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Abstract

In this thesis we study several aspects of permutation polynomials over finite fields
with odd characteristic. We present methods of construction of families of complete
mapping polynomials; an important subclass of permutations. Our work on value sets
of non-permutation polynomials focus on the structure of the spectrum of a particular
class of polynomials.

Our main tool is a recent classification of permutation polynomials of F,, based
on their Carlitz rank. After introducing the notation and terminology we use, we
give basic properties of permutation polynomials, complete mappings and value sets of
polynomials in Chapter 1.

We present our results on complete mappings in Fy[z] in Chapter 2. Our main result
in Section 2.2 shows that when ¢ > 2n + 1, there is no complete mapping polynomial
of Carlitz rank n, whose poles are all in F,. We note the similarity of this result to the
well-known Chowla-Zassenhaus conjecture (1968), proven by Cohen (1990), which is
on the non-existence of complete mappings in I, [z] of degree d, when p is a prime and
is sufficiently large with respect to d. In Section 2.3 we give a sufficient condition for
the construction of a family of complete mappings of Carlitz rank at most n. Moreover,
for n = 4,5,6 we obtain an explicit construction of complete mappings.

Chapter 3 is on the spectrum of the class F,, of polynomials of the form F(z) =
f(z)+z, where f is a permutation polynomial of Carlitz rank at most n. Upper bounds
for the cardinality of value sets of non-permutation polynomials of the fixed degree d
or fixed index [ were obtained previously, which depend on d or [ respectively. We
show, for instance, that the upper bound in the case of a subclass of F,, is ¢ — 2, i.e.,
is independent of n.

We end this work by giving examples of complete mappings, obtained by our meth-

ods.



SONLU CISIMLER UZERINDEKI POLINOMLARIN DEGER KUMELERI VE
TAM GONDERIMLER UZERINE

Leyla Isik
Matematik, Doktora Tezi, 2015

Tez Danmigmani: Prof. Dr. Alev Topuzoglu

Anahtar Kelimeler: sonlu cisimler, permiitasyon polinomlari, Carlitz mertebesi, tam

gonderimli polinomlar, deger kiimeleri, minimum deger kiimesi polinomlari, spektrum.

Ozet

Bu tezde karakteristigi tek olan sonlu cisimler iizerindeki permiitasyon polinom-
lariyla ilgili bazi ilging problemler tizerinde ¢aligilmigtir. Permiitasyonlarin énemli bir
alt sinifi olan tam génderim polinomlarini inga etme metodlar: sunulmustur. Permiitasyon
olmayan polinomlarin deger kiimeleri iizerine olan ¢alismamiz 6zel bir polinom sinifinin
spektrum yapisina odaklanmistir.

Bu calismada kullandigimiz ana arag, IF, iizerindeki permiitasyon polinomlarinin
Carlitz mertebesine gore simiflandirilmasidir.  Birinci boliimde, tanim ve terimleri
verdikten sonra permiitasyon polinomlarinin, tam gonderimlerin ve polinomlarin deger
kiimelerinin temel 6zellikleri verilmigtir.

Ikinci boliimde, Fy[z] de tam génderimler iizerine olan sonuglar sunulmustur. Bu
boliimdeki esas sonuglarimizdan birisi, ¢ > 2n+1 oldugu zaman tiim kutuplar F, da ve
Carlitz mertebesi n olan tam gonderimli polinom olmadigidir. Bu sonug yaygin olarak
bilinen ve Cohen tarafindan 1990’da kanitlanmig, Chowla-Zassenhaus varsayimina (1968)
benzer ozelliktedir, ¢linkii bu varsayim p asal sayisi d sayisina gore yeterince biiyiikse
derecesi d olan tam gonderimli polinom olmadigini belirtmektedir. Boliim 2.3 de Carlitz
mertebesi en fazla n olan tam gonderimler ailesinin ingasi igin yeterli kogullar verilmig-
tir. Ayrica, n =4, 5,6 i¢in tam gonderimlerin agik ingasi elde edilmistir.

Uciineii boliim, Carlitz mertebesi en fazla n olan f permiitasyon polinomu i¢in
F(z) = f(x)+ formundaki polinomlar simfi F,,, 'nin spektrumu tizerinedir. Permiitasyon
olmayan polinomlarin deger kiimelerindeki eleman sayisi i¢in iist sinir bulma 6nemli
bir problemdir. Derecesi d veya indeksi [ olan polinomlar i¢in bu smirlar d veya [’ye
bagl olarak daha once elde edilmisti. Bu caligmada F,, nin bir alt smmifi i¢in bu st
sinirin ¢ — 2, yani n’den bagimsiz oldugu gosterilmistir.

Son boliimde kullandigimiz yontemlerle elde ettigimiz tam gonderim ornekleri ver-

ilmigtir.
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CHAPTER 1

Introduction

Throughout this thesis [F;, will denote the finite field with ¢ = p® elements where p is a
prime, and s > 1 is a positive integer.

In this chapter, we give a survey of basic properties of permutation polynomials,
and introduce the concepts of Carlitz rank, complete mapping and spectrum of a class
of polynomials. In Section [1.1, we review some of the known classes of permutation
polynomials over F,. We list the known results about Carlitz rank of a permutation
polynomial in Section After introducing the notation and some of the basic tools
we will give the relation between Carlitz rank of a permutation polynomial f € F,[x],
its degree, and the number of its nonzero coefficients, i.e. its weight. In Section [1.3] we
will focus on some of the basic properties of value sets of polynomials and give some
recent results. Finally in Section [I.4] we discuss complete mapping polynomials over

finite fields.

1.1 Permutations of Finite Fields

Definition 1.1. A polynomial f(x) € F,[z] is called a permutation polynomial if the

induced function f:F, = F, : ¢~ f(c) is a bijection.

From now on a permutation polynomial will be abbreviated as PP. PPs over finite
fields have wide applications in cryptography, coding theory, combinatorics, finite ge-
ometry and computer science, and hence finding new classes of PPs is of great interest.

It is well known that each function from I, to IF, can be represented by a polyno-
mial. In particular, given a permutation o of the elements of F,, there exists a unique

polynomial f, € F [x] with deg(f,) < ¢ such that f,(c) = o(c) for all ¢ € F,.



The polynomial f, can be found by the Lagrange interpolation formula;

folx) = o)1= (x—0)*"). (1.1)

ceF,
On the other hand given an arbitrary polynomial f(z) € F,[x], it is in general
a difficult task to determine whether f(x) is a PP of F,. A useful criterion for a
polynomial being a PP was given in 1863 by Hermite [34] for prime fields, which was
then generalized in 1897 by Dickson [27] to arbitrary finite fields F,. We include a
proof based on |37, Chapter 7).

Lemma 1.2. For ag,...,aq-1 € Iy, the equation
q—1
<t < _
Zafz 0 for 0<t<q—2

=0 —1 for t=q—1
holds if and only if all a; are distinct.

Proof. For any i € {0,...,q—1}, using Langrange’s interpolation formula the function
¢, : F, — F, defined by ¢;(b) = 0 for b # a; and ¢;(a;) = 1 corresponds to the
polynomial

gi() =1~ (a; — x)"7",

which becomes
1

q—1 q—1 q—
- —1— —1—
:0 =0

Jj=

<.

since (q;l) = (—1) in F, for any j € {0,...,¢ — 1}. Then the polynomial

satisfies g(a;) = 1 for all i € {0,...,q — 1}. If all a; are distinct then this implies that
g(xz) = 1. Rewriting g(z) we obtain



forall 1 <7 <g¢q—1, and hence
-1

£}

t_
a; =0

Il
o

for all 0 < t < g — 2. If not all a; are distinct, then g(z) # 1 and hence some

non-constant term in ((1.2)) is nonzero, implying that for some 0 <t < ¢ — 2

which concludes the proof. ]

Theorem 1.3. (Hermite’s Criterion)
A polynomial f(z) € F,[z] is a PP of F, if and only if the following two conditions are
satisfied:

(i) f has exactly one root in F,.

(i) For each integer t with 1 <t < q—2 and t Z 0 mod p, the reduction of f(x)

mod (z? — ) has degree < q — 2.

Proof. Suppose f(z) is a PP of F,. Then obviously f has exactly one root in F,. For
1<t<g—2 wehave ) f(c)t =0, by Lemma Put h(z) = f(z)" mod 27 — ,
say h(z) = Y%, hia'. Then again applying Lemma ,

q—

0=> fl0)=> hic)= Z hiy c=he > T =—hy,

1
cely celFy 1=0 cely cely

and hence h(z) has degree at most ¢ — 2. Conversely suppose conditions (i) and (i7)
are satisfied. From (i) it follows that > .z f (c)7! = —1. Also as above for each
1 <t <q-—2, with h(z) = f(2)! mod 29 — z, h(z) = S0, hya', it follows that
> _cer, f(c)' = —hg_1, which is zero by (ii). Applying Lemma ” we can conclude that
all values f(c), ¢ € F,, are distinct, i.e. f(x) is a PP. O

Remark 1.4. It immediately follows from Hermite’s criterion that, f(x) is not a PP
if the degree of f(z) divides ¢ — 1, which also implies that the maximal degree of a

permutation polynomial modulo z¢ — x is ¢ — 2.



Let G be a finite abelian group. A character x of G is a homomorphism from G
into the multiplicative group U of complex numbers with absolute value 1, i.e. it is a
mapping from G into U which satisfies x(g192) = x(g1)x(g2) for all g1, 92 € G.

For any finite field [F,, there are two classes of characters, additive characters which
are the characters of the additive group F, of ¢ elements and multiplicative characters
which are the characters of the multiplicative group F; of ¢ — 1 elements. By using the

nontrivial additive characters, another criterion for identifying PPs can be given:

Theorem 1.5. The polynomial f(x) € F,[z] is a PP of F, if and only if

> x(f(e) =0

cely

for every nontrivial additive character x of IF,.

For a proof of the theorem see [37, Chapter 7].

Only a few good algorithms are known for testing whether a given polynomial is a
PP. In general, it is not easy to find new classes of PPs. For some well known classes
of polynomials, however, necessary and sufficient conditions have been determined to
decide whether a polynomial in the given class is a PP.

We list some of the known classes of PPs. Obviously, every linear polynomial ax +b
€ F,z], a #0, is a PP of F,,.

It is easy to see that a monomial ™ permutes F, if and only if ged(n,q — 1) = 1.

A class of polynomials for which the permutation property can be seen immediately
is well understood is the class of linearized polynomials, see [37, Chapter 7]. The

linearized polynomial L(x) defined as

k—1
L(z) = Zaixqz € Frlz]
i=0

is a PP of F . if and only if z = 0 is the only root in F of L(z).
The class of Dickson polynomials are widely studied in connection with a large
variety of problems. There are two types of them. Dickson polynomials of the 1% kind

are defined for every a € Fy, by the formula

Dawa) =S " .(”‘.j)<—a>fx”f', (1.3)



and Dickson polynomials of the 2"¢ kind E,(x,a) with parameter a € F, are defined

as
P
Ey(z,a) =) ( , )(—a)]x”_Qj. (1.4)
—\ J
j_
Obviously, deg(D,(z,a)) = n and D,(z,0) is just the monomial z", and similarly,
deg(Ey,(z,a)) = n and E,(z,0) = 2" Also D,(r,a) with a € F} is a PP of F, if
and only if ged(n,q®> — 1) = 1, see [36, Chapter 3] for a proof. Deciding whether a
Dickson polynomial of the second kind is a PP is much more complicated. It was
shown by Matthews [40] that the conditions n+1 = £2 mod m for each of the values
m=p,(qg—1)/2,(¢+1)/2 are sufficient for E,(x,1) € F,[z] to induce a permutation of
[F,. Later, Cohen [17] proved that when ¢ is a prime these conditions are also necessary
to conclude that E,(z,1) is a PP. Further results about Dickson polynomials of the
274 kind that are PPs can be found in Coulter [19], Henderson and Matthews [33] and
Henderson [32].
A large variety of further results on PPs can be found in [37, Chapter 7]. We end
this section by giving some typical results on criteria that yield special classes of PPs.

For a recent survey of the subject we refer to [35], see also [45, Chapter §].

The following theorem concerns binomials.

Theorem 1.6. [37] If q is odd, then the polynomial *Y/2 + ax € F,[z] is a PP if

and only if a> — 1 is a nonzero square.

The following theorem describes two large classes of permutation polynomials of
F,. Here T'r denotes, as usual, the absolute trace, defined as

s—1

Tre,w,(a) =a+a’ + ... +a
for a € F;, and where ¢ = p°.
Theorem 1.7. [15/ If v,8 € F, and H(z) € F,[x], then
(i) the polynomial
F(z) =z +~Tr (H (2¥ —+""'z) + Br)
is a PP if and only if Tr(B7y) # —1, and
(ii) the polynomial

F(z) =z +~Tr ZH(x+7u)+ﬁx

u€el,

5



is a PP if and only if Tr(B7y) # —1.

In [55] Tu et al. propose several classes of PPs of the form
(2" — 24 6)" + L(x) € Fyuz]

where p is an odd prime, and L(x) is a linearized polynomial with coefficients in F,,.

One of their results is the following theorem.

Theorem 1.8. [55] For m € Z" and any § € Fsem, the polynomial

My

)2~3m—1 +or

fl@)= (" —2z+6
is a PP.

Polynomials of the form
(2*" + 24 06)" + 2 € Foon[a]

are studied in Tu et al. in [56], and many classes of PPs of this form are obtained.
Here we only mention one of their results, which says that each such polynomial with
s =2mtl _1isa PP.

In the following result by Zieve |63, Theorem 1.2], the symbol 14 denotes the set of

d™ roots of unity in the algebraic closure of F,.

Theorem 1.9. Let d,r be positive integers and d|(q — 1). Assume that ¢ = q* satisfy
g = 1 (mod d) and dlm and select h € F[z]. Then f(z) = 2"h(z9~V/9) permutes F,

if and only if ged(r, (¢ — 1)/d) = 1 and h has no roots in 4.
Akbary et al. constructed the following classes of PPs of F..

Theorem 1.10. /2] Let ¢ = p™. Then the following are PPs over F :
(i) f(z) = ax? + bz + (27 — x)*, for a,b € F, with a # +£b and k even,
(ii) f(x) = az? + ax + (27 — 2)*, fora € Fy with p,k odd and ged(k,q — 1) = 1.



1.2 Carlitz Rank of a Permutation Polynomial

The set of PPs of IF, of degree < ¢—2 forms a group under the operation of composition
and reduction modulo x? — x. This group is isomorphic to S;, the symmetric group on
q letters.
In 1953 L. Carlitz observed that the transposition (0 1) can be represented by the
polynomial
g(@) = ((~2)* + ) = )77 + 1 (1.5)
and hence the group S is generated by the linear polynomials az + b for a,b € T,
a # 0 and 2972, see [10]. Consequently, as pointed out in [24], any permutation f of

[F, can be represented by a polynomial of the form
P.z)= (... ((apx +a)"? 4+ a)"?... 4+ a,)" %+ aps1, n >0, (1.6)

where a; # 0, for i =0,2,...,n.

We can also write as Py(z) = (P_1(x))7? + any1 for n > 1 by defining
Py(z) = apr + ay.

Note that n is the number of times the monomial 2972 occurs in . This rep-
resentation is not unique, and n is not necessarily minimal. Accordingly the Carlitz
rank of f is defined in [3] to be the smallest integer n > 0 satisfying f(c) = P,(c) for
all ¢ € F,, for a permutation P, of the form . In other words the Carlitz rank
of f is n if n is minimal such that f can be represented by a polynomial which is the
composition of n ”inversions”, 972 | and n (or n + 1) linear polynomials. We denote
the Carlitz rank of f by Crk(f).

The representation of a permutation f as in enables approximation of f by a
rational function as described below. This property is particularly useful when Crk(f)
is small with respect to the field size. Suppose that f has a representation P, as in
(1.6). We follow the notation of [54] and put P,(z) = P,(ag, a1, ..., @yn41;2) when we
wish to specify the elements ag, a1, ..., Gny1 in Fy. Since for each ¢ € F}, ¢ = ¢, we

define T" as the set ¢ € [F, for which one of the expressions
(...((apc+a)"™ +a)"?.. . +a), i=1,...,n,

is zero, then it makes sense to consider the function : ¥,, : F,\T — [F,, defined by

1

e (. ((apc+a) ™ +ag) ™t Han) Tt F G

7



It follows that for each ¢ € F, \ T we have P,(c) = ¥,(c). We may also rewrite the
function ¥,,, by its continued fraction expansion, obtaining

Q1€+ Brga

nle) = e+ By

where ag =0, a1 = ag, Sy =1, 1 = ay, and
ap = arpap—1 +ap—p and By = apBr—1 + Br—2, (1.7)

for kK > 2. We remark here that o4, and [, cannot both be zero. We will also consider

the rational function
_ an+1x + ﬁn+1
an® + By

which we call the rational fraction associated to P,(x). Then the poles of the rational

R,.(z) , (1.8)

functions R;(z), for i = 1,...,n, are —f;/a; € F, U {00}, and we will denote these

poles by
xi:_ﬁi, i=1,...,n. (1.9)
Q;

Note that to every rational transformation R, (x) of the form (1.8) we can naturally

associate a permutation o, of F, defined by
on(c) = Ry(c) for ¢ # x, and o, (z,) = =2 when z,, € F,.

The set O, = {z; : i =1,...,n} C P}(F,) = F, U {oo} is called the set of poles of
P, (z). Obviously P,(c) = R,(c) for ¢ € F,\O,, . Therefore the values of P,(c) outside
the set of poles are determined by R,. The values that P,(z) takes at the poles can
also be given in terms of R,,. In the special case, where the poles are distinct elements

of IF, we have the following.

Lemma 1.11. /24] Suppose that the poles x1, s, ..., x, defined above are in F, and

distinct. Then
on(T; or 2 <1i<n,
on(zn)  fori=1,

for allm > 2. We can therefore express the permutation ¢ — P,(c) as
P,(c) = 1(on(c)) (1.10)

where T is the permutation (0,(2y)0n(Tn-1)...0n(z1)) € S,.



It was proved in [3] that although a permutation can have different representations,

the associated fractional transformations are unique under a certain condition.

Lemma 1.12. Let P,'L and P, be two representations of a permutation of F,, with
associated rational fractions R, (x) and R, (x), respectively. If m +n < q — 2, then

R,(z) = R,,(2).

The Carlitz rank can be considered as a complexity measure for polynomials. An
immediate question therefore is whether it is related to the usual complexity measures,
namely the degree and the weight.

Let f(z) be a PP in F [z]. The following results show that if the degree, deg(f) > 1
or weight of f, w(f) are small then Crk(f) must be large.

Theorem 1.13. Let f(x) be a PP in F,[z] with deg(f) =d > 1. Then
Crk(f)>q—d—1.
See [3] for the proof.

Theorem 1.14. Let f € F [x] be a PP, deg(f) > 1

w(f)
fl@) = "aa®, and f(x) # c1 + 0’
=1

¢
w(f)+2

See [29] for the proof of this theorem. Note that both bounds above are tight for

for ci,c0 € Fy, co #0. Then Crk(f) > 1.

PPs of the form f(z) = (aox + a1)??, with ag,a; € F;, and the bound from Theorem

depending on w(f) is better when ¢ < q/(w(f) + 2) + deg(f).
Let o be a cycle in S, and /(o) denote its length. By definition a € supp(o) if

a € [F, is not fixed by o.
The proof of the following theorem can be found in [3]. A permutation 7 of F, is

called linear if it can be represented by a linear polynomial.

Theorem 1.15. Suppose a permutation f has a representation P, (x) satisfying

P,(c) =1 ...7s50m(c),
where T, ..., Ty are disjoint cycles of length I(1;) =1; > 2,1 <j <s.

9
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permutation P,(x) with n = $+Zj:1 ;—1 such that f(c) = B,(c) for allc € F,.

(i1) If o, is not linear and o,,(xy,) & supp(o;) for any 1 < j <s, then there exists a
permutation P, (x) with n = s+ 51 1j+1 such that f(c) = P,(c) for allc € F,.

(iii) If o, is linear then there ewists a permutation P,(z) with n = s + > i1 lj such

that f(c) = P,(c) for all c € F,.
In all three cases, Crk(P) =n ifn < (¢—1)/2.

We denote the number of permutations of F, of Carlitz rank n by B(n). Obvi-
ously B(0) = ¢(q — 1), B(1) = ¢*(¢ — 1) and B(2) = ¢*(¢ — 1)>. When n > 3, two
different representations P, and P, may induce the same permutation f, although the
coefficients are different. However n < (¢ — 1)/2 implies that the permutation f has a
unique decomposition P = 71 ... 740, where 7y ... 7, are disjoint cycles. Hence one can
obtain the value of B(n) by counting such decompositions. Let ¢, k, s be integers with
t,k > 1, s > 0. Consider the set s(t, k, s) of permutations = € Sy, with decomposition
T = 01...05 into disjoint cycles oy...04 such that l(o;) > ¢ for ¢ = 1,2,...,s. The
integers S(t,k,s) = |s(t, k,s)| are called the associated Stirling numbers of the first
kind.

Theorem 1.16. The number B(n) of permutations of F, with Carlitz rank n is given

n+1J
B(n) = (¢*—q) Z (n+1_8)5(2,n+1—s,s)(n+1—s)
|

TJ
=g ( g )s<2,n—1—s,s><q—<n—1—s>>

£ n—1—s
L3]

+*—q Z( K )S n—s,s)
s=1

forall2 <n < (qg—1)/2.

See [3] for the proof of this theorem.
We close this subsection by an example illustrating an application in cryptography

which involves permutation polynomials of Carlitz rank 1 and 2, see Cesmelioglu et

10



al. [25]. In symmetric cryptography, one is interested in finding permutations which
are easy to implement, provide a good resistance to differential and Matsui’s linear
attacks, and have large polynomial degree and large weight, see [9], [39], [51].

The difference map of a given polynomial f € F,[z], and a € F} is defined as

Dya(x) = f(x +a) = f(a).

The function f is called perfect nonlinear (PN) if Dy, is a permutation for all a € Iy,
and f is almost perfect nonlinear (APN) if Dy, is 2-to-1 for all @ € F;. The differential

uniformity o5 of f is defined by
6 = max{dsa(b) : b€ Fyacl},

where 67,(0) = [{x € F, : Dy, = b}|. One of the essential properties of a PP to be
used in cryptography is to have low differential uniformity, see [6,7,9]. We note that
a PP can not be a PN, so APN permutations have the lowest differential uniformity
possible. It is well known that the differential uniformity of a function is invariant under
the so-called EA-equivalence. It is expected therefore that when ¢ = p*, p =5 mod 6,
and s is odd, permutations of Carlitz rank 1, being EA equivalent to the inversion
2972 are APN. It is quite unexpected however that a new class of permutations with
differential uniformity 4, when p = 5 mod 6, and s is odd, can be obtained from

permutation polynomials of Carlitz rank 2.

Theorem 1.17. [25] Let f be a permutation of F,, where ¢ = p°, s > 1 is odd,

p =5 mod 6.
(1) If Crk(f) =1, then f is APN.
(1) If Crk(f) = 2, then 0y = 4.
Suppose a permutation f(x) € F,[x] has Carlitz rank n, n > 2, with a representation
f(z) = Pu(ao, . .., an; @),

where a; # 0, for ¢ = 0,2,...,n. As we have seen above, if the element «,,, defined
in (1.7), is nonzero, then the associated rational function R,(x) is nonlinear. The

permutations f and o, therefore differ at most at n elements of F,. But then the
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values of D¢, and D,, , differ at most at 2n elements. Since the permutation o, is
APN, it follows that d,(b) < 2n+2. In particular d7,(b) < 8if n = 3 and azaz+1 # 0.

The theorem above adds to known results on differential uniformity in characteristic
2, where the inversion is the classical example of an APN permutation (when the

extension degree is odd).

Remark 1.18. As mentioned above, for polynomials to be interesting from the point
of view of cryptographical applications, one often requires the polynomial to be (i)
easy to implement; (ii) provide good resistance to differential and linear attacks; (iii)
have large degree; (iv) have large weight (i.e. have many nonzero coefficients). Due
to the first requirement, in most cases, only sparse polynomials have been considered,
although these polynomials have of course the disadvantage of having low weight. The
approach using Carlitz rank has the advantage of providing a method of obtaining PP
which have large degree, have large weight, and moreover are still easy to implement
due to the representation , therefore providing rare, if not the first examples of
such permutations. Chapter 4| contains many examples of such PP, with additional
interesting properties.

Another suprising application of the concept of Carlitz rank, concerning distribution

properties of infinite sequences of real numbers is given in [52], see also [54].

In this thesis we use this concept not only to construct an important subclass of PPs,
the so-called complete mapping polynomials, but also to provide very first examples of
families of non-permutation polynomials with interesting value sets. The value sets we

obtain are of significantly different nature than those, previously known.

1.3 Value Sets of Polynomials

The image of a function described by a polynomial f(z) is called the value set of f(x).

Value sets of polynomials over finite fields are widely studied, in particular in re-
lation to the degree of the polynomials, and have received a lot of attention recently.
In this section we highlight some of the main results concerning value sets to motivate

our results. We use the following notation.

Definition 1.19. Let f(z) € F,[z], the value set of f is the set Vy = {f(a) : a € F,}.
The cardinality of the value set V} is denoted by |V}

12



Of course every subset of F, occurs as the value set of some polynomial f(z) € F,[z]
of degree < ¢ — 1 by Lagrange’s interpolation formula . There are few types of
polynomials of which the value sets are known explicitly.

For monomials 2 € F,[z] the size of the value set is easily determined, and depends

only on (d,q — 1), the greatest common divisor of d and ¢ — 1.
Theorem 1.20. [58] If f(z) = 2 € F,[x], then |Vi| =1+ (¢—1)/(d,q —1).

Proof. Put 6 = (d,q — 1) and let § be a primitive 0-th root of unity in F . If a € V7,
a # 0, saya:bdwithbel[?;, then for each 0 <7< 4§ —1,

FB") = b(8) = a(8")" = a

where k = d/¢. Hence the pre-image of each nonzero a € V; has size §. It follows that

Vel =1+ (¢ —1)/6. O

As a corollary we again obtain the classification of monomial PP’s, i.e. 2% is a PP
over F, if and only if (d,q — 1) = 1.

For the Dickson polynomials of the 1st kind the following results are known. The
results depend on the parity of ¢. As usual the 2-adic valuation of an integer a is

denoted by vs(a).
Theorem 1.21. [1f] If f(z) = D4(z,a) € Fglz], q odd, d > 1, a € F}, and vy(¢*—1) =
r, then

qg—1 . qg+1
2(d,g=1)  2(d,g+1)
where a = 1 if vo(d) = r—1 and a is a non-square in Fy; o = 1/2 if 1 < vy(d) <r—2;

IVf|: + a,

a = 0 otherwise.
The result is simpler when ¢ is even.

Theorem 1.22. [1/] If f(z) = Da(z,a) € Fy[z] and q is even, d > 1, a € F}, then

V| = qg—1 qg+1

If one does not consider specific polynomials but a class of polynomials (for instance
all polynomials of degree d) then one might be interested in all possible sizes of the
value set of polynomials in that class. Similarly it is natural to ask how the sizes of
value sets are distributed, or how polynomials are distributed in terms of value sets.

This motivates the following definition.

13



Definition 1.23. For a class of polynomials C the set v(C) = {|V}| : f € C} is called

the spectrum of C.

As there are too many spectrum results for classes of polynomials to cover all
of them in this brief overview, we refer to [53, 8.2], [45, 8.3.3] for more details and
references.

As mentioned earlier, most previous results on spectrum concerns the class Cy of
polynomials of degree d. We will briefly review these results here in order to motivate
our study. We firstly state the trivial upper and lower bounds for |V}|, f € C4. Since

for any a € F,, f(z) = a has at most d solutions one has,

[%] <|Vil<q (1.11)

Clearly f(z) € F,lx] is a PP if and only if |Vy| = ¢. Equality for the lower bound
is reached for the so-called minimal value set polynomials which will be discussed in

Section [L3.2
When d < 4 the complete spectrum Cy is known, see e.g. [45].

Theorem 1.24. If f(z) € F,[z] has degree 2 then |V € {q/2,(¢+1)/2,q}.

Theorem 1.25. If f(x) € F,[z] has degree 3 then

Vil € {a/3,(q¢+2)/3,(2¢ — 1)/3,2¢/3,(2¢ + 1)/3, 4}

We note that our results stated in Theorems [3.1} [3.2)and Corollary [3.5] for instance,

are of similar nature.

Theorem 1.26. [41] If f(x) € F,[x] has degree 4 and q is an odd prime then |V| is
either (q +3)/4, (¢ +1)/2, (3¢ +4 +1)/8 with £i € {1,3,5}, or 5¢/8 + O(,/q).

1.3.1 Large value sets

Obviously the spectrum v(C) of a class of polynomials C is a subset of the interval
[1,...,¢q] and the spectrum of the class of PPs is {¢}. In the class C4, one would be
interested to know how large |Vy| can be when f € C4 is not a PP. The following very

nice result was proved by Wan in 1992.
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Theorem 1.27. [59] If f(x) € Fy[x] is not a PP and f has degree d then
q—1
Vel<q— | ——.
il <o~ |27
We remark that in [46] this result has recently been extended to polynomials in
several variables. It was shown by Cusick and Miiller in [22] that the upper bound
from Theorem [1.27]is achieved by the polynomial

flx)=(z+ 12"t e F,[z],

where g = s! for some positive integer ¢. This result shows that there is a gap in the
spectrum of the class of C; for a fixed degree d. Similar gaps occur further down the
spectrum. The results proven in 1997 by Guralnick and Wan |31, Theorem1.1] imply
the following.

Theorem 1.28. [31] If f(x) € F,[z] is not a PP, f has degree d > 6, and |Vy| #
(1 —-1/d)q, then
Vil < (1 =2/d)g + Ou(/9)-

In the same paper, the authors also prove a bound which does not depend on the

degree d, but which only holds for polynomials of degree d in F,[z] with (¢,d) = 1.

Theorem 1.29. [31] If f(x) € F,[z] is not a PP, f has degree d, with (q,d) = 1, then
Vil < (5/6)q + Oa(/a)-

The proof of these results use techniques from number theory and group theory and
rely on the classification of finite simply groups.

An interesting question is whether one can obtain results similar to Theorem [1.2
when one considers other classes of polynomials. This question was first tackled recently
by Mullen, Wan, Wang in [47], where they obtain an upper bound in terms of the index
for the value set for polynomials, which are not PP. This concept was first introduced
by Akbary et al. in [1] based on the earlier notion of [50].

For any nonconstant monic polynomial g(x) € F,[z] of degree < ¢—1 with ¢g(0) = 0,
let r be the vanishing order of g(z) at zero and let fi(x) := g(x)/z" . Then let [ be the

least divisor of ¢ — 1 with the property that there exists a polynomial f(x) of degree

l.deg(f1)

11 such that fy(x) = f(2@~1/)). So g(x) can be written uniquely as
q p—
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We call [ the index of g.

Mullen et al. proved the following theorem.

Theorem 1.30. [47] If f(z) € F,[z] is not a PP, then

qg—1
Vi <q- L1~
Vil <gq 7

This improves Wan’s result, Theorem above, when the index ¢ of a polynomial
is strictly smaller than the degree d, which always happens if £ < /g — 1.

Our results in Chapter |3|illustrate that considering other classes; the spectrum may
have a significantly different structure. We study the class of polynomials of the form
F(z) = f(x) + x, where f(z) is a PP of Carlitz rank at most n. We show for instance
that, for a subclass of such polynomials the upper bound for |Vz|, when F' is not a PP

is ¢ — 2, i.e., independent of n, see Remark [3.14}

1.3.2 Minimal value set polynomials

On the other side of the interval , as mentioned before, if f has degree d, then
|Vl > [q/d]. Polynomials achieving this bound are called minimal value set polyno-
maals.

There are many results on minimal value set polynomials. The following theorem
concerns polynomials over prime fields and gives a nice characterisation of minimal

value set polynomials.

Theorem 1.31. [11] If f(z) € F,[z] has degree d < p and |Vy| = [p/d] > 3 then d
divides p— 1 and f(z) = a(x + b)? + ¢ for some a,b,c € F,.

For minimal value set polynomials over a field of prime power order ¢ a similar

result is obtained.

Theorem 1.32. [{2] If f(x) € Fy[z] is monic and has degree d < \/q, where (d,q) = 1,
and |V;| = [q/d] then d divides ¢ — 1 and f(z) = (z + b)? + ¢ for some b,c € F,.

In fact, in [42] all minimal value set polynomials over [, and [F,2 are determined.

In [8] minimal value set polynomials whose values form a subfield are characterised.

We note that the problem to determine all minimal value set polynomials over I,

where s > 2 is still open.
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For polynomials which have value sets of size less than twice the size of the value
set of a minimal value set polynomial of the same degree the following theorem was

obtained in [14], [2§].

Theorem 1.33. [14,|28] If f(x) € F,[z] is monic and has degree d > 15, where d* < q,
and |V¢| < 2q/d then f(x) has one of the following forms:

(i) (z+b)% + ¢, where d divides ¢ — 1;
(ii) ((x + a)¥? + b)? + ¢, where d divides ¢* — 1;
(iii) ((x + a)? + b)¥? + ¢, where d divides ¢* — 1,
for some a,b,c € F,.

Finally we also mention a result from [4] which holds for polynomials with only two

different values at nonzero elements of F,,.

Theorem 1.34. [{] If f(z) € Fylz] has degree d < 3(p — 1), p prime, and f(x) only

takes two values on ¥y then f(z) is a polynomial in x®P=V/k for some k € {2,3}.

1.3.3 Lower bounds

It follows from Lemma [1.2)that if f(z) € Fy[2] is a PP then > ¢ (f(a))" = 0 for all
0 <t < q—2. If this is not the case, then we have the following nice result on the

value set of f.

Theorem 1.35. [58] If f € Fy[x] and u,(f) is the smallest positive integer i so that

then Vi > py(f) + 1.

Obviously if p,(f) = ¢ — 1, then f is a PP.
In order to state another interesting lower bound we need to introduce some nota-
tion. If f(z) € F,[z] has degree d < ¢—1, then we may consider the matrix Ay = (a;;),

where a;; = bgj_l and b;; is defined as the coefficient of 27 in f(x)" mod (z¢ — x), i.e.
q—1
f(z) = Z bijr’  mod (29— 7).
=0
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If the j-th column of Ay consists entirely of 0’s or entirely of 1’s then define /; := 0,
otherwise arrange the entries in a circle and define /; to be the maximum number of

consecutive zeros appearing in this circular arrangement. Then put
Ly =max{ly,...,l,—1}.
With this notation the following was proved in [26].
Theorem 1.36. If f(x) € F,[z|, then |Vy| > Ly + 2.
A similar results uses the matrix B = (b;;).
Theorem 1.37. (Remark 8.53.25, [45]) If f(x) € F,|x], then |V}| = rank (By) + 1.

Note that Hermite’s criterion essentially says that a polynomial f is a PP if and
only if the first ¢ — 2 elements of the last column of Ay are zero. In other words f is a

PP if and only if Ly = ¢ — 2.

1.4 Complete Mapping Polynomials

Definition 1.38. A polynomial f(z) € F,[z] is a complete mapping polynomial (or
just a complete mapping) if both f(x) and f(x) + x are permutations of F,.

These polynomials were introduced by Mann in 1942 [38], where it was shown
that complete mapping polynomials are pertinent for the construction of mutually
orthogonal latin squares. Complete mapping polynomials also have applications in
other areas of combinatorics and in non-associative algebras (see [44] for references).
Recently further applications were discovered in certain aspects of cryptography related
to bent functions.( [60], [48]).

A detailed study of complete mapping polynomials over finite filelds was carried
out by Niederreiter and Robinson (1982, [49]), where many basic properties of such

maps were obtained. We include the proofs of the following two results from [49].

Theorem 1.39. [/9] A complete mapping polynomial of F,, with q odd and ¢ > 3, has

reduced degree < q — 3.

Proof. Let f(z) be a complete mapping polynomial of F,. By Hermite’s criterion, both
f(z) and f(x)? have reduced degree < q—2 since f(z) is a PP. Similarly also (f(z)+z)?
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has reduced degree < g — 2 since by definition of a complete mapping polynomial also

f(z) + x is a PP. Now
(f(z) +2)* = f(z)* + 2z f(z) + 2

which has reduced degree < ¢ — 2 only if 2z f(z) has reduced degree < ¢ — 2. Since ¢
is odd, the result follows. O

Theorem 1.40. [49] If f(x) is a complete mapping polynomial of F,, then so are the

following polynomials:
(i) f(x+a)+b foralla,belF,;
(i) af(a'z), for every a € F};
(iii) the inverse mapping f~*(z).
Proof. (i) Since f(x) and f(z) + x are both permutation polynomials over F,, both
f(x + a) and f(z + a) + x + a are PP over F, and hence also both f(z + a) + b and

f(x 4+ a)+ b+ x are PP over F,.
(i) Let h(z) = af(a"'z) and g(z) = f(x) + x. Then

h(z) +x = af(a '2) + aa ' = ag(a™'z).

Therefore both h(x) and h(x) 4+ = are PP, since they are both compositions of permu-
tation polynomials.

(iii) We know that f~!(z) is a PP since f(z) is a PP. Now

@) +o =)+ f(f (@)

which is a composition of permutation polynomials since f(z) is a complete mapping

polynomial. Tt follows that f~!(x) is a complete mapping polynomial. O

In [49] a necessary and sufficient condition is given for a binomial in F [z] of the

form

azlat =0/ 4 po

to be a complete mapping polynomial over F,, when ¢ =1 mod d, d > 2, and the case

d = 2 is examined more closely. One of their results is the following.
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Theorem 1.41. [49, Corollary 1] Complete mapping polynomials of ¥, of the form
2\ HD/2 4 by exist exactly for all odd g > 13 and for ¢ = 7.

A basic question for applications is that of the existence of complete mappings

polynomials of reduced degree > 1, which was also answered in [49].

Theorem 1.42. For any finite field F, with ¢ > 5 there exist complete mapping poly-

nomials of F, of reduced degree > 1.

The next theorem states the well-known conjecture of Chowla and Zassenhaus

(1968), which was proved by Cohen [1§] in 1990.

Theorem 1.43. [15], [18] If d > 2 and p > (d* — 3d + 4)?, then there is no complete

mapping polynomial of degree d over IF,.

There are also non-existence results over finite fields which are not of prime order.

For instance, Niederreiter and Robinson [49] proved the following.

Theorem 1.44. [/9] If ¢ > (d*> — 4d + 6)%, d > 2 and a # 0, then ax® + bx is not a

complete mapping polynomial over IFy.

In [44] Mullen and Niederreiter proved that a Dickson polynomial can be a complete

mapping only in some special cases, as a result of the following theorem.

Theorem 1.45. Let k > 2 be an integer and let a,b,c € F, with abc # 0. Then
bDy(x,a) + cx can be a permutation polynomial of F, only in one of the following

cases:
(i) k=3, ¢c=3ab, and ¢ =2 mod 3;
(i1) k > 3 and the characteristic of F, divides k;
(iii) k > 4, the characteristic of F, does not divide k, and q < (9k* — 27k + 22)?.
Charpin and Kyureghyan [12] constructed a class of monomial complete mappings.

Theorem 1.46. [12] If k is odd and a € Fy., where 3 € Fyz \ Fy, then a 22 +2 is a
complete mapping polynomaial of Fyzk.

Recently Tu, Zeng and Hu (2014) gave three classes of exponents d for which a

d

complete mapping polynomial of the form az® over Fys exists.
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Theorem 1.47. [57] If one of the following conditions is satisfied then there exists a

complete mapping polynomial over Fys of the form az?.

(i) d=2%+28+2 s=3k, (k,3) =
(ii) d =21 +3, s =2k, k odd;
(iii) d = 2%2(2% + 3), s = 2k, k odd.

Wu et al. presented (2014) three other classes of complete mapping polynomials

over Fos.

Theorem 1.48. [61] If one of the following conditions is satisfied then there exists a

complete mapping polynomial over Fys, of the form ax?.

(i) s =4k, andd—24 =L + 1, where (k,4) =1,

(ii) s =6k, and d = 26 — + 1, where (k,6) =1
(iii) s = 10k, and d = 2= + 1, where (k,10) = 1,

T2k—1

(iv) s = 3k, andd—ng L+ 1, where (k,9) = 1.

In 2015, Guangkui and Cao presented the following three classes of complete map-

ping polynomials over finite fields of odd characteristic.

Theorem 1.49. [30] If one of the following conditions is satisfied then there exists a

complete mapping polynomial over Fas, of the form ax?.

(i) d=3+2, p=3, s=2k, k odd;
(ii)) d=2-3"+3, p=3, s = 2k, k odd;
(iii) d =t(pF — 1)+ 1, s =2k, (t — 1,p* + 1) =1, 2t divides p* + 1.

We refer to [62] for more results about complete mapping polynomials. A recursive
construction of complete mappings over finite fields is provided in [48]. Moreover, in
the same paper it is shown that the existence of complete mappings of algebraic degree
r(t — 1) over Fore gives the possibility to construct bent-negabent Boolean functions

over Fo2re of degree t(r — 1) + 1 (see [48]).
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In [50] Niederreiter and Winterhof study orthomorphisms of finite fields, which are
closely related to complete mappings. In fact f is an orthomorphism if and only if
—f is a complete mapping. They prove the existence of several classes of cyclotomic

orthomorphisms and also introduce the concept of R-orthomorphisms.
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CHAPTER 2

Constructions of Complete

Mapping Polynomials

In this chapter, we construct families of complete mapping polynomials over finite fields
by using the concept of Carlitz rank. First we introduce some notation which we use

throughout this work.

2.1 Notation and Terminology

Let f(z) be a PP over F,, where ¢ is an odd prime power. Suppose that f has a

representation P, for n > 1, as in the equation (1.6)), i.e.,
f(x) = Pu(ag, a1, ..., ny1; )
where a; # 0, for  =0,2,...,n, and
Pu(ag, a1, ..., an1;7) = (... ((apz + )T 2 +a2)” 2. ..+ an)T 2 + any1.

Since we are interested in complete mapping polynomials, the value of a,, 11 is irrelevant.
Also, by using the substitution 2 + 2 — a; a1, we see that the size of the value set of
f(z) + = does not depend on a;. Therefore w.l.o.g. we may restrict ourselves to the
cases a1 = a1 = 0. We relabel the coefficients ¢y = ag, ¢; = a;41 fori =1,..,n — 1,

and for simplicity we use the shortened notation
f(SE) = Pn(007 <oy Cn—1; l’)

As before we obtain its associated rational fraction

_ Op + ﬁnfl

R,(x) = Py (2.1)

Y
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where
ap = Cho10g—1 + g and B = cp_18k—1 + Br—2, (2.2)

for k> 2 and ag =0, a1 = ¢g, By = 1, 1 = 0. Note that oy, as can not be zero and
By =1.
Recall that the set of poles O, is defined by

On:{xi:xi:—a—ﬁi, i=1,...,n} CPY(F,) =F,U{co}. (2.3)

i
where the elements of O, are not necessarily distinct. We note that any three con-
secutive elements x; 1, x;, ;41 are distinct, see [23]. Also f(¢) = P,(c) = R,(c) for
ceF,\O,.

Now we define the following sets

Pon = {f(a:)EIFq[:U] : f(x):Pn(co,cl,...,cn_l;a;)]co,...,cn_lequ}
Fon = {F(:E):f(x)+m : f(x)Equn}.

Clearly characterizing the complete mappings in P,, is the same as characterizing
permutations in the set F .

We consider the following three subclasses of P,, defined by the properties of the
poles as follows. We have P, ,, = 79(57172 U 'Pé,%% U Pq(?,z where

7’5}” = {fePyn|a;#0fori=3,..n},
P = {f €Pyn|an=0anda; #0fori=3,...,n—1},
Pq(?n = {fe€Pnl|a;=0 forsomeie {3,...,n—1}}.

Note that 77 1 and 77 5 are empty. Moreover we have Py, = Pq(}l) and P,o = P(12).

Similarly we partition F,, as F,, = ]:é}rz U ]-"q?yz U ]-"q(,?% where

Fio={F(x)= fa) + o fle) € P} fori=1,23.

q,n

Now define the rational function of degree 2, associated to F'(z) as

Rn(x) = Ry(x) + 2 = 2" + (OZ; ;ig")x Y (2.4)

Then we have the following formulas for ¢ € F, \ O,,.
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1. If f(z) € PLY) then for c € F,\ O,

o Qp—1C + ﬁn—l

= Iy s 2.
0) = Ryfe) = 1 25)
which implies
OZnC2 + (an—l + Bn)c + ﬁn—l
F(c) = R,(c)+c=Ru(c) = o1 B, . (2.6)
2. 1f f(z) € P, n > 2 then for c € F, \ O,
f0) = Rofe) = =L, (27)
which implies
F(c) = Ru(c) + ¢ =Ru(c) = (1 %)C sy (2.8)
3. If f(z) € P\ UPE) and |O,| = n, then for z; € O, \ {21}
flzi) = Ru(wio1) = Ro(Ti1) — i1, (2.9)
which implies

In this work, we only study 735,173 and Pﬂ and

v(]:(i)) — {’VF‘ - Fe ]—"(%} fori=1,2.

q?n

2.2 The class 77(5,172

Our aim in this section is to find complete mapping polynomials in the set 77(57172. This,
of course, means that we look for permutations in .7:5}72. Therefore we focus on the
polynomials F' € ]—"(571,2, for n > 3, ie., F(x) = f(x) + z, where f € 73(57172 and has a

representation

f(z) = Pu(co, .., Cn_1; ). (2.11)

Hence the set O,, of poles of f satisfies O,, C F,.

25



In order to obtain the permutations F' € .7-"(1(7172 we study v(]—"é}rz) and determine when
the maximum possible value ¢ in U(fq(,lrb is attained. The main result of this section
shows that when n is small with respect to the field size ¢, there is no complete mapping
polynomial in 73(52 (Theorem .

We remind the reader that the first pole z; is always 0, since §; = 0 when f is as
in (2.11)). The following lemma shows that the image of the first pole is determined by
Op—1 and o,.

Q1

Lemma 2.1. F(x;) = F(0) = .
Qn

-2
Proof. Since F(x) = ( -+ ((com)T2 + cl)q_2 st cn_1>q + z, for 1 = 0 we have

F(x) = < ((c) + 02)_1 et Cn—1>_1-

We proceed by induction on n. For n = 1, and n = 2, the statement trivially holds

since ap = 0 and é = g—; Now suppose that the statement holds for all £ < n. Then

1

FO = — =70

where Fi(x) € ]-"57173_1, ie., Fi(x) = fi(z) + x, with fi(z) = P,_1(co,c1, ..., Cn2;T),
and hence by the induction hypothesis (use k =n — 1),

Oty
Fi(z,) = F1(0) = =2
Ap—1
Therefore
1 1
F(0) = = —
(0) Co1 + F1(0) ey + 2222
and since ¢,_1 + dn-2 _ Gn , we have the assertion. O

Op—1 Op—1
Now consider the function ¢ : F, \ {z,} — F, defined by

_anﬁnc + ﬁz - (anﬂn—l - O‘n—lﬁn)
aZc+ a, B, '

p(c) =

(2.12)

The relevance of the function ¢ will become apparent in the following lemmas.

Lemma 2.2. Forc,y € F,\ O,, ¢ #y , we have

F(c)=F(y) <= y=¢(c).
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Proof. If F(c) = F(y) for ¢,y € F, \ Oy, ¢ # y then from (2.6) we obtain

CKnC2 + (ﬁn + Oénfl)c + anl o any2 + (5n + Oénfl)y + 57171
anc + B oy + B
— (C - y) (aicy + anﬂ'IZ(c + y) + Bq% - (anﬁn—l - an—lﬁn) =0

<~ y<a721€ + anﬁn) + anﬁnc + ﬁi - (anﬂnfl - anflﬁn> == O
_Ofnﬁnc + 52 - (anﬁnfl - O‘nflﬁn>
aze+ anfy

which by (2.12)) is ¢(c). O

— Y=

Y

Lemma 2.3. The map ¢ is injective.

Proof. For ¢,y € F,\ {z,.}, v(c) = ¢(y) implies

N anﬂnc + 52 - (Oénﬁnfl - anflﬂn) _ _anﬁny + BZ - (anﬁnfl - Oénflﬁn)
a2c+ o fn a2y + anfBn '

Hence
(¢ —y) (i — (a2 — door})) = 0,

where dy = a,, 3,1 — @13, which is nonzero since x,,_1 # x,. This impliesc =y. [

Lemma 2.4. The equation ¢(c) = ¢ has exactly two solutions

_ﬂn + \/anﬁn—l - an—l/Bn}

Qn

{a/,a"y = {
with {z', 2"} € Fe \ O,.
Proof. If p(c) = ¢ then

_anﬁnc + 52 - (anﬁnfl - Oénflﬁn) _
azce+ a,f,
= 0%2102 + anﬁnc = _anﬁnc - BTQL + anﬁn—l - O‘n—lﬁn

= (OénC + ﬁn)Q = Oénﬁnfl - anflﬁn

_6n + \/anﬁnfl - Oénflﬁn.

Qp

= c=

This completes the proof. O]

Lemma 2.5.

—co if n s even,
anﬁn—l - an—lﬁn = _ )
Co if m is odd.
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Proof. We prove the lemma by induction. Clearly for n = 1 we have a5y — o581 = ¢o.
Assume that the statement holds for & = n — 1. Suppose that n is even. By the

induction hypothesis «,, 18,2 — a,_28,-1 = ¢o. Hence

Oénﬁnfl - anflﬁn = (Cnflanfl + anf2)ﬁnfl - Oénfl(cnflﬁnfl + /Bn72)
= Odananl - &nflﬁan

= —(y.
The same argument works when n is odd. ]

Note that the elements 2/, 2" belong to F, if ¢y (respectively —cy) is a square in F,

when n is odd (respectively n is even).
Lemma 2.6. The equation o(c) = x,, has no solution ¢ in F, \ O,,.

Proof. Suppose that ¢(c) = z,, for some ¢ € F, \ O,,. Then

_anﬁnc + BZ + Co Bn

a2c+ a, B, o,

= ta,c = 0.
This is a contradiction since ¢y # 0 and «,, # 0 (a,, = 0 implies z,, = ). O

Lemma 2.7. If (—1)""'¢q is a square in F,, then F(z') # F(a”) where {z',2"} is
defined as in Lemma[2.])

Proof. If F(a') = F(a”) = 0 then with dy = (<1 'a,

an<xl>2 + (ﬁn + an—l)(x,) + ﬁn—l . an(x”)Q + (ﬁn _'_ an—1)<x//> + /Bn—l _ 0

A (:C/) + Bn n(l‘//) + ﬁn
an(%%) (6n + O 1)( ﬁn‘i‘\/i) _'_Bn 1
o, (FE/ ) 4 5,

_Qn(M)2 (ﬁn—i_an 1)( Bn )+B -1 —0

Oz(ﬁnr)—i—ﬁn

[0}

=
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and hence

W Bno1 — 1By + (a1 — Bn)V/do + do
an/do
. O‘nﬁnfl - @nflﬁn + (_Oénfl + 5n)\/d_0 + dy
_an\/d_o
2do + (-1 — Bn)Vdo n 2dy + (—an—1 + Bn)Vdo

=0

=0
anv/do an/do
= 4dy = 0,
which implies char(F,) = 2, a contradiction. O

Lemma 2.8. The map ¢ defined in s an involution.

Proof. By Lemma the image of ¢ belongs to F, \ {z,}, and hence the map ¢?* is

well-defined. Lemma [2.2 shows that ¢ is an involution. O]

Now consider the following subsets of F, \ O,

M = {c €F,\ O, : ¢(c) €0, \ {xn}} (2.13)

T .= {c eF,\O, : ¢(c) ¢ O, and p(c) = c}. (2.14)

Obviously M NT = (. Also |[M| < |0,| — 1, since ¢ is injective, and |T| < 2, by
Lemma 2.41

Lemma 2.9. The restriction of F to the set

D = {c €eF,\O, : ¢(c) ¢ 0O, and p(c) # c} (2.15)

is 2—to—1. In particular D has an even number of elements, |D| = q—|O,|—|M|—|T|.

Proof. First we show that ¢ € D implies ¢(c) € D. For suppose ¢(c) € M, then
c = ¢*(c) € O,, a contradiction. Similarly, ¢(c) ¢ T since ¢ # (c). By definition of
D it follows that ¢(c) € D. By Lemma [2.2] F(c) = F(¢(c)), and since ¢ # ¢(c) for

each ¢ € D, the result follows. O
Lemma 2.10. ¢(D) = D.

Proof. 1t follows from the above proof that (D) C D. Since ¢ is injective, the result
follows. 0
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Lemma 2.11. The restriction function F|,, is injective.
Proof. This is an immediate consequence of the definition of M and Lemma 2.2, [

Lemma 2.12. For each ¢ € M, there exists a unique x; € O, \ {z,}, such that
o) = c.

Proof. Take any ¢ € M. Then by definition of the set M, for some i =1,....n — 1 we

n—1

have ¢(c) = z;, and hence, with dy = (—1)" "¢y,
_Ofnﬁnc + ﬁr% B dO o ﬁz

az2c+ anfn o
2 2
= anﬂnaic + ﬁnai - dOai - O{nﬂic + anﬁnﬁi

= C(O‘iﬂi - O‘nﬂnai) = _anﬁnﬂi + Biaz — dooy;
i _O‘nﬁnﬁi + 67%051 - doOéz'

a &%61 - @nﬁnai .

_ O‘nﬁnxi + 5721 — dy

=
OJ%ZEZ‘ + anﬁn
= c=p(x;).
The uniqueness follows from the fact that ¢ is injective (Lemma . m

Lemma 2.13. If (@i + Bu)(anzj + Bn) # (=1)"teg for all i,5 = 1,...,n — 1 with
i #j, then M = (0, \ {,.}).

Proof. Let x; € O, \ {z,}. It follows from Lemma and the definition of M that
o(x;) # x;. If p(z;) = z; for some j # ¢, then

0 Bnxi + B2 — do 2 2
— L =x;, = —,0.xi— B +dy= (aCx; + a,f)T;
Oé%xi‘i‘anﬁn J ﬁ 571 0 ( n ﬁ) J

= aiwiazj + a,Bnzi + Bponx; + B2 = dy.

But then (a,z; + 6,)(onx; + B,) = do, a contradiction. This shows that ¢(z;) ¢ O,,.
It follows from Lemma that ¢?(z;) = z; and hence, in particular, ¢(p(z;)) €
O, \ {z,}. We have shown that ¢(x;) € M for each z; € O, \ {z,}. O

Lemma 2.14. The sets F\(D), F(M), and F(T) are pairwise disjoint.

Proof. Suppose that for F(y) = F(c) for some ¢ € D and y € M. Then by Lemma [2.2]
we have y = ¢(c) and hence y € D by Lemma m This contradicts the assumption
that y € M. Hence F(D)N F(M) = 0.

Similarly, if F'(¢) = F(y) for c € DU M and y € T then by Lemma we have
¢ = ¢(y) = vy, a contradiction since D U M and T are disjoint. O
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Lemma 2.15. If |O,| = n then the following two conditions are equivalent:
(i) F(Op\{z1}) N F(Fy\ On) =0,

(i) for anyi € {2,...,n}, the equation

r — T;—
(Oénx + 6n)(anxi—1 + ﬁn) = (_1)"7100 xr — g(;'l

in the variable x has no solution ¢ in F, \ Oy.

Proof. Suppose that F(O, \ {z1}) N F(F, \ On) # 0. Then for some c in F, \ Oy,
x; € O, \ {z1} we have F(c) = F(z;). Then by (2.6) and (2.10) we have R, (c) + ¢ =

R, (z;_1) + z; which is equivalent to

ap_1C+ B 0 1Tiog + P

- =x; —C,
apC + Bn ApTi—1 + 571
or
Q10 CTi—1 + Q1 BnC + @ Bn1Ti—1 + Bnfn-1
(OénC + 6n><anxifl + Bn)
_ 1 nCi + 0fpo1C  naPu@ioa + By

(OénC + ﬁn)(anxi—l + ﬁn) ’ .

Then
Qo1 BpTic1 4 11 — 01 BpTj—1 — QpfBp_1Ti—1 e

(OénC + 5n)(anxi71 + ﬁn)

which is equivalent to

(an—lﬁn - anﬁn—l)(c - xi—l)
(OénC + Bn)(anxi—l + ﬁn)
— (—=1)"co(c —xi_1) = (anc + Bn)(anxig + Bn)(x; — )

€~ T — (anc + 5n)(anfﬁi—1 + Bn)

= T; —C
= (=)

(=1)""co c— 1

Hence we may conclude that F(O,, \ {z1}) N F(F,\ Oy,) = 0 if and only if

C— Tij—1

(_1)71*100 7£ (CYnC + Bn)(anajifl + ﬁn)

C—X;
for every ¢ in F, \ Oy, and i € {2,..,n}. O

Lemma 2.16. If |O,| = n, then the following two conditions are equivalent:

(1) [F(On\{z1})| =n -1,
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(ii) (niy + Bn)(onxj—1 + Bn) # (—1)”’160%, for all i,j € {2,...,n} with
i,

Proof. Suppose that F(x;) = F(z;) for some i,j = 2,...,n with i # j. Since all the

poles in O, are distinct, we have R(z;—1) + z; = R(z;_1) + z; by Lemma m Hence

U 1Ti1+ Bn1 Qi+ Baa
— = ZEj — T
nli—1 + /Bn ApTji—1 + 511

Q1 O i1 L1 + O 1 B @it + 151 + BnBr

<
(anxi—l + Bn)(anx]’—l + Bn)
Q10T 151 + Q18T 1 + 1Tt + BufBn1
— = I’j — T
(anxi—l + 571)(0(“1']'_1 + Bn)
1 BnTim1 + nBro1Tj_1 — Q1 BpnTj—1 — nBr_1miy =2, —
(O‘nmi—l + Bn)(anxj—l + Bn)
(an—l/Bn - O‘nﬁn—l)(xi—l - xj—l) _ l’j —
(anxi—l + 5n)(anl‘j—1 + Bn)
= (—1)"co(zim1 — xj1) = (nxiz1 + Bn)(nxjo1 + Bn) () — 24)
_ Ti1— Tj—
< (—1)n 1Co¥ = (anxi—l + 5n)(04n33j—1 + Bn)

l’j—l'i

Therefore for all i, 5 € {2,...,n} with i # j

Ti—1 — Tj—
(—1)"eo= " # (animt + Ba) (@1 + By)
Tj — Ty
if and only if F'(z;) # F(x;). This completes the proof. O

Lemma 2.17. If |O,| = n, then the following two conditions are equivalent:

(i) F(x;) # 2=+, forall i € {2,...,n},

(11) cnzi(anz 1+ Bn) # (—=1)"co, for all i € {2,...,n}.

Proof. Suppose that F'(x;) = “*=* for some i = 2,...,n. Since all the poles in Oy are

n

distinct, we have R(z;_1) + z; = “2=* by Lemma m Hence

O 1Ti—1 + Bn-1 Oy
+x; = ,
ApTi—1 + 6n (079
0T Ti1 + B + 1 Tic1 + Bt
- )
AnTi—1 + /Bn (679

= 21T+ BT + 1T F QB = Qa0 1Ty + Q1 P
Then we get — (-1 — Qn—18n) = anzi(anz;—1 + Prn). Therefore for i € {2,...,n},
anZi(0mTi—1 + Bn) # (=1)"co

if and only if F(x;) # 22=t. This completes the proof. O

an
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Lemma 2.18. If |O,| = n, then the following two conditions are equivalent:

(i) F(y) # <=, for ally € F, \ Oy,
(i) any(any + Bn) # (—1)"c.
Proof. Suppose that F(y) = 0‘2—;1 for some y € F, \ O,,. Then we have

Qp_1Y + ﬁn—l + Qp—1

any + B an
any2 + (an—l + Bn)y + 671—1 _ Qp—1
apy + betay, oy

— a1y + By = aiy2 + ay (a1 + betay)y + Br_1cu,.
Then we have —(a, 0,1 — an_15n) = any(a,y + 5,). Therefore,

any(any + 671) 7é (_1>n00

if and only if F'(y) # “==*, for all y € F,, \ O,,. O

Qn

We now prove the main theorem of this section.

Theorem 2.19. If ¢ > 2n + 1 then there exists no complete mapping polynomial in
Pih.

Proof. Let f € 77,571,3 as in 1} be a complete mapping polynomial. Then, by Lemma
2.9 the set D must be empty. This means 0 = |D| = ¢ — |O,,| — |[M| — |T, and since
|0, <n, M| <n-—1,|T| <2, we obtain the inequality ¢ < 2n + 1. O

We recall the Chowla-Zassenhaus conjecture, proved by Cohen, see Theorem [1.43
above, stating that there is no complete mapping polynomial of degree d, when p is
large with respect to d. We note the similarity of our result, relating the field size ¢ to
the Carlitz rank n of f in Pi4.

Theorem [2.19| motivates the question of finding methods for construction of com-
plete mapping polynomials when ¢ < 2n + 1. The following theorem presents a partial

answer to this question.

Theorem 2.20. Let f € 73(52, with distinct poles x1,%,...,x, tn Fy. Then f is a

complete mapping polynomial if the following conditions are satisfied:
(i) (=1)" "¢y is a square in F,,
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(ii) any(any + Bn) # (=1)"co, for ally € F, \ Oy,
(111) apxi(anzio1 + Bn) # (—1)"co, for alli € {2,...,n},

(iv) (e + Bo)(anzioy + Bn) # (=1)" leo" 2, for every ¢ € Fy\ Oy, for all
i€{2,..,n},

(v) (—1)"‘%@“@%2‘1 # (nxio1 + Bn)(anzj—1 + Bn), for all i,j € {2,...,n} with
i .
(vi) (anz; + Bn)(anx; + Bn) # (=1)" ey for alli,j=1,...,n— 1 with i # j,

Moreover these conditions imply that ¢ = 2n + 1.

Proof. The second and third conditions come from Lemmas and [2.18/ Condition
(iv) comes from Lemma and implies that F(F, \ (0, \ {z1})) N F(0,) = 0.
Moreover, by Lemma[2.16] (v) implies that |F(O,, \ {z1})] = n— 1. The last condition
implies that |M| = n — 1 and comes from Lemma Finally the first condition
implies that |T'| = 2. Since the restriction of F' to D is 2-to-1, D must be the empty
set. This occurs exactly when |M|+|T'| = ¢g—n, which is equivalent ton = (¢—1)/2. O

To illustrate the use of Theorem [2.20| we include some examples of complete map-
ping polynomials, which we obtained using the computer algebra package MAGMA [5],
see Chapter [4]

2.3 The class 73(5272

In this section we describe various constructions of complete mapping polynomials in

735,272, where n > 3. For this purpose we determine the permutations in Fq(?,z, and hence

study the polynomials F(x) = f(z) + x, where
f(.il?) :Pn(COV"acnfl;x) € Péi% (216)

Lemma 2.21. F(z;) = 0.

Proof. Recall that the first pole x is 0, since #; = 0. The proof is completely analogous
to the proof of Lemma [2.1} O
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Lemma 2.22. If |O,| =n and a,_1 # —p,, then for all z;,x; € O,, with z; # x;,

Ty — Ty _Oén_l

F(x) # Fla;) < /

Ti—1 — Tj-1 Bn '

Proof. By equation ([2.10), we have for all z;, z; € O,, with x; # z;.

F(IZ) = F({L']) <~ Rn(mi—l) — T+ x; = Rn(xj—l) — -1 + Tj,

Op—1 671—1 Qp—1 ﬁn—l

< —T 1 t+t—+T,=—Ti 1 — + T,

Bn B B Bn ’

Qn—1

<~ ﬁ (.Z'Z',l — .’Ejfl) = .CIZ']' — Xy,

ZT; X _ Ap_1
Ti—1 — Tj—1 Bn
This completes the proof. O

Lemma 2.23. If|0,| =n and a,,—1 # — B, then for allc € F,\Op and2 < i <n-—1,

Flz)) £ F(c) == 2% 4

ZTi—1 —C Bn '

Proof. Fori e {2,...,n—1} and c € F,\Oy, by (2.8]), we have

On—1

F(z;) = F(c) — Ru(ri-1) — i1 +2; = Ru(c), foreach i,
Qp_q Bn—l Qp_q Bn—l
= ——r ot = (—— + Dot
5 5 g, Tt
Q1 Q1
< Ti1+x; = ( + 1)6,
B B
— Qo1 (c—xi1) =2 —c,
B
— e :_Oén—17 1=2,...,n—1,
Ti1—C B
which concludes the proof. O

Proposition 2.24. Suppose f(x) € Pé?r)b has distinct poles x1,...,Tp_1, 2T, = 00, and
F(x) = f(x) + . The polynomial f(z) defined as in is a complete mapping

polynomial if F(c) =0 implies ¢ = 0, and the following two conditions are satisfied:

(i) for all2 <i,j <n—1 withi+# j,

Ty — Ty [a79 ]

Ti—1 — Tj-1 B ’

(i1) for allc € F,\Op and 2 <i<n-—1,

;i —C [0 79|

Ti—1 —C 5n '
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Proof. We need to show that F(z) = f(z) + x is a permutation polynomial. It imme-
diately follows from the equation that the restriction of F' to F,\Oy is injective.
By Lemma the restriction of F' to Oy \ {0} is injective. By Lemma the
intersection of F(F,\Oy) with F'(Oy, \ {0}) is empty. The hypothesis F'(¢) = 0 implies
¢ = 0, concludes the proof. O

Theorem 2.25. Let o, 1 # —fS,, and f € 73572,2, with n distinct poles. Then f is a
complete mapping polynomial if and only if for each i € {1,...,n — 1} there exists a

unique k(i) € {1,...,n —1}\ {i — 1,3} s.t

Qp—1 Qn—1
ﬁn 1 < Bn (2) ( )
where the indices i = 1,...,n — 1, should be calculated modulo n — 1.

Proof. Suppose F' is a permutation. By Lemma [2.23, for all 2 <i<n —1,

;i —C [a7% ]

_Yl o yee FN\O,
Ti—1 —C 7& Bn q\
T+ 5T
= o oy 76 Vee F\Oy
Bn

This means that the expression on the left hand side must be a pole, i.e., there exists

k(i) e{l,...,n—1}\ {i —1,i} with

Qn—1 Qp—1
C(]Z‘—i‘—l‘i_l:(l—i— >xkz
B B, )

Note that k(i) should be different than ¢ — 1 and 4, since all the poles are distinct.

Now we show the uniqueness of k(7). Suppose that for any i # j there is a k(i) with
k(i) #4,i— 1 and k(7) # j,j — 1 such that

Qp—1 Op—1 Op—1 QOp—1
Ti+ ——xi—1 = (1+ Tpey and x4+ ——x; = (1 + Th(i)-
5 (14 =) i+ g wim = (L =) )
Therefore we have
+ Qp—1 + Qp—1
LiT (5 Li—1 = Tj T —5—Tj-1
B T B
Ty — Ty [0 7]
< = — .
Ti—1 — Tj—1 Bn

Hence F'is not a permutation by Lemma [2.22] which contradicts to the assumption.

Taking the summation of all the equalities for i = 2,...,n — 1 we obtain
n—1 o n—1 o
n—1 n—1
Zi + $i1> = (1 + ) Th(i
i=2 ( B ; P v

36



which is equivalent to

n—2 n—1
O‘g‘lxl T+ Y (1 + O‘;‘l) . (1 + O‘g*) - (2.18)

Since k is injective, all but one of the terms in the summation on the left hand side

(for i =2,...,n —2) cancel with terms on the right hand side. What remains is
Qp_q Qp—1 Qp—1
x1+xn1+(1+ )xr—(lJr ) Ti(s) + Tk
B B 5, ) (o + o)

for some r € {2,...,n — 2} and s,t € {2,...,n — 2}, with k(s),k(t) € {1,n — 1,r}.
This leaves three possibilities for the set {k(s),k(t)}, namely {1,7}, {r,n — 1}, and
{1,n — 1}. In the first case we obtain x,_; = x, a contradiction. Similarly, in the
second case we obtain

Qn—1 On—1
Ty = Tn-1,

Bn Bn

which again leads to the contradiction x,_; = 24, since a,,_1 # 0, as z,,_1 € ;. In the

remaining case we have

O[n_]_ an—l an—l
T1+ T+ (1+ )xr: (1+ > (21 + Tp_1).
B B B

This implies that

Qp—1 On—1
1+ —Tp_1 = <1 + ) Ty.
B B

Defining k(1) = r, gives the required result.

Conversely, suppose F'(z) is not a permutation. First we show that F(x;) = 0

implies z; = 0 (i.e. j = 1). Namely, if F/(z;) = 0, then by (2.10)

QO e
Ij+6—11}j_1+%:0
which implies
Op—1 Op—1 ﬁnfl
AL T 1+_) (_—) 2.19
’ Bn o ( B B + 1 ( )
But computing xj) from equation (2.17)) we obtain exactly
. Bn—l
Tr1) = B tan

and hence from the injectivity of k(i) and equation (2.19) we obtain x; = x;. Now if

F(c)=0for c e F,\ O,, then by equation ([2.8]),

ﬁn—l

C= —
ﬁn‘{'o-/n—l7
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which equals (1), a contradiction. We have shown that F(c) = 0 implies ¢ = 0. But
then at least one of the two conditions from Proposition [2.24]is not satisfied. Suppose

condition (i) does not hold. Then there exist 2 <i,7 < n — 1 with ¢ # j, such that

Ty — Ty . p—1

Ti—1 — Tj—1 B ’
which implies k(i) = k(j), a contradiction. On the other hand if the condition (ii)
does not hold, then there exists some ¢ € F,\O, and some pole z; € 7 for which
F(c) = F(z;) by Lemma[2.23] Solving for ¢ this gives
T + S5
L+ 5=

C =

which contradicts the existence of k(7). O

The following lemma solves the recurrence relation which will be used in the proof

of the next main theorem.

Lemma 2.26. Let n > 4, p,v € Fy. If 2,0 = pxp_1, and x,—1 = px; + v for

i=1,...,n—2, then x,_y = Gy(p,v)xp_1, fort =1,...,n — 1, and conversely, where

[t/2] .
b=\ 21 e
Gi(pv) =) (Z - 1) pt 2L (2.20)

i=1
Proof. We give a proof by induction on ¢. One easily verifies the formula for ¢t = 1, 2.

Suppose t > 3 and (2.20)) is satisfied for all £ < ¢. Then

Tt = UTp—t41 T+ VTp_t12

and by the induction hypothesis (here we use n > 4)

[(t—1)/2] P — o [(t—2)/2] b0 ' .
a3 (et e | (2 e

=1

)

1

=1

[(t—2)/2] b9
t—2i+1 i—1 LTV 401
(z—l )M V' Tpo1+ Z (i—l )M Vip_1.
[(t—1)/2] ) [t/2]
_ t=1—=0\ o1 i1 t—1- it i
- Z <i—1 )M Y $n1+z 2—2 v et

i=1

[(t—1)/2]

= 2

=

t—2141 Vz—l

Now consider the coefficient of p Tp—1. For i = 1 this coefficient is

() =(3)
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for 2 < i < [(t—1)/2] it becomes

e T A AN
i—1 i-2 ) \i—-1)
which is the same for ¢ = [t/2] when ¢ is even, while for ¢ odd and i = [t/2] one

obtains

t—1—(t/2+1/2)\ t—(t/241/2)
( t/24+1/2 -2 )" <U2+U2—1)

It follows that the coefficient of p/~2*1 =1z, ; equals ({°1), for all 1 <i < [t/2]. The

converse follows from the above calculations. ]
For future reference we recall the relation (2.17)) where & is the cycle (12 ... n—1),
ie.,
Qp—1 Qn—1
T+ ——xi = (1 + —) Titq- 2.21
5 B ) (221)

for 1 <17 <n — 1, where indices are calculated modulo n — 1.

Theorem 2.27. For any n > 4 the polynomial

J

Hyw) = 3 (” A 2) D1 + ) (2.22)

§=0
has a root o in ¥y, if and only if there exist x1 = 0,xo, ..., 2,1 € Fy, satisfying ,

where a1 /B, = a.

Proof. Let a € F, be a root of the polynomial (2.22). Equivalently

(2411

S () ()

J]=

j
=0,

and multiplying by (—1/a)" 2 we obtain

[2zH1-1 : n—2-2j j

—j—2 1 1

O | G
= J a a
Rewriting the summation gives

(251 n—i_1 1\ "2 1\
. —— 1+-) =o,
— 1—1 o o
which is G,_1(—a™', 1+ a™') = 0, where G4(i,v) is defined by (2.20). Now choose
Bn-1,Bn, tn1 € F}, put a1 = Bpa, and define xy,...,2, 5 by (2.20), with p =
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—Bn/an_1 and v = 1+ B,/a,_1. By the above, it follows that z; = 0. Applying
Lemma [2.26], we obtain the recurrence relation (2.21)).
Conversely, if there exists 21 = 0,2,..., 2,1 € Fy, a1, By € T}, satisfying (2.21)),
then by Lemma for t = n — 1 we obtain
(2541

n—i—l 1 n+1—22 1 1—1
O: p— —— 1 —
a0 ()

where oo = a1/ € ;. It follows from the equivalent statements at the start of the

proof that « is a root of the polynomial . n
Theorem 2.28. If H,(a) = 0 with o € F;, and x,_, € F} such that the x;’s defined by
Ty = G(—a 14+ a Y,
fort € {2,...,n—1} are all distinct, then there exists a complete mapping polynomial

f(z) € Pé,zyz with poles x1 = 0, X, ..., Tp_1, T, = 0.

Proof. Tt follows from the hypothesis, Lemma [2.26] and Theorem that the x;’s are
all distinct and satisfy the recurrence relations with «,,_1/6, = a. Moreover,
since —1 is not a root of the polynomial H,(x), it follows that a,,_1 # —f,. Applying
Theorem finishes the proof. O

Example 2.29. Take ¢ = 73 and n = 9. Then we have
Hy(x) = 42 (1 + 2)* + 102*(1 + 2)* + 62(1 + 2) + 1.

We choose a@ = 19 as one of the roots of the polynomial Hg(z) in F73. Then the
polynomial G;(—a~!, 1+ a™') becomes
I . ,
(Z, B 1) (23) "+ (51)"".
i=1

Put Rg(x) = 192 + 1 giving xg = 23. By using above theorem, we obtain

|
Q
no
[\]
w
ot
—_
]
o]

I
[\
ot
\]
w

I
—_
oo

X7

Tg — Gg 23, 51 xrg = —4.23 = —19,

[
2
[\]

Ts

I
D
ot
©)
W
ot
—_
=
oo

I
o
0
o
w

I
)
=)

Ty
r3 = (Gg(23,51)xg = 36.23 = 25,

Ty = G7 23,51 xrg = —10.23 = —11,



which are all distinct. Now we use a procedure given in 3] which enables us constructing
Py with Ry and the poles z1,...,xq9 are prescribed. Since Rg(z) = 19z + 1, we have
ag = 19¢, fg = € and By = € where € # 0. Now we will use the relations from
before

Qg =0o; —Ci10y—y and  [Bi_o = /62‘ —ci—1Bi-1

for i € {2,...,n — 1}, to determine the coefficients cs, c7,...,¢o in the definition of

f(z), where F(z) = f(x) + x. These relations imply that for all i € {2,...,8},

Bi—2 . Bi — ci—1Bi-1

o2 Q; — G104

and hence
Bi — Ci—1ﬁi—1

Q; — G104

—Ti-2 =
or equivalently

—Ti—2 (Oéi - Ci—lai—l) = B — ci-1Bi1

and finally
Bi + Ti—o0y;
Cii1 = ) 2.23
' Bi—1 + Ti—o0yq ( )
Therefore we get
_ Potmrag €

Cg —10,

By +ax7as €4 50e -
and ay = ag — cgag = 44e, B; = P9 — gy = 11le. Recursively we calculate the exact
values for c7,...,cy, and values for ag, Fg, ..., a1, 51 as multiples of e. Then we can
find ¢y which is equal to B3. The identity By = 181 + Bp = —e = 1 then yields the
value for e = —1. From ap = 0, we have ¢; = ay/a; = 22. Finally, we have ¢y = a;.

Hence we get a polynomial
flz) = Py(—19,22,—-11,23,—11,23,—11,23, —10; x)

which is a complete mapping polynomial over [Fr3.

231 n=4

In this section we focus on the smallest case: n = 4. We start by giving a necessary
and sufficient condition for the existence of complete mapping polynomials in the class

2
P

q
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Theorem 2.30. There exists a complete mapping polynomial f € Péi) with distinct

poles x1,xq, T3, x4 = 00 satisfying if and only if the polynomial 1+ z + 2% has a

root a in IF;;.

Proof. For n = 4, the polynomial (2.22)), becomes

Hy(x) =Y (2_,‘7)xj(1+x)j =1+z+ 2% (2.24)

=0 N 7
Now suppose a € F} is a root of Hy(x). Applying Theorem we obtain x; =
0,x9, 3 € F, satisfying the recurrence relations (2.21)) with a,—1/8, = o, i.e.,

1]120, To = (1+Oé)$3

It follows that for any choice of x3 € Fy, the elements x1, x5, x5 are distinct. By Theo-

rem [2.25( we obtain a complete mapping polynomial f € Péi) with poles x1, x9, 3, 14 =

oo satisfying (2.21)), where a,—1/8, = .

Conversely, if f € Péi) with poles 1, 9, x3, 14 = 00 satisfying (2.21)) is a complete

mapping polynomial then by Theorem [2.27] the polynomial H4(x) must have a root
a € F. [

Theorem [2.30|yields explicit constructions of complete mapping polynomials in 73(5’24)

for g =1 mod 3 and ¢ = 3°.

Theorem 2.31. If ¢ = 3° or ¢ = 1 mod 3, then any polynomial of the form

—2
a? _ -2 1\97? ac \'

is a complete mapping polynomial over I, where ¢ € ¥y is arbitrary, « = 1 if ¢ = 3°

and it is a primitive 3™ root of unity if ¢ = 1 mod 3.

Proof. 1f char(F,) = 3, then 1 + z +2* = (z — 1)?. So @ = 1 is a root in F,. When
(¢,3) =1, then 1 + = + 2* = Q3 is the 3" cyclotomic polynomial over F, and it has a
root a in F, whenever ¢ =1 mod 3. In both cases Thm applies and hence there
exists a complete mapping polynomial in f € Péi;)

satisfying the recurrence relations (2.21)),

with poles =, = 0o, and 1, x9, 23

T+ oariog = (14+ a)z;.
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Let FE.F 4 with F(z) = f(r) + x. Then

q—2

F(z) = <((CQ$)q_2 + cl)q*2 + cz>q2 + 03> + x,

for some cy, ¢1, ¢z, c3 € F;. From (2.2)) and (2.3) one obtains

0 - S
1 =Y, Tg = — , L3 = — .
c1Co co(cocr + 1)

From the recurrence relations between the poles we then obtain

1
= (1 + a)xz which implies ¢y = —.
acy

We also know that oy = 0, which implies that c3(cico + 1) 4+ ¢; = 0. Substituting the

expression obtained for ¢y above, gives

—QCy
c3 = .
T l+a
Finally, recall that o = %, which means
4
_ coleica +1)
e+ 1
and this implies
o
o= ——.
T (1 +a)
We have obtained the coefficients ¢y, c1, 2, c3 in terms of « and ¢; € F e which gives
the formula (2.25) for f(x) € 73%4, where ¢ = ¢; € F} is arbitrary. O
232 n=>5

Also for the case n = 5 we obtain a necessary and sufficient condition for the existence
of complete mapping polynomials in the class 73(;25) . For this case we will obtain explicit

constructions of complete mapping polynomials in Pé? for g =1 mod 4.

Theorem 2.32. There exists a complete mapping polynomial f € 73 s with distinct
poles 1, T9, T3, T4, T5 = 00 satisfying (2.2 m if and only if the polynomial 22* + 2z + 1

has a root o in IFZ.

Proof. For n =5, the polynomial (2.22]), becomes

i( : )xﬁl+w)]—2x + 2z + 1. (2.26)

J=0
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Now suppose a € F} is a root of Hjs(x). Applying Theorem we obtain z; =
0,29, 23, x4 € F, satisfying the recurrence relations (2.21) with a,—1/8, = o, i.e.,

x1=0, xo = (14+a)xs, x3 = (14 a) x4y — axs.

Solving for x5 and z3 in function of o and x4 we obtain

(1+ «a)? 1+«
2tatl’ Ctat+l’

4. (2.27)

I1:0,$2: 4, T3 =

It follows that for any choice of x4, € F}, the elements xy, 7y, 73,74 are distinct.

By Theorem [2.25[ we obtain a complete mapping polynomial f € Pé? with poles

x1, To, T3, Ty, Ts = 00 satisfying (2.21)), where a,,_1/5, = a.

Conversely, if f € Pé? with poles x1, o, x3, x4, T5 = 00 satisfying (2.21]) is a com-

plete mapping polynomial then by Theorem [2.27 the polynomial Hs(x) must have a
root o € F. O

In the next theorem we explicitly determine the coefficients ¢, o, 3, ¢4 in function

of the root o of Hs(x) and the first coefficient ¢, € F}.

Theorem 2.33. Let ¢ = 1 mod 4. Any polynomial of the form

(((((——“;)%f2+c)"_2+i)q_2—%)q_2+%)q_2<2-28>

mn 73(5725) is a complete mapping polynomial over F, where o € B, is a root of 22?42z +1

and ¢ € ¥} s arbitrary.

Proof. Since ¢ =1 mod 4, by Euler’s criterion, the polynomial 222 +2x + 1 has a root

a € ;. By Theorem [2.32} there exists a complete mapping polynomial in f € Pq(?

with poles x5 = 0o, and x1, z9, x3, x4 satisfying the recurrence relations in ([2.21)),
T, +Qr_1 = (1 + Oé)ZL‘H_l.

Let F € fq(? with F(x) = f(z) + z. Then

F(x) = ((((cox)q2 + cl)q_2 + 02>q—2 + 03) " + C4> " + x,

for some ¢, ¢1, ¢z, c3, ¢4 € Fy,. From (2.2) and (2.3)) one can get

Co C3C2 + 1

ZL’ZO,J}:——,JJ =, Ty = — .
! 2 C1Co 3 00(0201 + 1) 4 Co (C3<6261 + 1) + Cl)
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From the recurrence relations between the poles we first obtain

X2

1
= (14 a)zz which implies ¢ = —.
acy

Now to find c¢3 we consider the relation between the poles for i = 4. We obtain

x4 = —axz and by substituting c¢; = O%Cl we get
ca2a+1)
3= ———-=
’ (o +1)2

We also know that a5 = 0, which implies

coc1 + 1
Cy =
C3CoC1 + C3 + C1

Substituting ¢ and c3 by the expression obtained above, gives

(05—0—1)2'

Cy —
cra?

Q
To determine the coefficient ¢y, we recall that o = —47 which means

which gives

Bs

. Co(Cg(CQCl + 1) +
ca(czea + 1) + ¢

a+1)?
RGeS
1

*

Hence we have obtained the coefficients cg, ¢1, ¢2, ¢3, ¢4 in terms of o and ¢; € IFq, which

gives the formula

2.3.3 n=6

2.28

for f(x) € Pq(?g)) , where ¢ = ¢; € F} is arbitrary.

]

As in the case n = 4 and n = 5 we obtain the following necessary and sufficient

condition for the existence of complete mapping polynomials in the class 'Pé’zﬁ) .

Theorem 2.34. There exists a complete mapping polynomial f € 73;’26) with distinct

poles x1, T, T3, Ty, Ts, Tg = 0O satisfying if and only if the polynomial * + 223 +

422 + 3x + 1 has a root « in IFZ.

Proof. For n = 6, the polynomial ({2.22]), becomes

He(z) = Z

2
j=0

4 —7 ) .
( ,j)xj(l—i—m)]:x4+2m3+4m2+3x+1.
J
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Now suppose a € F} is a root of Hg(x). Note that o # —1. Applying Theorem ﬂ
we obtain xy; = 0,9, %3, 24,25 € F, satisfying the recurrence relations (2.21)) with

Oénfl/ﬁn = @, i'e'7

1 =0, 79 = x5, v3 = (14+ @) zg — axy, x4 = (1 + ) x5 — axs.

a
1+«
Writing all poles in terms of o and x5 gives

1
a T5, Ty = ——Ts. (230)
«

xlzo) Lo = X5, T3 =

1+« (1+ a)?
Clearly w3 # x5. We may conclude that for any choice of x5 € F;, the elements

x1,Xa, T3, Ty, T5 are distinct.

By Theorem [2.25 we obtain a complete mapping polynomial f € Pé?g with poles

T1, X2, X3, T4, Ts, Leg = OO Sa‘tiSfying " where an—l/ﬁn = a.

Conversely, if f € Péij) with poles x1, 2o, x3, 24, x5, xg = o0 satisfying (2.21) is a

complete mapping polynomial then by Theorem the polynomial Hg(x) must have

a root ozEIFZ. O

The following theorem gives an explicit formula for a family of complete mapping

polynomials in 7315726) i

Theorem 2.35. Any polynomial of the form

a’® 1 c 1 co @)
= P ,C,—, y T — ; - 2.31
f) 6<(Oz+1)4 “cltaca 1ta 93) P (2:31)

is a complete mapping polynomial over F, if € F,, is a root of * + 22 + 42? + 3z + 1

and ¢ € F} is arbitrary.

Proof. If the polynomial z* + 22% + 42% + 3x + 1 has a root a € [y then by Theorem

2.34) there exists a complete mapping polynomial in f € 77(5726? with poles ¢ = oo, and

X1, Ta, T3, Ty, Ts satisfying the recurrence relations in (2.21)),
T, +Qr_1 = (1 + Oé)l’i+1.

Let F € fq(?ﬁ) with F(x) = f(z) + z. Then



for some ¢y, ¢1, ¢2, 3, ¢4, ¢5 € Fy;. From (2.2)) and (2.3)) one can get

Ca Cc3Cy + 1

T :0, Tg=—", Tg3=———"7, LTyg=—
! 2 C1Cp 3 60(6201 + 1) 4 Co (C3<0201 + 1) + Cl)

and
ca(cgea + 1) + o
Co (6403(0261 + 1) + c4C1 + CoC1 + 1) '

Similarly as above we obtain

Ty = —

1
g = (1 +a)xs which implies ¢y = —.
acy
Now to find ¢3 we consider the relation z3 + ars = (1 + a)z4 and by substituting
Cco = — we get
acy
&1
c3 = .
T 14a

By substituting ¢, and c3 to the equation
g+ axs = (14 a)z;

1
we get ¢y = —. We also know that ag = 0, which implies that
(651

Co (Cg(CQCl + 1) + Cl)
Co (0463(0201 + 1) + cqc1 + coc1 + 1) '

Cy =

Substituting the expressions we obtained for co, c3 and ¢4 above, we get

1
Cy — — .
14+«
a5 .
Recall that « = —, which means
6
N
ch=-—".
" 1+ a)t

Hence we have obtained the coefficients ¢, c1, ¢2, ¢3, ¢4, ¢5 in terms of a and ¢ € Fy,

which gives the formula (2.31) for f(z) € 73;26), where ¢ = ¢; € F} is arbitrary. O

Corollary 2.36. Let p = 5 or p = +1 mod 10 and q = p® be a square. Then any
polynomial of the form is a complete mapping polynomial over IF,, where o € I,

is a root of x* + 223 +42* +3x + 1 and c € 7, is arbitrary.
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Proof. We only need to prove that the polynomial Hg(z) = 2% + 223 + 42% + 32 + 1
has a root a € I, if ¢ is as in the hypothesis. It is easy to see that Hg factorizes over
Fp as He(z) = (2 + 2 + d)(2* + © + d™ '), where d = %5 If p=+1 mod 5 then
d is in [F,. Note that since p is odd, this means that p = &1 mod 10. In this case
z? +x+d € Fpy[x], being a quadratic, has roots in F,2. Hence if ¢ is a square, its roots

are in . 0

Remark 2.37. It is possible to deal with the case of characteristic 2 along the same
lines. One needs to consider the trace function to determine the number of zeros of
a quadratic equations. More precisely, for the equation x? + ax + b = 0, substitute

x +— ay. Then
AP+ dy+b=0 = ¥*+y+a =0,

has 2 solutions if Tr(a~2b) = 0 and no solution otherwise. However we leave out this

case since Carlitz rank has been studied only in odd characteristic so far.

Remark 2.38. Above we gave construction of complete mapping polynomials satisfy-
ing |O,| = n. Note that there are also examples of complete mappings with |O,| < n.

For instance, take ¢ = 17 and n = 6 the polynomial
f(x) = Ps(—1,10,3, 3,6, —4; x)

is a complete mapping polynomials where xy = x5 = 12.
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CHAPTER 3

On Value Sets of a Class of

Polynomials

As mentioned in Section [I.3] value sets of polynomials f(z) are usually studied in
relation to the degree of f(x). In this thesis, we study value sets in relation with
the Carlitz rank. In particular, we will study the spectrum of classes of polynomials

f(z) + z, where f(z)is a PP of Carlitz rank at most n.

3.1 The Spectrum ’U(Fq(,lqg)

In this section, the spectrum of the class ]-"(571,2 is studied. First, we give some results

forn =1 and n = 2.

Theorem 3.1. If F(z) € F, 1, then

ﬂl ) g
o(Fon) = 5 3 if ¢q=1 mod 4,
el atd  if =3 mod 4.

2 0 2
Proof. Let F(x) bein F ;. Then F(z) = (coz)??+z. Note that F(x) has a unique pole
which is 0 and clearly F'(0) = 0. For ¢ € [F}, we have a rational function F'(c) = @ccz—cﬂ
Obviously j:\/Tal are zeros of F.
Let ¢ € F;. We show that there is a unique y # ¢ with F'(c) = F(y), whenever

c # ++/cy . Namely, for ¢ # 0, we have
Fle)=F(y) = coc®y+y=apcy’+c

= ccylc—y) = (c—y)

1
= y=—, sincec#y.
CoC
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Therefore y = $ #cif c # i\/cOTl.

If ¢y and —c¢y are both squares in F, (which implies ¢ = 1 mod 4), then we get
three times F(c) = 0, once F(c) = £21/c;" and twice any other value. This implies
Vel =3+ (¢—=5)/2=(¢+1)/2.

If ¢p and —c¢y are both nonsquares in [, (that is ¢ = 1 mod 4 again), then we get
once F(¢) = 0 and any other value attained twice. Thus the size of the value set is
again 1+ (¢ —1)/2=(¢+1)/2.

If ¢y is a square and —c¢y is nonsquare in [, (that is ¢ = 3 mod 4), then F(c) =0
and F(c) = £21/c; " are attained once and each other value twice. Therefore we have
|\Ve| =34 (¢ —3)/2 = (¢+3)/2. If ¢y is a nonsquare and —c¢ is a square in F, (thus
g = 3 mod 4), then we get three times F'(¢) = 0, and any other value is attained twice.

Then the size of the value set is 1 + (¢ —3)/2 = (¢ — 1)/2. O

Theorem 3.2. If F(x) € F,2, then

o(Fp2) = {a=1)/2. (a+1)/2, (4+3)/2, (4+5)/2}.

Proof. Consider F(z) = ((coz)?% + cl)q_2 + x, where cg, ¢; # 0. The poles are x; = 0,
x9 = —1/(coc1). Hence when ¢ # 0 and ¢ # —1/(coc1),

. C()ClC2 + (C() -+ 1)6 - C(CoClc + (Co + 1))

cocic+ 1 cocic+ 1

F(0) =1/e1, F(—1/coer) = —1/(cocr). Let ¢ € F; and ¢ # —1/(coc1). We show that

F(e) = ((co) +¢1)  +e

9

there is a unique y # ¢ with F(c¢) = F(y), whenever
|
¢ # Fv-ao-—1
CoC1

Namely, for ¢ # 0, and ¢ # —1/(cpcy),

F(e)=F(y) = (Gdey+cci(c+y) +(co+1)(c—y) =0
= y(cac?c+ coer) + cocre + o+ 1 = 0.
Therefore we get
et e+ 1
e+ ey

Note that ¢ = —% implies y = 0 but y can not be equal to the one of the poles

CcoC1
so in this case we should exclude ¢ = —Cc(z)—;l.
cocic+co+1 J—co—1
If y=c¢c = —022—020 = (COCIC+1>2:_CO = C::F—O'
cycic + cocy CoC1
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Hence y # c only if
cp TV 01
CoC1
Now let us consider the poles of F. Note that F'(0) = 1/¢; = F(c) occurs when
1 coperc®+ (o + 1)c

22
— = = cocic +cic—1=0
c1 cocic+ 1 0™

il.e
—1F+/1+4c

26001
Similarly F( —1/(coc1)) = —1/(coc1) = F(c) occurs when

-1 cper® + (co+ 1)c
Cocr cocic+ 1 = i + (cger + 2ce)e +1 =0,

ie,
—(CO + 1) + C0(4 + Co)

26001

Now we determine the values of |Vg|. First let ¢q # —1.
Suppose that —co, 1 +4co, co(44¢) are all squares in F,. Then F attains the values

0, and
F2co + (CO — 1)(\/ —Co)
CoC1v/ —Cp

once each and any other value twice. Thus the size of the value set is 1+2+(¢—5)/2 =

(g+1)/2.

If —c¢p is a square and one of 1 + 4cy, then ¢y(4 + ¢p) is a nonsquare in F,. Then

both values F'(¢) = 0, and

_ T2+ (e —1)(V=0)
C001\/—_00

are attained once, one of the values 1/c;, —1/(cocy) is attained once and any other

F(c)

value twice. Hence |[Vp|=14+2+1+ (¢ —5)/2=(¢+3)/2.
Suppose that —c¢g is a square in F, and 1+ 4cg, co(4 + ¢o) are nonsquares in F,.

Then 0,
F2co + (CO — 1)(\/—00)
CoC1v/ —Co ’

—1/(coc1) and 1/¢; are all attained once each, and any other value is attained twice.

Thus [Ve| =142+ 1+1+(¢—5)/2=(¢+5)/2.

Suppose that —cg is a nonsquare in F,, and 1 + 4cg, co(4 + ¢o) are squares in F,.
Then F' attains the value 0 once and any other value twice. Hence the size of the value

setis 1+ (¢—3)/2=(¢—1)/2.
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Suppose that —cg is a nonsquare in F, and one of 1 + 4cy, co(4 + ¢o) is a square in
[F,. Then 0 is attained once, one of the values 1/¢;, —1/(cocy) is attained once and any
other value twice. Therefore |Vp| =1+1+(¢—3)/2=(¢+1)/2.

Suppose that —co, 1 + 4cy, (4 + ¢o) are all nonsquares in F,. Then we have
F(c) =0, F(c) = 1/¢; and F(c) = —1/(coc1) once each and any other value twice.
Thus [Vi| =1+ 1414 (¢ —3)/2 = (¢ +3)/2.

Now let ¢ = —1. Then —cy = 1 is always a square in F,. Note that in this case
F(c) # 0, for each ¢ € Fy. If —3 is a square in F, then F' attains the value 1/¢; four
times, the value 4/c; once and any other value twice. Therefore |Vp| = 1+1+(¢—5)/2 =
(¢ —1)/2. If —3 is a nonsquare in [, then 1/¢; is attained twice and 4/¢; is attained
once and any other value is attained twice. Thus |[Vp|=1+1+4(¢—3)/2=(¢+1)/2.

This completes the proof. O

Theorem 3.3. For every F' € fq(,lﬁ,

qg—n
2

q+2n+1
5 .

[

1 <|Vp| <

Proof. By the arguments presented in Section the maximal cardinality of the value
set for F is attained when |M| =n — 1, (=1)""!¢y is square in F,, |[F(O,)| = n and
F(0,)NF(F,\ O,) = 0. Therefore

q—n—2—(n—-1) q+2n+1
2 N 2

max(|Vp|) =n+2+(n—1)+
If n is odd, then the minimum value is attained if the sets T and M are empty and
F(O,) c F(F,\ O,), in which case

q—n
2

min(|Vg|) =

If n is even, then ¢ — n is odd, which implies (since | D] is even), that at least one
element belongs to F, \ (O, U D). Therefore

g—1l—-n qg+1—-mn

i =1
min(|Vr|) + 5 5

Hence
q+2n+1
2 )
for every F' € .7-"(1(7172. O

—n
571 < Vil <
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3.2 The Spectrum v(fq(,%z)

In this section, the spectrum of the class .7-"(5,2,2 is studied. We start by determining the

spectrum of F, q(23) :

3.2.1 o(FE)

q,

Theorem 3.4. If F € F\3, F(z) = f(z) + x with f(z) = Ps(co, c1,c2: %) then

q,37

3 if coct =1,
Vel = '

q— 2 otherwise.

Proof. Take F € Fé?. Then a3 = 0, which means that coc; +1 = 0, ie., ¢y = — =

c1’

Therefore we have the polynomial F' € Fq(?g is of the form

Fz) = (((com—? + o) — l>q_2 o,

1

and the corresponding rational function

Rn(z) = %—% + = (—coct + 1)z — (3.1)
3
since ag = ¢1¢g, o =1 and f3 = 5 = —é. By Lemmas and we have
coc? +1
F(z1) =0, F(22) = Rp(z1) + a0 = — 1
CoC1
where z; = 0 and x3 = — e
If coc? = 1 then by equation (3.1) we obtain F(y) = —c; for all y # 1,29, or

equivalently F' behaves as a constant polynomial except at two points z1, x5. We also
have F(xq) = —% = —2¢y. Therefore, Vp = {0, —c;, —2¢;}. Hence |Vp| = 3.

Now consider the case cyci = —1. Then F(z;) = F(x3) = 0 for the poles 1 = 0
and zy = —CO%I = ¢;. By Equation , we have F'(y) = 2y —c; for each y € F;\ {2}

The multiplicity of the element 0 in the value set is 3 since the equation 2x — ¢y = 0

has exactly one solution in [F, \ {1, 22}. Therefore, we have
VF = {0, O, O, Uy, U,y ..., uq_g},

where u; = F'(y;) fori € {1,...,¢ — 3} and y; € F; \ {z2}. Hence |Vp|=q — 2.
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Next, assume that coc? # +1. Then F(z1) # F(xs) and F(y) = (—coct + 1)y — ¢
for y # w1,25. Hence for each i = 1,2, there exists a unique y € F, \ {z1, 22} s.t.

F(z) = F(x;). Therefore,

—cpc? =1 —coci — 1

VF: 0707_ 9 71}17@27"'7’0(174 )
CoC1 CoC1

where v; = F(y;) for i € {1,...,q — 4} and y; € F; \ {z2}. Hence |Vp|=q 2. O
Corollary 3.5. The spectrum of the family Fé?;g) 18
v (fé?) ={3,q—2}.

Corollary 3.6. Any polynomial F' € fq(?g of the form

F( ) - 1 q—2 ) q—2 ] q—2 .
x) = 27 c . X,

where ¢ € Fy,, has the value set Vi = {0, —c, —2c}.

Proof. The polynomial of this form is obtained in the case cyc? = 1 in the proof of the

previous theorem, and so is the value set Vi = {0, —c, —2¢}. O

3.2.2 w(F7)

Next we study the spectrum of the class of polynomials ]:q(il)' First we collect some
general properties of polynomials in this class which will be used in the proof of the
main theorems of this section.

Let F(z) € F(Z(i). Then oy = 0, which means that c3(cac; + 1) + ¢; = 0. Therefore

(&1
cocr +1°

C3 —

So F(x) is of the form

q—2
_ (a—2)
F(gj) = ((((Cox>(q2) + Cl)(q 2) + 02) q _ C1 ) 4 z,

cocr + 1

where cg, c1,c0 € ]F;;. Here the corresponding rational function is

a3

Rali) = (54

+ 1) T+ @ = (co(0201 +1)* + 1)3: + ca(cocr + 1), (3.2)
B
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since aig = co(cocy + 1), B3 = ¢ and

8 1=t
= ¢3¢ = .
4 372 CoC1 + 1
Therefore the poles are
1 C2
r1=0,19=———, and x3=—7"—"——. 3.3
! 2 CoC1 ’ co(cacr + 1) (33)
By Lemmas and we have
F(xl) = O, F(l’g) = 02(6201 + 1) + Za, (34)
1 coc) +1
Flas) = — + a3 = ————— 4 3. (3.5)
C3 C1

Theorem 3.7. If F(x) € ‘7:11(,24) is of the form F(x) = f(z) + x, where f(z) =

Py(co, 1, 2, C35), with cg = —1/(caer + 1)2, then

2 if e e{-2,—-1/2,1} and char(F,) = 3,
Vel =1 3 if cico € {—2,—1/2,1} and char(F,) # 3,

4  otherwise.

Proof. Since
1

(coc1 4+ 1)
it follows that R, (x) is constant: R, (z) = ca2(c2c1 + 1). Then for y € F, \ O,, we get

Co = —

F(y) = Ra(y) = calcacy + 1),

whereas for the poles we have

1)2 1)(2 1
F(.CEQ) = Rn(l'l) — T + To = CQ(CQCl + 1) + (CQCI + ) = (C2C1 T >( €261 T )7

¢ 1
and

F(x3) = Ro(22) — 29 + 73 = c%c%q— 17
where

Ty = @, x3 = co(c1co + 1).

One easily verifies that F'(y) can not coincide with F(z1), F'(z2) and F(z3) since cacq+1

can not be equal to zero.
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If ciey = —1/2, then we have F(x;) = F(x2) = 0, F(x3) = 3c2/2, where 1 = 0,
Ty = —C2/2, w3 = /2 and F(y) = co/2 for y € F, \ {1, 22, 23}. Therefore, Vi =
{0, ¢2/2,3¢o/2}, which has size three for char(F,) # 3.

If ¢yco = 1, then we have F(x1) = F(x3) = 0, F(x3) = 6¢y, where x; = 0, x5 = 4cy,
x3 = 2¢9 and F(y) = 2¢y, for y € F, \ {x1, 22, x3}. Therefore, Vi = {0, 2¢9, 6¢2}, which
has size three for char(F,) # 3.

If cyco = —2, then we have F(z1) = 0, F(23) = F(x3) = —3c2/2, where z; = 0,
Ty = ¢2/2, x3 = —cy and F(y) = —co for y € F, \ {1, 22, 23}. Therefore, Vi =
{0, —c2, =3¢y /2}, which has size three for char(F,) # 3.

If cieq ¢ {—2,—1/2,1} then the values of F(x1), F(z2), F(x3) are pairwise distinct

and different from F(y) for y € F, \ {z1, z2, x5}, and we have

1)(2 1 262 1
Vi = {0, (cae1 + )C( cacy + )’ clczc exleaes £ 1)),
1 1

which has cardinality four. O

Theorem 3.8. If F(z) € ]-'q(i) is of the form F(x) = f(x) 4+ x, where f(z) =
Py(co, c1, Ca, C35), with cg # —1/(cacy + 1)2, then |Ve| € {¢— 3,9 — 2,4}

Proof. Since
1

C - -
e (cac1 4+ 1)2

the rational function R,(z) is a linear function. Observe that F(xz;) = 0 = R, (y) if
y = 71(co, €1, ¢2), where

co(cacy + 1)

3.6
00(6201 + 1)2 —I— 1 ( )

71(007 C1, 62) - -

and 71 (co, 1, c2) # 21 since cacq + 1 can not be zero. If v1(co, ¢1, ¢2) = x3, then

B ca(cocy + 1) L Co
CQ(CQCl + 1)2 +1 00(6261 + 1)’

and hence
co(cacr + D? = co(cacy + 1)2 +1,

which gives a contradiction. If v;(co, ¢1, ¢2) = 2, then

_ alea+l) 1
co(cacr +1)2+1 cocy’
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or equivalently
cocaci(cacy + 1) = co(cact 4 2coe; + 1) +1,
which implies ¢o(c2¢; + 1) + 1 = 0. Therefore, if ¢ = §1(c1, c2), where

1
cocr + 17

d1(c1, ) = (3.7)

then 71 (co, ¢1, c2) = 72 in which case there exists no element y € F; \ {x2, 73} such that
F(z1) = F(y) = 0.
Now suppose F(x2) = R,(y). Then we have y = ~,(co, 1, ¢2), where

1
C()Cl(Co(CQCl + 1)2 + 1)

72(00701,02) = - (3-8)

It clear that yo(co, ¢1,¢2) # x1. If Y2(co, €1, ¢2) = o, then we have

1 1

- - )
c2ei(eaer + 1) + ooy CoC1

which gives a contradiction since co(cac; + 1) # 0. The condition (e, ¢1,¢2) = z3 18

satisfied for ¢y = d2(cy, ¢2), where

1
0a(cy, o) = : 3.9
21, ¢2) ci1co(cacy + 1)2 (3.9)
Finally if F(z3) = R,(y), then we have
coCy + 1 (&)
ccc—|—12—|—1> + co(cocy +1) = — —
< 0( 2 ) y 2( 2 ) C1 00(6201 + 1)
and hence y = v3(cy, c1, ¢2), where
co(caer + 1) + cpey
Cp,C1,C2) = — : 3.10
(c0 e, ¢2) coci(cacr + 1) (co(caer +1)2 + 1) (3.10)
We have v3(co, ¢1,¢2) = 1 for cg = d3(cq, ¢2), where
C1C2
Salcr, o) = —— 12 311
3(c1, ¢2) (caer + 1) (3.11)

whereas straightforward calculations show that the conditions ~s(co, 1, c2) = x5 and
v3(co, €1, ¢2) = x3 both lead to the same contradiction 0 = 1. It follows that for each

ie€{1,2,3},
(1) Rn(%’(COa C1, CQ)) - F(xl)a
(11) 7@’(607 (1, 62) € {'1317 T2, 1'3} if and Only if Co = 5i(617 CQ)a and
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(iii) vi(d;(c1,¢2),¢1,¢2) = X1, where the indices i = 1,2,3 should be calculated

modulo 3.

(iv) there exists an element y € F; \ O, such that F(z;) = F(y) if and only if
Co 7é (Si(Cl, Cg).

Moreover, we see that d;(cy, c) = d3(c1, ¢o), if and only if —(cie2)? = (12 + 1), which
can only happen when —3 is a square in F, i.e., for ¢ = 3" or ¢ = 1 mod 3. Exactly
the same condition is valid for dy(cy, ) = d3(c1, ¢2), and d1(cq,¢0) = d3(c1,c2). In
this case for each i = 1,2,3, it follows from property (iv) there is no y € F, \ O,
for which F(y) = F(z;). Therefore we obtain |Vr| = ¢. If ¢g = 61(c1,¢2), then
F(x1) # F(x3), F(x1) # F(x3). Also F(xy) = F(x3) if and only if (cjcp + 1) = —1
which can only occur when ¢ = 1 mod 4. Suppose this holds, i.e. F(z3) = F(x3).
Then —(cic9)® # (cico + 1), and hence 6;(c1,c2) # 0;(c1,c0) for each i@ # j. Also
Y2(01(c1, e2), ¢1,¢2) = 73(01(c1, ¢2), €1, ¢2), and it follows from properties (i)-(iv) that

\Ve| = q—2. If F(xq) # F(x3), ie. (cic2a+1)? # —1 and —(c1¢2)? # (c102 + 1), then
Y2(01(c1, €2), €1, ¢2),73(01(c1, €2), €1, ¢2) € Fg \ Oy,

and again applying the above properties, this time we obtain |Vr| = ¢ — 2. The same
argument holds for the other two case cg = 0;(c1,¢2), i = 2,3. If on the other hand

co ¢ {di(c1,¢2) i =1,2,3}, then
vi(co, c1,¢0) € Fy\ Oy, foralli=1,2,3,

in which case |Vr| = ¢ — 3. O

Examining the different cases in the proof of the above theorems, we can determine

the spectrum of the class of polynomials ]-"q(i).
Corollary 3.9. The spectrum of the family .7:(1(2 18

{27 4a q— 37 q— 27 Q} Zf Char(]Fq) = 37
v(FE) =14 3,4,¢—3,q—2.q} ifchar(F,) #3 andg=1 mod 3,
{3,4,q — 3,q — 2} otherwise.
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Theorem 3.10. Any polynomial F € .7:(1(2 of the form

F(x) = ((((_(;235):1—2 + cl)q_2 + Cg)q_2 S— )q— +x

cac1 + 1) cocy; + 1
where c1, ¢y € B} with ¢icy ¢ {—2,—1/2,1}, has value set

vo=lo (c1e2+ 1)(2¢c1¢0 + 1) _ac+1
F ) 1 1

) 762(0261 + 1)}7
and |Vp| = 4.

Proof. Tt follows from the proof of Theorem that if ¢ico ¢ {—2,—1/2,1} then we
have that F(z;) # F(x;) for all i # j. The explicit value set follows from the end of
the proof Theorem [3.7] ]

Theorem 3.11. If char(F,) # 3 and ¢ # 1 mod 3 then any polynomial F € ]-"5724) of
the form

q—2 q—2 q—2

F() A + a +
T) = c c — T
cocp + 1 ! 2 cocr +1

where c1, ¢y € Fy, has [Vp| = q — 2.

Proof. The polynomial F(z) is of the form f(z) + x where f(z) = Py(co, 1, c2,c3;x)

with

-1

e+ 17

Note that this equals 01 (c1, ¢2) as defined in (3.7]). It follows from the proof of Theorem

B8 that [Vi| € {q - 2,q}.
The condition char(F,) # 3 and ¢ # 1 mod 3 implies that d;(c1, c2) # 0,(c1, ¢q) for

i # j, where ¢; is as defined in (3.7)), (3.9, (3.11)). This implies that

VQ(COa 01762)773(00761702) € Fq \ OTL’

Co

and hence |Vp| =q — 2. O

Theorem 3.12. If F(x) € ]-";24) is of the form F(x) = f(x) + x, where f(z) =

Py(co, c1, ¢2, c3;), with ¢, ¢y € F; arbitrary and

gé { 1 1 C1Co }
C - 9 s

0 CcoCy + 1 0162(C201 + 1)2 (CQCl + 1)3
then |Vr| = q — 3.

Proof. The proof easily follows from the proof of Theorem the excluded values for
co are the values d;(cq, o), i = 1,2,3 as defined in (3.7)), (3.9), (3.11)). ]
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3.2.3 o(F)

Theorem 3.13. If F € }757212 with n distinct poles, then
Vel € {2,3,4,5,....,n,qg—n+1,g—n+2,...,q—2,q}.

Proof. Let F € fq@ with n distinct poles. Then there are n — 1 poles which lie in I,

and ¢ — n + 1 elements in F, \ O,,. If a,,_; = —f3, then we have the following
F(z1) =0, F(y)=x,_1#0 forevery yeF,\ O,.

In the pole part, the number of different images lies between 2 and n — 1. Since there
is a fixed value for the non-poles, we have 2 < |Vr| < n.

Now let a,,_1 # —f,. Then the restriction of the function defined by F' to the
non-pole elements is represented by a linear polynomial. Hence there are ¢ — n + 1
distinct values for the non-poles. The image of a pole might coincide with the image
of another pole or with the image of a non-pole, so as a minimum we have the same
number ¢ — n + 1. But when some images of poles are not contained in the set of
images of non-poles, then |Vg| may take the values ¢ —n+1,g—n+2,...,q¢— 2.

Assume that |Vr| has size ¢ — 1. This means that there ¢ — 2 distinct elements
appear once, 1 element b, appears twice and one element by does not appear. Now

consider the sum of the values of images of F i.e.

SF(@ :qi (f(c>+c) :qZ:if(c)Jqu:ic.

Since f(z) and x are permutation polynomials, i.e.,

—

q—

f(e)=0 (mod q) and Zc =0 (mod q),
c=0

I
=)

C

and

—_

q—
F(C):b1+ Z C:bl—bo
c€F \{bo}

Il
o

C

which gives a contradiction. Hence the value set of F' can not contain exactly ¢ — 1

values. The case where ¢ is attained is studied in the 2nd Chapter, Section [2.3] O]

Remark 3.14. The theorem above shows that there is a gap in the spectrum of .7-"57273
between n and ¢ —n + 1. Note that this gap is large if ¢ is large with respect to n. The
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second gap, between permutation and non permutation polynomials, between ¢ — 2
and ¢, is independent of n for any choice of q. Moreover, as we have seen for n = 3

and n = 4, this gap can in general not be enlarged.

In the following section we study the permutation polynomials f(x) for which

F(z) = f(x) + x attains the minimum cardinality of value set where F' € F2.

3.3 Minimal Value Polynomials in F,%

In this section we are interested in the construction of minimal value set polynomials in
the class .7-"(5,272, n > 3. This means that we are studying polynomials F'(z) = f(x) + =,
with |Vp| € {2,3}, where

and f(x) has set of poles O,, with the first n—1 poles 1 = 0, 29, ..., 2,1 € F, and the
last pole x,, = co. With the «;’s and §;’s defined as in (2.2)), this implies that «,, = 0.

Then f(z) has associated rational fraction

Q1T + 671—1

Bn ’

and similarly for F'(z) we have the rational function

Rolz) = (O‘;—l + 1) T+ ﬁg—l.

We also recall that if |Oy| = n then F(x;) = 0, see Lemma [2.21, We start with the

Ry (x) =

(3.12)

following easy lemma.

Lemma 3.15. If F(z) € P52 has n distinct poles and cy_y = —B,, then F(c) = 2,1

is constant for each c € F,\ O,,.

Proof. By the assumption and by (2.8)), we have

ﬁnfl ﬁnfl
F(c)=R,(c) = =— ,
(c) (c) 5 -
and hence F(c) = x,_1, by definition of the poles. O
Lemma 3.16. If the poles x1, %, ..., xp—1 in Fy are distinct and o,—1 = —f3,, then

F(z))=zpq1—xi1+x; for 2<i<n-—1.
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Proof. This immediately follows from ([2.10, and

Rate) = (1) O = Tt =
that
Flz;))=xp1—xi1+a; for2<i<n-—1
O
Lemma 3.17. If |O,| = n and a,_1 = —f,, then the following statements are equiv-
alent:
(i) x; = (1 —i)xy,_y foralll <i<n-—2;
(i) F(x;) =0 foralll <i<n-—2.
Proof. By Lemma [3.16] we have
Flz;))=zp1—zi1+z; for2<i<n-—1.
Therefore if x; = (1 — @)z, for all 1 <i <n — 2, then for any j € {2,...,n — 2} we

obtain
F(x]) = Tp—-1 — (2 _j>xn71 + (1 - j)xnfl = 0.

Since also F'(x1) = 0, property (ii) of the lemma follows.

Conversely if F(z;) = 0 for all 1 < ¢ < n — 2, then z; = ;1 — x,_; for all

1 <i<n—2, and hence for each j € {1,...,n — 2} it follows that

Tj=Tj | — Ty =Tjg —2Tp1=... =21 — (j — D)wp_y = (1 = J)apn1,

which completes the proof.

]

Remark 3.18. We note that the requirement |O,,| = n and any of the two equivalent

conditions from the above lemma imply that n — 3 < char(F,). The same holds for the

conditions in Theorem [3.20l

Lemma 3.19. If|0,| =n and a,,_1 = —fp, then x,,_ o = (3—n)z,1 < F(x,_1) =

(n— 1)z, 1.
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Proof. The proof is immediate from Lemma [3.16 [

Theorem 3.20. Let O, = {z1,...,x,}, where xr1 = 0, x, = oo, and |O,| = n. If
x; = (1 —d)x,_1 for 1 < i < n—2, then there exists a minimal value set polynomial

F(z) € 73,5,273 with set of poles O,,.

Proof. Here we use a slight modification of a procedure given in [3], in order to obtain
F(z) where R,(x) and the poles are prescribed.
Consider a polynomial F(x) € 77,5,272 with prescribed set of poles O,, and with asso-

ciated rational fraction
B ar +b B eax + €b

R, (x ,
(z) —a —ea
€ # 0, and define
Qp_1 = €a, ﬁnfl = Eba ﬁn = —€a.
Then we know the exact value for z,_; = —b/a since
- anl
Tp—1 = — .
Qp—1

All the other poles x; for 1 < i < n — 2 are obtained by the formula x; = (1 — i)x,_.
Equation allow us to recursively calculate the exact values for ¢,,_1,¢,_2, ..., C,
and values for «a,,_o, 8,2, ..., a1, 1 as multiples of €. In the final step co, ¢, cg, and €
are calculated as follows. From ag = 0, By = 1 and as = ¢1a1 +ap we have ¢; = as/a;.
The identity B2 = 181 + Byp = 1 then yields the value for e. Then we can find ¢y
which is equal to 3. Finally, we have ¢y = a;. Hence we construct a minimal value

polynomial F' € 775,272 with value set
Ve ={0,0,..,0,(n — 1)zp_1,2n_1}-
This completes the proof. n

Remark 3.21. We note that if char(FF,) divides n — 1, then for F' as in the above
theorem we obain |Vr| = 2, otherwise |Vr| = 3. Now, since the conditions already
imply that char(F,) > n — 3 (see Remark [B.18), the case |Vr| = 2 only occurs for
char(F,) =n — 1.

Remark 3.22. Note that the proof of Theorem |3.20| gives a procedure to construct

the minimal value set polynomial.
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Corollary 3.23. For all a,b € F; and n > 3 with char(F;) > n — 3, a polynomial
F(z) € F2) can be constructed with value set Vi = {0,=b/a,(n —1)(—b/a)}.

Proof. 1t suffices to define z,_; = —b/a, and apply the procedure described in the
proof of Theorem (3.20] O]

We now illustrate Remark with an example.

Example 3.24. Assume that p =13, n =5, a5 =0 and ay = — 5. Let

B 9ex + 8¢

Fn(2) 4e

As the initial values we have
ay=9¢, [y =8¢ [5=4e.

First one can calculate the last pole z4 = —8/9 = 2. Also it is known that the first
pole is always zero. The other poles x3 = 9, x5 = 11 are obtained by the formula
x; = (1 —i)x,_y for i = 2,3. Also, we have

_ Bstxzas

= =11,
B4+ x3004

Cq
and hence
a3 = a5 —cyy = He, 3 = P5 — cyffy = Te.

We obtain recursively

C3=M=12, Qg =y —czag =€, [ =Ly —c305 = 2,
B3 + waars
Therefore € = 7 since we must have 5 = 1. It follows that ¢; = 83 = 10. Then
65)]
a1 =3 —Cg=—be=4, ¢ =—=5 and cy=a; =4
03]

Finally we obtain the polynomial F'(x) = f(z) + z given by given by

—2 —2

Flz) = (((((4x)q—2 +5)2 4 10)7 + 12)q n 11>q ta

whose value set has size three since |Vg| = |Vi| 4+ |Va| = 2+ 1 = 3, where V] = {F(z;) :
z; € 0, and Vo ={F(c) : c€F,\ O,}.
Theorem 3.25. For any n > 3, n — 3 < char(F,) # n — 1, there ezists ' € fq‘?,i s.t.
|Vr| = 3.
Proof. Put o, = 0 and «,,_1 = —f3,, and consider R, (z) = R,(z) + * = x,_;. Put
x; = (1 —=1)x,_q fori=1,...,n — 2. Now apply Theorem to obtain the required
polynomial F' € .7-"5,272. ]
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CHAPTER 4

Examples

We emphasise that with regard to applications, see Remark [L.18] these complete map-
ping polynomials are easy to implement thanks to their Carlitz rank representation.
Moreover, the tables with examples illustrate that these complete mapping polynomials

also satisfy the required properties (iii) and (iv), as explained in Remark [1.18|

L] L] L] 1
4.1 Complete mapping polynomials in 735,72
In this section we list some examples of complete mapping polynomials in the class
73,5,1,2 which were found by an algorithm based on Theorem m The computations
were done by the use of the computer algebra system MAGMA [5].

Table 4.1. The following table contains examples of complete mapping polynomials
f(z) € 735,12. The first column indicates the prime power ¢, the second column indicates

the integer n = (¢ — 1)/2. We only list one example for each value of g.

q |n|f(x)
115 | 528 +5a” + 5% + 42* + 223 + 522 + 92 + 5

13 |6 | 102" 4 52° 4 52% 4 827 4 1225 + 72® + 22* + 62° + 42% + 42 + 3
17 |8 | 7ot + 13213 + 3212 + 142° + 102® + 527 + 28 + 62° + 22* + 223
+52%2 4+ 132 + 3

19 [ 9 | 1421 + 132 + 52 + 12213 + 9212 + 112" + 3219 4 827 + 1028

+627 + 625 + 62° + 102* + 423 + 1822 +2x + 4
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q |n | f(z)
23| 11 | 142%° + 1821 + 21218 4+ 4216 + 11215 + 182" + 21212 + 112 + 19210

+52% + 628 + 920 + 425 + 323 + 1122 + 3

951 12 | 016222 4 09221 1+ 10220 4 15219 4 16418 1 o817 | 17,16

LTS 20514 1T 1 512 (Bl 4 4000 4 1100

+ul2® + u2” + B2’ + utat + e + uf2? + ulr 4+ u

27 | 13 | ur® + v a? + ua®® + u®Pr? 4+ u¥2® 4+ w52t 4 2318

2017 1 9g16 | 22,05 4 6004 4 9013 | 1411 | 2,10

229 12008 1927 4 w1046 & 1245 1 204 1 903

+u'z? + uPz + u?

29 | 14 | 152%° + 262 + 25272 + 132" + 620 + 52'? + 928 + 24217 4 19216
+162% + 321 + 723 + 3212 + 2321 4 15210 + 2427 + 2528 4 1927
+8x% + 282° + 9z + 623 + 237 + 4

2)

4.2 Complete mapping polynomials in 77(5 4

Y

For n = 4 we list examples of complete mapping polynomials in 775724) for g =1 mod 3,

obtained by Theorem [2.31] i.e.,

o (Gt o) )

where ¢ =1 mod 3, « € F,is aroot of 2> +x + 1 and c € [, is arbitrary.

In the Tables 4.2 and 4.3, the first column gives the value of ¢, the second column
gives the values for the root a and the coefficient ¢ € F;. The last column gives
the complete mapping polynomial f(z) mod 27 — x corresponding to a and ¢. The
examples illustrate that the reduced degree of f(x) is always large compared to g,
in fact in the table below, all the examples have reduced degree ¢ — 3, the largest
possible degree. We note that in the table the coefficient ¢ was randomly picked from
the nonzero elements of F,. From our data for other values of ¢, it seems that the
polynomials do not substantially differ, in terms of degree or weight. For this reason
we only listed one complete mapping polynomial for each prime, although different

choices for ¢ € F; do give different polynomials.
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4.3 Complete mapping polynomials in Pé?g

For n = 5 we list examples of complete mapping polynomials in 775725) for ¢ =1 mod 4,

obtained by Theorem [2.33] i.e.,

f(z) = (((((_ %x>q—2+c>q—2+$)q—2 B (2(2-1—;111(;0)‘1_ . (aoj;??)q_

where a € Fy is a root of Hs(z) = 22° + 2z + 1 and ¢ € I} is arbitrary.

In the Tables 4.4 and 4.5, the first column gives the value of ¢, the second column
gives the values for the root a and the coefficient ¢ € Fy, and the last column gives
the complete mapping polynomial f(z) mod 27 — x corresponding to a and ¢. The
examples illustrate that the reduced degree of f(x) is always large compared to ¢, in

fact in the table below, all the examples have reduced degree ¢ — 4.

4.4 Complete mapping polynomials in Pé?g

For n = 6 we list examples of complete mapping polynomials in 77,;26) for p = 5 or
p = +1 mod 10 and ¢ = p® where ¢ is a square, obtained by Theorem and
Corollary in case ¢ is not a prime, i.e.,

a’ 1 c 1 ca @)
:P —_— JE— - .
f([E) 6((0&"'1)470700471—}-0(’00/ 1—|—C¥7x> = 7)!1,6

where o € Fy is a root of He(z) = 2*+22° +42° + 3z +1 and ¢ € F}, is arbitrary. In the
Tables 4.6 and 4.7, the first column gives the value of ¢, the second column gives the
values for the root o and the coefficient ¢ € Fy, and the last column gives the complete
mapping polynomial f(z) mod x?— x corresponding to @ and ¢. Again, the examples
illustrate that the reduced degree of f(x) is always large compared to ¢, in fact in the
table below, all the examples have reduced degree ¢ — 5, except the trivial example for

q=>5.

67



Table 4.2. Examples of complete mapping polynomials in the class P, 4 where p is a

prime, p <61, p=3orp=1 mod 3.

p |lod | flx)

3 [1,1 |4t

7 112,3] |62t + 423 + 22

131[3,3] |20+ 22% + 728 + 72" 4 92° + 2* + 223 + T2? + 10z

19| [7,12] | 182 + 62'° + 142 + 152" + 8212 + 1821° + 62° + 142® + 1527
+8x5 + 18z* + 623 + 142 + 3z

31| [5,14] |22% + 25227 + 122 4 132%° + 182 + 822 + 72! + 172 + 21217
+102'8 + 216 4+ 28215 + 6214 + 22213 + 9212 + 4210 4 1929 + 2428
+2627 + 52° + 162* + 1423 + 322 + 162

37 | [10,27] | 3623 + 9233 + 20232 + 2123 + 11230 + 36228 + 9227 + 2022° + 212%°
+112% + 36222 + 922" + 202 + 212" + 1128 + 3626 + 92! + 202
+2121 + 11212 + 36210 + 92° + 2028 + 2127 + 112° + 362* + 923
+202° + 31z

43 |[6,27] | 39210 + 29239 4 39238 + 36237 + 42230 4 2223 + 34233 + 22232 4 1723
+272%0 4 8z + 28227 + 8270 + 1427 + 222* 4 42272 4 182! + 4227
+9219 + 32218 + 27210 + 3021 + 272! + 15213 + 39212 + 2210 + 72°
+22% + 2527 4 222° 4 322 + 262° + 3222 + 192

61 | [13,16] | 34258 4 57257 + 35256 + 412%° + 572% + 202°2 + 1225 + 17250 4 6024

+122%8 + 246 4 2524 + 1024 + 3% + 25242 4 58240 + 47230 + 3123
+52237 + 47236 4+ 93t 4 42233 + 29232 4 2723 + 42230 + 34228 4 5727
+35220 + 412%° + 572 + 20272 + 12221 + 1722 + 60210 + 12218 + 216
+25215 + 102 + 323 + 25212 4 58x'0 + 4727 4 3128 + 5227 + 4726
+92* + 4223 + 2922 + 40z
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Table 4.3. Examples of complete mapping polynomials in the class P, 4 where ¢ is a

prime power, and ¢ is not a prime, ¢ < 121, ¢ =3° or ¢ =1 mod 3.

q |l | f(2)

9 | [,u"] |uPrS+udat +uTe? + 1z

25 [US’ulo] 3$22+U23 21+u16 20+u15 19+U2 18+2x16+u11 15+u4 14+U3 13
+u14 12+3x10_|_u23 9+U16 8+U15 7+U +2x4+u11 3+U
+ulTx

27 |[1,02] |t 4 ulf222 4 12520 | Bl 4 ydpl6 4 g0 g 2512 | 18510
+U,14$8+u10w6+u6$4+u21)2+1$

49 | 2,0 | wBat6 4 a0t gt M8 28542 4 910 4239 4 35,38
AT 29036 4 15030 | g3 4 A1 p32 4 10031 435,30 | 9198
+u6 27+U47$26+2$25+U41 24+u27x22+u12 21+U5 20+u22 19
+u47x18+u33 16+u18 15_|_u11 14+U28 13_|_u5 12+u39 10_{_61.
T BT g 85t 3003 o 232

81 | [1,u] | ™2™ + 227 4 uBa™ 4 2™ 4 g0 4 T2 4 276 4 BBl | 456,62
L 2AB0 g 2058 L 9056 8054 | 56,52 | 20050 | 72,48 | 0,46
Bt 642 4 2440 | T2038 | 0036 | 8 30 4 56,39 | 04,30
_'_u72 28+2I26+U/8 24+U56 22+U24 20+u72 18+2x16+U/8 14+U56 12
+u24l‘10+u72 8+2$ +u +u56 2+1x

121 [U40,7] 6$118+u102x117+2x116+u114 115+2x114+7x112+u78 111+6x110+u90 109

L6108 1 102106 4 315105 4 7104 | 66,103 | 7,102 @100 4 430,99 4 1,98
+u®2297 + 102% + 229 + b2 + 8292 + w2 + 8290 + 6288 4 41022%7

1080 114,85 | 9 84 | 7,82 T8 81 LGS0 490079 | GaTS | (70 | 54,75
L7aTA 86T 4 T2 4 80 T0 | 30,69 1 (568 4 42467 4 1006 1 9404 | 46,6

18062 1861 4 8400 4 658 1 102,57 1 956 4 11455 4 9054 | 7,52 4 78,51

L6250 1 %0549 1 628 1 10296 1 5445 1 7t 4 66,43 4 7,42 | Q40 | 30,39

L1025 1+ 2087 4 10276 1 203 1823 1 8232 1 18031 1 80 1 628 1 102427
19420 11425 4 9020 | 7u22 | T8 21 L 620 4 90019 4 618 | (16 | 54,05
+721 + w213 4 7212 + 8210 + 43020 + 1028 + u'22™ + 1025 + 224 4 ub2®

+82% +udTx
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Table 4.4. Examples of complete mapping polynomials in the class P, 5 where p is a

prime, p < 61, p=1 mod 4.

[, ¢]

f()

13
17

29

37

41

93

61

[1,4]
2,1]

[15, 14]

11, 38]

[5,42]

3t

72% + 228 + 527 + 102% + 525 + 62* + 823 + 322 + 3w

1621 + 15212 + 62 + 620 + 229 + 1528 + 1327 + 1320 + 1425

+152* + 723 + 722

8% + 122 + 42 + 3% + 102% + 26220 + 212 + 2328 + 20217
+8216 4+ 721% 4+ 27214 + 102" + 27212 + 42 + 3219 4 2229 + 1528
+2727 + 132°% + 62° + 1821 + 242 + 182% + 192

19233 + 28232 + 18231 4 23230 + 32229 + 3228 + 1427 + 22226 4 102%
+3622 + 3422 + 2722 + 2122 + 25220 + 33210 + 36218 + 31217 + 4216
+4x1 4 2 4 36213 + 11212 + 32 + 10210 + 342° + 2128 + 2327
+152% + 112° + 302* + 1923 + 1422 + 62

2237 4+ 16230 + 392%° + 3323 + 423 4 37232 + 262" + 2223 + 3927
+228 4 22227 + 6226 + 322 + 102 + 3622 + 21222 4 342! + 182%°
+2217 4+ 16216 + 39215 + 332 + 42 + 37212 + 2621t + 22210 + 3927
+a® + 2227 + 62° 4 32° + 102" + 362° 4 212 + 38«

1924 4 262 + 32247 + 4720 + 324 + 262 + 242% + 22242 + 7ot
+26210 + 26239 + 15238 + 6237 + 2623 4 5223° + 30231 + 46233 + 26232
+1923 + 13230 + 362 + 2627 + 14227 + 4225 + 122%° + 262** + 223
+462%2 + 182" + 262 + 5z + 9z'® + 4327 + 262'¢ + 4425 + 5z
+5021 + 26212 + 212t + 6210 + 3529 + 262° + 4027 + 192° + 522°
+262* + 222 + 2922 + 192

2057 4 312°0 + 2225° + 1825 4 312° + 17252 + 122%1 + 322°0 + 5724
+292%8 + 15247 + 40246 + 122% + 102* + 382%3 + 20242 + 424! + 352%°
+582% 4 53z + 3227 + 31236 + 17235 + 2523 + 202%% + 17232 4 2423
+3239 4+ 59229 + 29228 + 35277 + 1222 4 5622° + 1022 + 512% + 142%
+572H + 35220 + 3921 + 43218 + 3927 + 3120 + 262'° + 4921 + 52413
+172'% + 39211 + 43210 + 312° + 2928 + 6027 + 382° + 502° + 10z*
+5223 + 372% + 52z
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Table 4.5. Examples of complete mapping polynomials in the class P, 5 where ¢ is a

prime power but not a prime, ¢ < 121, ¢ =1 mod 4.

¢ |lod | flx)
9 | [WSu?] |uPa® 4 22t + w2 + 227 + v
25 [[1,2] 222 + 2% 4+ 2217 + 210 4 2213 4 212 + 229 + 28 + 220 + 2t + 3z

49 [ulo’ u22] U36x45 + U42$44 + 51.43 + U30x42 + u28x.41 + U2x40 + 61,39 _l_ u14l'38 _|_ u44x37
10436 4 9235 4 6234 20,33 | 18,32 | 4031 49230 06,98 | 3,97
6,26 44095 84004 (36,21 | 42090 | 5019 30,08 |98, 17
+u21‘16 + 61,15 + u14l'14 +U/44$13 +U10.r12 + 21,11 +U6x10 + u20x9 +U18$8
+427 + 1?28 4+ w6t + 323 4+ ut2? + i

81 | [u®, u] | ub1a™ 4+ w0 4wz 4w 4 BT 4 T8 B 4 M7
+u65x66 _|_ u471.64 + $61 + U11x60 + U22$59 + 'U/73I58 + U/55$56 + U8x53
1952 4 30051 B0 | 63,48 | 16,45 | 97, A4 | 3843 4 0,42

L Tlg0 4 240 3T (35,36 | 46,35 | 1T 30 | 79,39 | 39,90 | 43,98
PR 2526 T a2 1 902l | P20 4 62019 483,08 115,16
813 59512 L TOLIL | AL 10 | 2308 | 56,5 67,4 1 78,3
+ut2? + vz

121 ['U,g, U/79] u70x117 + 'U/53f['116 + 5:6115 + U19x114 + u2x113 + ,u/57x112 + 'U/4x111 + u95$110
+U102x109 + U61$108 + U/ZOI]'O? + u111x106 + u46x105 + U65.T104 + 95[7103 + U43ﬂ7102
L1014 69,100 | 52,99 | 23098 466,97 | 73,96 | 116,95 | 87,9
93 4 TTR92 L 690 79490 | By 88 4 16,87 | 107,86 | 18,85
B g 10483 | 7582 | 04,81 489,80 | 110,77 | 93,76 |, 88,75
LT g A2 T3 9T T2 M T 15070 492,60 | 101,68 | 1,67
06 g 8665 105,64 | 112,63 4 83069 T8 61 | 109,60 4, 92059
B3B8 g 106,57 | 113,56 | Q55 | T B 4 TA53 117,52 | 08,51
+U119x50 +U$48 +U56.T47 + u27$46 +U/58I45 +U5CC44 +4$43 +U115I42 +U14x41
90 g B00BT L 1336 | 8,35 | 99,30 | 8233 17,32 | 7,31
B30 4 6229 21098 | 100,27 | T1o96 6,95 | 95,24 | 32,23
B2 g g 1821 | 29420 4 9419 | 103,08 496,07 (83,16 |, 76,15
ATy 113 BT 02 6811 39,00 4 41,8 | 30T | 67,6

+u98:c5 + u45$4 + U64£B3 + U35.’L'2 + u37‘27
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Table 4.6. Examples of complete mapping polynomials in the class P, ¢ where p is a

prime, p < 71.

[, ]

f(x)

11

31

41

61

71

2, 1]
[1,7)
6, 16]

12, 19]

6, 57]

[11, 5]

2!

425 + 225 + 5t + 323 + ba? + Tx

15220 4 22%° 4 202 + 42 + 62*2 + 182% + 32 + 62" + 2028
+72% + 202" + 192 + 28213 + 11212 4 182 + 26210 + 2527 + 1128
+925 + 925 + 232* + 3023 + 1422 + 1z

35230 + 9235 + 3723 + 11233 + 18232 + 523! + 14230 + 262%° + 25228
+32%0 4 2802 + 422 + 342 + 3727 + 52?0 + 38219 + 518 4 4216
+212% + 142 + 32213 4 3022 + 42!t + 4210 + 1229 4 2128 + 3626
+22° + 62t + 923 + 1122 + 21z

5720 4 5225% + 58x%* + 627 + 4222 + 4925 4 62°° + 624 4 21248
435240 4 5924 + 9zt + 522% + 59242 4 602*! + 5210 + 3227 4 5128
+19230 + 3423° + 2923 + 51233 + 522032 + 24230 + 46220 + 39228 4 182%6
+62%° 4+ 4922 + 3227 + 4127 + 142 + 58220 + 21219 + 4321 + 13216
+44215 + 182 + 262" + 6022 + 342 + 1420 + 172° 4 292° + 412°
+492° + 202t + 1623 + 5122 + 32z

59250 + 182% + 692% 4 44253 + 2262 + 425! + 35250 + 612% + 3278
+302° + 6525° + 1525 + 6023 + 352°2 + 4025 + 36250 + 6021 + 53218
+4120 4 242% + 62 + 132 + 492% + 652! + 21210 + 49237 + 3528
+18236 + 23% + 25234 + 24233 + 14232 4 3323 + 63230 + 212% + 1527
+5422° + 4322 + 5922 + 1327 + 49222 + 1922 + 34220 + 7210 + 5218
+1921% 4 1% 4 8z + 482" + 282'% + 6z + 38210 + 1529 + 3128
+632° + 602° + 312" + 112° + 3627 + 57z
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Table 4.7. Examples of complete mapping polynomials in the class P, ¢ where ¢ is a

prime power but not a prime, ¢ < 121, p =5 or p = +1 mod 10 and ¢ = p® where ¢

is a square.

q¢ |la,d | f(x)

25 [2,“20] 20 20+4x16+u4 12+u20x8+4$ _'_23:

81 | [u2,ul] | uf0x™ + 10275 4+ 773 4 36272 4 15Tl 4 g l4gTO 4 13269 4 412568
1066 9,65 | 04864 | T 63 | 46,62 | 4,60 | 43,50 | 42,58
56 4 T84 551 | 33,49 4 3248 | 69,45 |, 68,44 4 67,43
2642 4 2541 4 64040 460,36 4 (19,35 417,33 | 56,32 4 415,31
G430 4 18429 4 (12,98 | 10,26 4 0,95 | 48,24 |, T 03 | 46,22
20 483019 4 4218 4 16 L T804 | T5 0L 48300 L 32,8 L 69,5
+ubBzt + w23 + u2? + uldx

121 | [1,u20] | w4zl 4 115 4 94114 4 80118 | 990,112 4 88111 4 T4, 110 4 454,106

—f-UlOOJZlOS+U74JI104+1O{L‘103+U7OZL‘102+U68 101—|—u54x100—|—u34 96+u80 95
+U54 94+u40 93—|—U50 92—|—5$91—|—U34 90+u14 86_‘_103:854_“34 84+u20 83
_'_USO 82+u28 81+u14 80—|—U114 76+u40 75+u14 74—|—Q373—|—’U,10 72
—|—u8x71—|—u114x70+u94x66+u20x65+u114x64+u100x63+u110x62—1—61‘61
+u94 60+U74 56+x55+u94 54+u80 53+U90 52—|—U88 51—|—U74ZL‘50

+u54 46_|_u100 45+U74 44+1Ox43+u70 42—|—U68 41+u54 40_|_u34 36
+u80x35+u54x34+u40x33+u50x32+5x31 +u34x30+u14x26+10x25+u34x24
+U20{L‘23+U30 22+U28 21+u14 20—|—u114x16—|—u40x15+u14$14—|—$13

+U10 12+U8 11+U114 10—|—U,94£E6+U20$5+U114$4—|—U100$ +u110 2

+7x
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