
Generating Cost-Aware Covering Arrays For

Free

Mustafa Kemal Taş, Hanefi Mercan, Gülşen Demiröz, Kamer Kaya
and Cemal Yilmaz

{mkemaltas,hanefimercan,gulsend,kaya,cyilmaz}@sabanciuniv.edu

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul

Abstract. Software systems generally have a large number of config-
urable options interacting with each other. Such systems are more likely
to be prone to errors, crashes, and faulty executions that are usually
caused by option interactions. To avoid such errors, testing all possible
configurations during the development phase is usually not feasible, since
the number of all possible configurations is exponential in the order of
number of options. A t-way covering array (CA) is a 2-dimensional com-
binatorial object that helps to efficiently cover all t-length option inter-
actions of the system under test. Generating a CA with a small number
of configurations is important to shorten the testing phase. However,
the testing cost (e.g. the testing time) may differ from one configura-
tion to another. Currently, most sequential tools can generate optimum
CAs in terms of number of configurations, but they are not cost-aware,
i.e., they cannot handle the varying costs of configurations. In this work,
we implement a parallel, cost-aware CA-generation tool based on a se-
quential tool, Jenny, to generate lower-cost CAs faster. Experimental
results show that our cost-aware CA construction approach can generate
32% and 21% lower cost CAs on average for t=2 and t=3, respectively,
compared to state-of-the-art CA-generation tools. Moreover, the cost-
awareness comes for free, i.e., we speed up our algorithm by leveraging
parallel computation. The cost models and cost reduction techniques we
propose could also be adapted for other existing CA generation tools.

Keywords: Software testing; Testing cost; Combinatorial interaction testing;
Covering arrays; Cost-aware testing; Parallel covering array generation

1 Introduction

In software testing, testing all possible configurations of the System Under
Test (SUT) is not always feasible. For example, a recent version of the Apache
v2.2 web server has 172 configurable options and 1.8 × 1055 unique configura-
tions. Hence, a full coverage of all configurations becomes quite expensive and is
not feasible. On the other hand, considering that most of the faults occur due to
a small number of option interactions [1], testing all such combinations is usually
sufficient to detect the faults. Combinatorial Interaction Testing (CIT) [2, 3] is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190018142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

commonly used to test such software systems with a large configuration space. In-
stead of an exhaustive test, CIT samples the configuration space based on cover-
age criteria and tests each of these samples individually. Typically, such samples
contain some specific combination of option-value pairs. For example, pairwise
testing requires each possible option-value pair combinations to be tested at least
once. For that purpose, in CIT, covering arrays are commonly used as test suites.

A t-way covering array (CA) is a matrix with N rows (configurations) and
k columns (options) in which every possible t length option-value pair exists in
(is covered by) some row at least once where t is called the strength of the CA.
Many empirical results state that most of the faults in practice are caused by the
interactions of only a small number options, i.e., mostly 2 ≤ t ≤ 6 [1], therefore,
CIT becomes an efficient approach in detecting these kind of faults.

Generating a CA with minimum size is known to be an NP-complete prob-
lem [4, 5]. Thus, developing an approach to generate minimal CAs is not practi-
cal. Instead, heuristic approaches such as simulated annealing [6] or greedy algo-
rithms [7, 8] have been commonly used for CA generation. Simulated annealing
based heuristics are shown to produce smaller CAs whereas greedy algorithms
are faster [9]. We refer the user to a recent survey of the available algorithms [10].

To reduce the actual cost of testing, most of the tools aim to generate smaller
CAs since they assume that cost of testing each configuration is the same. How-
ever, empirical results have shown that cost may vary from one configuration to
another [11, 12], thus minimizing the size does not necessarily mean minimizing
the cost of testing. Avoiding costly combinations may increase the CA size but
may lead to a shorter testing time. For example, in a study we conducted on
MySQL – a highly-configurable database management system, we observed that
the cost of configuring MySQL Community Server (a core component of the
system) with its default configuration takes about 6 minutes on average. On the
other hand, configuring the server with NDB cluster storage support – a feature
that enables clustering of in-memory databases, takes about 9 minutes (50%
more) [11]. Consequently, reducing the number of configurations that include
the NDB feature in a CA without adversely affecting the coverage properties of
the array, can greatly reduce the amount of time required for testing. For testing
such systems (with varying testing costs) a novel object for testing, a cost-aware
covering array, is introduced by Demiroz and Yilmaz [11, 13]. One of the closest
works to our cost-aware CA is test prioritization in CAs, where only the cost of
switching the order of configurations are considered [14].

We propose a novel approach to enable the cost-awareness within a greedy CA
generation tool. Jenny is an open-source tool with good experimental results [15],
hence been selected for this study. We add the cost-awareness at multiple steps of
Jenny and significantly reduce the CA costs. None of the available tools [16] are
cost-aware and almost all of them are sequential except Pairwiser [17] and Jenny

is not an exception. We implement a parallel version of Jenny to generate cost-
aware CAs more efficiently via utilizing multicore CPUs. Empirical results show
that generating cost-aware CAs is not necessarily more costly than generating
standard CAs. With the additional parallelism, on average, 32% and 21% cheaper

CAs can be generated up to 2.5 and 3.5 times faster than the original tool with
8 threads, for t=2 and t=3, respectively. Thus, cost-awareness comes for free.

The rest of the paper is organized as follows: Section 2 introduces the no-
tations and explains CIT in detail as well as describing some of the existing
covering array generation tools. The methods for cost-awareness and parallelism
are explained in detail in Section 3 and experimental results are presented in
Section 4. Section 5 concludes the paper and presents future work.

2 Background and Notations

Combinatorial Interaction Testing [2] takes a configuration model of the SUT as
input and produces a test suite, such as a t-way Covering Array (CA). A config-
uration model includes the set of k many configurable options O={o1, . . . , ok}
where each option oi (1 ≤ i ≤ k) takes a value from a finite set of values
V={V1, . . . , Vk}. The model may also contain the coverage criteria, the costs of
option combinations and the constraints.

2.1 Standard covering arrays

Given a configuration space model M=<O, V > where k=|O|:

Definition 1. A t-tuple φt={<oi1 , vj1>, <oi2 , vj2>, . . . , <oit , vjt>} is a tuple
comprised of option-value pairs for a combination of t distinct configuration
options, such that 1 ≤ t ≤ k, 1 ≤ i1 < i2 < · · · < it ≤ k, and vjp ∈ Vip for
p=1, 2, . . . , t. Let Φt be the set of all t-tuples.

Definition 2. A configuration c is a k-tuple, i.e., c ∈ Φk. The configuration
space C={c : c ∈ Φk} is the set of all configurations.

Definition 3. A t-way covering array CA(t,M=<O,V >) is a set of configura-
tions, in which each t-tuple appears at least once, i.e., CA(t,M)={c1, c2, . . . , cN},
such that ∀φt ∈ Φt ∃ ci ⊇ φt, where ci ∈ C for i=1, 2, . . . , N .

Standard covering arrays are computed, such that all t-tuples are covered
(i.e., appear at least once) in a minimum number of configurations. A 2-way CA
with 5 binary options (Vi={0, 1} for all oi) is given in Figure 1. As it can be seen,
every possible 2-way option-value is covered at least once by a configuration.

o1 o2 o3 o4 o5

0 1 1 1 1
1 0 0 0 0
0 0 0 1 0
1 1 1 0 0
1 0 0 0 1
0 0 1 0 0
1 1 0 1 0

Fig. 1. A 2-way covering array with 5 binary options.

2.2 Cost-aware covering arrays

Standard CAs (and the tools generating them) aim to reduce the actual testing
cost by minimizing the size of the CA. They assume that the testing cost of all
the configurations are the same. Unlike standard CAs, cost-aware covering ar-
rays take actual cost of testing into account while computing the covering arrays.
Consequently, cost-aware covering arrays take as input a standard configuration
space model M=<O, V > augmented with a cost function cost(.) [13, 12].

Definition 4. The cost function cost(c) computes the expected cost of a given
configuration c as follows:

cost(c) = intercept+
∑

φ1∈Φ1

cost(φ1) +
∑

φ2∈Φ2

cost(φ2) + . . .+
∑

φf∈Φf

cost(φf)

where φm ∈ Φm is a costly m-tuple in c that increases the cost of the config-
uration with an additional cost (cost(φm) > 0) such that 1 ≤ m ≤ f ≤ k. The
intercept is the base cost of the configuration in the absence of any costly tuples
(intercept > 0).

Definition 5. The cost of a covering array, CA={c1, c2, . . . , cN} is the sum of
the costs of all configurations in the CA, i.e.,

cost(CA) = cost({c1, c2, . . . , cN}) = cost(c1) + cost(c2) + . . .+ cost(cN)

Definition 6. Given a configuration space model M=<O, V, cost(.)>, a t-way
cost-aware covering array CCA is a t-way CA with the “minimal” cost(CA).
The lower bound for the cost of a CA with N configurations is intercept×N .

We manipulated four independent variables that can affect the cost model:

1. Cardinality of costly tuples (f in Definition 4) is the number of option-
value pairs in each costly tuple for that model. For f > t such costly tuples
can be avoided and not added to the CA at all. However, for f ≤ t, as each
t-tuple will be added to the CA, such costly tuples will also be included,
increasing the cost of the resulting CA.

2. Number of costly tuples (b) represents how many tuples increase the
cost of a configuration if included in it. For a given configuration, b=|Φ1|+
|Φ2| + . . . + |Φf | (see Definition 4). The cost of a configuration, hence the
cost of a CA, is expected to be higher for larger b values.

3. Impact of costly tuples (i) represents the percentage of how much a costly
tuple increases the base cost if included in the configuration. If i ≤ 100%,
decreasing the size of the CA may also be beneficial. For i=0, the minimum
cost can be achieved by generating a CA with the minimum number of rows.
However for i ≥ 100%, a less costly CA may be achieved by increasing the
size of the CA and avoiding such costly tuples.

4. Percentage of costly options (c) for a given cost model determines how
many distinct options will appear in the costly tuples of that cost model.
For example, for a system with 25 distinct options, c=20% means that the
costly tuples will only contain combinations of 5 different options.

Below, an example cost model is given for a configuration c in a configuration
space with binary options, intercept=100, b=3, f=2 and i=50%.

cost(c) = 100+(o2 = 1∧o3 = 1)50+(o3 = 1∧o6 = 0)50+(o7 = 0∧o9 = 0)50 (1)

Since it is generally hard and impractical for the experts of the system to
express the cost in terms of costly tuples [2], we have been also working on
automated approaches for cost model discovery [18].

2.3 Some existing CA-generation tools

As CIT is getting used more widely in practical cases, several tools have been
developed to construct CAs effectively [16] including Pairwiser, a tool that uti-
lizes parallelization [17]. We investigate and make comparisons with two well
known tools: ACTS [19] and Jenny [15].

ACTS can generate CAs with strengths 2-way through 6-way and also sup-
ports constraints and variable-strength tests. Jenny is another well known, open-
source tool for CA generation which also supports constraints and variable-
strength CAs. It takes the configurable options, the strength t, and the con-
straints as input and produces a CA as the output. Experiments on Jenny

showed that its average CA size is acceptable for many cases, and it can be
faster than many state-of-art tools especially when many constraints exist.

Jenny uses a greedy, iterative approach; at each iteration, a set of τ configu-
rations are generated by consecutively setting each option to a value in a greedy
fashion. In other words, it uses a hillclimbing approach to generate τ config-
urations. Then, the configuration with the maximum coverage (the number of
additional tuples that may be covered by this configuration) among these ran-
dom configurations is chosen and added to current state of CA until no tuples
left uncovered. A high level pseudocode for Jenny is given in Algorithm 1.

We implement cost-awareness at multiple steps within Jenny to generate
cost-aware CAs. We also parallelize Jenny to generate CAs in much shorter time.

3 Cost-awareness for free

The current CA generation tools try to reduce the testing time by reducing
the size of the covering array, i.e., the number of its configurations. However,
in most cases, the costs of testing different configurations are not the same, so
minimizing the size does not necessarily minimize the cost. We have modified
Jenny to minimize the actual cost instead of the CA size by making it cost-aware.

The original Jenny algorithm (Algorithm 1) randomly generates τ candidate
tests. For each test, it tunes each option-value pair such that their coverage
counts are maximized and finally selects one of them according to their overall
coverage counts. In our modified version, however, after generating τ candidate
configurations, the configuration with the lowest cost is selected instead of the
configuration with the highest coverage count. Moreover, while generating τ

candidate tests, each column is tuned such that the cost is decreased instead of
increasing the coverage count. The cost-aware algorithm is given in Algorithm 2.

Algorithm 1 Jenny

Input: S: configuration space, t: strength
Output: CA(S): an N x k covering array

1: N ← 0
2: CA ← ∅ (an empty CA with k columns)
3: while true do

4: tuple← SelectUncoveredTuple(CA,S)
5: bestCoverage← −1
6: for i = 1 to τ do

7: (test, coverage)← GenTest(S, tuple)
8: if coverage > bestCoverage then

9: bestT est← test

10: bestCoverage← coverage

11: N ← N + 1
12: CA(N , :) ← bestT est

13: if CountUncoveredTuples(S) = 0 then

14: break

Algorithm 2 Cost-aware Jenny

Input: S: configuration space, t: strength
Output: CA(S): an N x k covering array

1: N ← 0
2: CA ← ∅ (an empty CA with k columns)
3: while true do

4: tuple← SelectUncoveredTuple(CA,S)
5: bestCost← INT MAX

6: bestCoverage← −1
7: for i = 1 to τ do

8: test← GenTest(S, tuple)
9: (test, cost, coverage)← ImproveConfiguration(S, test)
10: if cost < bestCost then

11: bestT est← test

12: bestCost← cost

13: bestCoverage← coverage

14: else if cost = bestCost then

15: if coverage > bestCoverage then

16: bestT est← test

17: bestCost← cost

18: bestCoverage← coverage

19: N ← N + 1
20: CA(N , :) ← bestT est

21: if CountUncoveredTuples(S) = 0 then

22: break

In a single iteration, the SelectUncoveredTuple function selects an un-
covered tuple (line 4). After selecting one, the GenTest function is called for
τ times to generate random configurations that cover the selected tuple. The
configuration with the lowest cost is selected (line 10) and added to the CA (line
20). If the costs of two configurations are the same, then their coverages are
compared and the configuration which covers more additional tuples is selected
(line 15). If all tuples are covered after an iteration then the algorithm stops.

Although this approach decreases the costs considerably, it still leaves room
for improvement. By decreasing the costs of candidate configurations, we can ob-
tain configurations with lower costs to choose from, which would further reduce
the cost. In Algorithm 2 we use the GenTest function (line 8) to generate τ

candidate tests. This function places a tuple to be covered inside a configuration
and fills the rest of the configuration randomly. After that ImproveConfigu-

ration function (line 9) is called on this configuration to reduce the cost of the
given configuration and increase the coverage. This is accomplished by using a
hill climbing approach as shown in Algorithm 3.

The ImproveConfiguration function takes a configuration (test) as input
and iterates through all the options (line 1). At each iteration, the corresponding
option is set to one of its possible values (line 6) and if the cost decreases and
coverage increases the change is saved (line 10). If multiple values decrease the
cost or increase the coverage, one of them is accepted randomly (line 12). The
CountTuples and Cost functions compute the additionally covered tuples
and the additional cost caused by the updated test at each iteration.

3.1 Generating Covering Arrays in Parallel

As stated before, generating a CA efficiently is important to start the testing
process earlier. However, the CA generation may take hours for the systems with
a large number of configurable options. Although even commodity processors
have multiple cores and are capable of parallel processing, surprisingly, most of
the state-of-the art tools do not fully exploit the computation power on these
CPUs. We use coarse-grain parallelism on the modified, cost-aware Jenny to
analyze the benefits of parallel computing on CA generation in detail.

We carefully profiled Jenny with different inputs and as expected, we ob-
served that the bottleneck, i.e. most time consuming part, for the Cost-Aware

Jenny algorithm is the test generation part (lines 7-18 of Algorithm 2), in which
τ random tests are generated and the test with the least cost is selected. In fact,
on average 84% and 89% of the total time is spent on this part for t=2 and t=3,
respectively. This process is pleasingly parallel since the generation of each test
is independent from the generation of others. Hence, we followed a coarse-grain
parallel approach to concurrently generate τ tests. Unlike the original algorithm,
we store each generated test, their cost and coverage values until the generation
phase ends. Then, we choose the best test among these. The pseudocode of the
parallel Cost-Aware Jenny algorithm is given in Algorithm 4.

This parallelization approach allows us to utilize n threads where n ≤ τ ,
effectively. Since the targeted bottleneck occupies 84% and 89% of the total

Algorithm 3 ImproveConfiguration

Input: S: configuration space, test: test, k: number of options
Output: t: test with minimal cost

1: for i = 0 to k do

2: cost← Cost(test)
3: cov ← CountTuples(test)
4: n← 0
5: for j = 0 to values[i] do
6: test[i]← j

7: nCost← Cost(test)
8: nCov ← CountTuples(test)
9: if nCost ≤ cost and nCov ≥ cov then

10: best[n]← j

11: n← n+ 1

12: t[i]← best[rand(0, n)]

Algorithm 4 Parallel Cost-Aware Jenny

Input: S: configuration space, t: strength
Output: CA(S): an N x k covering array

1: N ← 0
2: CA ← ∅ (an empty CA with k columns)
3: costs[.]← an integer array of size τ

4: covs[.]← an integer array of size τ

5: tests[.]← a test array of size τ

6: while true do

7: tuple← SelectUncoveredTuple(S)
8: for i = 1 to τ in parallel do

9: tests[i]← GenTest(S, tuple)
10: (tests[i], covs[i], costs[i]) ← ImproveConfiguration(S, tests[i])

11: bestCoverage← −1
12: bestCost← INT MAX

13: for i = 1 to τ do

14: if costs[i] < bestCost then

15: bestT est← tests[i]
16: bestCost← costs[i]
17: bestCoverage← coverages[i]
18: else if costs[i] = bestCost then

19: if coverages[i] > bestCoverage then

20: bestT est← tests[i]
21: bestCost← costs[i]
22: bestCoverage← coverages[i]

23: N ← N + 1
24: CA(N , :) ← bestT est

25: if CountUncoveredTuples(S) = 0 then

26: break

time for t=2 and t=3 respectively, the maximum speed up that can be observed
can be calculated as in Equation 2.

t = 2 :
1

0.16 + 0.84
n

t = 3 :
1

0.11 + 0.89
n

(2)

This value is 1.8 for n=2, 3 for n=4 and 4.5 for n=8 when t=2 and it’s 1.7 for
n=2, 2.7 for n=4 and 3.7 for n=8 when t=3. Note that these are the maximum
speed up values which assume that there are no parallelization overheads.

4 Experimental Results

In the CA generation problem, generating CAs both effectively and efficiently
is important. The former is crucial for keeping the testing time short, whereas
the latter would allow starting the testing process earlier. We have carried out
two sets of experiments evaluating both the effectiveness and efficiency of our
construction approach. First, we focus on minimizing the actual testing time by
reducing the cost of CAs. Then, we aim to shorten the CA generation time by
exploiting the computation power of multicore processors.

We formed configuration spaces for the experiments using strength: t ∈ {2, 3},
number of options: k ∈ {25, 35, 45, 55, 65, 85, 100} and impact of costly tuples: i ∈
{50%, 100%}. Additionally, for each configuration space, all the performance and
cost results presented in the following subsections are calculated as the arithmetic
means of 72 experiments: 3 different number of costly tuples {4, 5, 6}, 4 different
cardinality of costly tuples {1, 2, 3, 4}, 2 different percentage of costly options
{50%, 100%}, and 3 executions of the same problem with different random seeds.
Moreover, for Jenny and Cost-Aware Jenny, n ∈ {1, 2, 4, 8} threads are used
for parallelism. Thus, a total of over 15K experiments have been carried out.

The experiments are performed on a machine running on 64 bit CentOS 6.5
with an Intel Xeon E7-4870 v2 clocked at 2.30 GHz. The codes are compiled
with gcc 4.4.7 with -O3 flag and OpenMP 4.0 is used for parallelism.

4.1 Generating Cost-Aware Covering Arrays

Testing a software system in a short amount of time is crucial as it would allow
shipping the product earlier. Therefore, in order to reduce the actual cost of
testing, we aim to generate low-cost CAs for given configuration spaces. Our
earliest work [11] to compute CCAs was a greedy algorithm for one simple type of
cost function, where the goal was minimizing the number of unique compile-time
configurations included in the CA. In this work as well as our recent heuristic
approach to compute CCAs [12], the cost function is more general modeling the
cost at the level of option-value combinations. This work is a parallel greedy
approach whereas previous work [12] was a simulated annealing based approach.

We conducted several experiments to generate CAs with ACTS, Jenny and
Cost-Aware Jenny on our configuration spaces. Note that both ACTS and Jenny

are not cost-aware. Then, we calculated the cost of each generated CA. They
are presented in Table 1 and Table 2 for i=100% and i=50%, respectively. We

also give the cost reduction percentages of our approach compared to the best
result of either Jenny or ACTS for each case.

Even in the worst case scenarios, Cost-Aware Jenny generates 21% and 9%
lower cost CAs for t=2 and t=3, respectively. Moreover, Cost-Aware Jenny can
generate 32% and 21% lower cost CAs on average for t=2 and t=3, respectively
compared to the best result of either Jenny or ACTS. We can also state that as
the impact of costly tuples i increases, the percentage of cost reduction increases.

Table 1. Average costs for ACTS, Jenny and Cost-Aware Jenny for i=100%.

t=2 t=3

Cost Cost
k Acts Jenny CAJenny reduction (%) Acts Jenny CAJenny reduction (%)

25 7.97 6.88 4.13 39.97 24.09 27.12 19.06 20.88
35 8.23 7.04 4.41 37.36 28.96 32.64 21.67 25.17
45 8.56 7.60 4.69 38.29 32.33 34.46 23.70 26.69
55 9.29 8.39 4.94 41.12 36.04 39.04 25.62 28.91
65 10,01 8.02 5.18 35.41 38.91 40.97 27.43 29.50
85 10.85 9.37 5.50 41.30 44.12 47.81 31.21 29.26
100 11.21 9.74 5.73 41.17 47.42 50.29 33.20 29.99

Table 2. Average costs for ACTS, Jenny and Cost-Aware Jenny for i=50%.

t=2 t=3

Cost Cost
Acts Jenny CAJenny reduction (%) Acts Jenny CAJenny reduction (%)

25 4.91 5.11 3.66 25.46 18.32 20.57 16.65 9.12
35 5.63 5.28 4.02 23.86 22.06 24.44 19.23 12.83
45 5.92 5.67 4.26 24.87 24.46 26.27 20.94 14.39
55 6.39 6.38 4.52 29.15 27.12 29.45 22.72 16.22
65 6.86 5.97 4.69 21.44 29.36 30.80 24.22 17.51
85 7.46 6.59 4.97 24.58 33.16 34.65 26.84 19.06
100 7.73 7.04 5.19 26.28 35.52 36.56 28.39 20.07

4.2 Generating covering arrays faster

Generating a CA fast is important to start the testing process earlier. Hence,
most of the state-of-the-art tools we have today aim to generate CAs efficiently,
i.e., in a short amount of time. However, surprisingly, parallel programming is
not used in most of these tools, despite its increasing popularity.

In this set of experiments we use parallel programming on multicore proces-
sors to reduce the CA generation time, without increasing the costs of resulting
CAs. We use τ=8 to avoid load-imbalances, or in another words to distribute
the workload equally among the processors. As mentioned in Algorithm 4, we
have parallelized the step where τ candidate tests are generated. Since this is
a pleasingly parallelizable step, we aim to have speed-up values close to the
corresponding possible maximum values, calculated in Section 3.1.

The execution times for original Jenny and Parallel Cost-Aware Jenny is
given in Table 3 where n is the number of threads used for parallelization.

Table 3. Execution Times for Parallel Cost-Aware Jenny for t=2 (ms) and t=3 (sec).

t=2 (ms) t=3 (sec)

Parallel CA Jenny Parallel CA Jenny

k Jenny n = 1 n = 2 n = 4 n = 8 Jenny n = 1 n = 2 n = 4 n = 8

25 13 14 10 9 8 0.40 0.38 0.23 0.15 0.11
35 22 24 16 12 11 1.43 1.35 0.79 0.50 0.36
45 32 34 22 16 15 4.18 3.55 2.07 1.32 0.96
55 48 49 31 22 19 9.55 8.44 5.03 3.17 2.36
65 62 66 41 29 24 21.30 19.37 11.79 7.87 5.82
85 102 106 63 42 33 136.41 119.30 76.95 52.35 42.58
100 139 142 85 56 44 404.2 624.1 390.5 280.4 218.9

When n = 1, in almost every case, Jenny generates CAs faster or Cost-Aware
Jenny performs slightly better than Jenny. However, when we increase the num-
ber of threads, Cost-Aware Jenny surpass the Jenny in the execution time with
2.45 and 3.53 speedups on average for t=2 and t=3, respectively. Based on these
results, one can conclude that as the number of threads increase, for both t=2
and t=3, the execution times decrease. Therefore, even though we add new func-
tionality to reduce the actual testing cost with the help of parallel computing,
the execution time of generating the CAs decreased as well, i.e., it comes for free.

5 Conclusion and Future Work

In this paper, we showed that generation of a cost-aware CA [11, 13] is not nec-
essarily more costly than generating a standard covering array. Moreover, we
showed that parallelization can be a great asset for CA generation process, re-
ducing the time spent on CA generation. Both properties are very important
for CA construction, since for systems with high testing costs, generating less
costly CAs is desirable whereas for systems with low testing costs generating
CAs faster is crucial. Our experiments showed that with careful profiling and
coarse-grain parallelism, one can obtain significant speedups without changing
the CA generation tools much, which are mostly sequential.

As a future work, we believe that there is still some room for improvement
in terms of cost reduction. In the current version, the tuples to be covered are
enumerated and selected randomly. However, we believe that if costly tuples are
enumerated and covered in the earlier phases of the algorithm, it will decrease
the cost as such tuples will not be added to the CA anymore. Another approach
could be treating costly tuples as constraints, i.e., avoiding them while generat-
ing a CA, then covering such tuples with additional rows at the end. We also
plan to investigate other approaches such as SAT solvers and branch-and-bound
algorithms to compute cost-aware covering arrays.

References

1. D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software Engineering,

vol. 30, no. 6, pp. 418–421, 2004.
2. C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc, “Moving

forward with combinatorial interaction testing,” Computer, no. 2, pp. 37–45, 2014.
3. C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing Sur-

veys (CSUR), vol. 43, no. 2, p. 11, 2011.
4. G. Seroussi and N. H. Bshouty, “Vector sets for exhaustive testing of logic circuits,”

Information Theory, IEEE Transactions on, vol. 34, no. 3, pp. 513–522, 1988.
5. Y. Lei and K.-C. Tai, “In-parameter-order: A test generation strategy for pairwise

testing,” in High-Assurance Systems Engineering Symposium, 1998. Proceedings.
Third IEEE International. IEEE, 1998, pp. 254–261.

6. M. B. Cohen, C. J. Colbourn, and A. C. Ling, “Augmenting simulated annealing
to build interaction test suites,” in Software Reliability Engineering, 2003. ISSRE
2003. 14th International Symposium on. IEEE, 2003, pp. 394–405.

7. J. Czerwonka, “Pairwise testing in the real world: Practical extensions to test-case
scenarios,” in Proceedings of 24th Pacific Northwest Software Quality Conference,
Citeseer, 2006, pp. 419–430.

8. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog/ipog-d: efficient
test generation for multi-way combinatorial testing,” Software Testing, Verification
and Reliability, vol. 18, no. 3, pp. 125–148, 2008.

9. B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements to a
meta-heuristic search for constrained interaction testing,” Empirical Software En-
gineering, vol. 16, no. 1, pp. 61–102, 2011.

10. S. K. Khalsa and Y. Labiche, “An orchestrated survey of available algorithms and
tools for combinatorial testing,” in Software Reliability Engineering (ISSRE), 2014
IEEE 25th International Symposium on. IEEE, 2014, pp. 323–334.

11. G. Demiroz and C. Yilmaz, “Cost-aware combinatorial interaction testing,” in In
the Proceedings of VALID 2012, The Fourth International Conference on Advances
in System Testing and Validation Lifecycle, November 2012, pp. 9–16.

12. G. Demiroz and C. Yilmaz, “Using simulated annealing for computing cost-aware
covering arrays,” Applied Soft Computing, vol. 49, pp. 1129–1144, December 2016.

13. G. Demiroz, “Cost-aware combinatorial interaction testing (doctoral symposium),”
in Proceedings of the 2015 International Symposium on Software Testing and Anal-
ysis (ISSTA 2015). ACM, July 2015, pp. 440–443.

14. R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for pair-wise cov-
erage with seeding and constraints,” Information and Software Technology, vol. 48,
no. 10, pp. 960–970, 2006, advances in Model-based Testing.

15. B. Jenkins, “jenny: A pairwise testing tool,”
http://www.burtleburtle.net/bob/index.html, 2005.

16. “Pairwise testing available tools,” http://www.pairwise.org/tools.asp.
17. M. F. Johansen, O. Haugen, and F. Fleurey, “An algorithm for generating t-wise

covering arrays from large feature models,” in Proceedings of the 16th International
Software Product Line Conference, SPLC ’12, vol. 1. ACM, 2012, pp. 46–55.

18. G. Demiroz and C. Yilmaz, “Towards automatic cost model discovery for combi-
natorial interaction testing,” in Proceedings of the 2016 International Workshop
on Combinatorial Testing (IWCT 2016). IEEE, April 2016.

19. L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial test gener-
ation tool,” in Software Testing, Verification and Validation (ICST), 2013 IEEE
Sixth International Conference on. IEEE, 2013, pp. 370–375.

