
Parallelized Preconditioned Model Building
Algorithm for Matrix Factorization

Kamer Kaya, Ş. İlker Birbil, M. Kaan Öztürk, and Amir Gohari

Faculty of Engineering and Natural Sciences
Sabancı University
İstanbul, Turkey

{kaya, sibirbil, mkozturk, amir}@sabanciuniv.edu

Abstract. Matrix factorization is a common task underlying several
machine learning applications such as recommender systems, topic mod-
eling, or compressed sensing. Given a large and possibly sparse matrix
A, we seek two smaller matrices W and H such that their product is
as close to A as possible. The objective is minimizing the sum of square
errors in the approximation. Typically such problems involve hundreds
of thousands of unknowns, so an optimizer must be exceptionally effi-
cient. In this study, a new algorithm, Preconditioned Model Building is
adapted to factorize matrices composed of movie ratings in the Movie-
Lens data sets with 1, 10, and 20 million entries. We present experiments
that compare the sequential MATLAB implementation of the PMB al-
gorithm with other algorithms in the minFunc package. We also employ
a lock-free sparse matrix factorization algorithm and provide a scalable
shared-memory parallel implementation. We show that (a) the optimiza-
tion performance of the PMB algorithm is comparable to the best algo-
rithms in common use, and (b) the computational performance can be
significantly increased with parallelization.

Keywords: Preconditioned model building, matrix factorization, mul-
ticore parallelism.

1 Introduction

We investigate the performance of a novel optimization algorithm on the matrix
factorization problem. The classic matrix factorization problem involves approx-
imating a given matrix A as the product of two unknown matrices W and H:

A ≈WH, (1)

where A ∈ Rm×n,W ∈ Rm×r, H ∈ Rr×n, with r a given integer (the rank of the
factorization). In typical applications, A is sparse, and r is much smaller than
either m or n. However, the resulting factor matrices W and H can be dense.
The associated optimization problem is the minimization of the sum of squares
of errors in the approximation

min
W,H

∑
i,j∈S

(
Aij −

r∑
k=1

WikHkj

)2

, (2)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

https://core.ac.uk/display/190018055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Kaya et al.

where the outer sum is over the set S of (i, j) pairs where Aij is known (nonzero).
If a good approximation with a small r can be found, the factors can be used to
represent the original data in a more compressed form, with less redundancies.

One application of matrix factorization is in the field of recommendation
systems, particularly content-based filtering. As a concrete example, suppose
that each row of A corresponds to a particular user, each column to a particular
movie, and the matrix element Aij is a numeric value representing the rating
given by user i to movie j. This matrix is very sparse, because most of the users
have rated only a small fraction of all available movies. Furthermore, the data
have redundancies, because the ratings given by users with common tastes and
interests are likely to be correlated. After the original matrix A is factorized
into factor matrices with relatively small rank r, we can multiply them back to
obtain a full matrix A∗. The entries in A∗ will then be estimates for the missing
values in A. In other words, we can estimate whether a user would give a high
ranking to a given movie, and display it as a recommendation to the user.

Intuitively, matrix factorization can be seen as discovering some hidden vari-
ables in the data. For example, the hidden dimensions can be movie genres,
movies with a strong female character, movies that appeal to an adolescent au-
dience, etc [6]. If the input matrix comprises e-mails and the words in them, such
as the now-public Enron e-mail data set, the hidden dimensions turn out to be
topics like professional football, California blackout, and Enron downfall [1].

The power of matrix factorization as a recommender system is demonstrated
in the Netflix Prize challenge. In this challenge, many different algorithms were
compared with each other to see which one would improve the recommendation
accuracy by more than 10%. The first algorithm that crossed this mark was
based on matrix factorization [6].

Although other methods such as Principal Component Analysis or Latent
Semantic Analysis can also be applied to that end, matrix factorization has
the advantage that it does not regard empty matrix entries as zero values. The
optimization problem considers only the sum of squares over existing values.
This property reduces the error of the approximation [5].

Another application of matrix factorization is data compression, or repre-
senting the data in a low-dimensional subspace. Assume again that each row of
A represents ratings of users. Then, from A ≈ WH it follows that the i-th row
of A can be written as a linear combination of the rows of H, with coefficients
taken from the i-th row of W :

Ai,: =

r∑
k=1

WikHk,: (3)

where the notation Ai,: indicates the i-th row of matrix A. We can then interpret
Wik as a measure of user i’s interest in movies that have property k. Similarly,
we can interpret Hkj as a measure of how much of k is carried by the movie j.

Due to its ability to compress information, matrix factorization can also be
used for unsupervised classification problems. To this end, the preferred variety is
nonnegative matrix factorization, where both the data matrix A and the factor

Parallelized PMB for Matrix Factorization 3

matrices W , H are constrained to have only nonnegative entries. With non-
negativity, the linear combination (3) gives a recipe for constructing Ai,: by
adding ingredients Hk,: in amounts of Wik. Because no subtraction is involved,
we can interpret the results in a more intuitive way [7]. In this study, we only
consider unconstrained optimization, therefore nonnegative matrix factorization
is beyond our scope at the moment. We solve only the classic matrix factorization
problem, where entries can be negative real numbers.

For the experiments, we factorize user-movie rating matrices, provided by
the MovieLens database. To minimize the objective function (2), we use the
Preconditioned Model Building (PMB) method that we describe in Section 2.

We have developed a MATLAB implementation of the algorithm with no
parallelization. We first factorize the MovieLens 1M rating matrix with PMB, as
well as with other established optimization methods in the minFunc package. In
Section 2.1 we show that the performance of PMB on this problem is comparable
to the best ones that are in widespread use, and better than some others.

2 Preconditioned Model Building

In our recent work, we have proposed a new method that could be used as an
alternative to line search procedure in unconstrained optimization algorithms
[9,10]. From this perspective, the proposed method is another globalization mech-
anism that aids algorithms to converge from remote points to a local minimizer.
The main idea of the proposed method is to build a series of quadratic model
functions using trial points around the current iterate. With each trial point,
the simpler quadratic model function is minimized and the next trial point is
set to the location of the attained minimum. If this minimum point provides
a sufficient decrease in the original objective function according to the Armijo
condition, then it is accepted as the new step to move to the next iteration. Oth-
erwise a new model is built around the incumbent trial point. As we construct
a new quadratic model at each trial point, we aptly refer to this approach as
model building (MB) algorithm in this paper.

At iteration k, MB takes an initial vector and uses it as the first trial point,
sk. To guarantee the convergence of the algorithm, this initial vector should be
gradient related providing a sufficient descent. Let us formalize this discussion.
Consider the unconstrained optimization problem of the form

min
x∈Rn

f(x),

where f : Rn 7→ R is the objective function. Let xk denote the point at iteration
k. To obtain the next iterate xk+1, the MB algorithm requires the initial vector
sk to satisfy the following two conditions:

m0‖∇f(xk)‖ ≤ ‖sk‖ ≤M0‖∇f(xk)‖,

−µ0‖∇f(xk)‖2 ≤ s>k∇f(xk) ≤ 0
(4)

4 Kaya et al.

for some m0,M0, µ0 ∈ (0,∞). If we simply set sk = −∇f(xk), then both con-
ditions are satisfied with m0 = M0 = µ0 = 1. This choice of sk is, in fact, used
when MB is first introduced by Öztoprak and Birbil [10].

Another way of setting the initial vector for the MB algorithm is to use a
positive definite matrix. That is, we can set sk = −Hk∇f(xk) and use this
direction as an input to the MB algorithm. Since Hk is positive definite, the
conditions in (4) are satisfied by taking m0 as the minimum eigenvalue of Hk,
and M0 along with µ0 as the maximum eigenvalue of Hk. Algorithm 1 shows
explicitly the steps of our implementation, where the first trial step is determined
after a preconditioner is computed (line 4). The model building steps are given
between line 14 and line 21. The original algorithm in [10] takes η ∈ (0, 1) as an
input of the algorithm. In our implementation, we have observed that adjusting
this parameter dynamically as shown in line 14 improves the performance.

Algorithm 1: Preconditioned Model Building

1 Input: x0; ρ = 10−4; k = 0

2 fk = f(xk); gk = ∇f(xk);
3 while xk is not a stationary point do
4 Compute the preconditioner Hk;
5 sk = −Hkgk;
6 for t = 0, 1, 2, · · · do
7 xtk = xk + sk; f tk = f(xtk); g

t
k = ∇f(xtk);

8 v6 = s>k gk; ∆f = fk − f tk;
9 if ∆f ≥ −ρv6 then

10 xk+1 = xtk, fk+1 = f tk, gk+1 = gtk;
11 k = k + 1;
12 break;
13 end

14 v0 = s>k g
t
k; η1 = |∆f |

v6
; η2 = |∆f |

v0
; η = min(η1,η2)

η1+η2
;

15 y = gtk − gk; v1 = y>sk; v2 = s>k sk;
16 v3 = y>y; v4 = y>gk; v5 = g>k gk;
17 σ = 1

2
(
√
v2(
√
v3 +

1
η

√
v5)− v1);

18 θ = (v1 + 2σ)2 − v2v3;
19 cg = −v2/(2σ); cs = cg

θ
(−(v1 + 2σ)v4 + v3v6);

20 cy =
cg
θ
(−(v1 + 2σ)v6 + v2v4);

21 sk = cggk + cssk + cyy;
22 end
23 end

The introduction of such a positive definite matrix Hk is also known as pre-
conditioning. The advantage of preconditioning in the optimization context is to
incorporate second order information into the step evaluation [2]. Quasi-Newton

Parallelized PMB for Matrix Factorization 5

Dataset #users #movies #ratings density
1M 6,040 3,952 1,000,209 0.042
10M 71,567 10,681 10,000,054 0.013
20M 138,493 27,278 20,000,263 0.005

Table 1: Metadata of MovieLens data sets.

methods obtain this information by making use of the gradient information col-
lected in the previous iterations. The most famous one among the quasi-Newton
methods is the limited BFGS method (L-BFGS) method [8]. In this current
work, we have also used L-BFGS update mechanism for estimating our precon-
ditioning matrices. Thus, we refer to the resulting procedure as Preconditioned
Model Building (PMB) algorithm.

2.1 A first comparison with other optimizers

The MovieLens data [4] This is a public data set containing a large number of
ratings of movies by individuals. The data is collected from the movielens.org
web site, maintained by the GroupLens research group at the Univ. of Minnesota.
Although the full data set keeps growing in time, stable data sets are available
for benchmarking purposes. These are referred to as 1M, 10M, and 20M datasets.
The names refer to the number of ratings contained in each data set.

Table 1 lists the number of users, number of movies and number of ratings in
each data set. Each set contains users who have rated at least 20 movies. Ratings
are integers between 1 and 5.

Numerical comparison We solve the optimization problem (2) with PMB, as
well as several other optimization functions commonly used in literature. We
see that PMB does not have a significant handicap when compared against the
other accepted methods.

We factorize the matrix of MovieLens 1M data set with several popular opti-
mization algorithms, along with PMB. All of these factorizations are performed
using MATLAB R2015b. For all methods except PMB, we have used minFunc
package [11]. The codes for generating these results are available in the accom-
panying GitHub repository1 for those who wish to replicate our results.2

Each algorithm is initialized with random matrix entries. Each entry is sam-
pled from the uniform distribution U(1, 5)/

√
r, where r is the rank of the fac-

torization (set to 50), so that the resulting matrix product has entries mostly
between 1 and 5. Algorithms are stopped after 500 iterations. The maximum
number of function calls and the maximum number of iterations are both set to
1000. Every algorithm run is repeated 50 times with randomized initial points,
and 95% confidence intervals for the mean values are estimated using bootstrap-
ping.
1 https://github.com/sibirbil/PMBSolve
2 The PMB results in this section are obtained with the MATLAB implementation,
which is not parallelized and thus different from the results given in Section 4.

6 Kaya et al.

Method Mean final RMSE 95% confidence interval
Barzilai and Borwein 0.6436 (0.6096, 0.6855)
Cyclic Steepest Descent 0.5894 (0.5871, 0.5919)
Hessian-Free Newton 0.5561 (0.5544, 0.5581)
Conjugate Gradient (CG) 0.5558 (0.5548, 0.5568)
Scaled CG 0.5391 (0.5385, 0.5398)
PMB 0.5148 (0.5138, 0.5160)
Preconditioned CG 0.5020 (0.5002, 0.5038)
Limited memory BFGS 0.4954 (0.4944, 0.4965)

Table 2: Comparison of PMB with other optimizers for the 1M dataset with factor-
ization rank 50, averaged over 50 runs.

The resulting RMS error values and gradient norm for each algorithm is
shown on Table 2. We see that PMB is one of the most successful methods to
solve this large matrix factorization problem.

3 Parallelization of PMB-based Matrix Factorization

The PMB engine is implemented by using templates in C++11. Various optimiza-
tion problems, e.g., matrix factorization as in this study, can be solved with the
engine once the appropriate function/gradient computation source code is inte-
grated. Moreover, this integration does not need a modification on the engine
and a separate source file is sufficient.

The only time consuming part of the engine is the preconditioning; how-
ever, for the matrix factorization problem, preconditioning is only responsible
for the 5% of the execution time. The rest is spent to the function and gradient
computations for sparse factorization. Hence, in this work, we mainly focus on
the function and gradient computations since they form the main bottleneck.
The computations in the engine, mostly dot products, are also parallelized in a
straightforward manner whlie optimizing the data reuse and memory accesses as
much as possible. The execution time of the PMB for the matrix factorization
problem dissected into three parts is given in Figure 1. As the figure shows, the
factorization-specific functions is responsible for most of the execution time.

3.1 Computational tasks for sparse matrix factorization

Given a sparse matrix A with τ entries, there are three tasks at each iteration:

1. Computing the error ∆ij for known Aij entries, i.e.,

∆ij = (Wi,: ·H:,j)−Aij for all (i.j) ∈ S (5)

where · is the dot product operator andWi,: andH:,j are row and column vec-
tors corresponding to the i-th row of W and j-th column of H, respectively.
This task simultaneously computes the overall function value

∑
(i,j)∈S ∆

2
ij .

2. Computing the gradient entries forW ; let Z1 be the matrix containing these
entries. Then

Z1i,: =
∑

(i,j)∈S

∆ijH
T
:,j . (6)

Parallelized PMB for Matrix Factorization 7

1	 2	 4	 8	 16	 1	 2	 4	 8	 16	 1	 2	 4	 8	 16	
MovieLens	1M	 MovieLens	10M	 MovieLens	20M	

Other	 2.04	 1.44	 0.86	 0.63	 0.54	 24.23	 13.76	 8.42	 6.67	 7.2	 48.18	 26.68	 16.82	 15.43	 14.18	

Precondi;oning	 5.61	 2.73	 1.45	 0.96	 0.8	 58.29	 28.09	 14.81	 10.36	 9.94	 136.69	 58.88	 31.16	 23.69	 18.66	

Func;on	 77.99	 49.43	 24.31	 12.23	 6.27	 975.6	 566.19	 277.41	 138	 69.93	 1947.59	 1156.64	 569.49	 281.7	 143.22	

0	

500	

1000	

1500	

2000	

2500	

Ex
ec
u&

on
	T
im

e	
(s
ec
.)	

Fig. 1: The execution time of PMB dissected into three parts for bottleneck detection:
The most time consuming part, Function, computes the error for each Aij and updates
the factor matrices accordingly. The next part handles the Preconditioning stage. The
Other parts of PMB, i.e., memory allocations, transfers etc., are considered as a third
part for completeness.

3. Computing the gradient entries for H; let Z2 be the matrix containing these
entries. Then

Z2:,j =
∑

(i,j)∈S

∆ijW
T
i,:. (7)

For all the tasks, the time complexity is O(r × τ) where r is the factorization
rank.

3.2 Storing the sparse matrix and auxiliary data in memory

We start by mentioning the common data structures for the implementation of
the algorithms. For matrix factorization, the pattern and the numerical values
of a sparse matrix is stored in both the compressed row storage (CRS) or com-
pressed column storage (CCS) formats. These are well known storage formats
for sparse matrices (see, e.g., Section 2.7 of Duff et al. [3]). Consider an m × n
sparse matrix A with τ nonzeros. In CRS, the pattern of A is stored in three
arrays:

– colids[1, . . . , τ] stores the column index of each entry.
– vals[1, . . . , τ] stores the corresponding numerical value of each entry. The

column ids and values in a row are stored consecutively; and
– ptrs[1, . . . ,m+ 1] stores the location of the first entry of each row in array

colids where ptrs[m+ 1] = τ + 1. In particular, the column indices of the
entries in row i are stored in colids[ptrs[i], . . . , ptrs[i + 1] − 1]. Similarly
the values in the i-th row are stored in values[ptrs[i], . . . , ptrs[i+ 1]− 1]

The CCS of a matrix A is the CRS of its transpose and vice-versa. In CCS, there
are two pattern arrays (ccs)_rowids and (ccs)_ptrs, with functions similar
to the first and the third arrays just described above. However, we will not need
a (ccs)_vals array separately for the CCS format. Both formats are necessary
for our parallel implementation.

8 Kaya et al.

The auxiliary sparse matrix ∆ has τ entries and the same sparsity pattern of
A. Hence, the same CRS/CCS pattern arrays can be used. We also use an extra
delta array of size τ to store the ∆ij values in CRS format. When a column-wise
access to ∆ is required (that will be necessary to avoid race conditions), we will
utilize a static, precomputed ccs_trans array that translates the CCS-location
to a CRS-location. The usage of this array will be described in more detail later.

The matrices W , Z1, H and Z2 are all dense and the first two and the last
two contain m×r and n×r entries, respectively. To optimize the spatial locality
of reference for the accesses to these matrices, we use the row-major layout for
W and Z1 and the column-major layout for H and Z2.

3.3 Efficient and lock-free parallel implementation of the tasks

The memory accesses for the sparse factorization problem can deteriorate the
performance if they are not handled carefully. As mentioned above, our first task
computes the ∆ matrix which is used by the later tasks; if the implementation
uses barriers in between the tasks, there will be (at least) τ memory accesses
to the delta array by the second task. This overhead can be avoided when
the first two tasks are integrated; in this version, each ∆ij computed by (5) is
immediately used by (6). This ∆ij value is then stored in the corresponding
entry of the delta array to be used later by the third task to compute (7).

The first task can be parallelized in two different ways: in the fine-grain ap-
proach, each ∆ij computation can be assigned to a different thread, and in the
coarse-grain approach, the values in ∆i,: are assigned to the same thread. Al-
though the former increases the degree of concurrency and eases load balancing,
the latter is more appropriate for the integration of the first two tasks. As it can
be seen by (6), a gradient entry Z1ij is modified for each entry in ∆i,:. Hence,
when the fine-grain approach is taken and two threads independently compute
and use ∆i,j′ and ∆i,j′′ , the entry Z1ij needs to be updated by both of these
threads. To avoid such race conditions, expensive synchronization mechanisms
are required. However, a lock-free implementation is possible when each row
∆i,: (and hence Z1i,:) is assigned to only a single thread. Since we access the
elements of A and ∆ in a row-wise manner, the CRS pattern and value arrays
are used for this implementation.

A similar analysis of (7) implies that a lock-free parallel implementation of
the third task is possible if the updates on each column of Z2 are solely assigned
to a single thread. However, this requires an efficient access to the columns of
∆. Since the array delta is organized via CRS, the entries in a column of ∆
are not consecutively stored in memory. On the other hand, with a CCS-to-CRS
translator, one can access to these non-consecutive locations one after another.
In our implementation, we use a helper array ccs_trans of size τ to convert the
CCS-locations to CRS-locations and access the correct ∆ij values in the same
column. The lock-free implementation of this task is given in Figure 2a.

With pinpoint analysis, we identified the main bottleneck of the lock-free code
in Figure 2a as the memory updates in the innermost loop, which is expected
since one needs to perform two data loads (from myW and myZ2) and a store (to

Parallelized PMB for Matrix Factorization 9

(a) Lock-free parallelization (b) With loop unrolling

Fig. 2: The lock-free parallelization of the third task is given on the left. The unrolled
form of its middle loop which performs four iterations at once is given on the right.
For simplicity, only the first part of the loop is given and the part that completes the
remaining |∆:,j | mod 4 iterations is omitted.

myZ2) for each update. To reduce the accesses to/from myZ2, we unroll the middle
loop and process multiple∆ andW values in the same line. In this way, we reduce
the number of accesses to myZ2 by at most 4×. The loop-unrolled version of the
third task is given in Figure 2b. A similar loop-unrolling mechanism is applied
to the integrated implementation of the first and second tasks, but a detailed
explanation is omitted in the paper due to space limitations.

4 Experimental Results

All the simulation experiments in this section are performed on a single machine
running on 64 bit CentOS 6.5 equipped with 384GB RAM and a dual-socket
Intel Xeon E7-4870 v2 clocked at 2.30 GHz, where each socket has 15 cores
(30 in total). Each core has a 32kB L1 and a 256kB L2 cache, and each socket
has a 30MB L3 cache. All the codes are compiled with gcc 4.9.2 with the -O3
optimization flag enabled. For parallelization, we used OpenMP with (dynamic,
16) scheduling policy. For each datapoint in the figures and tables, we perform
five experiments and presented the average.

We first investigate the impact of loop-unrolling. From now on, the integrated
∆ and Z1 computation will be denoted as dtZ1. Similarly, we will use Z2 to
denote the third task of Section 3.1. Figure 3 and 4 show the execution times
of the lock-free implementation and its loop-optimized version for dtZ1 and Z2,
respectively. As the figures show, unrolling the loop and perform four iterations
at once significantly improves the performance of both tasks.3

3 We repeated this experiment by performing eight iterations at once but no further
improvement is observed.

10 Kaya et al.

0	

10	

20	

30	

40	

50	

60	

1	 2	 4	 8	 16	

MovieLens	1M	

Ex
ec
u&

on
	&
m
e	
(s
ec
)	

0	

100	

200	

300	

400	

500	

600	

700	

1	 2	 4	 8	 16	

MovieLens	10M	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	 2	 4	 8	 16	

MovieLens	20M	

Original	
Loop-op7mized	

Fig. 3: The impact of loop-unrolling on the integrated dtZ1 computation for all three
datasets and 1, 2, 4, 8 and 16 threads.

0	

5	

10	

15	

20	

25	

30	

1	 2	 4	 8	 16	

MovieLens	1M	

Ex
ec
u&

on
	&
m
e	
(s
ec
)	

0	

50	

100	

150	

200	

250	

300	

350	

400	

1	 2	 4	 8	 16	

MovieLens	10M	

0	

100	

200	

300	

400	

500	

600	

700	

800	

1	 2	 4	 8	 16	

MovieLens	20M	

Original	
Loop-op:mized	

Fig. 4: The impact of loop-unrolling on the Z2 computation for all three datasets and
1, 2, 4, 8 and 16 threads.

The individual speedups of dtZ1, Z2, as well the overall speedup of the whole
matrix factorization process, are given in Figure 5 for MovieLens 10M and 20M
datasets. As the figures show, with 16 threads, the speedup for the combined
dtZ1, Z2 (Func) is around 13× whereas the overall speedup is around 11×. The
overall speedup is smaller since except dtZ1 and Z2, PMB performs only vector
dot products which is a memory-bounded task infamous about its bad scalability.

We also experimented with a single-precision PMB implementation to see
its impact on the performance. As expected, the performance is significantly im-
proved; the performance is 1.36×, 1.52×, and 1.90× better for dtZ1, Z2, and pre-
conditioning, respectively, compared to the double-precision variant. Although
this improvement comes with a possible reduction on the accuracy, this is not
the case for the datasets as the following experiment shows.

Using this implementation, we factorize each of the 1M, 10M, and 20M rating
matrices with factorization ranks 20 and 100. Each factorization is repeated 50

Parallelized PMB for Matrix Factorization 11

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

	Number	of	Threads	

Total	 Func	 dtZ1	 Z2	

(a) MovieLens 10M

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

Number	of	Threads	

Total	 Func	 dtZ1	 Z2	

(b) MovieLens 20M

Fig. 5: Individual speedups with MovieLens 10M (left) and 20M (right) datasets
and 1, 2, 4, 8 and 16 threads for dtZ1 and Z2. The charts also show their combined
speedup (Func), and the overall speedup of whole execution.

Double precision Single precision Improvement
Dataset #threads dtZ1 Z2 Pre. dtZ1 Z2 Pre. dtZ1 Z2 Pre.
1M 1 28.3 18.3 5.6 22.7 12.5 2.9 1.25 1.46 1.93

16 2.2 2.1 0.8 1.6 1.4 0.4 1.38 1.50 2.00
10M 1 308.2 283.3 57.7 230.3 174.0 33.1 1.34 1.63 1.74

16 22.5 22.1 9.9 16.1 15.1 4.8 1.40 1.46 2.06
20M 1 618.0 567.1 132.1 462.0 359.4 70 1.34 1.58 1.89

16 46.9 46.7 19.3 32.4 31.2 10.6 1.45 1.50 1.82
Average improvement 1.36 1.52 1.90

Table 3: The execution times (in secs.) for dtZ1, Z2, and the Preconditioning phase
of the loop-unrolled version when double and single precision arithmetic and data
representation is used for single and 16-thread version.

times with randomized initial conditions. The final RMSE values are then found
by averaging, and confidence intervals are determined by bootstrap resampling.
The algorithm stops when the number of iterations reaches 500 or when the
absolute value of the largest element of the function gradient drops below 10−5.
Table 4 displays the results for this experiment.

We see that using single-precision version of PMB does not make a significant
difference in the final RMSE value for matrix factorization, compared to the
double-precision version. However, in every case, the single-precision version runs
faster by a factor of 1.5×–2.0×. Therefore, in this particular problem, single-
precision arithmetic can be preferred.

5 Conclusions

Preconditioned Model Building algorithm is a powerful optimizer that combines
local model-building iterations with second-order information. Our results show
that for the matrix factorization problem, the performance of the PMB algorithm
is comparable to the best algorithms in general use.

12 Kaya et al.

Dataset Rank Precision Mean RMSE 95% confidence interval

1M
20 single 0.681926 (0.681265, 0.682619)

double 0.682071 (0.681296, 0.682815)
100 single 0.335744 (0.332367, 0.339220)

double 0.338259 (0.334817, 0.341658)

10M
20 single 0.682580 (0.682190, 0.683038)

double 0.683356 (0.682781, 0.683952)
100 single 0.529536 (0.469352, 0.592387)

double 0.528092 (0.468423, 0.590662)

20M
20 single 0.670611 (0.670027, 0.671292)

double 0.679019 (0.669434, 0.697753)
100 single 0.673502 (0.593685, 0.751497)

double 0.667708 (0.589608, 0.745404)

Table 4: Final RMSE results from the factorization of MovieLens matrices with fac-
torization rank 20/100 and single/double precision.

Since it is cheap, the algorithm spends most of the execution time for the
evaluation of the error and in the update of factor matrices. These computations
are similar to the traditional sparse-matrix computations, therefore we can go
around this bottleneck with appropriate parallelization techniques. Indeed, the
PMB algorithm can be parallelized very well. The experiments show that there
is little overhead thanks to the lock-free parallelization, and the speedup with
16 threads is about 11. Hence, the algorithm can be promising for large-scale
optimization problems.

References

1. M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons.
Algorithms and applications for approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis, 52(1):155–173, Sept. 2007.

2. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
3. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Oxford University Press, Inc., New York, NY, USA, 1986.
4. F. M. Harper and J. A. Konstan. The movielens datasets: History and context.

ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015.
5. A. Hernando, J. Bobadilla, and F. Ortega. A non negative matrix factorization

for collaborative filtering recommender systems based on a bayesian probabilistic
model. Knowledge-Based Systems, 97:188–202, 2016.

6. Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recom-
mender Systems. Computer, 42(8):30–37, Aug. 2009.

7. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, Oct. 1999.

8. D. C. Liu and J. Nocedal. On the limited-memory BFGS method for large scale
optimization. Mathematical Programming, (45):503–528, 1989.

9. F. Öztoprak. Parallel Algorithms for Nonlinear Optimization. PhD thesis, Sabancı
University, 2011.

10. F. Öztoprak and S. I. Birbil. An alternative globalization strategy for uncon-
strained optimization. arXiv preprint, arXiv:1705.05158, 2017. To appear in Op-
timization.

11. M. Schmidt. minFunc: unconstrained differentiable multivariate optimization in
matlab. http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html. Accessed:
2017-03-22.

 http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

	Parallelized Preconditioned Model Building Algorithm for Matrix Factorization
	Introduction
	Preconditioned Model Building
	A first comparison with other optimizers

	Parallelization of PMB-based Matrix Factorization
	Computational tasks for sparse matrix factorization
	Storing the sparse matrix and auxiliary data in memory
	Efficient and lock-free parallel implementation of the tasks

	Experimental Results
	Conclusions

