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Abstract—Covering arrays have been extensively
used for software testing. Therefore, many covering
array constructors have been developed. However,
each constructor comes with its own pros and cons.
That is, the best constructor to use typically depends
on the specific application scenario at hand. To im-
prove both the efficiency and effectiveness of covering
arrays, we, in this work, present a classification-
based approach to predict the “best” covering array
constructor to use for a given configuration space
model, coverage strength, and optimization criterion,
i.e., minimizing the construction time or the cov-
ering array size. We also empirically evaluate the
proposed approach by using a relatively small, yet
quite realistic space of application scenarios. The
approach predicted the best constructors for reducing
the construction times with an accuracy of 86% and
the best constructors for reducing the covering array
sizes with an accuracy 90%. When two predictions
were made, rather than one, the accuracy of correctly
predicting the best constructors increased to 94% and
98%, respectively.

Index Terms—Combinatorial interaction testing,
covering arrays, covering array constructors, predic-
tions

I. I NTRODUCTION

Covering arrays systematically sample a given
configuration (i.e., input or variability) space and
test only the selected configurations. Given acon-
figuration space model, which implicitly defines a
valid configuration space for testing by expressing
configuration options and their settings as well as
the inter-option constraints (if any) that invalidate
certain combinations of option settings, at-way
covering array is a set of valid configurations, in
which each validt-tuple appears at least once,
where at-tuple is an ordered set of option-setting
pairs for a combination oft distinct options [1] [2].

In this definition, t is often referred to as the
coverage strength.

Covering arrays have been successfully used in
many domains, including systematic testing of input
parameters [3], software configurations [4], soft-
ware product lines [5], graphical user interfaces [6],
multi- threaded applications [7], and network pro-
tocols [8]. Therefore, approaches for computing
covering arrays in an efficient and effective manner
are of great practical importance, which is also
evident from more than50 papers published on the
subject [2].

In a number of studies we conducted on existing
covering array constructors, we observe that each
constructor typically comes with its own pros and
cons. Some constructors are fast and scalable, but
typically generate large covering arrays. Others gen-
erate small covering arrays, but typically are slow
and does not scale up well. Furthermore, the effi-
ciency (i.e., generating covering arrays faster) and
the effectiveness (i.e., generating smaller covering
arrays) of the constructors often depend on some
important problem parameters, such as the coverage
strength, the number of configuration options, the
number of constraints, and the “length” of these
constraints. Consequently, the best covering array
constructor to use often typically depends on the
specific application scenario at hand.

In this work we present a classification-based ap-
proach to predict the “best” covering array construc-
tor to use for a given configuration space model,
coverage strength, and optimization criterion, i.e.,
reducing the construction time or the covering array
size. In the experiments we carried out, the pro-
posed approach predicted the best constructors for
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reducing the construction times with an accuracy of
86% and the best constructors for reducing the cov-
ering array sizes with an accuracy of 90%, where
the accuracy was computed as the percentage of
the correctly predicted best constructors. When two
predictions were made instead one, the accuracy
of having the best constructor among the predicted
ones, was 94% and 98%, respectively.

The remainder of the paper is structured as fol-
lows: Section II provides background information
about the existing covering array constructors used
in this paper; Section III introduces the proposed
approach; Section IV presents the experiments we
carry out to evaluate the proposed approach; Sec-
tion V discusses threats to validity; Section VI
presents related work; and Section VII presents con-
cluding remarks and possible directions for future
work.

II. BACKGROUND

Covering array constructors take as input a
configuration space modelM =< O, V,Q >. This
model includes a set of configuration options
O = {o1, o2, . . . , ok}, a set of settings for these
optionsV = {V1, V2, · · · , Vk}, whereVi is a dis-
crete domain from which optionoi takes on a
setting, and a system of inter-option constraintsQ,
which invalidates certain combinations of option
settings. For this work, we express the constraints
as a set of forbidden tuples, i.e., combinations of
option settings that are not allowed to appear in
any configuration, which is one of the well-known
approaches for expressing constraints in combina-
torial testing [9].

In the empirical studies presented in Section IV,
we use five well-known covering array construc-
tors, namelyCASA [10] ACTS [11], Jenny [12],
PICT [13], andTCA [14].
CASA uses simulated annealing [15] to compute

covering arrays [10]. The standard simulated an-
nealing loop is enhanced with an additional outer
loop to determine the “minimum” size of the array.
Note that the minimum size of a covering array
cannot be determined with certainty in the general
case. Therefore, constructors, especially the ones
based on metaheuristic search, should locate a good

approximation to the minimum size. The approach
proposed in [10] judiciously chooses a new size at
each iteration and feeds it to simulated annealing.
Starting with an initial state of the given size,
which is represented as a set of configurations,
the annealing process repeatedly applies a series
of alterations to the current state until the current
state constitutes a t-way covering array. During the
iterations, superior states (i.e., the ones with fewer
number of missing t-tuples) are always accepted,
whereas the the inferior states (i.e., the ones with
more number of missing t-tuples) are probabilisti-
cally accepted to avoid getting stuck with a local
optima. Furthermore, the probability of accepting
an inferior state gradually decreases as the search
proceeds.
ACTS uses the standard IPOG algorithm [16] as

well as a number of variations of this algorithm
[17] to construct covering arrays. The IPOG algo-
rithm starts with at-way covering array for the
first t options and then repeatedly carries out a
horizontal growthfollowed by avertical growthin
a loop until the array constitutes at-way covering
array. In a horizontal growth, a new option is added
to array (i.e., the array is extended by a column)
and the settings in the newly added column are
decided in a greedy manner. After populating the
new column, if there are still some missing t-tuples
involving the options so far included in the array, a
vertical growth is carried out, which adds additional
rows to the array in a greedy manner until the
current set of missing t-tuples are covered.
Jenny is another well-known covering array

constructor. It uses a greedy approach [12]. In each
iteration, a set of configurations are randomly gen-
erated and then the settings of the options present
in the configurations are fine tuned in a greedy
manner to reduce the number of missing t-tuples.
Finally, among all the configurations generated, the
one that covers the maximum number of previously
uncovered t-tuples is included in the array. The
iterations end when no t-tuples left uncovered.
PICT is developed with three main design de-

cisions: 1) computing covering arrays faster, (2)
ease of use, and (3) extensibility [13]. It uses a
greedy algorithm. In each iteration, a configuration



that covers the “maximum” number of missing
t-tuples is generated and added to the array of
selections.PICT differs fromJenny in that it is a
deterministic constructor and a single configuration
is generated at each iteration, rather then multiple
ones.
TCA is a covering array constructor that operates

in two modes:greedy modeandrandom mode[14].
In the greedy mode,TCA employs an influential
tabu search [18] in an attempt to optimize the
objective function, whereas in the random mode,
it adapts the random walk heuristic in an attempt
to better explore the search space and diversify the
search.

We opted to use these covering array constructors
because 1) they are publicly available, well-known
constructors, 2) they use a spectrum of different
approaches to construct covering arrays, and 3) they
all support configuration space models with inter-
option constraints and varying numbers of settings
for the configuration options.

III. A PPROACH

In this paper we develop a classification-based
approach to predict the “best” covering array con-
structor to use for a given application scenario. In
particular, we take as input a configuration space
model, a coverage strength, and an optimization
criterion. The optimization criterion can either be
to reduce the construction time or to reduce the
covering array size. The former criterion is im-
portant when the cost of running a covering array
is negligible compared to that of constructing the
array. And the latter criterion is important when the
cost of constructing a covering array is negligible
compared to that of running the array.

A. Features

To train a prediction model and later to use this
model to predict the best constructor to use, we
extract four features: the coverage strengtht, the
number of configuration optionsk, the level of
constraintsL, and the constraint length̄Q, which
is indeed the number of unique options involved in
a forbidden tuple.

All of these features, except for the first one,
are extracted from the given configuration space

model. We use the former two features, i.e.,t and
k, because the number oft-tuples to be covered
grows exponentially witht and polynomially with
k. Therefore, these parameters typically affect both
the construction times and covering array sizes in a
significant manner. The latter two features are used
because in a number of studies we carried out, we
observed that the efficiency and the effectiveness
of the existing constructors often depend on these
parameters at different levels and in different ways.

Furthermore, rather than using the actual number
of constraints|Q|, we opt to use the constraint level
L. This is because the effect of|Q| depends on the
configuration space under test, which necessitates
that |Q| needs to be normalized. The relationship
between|Q| andL is given below:

|Q| = ⌊2L
√
k⌋ (1)

We do this to train the prediction models in
an unbiased manner. Since the number of valid
configurations tends to decrease exponentially with
|Q|, by making |Q| proportional to the square
root of k, we attempt to keep the decrease in the
configuration space linear. That is, given the number
of forbidden tuples|Q|, we computeL as described
in equation (1) and use it, rather than|Q|, for
predictions. Given a set of forbidden tuples, one
can trivially determine the implicit forbidden tuples
(if any) by using the algorithm presented in [19].

B. Training Phase

In this work we envision a service (e.g., a web
service), which, given an application scenario, pre-
dicts the best covering array constructor to use.
That is, the prediction model (i.e., the classification
model) is trained by the service provider and once
trained, the same model is used by all practitioners;
practitioners are not required to train their own
prediction models.

To train the prediction model, we opted to use the
full-factorial designs[20]. The proposed approach
operates as follows: 1) for each of the four features
discussed in Section III-A, a minimum and a max-
imum value to be used for training are determined;
2) the range of values for each attribute is then
discretized, such that the data required for training



the prediction models can be collected given the
resources available; 3) each constructor is executed
in every possible combinations of the discretized
levels across all the features, and both the construc-
tion times and the covering array sizes are recorded;
and 4) the data obtained is then used to train a
separate classification model for the construction
time and the covering array size, where for every
experimental setup the best constructors are used as
class labels.

The ultimate goal of this approach is to make
reliable predictions within the space used for train-
ing, the border of which is determined by the
minimum and maximum values of each feature.
Since a single training model needs to be trained
for all the practitioners and the data collection
process can trivially be parallelized, we believe that
such a prediction model can easily be trained for
a large enough space to be practical. Furthermore,
the amount of resources required for collecting
the data can significantly be reduced, ifscreening
designs[20], rather than full-factorial designs, are
used. Screening designs are a class of highly eco-
nomical experimental designs that can be used to
identify the important features, i.e., combinations
of feature settings that affect the construction times
and/or the covering array sizes most, and then only
these features can be used to train the prediction
models.

The prediction model trained as described above
suggests only one covering array constructor. Con-
sequently, we call this modelbest-constructor
model. To further experiment with the proposed
approach and to provide developers with more
options, we have also developed an approach to
predict the second best constructors, which can
indeed be trivially generalized to predict thenth

best constructors. We call these modelssecond-best-
constructormodels.

The second-best-constructor models are trained
as follows: For each constructorC, the constructor
is completely removed from the training set. That is,
the training set is updated as if nothing was known
aboutC. For example, the experimental setups for
which C was the best constructor are updated with
the second best constructors for them. Thus, we end

up having 5 new different training sets. The updated
training sets are then used to create the second-best-
constructor models forC.

These models are used for the experimental se-
tups for which C was predicted to be the best
constructor by the best-constructor model. Note that
by removingC from the training set,C is prevented
from being both the best and the second best
constructor. Consequently, the number of second-
best-constructor models we train is the same as the
number of constructors used one model for each
constructor.

C. Deployment Phase

In the deployment phase, the prediction models
created in the training phase are used to predict the
best and the second best constructors. To predict
the best constructor, the features extracted from the
given scenario are fed to the best-constructor model.
To predict the second-best predictor, the second-
best-constructor model trained in the absence of the
best constructor predicted is used with the same
features.

IV. EXPERIMENTS

We carried out a series of experiments to evaluate
the proposed approach.

A. Training Set

In these experiments we, as a training set, used all
combinations of the settings over the four features
described below:

• Coverage strength (t): We experimented with
t = {2, 3}.

• Number of configuration options (k): We ex-
perimented withk = {20, 80, 140, 200}. The
number of values that each option can take on
was set to2, 3, or 4 with an equal probability.

• Constraint level (L): We experimented with
L = {0, 1, · · · , 9}. Note that givenL, the ac-
tual number of forbidden tuples is determined
by using the equation (1).

• Constraint length (Q̄): We experimented with
Q̄ = {2, 3, 4, 5}.

We chose these settings, because we believe that
they represent a space of quite practical scenarios,



the size of which is small enough, so that the
experiments can be carried out in a timely manner.
In particular, we randomly generated5 different
configuration space models for each of the320
experimental setups (2 values oft × 4 values ofk
× 10 values ofL × 4 values ofQ̄=320), executed
all of the5 covering array constructors described in
Section II in each of these setups, and computed the
average construction times and covering array sizes
for every constructor. That is, in total, we executed
the constructors8000 times (320 × 5 × 5) and for
every experimental setup, sorted the constructors by
the increasing order of their construction times and
covering array sizes.

B. Test Set

We used the training set described above to cre-
ate the best-constructor and second-best-constructor
models. To evaluate the proposed approach, on
the other hand, we created a test set by using50

different randomly chosenk values between20
and 200. Note that thek values selected for the
test set are not necessarily the same as the ones
used in the training set. For eachk, the coverage
strengtht, the constraint length̄Q, and the level
of constraintsL are also determined randomly,
such that they stay between the minimum and the
maximum values of the features used in training.
That is, the evaluation of the proposed approach
was performed by using previously unseen data. We
created5 different configuration space models for
each of these setups.

For each experimental setup in the test set, we
used all the constructors to generate covering arrays
for 5 configuration space models and computed the
average of recorded the actual construction times
and the actual covering array sizes. For evaluations,
we compared the actual best constructors with the
predicted best constructors (Section IV-D). The
training and test sets used in this work can be found
at TODO.

C. Operational Model

Not all the differences between the covering array
constructors were meaningful in practice. There-
fore, we considered two construction times as equal

TABLE I
ACCURACY OF PREDICTING THE BEST CONSTRUCTORS.

Accuracy for Accuracy for
Classifier Best Time (%) Best Size (%)
Decision Tree 86 76
SVM 74 64
Multilayer Perceptron 84 84
Naive Bayesian 84 74
Random Forest 86 90

when they were within three seconds of each other.
Similarly, we considered two covering array sizes
as equal when they were within one configuration
of each other. Furthermore, not all the constructors
scaled up to the whole experimental design space.
Thus, we put a24 hours threshold. That is, if a
constructor failed to create a covering array for a
given experimental setup within24 hours, we killed
the constructor and marked the setup.

To train the prediction models, we experimented
with five different classification algorithms, namely
Decision Trees [21], Support Vector Machines
(SVMs) [22], Multilayer Perceptrons [23], Naive
Bayesian [24], and Random Forests [25]. In par-
ticular, we used WEKA 3.8.1 [26] to create the
prediction models.

All the experiments were carried out on a 20-
core (2 sockets) Intel Xeon E5-2680 v2 2.80 GHz
machine with 256 GB of RAM, running 64-bit
CentOS 6.5 operating system.

D. Evaluation Framework

To evaluate the success of the proposed approach,
we computed the accuracy of correctly predicting
the best constructor for reducing the construction
time and for reducing the covering array size,
separately, for all the setups in the test set. We
also repeated the the same analysis by using the
second-best-constructor models. That is, for each
setup in the test set, we predicted the best and the
second best constructors and computed the accuracy
of the actual best constructor being one of these two
predictions.

T


TABLE II
STATISTICS ABOUT THE DIFFERENCES BETWEEN THE

ACTUAL AND THE PREDICTED VALUES BY THE

BEST-CONSTRUCTOR MODEL.

Avg. Max.
Difference Difference

Time (in secs.) 22.7 678
Size (in configs.) 4.43 90

E. Data and Analysis

Table I presents the accuracy of correctly pre-
dicting best constructors for reducing construction
times (second column) and covering array sizes
(third column) by using the best-constructor mod-
els obtained from different classification algorithms
(first column). Although, almost all the classifi-
cation algorithms performed fairly well, the best
performer was Random Forest with the an accuracy
of 86% (a weighted F-measure of0.78) and 90%
(a weighted F-measure of0.90) for predicting the
best constructor for reducing the construction times
and the covering array sizes, respectively. The F-
measures were computed by giving equal impor-
tance to precision and recall. Consequently, we use
only Random Forest-based prediction models in the
remainder of the analysis.

Table II, furthermore, presents the average and
the maximum differences in the construction times
(in seconds) and in the covering array sizes (in
number of configurations) between the predicted
and the actual best constructors. The lower the
differences, the better the predictions are. They were
22.7 and678 seconds for the construction times and
4.43 and 90 configurations for the covering array
sizes, respectively.

To demonstrate that these results are not by
chance, we generated200 random predictions for
each setup in the test set and computed the same
metrics. The average and the maximum differences
turned out to be639.7 and 14569.4 seconds for
the construction times and18.4 and 112 config-
urations for the covering array sizes, respectively.
Furthermore, the worst-case average and maximum
differences were2084.4 and 26137.9 seconds for
the construction times and39.4 and130.3 configu-
rations for the covering array sizes, respectively.

TABLE III
STATISTICS ABOUT THE BEST-CONSTRUCTOR AND THE

SECOND-TO-BEST CONSTRUCTOR MODELS.

Avg. Max.
Accuracy (%) Difference Difference

Time 94 6.58 307.1
Size 98 0.16 7.8

We then used both the best-constructor and the
second-best-constructor models to make two predic-
tions, rather than one, as described in Sections III-B
and III-C. Table III presents the results we obtained.
The accuracies were improved from 86% to 94% (a
weighted F-measure of0.88) for predicting the best
constructors for reducing the construction times and
from 90% to 98% (a weighted F-measure of0.98)
for predicting the best constructors for reducing the
covering array sizes. Furthermore, the average and
the maximum differences were dropped to6.58 and
307.1 seconds and to0.16 and 7.8 configurations,
respectively, further emphasizing the success of the
proposed approach.

V. THREATS TOVALIDITY

All empirical studies suffer from the threats to
their internal and external validity. For this work, we
were primarily concerned with threats to external
validity since they limit our ability to generalize
the results of our experiment to industrial practice.

A potential threat is the representativeness of the
configuration space models used in the experiments.
We plan to repeat the experiments by using a larger
range of values fort, k, |Q| (thus L), and Q̄.
However, we believe that the training set we used
in this work, represents a space of quite practical
scenarios, which is based on our experience with
highly configurable systems. We, furthermore, sys-
tematically varied the coverage strength, the number
of configuration options, the level of constraints,
and the length of the constraints.

A related concern is that we used a full-factorial
design as our training set. As a future work, we
plan to use screening designs [20] to improve the
efficiency of the proposed approach. This highly
economical class of designs can be used to de-
termine a small number of factors that affect the



construction times and/or the covering array sizes
the most and then the prediction models can be
constructed by using these factors.

Another potential threat is that we used only
five covering array constructors. However, they are
all well-known and frequently-used covering array
constructors. Further justifications for using them
can be found in Section II.

VI. RELATED WORK

The covering array construction algorithms can
be classified into four main groups: greedy al-
gorithms, metaheuristic search-based algorithms,
mathematical methods, and random search-based
methods [2].

Greedy algorithms [27], [28] construct covering
arrays by iteratively choosing the “best” configu-
ration at every iteration, which covers the “max-
imum” number of previously uncovered t-tuples.
Metaheuristic search-based approaches, such as hill
climbing [29], great flood [30], and simulated an-
nealing [31], [32] start from an array of configu-
rations and iteratively apply a set of alterations to
the array until all the valid t-tuples are covered.
One good thing about these approaches is that
they employ mechanisms to avoid getting stuck
with local optima as much as possible. Random
search has also been used for constructing covering
arrays [33]. These techniques randomly select valid
configurations from the configuration space until the
selected configurations constitutes a covering array.
In addition, several mathematical approaches [34],
[35] have been proposed for computing covering
arrays.

Constraint handling is a problem extensively
studied in combinatorial interaction testing. Bryce
et al. [36] present an approach for handling “soft
constraints.” Hinc et al. [37] propose a technique
for handling “hard constraints”. Cohen et al. [38]
demonstrates that not handling constraints often
leads to wasted testing resources.

VII. C ONCLUDING REMARKS AND FUTURE

WORK

Many covering array constructors exist. However,
each constructor typically comes with its own pros

and cons. That is, the best constructor to use gener-
ally depends on the specific application scenario.
To improve both the efficiency and effectiveness
of covering arrays, we, in this work, presented a
classification-based approach to predict the “best”
covering array constructor to use for a given con-
figuration space model, coverage strength, and op-
timization criterion. We then empirically evaluated
the proposed approach by using a relatively small,
yet quite realistic space of application scenarios.
The approach predicted the best constructors for
reducing the construction times with an accuracy
of 86% and the best constructors for reducing the
covering array sizes with an accuracy 90%. When
two predictions were made, rather than one, the
accuracies increased to 94% and 98%, respectively.

As future work, we plan to expand our covering
array constructor database by adding new covering
array constructors [39] and train the prediction
models by using a larger training set. We also plan
to make the prediction models publicly available.
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