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grateful to Murat Kantarcıoğlu for his guidance and valuable contributions

to this thesis. I would like to thank him for welcoming me to the friendly

and encouraging environment of Data Security and Privacy Lab, University

of Texas at Dallas (UTD).
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Abstract

Search over encrypted data recently became a critical operation that

raised a considerable amount of interest in both academia and industry, es-

pecially as outsourcing sensitive data to cloud proves to be a strong trend to

benefit from the unmatched storage and computing capacities thereof. In-

deed, privacy-preserving search over encrypted data, an apt term to address

privacy related issues concomitant in outsourcing sensitive data, has been

widely investigated in the literature under different models and assumptions.

Although its benefits are welcomed, privacy is still a remaining concern that

needs to be addressed. Some of those privacy issues can be summarized as:

submitted search terms and their frequencies, returned responses and their

relevancy to the query, and retrieved data items may all contain sensitive

information about the users.

In this thesis, we propose two different multi-keyword search schemes that

ensure users’ privacy against both external adversaries including other autho-

rized users and cloud server itself. The proposed schemes use cryptographic

techniques as well as query and response randomization. Provided that the
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security and randomization parameters are appropriately chosen, both the

search terms in the queries and the returned responses are protected against

privacy violations. The scheme implements strict security and privacy re-

quirements that essentially can hide similarities between the queries that

include the same keywords.

One of the main advantages of all the proposed methods in this work is

the capability of multi-keyword search in a single query. We also incorporate

effective ranking capabilities in the proposed schemes that enable user to

retrieve only the top matching results. Our comprehensive analytical study

and extensive experiments using both real and synthetic data sets demon-

strate that the proposed schemes are privacy-preserving, effective, and highly

efficient.
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Özet

Hem akademik hem de endüstri çevrelerinde, hassas bilgi içeren verilerin

bulut hizmeti veren firmalara aktarılması akımının başlamasıyla, şifrelenmiş

veri üzerinde arama yapmak çok kritik ve önemli bir işlem haline geldi. Bulut

yapısının, çok yüksek depolama ve hesaplama kapasitesini uygun fiyatlarla

kullanıcılara sunuyor olması, bu akımın temel çıkış noktasıdır. Problemin

öneminden dolayı, şifrelenmiş veri üzerinde mahremiyet korumalı arama yap-

mak, literatürde farklı modeller altında geniş çaplı bir şekilde incelenmiştir.

Bulut yapısının faydaları kabul edilmekle birlikte, aktarılan verilerin mahremiyeti

konusu hala çözülmesi gereken bir problemdir. Sorgu sırasında gönderilen

anahtar terimlerin içeriği, sorgu terimlerinin kullanım sıklığı, geri dönen ver-

ilerin içeriği, bu verilerin sorgu ile ne oranda örtüştüğü gibi bilgilerin tamamı

kullanıcılarla ilgili hassas bilgiler olarak nitelendirilebilir. Mahremiyet koru-

malı arama metotları, bu hassas bilgilerin korunmasını hedeflemektedir.

Bu çalışmada iki farklı mahremiyet korumalı anahtar kelime arama yöntemi

öneriyoruz. Her iki yöntem de, hem başka kullanıcılara karşı, hem de bulut
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sunucusunun kendisine karşı verilerin mahremiyetini sağlıyor. Mahremiyeti

sağlamak için, kriptografik yöntemlerin yanı sıra, sorguları ve dönen cevapları

rastgele hale getirme yöntemlerinden de faydalanıyoruz. Güvenlik parame-

trelerinin doğru bir şekilde ayarlanması sağlandığı taktirde, önerdiğimiz yöntemler

hem sorguların hem de buluta aktarılan verilerin mahremiyetini koruyacak

niteliktedir. Önerdiğimiz yöntemler arama yapmanın dışında, eşleşen verileri

sorgu ile alakalarına göre sıralama özelliğine de sahiptir. Bu özellik sayesinde

sadece sorgu ile en alakalı eşleşmeler döndürülebilmektedir. Hem gerçek, hem

de sentetik olarak yaratılmış veri kümeleri üzerinde yaptığımız detaylı anali-

zler, önerdiğimiz yöntemlerin mahremiyeti koruyan ve yüksek oranda doğru

sonuçları hızlı bir şekilde döndürebilen yapılar olduğunu göstermektedir.
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Chapter 1

INTRODUCTION

The data storage requirements increase as huge amounts of data need to be

accessible for users. The associated storage and communication requirements

are a huge burden on organizations, which show, a strong proclivity of out-

sourcing their data to remote servers. Outsourcing data to clouds provides

effective solutions to users that have limited resource and expertise for stor-

age and distribution of huge data at low costs. However, data outsourcing

engenders serious privacy concerns. Protecting the privacy is an essential re-

quirement, since the cloud providers are not necessarily trusted. Therefore,

some precautions are required to protect the sensitive data from both the

cloud server and any other non-authorized party.

Cloud computing has the potential of revolutionizing the computing land-

scape. Indeed, many organizations that need high storage and computational

power tend to outsource their data and services to clouds. Clouds enable its

customers to remotely store and access their data by lowering the cost of

hardware ownership while providing robust and fast services [1]. It is ex-

pected that by 2015, more than half of Global 1000 enterprises will utilize

external cloud computing services and by 2016, all Global 2000 will benefit
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from cloud computing to a certain extent [2].

1.1 Motivation

While its benefits are welcomed in many quarters, some issues remain to

be solved before a wide acceptance of cloud computing technology. The

security and privacy of remote data, are among the most important issues,

if not the most important. Particularly, the importance and necessity of

privacy-preserving search techniques are even more pronounced in the cloud

applications. The large companies that operate the public clouds like Google

Cloud Platform [3], Amazon Elastic Compute Cloud [4] or Microsoft Live

Mesh [5] may access the sensitive data such as search and access patterns.

Hence, hiding the query and the retrieved data has great importance in

ensuring the privacy and security of those using cloud services. A trivial

approach can be encrypting the data before sharing with the cloud. However,

the advantage of the cloud data storage is completely lost if data cannot be

selectively searched and retrieved. Unfortunately, off-the-shelf private key

encryption methods are not suitable for applying search over cipher-text.

One of the most important operations on the remote data is the secure

search operation. Although there are several approaches for searchable en-

cryption, the basic setting is almost the same for all. There is a set of

authorized users and a single or multiple semi-trusted servers. The data is

assumed to be accessible to the authorized users. Due to the sensitive nature

of the documents, the users do not want the server or other users to learn

the content of their documents. Moreover, due to the number of users, the

search operations can be executed very frequently. Hence, the search opera-

tion should not only protect the privacy of the users and the data but also
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should be highly efficient.

To facilitate search on encrypted data, an encrypted index structure (i.e.,

secure index) is stored in the server along with the encrypted data. The

authorized users have access to a trapdoor generation function which enables

them to generate valid trapdoors for any arbitrary keyword. This trapdoor

is used in the server to search for the intended keyword. It is assumed that

the server does not have access to the trapdoor generation function, and

therefore, can not ascertain the keyword searched for. We assume all the

entities in the system are semi-honest and do not collude with each other.

Considering the large data set sizes, a single keyword search query usually

matches with lots of data items, where only few are relevant. Moreover, users

need to apply several queries and take the intersection of the corresponding

results, which impose a serious burden of both computation and time on

the user. A multi-keyword search, instead can incorporate a conjunction of

several keywords in a single query. Moreover, instead of returning undiffer-

entiated results, the matching results can further be ranked according to the

relevancy to the query. By increasing the search constraints and applying

ranking, only the most relevant items will be returned to the user, which

reduces both the computation and communication burden on user.

A typical scenario that benefits from our proposal is that a company out-

sources its document server to a cloud service provider. Authorized users

or customers of the company can perform search operations using certain

keywords on the cloud to retrieve the relevant documents. The documents

may contain sensitive information about the company, and similarly, the

keywords that the users search may give hints about the content of the doc-

uments hence, both must be hidden. Furthermore, the queried keywords

themselves may reveal sensitive information about the users as well, which
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is considered to be a privacy violation by users if learned by others.

In this thesis, we propose two different novel privacy-preserving and effi-

cient multi-keyword search methods. The both methods return the matching

data items in a rank-ordered manner.

1.2 Contributions

This thesis presents two novel multi-keyword search methods for applying

secure search over encrypted cloud data. The design of a secure search (i.e.,

searchable encryption) method is challenging since it must satisfy strict pri-

vacy requirements while still being highly efficient.

The major results of this thesis are summarized as follows:

• We adapt some of the existing formal definitions for the security and

privacy requirements of keyword search on encrypted cloud data for

our problem and also introduce some new privacy definitions.

• We propose two multi-keyword search schemes. The first one is based

on keyed cryptographic hash functions. The second one is based on

locality sensitive hashing (LSH) (i.e., MinHash), which ensures privacy

and security requirements in the most strict sense.

• We utilize ranking approaches for the both search methods that base

on term frequencies (tf) and inverse document frequencies (idf) of the

keywords. The proposed ranking approaches prove to be efficient to

implement and effective in returning documents highly relevant to the

submitted queries.

• We apply the search method on a two server setting that averts correla-

tion of a query with the corresponding matching document identifiers.
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• For the MinHash based search method, we utilize a novel approach that

reduces the number of encryption and the communication overhead by

more than 50 times through combining several encryption in a single

cipher-text.

• We provide formal proofs that the proposed methods are privacy-preserving

in accordance with the defined requirements.

• We implement the proposed schemes and demonstrate that it is efficient

and effective by experimenting with both real and synthetic data sets.

1.3 Outline

The organization of this thesis is as follows: The literature on secure search is

reviewed in detail in Chapter 2, . In Chapter 3, we examine the related well

known topics that are going to be used throughout the thesis. In Chapter 4,

we introduce our first secure keyword search approach that is based on HMAC

functions. The experimental results and security proofs of this approach are

also provided in this chapter. In Chapter 5, we provide yet another secure

search method which is based on locality sensitive hash (LSH) functions. We

propose two different models in this LSH based method. The first one is a

single server method which is very efficient but has some security flows. The

second one, two server model, provides better security requirements but it is

slower than the single server model due to required homomorphic encryption

operations. The formal security analysis and extensive cost analysis of both

single and two server models are provided in this section. Finally, in Chapter

6 we conclude the thesis.
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Chapter 2

RELATED WORK

Privacy-preserving search over encrypted data and searchable encryption

methods have been extensively studied in recent years. A trivial approach is

sending a copy of the entire encrypted data set to the user and let the user

does the search. This trivial approach provides information theoretic privacy

since the server cannot learn any information about the searched keywords or

accessed files. Nevertheless, this approach brings an enormous computation

burden on the user and do not benefit from the utilities of cloud comput-

ing. Any useful method for search over encrypted data must provide better

efficiency compared to the trivial approach.

There are three main models in search over encrypted data methods [6].

The first model is the vendor system. In this scenario, the data stored on a

server is public, but the user wants to apply search without revealing the in-

formation on the data accessed, to the server administrator. Private Informa-

tion Retrieval (PIR) protocols provide solutions for this scenario [7, 8, 9, 10].

The problem of PIR was first introduced by Chor et al. [7]. Later, Groth

et al. [11] propose a multi-query PIR method with constant communication

rate. However, the computational complexity of the server in this method is
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very inefficient to be used in large databases. On the other hand, PIR does

not address as to how the user learns which data items are most relevant to

his inquiries.

The second scenario is the store and forward system, where a user can

apply search over the data which is encrypted under the user’s public key.

This scenario is suitable for secure email applications, where the senders know

the receivers’ public keys. A public key encryption with keyword searching

(PEKS) scheme for this scenario, was first proposed by Boneh et al. [12].

Several subsequent improvements on the PEKS method are proposed [6, 13,

14, 15]; both for single and conjunctive keyword search settings.

The third model is the public storage system (i.e., database outsourcing

scenario), where a user outsources his sensitive data to a remote server in

an encrypted form. Several authorized users can then apply search over the

encrypted data, without leaking any sensitive information about the queried

keywords to the remote database administrator. In this thesis, we consider

the public storage system scenario.

Related work for this scenario can be analyzed in two major groups:

single keyword and multi-keyword search. While the user can only search for

a single feature (e.g., keyword) per query in the former, the latter enables

search for a conjunction of several keywords in a single query.

Most of the privacy-preserving keyword search protocols existing in the

literature provide solutions for single keyword search. Goh [16] proposes a se-

curity definition for formalization of the security requirements of searchable

symmetric encryption schemes. One of the first privacy-preserving search

protocols is proposed by Ogata and Kurosawa [17] using RSA blind signa-

tures. The scheme is not very practical due to the heavyweight public key

operations per database entry that should be performed on the user side.
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Later, Curtmola et al. [18] provides adaptive security definitions for privacy-

preserving keyword search protocols and proposes a scheme that satisfies the

requirements given in the definitions. Another single keyword search scheme

is proposed by Wang et al. [19] that keeps an encrypted inverted index to-

gether with relevancy scores for each keyword-document pair. This method

is one of the first work that is capable of ranking the results according to

their relevancy with the search term. Recently, Kuzu et al. [20] proposed an-

other single keyword search method that uses locality sensitive hashes (LSH)

and satisfies adaptive semantic security. Different from the other work, this

scheme is a similarity search scheme, which means that matching algorithm

works even if typos exist in the query.

All the work that are given above, are only capable of conducting single

keyword search. However, in the typical case of search over encrypted data for

public storage system scenario, the size of the outsourced data set is usually

huge and single keyword search will inevitably return an excessive number

of matches, where most will be irrelevant for the user. Multi-keyword search

allows more constraints in the search query and enables the user to access

only the most relevant data. Raykova et al. [21] proposed a solution using

a protocol called re-routable encryption. They introduce a new agent called

query router (QR) between the user and the server. User sends the queries

to the server through the QR to protect his anonymity with respect to the

server. Security of the user’s message with respect to the QR is satisfied

by confidentiality (i.e., encryption). They utilize bloom filters for efficient

search. Although this work is presented as a single keyword search method,

the authors also show a trivial multi-keyword extension. Wang et al. [22]

proposed a multi-keyword search scheme, which is secure under the random

oracle model. The method uses a hash function to map keywords into a fixed
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length binary array. Later, Cao et al. [23] proposed another multi-keyword

search scheme that encodes the searchable database index into two binary

matrices and uses inner product similarity during matching. This method is

inefficient due to huge matrix operations and it is not suitable for ranking.

Bilinear pairing based solutions for privacy-preserving multi-keyword search

are also presented in the literature [15, 24, 25]. In contrast to other multi-

keyword search solutions that are based on either hashing or matrix multi-

plications, the results returning from bilinear pairing based solutions are free

from false negatives and false positives (i.e., only the correct results return).

However, computation costs of pairing based solutions are prohibitively high

both on the server and on the user side. Moreover, bilinear pairing based

schemes provide neither any additional privacy for hiding access or search

patterns of users, nor any solution for ranking the matching results accord-

ing to their relevancy with the queries. Therefore, pairing based solutions

are not practical for many applications.

The privacy definition for almost all of the existing efficient privacy-

preserving search schemes, proposed for the public storage system, allows

the server to learn some information due to efficiency concerns. Although

the data is encrypted, it may not always ensure privacy. If an adversary

can observe a user’s access pattern (i.e., which items are accessed) to an

encrypted storage, some information about the user can still be learned. In

the case, there is a need for hiding the access patterns, Oblivious RAM [26]

methods can be utilized for the document retrieval process. Oblivious RAM

hides the access pattern by continuously applying a re-order process on the

memory as it is being accessed. Since in each access, the memory location

of the same data is different and independent of any previous access, the

access pattern is not leaked. However the Oblivious RAM methods are not
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practical even for medium sized data sets due to incurred polylogarithmic

overhead. Specifically, in real world setups ORAM yields execution times

of hundreds to thousands of seconds per single data access [26]. Recently

Stefanov et al. [27] present a simple Oblivious RAM protocol with a small

amount of client storage, named Path ORAM. The method Path ORAM re-

quires log2N/ logX bandwidth overhead for block size B = X logN , which is

asymptotically better than the best known ORAM scheme with small client

storage for block sizes bigger than Ω(log2N).
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Chapter 3

PRELIMINARIES

The fundamental problem of search over encrypted data is examining the

similarity between queries and encrypted data items. We use two different

encryption methods, homomorphic encryption and PCPA-secure encryption,

for ensuring the privacy of the data. Similarly two different hash functions,

MinHash and HMAC, are used to deduce a similarity between secure index

entries of the sensitive data and an encrypted query. We also utilize some of

the well-known metrics used in information systems to estimate the order of

relevancy of the matching results. In this Chapter, we present the definitions

and the basics of these techniques.

3.1 Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows some opera-

tions on the ciphertext, where the result of the operation is an encrypted

version of the actual result. For instance, two numbers, encrypted with ho-

momorphic property, can be securely added or multiplied without revealing

the unencrypted individual numbers.
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Homomorphic encryption schemes are suitable for various applications

such as e-voting, multi-party computation and secure search. Due to the

importance of the homomorphic property, several partially or fully homo-

morphic cryptosystems are proposed in the literature. While partially homo-

morphic encryptions provide either addition or multiplication operation, fully

homomorphic systems can provide both at the same time but less efficiently.

We present some homomorphic cryptosystems in the following sections.

3.1.1 Unpadded RSA

In the RSA encryption [28] method, if the public key modulus is m, the

exponent is e and the private message is x ∈ Zm, the encryption is defined

as:

Enc(x) = xe mod m

The homomorphic property is then,

Enc(x1) · Enc(x2) = xe1x
e
2 mod m

= (x1 · x2)e mod m

= Enc(x1 · x2).

3.1.2 Paillier

In the Paillier cryptosystem [29], if the public key modulus is m and the base

is g and the private message is x ∈ Zm, the encryption is defined as:

Enc(x) = gx · rc mod m2,

where r ∈ Z∗m is randomly chosen.

The Paillier cryptosystem has the following two homomorphic properties:
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• Enc(x1) · Enc(x2) = Enc(x1 + x2)

• Enc(x1)x2 = Enc(x1 · x2)

These homomorphic properties can be shown as,

Enc(x1) · Enc(x2) = (gx1 · rm1 )(gx2 · rm2 ) mod m2

= gx1+x2 · (r1r2)m mod m2

= Enc(x1 + x2 mod m).

Enc(x1)x2 = (gx1 · rm1 )x2 mod m2

= gx1·x2 · (rx21 )m mod m2

= gx1·x2 · (r3)m mod m2

= Enc(x1 · x2 mod m).

The Paillier cryptosystem provides semantic security against chosen-plaintext

attacks. Intuitively, given the knowledge of the ciphertext (and length) of

some unknown message, it is not feasible to extract any additional informa-

tion on the message.

3.1.3 Damgard-Jurik

The Damgard-Jurik [30] cryptosystem is a generalization of the Paillier cryp-

tosytem, where the modulus is ms+1 instead of m2 for some s ≥ 1. If the

public key modulus is m and the base is g and the private message is x ∈ Zms ,

the encryption is defined as:

Enc(x) = gx · rms mod ms+1,

where r ∈ Z∗ms+1 is randomly chosen.
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The homomorphic property is then,

Enc(x1) · Enc(x2) = (gx1 · rms1 )(gx2 · rms2 ) mod ms+1

= gx1+x2 · (r1r2)m
s

mod ms+1

= Enc(x1 + x2 mod ms).

3.1.4 Fully Homomorphic Encryption

The homomorphic encryption methods given above provide either additive

or multiplicative homomorphic property. The cryptosystems that supports

both additive and multiplicative homomorphic encryption are known as fully

homomorphic encryption. These methods are very powerful such that any

circuit can be homomorphicly evaluated without revealing any of the the

unencrypted parameters.

The first fully homomorphic encryption system is proposed by Craig Gen-

try [31] which utilizes lattice-based cryptography. Later some subsequent

work [32, 33] are proposed on fully homomorphic encryption systems, how-

ever, any of the proposed fully homomorphic encryption methods is very

costly and not suitable for many practical applications.

In this thesis, we use the Paillier cryptosystem (Section 3.1.2) as the

homomorphic encryption method.

3.2 PCPA-Secure Encryption

A symmetric encryption method is secure against chosen plaintext attacks if

the encrypted outputs (i.e., ciphertexts) do not reveal any useful information

on the unencrypted messages (i.e., plaintexts). Curtmola et al. [18] defines

a stronger security notion as pseudo-randomness against chosen plaintext
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attacks (PCPA), that guarantees the ciphertexts are indistinguishable from

random numbers. Formally, PCPA-security is defined as follows[18].

Definition 1. PCPA-security

Let two ciphertexts c0 and c1 are generated as follows:

c0 = Enc(msg)

c1 ∈R C,

where C denotes the ciphertext space.

A bit b is chosen at random, given msg and cb, adversary A guesses the

value of b as b′.

The encryption method is said to be PCPA-secure if for all polynomial-

size adversaries A,

Pr[b′ = b] ≤ 1

2
+ negl,

where negl is a negligible value.

PCPA-security satisfies a slightly stronger security compared to indis-

tinguishability against chosen-keyword attacks (IND2-CKA), introduced by

Goh [16]. While IND2-CKA provides indistinguishability between two ci-

phertexts, PCPA provides indistinguishability between a ciphertext and a

random number.

3.3 Hash Functions

In secure search concept, the search is applied on a secure index instead of the

actual documents, where the details are explained in the subsequent sections.

We utilize special hash functions to deduce a similarity between the secure

index entries of the sensitive data and an encrypted query. Each data item
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is represented by an entry in the secure index. The important property of

the secure index is that, it should be possible to compare two index elements

and estimate a distance between them without leaking any other information.

Although the exact similarity cannot be deduced, they still provide a good

approximation. Moreover, the accuracy of the similarity further increases as

hash functions with larger output size are used. We utilize the Hash-based

Message Authentication Code (HMAC) and the MinHash functions in this

thesis.

3.3.1 Hash-based Message Authentication Code

In cryptography a hash-based message authentication code (HMAC) [34] is

used for constructing a fix sized message authentication code utilizing a cryp-

tographic hash function and a secret cryptographic key. The cryptographic

strength of the HMAC depends upon the cryptographic strength of the un-

derlying hash function, the size of its hash output, and the size of the secret

key. In this thesis, we use SHA based HMAC functions for the HMAC based

secure search method.

3.3.2 MinHash

In the MinHash based method we proposed, a well-known technique, called

locality sensitive hashing [35] is used. Each document is represented by a

small set called signature. The important property of signatures is that, it

should be possible to compare two signatures and estimate a distance between

the underlying documents from the signatures alone. The signatures are

composed of several elements, each of which is constructed using the MinHash

functions. They provide close estimates and the larger the signatures the

more accurate the estimates.
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To MinHash a set, pick a permutation of the rows. The MinHash value is

the number of the first row in the permuted order, in which the corresponding

element is in the set. The formal definition is as follows.

Definition 2. MinHash: Let ∆ be a finite set of elements, P be a permu-

tation on ∆ and P [i] be the ith element in the permutation P . MinHash of a

set D ⊆ ∆ under permutation P is defined as:

hP (D) = min({i | 1 ≤ i ≤ |∆| ∧ P [i] ∈ D})

In the proposed MinHash based method, for each signature, λ different

random permutations on ∆ are used so the final signature of a set D is:

Sig(D) = {hP1(D), . . . , hPλ(D)},

where hPj is the MinHash function under permutation Pj. We use the Min-

Hash signatures as an approximation method that maps the given items into

several buckets (λ) using different hash functions. The functions are chosen

such that while similar items are likely to be mapped into the same buckets,

dissimilar items are mapped to different buckets with high probability.

3.4 Distance Functions

A distance function is a metric used for describing the notion of closeness for

elements of some space. A distance function d, on a set X is a function

X ×X → R.

For all x, y, z ∈ X, this function is required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)
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2. d(x, y) = 0⇔ x = y (identity of indiscernibles)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

We use two well-known distance functions in this thesis.

3.4.1 Hamming Distance

The Hamming distance between two strings of equal length, is defined as

the number of symbols in which they differ [36]. Intuitively, it measures

the minimum number of substitutions required to change one string into the

other one.

In this thesis we use the Hamming distance on binary strings.

Example 1. Let x and y are “1011101” and “1001001” correspondingly.

Then the Hamming distance between x and y, d(“1011101”, “1001001”) = 2

3.4.2 Jaccard Distance

The Jaccard distance is a metric that measures the dissimilarity between two

sets. Intuitively, the Jaccard distance is the ratio of the number of different

elements in the two sets to the union.

Formally, the Jaccard distance between the sets A and B is defined as:

Jd(A,B) = 1− |A ∩B|
|A ∪B|

(3.1)

=
|A ∪B| − |A ∩B|

|A ∪B|
.
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3.5 Relevancy Score

In order to sort the matching results according to their relevancy with the

query, a similarity function is required. The similarity function assigns a

relevancy score to each of the matching results corresponding to a given

search query.

Four fundamental metrics are widely used in information systems for

calculating relevancy [37]:

• Term frequency(tfw,D) is defined as the number of times a keyword

w appears in a document D. Higher term frequency implies that the

document is more relevant to queries that contains the corresponding

keyword w.

• Inverse document frequency measures rarity of a keyword within

the database collection. Intuitively a keyword that is rare within the

database but common in a document results in a higher relevancy. The

inverse document frequency of a keyword w is obtained as:

idfw = log

(
|D|
dfw

)
where |D| is the total number of document entries and dfw is document

frequency of w (i.e., total number of documents containing w).

• Document length (Density), results in a higher score for the shorter

of the two documents which contain equal number of keywords.

• Completeness results in a higher score for the documents that contain

more keywords.

A commonly used weighting factor for information retrieval is the tf-idf

weighting [37]. Intuitively, it measures the importance of a keyword within

19



a document for a database collection. The weight of each keyword in each

document is calculated using the tf-idf weighting scheme that assigns a com-

posite weight using both term frequency (tf) and inverse document frequency

(idf) information. The tf-idf of a keyword w in a document D is given by:

tf-idfw,D = tfw,D × idfw.

Note that, the ratio inside the idf’s log function is always greater than or

equal to 1, hence, the value of idf is greater than or equal to 0. Consequently,

the resulting tf-idf is a real number greater than or equal to 0.

3.6 Success Rate

Two of the best metrics for analyzing the success of a search method are

the precision and recall metrics, which are widely used in the secure search

literature [20, 23, 38]. Let R(F ) be the set of items retrieved for a query with

feature set F and R∗(F ) be a subset of R(F ) such that, the elements of R∗(F )

include all the features in F . Further let D(F ) be the set of items in the data

set that contains all the features in F . Note that R∗(F ) ⊆ R(F ) and R∗(F ) ⊆

D(F ). Precision (prec(F )), recall (rec(F )), average precision (aprec(F )) and

average recall (arec(F )) for a set F = {F1, . . . , Fn} are defined as follows:

prec(F ) = |R∗(F )|
|R(F )| , aprec(F) =

∑n
i=1

prec(Fi)
n

(3.2)

rec(F ) = |R∗(F )|
|D(F )| , arec(F) =

∑n
i=1

rec(Fi)
n

(3.3)

The methods compare the expected and the actual results of the evaluated

system. Intuitively, precision measures the ratio of correctly found matches

over the total number of returned matches. Similarly recall measures the

ratio of correctly found matches over the total number of expected results.
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Chapter 4

HMAC-BASED SECURE

SEARCH METHOD

In this chapter, we propose an efficient system where any authorized user

can perform a search on an encrypted remote database with multiple key-

words, without revealing neither the queried keywords, nor the information

of the documents that match with the query. The only information that the

proposed scheme leaks is the access pattern which is also leaked by almost

all of the practical encrypted search schemes due to efficiency reasons.

Wang et al. [22] propose a trapdoorless private multi-keyword search

scheme that is proven to be secure under the random oracle model. The

scheme uses only binary comparison to test whether the secure index contains

the queried keywords, therefore, the search can be performed very efficiently.

However, there are some security issues that are not addressed in the work of

Wang et al. [22]. We adapt their indexing method to our scheme, but we use

a different encryption methodology to increase the security and address the

security issues that are not considered in [22]. While a preliminary version

of the work introduced in this chapter, is presented in the EDBT/ICDT
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conference [39], the full version of the work is published in the journal of

Distributed and Parallel Databases [40].

4.1 System and Privacy Requirements

The problem that we consider is privacy-preserving keyword search on public

storage system, where the documents are simply encrypted with the secret

keys unknown to the actual holder of the database (e.g., cloud server). We

consider three roles consistent with the previous works [23, 22]:

• Data Controller is the actual entity that is responsible for the estab-

lishment of the database. The data controller collects and/or generates

the information in the database and lacks the means (or is unwilling)

to maintain/operate the database.

• Users are the members in a group who are entitled to access (part of)

the information of the database.

• Server is a professional entity (e.g., cloud server) that offers information

services to authorized users. It is often required that the server be

oblivious to the content of the database it maintains, the search terms

in queries and the documents retrieved.

Let Di be a document in the sensitive database D, and Fi = {w1, . . . , wm}

be the set of features (i.e., keywords) that characterizes Di. Initially, the data

controller generates a searchable secure index I, using the feature sets of the

documents in D and sends I to the server. Given a query from the user,

the server applies search over I and returns a list of ordered items. Note

that this list does not contain any useful information to the third parties.

Upon receiving the list of ordered items, the user selects the most relevant
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data items and retrieves them. The details of the framework are presented

in Section 4.2.

The privacy definition for search methods in the related literature is that,

the server should not learn the searched terms [23]. We further tighten the

privacy over this general privacy definition and establish a set of privacy

requirements for privacy-preserving search protocols. A privacy preserving

multi-keyword search method should provide the following user and data

privacy properties (first intuitions and then formal definitions are given):

1. (Query Privacy) The query should not leak information of the corre-

sponding search terms it contains.

2. (Search Pattern Privacy) Equality between two search requests (i.e.,

queries) should not be verifiable by analyzing the queries or the re-

turned list of ordered matching results.

3. (Access Control) No one can impersonate a legitimate user.

4. (Adaptive Semantic Security) All the information that an adversary

can access, can be simulated using the information that is allowed to

leak. Hence, it is guaranteed that the only information leaks in the

proposed method, is the one that is is told to be leaked.

An algorithm A is probabilistic polynomial time (PPT) if it uses random-

ness (i.e, flips coins) and its running time is bounded by some polynomial in

the input size or a polynomial in a security parameter. In cryptography, an

adversary’s advantage is a measure of how successfully it can attack a cryp-

tographic algorithm, by distinguishing it from an idealized version of that

type of algorithm.
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Definition 3. Query Privacy: A multi-keyword search protocol has query

privacy, if for all probabilistic polynomial time adversaries A that, given two

different feature sets F0 and F1 and a query Qb generated from the feature

set Fb, where b ∈R {0, 1}, the advantage of A in finding b is negligible.

Definition 4. Access Control: A multi-keyword search protocol provides

access control, if there is no adversary A that can impersonate a legitimate

user with probability greater than ε, where ε is the probability of breaking the

underlying signature scheme.

Definition 5. Search Pattern (Sp) is the frequency of the queries searched,

which is found by checking the equality between two queries. Formally, let

{Q1, . . . , Qn} be a set of queries and {F1, . . . , Fn} be the corresponding search

feature sets. Search pattern Sp is an n× n binary matrix, where

Sp(i, j) =

1, if Fi = Fj,

0, otherwise

for i, j ≤ n.

Intuitively, any deterministic query generation method reveals the search

pattern.

Definition 6. Search Pattern Privacy: A multi-keyword search protocol

has search pattern privacy, if for all polynomial time adversaries A that,

given a query Q, a set of queries, Q = {Q1, . . . , Qn} and the corresponding

match results that returns, the adversary cannot find the queries in Q that

are equivalent with Q.

Definition 7. Access Pattern (Ap) is the collection of data identifiers

that contains search results of a user query. Let Fi be the feature set of Qi
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and R(Fi) be the collection of identifiers of data elements that matches with

the feature set Fi, then Ap(Qi) = R(Fi).

Intuitively, if access pattern is leaked, given a query Q of a feature set

F , an attacker does not learn the content of F but learns which are the

documents in the data set that contains the features in F .

Definition 8. History (Hn): Let D be the collection of documents in the

data set and Q = {Q1, . . . , Qn} be a collection of n queries. The n-query

history is defined as Hn(D,Q).

Definition 9. Trace (γ(Hn)): Let C = {C1, . . . , Cl} be the set of encrypted

user profiles, id(Ci) be the identifier of Ci and |Ci| be the size of Ci. Further-

more, let Dsig(Qi) be the digital signature of query Qi, |Dsig(Qi)| be the size

of Dsig(Qi), I be the searchable index and |I| be the number of all elements,

fake and genuine, in I.

The trace of Hn is defined as:

γ(Hn) = {(id(C1), . . . , id(Cl)), (|C1|, . . . , |Cl|), |Dsig(Q)|, |I|, Ap(Hn)}.

(4.1)

We allow to leak the trace to an adversary and guarantee no other infor-

mation is leaked.

Definition 10. View (v(Hn)) is the information that is accessible to an

adversary. Let Dsig(Q) be the list of digital signatures of queries in Q and,

id(Ci), C, Q and I are as defined above. The view of Hn is defined as:

v(Hn) = {(id(C1), . . . , id(Cl)), C, I,Q, Dsig(Q)}. (4.2)

Definition 11. Adaptive Semantic Security: [18]
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A cryptosystem is adaptive semantically secure, if for all probabilistic

polynomial time algorithms (PPTA), there exists a simulator S such that,

given the trace of a history Hn, S can simulate the view of Hn with probability

1− ε, where ε is a negligible probability.

Intuitively, all the information accessible to an adversary (i.e., view (v(Hn)))

can be constructed from the trace (γ(Hn)) that is allowed to leak.

4.2 Framework of the HMAC-based Method

In this section, we provide the interactions between the three entities that

we consider: Data Controller, Users and Server, which are introduced in

Section 4.1. Due to the privacy concerns that are explained in Section 4.3.4,

we utilize two servers namely: search server and file server. The overview of

the proposed system is illustrated in Figure 4.1. We assume that the parties

are semi-honest (“honest but curious”) and do not collude with each other

to bypass the security measures; two assumptions which are consistent with

most of the previous work.

In Figure 4.1, steps and typical interactions between the participants of

the system are illustrated. In an off-line stage, the data controller creates a

search index element for each document. The searchable index file I is cre-

ated using a secret key based trapdoor generation function where the secret

keys1 are only known by the data controller. Then, the data controller up-

loads the searchable index file to the search server and the actual encrypted

documents to the file server. We use symmetric-key encryption as the encryp-

tion method since it can handle large document sizes efficiently. This process

is referred as the index generation henceforth and the trapdoor generation is

1More than one key can be used in trapdoors for the search terms.
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Figure 4.1: Architecture of the search method
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considered as one of its steps.

When a user wants to perform a search, he first connects to the data con-

troller. He learns the trapdoors (cf. Step 1 in Figure 4.1) for the keywords

(i.e., features) he wants to search for, without revealing the keyword infor-

mation to the data controller. Since the user can use the same trapdoor for

many queries containing the corresponding features, this operation does not

need to be performed every time the user performs a query. Alternatively,

the user can request all the trapdoors in advance and never connects again

to the data controller for the trapdoors. One of these two methods can be

selected depending on the application and the users’ requirements. After

learning the trapdoor information, the user generates the query (referred as

query generation henceforth) and submits it to the search server (cf. step 2 in

Figure 4.1). In return, he receives meta data2 for the matched documents in

a rank ordered manner as will be explained in subsequent sections. Then the

user retrieves the encrypted documents from the file server after analyzing

the meta data that basically conveys a relevancy level of the each matched

document, where the number of documents returned is specified by the user.

The proposed scheme satisfies the privacy requirements as defined in Sec-

tion 4.1 provided that the parameters are set accordingly. For an appropriate

setting of the parameters, the data controller needs to know only the frequen-

cies of the most commonly queried search terms for a given database. By

performing a worst case analysis for these search terms, the data controller

can estimate the effectiveness of an attack and take appropriate countermea-

sures. The necessary parameters and the methods for their optimal selections

are elaborated in the subsequent sections.

2Metadata does not contain useful information about the content of the matched doc-

uments.

28



4.3 The HMAC-based Ranked Multi-Keyword

Search

In this section, we provide the details for the crucial steps in the proposed

HMAC-based secure search method, namely index generation, trapdoor gen-

eration, query generation and document retrieval.

4.3.1 Index Generation (basic scheme)

Recently Wang et al. [22] proposed a conjunctive keyword search scheme

that allows multiple-keyword search in a single query. We inspire from the

scheme in [22] and develop an index construction scheme with better privacy

properties.

The original scheme uses forward indexing, which means that a searchable

index file element for each document is maintained to indicate the search

terms existing in the document. In the scheme of Wang et al. [22], a secret

cryptographic hash function, that is shared between all authorized users, is

used to generate the searchable index. Using a single hash function shared

by several users forms a security risk since it can easily leak to the server.

Once the server learns the hash function, the security of the model can be

broken, if the input set is small. The following example illustrates a simple

attack against queries with few search terms.

Example 2. There are approximately 25000 commonly used words in En-

glish [41] and users usually search for a single or two keywords. For such

small input sets, given the hashed trapdoor for a query, it will be easy for the

server to identify the queried keywords by performing a brute-force attack.

For instance, assuming that there are approximately 25000 possible keywords

in a database and a query submitted by a user involves two keywords, there
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will be 250002 < 228 possible keyword pairs. Therefore, approximately 227

trials will be sufficient to break the system and learn the queried keywords, if

the underlying trapdoor generation function is known.

We instead propose a trapdoor based system where the trapdoors can

only be generated by the data controller through the utilization of multiple

secret keys. The keywords are mapped to a secret key using a public mapping

function named GetBin which is defined in Section 4.3.2. The usage of secret

keys eliminates the feasibility of a brute force attack. The details of the

index generation algorithm which is adopted from [22] are explained in the

following and formalized in Algorithm 1.

Let D be the document collection where |D| = σ. While generating

the search index entry for a document D ∈ D that contains the keywords

{w1, . . . , wm}, we take HMAC (Hash-based Message Authentication Code) of

each keyword with the corresponding secret key Kid which produces an l = rd

bit output (HMAC: {0, 1}∗ → {0, 1}l). Let xi be the output of the HMAC

function for an input wi and the trapdoor of a keyword wi be denoted as Ii,

where Iji represents the jth bit of Ii, (i.e., Iji ∈ GF (2), where GF stands for

Galois field [42]). The trapdoor of a keyword wi, Ii = (Ir−1
i , . . . , Iji , . . . , I

1
i , I

0
i )

is calculated as follows.

The l-bit output of HMAC, xi can be seen as an r-digit number in base-d,

where each digit is d bits. Also let xji ∈ GF (2d) denotes the jth digit of xi

and we can write

xi = xr−1
i , . . . x1

i , x
0
i .

After this, each r-digit output is reduced to r-bit output with the mapping

from GF (2d) to GF (2) as shown in Equation (4.3).
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Iji =

0, if xji = 0,

1, otherwise.

(4.3)

As a last step in the index entry generation, the bit-wise product of trap-

doors of all keywords (Ii, ∀i ∈ {1, . . . ,m}) in the document D is used to

obtain the final searchable index entry ID for the document D as shown in

Equation (4.4)

ID = �mi=1Ii, (4.4)

where � is the bit-wise product operation. The resulting index entry ID is

an r-bit binary sequence and its jth bit is 1, if for all i, jth bit of Ii is 1, and

0 otherwise.

Algorithm 1 Index Generation

Require: D : the document collection,

Kid: secret key for the bin with label id

for all documents Di ∈ D do

for all keywords wij ∈ Di do

id← GetBin(wij)

xij ← HMACKid(wij)

Iij ← Reduce(xij)

end for

index entry IDi ← �jIij
end for

return I = {ID1 , . . . , IDσ}

In the following section, we explain the technique used to generate queries

from the trapdoors of feature sets.
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4.3.2 Query Generation

The searchable index file of the database is generated by the data controller

using secret keys. A user who wants to include a search term in his query,

needs the corresponding trapdoor from the data controller since he does not

know the secret keys used in the index generation. Asking for the trapdoor

openly would violate the privacy of the user against the data controller,

therefore a technique is needed to hide the trapdoor asked by the user from

the data controller.

Bucketization is a well-known data partitioning technique that is fre-

quently used in the literature [43, 44, 45, 46]. We adopt this idea to distribute

keywords into a fixed number of bins depending on their hash values. More

precisely, every keyword is hashed by a public hash function, and certain

number of bits in the hash value is used to map the keywords into one of the

bins. The number of bins and the number of keywords in each bin can be

adjusted according to the security and efficiency requirements of the system.

In our proposal for obtaining trapdoors, we utilize a public hash function

with uniform distribution, named GetBin, that takes a keyword and returns

a value in {0, . . . , (δ − 1)} where δ is the number of bins. All the keywords

that exist in a document are mapped by the data controller to one of those

bins using the GetBin function. Note that, δ is smaller than the number

of keywords so that each bin contains several elements, which provides ob-

fuscation. The GetBin function has uniform distribution, therefore each bin

will have approximately equal number of items in it. Moreover, δ must be

chosen deliberately such that there are at least $ items in each bin where $

is a security parameter. Each bin in the index generation phase has a unique

secret key used for all keywords in that bin.

The query generation method, which is given in Algorithm 2, works as
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follows. When an authorized user connects to the data controller to obtain

the trapdoors for a set of keywords, he first calculates the bin IDs of the

keywords and sends these values to the data controller. The data controller

then returns the secret keys of the bins requested for, which can be used by

the user to generate the trapdoors3 for all keywords in those bins. Alterna-

tively, the data controller can send the trapdoors of all the keywords in the

corresponding bins resulting in an increase in the communication overhead.

However, the latter method relieves the user from computing the trapdoors.

Subsequent to obtaining the trapdoors, the user can calculate the query in

a similar manner to the method used by the data controller to compute the

searchable index. More precisely, if there are n keywords in a user query,

the following formula is used to calculate the privacy-preserving query, given

that the corresponding trapdoors (i.e., I1, . . . , In) are available to the user:

Q = �nj=1Ij.

Finally, the user sends this r-bit query Q to the search server. The

users’ keywords are protected against disclosure since the secret keys used

in trapdoor generation are chosen by the data controller and never revealed

to the search server. In order to avoid impersonation, the user signs the

messages using a digital signature method.

4.3.3 Oblivious Search on the Database

A user’s query, in fact, is just an r-bit binary sequence (independent of

the number of search terms in it) and therefore, searching consists of as

simple operations as binary comparison only. If the search index entry of the

3In fact, Ii, which is calculated for the search term wi as explained in Section 4.3.1 is

the trapdoor for the keyword wi.
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Algorithm 2 Query Generation

Require: a set of query features F = {w′1, . . . , w′n}

for all w′i ∈ F do

id← GetBin(w′i)

if Kid /∈ previously received keys then

send id to Data Controller

get Kid from Data Controller

end if

xi ← HMACKid(w
′
i)

Ii ← Reduce(xi)

end for

query Q← �i Ii
return Q

document (IR) has 0 for all the bits, for which the query (Q) has also 0, then

the query matches to that document as shown in Equation (4.5).

result(Q, IR) =

match, if ∀j Qj = 0⇒ IjR = 0,

not match, otherwise.

(4.5)

Note that, the given query should be compared with the search index entry of

each document in the database. The following example clarifies the matching

process.

Example 3. Let the user’s query be Q = [011101] and two document index

entries be I1 = [001100] and I2 = [101101]. The query has the 0 bit in 0th

and 4th bits therefore, those bits must be 0 in the index entry of a document

in order to be a match. Here the query matches with I1, but does not match

with I2 since 0th bit of I2 is not 0.
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Subsequent to the search operation, the search server sends a rank ordered

list of meta data of the matching documents to the user, where the underlying

rank operation is explained in Section 4.6. The meta data is the search index

entry of that document, which the user can analyze further to learn more

about the relevancy of the document. After analyzing the meta data, the

user retrieves ciphertexts of the matching documents of his choice from the

file server.

To improve security, the data controller can change the HMAC keys pe-

riodically whereby each trapdoor will have an expiration time. After the

expiration, the user needs to get the new trapdoors for the keywords he

wants to use in his queries. This will alleviate the risk when the HMAC keys

are compromised.

4.3.4 Document Retrieval

The search server returns the list of pseudo identifiers of the matching doc-

uments. If a single server is used for both search and file retrieval, it can

be possible to correlate the pseudo identifiers of the matching documents

and the identifiers of the retrieved encrypted files. Furthermore, this may

also leak the search pattern that the proposed method hides. Therefore,

we use a two-server system similar to the one proposed in [20], where the

two servers are both semi-honest and do not collude. This method leaks

the access pattern only to the file server and not to the search server, hence

prevents any possible correlation between search results and encrypted doc-

uments retrieved.

Subsequent to the analyzes of the meta data retrieved from the search

server, the user requests a set of encrypted files from the file server. The file

server returns the requested encrypted files. Finally the user decrypts the files
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and learns the actual documents. The distribution of the document decryp-

tion keys can be performed using state-of-the-art key distribution methods

and is not within the scope of this thesis.

In case access pattern also needs to be hidden, Oblivious RAM [47, 27]

methods can be utilized for the document retrieval process instead. However,

these methods are too expensive to be practical even on medium sized data-

sets, due to incurred polylogarithmic overhead.

4.4 Query Randomization

Search pattern is the information of equality among the keywords of two

queries that can be inferred by linking one query to another. If an adversary

can test the equality among two queries, he may learn the most frequent

queries and correlate with the frequently searched real keywords that may

be learned from statistics such as Google Trends [48]. The proposed basic

scheme fails to hide the search pattern since the search index entries are

generated in a deterministic way. Any two query generated from the identical

feature sets, will be exactly the same. In order to hide the search pattern of a

user, we introduce randomness into the query generation phase. This process

is known as query randomization, which should be carefully implemented so

that the queries do not leak information about the search patterns. In this

section, we analytically demonstrate the effectiveness of the proposed query

randomization method. Note that, the query randomization does not change

the response to a given query.

For introducing non-determinacy into the search index generation, we

generate a set U with |U| = U , whereby the elements of U are dummy

keywords that do not exist in the dictionary (i.e., they are simply random
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strings). The U dummy keywords are added in every index entry along with

the genuine keywords. While generating a query, the user first randomly

creates a set V where |V| = V and V ⊂ U . Then the query is composed using

all elements of V together with the genuine search terms. The number of

different choices of V from U is calculated as CU
V , where Cn

k is the number of

k-combinations from a set with n elements.

We can formalize the discussion as follows. Let

Qi = {Qi1, Qi2, . . . , Qiµ}

be the set of queries that are generated from the same search features using

different dummy keywords. Furthermore, let Qx be the set of all possible

other queries. Given two queries Qi ∈ Qi and Qj, identifying whether Qj ∈

Qi or Qj ∈ Qx must be hard.

We use the Hamming distance metric for evaluating the similarity of two

queries, which is defined in Section 3.4.1. We define two new functions to

analytically calculate the expected Hamming distance.

Definition 12. Scarcity Function (F (x)) The scarcity function F (x) is

the expected number of 0’s in a query, where x is the number of keywords.

Definition 13. Overlap Function (C(x)) The overlap function C(x) is

the expected number of 0’s that coincide in the corresponding bit positions of

an x keyword query (Qa) and a single keyword query (Qb).

Recall that r is the size of a query, d is the reduction value (cf. Sec-

tion 4.3.1) and Q[i] is the ith bit of Q. The functions are calculated as

follows:
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Proposition 1. For the Scarcity and Overlap functions we can write,

F (x) = F (x− 1) + F (1)− C(x− 1)

C(x) =
r−1∑
i=0

P (Qa[i] = 0, Qb[i] = 0),

where P (a, b) is a joint probability distribution.

Note that, the initial case for F (x) is F (1) =
r

2d
and C(x) is calculated

as follows:

C(x) =
r−1∑
i=0

P (Qa[i] = 0, Qb[i] = 0)

= r
F (x)

r

F (1)

r

=
F (x)

2d
.

The expected Hamming distance between two queries (i.e., Q1 and Q2)

with x keywords each, where they have x̄ ≤ x common keywords, is calculated

as in the following.

Proposition 2. The Expected Hamming distance between two queries with

x̄ common keywords, can be calculated as follows:

∆ (Q1, Q2) =
(F (x)− F (x̄)) (r − F (x))

r
+
F (x)(r − F (x))

r
.

This can be seen by the simple derivation:

∆ (Q1, Q2) =
r−1∑
i=0

P (Q1[i] 6= Q2[i])

= r · P (Q1[1] 6= Q2[1])

= r · [P (Q1[1] = 0)P (Q2[1] = 1|Q1[1] = 0) + P (Q1[1] = 1)P (Q2[1] = 0|Q1[1] = 1)]

= r ·
[
F (x)

r

(
F (x̄)

F (x)
· 0 +

F (x)− F (x̄)

F (x)
· r − F (x)

r

)
+
r − F (x)

r

(
F (x)

r

)]
=

(F (x)− F (x̄)) (r − F (x))

r
+
F (x)(r − F (x))

r
,

(4.6)
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where P (A|B) is the conditional probability of A given B.

Each query chooses V keywords out of U dummy keywords. While com-

paring two arbitrary queries, the expected number of dummy keywords that

exists in the both queries (EO) is calculated as in the following.

Proposition 3. The expected number of dummy keywords that both queries

contain can be calculated as follows:

EO (V ) =
V∑
i=0

(
V

i

)(
U − V
V − i

)
(
U

V

) i. (4.7)

The first query chooses V keywords. The probability that i (i ≤ V )

keywords that is chosen by the second query also exist in the first one, is

calculated as follows: i keywords are chosen from the set of keywords that

are also selected by the first query and (V − i) keywords are chosen from

the set of not-selected keywords. Then we use summation to calculate the

expected value in (Equation (4.7)). Note that, EO(V ) is a monotonically

increasing function (i.e., V ≥ V ′ ⇔ EO(V ) ≥ EO(V ′)).

A possible way of choosing an optimum parameter setting is shown in the

following example.

Example 4. We use 448 bits as the query size (r) and the largest U for

this query size that provides sufficient accuracy (i.e., high precision rate; cf.

Section 4.4.4) is found as 60. Any further increase in U necessitates increas-

ing the query size, which causes an increase in communication, computation

and storage requirements (cf. Section 4.8). Using the formulae in (Equa-

tion (4.6) and (4.7)), the normalized differences between ∆(Qi, Qj) for two

arbitrary queries {Qi, Qj} and ∆(Qiα, Qiβ), where {Qiα, Qiβ} ∈ Qi are given
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in Figure 4.2. The normalized difference is calculated using the equation,

∆(Qi, Qj)−∆(Qiα, Qiβ)

∆(Qi, Qj)
.

One can observe from Figure 4.2 that, when U is fixed as 60, V = 30 is

the smallest value, which ensures that the distance between the two queries

Qi ∈ Qi and Qj /∈ Qi is sufficiently close to the distance between Qiα ∈ Qi
and Qiβ ∈ Qi. Note that, any V ≥ 30 can also be used. The parameter

setting that we used in our tests, is discussed more formally in Section 4.8.
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Figure 4.2: Normalized difference of the Hamming Distances between two

arbitrary queries and two queries with the same genuine search features,

where U = 60.

In order to demonstrate the usefulness of our analysis, we conducted an

experiment using synthetic query data for the case, where adversary does not

know the number of genuine search terms in a query. We generate a synthetic

data set for a set of queries with the parameters V = 30 and U = 60 being

fixed. The set contains a total of 250 queries, where the first 50 queries

contain 2 genuine search terms each, the second 50 queries contain 3 genuine

search terms each, and so on. And finally, the last set of 50 queries contains
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6 genuine search terms each. We create another set that contains only 5

queries, which includes 2, 3, 4, 5 and 6 genuine search terms, respectively.

The distances between pairs of queries, in which one query is chosen from

the former set and the second one from the latter, are measured to obtain a

histogram as shown in Figure 4.3(a). Consequently, a total of 250×5 = 1250

distances are measured. We also obtain another histogram featuring a total of

1250 distances between pairs of queries, whereby queries in a pair contain the

same genuine search terms with different dummy keywords. Both histograms

are given in Figure 4.3(a), where it can be observed that adversary cannot

do better than a random guess to identify whether given two queries contain

the same genuine search terms or not.

We also conduct a similar experiment, in which we assume that the ad-

versary has the knowledge of the number of search terms in a query. A

set containing a total of 1000 queries is generated, whose subsets with 200

queries each contain 2, 3, 4, 5 and 6 genuine search terms, respectively. A

single query is then created using 5 genuine search terms. We measure the

distances of the single query to all 1000 queries in the former set of queries and

create the corresponding histogram (i.e., a total of 200× 5 = 1000 distances

are measured). We compared this with the histogram for 1000 measurements

of the distance between two queries with five identical search terms as shown

in Figure 4.3(b). As can be observed from the histogram in Figure 4.3(b),

20% of the time, distances between two queries are 150 and they are totally

indistinguishable. In 45% of the time, the distances are smaller than 150,

where the adversary can guess Qj ∈ Qi with 0.6 confidence. In 35% of the

time, the distances are greater than 150 and the adversary can guess Qj /∈ Qi
with 0.7 confidence. In accordance with these results, one can guess whether

the queries are from the same search terms or not correctly with 0.6 confi-
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dence under the assumption that the number of genuine search terms in the

query is known to be 5. The tests with different number of genuine search

terms also provide analogous results, where the confidence of distinguishing

equivalent queries increase as the number of genuine search terms increase.

This observation is in parallel with the expectation. As the number of gen-

uine search terms in a query increase, the number of terms that are identical

for the equivalent queries also increase, which make them vulnerable for such

attacks.

Hence, the information of the number of genuine search terms should be

kept secret, which is the case in our proposed method.

4.4.1 Correlation Attack

It is possible that the attacker may have some prior knowledge on the statis-

tical model of the search terms in the queries (e.g., search frequency of the

most frequently queried search terms). In this case, the attacker may use

this information to deduce a set of queries that all include a search term w.

Then, the trapdoor for w may be revealed with some error, provided that the

adversary obtains a sufficient number of queries that all features the search

term w. In this section, the proposed method is analyzed against this attack

that is referred as correlation attack. Note that the wisest choice of w for the

adversary to attack, will be the most commonly used search term which has

the highest occurrence rate in the previous queries. The adversary may have

prior knowledge of the most frequently queried search terms or may guess

using the public statistics such as [48].

In order to analyze whether the attacker can identify a group of equivalent

queries from other queries, we define a Distinguisher function H(Ak, Qk+1).

This function takes two parameters; a set Ak = {Q1, . . . , Qk} with k queries
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that are generated from the same search terms
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that are generated from the same search terms, where the num-

ber of search terms in the queries is 5

Figure 4.3: Histograms for the Hamming distances between queries

and a single query Qk+1, and returns the number of 0’s that coincides with

all elements of the set Ak and Qk+1 (i.e., the number of query bit positions

where all k+ 1 queries has 0 in that bit position). Let Qk+1 have xk+1 search

terms, where x̄ of them are common with all the queries in Ak. The expected

number of common 0 bits is estimated with the distinguisher function which

is defined as follows.

Definition 14. (Distinguisher Function) The distinguisher function, H(Ak, Qk+1),
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is the number of bits with value 0, that coincide in the corresponding bit po-

sitions of each element of the set Ak and the query Qk+1.

Proposition 4. Expected Value of Distinguisher Function can recursively be

estimated as:

H(Ak, Qk+1) =


F (x̄) +

(F (x1)− F (x̄))(F (x2)− F (x̄))

r
if k = 1

F (x̄) +
(H(Ak−1, Qk)− F (x̄))(F (xk+1)− F (x̄))

r
otherwise.

(4.8)

Let a search term w be an element of all the queries in Ak and further

let w ∈ Qk+1 and w /∈ Q′k+1. Using the distinguisher function in equation

(4.8), we define a dissimilarity function Ω(Ak, Qk+1, Q
′
k+1), that compares

the dissimilarity between Qk+1 and Q′k+1 as in the following.

Definition 15. (Dissimilarity Function)

Ω(Ak, Qk+1, Q
′
k+1) =

|H(Ak, Qk+1)−H(Ak, Q′k+1)|
H(Ak, Qk+1)

(4.9)

If Ω(Ak, Qk+1, Q
′
k+1) ≤ z, where z is a sufficiently small security param-

eter, we say that distinguishing the set of queries that all contain the same

keyword w from the other queries, is hard.

The Dissimilarity function is analyzed for various values of inputs in order

to find the optimum choice for the parameters of randomness (i.e. U, V ) that

minimize Ω(Ak, Qk+1, Q
′
k+1) given in equation (4.9). We present the results

in Figure 4.4.

Figures 4.4(a), 4.4(b), and 4.4(c) indicate that for a fixed value of U ,

increasing V decreases the dissimilarity of queries when compared with the

set Ak. In other words, it will be difficult to distinguish queries that possess

w from those that do not. Note that, since V is introduced for obfuscating the

queries, increasing V also increases the similarity between unrelated queries
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Figure 4.4: Values of Dissimilarity Function (Equation (4.9)) for different

parameters

as expected. However, increasing V also increase the probability that two

equivalent queries pick exactly the same set of dummy terms which reveal

they are equivalent. Hence, choosing the value of V slightly larger than U/2

provides an optimum choice. Another issue that can be observed from the
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figures is that, increasing U , which enables larger values for V , also decreases

the dissimilarity of queries.

Let the adversary be able to access all the search history (i.e., all previous

queries from all users). If the adversary can find k queries that all feature an

arbitrary search term w, where the dissimilarity function Ω(Ak, Qk+1, Q
′
k+1)

is greater than z for that k, then the adversary can identify with a high

confidence level that all that k queries include the same search term and

may learn the trapdoor of the search term w with a small error. Therefore,

the probability of finding such k queries should be negligible.

We provide an example using the Reuters news dataset [49] that shows the

difficulty of finding a trapdoor of a search term. Without loss of generality,

we assume the adversary tries to find the trapdoor of the most commonly

queried search term.

Example 5. In large databases, the occurrence frequencies of the real key-

words are considerably small. For instance, in the Reuters dataset we use,

after the stop words are removed, the most frequent keyword occurs in only

7% of all the documents in the dataset. We assume that the same statistics

apply to the real search patterns, which implies one keyword w can occur at

most 7% of all the queries.

Let there be 1000 queries in the history Hn, where 70 of them are expected

to feature the keyword w. The probability of finding such k queries where the

most frequent keyword occurs in p% of the queries in a database of n queries,

is
C
np/100
k

Cn
k

,

which is approximately 2−19 for k = 5, 2−39 for k = 10, 2−60 for k = 15 and

2−81 for k = 20 in a database, where n = 1000 and p = 7. In other words,

when k = 20, adversary has to try 281 combinations of queries to find a
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correct set. Note that increasing n has a very minimal effect on the calculated

probability. For practical purposes, k > 15 satisfies sufficient security level,

which implies that it is not feasible to find k queries that all feature the

same keyword. The attacker may find queries featuring the same keyword

for smaller values of k, but this time identifying whether they all include the

same search term or not will be hard, as shown in the following section.

4.4.2 Experiments on Correlation Attack

In order to demonstrate that our analyses are valid, we conducted experi-

ments using synthetic data. Given a set of queries, we want to analyze the

probability of identifying whether all the set elements contain a common gen-

uine search term or not. We generate histograms that compare the number

of 0’s coinciding in two sets of queries. All queries in both sets have k gen-

uine and V dummy search terms. While the first set has a common genuine

search term w that exists in all the queries, the second set does not have

any common genuine search term. We further compute the confidence levels

indicating the reliability of the guess. While a confidence level of 0.5 means

that one cannot do better than a random guess out of the two sets, a confi-

dence level of 1.0 means that one can certainly identify the correct set from

the given two sets. For the case where U = 60 and V = 40, the histograms

that compare the number of coinciding 0’s for a set of k queries are given in

Figure 4.5. In Table 4.1 we enumerate the confidence levels calculated from

the histograms.

We want the confidence level of the attacker to be less than 0.6. Our

experiments indicate that, setting the security threshold z for the dissimi-

larity function Ω (equation (4.9)), as z = 0.4 gives sufficient level of obfus-

cation that satisfies the required low confidence level. From Figure 4.4 that
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(b) k=10
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(c) k=15
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(d) k=20

Figure 4.5: Histograms that compare the number of 0’s coinciding in k queries

with a common search term and those with no common search term where

U=60 and V=40

shows the dissimilarity values for different U and V values, the candidates

that satisfy the required security level are found as, {U = 50, V = 40},

{U = 60, V = 40} and {U = 80, V = 55}.

4.4.3 Hiding Dummy Elements

During the query randomization process, we add U ∈ U dummy keywords in

all the entries in the index. Similar to the genuine keywords, those dummy

keywords are processed with the HMAC and Reduce functions following the

steps of Algorithm 1, which eventually maps some of the d-bit digits to single

0 bits. Since these U dummy keywords exist in all the entries, the bits that

are assigned by those keywords are 0 in all the index entries IRi ∈ I. If the

adversary has access to the searchable index file (e.g., cloud service provider),

he can trivially identify bits set by dummy keywords by just marking bits
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k Confidence level

5 0,55

10 0,57

15 0,59

20 0,67

Table 4.1: Confidence levels of identifying queries featuring the same search

term

that are 0 in all the index entries.

In order to hide those bits set by the dummy keywords, we add fake

index entries, where their bits are deliberately set. The adversary cannot

distinguish the bits that are set by genuine keywords, from the bits set by

dummy keywords, if the distributions of the number of 0’s are equivalent in

both cases. Figure 4.6 shows the number of 0’s in each bit location for the

cases;

1. only genuine search terms (cf. Figure 4.6(a)),

2. after adding U dummy keywords (cf. Figure 4.6(b)),

3. after the addition of fake index entries (cf. Figure 4.6(c)).

Figure 4.6 indicates that prior to the addition of fake elements (cf. Fig-

ure 4.6(b)), the bits set by the dummy keywords are obvious, since all the

index entries contain the 0 bit in the same bit locations. However, after the

addition of fake entries (cf. Figure 4.6(c)), they become indistinguishable

from the other bits. The number of fake entries is chosen to be equal to

the number of genuine entries leading to doubling index size. However, since

size of an index entry is very small (constant r bits) this is not a burden

for the cloud server. Note that, the additional fake entries do not have any
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effect on the number of false positives (i.e., false accept rates) and hence,

precision of the method is not affected. Although, the search time increases

due to the increased number of index entries, the increase in search time is

not significant due to the fact that it can be performed very efficiently in a

parallel fashion.

(a) before addition of dummy keywords (b) with dummy keywords

(c) after addition of fake index entries

Figure 4.6: Number of 0’s in each bit location for 500 genuine and 500 fake

entries (for (c))

The search server may have access to excessive number of search results

from various users. Utilizing the search results, the server can identify some of

the fake entries with high confidence via analysis of the number of matches

with each index entry. Note that the expected number of matches with

fake index entries is smaller than the genuine index entries. We propose

two methods to prevent the correlation of fake index entries. Firstly, the
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data controller can change the HMAC keys and the pseudo identifiers of

index entries periodically. This will alleviate the risk by limiting the search

server’s access to search results. Alternatively, a trusted proxy can be utilized

to occasionally send fake queries that match with the fake index entries. If

number of matches of the fake index entries has a similar distribution with

the genuine index entries, then fake index entries are indistinguishable from

the genuine index entries.

4.4.4 Success Rates

The indexing method that we employ includes all the information on search

terms in a single r-bit index file per document. Despite the fact that the

hash function employed in the implementations is collision-free, after the

reduction and bitwise product operations there is a possibility that index of

a query may wrongly match with an irrelevant document, which is called as

a false positive (i.e., false accept).

As defined in Section 3.6, the success of a secure search method is mea-

sured with precision and recall metrics. The recall of the proposed HMAC

based scheme is always one, which means that if a document contains all the

queried features, then it will definitely be a match with the query. Although

all matching documents can be identified by the method, there may also be

some false positives, which affects the precision.

Let m be the number of genuine features in a document. In Figure 4.7,

precision is measured for queries with 2, 3, 4, 5 and 6 search terms for index

size r = 448 bits and U = 60, whereby in Figures 4.7(a) and 4.7(b) each

document in the database has 30 and 40 genuine features (i.e., m = 30

and m = 40), respectively. When the number of genuine search terms in a

query is small ( 3 or less ), the noise in the query is limited, which results in
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(a) number of genuine search terms per doc is 30
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(b) number of genuine search terms per doc is 40

Figure 4.7: Effect of V in precision rate, where U = 60

almost no false positives (fp), hence precision rates are very close to 1. When

the number of search terms is higher (4 or more), the number of matching

documents gets very small. As the number of matching documents is small,

the effect of the false positive matches is higher on the precision.

Figure 4.7 also indicates that an increase in the number of search terms in

documents (m) also decreases precision. Note that precision decreases from

Figure 4.7(a) to Figure 4.7(b) as m increases from 30 to 40. This is a result

of the increase in the number of 0’s in the index entries of the documents.

If larger number of keywords is required for a document, a longer HMAC

function can be used with a larger reduction parameter d. Recall that, as

shown in Equation (4.3) in Section 4.3.1, reduction maps a d-bit digit to a
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single bit where output is 0, with probability 1/2d and 1, with probability

1−1/2d. Therefore, the ratio of the number of zeros in an index entry with m

genuine and U dummy keywords, with respect to index size, can be estimated

as m+U
2d

. Similarly each keyword is approximately represented with r
2d

zero

bits in an index entry. If d gets larger and r is kept constant, the number

of zeros in the index decreases, which may cause some keywords being not

represented in the index. Provided that the ratios m+U
2d

and r
2d

do not change,

the precision will expectedly remain constant. If the number of genuine

keywords in a document (m) doubles, the number of dummy keywords (U)

also doubles and d is incremented by 1 to keep the ratio of m+U
2d

constant.

Due to the increase in d, r is also doubled to keep r
2d

constant. In Figure 4.8,

we present the required output sizes for the HMAC functions (l) and the

index entries (r) with respect to the total number of keywords (genuine and

dummy) in documents such that, minimum precision does not fall behind

75%.
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Figure 4.8: Effect of increase in the total number of keywords (m + U) per

document on HMAC size (l) and index entry size (r)
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Figure 4.8 indicates that the increase in the index entry size, r, is quite

limited and the proposed method can still be efficiently applied for large

number of keywords per document. Although the usage of longer HMAC

functions increases the cost of the index generation, since the increase in the

index size, r, is limited, the communication cost, storage requirements and

search time will remain at acceptable levels, without affecting the overall

efficiency of the proposed scheme. Optimized value for the index size should

be determined considering the requirements of the applications.

Increasing the level of obfuscation (i.e., addition of more dummy key-

words) increases the security of the method against an adversary trying to

identify queries that feature the same genuine search term. Nevertheless, this

will also decrease precision rate. The results presented in Figure 4.9 compare

the precision rates of the three settings found in Section 4.4.2 that satisfy

the security requirements.

0.6	
  

0.65	
  

0.7	
  

0.75	
  

0.8	
  

0.85	
  

0.9	
  

0.95	
  

1	
  

2	
   3	
   4	
   5	
   6	
  

Pr
ec
is
io
n	
  
Ra

te
	
  

#	
  genuine	
  search	
  terms	
  in	
  query	
  

U=50/	
  V=40	
  

U=60	
  /	
  V=40	
  

U=80	
  /	
  V=55	
  

Figure 4.9: Precision comparison, where number of genuine search terms per

document is m = 40

Figure 4.9 indicates that the precision decrease with the number of dummy

keywords (U) added. While precision for U ≤ 60 are acceptable, the preci-

sion for U = 80 is not suitable for various applications since it immediately

54



incurs additional communication cost.

For a fixed U , the level of obfuscation increases as V gets larger (Fig-

ure 4.4), however precision decreases with the increase of V (Figure 4.7).

Therefore, we use the smallest V that satisfies sufficient obfuscation (i.e.,

satisfy Ω(Ak, Qk+1, Q
′
k+1) < z) as the optimum choice for V .

Given two queries with the same genuine search terms, the probability

of having exactly the same set of dummy keywords must be very small.

Otherwise the generated queries may be exactly the same, which leaks the

information that the genuine search terms for the both queries are the same.

This probability is
(
CU
V

)−1
, which is minimized if U = 2V . For the two

parameter settings that satisfy both high precision and sufficient obfusca-

tion, the probability of having the same set of dummy keywords is 2−52 for

U = 60, V = 40 and it is 2−33 for U = 50, V = 40. Hence, the optimum

parameters, for the data set we consider, are set as U = 60, V = 40. Note

that the number of genuine keywords in each document is set as m = 40 in

the experiments. Utilizing these tests on the Reuters data set [49], we can

generalize an optimum setting for U , V and m in the corresponding data set,

as follows:
m

U
=

2

3
&

V

U
=

2

3
.

4.5 Hiding Response Pattern

In the previous section, it is demonstrated that, linking queries that feature

the same genuine search terms is not feasible, provided that the random-

ization parameters (i.e. U and V ) are set appropriately. However, if the

attacker has access to the database, (e.g., the cloud service provider) it may

be possible to correlate queries with the same search terms since the list
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of matching results will be almost the same except for some false positives.

Note that different queries can match with the same index entries due to

different keywords in those documents. Nevertheless, if the list of matching

documents is the same, then the attacker can guess with a high confidence

that the queries are also the same. Similar to the randomization method

we use in Section 4.4.3, we propose to add some fake index entries4 to the

database such that the lists of matching documents for the two queries with

the same genuine search terms will be different.

In the basic scheme given in Section 4.3, in addition to the genuine key-

words, index entry of each document possesses U random dummy strings,

where random V of them are added to each query index. In the modified

method, similar to the real documents, the fake entries include both genuine

search terms and dummy strings. The genuine search terms are placed in

the fake entries according to the distribution in the real data set, but with

a constant factor more frequent. We define a frequency enhancer constant c

as in the following.

Definition 16. (Frequency Enhancer (c)) Fake entries in the index file in-

clude genuine search terms more frequently than real documents with a factor

of c (i.e., frequency enhancer).

Intuitively, if a genuine search term w occurs in p% of the real documents

in the database, it also occurs in c · p% of the fake entries.

While the dummy strings are chosen with uniform distribution from the

set U , the number of dummy strings selected for a fake entry, which we denote

as V ′, must be carefully set. The subsequent sections provide the analysis

on as to how the values of V ′ and c are set.

4Users, but not the server, can identify the fake index entries. Since there is no docu-

ment corresponding to fake entries, they will be discarded by the user.
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Note that, the fake entries that are added for hiding the response pattern

are generated in a different way from the ones we use for hiding positions

of dummy keywords in Section 4.4.3. The fake entries generated in this

section (i.e., Section 4.5) include both genuine search terms and dummy

strings hence, can match with queries. However, the fake entries generated

in Section 4.4.3 do not possess the dummy keywords and cannot match with

the queries.

4.5.1 Analysis on Selecting Number of Fake Entries

Note that, the search index entry of each genuine document contains all the

U dummy strings, while the queries have only V out of those U strings. Let

the fake document entries possess the dummy strings in a set V ′ ⊆ U , where

|V ′| = V ′. In order to match a query with a fake document entry, all the

genuine search terms and the dummy strings in the query should also exist

in that fake document entry which implies, V should be smaller than V ′. If

V ′ = U as in the real document index entries, the lists of matching index

entries of documents for two queries with same genuine search terms would be

identical, a case which we want to avoid. Hence, the inequality, V < V ′ < U ,

must be satisfied. Small V ′ reduces the number of fake document entries that

match with a query. However, it increases the probability that the sets of

matching fake entries to queries with same genuine search terms are different.

Given a query and a fake entry that possesses all the genuine search terms

of that query, we denote the probability that the query matches with the fake

entry as pF , where the definition is as follows.

pF =
U−V ′−1∏
i=0

U − V − i
U − i

. (4.10)
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In Section 4.4.1, we show that an optimal choice for the parameters of

dummy strings in our setting is U = 60 and V = 40. In Figure 4.10, we plot

the values of pF with respect to V ′, while U and V are fixed. The figure

shows that, for values of V ′ ≤ 57, pF is very low, which drastically reduces

the number of fake matches and thus decreases obfuscation. Therefore, the

only two possible choices of V ′ for the setting used, are 58 and 59. This can

also be generalized as V ′ should be chosen as very close but smaller than U .

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

51	
   52	
   53	
   54	
   55	
   56	
   57	
   58	
   59	
   60	
  

pF
	
  

V'	
  

Figure 4.10: pF values with respect to V ′, where U = 60 and V = 40

The security of the system is analyzed in the following section.

4.5.2 Correlating Match Results

Given a query, the number of matching fake document entries should be

larger than the number of matching real documents. Otherwise, correlating

two queries with the same genuine search terms can be possible. Let σ be

the number of real documents in the database, we add q · σ fake entries to

the index file. Also let f be the fake match enhancer such that if a query

matches to a real document with probability p, it matches with a fake entry

with probability f ·p, which is calculated as f = c·p·pF , where pF is as defined

in Equation (4.10) and c is the frequency enhancer as defined in Section 4.5.

Then, the number of matching fake document entries will approximately be
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f · σ. While this method increases the storage requirement for the database

index by a factor of q, since the index entry size is very small (constant

r bits) this is not a burden for the cloud server. Nevertheless, search and

index generation times also increase with a factor of q, therefore q needs to

be minimized. We set q = 1 and increase c to satisfy c · q · pF = f .

The server can correlate two queries with the same genuine search terms

if the number of index entries that the both queries match, is significantly

larger than the average number of entries that any two arbitrary queries

both match. We provide a theoretical analysis on the number of common

matching entries for a given pair of queries. Note that there are three ways

a document index entry can match to a query:

1. A real document entry can match if the document possesses all the

genuine search terms in the query,

2. A real document entry can falsely as a false positive,

3. A fake document entry can match if the fake document entry possesses

all the genuine search terms and dummy strings in the query.

Let x be the number of genuine search terms in the query and pi is the

frequency of the ith search term in the database, assuming that the occur-

rences of search terms in a document are independent events, the expected

number of index entries that match from case 1 (E(M1)) is:

E(M1) = σ

x∏
i=1

pi

Let FPx be the false positive rate of a query containing x genuine search

terms and q be the multiplicative factor for the number of fake index entries

as defined in this section. Then, the expected number of index entries that
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match from case 2 (E(M2)) is:

E(M2) = FPx · (q + 1)σ

Let pF be as defined in Equation (4.10), the expected number of index

entries that match from case 3 (E(M3)) is:

E(M3) = c q σ pF

x∏
i=1

pi = f σ

x∏
i=1

pi

E(M1) is the expected number of true positive matches while E(M2) and

E(M3) are the expected numbers of false positives (accidental and intentional

respectively). Therefore, we denote E(M1) as E(T+) and E(M2) + E(M3)

as E(F+).

The expected total number of index entries that match to a query with

x genuine search terms (E(M)) is:

E(M) = E(T+) + E(F+)

Note that, E(T+) <
E(F+)

f
and E(M2) is reasonably small due to the small

false accept rates given in Figure 4.9. This implies that

E(M) ≤ (f + 1)E(T+). (4.11)

Given two arbitrary queries Q and Q′, the expected number of common

index entries that both queries match, denoted as E(Carb), is estimated as:

E(Carb) =
E(T+

Q )

σ

E(T+
Q′)

σ
σ +

E(F+
Q )

q σ

E(F+
Q′)

q σ
q σ

≈
E(T+

Q )E(T+
Q′)

σ
+
f 2E(T+

Q )E(T+
Q′)

q σ
. (4.12)

Given two queries Q and Q′ that have the same genuine search terms,

the expected number of common index entries that both queries match, is
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estimated as:

E(Csame) = E(T+) +
E(F+

Q )

q σ

E(F+
Q′)

q σ
q σ

≈ E(T+) +
f 2E(T+)2

q σ
(4.13)

We assume that the two queries have equal number of search terms in the

queries compared (i.e., they have similar number of index entries matched)

and therefore, E(T+
Q ) ≈ E(T+

Q′). Otherwise, they can easily be identified

as different queries. We define an identifiability function S(Q1, Q
′
1, Q2) that

takes three queries where Q1 and Q′1 have the same genuine search terms and

Q2 is an arbitrary query and returns a value indicating the identifiability of

Q2 from Q1.

Definition 17. (Identifiability Function)

S(Q1, Q
′
1, Q2) =

E(Csame)− E(Carb)

E(Csame)

The identifiability function can be calculated as:

61



S(Q1, Q
′
1, Q2) =

E(Csame)− E(Carb)

E(Csame)

=

(
E(T+) +

f 2E(T+)2

q σ

)
−

(
E(T+

Q )E(T+
Q′)

σ
+
f 2E(T+

Q )E(T+
Q′)

q σ

)
(
E(T+) +

f 2E(T+)2

q σ

)

=
E(T+)− E(T+)2

σ(
E(T+) +

f 2E(T+)2

q σ

)

=
1− E(T+)

σ(
1 +

f 2E(T+)

q σ

)

=
1− σ

∏x
i=1 pi
σ(

1 +
f 2 σ

∏x
i=1 pi

q σ

)
=

1−
∏x

i=1 pi(
1 +

f 2
∏x

i=1 pi
q

)
=

1−
∏x

i=1 pi
(1 + f 2

∏x
i=1 pi)

since we set q = 1 (4.14)

If we have the following inequality,

S(Q1, Q
′
1, Q2) ≤ ε̌

where ε̌ is a security threshold, we say that the attacker cannot identify

whether two queries are from same search terms or not, from the informa-

tion of matching index entry ids. Note that f and S(Q1, Q
′
1, Q2) are inversely

proportional and therefore, we set f as large as possible by adjusting param-

eters q and c.
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4.5.3 Experimental Results

We conducted tests on the real data set [49] of 30, 000 database index entries

(10,000 real, 10,000 fake from Section 4.4.3 and 10,000 fake from Section 4.5)

to demonstrate the success in hiding the response patterns. We randomly

generate four groups of genuine search term sets which contain from 2 up to

5 search terms. Each group has 200 elements with total of 800 sets of search

terms. For each search term set, we generate 2 queries (i.e., same genuine

search terms with different dummy keywords) and measure the similarity

between the sets of matching index entry ids. Similarly we also generate

another test group. This time, we apply 200 tests for each group by generat-

ing two different queries within the same group and measure the similarity

between the sets of matching index entry ids. The results are illustrated in

Figure ?? where U = 60, V = 40 and V ′ = 59. In order to decrease c, we use

the largest possible V ′ which is U − 1. Note that although higher f implies

lower identifiability which is desirable, increasing f necessitates increasing c,

which also increases number of genuine search terms in fake index entries.

In our tests we set f = 5, which is the largest f that keeps the number

of keywords in fake index entries the same as the number of keywords in

genuine index entries. Note that the proposed method also provides search

with single term, however we applied multiple terms in our experiments to

emphasize the multi-keyword search property of the proposed method and

the privacy issues in this setting.

4.6 Ranked Search

The multi-keyword search method, explained in Section 4.3, checks whether

queried keywords exist in an index entry or not. If the user searches for
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a single or a few keywords, there will possibly be many correct matches,

where some of them may not be useful for the user at all. Therefore, it is

difficult to decide as to which documents are the most relevant. We add

ranking capability to the system by adding extra index entries for frequently

occurring keywords in a document. With ranking, the user can retrieve only

the top τ matches where τ is chosen by the user.

In order to rank the documents, a ranking function is required, which

assigns relevancy scores to each index entry corresponding to a given search

query. In this thesis, we utilize the tf-idf metric for ranking the results,

where the details of the relevancy metrics used in information systems are

summarized in Section 3.5.

We assign tf-idf weights to each search term in each document. Instead of

using these weights directly, we assign relevancy levels based on the weights

of search terms. The proposed search scheme is conjunctive and requires the

document to contain all the queried search terms for a match.

We assume that there are Λ levels of ranking in our proposed method for

some integer Λ ≥ 1. For each document, each level stores an index entry for

search terms with higher weights of that document in a cumulative way in

descending order. This basically means that the ith level entry includes all

the keywords in the (i+ 1)th level and also the keywords that have sufficient

weight for the ith level. The higher the level, the higher the weight of the

search term is. For instance, if Λ = 3, level 1 index entry includes keywords

that occur at least once in the document while levels 2 and 3 include keywords

that have tf-idfw,R values at least, say 0.1 and 0.2 5, respectively. There are

several variations for relevancy score calculations [50] and we use a very basic

5The number of levels and the weights of each level can be chosen in any convenient

way.
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method. The relevancy score of a document is calculated as the number

representing the highest level search index entry that the query matches.

All the keywords that exist in a document are included in the first level

search index entry of that document as explained in Section 4.3.1. The

other higher level entries include the frequent keywords that also occur in its

previous level, but this time they have to occur the number of times, which

should at least be equal to the tf-idf of the corresponding level. The highest

level includes only the keywords that have the highest tf-idf values. In the

oblivious search phase, the server starts comparing the user query against the

first level index entries of each document. The matching documents found

as a result of the comparison in the first level are then compared with the

index entries in the other levels as shown in Algorithm 3.

Algorithm 3 Ranked Search

for all documents Di ∈ D do

Compare(level1 entry of Di , query)

j = 1

while match do

increment j

Compare (levelj entries of Di, query)

end while

rank of Di = highest level that match with query

end for

In this method, some information may be lost due to the ranking method

employed here. Rank of two documents will be the same if one involves all the

queried keywords infrequently and the other involves all the queried keywords

frequently except one infrequent one. The rank of the document is identified

with the least frequent keyword of the query. We tested the correctness of our
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ranking method by comparing with a commonly used formula for relevance

score calculation [19], given in the following:

Score(W , R) =
∑
w∈W

1

|R|
tf-idfw,R (4.15)

where W is the set of search terms in a query and |R| is the length of the

document R.

We use the Reuters [49] dataset to compare the two ranking methods.

We generate a database of 10.000 documents and test with 100 queries of 2,

3, 4 and 5 genuine search terms each. In our proposed ranking there is no

ordering within the matches from the same level. The number of elements

matched in each level set is correlated with the number of levels.

• For the case where Λ = 5, 94% of the time the top match for the given

relevance score, is also in the top match level (i.e., matches with highest

level) for our proposed ranking method. Additionally, in 82% of the

time, at least 4 of the top 5 matches for the given relevance score are

in the top match level in our method.

• For the case where Λ = 6, 90% of the time the top match for the given

relevance score, is also in the top match level (i.e., matches with highest

level) for our proposed ranking method. Additionally, in 79% of the

time, at least 4 of the top 5 matches for the given relevance score is in

the top match level in our method.

Note that as Λ gets larger, number of genuine search terms in each level

decreases which causes less number of matches in top levels. Since a user asks

for top k rank levels, higher Λ provides user to retrieve accurate information

with less communication. Nevertheless, reducing the number of matches per

level slightly increase the probability of missing some top relevant documents
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in the top match level. For the given experiment on 10000 documents, aver-

age number of matching document entries for each level is given in Table 4.2.

The table shows that while in the lowest level, the average match rate is

approximately 0.5%, for the top level the match rate is about 0.03%.

Λ \ lvl 6 5 4 3 2 1

5 NA 3.8 11.7 21.9 28.2 59.2

6 2.7 9.5 15.6 23.4 25.3 46.7

Table 4.2: Number of matching documents per level

While this new method necessitates an additional r-bit storage per level

for a document, it reduces the communication overhead of the users since

matches with low rank documents will not be retrieved unless the user re-

quests. Considering Λ search entries are stored instead of a single search in-

dex entry per document, storage overhead for indexing mechanism increases

Λ times due to ranking. This additional cost is not a burden for the server

since the size of an index entry is usually negligibly small compared to actual

document sizes.

4.7 Privacy of the Method

The privacy-preserving multi-keyword search (MKS) method must provide

the user and data privacy requirements specified by definitions in Section 4.1.

This section is devoted to the proofs that the proposed method satisfies

these privacy requirements. In the proofs, we assume that the randomization

parameters are selected appropriately by taking into consideration of the

database or search statistics.

The proposed method is semantically secure against chosen keyword at-
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tacks under indistinguishability of ciphertext from ciphertext (ICC). The

formal proof is provided in Theorem 1 of [22] from which we adopt their

indexing method; therefore, we omit this proof here. Intuitively, the proof is

based on the property that, since the HMAC function is a pseudo random

function (PRF), the hash values of any two different keywords will be two

random numbers and be independent of each other. Therefore, given two key-

word lists L0, L1 and an index Ib for the keyword list Lb, where b ∈ {0, 1}, it

is not possible for an adversary to guess the value b with probability greater

than 1/2.

The security against chosen keyword attack is required, but not sufficient

for the privacy-preserving search scheme we define in Section 4.1. We consider

further privacy requirements that the work in [22] does not satisfy. The major

difference of our work from [22] is capability of hiding the search pattern.

Lemma 1. Given three queries Q0, Q1 and Q′b where b ∈ {0, 1} and Qb

and Q′b are generated from the same genuine search terms, for a suitable

parameter choice, the advantage of an attacker in finding b is very small.

Proof. In Section 4.4, it is shown that ∆(Q0, Q
′
b) ≈ ∆(Q1, Q

′
b) for the selected

values of U, V . Therefore, an attacker cannot do better than a random guess,

to find b, if the parameters U and V in the index generation are securely

chosen.

Note that, the values of the security parameters depend on the structure

of the database and any V ≥ 30, where U = 60, is a secure candidate pair

for our test database.

Theorem 1 (Query Privacy). The proposed MKS method, for a suitable

parameter choice, satisfies query privacy in accordance with Definition 3.
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Proof. Let the adversary A be an authorized user. Given the search term

lists L1 and L2, the attacker can get the corresponding trapdoors from the

data controller and generate corresponding queries. By Lemma 1, it is not

possible to correlate the generated query with the given query Qb unless

all the V random dummy keywords are also same. There are CU
V possible

random choices of V for each set of search terms, where CU
V is the number

of V -combinations from a set of U elements. Therefore, A needs to generate

and try CU
V queries and compare with Qb. Generating a single query requires

choosing a set of V dummy keywords from the set U , combining the trapdoors

of those chosen keywords by bitwise product operation and finally comparing

with the given query Qb. For appropriate choice of U and V , generating CU
V

queries and applying bitwise comparison for each of them is infeasible.

A numerical example that demonstrates the difficulty of the attack, for

the parameters that we use in our implementation is shown in the following

example.

Example 6. In our setting this operation should be repeated CU
V = C60

40 = 252

times. Note that assuming generating a single index from the trapdoors that

are given in advance followed with a binary comparison requires 0.1 ms, this

brute force search takes 104 years which is infeasible for all practical purposes.

Theorem 2 (Access Control). The proposed MKS method satisfies access

control in accordance with Definition 4.

Proof. All communication from the user to the data controller is authenti-

cated by a signature with the user’s private key. We assume that the private

key information of the authorized users is not compromised and we further

assume that the server is semi-honest. In order to impersonate an authorized

user with an RSA public-key eu, A needs to learn the private key du where
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eu · du = 1 mod φ(N). Therefore, the probability of impersonating an au-

thorized user is ε where ε is the probability of breaking the underlying RSA

signature scheme.

Lemma 2. Given the list of all previous queries Q and a single query Q, it

is not possible to find the list of queries from the set of queries Q that are

generated from exactly the same genuine keywords with Q.

Proof. The trivial approach will be one-by-one comparison of Q with each

element of Q. However, by Lemma 1, it is proven that adversary cannot

identify equality of queries with one-by-one comparison.

An advanced approach will be applying correlation attack. The adversary

may try to find a set of k queries that all possess a genuine search term w.

If the adversary can extract genuine search term information from a set of

queries, he can correlate Q with other queries that are generated from exactly

the same genuine keywords with Q. However, we have shown in Section 4.4.1

that it is not possible to apply correlation attack in our proposed scheme.

Lemma 3. Given the database (i.e., the searchable secure database index),

the list of all previous queries Q and a single query Q, it is not possible to find

the list of queries from the set of queries Q that are generated from exactly

the same genuine keywords with Q .

Proof. With the additional index file access information, the adversary (e.g.,

cloud server) can also use the information of the list of ordered matching

items with the query Q while comparing with other queries in Q. As shown

in Section 4.5, due to the additional fake document index entries, it is not

possible to correlate two queries using one-by-one comparison between the

lists of matching documents.
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Theorem 3 (Search Pattern Privacy). The proposed MKS method satisfies

search pattern privacy in accordance with Definition 5.

Proof. By lemma 2, it is shown that the query information do not leak useful

search pattern information. By lemma 3, it is shown that the information of

retrieved matching entries with a given query does not leak search pattern

information. Therefore, the proposed scheme satisfies search pattern privacy.

Theorem 4 (Adaptive Semantic Security). The proposed MKS method pro-

vides adaptive semantic security in accordance with Definition 11.

Proof. Let the original view v(Hn) and the trace γ(Hn) be

v(Hn) ={(id(C1), ..., id(Cl)), C, I,Q, Dsig(Q)}

γ(Hn) ={(id(C1), ..., id(Cl)), (|C1|, ..., |Cl|), |Dsig(Q)|, |I|, Ap(Hn)}.

Further let,

v∗(Hn) = {(id∗(C1), . . . , id∗(Cl)), C
∗, I∗,Q∗, Dsig(Q)∗} be the view simu-

lated by the simulator S. The proposed method is adaptive semantically

secure if v(Hn) is indistinguishable from v∗(Hn).

• The first component of the view v(Hn) is the document identifiers id(Ci)

which are also available in trace. Hence, S can trivially simulate doc-

ument identifiers as id∗(C) = id(C). Since id∗(C) = id(C), they are

indistinguishable.

• Each user identifier is encrypted using a pseudo-randomness against

chosen plaintext attack (PCPA) secure encryption method (e.g., AES

in CTR mode). The output of a PCPA-secure encryption method [18]

is by definition indistinguishable from a random number that has the
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same size with ciphertext. For simulating the ciphertexts C, S as-

signs l random numbers to C∗ such that C∗ = {C∗1 , . . . , C∗l }, where

∀i, |C∗i | = |Ci|. Note that size of each ciphertext is available in the

trace. Considering for all i, Ci and C∗i are indistinguishable, C and C∗

are also indistinguishable.

• The secure searchable index I is composed of index entries for each

genuine profile and fake profiles. Note that, each index entry is gener-

ated by applying “bit-wise product” operation on the HMAC outputs

of each attribute value in the profile. S simulates the searchable in-

dex I, by generating |I| index entries using the public HMAC function

with a random key S chooses. For each entry in simulated I∗, S ran-

domly selects a set of U attributes (e.g., random strings) and apply the

HMAC and the reduction methods accordingly, where U is the num-

ber of dummy elements introduced in the index entries as defined in

Section 4.4. An index entry in I∗ is generated with exactly the same

method as an entry in I other than the HMAC key. Hence, an entry

of I∗ is indistinguishable from an entry in I. Moreover, both real and

simulated index has the same number of index entries (i.e., |I| = |I∗|).

Therefore, I is indistinguishable from I∗.

• Q = {Q1, . . . , Qn} is a set of n consecutive queries where each query

Qi is a bitwise product of trapdoors for the search keywords of Qi. |Qi|

is the number of keywords in query Qi. Note that each trapdoor is an

output of the HMAC function which is a random bit string of size r,

where r
2d

bits are expected to be zero.

Simulator S generates Q∗ as follows. For each Q∗i , S generates |Qi|

random binary strings where the number of zero bits is a random num-
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ber with mean r
2d

and take the bit-wise product of those |Qi| strings to

generate Q∗i . The number of search terms |Qi| is available in the trace.

Both Qi and Q∗i are bit-wise products of same number of bit stings of

length r with same number of expected zeros. Therefore Qi and Q∗i are

indistinguishable. Since ∀i Qi and Q∗i are indistinguishable, Q and Q∗

are also indistinguishable.

• The RSA signature of a query Dsig(Qi) is a random looking num-

ber of size |Dsig(Qi)| (i.e., size of public key N) which is available in

trace γ(Hn). To simulate Dsig(Q), S assign n random numbers of size

|Dsig(Qi)| to Dsig(Q)∗. ∀i Dsig(Qi) and Dsig(Qi)
∗ are two random

numbers of same length and indistinguishable. Hence, Dsig(Q) and

Dsig(Q)∗ are also indistinguishable.

The simulated view v∗ is indistinguishable from genuine view v since each

component of v and v∗ are indistinguishable. Hence, the proposed method

satisfies adaptive semantic security.

4.8 Complexity

In this section, we present an extensive cost analysis of the proposed tech-

nique. The communication and computation costs will be analyzed sepa-

rately. Especially, low costs on the user side are crucial for rendering the

proposed technique feasible for mobile applications, where the users usu-

ally perform the search through resource-constrained devices such as smart

phones. We use both real and synthetic data sets in our analysis. The used

real data set is a part (10.000 documents) of the RCV1 (Reuters Corpus

Volume 1), which is a corpus of newswire stories made available by Reuters,

Ltd. [49].
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• Communication Costs:

Two steps in the proposed method are identified, where communication

is required: i) for learning the trapdoor and ii) for sending the query

and receiving the results.

1. Between the user and the data controller, for learning the trap-

door: To build a query, the user first determines the bin IDs of

the keywords he wants to search for and send these values to the

data controller. Let γ be the number of genuine search terms the

user queries. Then the user sends at most 32 · γ bits to the data

controller together with a signature since each bin ID is repre-

sented by a 32 bit integer. The data controller replies with the

HMAC keys that belong to those bins. The reply is encrypted

with the user’s public-key, so the size of the result is logN . Note

that if two search terms happen to map to the same bin, then

sending only one of them will be sufficient since their responses

will be the same.

2. Between the user and the search server, for query: After learning

the trapdoor keys, the user calculates the query and transmits it

to the server. The size of the query is r bits, independent from

γ, so the user transmits only r bits. Let α be the number of in-

dex entries matched with the query. The server returns the index

entries of the matching documents whose size is α · r bits in to-

tal. Note that size of the encrypted document depends on the

size of the actual document. Independent of the used scheme,

all privacy-preserving search methods return the encrypted docu-

ment, therefore the communication cost of document retrieval is
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not considered here. In the case where the ranking is used, only

the top τ matches are returned to the user by the server instead

of α where τ ≤ α.

The communication costs are summarized in Table 4.3.

Trapdoor Search

User 32 · γ + logN r

Data

Controller logN 0

search server 0 α · r

Table 4.3: Communication costs incurred by each party (in bits)

• Computation Costs:

Among the three parties participated in the protocol, computation cost

of the user is the most crucial one. The data controller and the server

can be implemented on quite powerful machines, however the users may

be using resource-constrained devices.

1. User: After receiving trapdoor keys from the data controller,

query is generated as explained in Section 4.3, which is essentially

equivalent to performing hash operations6.

2. search server: The search server performs only the search oper-

ation, which is binary comparison of r-bit query with (q + 2) · σ

database entries, each of which is again an r-bit binary sequence.

Note that there are σ genuine database entries, σ fake entries

6Computing bitwise product is negligible compared the overall operations the user

performs.
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added for hiding bit positions of dummy keywords (Section 4.4.3),

and q · σ fake entries added for hiding response pattern (Sec-

tion 4.5), which add up to a total of (q+ 2) ·σ database entries. If

the ranking is used, the query should also be compared with higher

level index entries of the matching documents. So the server per-

forms Λ additional binary comparison of r-bit index entries for

each matching document, where Λ is the number of levels.

3. Data Controller: The data controller creates the index file and

symmetric-key encryption operations of all documents; but these

operations are performed only once in the initialization phase.

Other than this, data controller is active while the user learns the

trapdoors, which requires one encryption and one signature. This

is equivalent to 2 modular exponentiation operations.

The computation costs are summarized in Table 4.4.

User 1 hash and bit-wise product

Data Controller initialization phase

2 modular exponentiation per search

Index Server (q + 2) · σ · Λ binary comparison over r-bit index entries

Table 4.4: Computation costs incurred by each party

4.8.1 Implementation Results

The entire system is implemented by Java language using socket program-

ming on an iMac with Intel Core i7 processor of 2.93 GHz. Considering

that initial document analysis for finding the keywords in the document is

out of the scope of this work, a synthetic database is created by assigning
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random keywords with random term frequencies for each document. The

HMAC function produces outputs, whose size (l) is 336 bytes (2688 bit),

which is generated by concatenating different SHA2-based HMAC functions.

We choose d = 6 so that after the reduction phase the result is reduced to

one-sixth of the original result; therefore the size of each database index entry

and (r) is 56 bytes (448 bits).

In our experiments, we used different data sets with different number of

documents (from 2000 to 10000 documents). The timing results for creating

the queries are obtained for documents with 30 genuine search terms and 60

random keywords each using ranking technique with different rank levels for

parameters q = 1 and f = 5 in Figure 4.11(a). Considering that index gener-

ation is performed only occasionally (if not once) by the data controller and

that index generation problem is of highly paralleled nature, the proposed

technique presents a highly efficient and practical solution to the described

problem.

Figure 4.11(b) demonstrates the server timings for a search with different

rank levels. As can be observed from the graphic in Figure 4.11(b), time

spent by the server per query is quite low, rendering high-throughput for the

processing of user queries possible. By parallelization and native language

support, the throughput can be increased by several orders of magnitude.

Most of the privacy-preserving search methods that exist in the literature

are only capable of single keyword search. The problem that we consider is

multi-keyword search; therefore, we did not provide a comparison with the

works that consider only single keyword search. A very recent work by Cao

et al. [23] is the closest work to our proposed method. Our implementa-

tions show that our method is one to two orders of magnitude faster than

the method in [23] in both off line and on line operations. The index con-
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Figure 4.11: Timing results

struction method of [23], takes about 4500 s for 6000 documents while we

need only 140 s in the highest rank level. Similarly the work in [23] requires

600 ms to perform a search over 6000 documents where we need only 4.7 ms.

The tests in [23] were done on an equivalent computer, Intel Xeon proces-

sor 2.93 GHz. Among the other existing multi-keyword solutions, bilinear

pairing based methods such as [15] provide only theoretical solutions. The

method in [15] is not implemented due to its excessive computational re-

quirements hence, cannot be compared with our proposed work. The work
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of Wang et. al. [22], which is the inspiration for our proposed method, pro-

vides a faster solution than our work since they do not use additional fake

entries or dummy keywords. However, that work does not satisfy some of

the privacy requirements that we are interested in (cf. Section 4.7), such as

hiding search pattern privacy.

The low time requirements on the data controller side enable processing

multiple requests with high-throughput. Note that the programs used in

the experiments are developed in Java language for portability reasons and

unoptimized. Further optimization or support of native code or parallel

implementation will further increase the performance of the proposed system.

4.9 Chapter Summary

The solution proposed in this chapter, addresses the problem of privacy-

preserving ranked multi-keyword search, where the database is outsourced

to a semi-honest remote server. Our formal definitions pertaining to the pri-

vacy requirements of a secure search method are based on a comprehensive

analysis of possible attack scenarios. One particular privacy issue concerning

linking of queries featuring the identical search terms is often overlooked in

the literature. When an attacker is able to identify queries featuring the

same search terms by inspecting the queries, their responses and database

and search term statistics, he can mount successful attacks. Therefore, the

proposed privacy-preserving search scheme essentially implements an efficient

method to satisfy query unlinkability based on query and response random-

ization and cryptographic techniques. Query randomization cost is negligible

for the data controller and even less for the user. Response randomization,

on the other hand, results in a communication overhead when the response

79



to a query is returned to the user since some fake matches are included in

the response. However, we show that the overhead can be minimized with

the optimal choice of parameters. The true cost is due to the additional

storage for extended index file and the actual search time. This can also

be minimized by proper selection of the parameters (i.e., the ratio of fake

index entries to real index entries). On the other hand, the storage is usu-

ally not a real concern for the cloud servers, considering that index file is

relatively small compared to the document sizes. As for the search time, the

proposed technique is extremely efficient that a relative increase in search

time can easily be tolerated. Our implementation results confirm this claim

by demonstrating search time over a database of 10, 000 documents, includ-

ing ranking, takes only a couple of milliseconds. Considering that the search

algorithm easily yields to the most straightforward parallelization technique

such as MapReduce, the overhead in search time due to the proposed ran-

domization method effectively raises no difficulty.

Selection of parameters involves some knowledge about the database and

therefore, a priori analysis is required. However, our proposal needs only the

frequency of the most used search terms and number of search terms used

in queries. The formulation for parameter selection is simple and easy to

calculate. Furthermore, we do not need to repeat the calculation process for

different datasets. One can easily specify an upper bound on the frequency

of the most used search terms and number of search terms that can be used

for many cases.

Ranking capability is incorporated to the scheme which enables the user

to retrieve only the most relevant matches. The accuracy of the proposed

ranking method is compared with a commonly used relevance calculation

method where privacy is not an issue. The comparison shows that the pro-
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posed method is successful to return highly relevant documents.

We implement the entire scheme and extensive experimental results using

both real and synthetic datasets demonstrate the effectiveness and efficiency

of our solution.
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Chapter 5

MINHASH-BASED SECURE

SEARCH METHOD

The work presented in Chapter 4 provides a secure and efficient search

method that hides the search pattern. The drawback of this method is the

provided ranking approach. As explained in Section 4.6, the work presented

in Chapter 4 supports only a fixed number of rank levels, where all the doc-

uments that match with the same level have the same rank such that, ranks

of two documents will be the same even if one contains all the queried terms

infrequently and the other one contains all the queried terms very frequently

except only one infrequent term. Moreover, in the work given in Chapter 4,

some fake document index entries are introduced in the searchable index as

explained in Section 4.5. Those fake documents may match with the query

with some probability given in equation (4.10), which is used for hiding the

search pattern. However, the user then needs to sanitize the final result

from the fake matches, which brings an extra burden on the user. In this

chapter, we propose an alternative secure multi-keyword search scheme, that

provides better ranking capability together with enhanced security require-
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ments. The MinHash-based secure search model given in this thesis, has

two versions. The first version, which we refer as the single server model, is

very fast but some sensitive information is allowed to leak due to efficiency

reasons. The single server model is presented in the IEEE CLOUD 2013 con-

ference [38]. In the second version, which is referred as the two server model,

the sensitive information that is allowed to leak in the single server model,

is also hidden. However, due to the cryptographic primitives, the two server

case, is not as efficient as the first one. There is a strict trade off between

privacy and efficiency, and in the two server model, we managed to increase

the privacy of the method while keeping the increase in the computational

cost at an acceptable level. Both the single and the two server models provide

multi-keyword search with ranking capability.

The both models proposed in this chapter consider the same problem of

privacy-preserving keyword search over encrypted cloud data for the database

outsourcing scenario as the model proposed in Chapter 4.

5.1 Single Server Framework

In the setting for the single server model, we assume the data owner does

not have sufficient resources or is unwilling to store the whole database. He

outsources the data to an untrusted, semi-honest server, but maintains the

ability to search without revealing anything except the access and search

patterns.

The data owner encrypts the sensitive documents to be outsourced and

generates a searchable index using the features of these sensitive documents.

In an offline stage, both searchable index and the encrypted documents are

outsourced to a semi-honest cloud. Then, authorized users can perform
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Figure 5.1: Framework of the model with a single server

search on the cloud and receive the encrypted documents that match with

their queries. During this process, the cloud server should not learn anything

other than what the data owner allows to leak. Finally, user decrypts the

retrieved documents using the decryption keys. The steps and typical inter-

actions between the participants of the system are illustrated in Figure 5.1.

The method is formalized as follows. Let D be the set of sensitive docu-

ments and Fi be the set of features (i.e., keywords) of Di ∈ D. There are four

algorithms in the scheme, namely: setup, index generation, query generation

and search.

1. Setup(Ψ): Given a security parameter Ψ, it generates a secret key

K ∈ {0, 1}Ψ.

2. IndexGeneration(K,D): Given the collection of sensitive documents
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D, it extracts the feature set Fi for each document Di ∈ D and gener-

ates a searchable secure index I via encryption with the key K.

3. QueryGeneration(K,F ): Generates a query Q for the given set of

features F with key K.

4. Search(I, Q): Query Q is compared with the searchable index I and

returns encrypted versions Ci of the matching documents Di.

The details of these algorithms are given in Section 5.2.

5.1.1 Security Model

The privacy definition for almost all of the existing efficient privacy-preserving

search schemes allows the server to learn some information such as the search

and access patterns. Therefore, due to efficiency concerns, the proposed sin-

gle server search method, also leaks search and access pattern, but nothing

else.

The definitions of Search pattern (Sp), Access pattern (Ap), History (Hn)

and Adaptive Semantic Security, are as given in Section 4.1. The definitions

of Trace and View, are redefined in this section, since the contents of trace

and view are different in this model.

Definition 18. Trace (γ(Hn)) Let C = {C1, . . . , C|D|} be the set of en-

crypted documents, |D| be the number of documents in the dataset, id(Ci)

be the identifier of Ci and |Ci| be the size of Ci. The trace of Hn is defined

as γ(Hn) = {(id(C1), . . . , id(C|D|)), (|C1|, . . . , |C|D||), Sp(Hn), Ap(Hn)}. We

allow to leak the trace to an adversary and guarantee no other information

is leaked.
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Definition 19. View (v) is the information that is accessible to an adver-

sary. Let I be the secure searchable index and, id(Ci) and Q are as defined

above. The view of Hn is defined as v(Hn) = {(id(C1), . . . , id(C|D|)), C, I,Q}.

5.2 Single Server MinHash-based Method

In this section, we provide the crucial steps of our proposed method. Search

over encrypted cloud data is performed through an encrypted searchable

index that is generated by the data owner and outsourced to the cloud server.

Given a query, the server compares the query with the searchable index and

returns the results without learning anything other than the information that

is allowed to be leaked due to efficiency concerns.

5.2.1 Secure Index Generation

Our proposed method utilizes the idea of bucketization which is a data par-

titioning technique widely used in the literature [43, 45, 20]. Here, each

object is distributed into several buckets via MinHash functions introduced

in Section 3.3.2 and the bucket-id is used as an identifier for each object

in that bucket. This method maps objects such that the number of buck-

ets, in which two objects collide, increases as the similarity between those

objects increases. In other words, while two identical objects collide in all

of the buckets, number of common buckets decreases as similarity between

objects decreases. The proposed secure index is generated by the data owner

utilizing the following phases, namely: feature extraction, bucket index con-

struction and bucket index encryption. These three phases are explained in

the following.

1) Feature Extraction: For each document Di ∈ D, the set of features
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Fi = {fi1, . . . , fiz} that characterize the document is extracted. In our case,

those features are composed of two values fij = (wij, rsij). The first one is a

keyword wij of the sensitive document Di. The second one is the relevancy

score (rs), which is based on the tf-idf value of the keyword wij for the

document Di as explained in Section 3.5. This relevancy score is later used

in the search method (cf. Section 5.7.3) while ranking the matching results.

2) Bucket Index Construction: We first construct a MinHash struc-

ture by selecting λ random permutations on the set of all possible keywords

(∆). We then apply the MinHash on the first values of each feature set

Fi[0] = {wi1, . . . , wiz} as shown in Section 3.3.2 and generate a signature for

each document as:

Sig(Di) = {hP1(Fi[0]), . . . , hPλ(Fi[0])}.

Note that ∀i ∈ {1, . . . , λ}, hPi(Fj[0]) ∈ Fj[0]. In other words, each signature

element of a document is a keyword for that document.

Then, feature set of each document is mapped to λ buckets using the

elements of the signature. Suppose hPi(Fj[0]) = wk, then we create a bucket

with bucket identifier Bi
k, and identifiers and relevancy scores of all the docu-

ments that satisfy this property are added to this bucket. The bucket content

is a vector of integer elements of size |D|, where |D| is the number of docu-

ments in the outsourced data set. Let Bi
k be a bucket identifier and VBik be

the integer vector,

VBik [id(Dj)] =

rsjk, if hPi(Fj[0]) = Bi
k and VBik [id(Dj)] = 0,

0, otherwise.

(5.1)

3) Bucket Index Encryption: In this step, we hide the bucket identi-

fiers and bucket contents due to privacy requirements.
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Bucket identifier Bi
k is a sensitive information since it may reveal a search

term in a query that matches with a bucket, so it cannot be kept as plaintext.

Moreover, the server should be able to map the given encrypted bucket id

to the one kept in the server, without knowing the decryption keys. Hence,

the encryption method used for hiding the bucket identifier must be a de-

terministic scheme. One of the most efficient methods that hides a value in

a deterministic way is HMAC functions which are essentially cryptographic

hash functions that utilize secret keys. In our proposed scheme, decryption

of the encrypted bucket identifier is not required so an HMAC function is

used for hiding the bucket identifiers. Any pseudo random function (PRF)

can also be used, but we preferred HMAC functions due to their efficiency.

The secret key of HMAC function (Kid) is only known by the data owner

and never revealed to the server.

The content of a bucket (i.e., VBik) possesses sensitive information such

as the pseudo identifiers of the documents in that bucket and their rele-

vancy scores. These information must also be protected from the untrusted

server, hence should be outsourced to the server only after encryption. A

proper approach for encrypting bucket contents would be using a PCPA-

secure [18] (Pseudorandomness against chosen plaintext attacks) encryption

method such as AES in CTR mode with a secret key (Kcontent).

Let max be the maximum size of a searchable index I and cnt be the

number of real elements (i.e., number of buckets) in the index. We add

max − cnt dummy elements to the index in order to hide the number of

buckets. The dummy elements (πdumi ,Vdumi) are randomly generated with

the condition that

|πBjk | = |πdumi| and |VBjk | = |Vdumi |.

The secure index generation method is summarized in Algorithm 4.
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Algorithm 4 Single Server Index Generation

Require: ∆:set of possible keywords, D: collection of documents, h: λ Min-

Hash functions, Ψ: security parameter

Kid = Setup(Ψ), Kcontent = Setup(Ψ)

for all Di ∈ D do

Fi ← extract features of Di

Sig(Di) = {hP1(Fi[0]), . . . , hPλ(Fi[0])}

for j = 1→ λ do

Bj
k = Sig(Di)[j − 1]

if Bj
k /∈ bucket identifier list then

add Bj
k to bucket identifier list

create VBjk

end if

add rsik to vector VBjk
[id(Di)]

end for

end for

for all Bj
k ∈ bucket identifier list do

πBjk
← HMACKid(B

j
k)

VBjk ← EncKcontent(VBjk
)

add (πBjk
,VBjk) to secure index I

end for

add max− cnt dummy elements (πdumi ,Vdumi)

return I

Subsequent to the index generation, data owner encrypts each document

in the dataset D as Ωid(Di) = EncKdata(Di) and outsources this set of en-
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crypted documents EDoc to the server with the I, where

EDoc = {(id(D1),Ωid(D1)), . . . , (id(D|D|),Ωid(D|D|))}.

5.2.2 Query Generation and Search

The query generation is constructed in a similar way to the index generation

phase (Section 5.2.1) and exact steps are detailed in Algorithm 5. Given

a feature set of n keywords to be queried (i.e., F = {w′1, . . . , w′n}), the user

first creates the query signature from this feature set using the same MinHash

functions that are used in the index generation phase. Then, for each signa-

ture element, the corresponding bucket identifier is hashed with the key Kid.

The query Q is this list of hashed bucket identifiers (i.e., Q = {π1, . . . , πλ}).

Note that independent of the number of search terms in a query (n), the

query signature has λ elements and therefore, the information of n is not

leaked to the server.

Algorithm 5 Single Server Query Generation

Require: F : feature set of the keywords to be queried,

h: λ minhash functions, Kid: encryption key

Sig(F ) = {hP1(F [0]), . . . , hPλ(F [0])}

for j = 1→ λ do

Bj
k = Sig(F )[j − 1]

πBjk
← HMACKid(B

j
k)

Q[j − 1] = πBjk

end for

return Q

Given a query Q, the server finds the encrypted vectors (VBjk) corre-

90



sponding to the bucket identifiers in Q. The server then sends back the λ

encrypted vectors EV = {V1, . . . ,Vλ} to the user. After receiving the buck-

ets, user decrypts the vectors and ranks the data identifiers as it is detailed

in Section 5.2.3.

5.2.3 Document Retrieval

The user wants to avoid returning unrelated documents since this immedi-

ately bring forth an unnecessary communication burden. Hence, user tends to

retrieve only the top t matches, instead of returning all documents that share

at least one bucket with the query. The standard formulation for calculating

the document-term weights is tf-idf (cf. Section 3.5) which is commonly used

for relevance score calculation in search methods. Therefore, we also utilize

the tf-idf values for ranking the matching results.

Upon receiving the requested encrypted vectors EV = {V1, . . . ,Vλ}, the

user decrypts those vectors and get the plain vectors as Vi = DecKcontent(Vi).

Then the documents are sorted according to their scores. Note that Vi[id(Dj)]

is the tf-idf value of document Dj for ith bucket.

In the index generation phase, each document is mapped to a certain

number of buckets using the output of the MinHash functions and tf-idf value

of the MinHash output is assigned as the relevancy score of that document for

that bucket. Similarly query Q is also mapped to some λ buckets. The score

of a document Dj (i.e., score(id(Dj))) is the summation of the relevancy

scores for the buckets that both document and query share, which is defined

as follows:

score(id(Dj)) =
λ∑
i=1

Vi[id(Dj)]. (5.2)

As the score(id(Dj)) gets higher, the relevancy of the document to the query
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is expected to increase.

After the ranking phase, the user retrieves the top t matches from the

server. The document retrieval method is summarized in Algorithm 6. As

the database is updated by adding or removing documents, tf-idf values need

to be recalculated and indices should be updated accordingly. However, we

assume the database is highly static, hence the update is done infrequently.

5.3 Privacy for the Single Server Model

The privacy-preserving search scheme that we propose is adaptive semanti-

cally secure according to Definition 11.

Theorem 5. The proposed method satisfies adaptive semantic security in

accordance with Definition 11.

Proof. Let the original view v(Hn) and the trace γ(Hn) be

v(Hn) = {(id(C1), . . . , id(C|D|)), C, I,Q},

γ(Hn) = {(id(C1), . . . , id(C|D|)), (|C1|, . . . , |C|D||), Simp(Hn), Ap(Hn)}.

Further let v∗(Hn) = {(id∗(C1), . . . , id∗(C|D|)), C
∗, I∗,Q∗} be the view

simulated by the simulator S. The proposed method is adaptive semantically

secure if v(Hn) is indistinguishable from v∗(Hn).

• The first component of the view view(Hn) is the document identifiers

id(Ci) which are also available in trace. Hence, S can trivially simulate

document identifiers as id∗(C) = id(C). Since id∗(C) = id(C), they

are indistinguishable.
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Algorithm 6 Single Server Document Retrieval
USER:

Require: EV : encrypted vectors, Kcontent: secret key,

t: limit for number of documents to retrieve

for all Vi ∈ EV do

Vi ← DecKcontent(Vi)

end for

for j = 1→ |Vi| do

score(j) =
∑λ

i=1 Vi[j]

end for

sort score list

idList ← identifiers of top t scores

send idList to Server

SERVER

Require: idList: requested document identifiers, EDoc: outsourced en-

crypted documents

for all id ∈idList do

if (id,Ωid) ∈ EDoc then

send (id,Ωid) to user

end if

end for

USER:

Did ← DecKdata(Ωid)
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• Each document is encrypted using a PCPA-secure1 encryption method

(e.g., AES in CTR mode). The output of a PCPA-secure encryption

method [18] is by definition indistinguishable from a random number

that has the same size with ciphertext. To simulate ciphertexts C, S

assigns l random numbers to C∗ such that C∗ = {C∗1 , . . . , C∗|D|}, where

∀i, |C∗i | = |Ci|. Note that, size of each ciphertext is available in the

trace. Considering for all i, Ci and C∗i are indistinguishable, C and C∗

are also indistinguishable.

• Note that I is composed of encrypted bucket identifiers and correspond-

ing encrypted bucket content vectors. Let sizeB and sizeV be the sizes

of bucket identifier and bucket content, respectively. Further let max

be the maximum number of buckets that may occur in I. Simulator S

generates max index elements, I∗[i] = (π∗i ,V∗i ) such that π∗i is a ran-

dom number, where |π∗i | = sizeB and V∗i is another random number,

where |V∗i | = sizeV . Note that π∗i and πi are indistinguishable since

πi is the output of a random function (i.e., HMAC) where the out-

put is indistinguishable from a random number. Similarly, V∗i and Vi
are indistinguishable since Vi is a cipher of a PCPA-secure encryption

method. Hence, I is indistinguishable from I∗.

• Q = {Q1, . . . , Qn} is a set of n consecutive queries where each query Qi

is composed of λ encrypted bucket identifiers (i.e., Q = {π1, . . . , πλ}). S

can simulate the queries using the similarity pattern (Simp). Let Qi[j]

be the jth element of Qi where sizeB is the size of bucket identifier.

1We used a PCPA-secure encryption in our analysis which is in parallel with the lit-

erature. However, an encryption that is secure against chosen keyword attack (IND2-

CKA) [16] can also be used, but the corresponding security proof should be modified

accordingly.
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If ∃p, r 1 ≤ p ≤ i and 1 ≤ r ≤ λ such that Simp[i[j], p[r]] = 1

set Q∗i [j] = Q∗p[r]. Otherwise, set Q∗i [j] to a random value Rj
i where

|Rj
i | = sizeB. Note that for all i, Qi is indistinguishable from Q∗i since

Qi is the output of a pseudorandom permutation and Q∗i is a random

number, and they are of the same length.

The simulated view v∗ is indistinguishable from genuine view v since each

component of v and v∗ are indistinguishable. Hence, the proposed method

satisfies adaptive semantic security.

5.4 Experiments (Single Server)

In this section, we extensively analyze the proposed method in order to

demonstrate the efficiency and effectiveness of the scheme. The entire system

is implemented by Java language using a 32-bit Windows 7 operating system

with Intel Pentium Dual-Core processor of 2.30GHz. In our experiments we

use the publicly available Enron dataset [51].

The success of the search method is analyzed using the precision and

recall metrics (cf. Section3.6).

The matching items are ordered according to the relevancy scores (cf.

Section 3.5) and only items with top t scores are retrieved. We analyzed the

effect of the number of MinHash functions (λ) on the accuracy of the method

for a fixed threshold t = 15, by taking the average of 1500 queries with

number of features differ from 2 to 6 (i.e., 300 queries per each feature size).

As Figure 5.2 demonstrates, recall of the proposed scheme is 1 for any λ ≥ 150

implying that all of the items that contain all the features in the given query

are retrieved by the user. For the database outsourcing scenario that we

consider, it is crucial that the user retrieves all the documents matching with
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Figure 5.2: Success Rates as λ change for t = 15

the queried feature set. Precision is rather small, which indicates about 40%

of the retrieved documents contain all the queried features. Nevertheless, the

other retrieved items are still relevant with the query. Those items contain a

subset of the query features and the matching features have high relevancy

scores indicating that the matching item is highly relevant to the query even

when not all the features are captured. Note that, an item that has no

matching feature with a query has zero relevancy score, hence cannot match

with the query. We set λ = 150 since it satisfies the best precision rate while

ensuring full recall.

We analyze the impact of the number of keywords in a query on the

precision and recall rates and present the results in Figure 5.3. The similarity

between query and document signatures increases as the number of common

keywords increases. Hence, both the precision and recall rates of the method

increase as the number of keywords in a query increases. The increase in

success rate indicates our proposed method is even more useful for searches

with more than 5 keywords.

We test the efficiency of our proposed method using various dataset sizes

from 4000 to 10000 documents. The most costly operation of our method is
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Figure 5.3: Impact of number of keywords in a query and t on the precision

(a) and recall (b) rates

the index generation. Figure 5.4 shows that the index generation operation

takes about a few minutes and linearly increases as the number of documents

increases. Considering this operation is only performed in an offline stage

by the data owner, the method is practical. One of the most important

parameters of privacy-preserving search is the query response time since this

operation is used very frequently and the users want to access their search
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results as fast as possible. Search operation does not depend on the number

of documents since, in the proposed method search is performed by retrieving

λ requested buckets which is constant. The average query response time for

the single server search method, where λ = 150 is 210 ms, independent of

the number of documents in the dataset.
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Figure 5.4: Timings for index construction for λ = 150

The user then needs to decrypt the encrypted content vectors and request

the documents with the highest relevancy scores.

The communication cost of the user for the single server case has two

phases. First, the encrypted matching vectors (|EV | = λ|Vi|bits) are received

and in the next phase matching encrypted documents are received.

Most of the secure search methods in the literature do not support mul-

tiple features in queries. We do not provide any comparison with those

single keyword search methods but compare our proposed method with the

existing secure multi-keyword search methods instead. Some of the multi-

keyword search methods utilize bilinear mapping such as [15]. This approach

has similar security requirements with our proposed method, such that it re-

veals search and access pattern but nothing else. Unfortunately, this work

is not implemented by the authors due to excessive computational require-

ments. In this work, each search operation does about 2l bilinear mapping
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operation where l is the number of features in a document, which is not

practical due to the cost of bilinear map operations. A recent work by Cao

et al. [23] utilizes matrix multiplication operations where the number of rows

is determined by the size of the complete feature set. This method performs

index construction for 6000 documents in about 4500 s, while we perform

the same operation in less than 600 s. Similarly, the search operation over

6000 documents in [23] requires 600 ms, while we perform in about 210 ms.

Our HMAC-based method [39] performs efficiently in both index construc-

tion and search operations. However the ranking of that method is not as

accurate as the MinHash-based method and its security is ad-hoc, where

random elements are added for hiding the properties of the genuine features.

5.5 Two Server Framework

In this work, we consider privacy-preserving keyword search over encrypted

cloud data for the public storage system model. In our setting, we assume

there are three entities in the system, namely: Data owner, two non-colluding

semi-honest servers and users. The steps and typical interactions between

the participants of the system are illustrated in Figure 5.5.

• Data Owner is the actual owner and provider of the data. We assume

that, the data owner does not have sufficient expertise or resource to

store the whole database, hence outsources it to the cloud. While

the data owner and other authorized users retain the ability to search

over the data, no sensitive information is leaked to the cloud server

provider. In order to hide the sensitive data from the servers, the data

owner encrypts it before outsourcing and generates a searchable secure

index using the features of the sensitive data.
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Figure 5.5: The framework of the method with two non-colluding servers

• Cloud Server is a semi-trusted professional entity that offers storage

and computation services. In our setting, we utilize two non-colluding

servers; namely the search server and the file server. The data owner

outsources the searchable secure index to the search server and the ac-

tual encrypted documents are outsourced to the file server. Given a

query to the search server, the encrypted search results (i.e., scores)

are sent to the file server from the search server. The file server then

decrypts the results and sends the corresponding encrypted documents

with top t scores, to the user in a relevancy ordered way. The main

reason of the necessity of two servers is that, in the single server case,

the server can correlate a query with the matching document identi-
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fiers [38], which may cause some important information leakage such

as revealing the search pattern (cf. Section 5.6).

• Users can apply secure search over the cloud server by generating a

query using the search features. The query, which is also encrypted, is

sent to the search server and the corresponding encrypted documents

that match with the query is received from the file server. During this

process, neither of the servers learn anything other than what the data

owner allows to leak. Finally, user decrypts the retrieved documents

using the decryption key.

The method is formalized as follows. Let D be the set of documents and

Fi be the set of features (i.e., keywords) of Di ∈ D. There are four algorithms

in the scheme, namely: setup, index generation, query generation and search.

1. Setup(Ψ): Given a security parameter Ψ, it generates a secret key

K ∈ {0, 1}Ψ.

2. IndexGeneration(K,D): Given the collection of sensitive documents

D, it extracts the feature set Fi for each document Di ∈ D and gener-

ates a searchable secure index I via encryption with the key K.

3. QueryGeneration(K,F ): Generates a query Q for the given set of

features F using the key K.

4. Search(I, Q): Query Q is compared with the searchable secure index

I and returns encrypted versions of the matching documents Di.

The details of these algorithms are given in Section 5.7.
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5.6 Two Server Security Model

The two server setting can provide enhanced security requirements compared

to the single server setting such as the search pattern is not leaked. The server

may have some background information such as the search frequency statis-

tics of some keywords. If the search pattern is leaked, this information can

be combined with the search frequency statistics to deduce certain keywords

in the query. Hence, avoiding the leakage of search pattern is of paramount

importance. In this section we provide the privacy definitions, which are

partially borrowed from, but not limited to, the ones provided in Section 4.1.

The definitions of Search pattern (Sp), Access pattern (Ap), History (Hn)

and Adaptive Semantic Security, are as given in Section 4.1. The definitions

of Trace and View, are redefined in this section since the contents of trace

and view are different in this model.

Definition 20. ε-Probability Distinguishability: Let Qa and Qb be two

queries that are generated from the feature sets Fa and Fb, respectively. Fur-

ther let there exists a keyword w that both queries contain (i.e., w ∈ Fa and

w ∈ Fb). Also let a query Q be represented as a set of encrypted signature

elements as given in Section 3.3.2 (i.e., Q = {π1, . . . , π|Q|}).

A privacy-preserving keyword search method provides ε-probability dis-

tinguishability if, the probability that the both queries Qa and Qb, have a

common element πw due to the keyword w, is less than ε. Specifically, the

privacy preserving search scheme satisfies ε-probability distinguishability if,

prob(Qa ∩Qb 6= ∅) ≤ ε, (5.3)

where ε is a security parameter.

Definition 21. δ-Mean Query Obfuscation: Let Q,Q0 and Q1 be three

queries such that for b ∈R {0, 1}, Qb be generated from the same feature set,
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F that is used in Q and Q1−b be generated from a different feature set. A

privacy-preserving keyword search method provides δ-mean query obfuscation

if, given Q,Q0 and Q1, the difference of the expected distances between, two

equivalent queries and two arbitrary queries, is less than δ. Specifically, the

privacy preserving search scheme satisfies δ-mean query obfuscation if,

Exp [|d(Q,Q0)− d(Q,Q1)|] ≤ δ, (5.4)

where δ is a security parameter and d(x, y) is any proper distance metric.

Definition 22. Similarity Pattern (Simp) is the same with Sp with the

extension for multiple features. Let feature set of Qi be Fi = {f 1
i , . . . , f

y
i } and

(F1, . . . , Fn) be the feature sets of n queries. Simp[i[j], p[r]] =1 if f ji = f rp

and 0, otherwise, for 1 ≤ i, p ≤ n and 1 ≤ j, r ≤ y. Intuitively, similarity

pattern is the information of the number of common features between two

queries.

Definition 23. Trace (γ(Hn)) Let C = {C1, . . . , C|D|} be the set of en-

crypted documents, id(Ci) be the identifier of Ci, |Ci| be the size of Ci and

|I| be the number of buckets in the secure index I. The trace of Hn is defined

as:

γ(Hn)={(id(C1), . . . , id(C|D|)), (|C1|, . . . , |C|D||), Ap(Hn), |I|}.

We allow to leak the trace to an adversary.

Definition 24. View (v(Hn)) is the information that is accessible by an

adversary. Let I be the searchable secure index and, id(Ci) and Q be as

defined above. The view of Hn is defined as:

v(Hn) = {(id(C1), . . . , id(C|D|)), C, I,Q}.
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5.7 The Two Server MinHash-based Method

In this section we explain the construction of the proposed method. The

privacy-preserving search is applied utilizing the searchable secure index that

is generated by the data owner. Given a query from a user, the search server

performs the search on the secure index without learning anything about the

query and returns the encrypted intermediate results to the file server, which

then sends the final results to the user.

5.7.1 Secure Index Generation with Query Obfusca-

tion

Our proposed method utilizes the idea of bucketization; a data partitioning

technique widely used in the literature [20, 43, 45]. Here, each object is

distributed into a constant number of buckets via the MinHash functions

introduced in Section 3.3.2 and the bucket-id is used as an identifier for each

object in that bucket. Note that, this method maps similar objects (i.e.,

documents) into the same buckets with high probability. Consequently, the

number of buckets shared by any two documents increases as the similarity

between those two documents increases. Similarly, two documents without

any common keyword do not share any bucket.

In the generation of the secure index, each document is represented by a

set called signature (cf. Section 3.3.2 for signature generation). The signa-

tures are comparable such that the distance between two documents can be

estimated by comparing their signatures. However, the signature generation

process for the single server setting given in Section 5.2.1 is deterministic,

which means that for any two queries generated from exactly the same set

of keywords, their corresponding signatures will be identical. This inevitably
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leaks the search pattern.

In this Section, we now modify the index construction and query gen-

eration methods by introducing randomness in query signature generation

phase in order to obfuscate the search pattern. The proposed secure index is

generated by the data owner utilizing the following phases, namely: feature

extraction, bucket index construction and bucket index encryption. These

three phases are explained in the following.

1. Feature Extraction: For each document Di ∈ D, the set of features

Fi = {f 1
i , . . . , f

y
i } that characterizes the document is extracted. In our

case, those features are composed of two values f ji = (wij, rsij). The

first value is a keyword wij in the document. The second one is the

relevancy score (rsij), which is based on tf-idf value of the keyword wij

for the document Di as explained in Section 3.5. This relevancy score

is later used in the search method (cf. Section 5.7.3) while ranking the

matching results.

2. Bucket Index Construction with Obfuscation: In [38], the Min-

Hash structure is constructed by selecting λ random permutations on

the set of all possible features (∆). In the randomized method, in-

stead, λ set of random permutations are used for document signatures,

where each set is composed of φ permutations. Hence, in the proposed

method each signature is composed of φλ elements.

The MinHash functions are applied on the first values (i.e., wij) of

each feature set. Let F ∗i be the list of first elements in Fi as, F ∗i =

{wi1, . . . , wiz}, then the signature for each document Di ∈ D is calcu-

lated as:
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Sig(Di) = {
(
hP11(F

∗
i ), . . . , hP1φ

(F ∗i )
)
, . . . ,

(
hPλ1(F

∗
i ), . . . , hPλφ(F ∗i )

)
} .

Note that, each signature element of a document is a feature (i.e.,

keyword) of that document.

Then, each document identifier is mapped to φλ buckets using the

elements of the signature of the document. Suppose hPi(F
∗
j ) = wk,

then a bucket vector is created with a bucket identifier Bi
k. The bucket

content vector, VBik , is a vector of integers of the size of the outsourced

data set, |D|, where initially all the values in VBik are set to 0. The

relevancy scores of all the documents that are mapped to a bucket are

then inserted to the corresponding bucket content vector. Let Bi
k be a

bucket identifier and VBik be the corresponding content vector then,

VBik [id(Dj)] =

rsjk, iff hPi(F
∗
j ) = Bi

k,

0, otherwise.

3. Bucket Index Encryption: Bucket identifier Bi
k is a sensitive infor-

mation since it may reveal a search term in a query that matches with

a bucket, so it must be encrypted. Moreover, the server should be able

to map the given encrypted bucket id to the one kept in the server

without knowing the decryption keys. Hence, the encryption method

used for hiding the bucket identifier must be a deterministic scheme.

One of the most efficient methods that hides a value in a deterministic

way is the HMAC functions, which are essentially cryptographic hash

functions that utilize secret keys. In our proposed scheme, decryption

of the encrypted bucket identifier is not required so an HMAC function
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is used for hiding the bucket identifiers. The secret key of the HMAC

function (Kid) is not revealed to the servers. We denote the encrypted

bucket identifier as πBik = HMACKid(B
i
k).

The content of a bucket (VBik) also possesses sensitive information such

as the relevancy score of each document in a bucket. Moreover, the

content vector also contains the information of pseudo identifiers of the

documents that are not mapped to that bucket since their relevancy

score will be zero. Those information must be protected from the cloud

server, hence should be outsourced to the server only after encryption.

The search over the encrypted data will be applied by the search server

and due to the security requirements, the search server cannot apply de-

cryption on the bucket content vectors. The homomorphic encryption

schemes provide a solution for this problem since they allow operations

such as addition over the ciphertext without applying decryption. We

use the Paillier encryption [29], a well known additive homomorphic en-

cryption method, for the encryption of the bucket content vectors VBik .

The Paillier encryption algorithm satisfies the following homomorphic

property;

Enc(m1) · Enc(m2) = Enc(m1 +m2).

Prior to outsourcing to the search server, each element of the con-

tent vector is encrypted using the Paillier encryption with a secret

key (Kcontent). We denote the encrypted content vector as VBik =

EncKcontent(VBik). Note that, Paillier encryption provides semantic secu-

rity against chosen plaintext attacks, hence, different encrypted outputs

of the same message will be different and the encrypted values will be

indistinguishable.
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The secure index generation method is summarized in Algorithm 7.

Algorithm 7 Two Server Index Generation

Require: ∆:set of possible keywords, D: collection of documents, h: λ Min-

Hash functions, Ψ: security parameter

Kid = Setup(Ψ), Kcontent = Setup(Ψ)

for all Di ∈ D do

Fi ← extract features of Di

Sig(Di) = {
(
hP11(F

∗
i ), . . . , hP1φ

(F ∗i )
)
, . . . ,

(
hPλ1(F

∗
i ), . . . , hPλφ(F ∗i )

)
}

for j = 1→ φλ do

Bj
k = Sig(Di)[j − 1]

if Bj
k /∈ bucket identifier list then

add Bj
k to bucket identifier list

create VBjk
, where all elements are 0

end if

set VBjk
[id(Di)] = rsik

end for

end for

for all Bj
k ∈ bucket identifier list do

πBjk
= HMACKid(B

j
k)

VBjk = EncKcontent(VBjk
)

add (πBjk
,VBjk) to secure index I

end for

return I

Subsequent to the index generation, the data owner encrypts each doc-

ument in the data set D as Ωid(Di) = EncKdata(Di), using an encryption

scheme that satisfies pseudo-randomness against chosen plaintext attacks
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(PCPA) [18] (e.g., AES in CTR mode). The output of a PCPA-secure en-

cryption is indistinguishable from any random bit sequence of the same length

as the cipher text. Finally, the data owner outsources this set of encrypted

documents EDoc to the file server and the searchable index I to the search

server.

5.7.2 Randomized Query Generation

The query generation is constructed in a similar way to the index generation

phase (Section 5.7.1) and exact steps are detailed in Algorithm 8. Given

a feature set of η keywords in a query (i.e., F = {w′1, . . . , w′η}), the user

first creates the query signature from this feature set using the MinHash

functions that are used in the index generation phase. Different from the

index generation, in the signature generation phase of a query Q, only a

randomly chosen subset with c elements among the φ MinHash functions is

used as:

Sig(Q) = {
(
hP1j1

(F ), . . . , hP1jc
(F )
)
, . . . ,

(
hPλj1 (F ), . . . , hPλjc (F )

)
} ,

where c < φ and ji ∈R {1, . . . , φ}.

Then, for each signature element, the corresponding bucket identifiers are

hashed with the key Kid. The query Q is therefore, the list of hashed bucket

identifiers (i.e., Q = {π1, . . . , πcλ}). Note that independent of the number of

keywords in a query (i.e., η), the query signature has always cλ elements and

therefore, the information of η is not leaked to the server.

5.7.3 Secure Search

Given a query Q, the search server finds the encrypted vectors (VBjk) corre-

sponding to the bucket identifiers in Q. Utilizing the homomorphic properties

109



Algorithm 8 Two Server Query Generation

Require: F : feature set of keywords to be queried,

h: λ MinHash functions, Kid: encryption key

for i = 1→ c do

ji ∈R {1, . . . , φ}

for l = 1→ λ do

add hPlji (F ) to Sig(Q)

end for

end for

for j = 1→ cλ do

Bj
k = Sig(Q)[j − 1]

πBjk
= HMACKid(B

j
k)

Q[j − 1] = πBjk

end for

return Q

of the encryption, the search server then computes an encrypted score vector

using the cλ encrypted vectors as EV =
∏cλ

i=1 Vi and sends this single en-

crypted score vector EV to the file server. After receiving EV , the file server

decrypts the vector and sorts the data identifiers. Finally, the encrypted

documents with top t relevancy scores are sent to the user, where t is an

arbitrary number, which is set in any convenient way. The two server search

method is described in Algorithm 9.
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Algorithm 9 Two-Server Secure Search

and Document Retrieval
SEARCH SERVER:

Require: I: secure index, Q: query

t: limit for the number of documents to retrieve

set EV := 1

for all πi ∈ Q do

if (πi,Vi = {ei1 , . . . , eiD}) ∈ I then

for all j = 1→ D do

EV [j] = EV [j] · eij
end for

end if

end for

send EV and t to File Server

FILE SERVER:

Require: SL : encrypted scores, Kcontent: secret key,

Kpriv : Paillier private key

for all i, EV [i] ∈ SL do

score(i) = DecKpriv (EV [i])

end for

sort all scores

send the encrypted documents with the highest t scores, to the user
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5.8 Analysis of the Method of the Search Pat-

tern Hiding

The search pattern is intuitively the search frequency of the queries, which

can be found by checking the equality between the given query and the

previous queries. Therefore, in order to hide the search pattern, identifying

equality of two queries should be infeasible, i.e., δ-mean query obfuscation

and ε-probability distinguishability should be satisfied.

Note that a query Qa, is a set of encrypted bucket identifiers generated

by the outputs of the chosen MinHash functions, where |Qa| = cλ (i.e.,

Qa = {π1, . . . , πcλ}).

A well-known metric for finding the similarity between two sets is the

Jaccard distance, as given in Section 3.4.2 in the preliminaries.

In this work, the Jaccard distance is utilized in order to analyze the

difference between the signatures of two queries. Hence, the Jaccard distance

function Jd is used as the distance function d given in the definition of the

δ-mean query obfuscation (cf. Definition 21).

Throughout our analysis, we use fundamental probability concepts such

as permutation and combination. The number of permutations of length k

from a set of n elements is denoted as P n
k , which is equal to,

P n
k =

n!

(n− k)!
.

Similar to permutation, combination is the number of different ways of

selecting a set of k elements out of a group of n elements, where, unlike

permutations, order does not matter. The number of k -combinations from a

set with n elements is denoted as Cn
k and equals to,

Cn
k =

n!

k!(n− k)!
.
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Given two queries Qa and Qb, generated from the same feature set F ,

the probability that they are not the same (i.e., Jd(Qa, Qb) > 0) can be

formulated as:

prob(Qa 6= Qb) = 1− (Cφ
c )−1 = 1− c!(φ− c)!

φ!
.

This probability is almost 1, especially if the parameters are chosen as

φ = 2c, which maximizes the combination Cφ
c . However, inequality of two

queries does not imply indistinguishability. Let there be c̄ common elements

among the randomly chosen c MinHash functions, where 0 ≤ c̄ ≤ c. Given

the same set of keywords, the outputs of these c̄ MinHash functions will

be the same for all λ sets. Therefore, it can still be possible to distinguish

equivalent queries, if there exist common MinHash functions such that c̄ > 0.

The ultimate obfuscation is satisfied when c̄ = 0, namely there are no

common MinHash functions chosen in the generation of two queries. The

probability that the second query randomly chooses the MinHash functions

from the set of φ − c MinHash functions that are not chosen by the first

query, is calculated as:

prob (Qa ∩Qb = ∅) =
c−1∏
i=0

(
φ− c− i
φ− i

)

=
c−1∏
i=0

(
1− c

φ− i

)
=
Cφ−c
c

Cφ
c

. (5.5)

Note that prob (Qa ∩Qb = ∅) increases as φ increases and c decreases.

Therefore, the query obfuscation can be satisfied by utilizing a large φ and

a small c pair.

Example 7. Let φ be 20 and c be 2. Given two queries Qa and Qb generated

from the same feature set, the probability that they share no common element
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(i.e., Jd(Qa, Qb) = 1) is calculated as:

prob (Qa ∩Qb = ∅) =
Cφ−c
c

Cφ
c

=
C18

2

C20
2

=
18

20
· 17

19

= 0.805.

With this parameter setting, the probability that two equivalent queries

have totally unrelated signatures is greater than 80%, and this probability can

further be increased by increasing φ.

Query obfuscation provides, same or similar queries look unrelated. How-

ever, if the server can correlate queries with the matching document identi-

fiers, then similar queries can still be distinguished by comparing the com-

mon matching documents. Therefore, the two server search setting, which

hides correlation between queries and the matching document identifiers, has

paramount importance for the security of the method.

5.8.1 Expected Jaccard Distance

In the case, where two queries are generated from the same feature set F , the

two queries have a common element if and only if the same MinHash function

is used. The intuitive proof is as follows. If all the MinHash functions

are different, by definition the outputs will be different since the MinHash

functions identify the matching bucket identifiers and hence, the two queries

will not have any common element. If there exists a MinHash function

common for both queries, since the inputs for that function are the same,

the outputs will also be the same.
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Let Qa and Qb be two queries generated from the same feature set F . Us-

ing Equation (3.1), the Jaccard distance between the two queries is calculated

as:

Jd(Qa, Qb) = 1− c̄λ

2cλ− c̄λ
, (5.6)

where c̄ is the number of common MinHash functions chosen by Qa and Qb.

Note that if c̄ = 0, the distance is Jd(Qa, Qb) = 1 − 0 = 1, which leaks

no information that the two queries are related. However, if c̄ = c then the

distance is Jd(Qa, Qb) = 1− 1 = 0, which leaks the information that the two

queries are equivalent.

In the case, where two queries are generated from different feature sets,

the corresponding signatures may still have common elements if there are

some common keywords in their feature sets. Let two queries, Qa and Qb,

have ηa and ηb keywords in their feature sets, respectively and η̄ be the

number of common keywords in the two feature sets. Further, let c̄ be as

defined above, then the Jaccard distance between two different queries Qa

and Qb can be estimated as:

Jd(Qa, Qb) = 1−

η̄2

ηaηb
c̄λ

2cλ−
(
η̄2

ηaηb
c̄λ

) . (5.7)

Equation (5.7) is almost the same as the case, where queries are equivalent

as given in Equation (5.6), except for the factor (η̄2/ηaηb). This factor is the

probability that a MinHash function gives the same output for two input

sets with lengths ηa and ηb, where η̄ elements are common in both sets. Note

that, the MinHash functions are random permutations and the output is one

of the elements in the input with uniform distribution. The probability that

a MinHash function gives the same output for the two sets with ηa and ηb

elements, where η̄ of them are common, is calculated in the following way.
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With probability η̄/ηa, one of the common elements is chosen from the set

of the query, Qa. For the second set, Qb, due to the MinHash property of

the functions, the minimum value of the common elements will be the same

as the first set, but different for non-common elements. Hence, the same

element will be the output of the function with probability η̄/ηb. Therefore,

the probability that a MinHash function gives the same output for the two

input sets is calculated as η̄2/ηaηb. Note that if η̄ = 0, the distance is

Jd(Qa, Qb) = 1−0 = 1, which hides any possible correlation as in the case of

equivalent queries. Similarly, if η̄ = ηa = ηb, then equations (5.6) and (5.7)

become the same.

The Jaccard distance between two queries, depends on the number of

MinHash functions shared in their signatures; the lower the functions shared,

the higher the distance. The expected value of the Jaccard distance can

be estimated by calculating the probability that the number of common

MinHash functions in the two query signatures is i, (i.e., c̄ = i). Let Pc̄(i) be

the probability that c̄ = i, the expected Jaccard distance between any two

queries Qa and Qb is estimated as:

Exp [Jd(Qa, Qb)] =
c∑
i=0

Pc̄(i)Jdi(Qa, Qb), (5.8)

where Jdi(Qa, Qb) is the Jaccard distance for c̄ = i.

The probability Pc̄(i) is equal to the probability that i elements are chosen

from c elements and c − i are chosen from φ − c elements. First, consider

the ordered case such that the first i elements are chosen from c, followed by

c− i elements are chosen from φ− c elements. This probability is calculated

as:
P c
i P

φ−c
c−i

P φ
c

However, in our case the order is not important, so there are Cc
i different
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ways of choosing these elements. Therefore, the probability Pc̄(i) is calculated

as:

Pc̄(i) = Cc
i

P c
i P

φ−c
c−i

P φ
c

(5.9)

=
c!

i!(c− i)!
c!

(c− i)!
(φ− c)!

(φ− 2c+ i)!

(φ− c)!
φ!

.

In Table 5.1, the values of Pc̄(i) are presented for φ = 15 to 25, where c

is 2. Note that
∑c

i=0 Pc̄(i) = 1.

φ i = 0 i = 1 i = 2 sum

15 0,7429 0,2476 0,0095 1

16 0,7583 0,2333 0,0083 1

17 0,7721 0,2206 0,0074 1

18 0,7843 0,2092 0,0065 1

19 0,7953 0,1988 0,0058 1

20 0,8053 0,1895 0,0053 1

21 0,8143 0,1810 0,0048 1

22 0,8225 0,1732 0,0043 1

23 0,83 0,1660 0,004 1

24 0,837 0,1594 0,0036 1

25 0,8433 0,1533 0,0033 1

Table 5.1: Pc̄(i) for different φ values

The distance between equivalent queries converges to 1 (i.e., ultimate

obfuscation) as φ increases; however, this also increases the number of buckets

in the secure index I, which inevitably increases the storage requirements and

the search time. Therefore, we set φ = 20, which satisfies sufficient security

while still keeping the size of I within practical limits.
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Example 8. Let φ be 20 and c be 2, the expected distance between two equiv-

alent queries Qa and Qb that are generated using the same feature set, is

calculated as follows.

Pc̄(i) will be as:

Pc̄(0) =
2!

0!2!

2!

2!

18!

16!

18!

20!
=

17 · 18

19 · 20
= 0.8053,

Pc̄(1) =
2!

1!1!

2!

1!

18!

17!

18!

20!
=

2 · 2 · 18

19 · 20
= 0.1895,

Pc̄(2) =
2!

2!0!

2!

0!

18!

18!

18!

20!
=

2

19 · 20
= 0.0052.

Note that
∑c

i=0 Pc̄(i) = 0.8053 + 0.1895 + 0.0052 = 1.

The Jaccard distance is calculated as:

Jd0(Qa, Qb) = 1− 0

4λ
= 1,

Jd1(Qa, Qb) = 1− λ

3λ
=

2

3
,

Jd2(Qa, Qb) = 1− 2λ

2λ
= 0.

Then the expected Jaccard distance between Qa and Qb is:

Exp [Jd(Qa, Qb)]=0.8053 · 1 + 0.1895 · 2

3
+ 0.0052 · 0=0.932,

which shows, even if two queries are generated from identical feature sets,

they have a significantly large distance in-between that makes it difficult to

distinguish them from the queries generated from different feature sets.

5.9 Security Analysis of the Two Server Method

In this section, we provide the formal definitions that show the proposed

scheme satisfies the privacy requirements defined in Section 5.6.

Theorem 6. The proposed method satisfies ε-probability distinguishability in

accordance with Definition 20.
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Proof. An upper bound for the probability that, two queries, Qa and Qb,

that have a common keyword w in the corresponding feature sets, have a

common bucket identifier, can be found as:

prob(Qa ∩Qb 6= ∅) = 1− prob(Qa ∩Qb = ∅)

≤ 1− Pc̄(0)

≤ ε, (5.10)

where ε is a security parameter.

Theorem 7. The proposed query randomization method satisfies δ-mean

query obfuscation in accordance with Definition 21.

Proof. Recall that, three queries Q,Qb and Q1−b are defined in Definition 21,

where Qb and Q are generated from the same set of features and b ∈R {0, 1}.

Without loss of generality, let b = 0. For the case, where two queries are

different, we assume the worst case, in which they do not share any common

keyword (i.e., η̄ = 0). In this case Jd(Q,Q1) will be 1.

For the case, where two queries are equivalent, with probability Pc̄(0), Q

and Q0 will not share any common MinHash functions and Jd(Q,Q0) will

be 1. With probability 1 − Pc̄(0), which is small but non-negligible, the

equivalent queries will share c̄ common MinHash functions and the Jaccard

distance between those two queries will be less than one. In this case, the

distance between the two queries can be estimated using the expected value

given in Equation (5.8) as:

Exp[Jd(Q,Qb)] =
c∑
i=0

Pc̄(i)Jdi(Q,Qb).

This expected distance converges to 1 as φ→∞ and as the analysis given in

Section 5.8.1 shows, Exp [Jd(Q,Qb)] gets very close to 1 for reasonable values
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of φ. Therefore, if the security parameters c and φ are set appropriately, then

Exp[|Jd(Q,Q0)− Jd(Q,Q1)|] = |(≈ 1)− 1| < δ, (5.11)

where δ is a security parameter.

For the case, where the Jaccard distance between any two queries is not

one, we leak the information that the corresponding feature sets of the two

queries share at least one keyword. This is especially true since two queries

with no common keyword in their feature sets, will have always Jaccard

distance one. However, the method is still good since the server or the

adversary cannot attack using background information on the statistics of

the search terms used. The properties of the method that thwart background

attacks, are clarified below.

We assume an adversary may have some background information on the

data set, such that the search frequencies of the most frequently queried key-

words are known. There are two main properties of the proposed method that

avert attacks using background information. Firstly, most of the statistical

information is obfuscated using the randomized query generation method,

explained in Section 5.7.2. Secondly, the probability in Equation (5.10) de-

pends on η, which is the number of keywords in the feature sets of the

queries. As the distribution of the number of keywords in each query may

significantly vary, the correlation of the actual search frequencies with the

similarities between the collection of queries is hard to distinguish.

The correlation of the original search statistics and the statistics gathered

from the queries is formalized in the following proposition.

Proposition 5. Let Q = {Q1, Q2, . . . , Qn} be a collection of n queries and

w be a keyword that occurs in pw percent of the queries in Q. Given Q, w
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and pw, in the proposed scheme, it is hard to obtain the set of queries in Q

that contains the keyword w.

Proof. We assume that the adversary A, having observed a collection of

queries, Q, knows that a keyword w occurs in pw percent of the set Q. Let

there be n queries in Q.

The probability that a query Qi ∈ Q, where w ∈ Fi contains a specific

bucket identifier πw, is c
φηi

since only a single MinHash function can produce

the πw output and that function exists in Qi with probability c/φ. There

are pw|Q| queries that contain the keyword w, hence the expected number of

queries that contain a specific encrypted identifier πw, in their signatures is,

#i(Qi ⊃ πw) = ∀i, w ∈ Fi
∑
i

c

φηi
(5.12)

= pw|Q| ·
c

φ
· Avg

(
1

ηi

)
.

Let pw and pw′ be the frequencies of the two most frequent keywords, w

and w′ respectively, in Q, (i.e., pw > pw′). Depending on the values of η

corresponding to the queries containing w and w′, the expected number of

queries containing the encrypted bucket identifier πw′ may be greater than

the number of queries containing πw. As there are several different keywords

with various occurrence frequencies in the queries, where η values of the

queries are unknown, it is hard to correlate the occurrence frequencies of

the keywords with the cardinality of the sets of queries that share a specific

encrypted bucket identifier.

Considering the fact that, with high probability, the Jaccard distance

between two queries generated from the same feature set is 1 and distribution
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of the number of keywords in queries is unknown to the adversary, correlating

the original keyword search frequency with Q is hard.

We illustrate the arguments about the hardness of correlating statistics

with Q for the proposed method in the following example.

Example 9. For an extreme case, let the adversary learn 106 queries (i.e.,

|Q| = 106). Further let, φ = 20, c = 2, the frequency of the most frequent

keyword w be 10% and let there be a set of other keywords w′i that each occurs

in 8% of the queries in Q. We assume the number of keywords in a query,

η, is chosen uniformly random in the range [2, 5].

As, η is chosen uniformly randomly in the range [2, 5], the mean (i.e.,

expected) value of (1/η) is

Avg

(
1

η

)
=

1

4

(
1

2
+

1

3
+

1

4
+

1

5

)
= 0.32.

Hence, on average, the number of queries that share a common encrypted

bucket identifier due to the keyword w (i.e., the most frequent keyword) is:

= pw|Q| ·
c

φ
· Avg

(
1

ηi

)
= 0.1 · 106 · 2

20
· 0.32

= 3200

On the other hand, for each i, depending on the values of η, the expected

number of queries that share a common encrypted bucket identifier due to a

less frequent keyword w′i will be distributed in the range:

= [0.08 · 106 · 2

20
· 0.2, 0.08 · 106 · 2

20
· 0.5]

= [1600, 4000].
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The number of keywords in each query is assumed to be uniformly random,

hence there may be several bucket identifiers, πw′i, such that although the

occurrence frequency of w′i is less than the occurrence frequency of w, the

number of queries that share a common bucket due to the keyword w′i is

greater than the number of queries that share a bucket identifier due to w.

This example shows that, it is very hard to correlate two equivalent

queries with exactly the same set of search terms, due to the randomiza-

tion phase we propose.

We also confirm this claim with an experiment using the statistics of

the real data set [49]. The occurrence frequencies of the keywords in the

queries, Q, are chosen according to the term frequencies of the corresponding

keywords in the data set. It is observed that on the average, among the sets

of queries that share a bucket identifier, only in 20% of the experiments,

the set with the largest cardinality corresponds to the keyword with greatest

occurrence frequency. Moreover, the correlation between the cardinality of

the sets and the term frequencies of keywords is further corrupted as the

term frequencies decrease. This is due to the existence of several keywords

with very similar occurrence frequencies.

Theorem 8. The proposed method satisfies adaptive semantic security in

accordance with Definition 11.

Proof. Let the original view v(Hn) and the trace γ(Hn) be

v(Hn) = {(id(C1), . . . , id(C|D|)), C, I,Q}

γ(Hn) = {(id(C1), . . . , id(C|D|)), (|C1|, . . . , |C|D||), Ap(Hn), |I|}.

Further let v∗(Hn) = {(id∗(C1), . . . , id∗(C|D|)), C
∗, I∗,Q∗} be the view simu-

lated by a simulator S. The proposed method is adaptive semantically secure

if v(Hn) is indistinguishable from v∗(Hn).
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• The first component of the view v(Hn) is the pseudo identifiers of the

documents, id(Ci), which are also available in the trace. Hence, S can

trivially simulate document identifiers as id∗(Ci) = id(Ci). Since for

all possible values of i, id∗(Ci) = id(Ci), they are indistinguishable.

• Each document is encrypted using a PCPA-secure encryption method.

Note that, the output of a PCPA-secure encryption method [18] is by

definition indistinguishable from a random number that has the same

size as the ciphertext. To simulate ciphertexts C, S assigns l random

numbers to C∗ such that C∗ = {C∗1 , . . . , C∗|D|}, where ∀i, |C∗i | = |Ci|

using the size information of each ciphertext, which is available in the

trace. Considering that for all i, Ci and C∗i are indistinguishable, C

and C∗ are also indistinguishable.

• Note that I is composed of encrypted bucket identifiers and corre-

sponding encrypted bucket content vectors. Let sizeB and sizeV be

the sizes of bucket identifier and bucket content, respectively. Simula-

tor S generates |I| index elements, I∗[i] = (π∗i ,V∗i ) such that π∗i is a

random number, where |π∗i | = sizeB and V∗i is a vector of size sizeV

such that each element is a random number of size of the Paillier en-

cryption modulus. Note that π∗i and πi are indistinguishable since πi is

the output of a cryptographic hash function (i.e., HMAC), where the

output is indistinguishable from a random number. Similarly, V∗i and

Vi are indistinguishable since each element of Vi is a ciphertext of a

Paillier encryption method, which provides semantic security. Hence,

I is indistinguishable from I∗.

• Q = {Q1, . . . , Qn} is a set of n queries, where each query Qi is com-

posed of cλ encrypted bucket identifiers. Encrypted bucket identifiers
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(π∗i ) can be simulated by the S as shown in the previous case. S can

simulate the queries using the previously simulated bucket identifiers,

π∗i . For each Q∗i , cλ random simulated bucket identifiers are chosen

from the simulated index I∗. Note that real and simulated encrypted

bucket identifiers are indistinguishable from each other. Hence, for all

i, Qi is indistinguishable from Q∗i and following from this, Q is indis-

tinguishable from Q∗.

The simulated view v∗ is indistinguishable from the genuine view v since

components of v and v∗ are indistinguishable. Henceforth, the proposed

method satisfies adaptive semantic security.

5.10 Compressing Content Vector

The two server search method given in Section 5.7.3 requires the search server

to send a vector of encrypted scores to the file server, where the size of the

vector is in the order of the size of the data set (i.e., |D|). The search server

cannot know the scores of the documents, therefore an encrypted score of

each document, including those with 0 score, should be sent. Although it is

transparent to the users, creation and forwarding of this score vector necessi-

tates a considerable communication and computation costs on both servers.

In order to mitigate this cost, we propose combining several document scores

in a single vector entry while still providing the correctness of the results and

privacy of individual scores.

Note that each entry of an encrypted content vector V is encrypted one by

one, using the Paillier encryption and the final encrypted scores vector, EV ,

is the element-wise product of the encrypted content vectors corresponding

to the query. Let µ be the Paillier modulus, then each message is an element
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of Zµ. However, each score that is stored on the content vector is much

smaller than µ, which brings forth an unnecessary increase in the size of the

EV . Instead of encrypting each single score separately, we propose encoding

several score values on each log(µ) bit message such that each score can

still be summed up using the homomorphic addition property of the Paillier

encryption method.

Let maximum possible score value be bmax bits. During the search process,

the search server applies summation on the cλ score vectors corresponding to

the query of the user. Hence, in the final score vector, the score of a document

can at most be log(cλ) + bmax bits after the summation of cλ score values. In

the proposed compressed score vector method, each score value is stored in a

log(cλ)+bmax bit part of the log(µ) bit message. With this method, each score

vector element can keep up to log(µ)/(log(cλ) + bmax) document score values

and these plain score values are then encrypted with the Paillier encryption

by the data owner as in the case without compression. Reserving log(cλ) +

bmax bits for each document score eliminates the possibility of any overflow

after the summation. Hence, it is guaranteed that the correct accumulated

scores can be received by the file server after decryption.

The compression of the content vector is depicted in the following exam-

ple.

Example 10. The content vector is represented in base 10 instead of binary

for visualization purposes. As a toy example, let there be only 12 documents

in the data set, and each score is in the range [0 − 99] (i.e., 2 digits). Also

let cλ ≤ 10, hence 3 digits will be reserved for each score. Let V1 and V2 be

two encrypted vectors for 12 document scores. The homomorphic addition of
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the two vectors is shown as follows.

V1 · V2 =

=


E(015032035000)

E(000027052000)

E(000034000000)

 ·

E(000082000012)

E(000000042000)

E(000015000000)



=


E(015114035012)

E(000027094000)

E(000049000000)


In this example, each encrypted vector element stores four scores instead

of a single score. Although a single homomorphic addition is depicted here,

in the actual model, the sum of cλ encrypted vectors are calculated. The

additional log(cλ) bits (e.g., 1 digit in this case), eliminate the possibility of

any overflow after the summation. Therefore, the accumulated score can be

received without any corruption.

Using the compressed score vector method, the size of the final accumu-

lated score vector EV is reduced by the order of log(µ)/(log(cλ) + bmax),

which decrease both the communication and storage costs at this order. In

Section 5.11, possible values for bmax, µ and λ are presented, which shows

that compressed score vector method provides significant increase in the ef-

ficiency of the keyword search scheme.

5.11 Experiments (Two Server)

In this section, we extensively analyze the proposed method in order to

demonstrate and compare its efficiency and effectiveness. The entire sys-

tem is implemented by Java language using a 64-bit Windows 7 operating
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system with Intel Xeon processor with 6 cores of 3.2 GHz. In our experi-

ments we use both the RCV1 (Reuters Corpus Volume 1), which is a corpus

of newswire stories that is made available by Reuters, Ltd. [49] and the Enron

data set [51].

The success of the search method is analyzed using the precision and

recall metrics (cf. Section3.6).

The matching items are ordered according to their relevancy with the

given query (cf. Section 3.5) and only the top items that have the highest t

scores are retrieved. In our experimental setting, we test the accuracy of the

method with various number of MinHash functions (λ) using the precision

and recall metrics. As Figures 5.6 and 5.7 demonstrate, both precision and

recall increase as λ increases. Even though, higher λ provides better search

accuracy, it also increases the storage requirements and the computation cost

of the index generation. We therefore set λ as 125, which is the smallest value

that provides sufficiently high recall rate.
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Figure 5.6: Precision rates, where η is 2, 3 and 4 with various λ values

The effect of the number of keywords in a query (i.e., η) on the pre-

cision rate depends on several parameters. As η increases, the number of
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Figure 5.7: Recall rates, where η is 2, 3 and 4 with various λ values

common keywords with the matching documents also increases. The number

of common buckets between a query and a document signature increases as

the number of common keywords increases, which also increases their scores.

Hence the increase in the number of keywords in a query has a positive ef-

fect on the precision rate. On the other hand, when the number of queried

keywords increases, documents that contain a large subset of the queried

keywords may also have a high score and therefore be retrieved by the user.

However, those matches decrease precision unless they contain all the queried

terms. Therefore, it is not possible to give a direct relation between η and

precision rate. The correlation with the recall rate however, is straightfor-

ward. As the number of queried keywords increases, the number of elements

in the set of documents that contain all the keywords (i.e., |D(F )|) signifi-

cantly decreases, which increases the recall values.

It is important to note that, although the precision rates are not high, all

the matches that are returned to the user contain at least a non-empty subset

of the queried terms. The precision and recall metrics do not consider the

parameters like term frequency and rarity that are used in the scoring of the

proposed method. Hence, due to the tf-idf based scoring, some documents
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that have partial match with the query may get a higher rank compared to

a document with a full match. Although the documents with partial match

is counted as a false match in calculating the precision, we claim that docu-

ments that have partial match with the query may also be important for the

user, due to the high relevancy score (i.e., high tf-idf values of the matching

keywords). Moreover, the precision rate also depends on the threshold t. For

the case, where only the top 10 matches are retrieved, then the average preci-

sion rate is 98, 5%. Therefore, we also tested the precision and recall rates of

the proposed method for the case only top t percent of the documents with

non-zero scores are retrieved by the user. The results, given in Figure 5.8,

demonstrate that as more documents are retrieved, the precision decreases

as some of the retrieved items do not contain all the queried keywords. Sim-

ilarly, as less number of documents are retrieved, the precision increases but

recall drops since some of the matching documents are not retrieved. By

setting the t variable appropriately, the user may either retrieve only a small

number of documents with high precision or all the related documents where

some only contain a non-empty subset of the queried features. Therefore, the

accuracy of our method is suitable for most of the practical requirements.

Utilizing the compression method explained in Section 5.10, several indi-

vidual scores can be stored in a single homomorphic encrypted value. In our

experimental setting, each score is represented with 10 bits (i.e., bmax = 10),

we set λ = 125 and c = 2 hence, after adding cλ scores, the final score of each

document is represented with log2(250)+10 = 18 bits. In the Paillier encryp-

tion, we use 1024 bit messages, which enables keeping 1024/18 = 56 scores

in a single encryption instead of a single score. With this novel method, the

storage requirements of the search server, the communication cost between

the search server and the file server, the number of Paillier encryption per-
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Figure 5.8: Precision and recall rates, where t% of documents with non-zero

scores are retrieved

formed by the data owner and the number of decryption performed by the file

server are all reduced 56 times. This improvement can further be extended

by using smaller bmax or λ.

The most time consuming operation of the proposed method is the genera-

tion of the secure searchable index, where the bottleneck is the homomorphic

encryption operations. Each element of all content vectors are encrypted us-

ing the Paillier encryption, where the number of content vectors depends on

both the number of different features in the data set and number of MinHash

functions used. The index generation timings for various data set sizes are

presented in Figure 5.9. Although the index generation times are in the order

of several minutes, since this operation is done only once in an offline stage,

the efficiency of the proposed method is still high.

The most crucial operation of the proposed method is the search over the

secure index. There can be several users in the system and the query rate can

therefore be very high, but the users should still be able to rapidly retrieve

the responses. The search operation explained in Section 5.7.3 has two time-
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various λ values

consuming operations. Firstly, the search server multiplies the encrypted

scores of the queried bucket vectors for applying homomorphic summation

of the scores and sends this single accumulated encrypted score vector EV

to the file server. Secondly, after receiving EV , the file server decrypts each

vector element and sorts the data identifiers. The search time for various

data set sizes are presented in Figure 5.10. The search operation works in

the order of a few seconds with parallel processing in the six core server used

in our experiments. The timings can further be decreased utilizing parallel

processing with more powerful servers. Note that, each decryption and ho-

momorphic addition operation are independent and therefore can trivially be

parallelized.

We do not provide any comparison with the work that are for vendor

system such as private information retrieval methods or solutions for store

and forward system such as the PEKS based methods. We also do not provide

any comparison with single keyword search methods since all those works are

not suitable for the problem we consider. Some of the existing work in the

literature [21, 52] including the preliminary version of this work [38] that
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Figure 5.10: Timing results for the search operation as data set size changes

for λ = 125

use single server, can provide much faster search operation. However, none

of those methods provides query indistinguishability or obfuscation, which

has crucial importance for hiding the content of a query. The work of Cao

et al. [23] provides query indistinguishability but since the queries can be

correlated with the scores of matching documents, the similarity between

queries can still be revealed (i.e., reveals search pattern). Another recent

work by Orencik and Savas [40] also provides a secure search method that

hides the search pattern. The drawback of the method in [40] is the ranking

approach used. The method supports only a fixed number of rank levels,

where all the documents that match with the same level have the same rank

such that, ranks of two documents will be the same even if one contains all

the queried terms infrequently and the other one contains all the queried

terms very frequently except only one infrequent term. Moreover, in [40],

some fake document index entries are introduced in the searchable index.

The fake documents may match with the query, which is used for hiding

the search pattern. However, the user needs to sanitize the final result from

the fake matches, which imposes an extra burden on the user. There is a

strict tradeoff between privacy and efficiency, and we managed to increase the
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privacy of the method by an acceptable level of increase in the computational

cost.

5.12 Chapter Summary

In this chapter, we addressed the privacy-preserving multi-keyword search

over encrypted cloud data for the database outsourcing model (i.e., public

storage system) using locality hash functions. We first utilize a single server

scheme that use an efficient secure index method using MinHash functions.

We also incorporate ranking capability to the proposed scheme utilizing well

known tf-idf based relevancy scoring. This approach ensures that only the

most relevant items are retrieved by the user, preventing unnecessary commu-

nication and computation burden on the user. However, this single approach

leaks the search pattern for efficiency reasons. We then utilize the two server

search method for hiding the correlation between the queries and correspond-

ing matching identifiers. Utilizing the two server search method, the δ-mean

query obfuscation and ε-probability distinguishability properties, the pro-

posed method satisfies the requirement of hiding search pattern, which most

of the work in the literature fail to provide. We also propose a novel method

that enables storing more than 50 scores at each element of the encrypted

content vector. This approach reduces both the number of decryption opera-

tions on the file server side and the communication between the search server

and the file server more than 50 times compared to the standard approach,

where each score is encrypted one by one.

We provide formal security definitions and prove that our proposed work

satisfies adaptive semantic security, δ-mean query obfuscation and ε-probability

distinguishability. We implement the entire system and demonstrate the ef-
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fectiveness and efficiency of our solution through extensive experiments using

the publicly available Reuters dataset [49].
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Chapter 6

CONCLUSIONS and FUTURE

WORK

Cloud computing is today’s one of the most exciting computing paradigms

in information technology. With the tremendous computation and storage

capacity advantages, cloud computing creates a fundamental shift in deliver-

ing computing services. Enterprises are motivated to outsource the burden

of computation to clouds such that they can avoid purchasing and manag-

ing software and hardware. However, security and privacy are perceived as

primary obstacles to its wide adoption. Although designing security into

the cloud benefits users and cloud server providers, it inevitably increases

overhead for both.

Privacy preserving search over encrypted cloud data has been extensively

studied in recent years. Although several methods are proposed in the lit-

erature, non of them can provide an optimal solution that is both fully pri-

vacy preserving and also very efficient. In this thesis, we aim to provide

a secure keyword search method that provides the privacy of the sensitive

data of the users in an efficient manner. We proposed three different secure
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search methods. The first method is a hash based search scheme that pro-

vides very efficient and accurate search over encrypted data. The proposed

privacy-preserving search scheme essentially implements an efficient method

to satisfy query unlinkability based on query and response randomization

and cryptographic techniques. Query randomization cost is negligible for

the data controller and even less for the user. Response randomization, on

the other hand, results in a communication overhead when the response to

a query is returned to the user since some fake matches are included in the

response. However, we show that the overhead can be minimized with the

optimal choice of parameters. The only flow of this method is the scoring

method utilized. This work supports only a fixed number of rank levels,

where all the documents that match with the same level have the same rank

such that, ranks of two documents will be the same even if one contains all

the queried terms infrequently and the other one contains all the queried

terms very frequently except only one infrequent term.

The second method, single server MinHash based scheme, provides very

efficient search and also incorporate ranking capability to the proposed scheme

utilizing well known tf-idf based relevancy scoring. As several work in the

literature do, we also allow to leak search pattern for efficiency concerns in

the single server method. Thirdly we utilize a two server scheme that uses

the same secure searchable index structure used in the single server method.

With the addition of a second server and a novel query obfuscation method,

we managed to enhance the privacy of the method such that the search pat-

tern is also hidden.
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6.1 Future Directions

The main issue we considered in this thesis is secure keyword search over

encrypted cloud data. We aim to extend the research on secure data-mining

over encrypted cloud data. The two of the techniques we want to cover

is secure k-nearest neighbour and range queries. Another research interest

is the BigData concept. The BigData has some challenges that is not yet

considered for encrypted data. The challenges include capture, curation,

storage, search, sharing, transfer, analysis and visualization. One of the most

important cases in the BigData is that the data is changing very frequently,

which makes keeping a static searchable index infeasible. Hence, data-mining

on encrypted BigData is still an open problem that we want to consider.
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