
An FPGA Implementation of Future Video Coding

2D Transform

Ahmet Can Mert, Ercan Kalali, Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University

34956 Tuzla, Istanbul, Turkey

{ahmetcanmert, ercankalali, hamzaoglu}@sabanciuniv.edu

Abstract— Future Video Coding (FVC) is a new international

video compression standard offering much better compression

efficiency than previous video compression standards at the

expense of much higher computational complexity. In this paper,

an FPGA implementation of FVC 2D transform is proposed. The

proposed FVC 2D transform hardware can perform 2D DCT-II,

DCT-V, DCT-VIII, DST-I, DST-VII operations for 4x4 and 8x8

transform units. It uses two reconfigurable datapaths for all 1D

transforms. It implements multiplications with constants using

DSP blocks in FPGA. The proposed FPGA implementation, in

the worst case, can process 54 8K Ultra HD (7680x4320) video

frames per second. The proposed FPGA implementation has up

to 29% less energy consumption than the FPGA implementation

of FVC 2D transform hardware in the literature.

Keywords—Discrete Cosine Transform, Discrete Sine

Transform, FVC, Hardware Implementation, FPGA.

I. INTRODUCTION

ITU and ISO standardization organizations are jointly

developing a new international video compression standard

called Future Video Coding (FVC) [1]-[3]. FVC will provide

much better compression efficiency than the previous High

Efficiency Video Coding (HEVC) video compression standard

at the expense of much more computational complexity [4]-

[9].

HEVC uses Discrete Cosine Transform (DCT) / Inverse

Discrete Cosine Transform (IDCT). In addition, it uses

Discrete Sine Transform (DST) / Inverse Discrete Sine

Transform (IDST) for 4x4 intra prediction in certain cases.

DCT and DST have high computational complexity, and they

are heavily used in an HEVC encoder [10]. DCT and DST

operations account for 11% of the computational complexity

of an HEVC video encoder. They account for 25% of the

computational complexity of an all intra HEVC video encoder.

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16,

32x32 Transform Unit (TU) sizes. In order to improve the

compression efficiency, FVC uses DCT-II, DCT-V, DCT-

VIII, DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32,

64x64 TU sizes [11], [12]. Therefore, FVC transform

operations have much higher computational complexity than

HEVC transform operations.

In this paper, an FPGA implementation of FVC 2D

transform is proposed. The proposed hardware performs 2D

DCT-II, DCT-V, DCT-VIII, DST-I, and DST-VII operations

for 4x4 and 8x8 TU sizes by applying 1D transforms in

vertical and horizontal directions. It processes two 4x4 TUs in

parallel or one 8x8 TU. Therefore, it can calculate 8

DCT/DST coefficients per clock cycle. The proposed

hardware uses one reconfigurable datapath for all 1D column

transforms and one reconfigurable datapath for all 1D row

transforms.

Xilinx FPGAs have built-in full-custom DSP blocks which

can perform constant multiplications faster and with less

energy than adders and shifters. A DSP block can be used to

perform different constant multiplications by providing proper

constant value to its input. Therefore, it is more efficient to

implement constant multiplications using DSP blocks instead

of using adders and shifters in an FPGA implementation.

Therefore, the proposed hardware implements

multiplications with constants using DSP blocks in FPGA

instead of using adders and shifters. It uses data gating to

reduce energy consumption. The proposed FVC 2D transform

hardware is implemented using Verilog HDL. The proposed

FPGA implementation, in the worst case, can process 54 8K

Ultra HD (7680x4320) video frames per second.

Two FVC 2D transform hardware are proposed in the

literature [13]. They implement FVC 2D transform operations

for 4x4 and 8x8 TU sizes by applying 1D transforms in

vertical and horizontal directions. The baseline hardware uses

separate datapaths for each 1D transform. The reconfigurable

hardware uses two reconfigurable datapaths for all 1D

transforms. Since it is more efficient to implement constant

multiplications using adders and shifters instead of using

multipliers in an ASIC implementation, they both implement

multiplications with constants using adders and shifters.

Therefore, the proposed FPGA implementation of FVC 2D

transform has up to 29% and 59% less energy consumption

than FPGA implementations of baseline and reconfigurable

hardware, respectively.

Several HEVC 2D DCT hardware are proposed in the

literature [14]-[16]. Their FPGA implementations are

compared with the proposed FPGA implementation of FVC

2D transform in section IV.

The rest of the paper is organized as follows. In Section II,

FVC transform algorithms are explained. In Section III, the

proposed FVC 2D transform hardware is explained. The

implementation results are given in Section IV. Finally,

Section V presents the conclusion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190018207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I

DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII BASIS FUNCTIONS

Transform Type Basis Function

DCT-II T�� = ω� ∙ �	
 ∙ cos ��∙�∙�	����	
 �, ω� = ��	
 i = 01 i ≠ 0
DCT-V T�� = ω� ∙ ω� ∙ � 		
�� ∙ cos �	�∙�∙�	
���, ω� = ��	
 i = 01 i ≠ 0,	ω� = ��	
 j = 01 j ≠ 0
DCT-VIII T�� = � 42N + 1 ∙ cos$π ∙ �2i + 1� ∙ �2j + 1�4N + 2 &
DST-I T�� = � 2' + 1 ∙ sin $) ∙ �* + 1� ∙ �+ + 1�' + 1 &
DST-VII T�� = � 42' + 1 ∙ sin $) ∙ �2* + 1� ∙ �+ + 1�2' + 1 &

II. FVC TRANSFORM ALGORITHM

Basis functions for 1D DCT-II, DCT-V, DCT-VIII, DST-I

and DST-VII for an NxN block are shown in Table I, where i,

j = 0, 1, … , N-1.

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16,

32x32 TU sizes for DCT [16]. It also uses DST for 4x4 intra

prediction in certain cases. HEVC performs 2D transform

operation by applying 1D transforms in vertical and horizontal

directions. The coefficients in HEVC 1D transform matrices

are derived from DCT-II and DST-VII basis functions.

However, integer coefficients are used for simplicity. HEVC

1D DCT-II and DST-VII matrices for 4x4 TU size are shown

in (1) and (2).

In order to improve the compression efficiency, FVC uses

DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII, and it uses 4x4,

8x8, 16x16, 32x32, 64x64 TU sizes. FVC also performs 2D

transform operation by applying 1D transforms in vertical and

horizontal directions. The coefficients in the FVC 1D

transform matrices are derived from DCT and DST basis

functions. However, integer coefficients are used for

simplicity. FVC 1D transform matrices for 4x4 TU size are

shown in (3)-(7).

HEVC uses the same transform type for vertical and

horizontal 1D transforms for performing a 2D transform.

However, FVC may use different transform types for vertical

and horizontal 1D transforms. It uses an adaptive multiple

transform (AMT) scheme to determine 1D transform types.

AMT is enabled or disabled for each coding unit (CU). When

AMT is disabled for a CU, only DCT-II is used for this CU.

When AMT is enabled for a CU, 1D transform types for

vertical and horizontal directions are selected based on

prediction type, intra or inter prediction, for this CU.

In FVC, as shown in Table II, three different 1D transform

sets are defined. Each transform set consists of two transform

types. In intra prediction, transform set is selected based on

intra prediction mode. In inter prediction, transform set 2 is

used for all inter prediction modes.

,-. − 00121 =	 364 64 64 6483 36 −36 −8364 −64 −64 6436 −83 83 −367 (1)

,8. − 900121 =	 329 55 74 8474 74 0 −7484 −29 −74 5555 −84 74 −297 (2)

,-. − 00121 =	 3256 256 256 256334 139 −139 −334256 −256 −256 256139 −334 334 −1397 (3)

,-. − 9121 =	 3194 274 274 274274 241 −86 −349274 −86 −349 241274 −349 241 −86 7 (4)

,-. − 9000121 =	 3336 296 219 117296 0 −296 −296219 −296 −117 336117 −296 336 −2197 (5)

,8. − 0121 =	 3190 308 308 190308 190 −190 −308308 −190 −190 308190 −308 308 −1907 (6)

,8. − 900121 =	 3117 219 296 336296 296 0 −296336 −117 −296 219219 −336 296 −1177 (7)

TABLE II

TRANSFORM SETS

Transform Set Transform Types

0 DST-VII, DCT-VIII

1 DST-VII, DST-I

2 DST-VII, DCT-V

Fig. 1. Proposed FVC 2D Transform Hardware

III. PROPOSED FVC 2D TRANSFORM HARDWARE

The proposed FVC 2D transform hardware for 4x4 and 8x8

TU sizes is shown in Fig. 1. The proposed hardware performs

2D DCT/DST by first performing 1D DCT/DST on the

columns of a TU, and then performing 1D DCT/DST on the

rows of the TU. After 1D column DCT/DST, the resulting

transformed coefficients are stored in a transpose memory, and

they are used as input for 1D row DCT/DST.

The proposed hardware uses one reconfigurable datapath

for implementing all 1D column DCT/DST types and one

reconfigurable datapath for implementing all 1D row

DCT/DST types. The proposed hardware calculates eight

transformed coefficients per clock cycle for both 4x4 and 8x8

TU sizes. When the proposed hardware processes 8x8 TU

size, eight inputs are eight residuals in one column of an 8x8

TU. When it processes 4x4 TU size, eight inputs are four

residuals in one column of a 4x4 TU and four residuals in one

column of another 4x4 TU.

An N-point 1D transform can be performed by performing

two N/2-point 1D transforms with some preprocessing for

FVC DCT-II and DST-I. FVC DCT-V, DCT-VIII and DST-

VII do not have this property. Since the proposed hardware

uses one reconfigurable datapath for all 1D transforms, N-

point DCT-II and DST-I are also performed by performing

one N-point DCT-II and DST-I same as DCT-V, DCT-VIII,

DST-VII.

The proposed reconfigurable 1D column datapath is shown

in Fig. 2. Column and row datapath have the same hardware

architecture. Since each 1D DCT/DST uses different

transform coefficients, different constant multiplication

operations should be performed for each 1D DCT/DST. Xilinx

FPGAs have built-in full-custom DSP blocks which can

perform constant multiplications faster and with less energy

than adders and shifters. A DSP block can be used to perform

different constant multiplications by providing proper constant

value to its input. Therefore, the proposed hardware

implements constant multiplications using DSP blocks in

FPGA instead of using adders and shifters.

For implementing constant multiplications, 8x8=64 DSP

blocks are used in 1D column datapath and 8x8=64 DSP

blocks are used in 1D row datapath. In the column datapath,

each transform input sent to 8 DSP blocks in the same column.

Each DSP block takes one transform input and one transform

coefficient as input, and it performs constant multiplication.

64 and 32 DSP blocks are used for one 8x8 TU and two 4x4

TUs, respectively. Since the proposed hardware can perform 5

different DCT/DST operations for 2 different TU sizes, a

multiplexer is used at the input of each DSP block to select

proper transform coefficient. 1D transform type (TR_Type_

Vertical) and TU size (TU_size) are used as select signals for

the multiplexers.

In order to calculate each output of 1D DCT/DST for an

8x8 TU, outputs of DSP blocks in the same row are added. 8

DSP blocks in the same row and their adder tree structure is

shown in Fig. 2. 8 DSP blocks in the other rows have the same

structure. In the figure, only one of them is shown for

simplicity.

In order to calculate each output of 1D DCT/DST for a 4x4

TU, outputs of DSP blocks in the same row are added. Since

two 4x4 TUs are processed in parallel, outputs of first 4 DSP

blocks in the same row are added for the first 4x4 TU. Outputs

of last 4 DSP blocks in the same row are added for the second

4x4 TU.

In order to reduce energy consumption of the proposed

hardware, data gating is used for the inputs of DSP blocks in

1D column datapath and 1D row datapath. 1D DCT/DST

operation for an 8x8 TU uses 64 DSP blocks. 1D DCT/DST

operation for a 4x4 TU uses 16 DSP blocks. Therefore, when

two 4x4 TUs are processed in parallel, the input registers of 32

DSP blocks are not updated. This prevents unnecessary

switching activities in the DSP blocks and therefore reduces

energy consumption.

As shown in Fig. 3, the transpose memory is implemented

using 8 Block RAMs (BRAM). 4 and 8 BRAMs are used for

4x4 and 8x8 TU sizes, respectively. Since a BRAM address

can store 32-bits and one transformed coefficient of 1D

column DCT/DST is 16-bits, each BRAM address can store

two transformed coefficients. When the proposed hardware

processes 4x4 and 8x8 TU size, each BRAM address stores

two and one transformed coefficients, respectively.

In the Fig. 3, the numbers in the each box show the BRAM

that coefficient is stored. The results of 1D column DCT/DST

are generated column by column. For 8x8 TU size, first, the

coefficients in column 0 (C0) are generated in a clock cycle

and stored in 8 different BRAMs. Then, the coefficients in

column 1 (C1) are generated in the next clock cycle and stored

in 8 different BRAMs using a rotating addressing scheme.

Fig. 2. 1D Column/Row Datapath

Fig. 3. Transpose Memory

This continuous until the coefficients in column 7 (C7) are

generated and stored in 8 different BRAMs using the rotating

addressing scheme. This ensures that the 8 coefficients

necessary for 1D row DCT/DST in a clock cycle can always

be read in one clock cycle from 8 different BRAMs.

Column clip and row clip hardware are used to scale the

outputs of 1D column DCT/DST and 1D row DCT/DST to 16

bits, respectively. Column clip hardware shifts 1D column

DCT/DST outputs right by 3 and 4 bits for 4x4 and 8x8 TU

sizes, respectively. Row clip hardware shifts 1D row

DCT/DST outputs right by 10 and 11 bits for 4x4 and 8x8 TU

sizes, respectively.

The proposed hardware performs 1D DCT/DST for 4x4 and

8x8 TU sizes in 4 and 8 clock cycles, respectively. 1D column

DCT/DST and 1D row DCT/DST operations are pipelined.

While 1D row DCT/DST for current TU is performed, 1D

column DCT/DST for next TU is also performed. Because of

the input data loading and pipeline stages, the proposed

hardware starts generating the results of 1D row DCT/DST in

16 clock cycles. It then continues generating the results row by

row in every clock cycle until the end of the last TU in the

video frame without any stalls.

IV. IMPLEMENTATION RESULTS

The proposed FVC 2D transform hardware is implemented

using Verilog HDL. The Verilog RTL codes are verified with

RTL simulations. RTL simulation results matched results of

FVC 2D transform implementation in Joint Exploration Test

Model (JEM) 4.0 reference software encoder [2]. The Verilog

RTL codes are synthesized and mapped to a Xilinx

XC6VLX550T FF1759 FPGA with speed grade 2 using

Xilinx ISE 14.7.

The FPGA implementation is verified to work at 222 MHz

by post place and route simulations. Post place and route

simulation results matched results of FVC 2D transform

implementation in JEM 4.0 reference software encoder.

Therefore, it can process 54 8K Ultra HD (7680x4320) video

frames per second. The FPGA implementation uses 3332

LUTs, 2082 DFFs, 128 DSP Blocks and 8 BRAMs.

An HEVC 2D DCT hardware for all TU sizes is proposed in

[16]. In this paper, for fair comparison, this hardware is

implemented for 4x4 and 8x8 TU sizes by using DSP blocks

in FPGA for implementing multiplications with constants. The

FPGA implementation uses 2069 LUTs, 665 DFFs, 44 DSP

Blocks and 8 BRAMs. The FPGA implementation is verified

to work at 222 MHz by post place and route simulations.

Therefore, it can process 54 8K Ultra HD (7680x4320) video

frames per second. In this paper, this FPGA implementation is

called as HEVC 2D DCT hardware.

Fig. 4. Energy Consumptions of FVC 2D Transform and HEVC 2D DCT Hardware

TABLE III

MULTIPLIER, ADDER, MUX AMOUNTS IN 1D DATAPATH

HEVC

Hardware [16]

Proposed FVC

Hardware

Multiplier 22 64

Adder 28 56

10-bit 2-to-1

MUX
- 342

Number of multipliers, adders and multiplexers used in 1D

(column or row) datapath of the proposed FVC 2D transform

hardware and the HEVC 2D DCT hardware are shown in

Table III. Since FVC 2D transform operations have much

higher computational complexity than HEVC 2D DCT

operations, the proposed FVC reconfigurable 1D column/row

datapath uses more multipliers, adders and multiplexers than

the column/row datapath in the HEVC 2D DCT hardware.

Power consumptions of the FPGA implementations are

estimated using Xilinx XPower Analyzer tool. Post place and

route timing simulations are performed for Tennis, Kimono

and Park Scene (1920x1080) videos at 100 MHz [17], and

signal activities are stored in VCD files. These VCD files are

used for estimating power consumptions of the FPGA

implementations.

Energy consumptions of the FPGA implementations of

FVC baseline and reconfigurable 2D transform hardware

proposed in [13], the proposed FVC 2D transform hardware

and the HEVC 2D DCT hardware for one frame of each video

are shown in Fig. 4. Since FVC 2D transform operations have

much higher computational complexity than HEVC 2D DCT

operations, the proposed FVC 2D transform hardware

consumes more energy than the HEVC 2D DCT hardware.

Since the proposed FVC 2D transform hardware implements

multiplications with constants using DSP blocks in FPGA

instead of using adders and shifters, the proposed FPGA

implementation of FVC 2D transform has up to 29% and 59%

less energy consumption than FPGA implementations of FVC

baseline and reconfigurable 2D transform hardware,

respectively.

The proposed FPGA implementation of FVC 2D transform

is compared with FPGA implementations of FVC 2D

transform hardware and HEVC 2D DCT hardware in the

literature [13]-[16]. The comparison is shown in Table IV.

Since the FVC baseline and reconfigurable 2D transform

hardware proposed in [13] implement multiplications with

constants using adders and shifters, their FPGA

implementations are slower and use more Slices, LUTs and

DFFs than the proposed FPGA implementation of FVC 2D

transform. However, they do not use any DSP blocks.

Since FVC 2D transform operations have much higher

computational complexity than HEVC 2D DCT operations,

the proposed FPGA implementation of FVC 2D transform is

slower and uses more FPGA resources than the FPGA

implementations of HEVC 2D DCT hardware proposed in

[14]-[16]. Since HEVC 2D DCT hardware proposed in [14]

performs DCT-II for TU sizes up to 32x32, its FPGA

implementation uses more FPGA resources.

V. CONCLUSION

In this paper, an FPGA implementation of FVC 2D

transform is proposed. The proposed hardware implements

multiplications with constants using DSP blocks in FPGA.

The proposed FPGA implementation can process 54 8K Ultra

HD (7680x4320) video frames per second. The proposed

FPGA implementation has up to 29% less energy consumption

than the FPGA implementation of FVC 2D transform

hardware in the literature.

ACKNOWLEDGEMENT

 This research was supported in part by the Scientific and

Technological Research Council of Turkey (TUBITAK) under

the contract 115E290.

REFERENCES

[1] J. Chen, Y. Chen, M. Karczewicz, X. Li, H. Liu, L. Zhang, X. Zhao,

“Coding tools investigation for next generation video coding”, ITU-T

SG16 COM16–C806, Feb. 2015.
[2] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, J. Boyce, “Algorithm

Description of Joint Exploration Model 4”, JVET-D1001, Oct. 2016.

[3] S. H. Park, E. S. Jang, “An Efficient Motion Estimation Method for
QTBT Structure in JVET Future Video Coding”, Data Compression

Conference (DCC), Apr. 2017.

[4] ITU-T and ISO/IEC, High Efficiency Video Coding, ITU-T Rec. H.265
and ISO/IEC 23008-2 (HEVC), April 2013.

[5] E. Ozcan, Y. Adibelli, I. Hamzaoglu, “A High Performance Deblocking

Filter Hardware for High Efficiency Video Coding”, IEEE Trans. on
Consumer Electronics, vol.59, no.3, pp.714-720, Aug. 2013.

[6] E. Ozcan, E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Computation and

Energy Reduction Technique for HEVC Intra Mode Decision”, IEEE
Trans. on Consumer Electronics, vol.60, no.4, pp.745-753, Nov. 2014.

TABLE IV

HARDWARE COMPARISON

HEVC [14] HEVC [15] HEVC [16]

[13]
Proposed FVC

FVC Baseline FVC Reconfig.

FPGA Arria II GX
Xilinx
Virtex7

Xilinx
Virtex 6

Xilinx Virtex 6 Xilinx Virtex 6 Xilinx Virtex 6

Slices - - 810 7930 5292 1223

LUTs 7300 2478 2069 27144 17173 3332

DFFs - - 665 12309 4571 2082

DSP Blocks 128 64 44 - - 128

Max. Freq.

(MHz)
200 289 222 167 143 222

Frames per

Second
-

70
3840x2160

54
7680x4320

40
7680x4320

35
3840x2160

54
7680x4320

Throughput

(pixels/cycle)
- - 8 8 8 8

Max Bit

Length
25 25 25 27 27 27

Transform

Unit Size
4, 8, 16, 32 4, 8 4, 8 4, 8 4, 8 4, 8

Transform

Type
DCT-II DCT-II DCT-II

DCT-II, DCT-V,
DCT-VIII, DST-I,

DST-VII

DCT-II, DCT-V,
DCT-VIII, DST-I,

DST-VII

DCT-II, DCT-V,
DCT-VIII, DST-I,

DST-VII

Transform 2D 2D 2D 2D 2D 2D

[7] A. C. Mert, E. Kalali, I. Hamzaoglu, “Low Complexity HEVC Sub-Pixel

Motion Estimation Technique and Its Hardware Implementation”, IEEE
Int. Conference on Consumer Electronics – Berlin, Sept. 2016.

[8] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low

Energy Intra Prediction Hardware for High Efficiency Video Coding”,
Int. Conference on Field Programmable Logic and Applications, Aug.

2012.

[9] E. Kalali, E. Ozcan, O. M. Yalcinkaya, I Hamzaoglu, “A Low Energy

HEVC Inverse Transform Hardware”, IEEE Trans. on Consumer

Electronics, vol. 60, no. 4, pp. 754-761, Nov. 2014.
[10] J. Vanne, M. Viitanen, T. D. Hamalainen, A. Hallapuro, “Comparative

Rate-Distortion-Complexity Analysis of HEVC and AVC Video

Codecs”, IEEE Trans. on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp.1885-1898, Dec. 2012.

[11] X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, W. Chien,

“Enhanced Multiple Transform for Video Coding”, Data Compression
Conference, April 2016.

[12] T. Biatek, V. Lorcy, P. Castel, P. Philippe, “Low-Complexity Adaptive

Multiple Transform for post-HEVC Video Coding”, Picture Coding
Symposium, Dec. 2016.

[13] A. C. Mert, E. Kalali, I Hamzaoglu, “High Performance 2D Transform

Hardware for Future Video Coding”, IEEE Trans. on Consumer
Electronics, vol. 62, no. 2, May 2017.

[14] G. Pastuszak, “Hardware architecture for the H.265/HEVC discrete

cosine transform”, IET Image Processing, vol. 9, no. 6, pp. 468-477,
June 2015.

[15] M. Chen, Y. Zhang, C. Lu, “Efficient architecture of variable size

HEVC 2D-DCT for FPGA platforms”, International Journal of
Electronics and Communications, vol. 73, pp. 1-8, March 2017.

[16] E. Kalali, A. C. Mert, I Hamzaoglu, “A Computation and Energy

Reduction Technique for HEVC Discrete Cosine Transform”, IEEE
Trans. on Consumer Electronics, vol. 62, no. 2, pp. 166-174, May 2016.

[17] K. Suehring, X. Li, “JVET Common Test Conditions and Software

Reference Configurations”, JVET-B1010, Feb. 2016.

