comparison is shown in Table IV. 

Since the FVC baseline and reconfigurable 2D transform 

hardware proposed in [13] implement multiplications with 

constants using adders and shifters, their FPGA 

implementations are slower and use more Slices, LUTs and 

DFFs than the proposed FPGA implementation of FVC 2D 

transform. However, they do not use any DSP blocks. 

Since FVC 2D transform operations have much higher 

computational complexity than HEVC 2D DCT operations, 

the proposed FPGA implementation of FVC 2D transform is 

slower and uses more FPGA resources than the FPGA 

implementations of HEVC 2D DCT hardware proposed in 

[14]-[16]. Since HEVC 2D DCT hardware proposed in [14] 

performs DCT-II for TU sizes up to 32x32, its FPGA 

implementation uses more FPGA resources. 

V. CONCLUSION 

In this paper, an FPGA implementation of FVC 2D 

transform is proposed. The proposed hardware implements 

multiplications with constants using DSP blocks in FPGA. 

The proposed FPGA implementation can process 54 8K Ultra 

HD (7680x4320) video frames per second. The proposed 

FPGA implementation has up to 29% less energy consumption 

than the FPGA implementation of FVC 2D transform 

hardware in the literature. 
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