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Abstract

Fully Homomorphic Encryption (FHE) schemes allow users to perform computations over

encrypted data without decrypting the ciphertext. This is possible via two operations which

are bitwise addition and multiplication, namely logical XOR and logical AND operations,

which can be applied over the bits individually encrypted under the fully homomorphic en-

cryption scheme. Since any Boolean circuit can be realized using only AND and XOR gates,

they can be used to build circuits for the computation of even more complicated operations

over encrypted data. This property of FHE cryptosystems is especially useful in cloud com-

puting applications, since data owners who use cloud computing for storage and computa-

tion, usually tend not to trust servers and for security reasons, they prefer storing their data

in encrypted form. By using FHE cryptographic primitives, now servers are allowed to per-

form any desired task over the encrypted user data without the knowledge of secret key or

plaintext. In this thesis, we focus on solving one such task that cloud server performs over

encrypted data; sorting the elements of an integer array. We introduce two sorting schemes,

both of which are capable of efficiently sorting data in fully homomorphic encrypted form.

The technique is obtained by focusing on the minimization of the depth of the sorting cir-

cuit in addition to more traditional metrics such as the number of comparisons. The reduced
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depth of the sorting network allows a slower growth in the noise of encrypted bits and thereby

makes it possible to select smaller parameter sizes for the underlying homomorphic encryp-

tion scheme resulting in much faster computation of homomorphic sorting. We present a

leveled/batched implementation for the proposed sorting algorithms, using an NTRU based

homomorphic encryption library, which yields significant improvements over classical sort-

ing algorithms.
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TAM HOMOMORFK ŞİFRELENMİŞ VERİLER U̇ZERİNDE
SIRALAMA PROBLEMİ

Gizem Selcan Çetin

Bilgisayar Bilimleri ve Mühendisliği, Yükseklisans Tezi, 2014

Tez Danışmanı: Erkay Savaş

Özet

Tam Homomorfik Şifreleme (THS) programları, kullanıcıların şifrelenmiş veri üzerinde her

türlü işlemi yapmasına olanak verir. Bu, şifrelenmiş veri bitleri üzerinde uygulanan çarpma

ve toplama, bir diğer deyişle mantıksal VE veya ÖZELVEYA işlemleri sayesinde mümkün

olur. Her türlü mantıksal devre sadece ÖZELVEYA ve VE mantıksal işlemlerini gerçekleştiren

mantıksal kapılar kullanılarak oluşturulabildiği için, bu iki temel THS işlemi, şifreli metinler

üzerinde daha karmaşık operasyonların da hesaplanabilmesini sağlar. Bulut bilişim kul-

lanıcıları çoğunlukla bulut sunucularına güvenmemeye meyilli olduklarından, güvenlikleri

gereği, bilgilerini şifreleyerek saklama yoluna giderler. Dolayısıyla şifreli veriler üzerinde

işlem yapabilmeyi olanaklı kılan homomorfik şifreleme sistemleri, özellikle bulut bilişim

uygulamalarında yaygın kullanım alanı bulacaktır. THS sayesinde, bulut sunucuları artık

istenilen herhangi bir işlemi, kullanıcının gizli şifresini veya açık veriyi görmeden, THS

yapıtaşlarını kullanarak gerçekleyebilir. Bu tez kapsamında, bir sunucunun uygulamak isteye-

bileceği bu tür işlemlerden biri olan sıralama problemine odaklanılmıştır. Bu amaçla, tam

homomorfik şifreleme sistemi ile şifrelenmiş veriyi verimli bir şekilde sıralamaya yaraya-

cak iki yeni sıralama algoritması sunulmuştur. Bu algoritmalar karşılaştırma sayısı gibi ge-

leneksel ölçütlerin yanısıra, oluşacak sıralama devresinin derinliğinin en aza indirgenmesine
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odaklanarak tasarlanmışlardır. Derinliğin azaltılması, operasyonlar sırasında şifrelenmiş veri

bitlerinde oluşan ve şifre çözümünü olanaksız kılan gürültünün daha yavaş bir şekilde art-

masını, dolayısıyla daha küçük güvenlik parametreleriyle çalışılabilmesini sağlamış ve bu

da verimin artmasını mümkün kılmıştır. Önerilen sıralama algoritmaları, NTRU temelli THS

sistemi icin geliştirilmiş bir yazılım kütüphanesi kullanılarak gerçeklenmiş ve klasik sıralama

algoritmalarına göre çok daha iyi sonuçlar verdiği gösterilmiştir.
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for giving me the opportunity of working with their group and sharing their project with me.

I will always remember and appreciate their help.

My labmate, classmate, even once my teaching assistant, but above all, my precious friend
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1 Introduction
The idea of performing operations over encrypted data without ever decrypting it, was firstly

proposed in [1], and recently became theoretically possible due to the fully homomorphic en-

cryption (FHE) scheme introduced by Gentry in [2,3]. The motivation behind the idea is that

when users encrypt their data and save them in an untrusted server, and afterwards when they

need to perform a computation over the encrypted data, they do not want to go with the trivial

solution; namely download the ciphertexts from the server, decrypt them with their secret

keys, perform the intended computation on the plaintext data, and possibly encrypt the data

and/or results and send them back to the server. Due to its impracticality and/or infeasibility,

this is obviously not a convenient way of managing data; since even for a simple operation,

many encryption/decryption operations are necessary and the network traffic is increased due

to the huge amount of data exchanged between the user and the server. In particular, if the

client is using the server in order to reduce his computational workload and storage require-

ments, for example by outsourcing them to a cloud service, then he will definitely prefer that

the server performs the actual operations, and minimize any local computations on client side

without sacrificing security and privacy of data involved.

The first fully homomorphic encryption scheme [2, 3] is far from practical and more of

a theoretical interest due to its excessive amount of computation and memory requirements.

In a short amount of time after the introduction of the first FHE, however, more practical

schemes were proposed due to the popularity and relevancy of the subject, especially in

cloud computing applications. Consequently, the scientific community started to focus on

some practical operations that can be homomorphically performed over the encrypted data.

When managing, storing, and processing confidential information, such as the amount of
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financial assets in banking accounts, salary, age, and other sensitive demographic employee

information or any other personal data, security and privacy concerns immediately follow.

FHE scheme can be profitably used to alleviate the aforementioned concerns. For instance,

when a manager at a company wants to take the average of the age or the salaries of the staff

of the company, which are private data on personal basis, using FHE she can ask the cloud

server to take their arithmetic mean over the encrypted data and return only the encryption

of the mean value. Another application would be finding the minimum or maximum values

from a set of numbers. More challenging task, for instance, would be sorting an array of

encrypted integers homomorphically.

Our goal in this thesis is proposing new sorting schemes that will be advantageous in ho-

momorphic setting since well known sorting algorithms turn out to be not efficient when ap-

plied over the encrypted data. In particular, we draw attention that many classical algorithms

in computer science may have to be re-designed for efficient homomorphic computation. In

the particular case of sorting, we inspect the best known sorting algorithms in the literature,

propose new algorithms and compare them in terms of computational complexity.

Since the best FHE schemes are not sufficiently fast yet, we work with relatively small

sets of unsorted integers. Moreover, the achieved execution time results for homomorphic

computations are much higher than those for plaintext data. However, FHE is a rapidly

developing area and as new FHE schemes are likely to appear in the near feature, the sorting

of encrypted data will be practical. All the same, our quest for sorting algorithms that are

designed to perform better in homomorphic setting will remain a relevant research area.

The organization of the thesis can be outlined as follows

• We take a closer look at the FHE algorithms that can be used for homomorphic com-

putations in Section 2.

• In order to give an idea of the operations that can be computed over homomorphically

encrypted ciphertexts, we will briefly go over a few simple boolean circuits which

are built using only AND and XOR gates, also known as algebraic normal form, in

Section 3. The idea is that these two logical operations can be performed homomorphi-

cally. In general, we will see that converting any Boolean function into a special form,
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Algebraic Normal Form (ANF), is possible.

• Then, in Section 4, several classical sorting algorithms are analyzed, and we show that

some are more suitable than others for leveled homomorphic evaluation. Specifically,

we characterize them with respect to a new metric, i.e. the circuit depth. As it turns

out, the existing sorting schemes are simply not suitable for homomorphic evaluation.

• In Section 4, we introduce two new depth optimized sorting schemes which lend

themselves to shallow circuit evaluation of depths of only O(log(N) + log(`)) and

O(log3/2(N) + log(`)) respectively, for sorting N elements, where ` represents the size

of the array elements in number of bits. Furthermore, we instantiate a somewhat ho-

momorphic encryption scheme (SWHE) based on NTRU, and present implementations

of the proposed sorting algorithms using this SWHE scheme in the following section,

namely in Section 5. Our results confirm our theoretical analysis, i.e. that the perfor-

mance of the proposed sorting algorithm scales favorably as N increases. Although

the results are still not practical from the time and efficiency point of views, they are

promising considering that the overall FHE concept is relatively new, and there is a long

way from the start with an almost infeasible solution to a scheme which is practically

acceptable. Our work is one step to achieve this goal.

• Finally, in Section 6, we conclude the thesis and outline the possible future work ideas

on the subject.
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2 Literature Review and Background
An encryption scheme is fully homomorphic (FHE scheme) if it permits the efficient evalu-

ation of any boolean circuit or arithmetic function on ciphertexts [1]. Gentry introduced the

first FHE scheme [2, 3] based on lattices that supports the efficient evaluation for arbitrary

depth circuits. This was followed by a rapid progression on new FHE schemes. van Dijk,

et al., proposed a FHE scheme based on ideals defined over integers [4]. In 2010, Gentry

and Halevi [5] presented the first actual FHE implementation along with a wide array of op-

timizations to tackle the infamous efficiency bottleneck of FHEs. Further optimizations for

FHE, which also apply to somewhat homomorphic encryption (SWHE) schemes followed

including batching and SIMD optimizations, e.g. see [6, 7, 10].

Several newer SWHE & FHE schemes appeared in the literature in recent years. Braker-

ski, Gentry and Vaikuntanathan proposed a new FHE scheme (BGV) based on the learning

with errors (LWE) problem [11]. To cope with noise the authors propose efficient techniques

for noise reduction. While not as effective as Gentry’s recryption operation, these lightweight

techniques limit the noise growth enabling the evaluation of much deeper circuits using only

a depth restricted SWHE scheme. The costly recryption primitive is only used to evaluate

extremely complicated circuits. In [10] Gentry, Halevi and Smart introduced a LWE-based

FHE scheme customized to achieve efficient evaluation of the AES cipher without bootstrap-

ping. Their implementation is highly optimized to for efficient AES evaluation using key and

modulus switching techniques [11], batching and SIMD optimizations [7]. Their byte-sliced

homomorphic AES implementation takes about 5 minutes to evaluate an AES block.

More recently, Alt-López, Tromer and Vaikuntanathan (ATV) proposed SWHE and FHE

schemes based on Stehlé and Steinfeld’s generalization of the NTRU scheme [13] that sup-
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ports inputs from multiple public keys [12]. Bos et al. [14] introduced a variant of the NTRU

FHE scheme along with an implementation. The authors modify the NTRU scheme by adopt-

ing a tensor product technique introduced earlier by Brakerski [15] such that the security de-

pends only on standard lattice assumptions. The authors advocate use of the Chinese Remain-

der Theorem on the message space to improve the flexibility of the scheme. Also, modulus

switching is no longer needed due to the reduced noise growth. Doröz, Hu and Sunar propose

another variant based on the NTRU scheme in [16]. The implementation is batched, bit-sliced

and features modulus switching techniques. The authors also specialize the modulus to re-

duce the public key size. The authors report an AES implementation which achieves one

minute evaluation time per AES block [10]. More recent FHE schemes displayed significant

improvements over earlier constructions in both time complexity and in ciphertext size. Nev-

ertheless, both latency and message expansion rates remain roughly two orders of magnitude

higher than those of traditional public-key schemes. Bootstrapping [2], relinearization [17],

and modulus reduction [11, 17] are indispensable tools for FHEs. In [17, Sec. 1.1], the re-

linearization technique was proposed as a way to re-encrypt quadratic polynomials as linear

polynomials under a new key, thereby making their security argument independent of lattice

assumptions and dependent only on a standard LWE hardness assumption.

Homomorphic encryption schemes have been used to build a variety of higher level secu-

rity applications. Lagendijk et al. [8] give a summary of homomorphic encryption and MPC

techniques to realize key signal processing operations such as evaluating linear operations,

inner products, distance calculation, dimension reduction, and thresholding. Using these key

operations it becomes possible to achieve more sophisticated privacy-protected DSP heavy

services such as face recognition, user clustering, and content recommendation. Crypto-

graphic tools permitting restricted homomorphic evaluation, e.g. Paillier’s scheme, and more

powerful techniques such as Yao’s garbled circuit [22] have been around sufficiently long to

be used in a diverse set of applications.

Homomorphic encryption schemes are often used in privacy-preserving data mining ap-

plications. Vaidya and Clifton [23] propose to use Yao’s circuit evaluation [22] for the com-

parisons in their k-means clustering algorithm in privacy-preserving case. The secure com-

parison protocol by Fischlin [24] uses the GM-homomorphic encryption scheme [26] and the
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method by Sander et al. [25] to convert the XOR homomorphic encryption in GM scheme

into AND homomorphic encryption. The privacy-preserving clustering algorithm for verti-

cally partitioned (distributed) spatio-temporal data [27] uses the Fischlin formulation based

on XOR homomorphic secret sharing primitive instead of costly encryption operations.

The tools for somewhat homomorphic encryption developed to achieve fully homomor-

phic evaluation have only been considered for a few years now for use in applications. For in-

stance, in [18] Lauter et al. consider the problems of evaluating averages, standard deviations,

and logistical regressions which provide basic tools for a number of real-world applications

in medical, financial, and the advertising domains. The same work also presents a proof-of-

concept Magma implementation of a SWHE for the basic operations. The SWHE scheme is

based on the ring learning with errors (RLWE) problem proposed earlier by Brakerski and

Vaikuntanathan. Cheon et al. [9] present a method along with implementation results to com-

pute encrypted dynamic programming algorithms such as Hamming distance, edit distance,

and the Smith-Waterman algorithm on genomic data encrypted using a somewhat homomor-

phic encryption algorithm. The authors design circuits to compute the distances between two

genomic strings. The work designs circuits meticulously to reduce their depths to permit

efficient evaluation using BGV-type leveled SWHE schemes. In this work, we follow a route

very similar to that given in [9] for sorting.

In [19], Doröz et al. use an NTRU based SWHE scheme to construct a bandwidth efficient

private information retrieval (PIR) scheme. Due to the multiplicative evaluation capabilities

of the SWHE, the query and response sizes are significantly reduced compared to earlier PIR

constructions. The PIR construction is generic and therefore any SWHE, which supports

a few multiplicative levels (and many additions), could be used to implement the PIR. The

authors also give a leveled and batched reference implementation of their PIR construction

including performance figures.

The only homomorphic sorting result we are aware of was reported by Chatterjee et al.

in [20]. In this work, for the first time, the authors considered the problem of homomorphi-

cally sorting an array using the recently proposed hcrypt FHE library [21]. The authors

define a number of FHE elements to realize basic homomorphic comparison and swapping

operations and then implement the classical Bubble and Insertion sort algorithms using these
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homomorphic functions. Noting the exponential rise of evaluation time with the array size,

the authors introduce a new approach dubbed Lazy Sort which removes the Recrypt oper-

ation after additions allowing occasional comparison errors in Bubble Sort. While the array

is not perfectly sorted the sorting time is significantly reduced. After Bubble sort the nearly

sorted array is then sorted again with a homomorphically evaluated Insertion sort - this time

with all Recrypt operations in place. The authors report implementation results with arrays

of 5-40 elements (32-bits) which show significant reduction in the evaluation time over direct

fully homomorphic evaluation. In the best case, the authors report a 1399 second evaluation

time in contrast to 21565 seconds in the fully homomorphic case for an array of size 40.

Despite the impressive speed gains, the work opts to alleviate the efficiency bottleneck by

relaxing noise management, and by combining classical sorting algorithms instead of target-

ing the circuit depth of the sorting algorithm. Furthermore, it suffers from the fundamental

limitations of the hcrypt library:

• Noise management is achieved by recrypting partial results after every major operation.

Recrypt is extremely costly and is considered inferior to more modern noise manage-

ment techniques such as the modulus reduction [11] that yield exponential gains in

leveled implementations.

• hcrypt does not take advantage of batching or SIMD techniques [7] which greatly

improve homomorphic evaluation performance.

In subsequent sections, we provide a brief summary of the multi-key NTRU-FHE scheme

and give a slight explanation on primitive functions that is proposed by Alt-López, Tromer

and Vaikuntanathan. Later, we give details of the DHS FHE library, that is used in the imple-

mentation, based on a specialized NTRU-FHE version.

2.1 The NTRU-FHE Scheme

In 2012 Alt-López, Tromer and Vaikuntanathan proposed a leveled multi-key FHE scheme

(ATV) [12]. The scheme based on a variant of NTRU encryption scheme proposed by Stehlé

and Steinfeld [13]. The introduced scheme uses a new operation called relinearization and
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existing techniques such as modulus switching for noise control.

Doröz, Hu and Sunar use the same construction in [16] which is a single key version

of ATV with reduced key size technique. The operations are performed in the ring, Rq =

Zq[x]/〈xn + 1〉, where n is the polynomial degree and q is the prime modulus. The scheme

also defines an error distribution χ, which is a truncated discrete Gaussian distribution, for

sampling random polynomials that are B-bounded. The term B-bounded means that the co-

efficients of the polynomial are selected in range [−B, B] with χ distribution. The scheme

consist of four primitive functions KeyGen, Encrypt, Decrypt and Eval. A brief detail of

the primitives is as follows:

KeyGen. We choose sequence of primes q0 > q1 > · · · > qd to use a different qi in

each level. And for each i = 0, . . . , d, at first we sample u(i) and g(i) from χ distribution, then

a public and secret key pair is computed for each level as:

h(i) = 2g(i)( f (i))−1

and

f (i) = 2u(i) + 1

in Rqi = Zqi[x]/〈xn + 1〉. And if f (i) is not invertible in this ring, then it needs to be sampled

again. Later we create evaluation keys for each level

ζ(i)
τ (x) = h(i)s(i)

τ + 2e(i)
τ + 2τ( f (i−1))2

in Rqi−1 , where {s(i)
τ , e

(i)
τ } ∈ χ and τ = [0, blog qic].

Encrypt. To encrypt a bit b for the ith level we compute:

c(i) = h(i)s + 2e + b

8



where {s, e} ∈ χ.

Decrypt. In order to compute the decryption of a value for specific level i we compute:

m = c(i) f (i) (mod 2)

Eval. The gate level logic operations XOR and AND are done by computing the addition

and multiplication of the ciphertexts. In case of c(i)
1 = Encrypt(b1) and c(i)

2 = Encrypt(b2);

XOR operation can be applied as,

c(i)
1 + c(i)

2 = Encrypt(b1 + b2)

and, AND can be applied similarly,

c(i)
1 · c

(i)
2 = Encrypt(b1 · b2)

Multiplication operation creates a significant noise in the ciphertext and to cope with that

we apply Relinearization and modulus switch. The Relinearization computes c̃(i)(x) from

c̃(i−1)(x) extending c̃(i−1)(x) as a linear combination of 1-bounded polynomials

c̃(i−1)(x) =
∑
τ

2τc̃(i−1)
τ (x)

Than using the evaluation keys it computes

c̃(i)(x) =
∑
τ

ζ(i)
τ (x)c̃(i−1)

τ (x)

as the new ciphertext. The formula is actually the evaluation of homomorphic product of

c(i)(x) and ( f (i))2. The reason, why this holds, is given in [16]. Later, the modulus switch

c̃(i)(x) = bqi/qi−1c̃(i)(x)e2

decreases the noise by log (qi/qi−1) bits by diving and multiplying. The operation b·e2 refers
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to rounding and matching the parity bits after worth.

2.2 The DHS FHE Library

A customized version of the NTRU-FHE Scheme that is previously proposed in [16] by

Doröz, Hu and Sunar (DHS) is used for the encryption part. The code is written in C++

using NTL package that is compiled with GMP library. The library contains some special

customizations that improve the efficiency in running time and memory requirements. The

customizations of the DHS implementation are as follows:

• We select a special mth cyclotomic polynomial Ψm(x) as our polynomial modulus. The

degree of the polynomial n is equal Euler totient function of m, i.e. ϕ(m). In each level

the arithmetic is performed over Rqi = Zqi[x]/〈Ψm(x)〉 where modulus qi is equal to

pk−i. The value p is a prime number that cuts (logp)-bits of noise and the value k is

equal to depth plus 1.

• The special structure of the moduli pk−i the evaluation keys in one level can also be

promoted to the next level via modular reduction. For any level we can evaluate the

evaluation key as ζ(i)
τ (x) = ζ(0)

τ (x) (mod qi). This technique reduces the memory re-

quirement significantly and render possible to evaluated higher depth circuits.

• The special selected cyclotomic polynomial Ψm(x) is used to batch multiple message

bits into the same polynomial for parallel evaluations as proposed by Smart and Ver-

cauteren [6, 7] (see also [10]). The polynomial Ψm(x) is factorized over F2 into equal

degree polynomials Fi(x) which define the message slots in which message bits are

embedded using the Chinese Remainder Theorem. We can batch ` = n/t number of

messages where t is the smallest integer that satisfies m|(2t − 1).

• The DHS library can perform 5 main operations; KeyGen, Encryption, Decryption,

Modulus Switch and Relinearization. The most time consuming operation is Relin-

earization that it is generally the bottleneck of the running algorithms.

The most critical operation for circuit evaluation is Relinearization. The other opera-

tions have negligible effect on the run time.
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3 FHE Instructions
Since we are working on FHE data, in order to build any circuit, we will need bitwise op-

erations and equations in Algebraic Normal Form (ANF) in which we use two fundamental

binary operations; multiplication (” · ”) and addition (” ⊕ ”). Both of these operations take

two 1-bit inputs and the result is again a 1-bit value. In digital logic, these operations are

implemented by AND and XOR gates.

If we perform a simple task such as comparing two numbers of `-bit, we will need two

operations; IsEqual and LessThan. The comparison circuit takes two `-bit operands, and the

output is only 1 bit. Another task is summing ` bits, which is basically computing Hamming

Weight of an `-bit number. The output is dlog(`)e-bit long in this case, since the maximum

Hamming Weight value is when all input bits are 1 and sum would be ` which is a dlog(`)e-bit

number.

Even though there are some software tools which deal with ANF conversion, they do not

consider circuit depth so they are not useful for our main goal which is keeping the circuit as

shallow as possible.

3.1 Equality Circuit CEQUAL

The CEQUAL circuit simply compares two `-bit integers X and Y , and outputs 1 if X equals Y ,

otherwise it outputs 0. We can start by solving the problem verbally. In other words, one can

claim that if all bit values in X are the same with corresponding bit values in Y , then the two

numbers are equal to each other. We visualize it as a pseudocode as follows,
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Input Words: Two `-bit numbers with the following bit representation X = 〈x`−1, . . . , x1, x0〉

and Y = 〈y`−1, . . . , y1, y0〉.

Output value: if (X = Y) z = 1 else z = 0.

if (x0 == y0) ∧ (x1 == y1) ∧ . . . ∧ (x`−1 < y`−1) then

z = 1

else

z = 0

end if

In Boolean algebra, if we need to check if two bits are identical we can simply use an XOR

gate. XOR outputs 0 for the identical bit values and 1 for different bits. Hence, we can

formalize the comparison circuit for `-bit numbers as follows:

z = (X = Y) =
∏
i∈[`]

(xi = yi) =
∏
i∈[`]

(xi ⊕ yi ⊕ 1)

Notice that, for FHE computations, multiplication take 2 inputs, so that we are using 2

input AND gates. As a result, the product chain of ` elements may be evaluated using a

binary tree of depth dlog(`)e. An example circuit for ` = 4 is given in Figure 1. As seen in

the figure, multiplicative depth is log(4) = 2 for ` = 4.

3.2 Less Than Circuit CLES S−T HAN

In a similar manner, the CLES S−T HAN circuit compares two `-bit integers X and Y , and outputs

1 if X is smaller than Y else it outputs 0. The formalization of the operation is given in the

following.

Input Words: Two `-bit numbers with the following bit representation X = 〈x`−1, . . . , x1, x0〉

and Y = 〈y`−1, . . . , y1, y0〉.

Output value: if (X < Y) z = 1 else z = 0.

12
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Figure 1: CEQUAL for ` = 4

if [(x0 < y0) ∧ (x1 == y1) ∧ . . . ∧ (x`−1 == y`−1)] ∨ . . . ∨ [(x1 < y1) ∧ (x2 ==

y2) ∧ . . . ∧ (x`−1 == y`−1)] ∨ . . . ∨ [(x`−1 < y`−1)] then

z = 1

else

z = 0

end if

In condition evaluations we can convert the OR (logical disjunction ∨) gates to XOR (⊕)

gates. To see why this works, first note that a + b = a ⊕ b ⊕ (a · b) where a and b are bit

values. If a · b = 0 then a + b = a ⊕ b. Then, we can make the following proposition for the

conjunction cases of the above conditional expressions:

Proposition 1 In the expression for condition of above IF statements, any two distinct con-

junctions ρ and ρ′ it holds that ρρ′ = 0.

Proof Find two distinct conjunctions ρ and ρ′ where (xk < yk) ∈ ρ and (xl < yl) ∈ ρ′,

k , l. Then if k < l, we will have (xl == yl) ∈ ρ and as a result we will have (xl <

yl)(xl == yl) ∈ ρρ′. Since (xl < yl)(xl == yl) = 0, ρρ′ = 0. Otherwise, if k > l, then we

will have (xk == yk) ∈ ρ′ and as a result we will have (xk < yk)(xk == yk) ∈ ρρ′. Since

(xk < yk)(xk == yk) = 0, ρρ′ = 0. �
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According to above proposition, we can convert all OR occurrences to ⊕, for which we use

the symbol
∑

in accumulative cases. We can formalize the comparison circuit as follows:

z = (X < Y) =
∑
i∈[`]

(xi < yi)
∏
i< j<`

(x j = y j)


where (xi < yi) = yi · (xi ⊕ 1) and (x j = y j) = y j ⊕ x j ⊕ 1.

Here, the equality (xi < yi) = yi · (xi ⊕ 1) can be obtained from the truth table for (xi < yi)

below.

x y (x < y)

0 0 0

0 1 1

1 0 0

1 1 0

The expansion of the formula gives a sum of products expression where the product with

the maximum number of elements occurs when i = 0. The product chain contains ` + 1

elements where 2 bits are contributed by the (x0 < y0) term and the rest are from the (y j⊕x j⊕1)

terms. The product of ` + 1 elements may be evaluated using a binary tree, in which case we

achieve the minimum depth of dlog (` + 1)e. An example circuit for LessThan operation is

illustrated in Figure 2 for ` = 4.

3.3 Hamming Weight Circuit CHW

Different from the first two instructions, CHW does not have a general structure for different

`-bit inputs. In general, an half-adder is used to sum two bits while a full-adder is used for

three bits. So, for optimization purposes different number and different type of adders are

used for different ` values.

A half-adder computes the sum and the carry for the input bits x and y,

s = x ⊕ y

c = x · y
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Figure 2: CLES S−T HAN for ` = 4

A full-adder computes the sum and the carry for the input bits x, y and z as,

s = x ⊕ y ⊕ z

c = (x · y) ⊕ (x · z) ⊕ (y · z)

As seen above, both adders take 1 multiplicative depth. For instance, if ` = 4 then we can

group the first three bits, and use a full Adder, then continue with a half adder in the second

level, and so on. Similar approach is applied for larger ` values. As a rough approximation

total depth becomes O(log(`)). An illustration of the steps is given below.

x3

x2

x1

x0 c0 s0

x3

c0

c1

s1 c2 s2 s1

Here, first a full adder sums the first three bits, x0, x1, and x2, resulting in two bits, namely

c0 and s0. Since s0 is aligned with x3, they are added using a half adder, which produces c1

and s1. A final addition of c0 and c1 will complete the operation.
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4 Sorting Algorithms
Sorting is an old problem in the history of computing. Even though the main idea behind

the task is simple, it has been an attractive subject because the solution to this problem has

different complexity measures and since it is a simple problem, it has to be solved with the

least number of operations/the shortest amount of time/the smallest memory etc. There are

numerous sorting algorithms proposed, some are better known and widely used while the

others are optimized in the aspect of a specific complexity measure and none of them can be

labeled as the best. For the purpose of this thesis, we will focus on comparison based sorting

algorithms and the property which we want to optimize will be the multiplicative depth of

the sorting circuit.

Sorting network is a comparison based model, which consists of comparator circuits and

swapping operations. The difference between classical comparison-based sorting algorithms

such as Quick Sort and sorting networks, is that all operations are set in advance, which

means that there is no data dependency and additionally sorting networks are built for fixed

input size. For instance if an array is reversely ordered which is the worst case, Quick Sort

complexity becomes O(n2), but in the average, complexity of Quick Sort is O(n log(n)) and

this is due to the occasional skipping of some steps of the algorithm, depending on the data

which can be partially sorted.

On the other hand, in sorting networks, algorithm steps are applied exactly in the same

manner for any input data. All the same, sorting networks, despite the impossibility of early

termination, are useful for parallel computation. This is because suboperations in each stage

of the algorithm are independent from each other, and there is input/output data dependency

only between consecutive stages. Since we are trying to sort encrypted inputs we are some-
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how blind in each step of the algorithm. As a result, even though data dependent algorithms

may be faster, being independent from the input makes sorting networks only candidates for

FHE Sorting.

Even though there are some algorithms which are especially desinged as a sorting net-

work, some classical sorting algorithms can also be represented as a network, which FHE

properties require. Firstly, we will go over some well known algorithms and then give an

analyze for sorting networks. In the figures, the horizontal wires represent the elements of

an array to be sorted, vertical lines stand for compare and swap operations, and the black

dots are the inputs of the comparison block. After a comparison and swapping operation are

applied, the outputs are placed as; the smaller element goes to the upper wire and the larger

element is placed on the other. For simplicity of the figures, in this section we used N = 8 for

the input array size, that is to say, we provide visualization for sorting network of 8 numbers.

4.1 Bubble Sort

Bubble Sort is one of the simplest sorting techniques that permits a rather straightforward

implementation using only primitive comparison and swap operations. Chatarjee et al. [20]

design homomorphic conditional swap circuits to facilitate homomorphic evaluation of the

Bubble Sort algorithm. Very briefly, the sorting algorithm works by making passes over the

array. In each pass the elements are pairwise compared and according to the result, they are

swapped to move the smaller element to the left (in case of a horizontal array). The average

and worst case performances for an array of N elements are the same: O(N2). An illustration

of a simple application of the algorithm is given in Figure 3.

During homomorphic evaluation since we have no way of knowing when the array is

sorted for early termination, we need to make N − 1 passes over the array, thus always suffer

the worst case complexity. Since after each pass another element in the rightmost portion is

sorted the passes decrease by one in number of elements compared and swapped after each

pass. Each comparison can be evaluated using a depth O(log(`)) circuit for an `-bit wide

array elements. The swap only adds one multiplication. Therefore the depth of the Bubble
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Figure 3: Bubble Sort

Sort circuit will be

d(CB−S ORT ) = [(N − 1) + (N − 2) + . . . + 1][log(`) + 1]

=
N2 − N

2
[log(`) + 1].

Now we can make some economy by not waiting until a pass is finished to start the next

pass. We can overlap the passes except with one comparator delay due to the delays we suffer

in the very first comparison. A diagram showing the overlapped Bubble Sort circuit is shown

in Figure 4. Each node represents a conditional swap operation where the lesser of the input

values is moved up and the other down. The number of comparison and swap operations is

N(N − 1)/2. The first pass takes N − 1 comparator delays, but each additional pass takes only

one extra delay, accounting to a total of N − 2 delays. Therefore overall complexity of this

new circuit becomes,

d(CB−S ORT ) = [(N − 1) + (N − 2)][log(`) + 1]

= (2N − 3)[log(`) + 1]

Note that in their implementation Chatarjee et al. [20] perform the comparison using a

carry propagate adder based subtraction circuit resulting in a circuit depth d(CB−S ORT ) =

(N2 − N)(` + 1)/2 instead. While the computational complexity of the scheme is low, the

O(N2) circuit depth is prohibitive.

In the next section, we will give an alternative way of Bubble Sort, known as Odd Even
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Figure 4: Bubble sort circuit with overlaps

Transposition Sort, with less depth, which is more suitable for parallel programming.

4.2 Odd Even Transposition Sort

A trellis shaped circuit arrangement of Bubble sort network is known as Odd Even Transpo-

sition Sort. The method is illustrated in Figure 5. The circuit admits N inputs, and computes

the N sorted output values after N passes. The total number of comparisons is N − 1 in each

two consecutive stage, so overall, there are N(N − 1)/2 comparators. And the depth of the

circuit is,

d(CTR−S ORT ) = N[log(`) + 1]

4.3 Insertion Sort

Insertion sort is a simple sorting algorithm that iteratively builds a sorted array from an un-

sorted one. The sorted array initially holds only the first element. Then each element is one

by one added to the sorted list by comparing it from right to left with the elements in the

sorted list until a smaller element is encountered. The new element is then inserted into the

sorted array next to the first smaller element when scanning right to left. The average case
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Figure 5: Bubble Sort circuit arranged into a trellis structure, known as Odd Even Transpo-
sition Sort
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Figure 6: Insertion Sort

and the worst case complexities of the algorithm are O(N2) while the best case is only O(N).

The circuit for conventional Insertion Sort is given in Figure 6.

When considered as a circuit for homomorphic evaluation we need to run the algorithm

with the worst case complexity, without making early decisions as in Bubble Sort. We build

up the sorted array one by one making increasing number of comparison and conditional

swaps. We obtain a circuit depth of

d(CI−S ORT ) = [1 + 2 + . . . + N − 1][log(`) + 1]

=
N2 − N

2
[log(`) + 1].

Now, when we consider the comparison network CI−S ORT in Figure 6 in light of parallel

computing, this circuit can be used in a more efficient way by overlapping some compar-

isons, similar to that we did for CB−S ORT . Then, notice that if we compress the circuit in

Figure 6 horizontally, we will actually get the same circuit of Figure 4. Consequently, one

can claim that, considering sorting networks and FHE sorting, Insertion Sort and Bubble Sort

are reduced to the identical algorithm and implementation.

In [20] Chatarjee et al. rely on the fact that after the imperfect application of Bubble Sort

that the array is nearly sorted. Therefore Insertion Sort performs nearly in linear time.

4.4 Merge Sort

Merge Sort is an asymptotically faster algorithm and allows early termination in normal exe-

cution, which reduces the complexity. The algorithm is recursively applied by splitting arrays
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Figure 7: Merge Sort

into smaller ones. In the innermost recursion, arrays of two elements are sorted, where only

one comparison is needed in each case. The merge step is started, which combines two indi-

vidually sorted arrays into a single sorted array. The operation continues until all the array is

sorted. The algorithm is highly parallelizable since different parts of the array can be sorted

independently until higher levels are reached. In addition, with best, average, and worst case

performances of O(N log(N)), Merge Sort is a popular choice for sorting big data. A sorting

network representing Merge Sort is illustrated in Figure 7.

The parallel nature of the algorithm makes it an interesting candidate for homomorphic

evaluation. However, since early termination is not possible in homomorphic evaluation,

an analysis for the depth of the circuit is necessary to assess its efficiency. The number of

comparisons is the same as the Bubble Sort algorithm, which is (N2 − N)/2.

Since analyzing the depth of the circuit for the Merge Sort algorithm is different in fully

homomorphic computation, an analysis requires in depth treatment, we provide an explana-

tion for the simple case where the number of elements in the array is a power of two. In the

innermost part of the recursion, we compare two elements, Ai and Ai+1. Consequently, the
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Figure 8: Merging two individually sorted arrays

algebraic normal form for the circuit for each comparison can be derived as follows:

Bi = Ai(Ai < Ai+1) ⊕ Ai+1(Ai < Ai+1)′

Bi+1 = Ai(Ai < Ai+1)′ ⊕ Ai+1(Ai < Ai+1)

This equations results in circuit of depth log ` + 1, where ` is the bit length of array

elements.

Next, we combine two sorted arrays, namely (Bi, Bi+1) and (Bi+2, Bi+3) into a sorted array

of (Ci,Ci+1,Ci+2,Ci+3). We can illustrate the merge step as in Figure 8.

In Figure 8, the left side of every comparison operation implies the comparison returns

true, otherwise it returns false. Depending on the comparison results, we can sort array

elements. The sorted array can be traced from top to bottom in the tree in Figure 8. As can

be observed from the figure, early termination is possible in normal computation, therefore

not all comparisons have to be performed. However, the homomorphic evaluation of sorting

requires that all four comparisons need to be performed. The algebraic normal form of the

Boolean expressions for the circuit outputs contain product terms with up to four inputs. For

example, the formula for Ci+3 contains the product term

Bi+3(Bi < Bi+2)(Bi+1 < Bi+2)′(Bi+1 < Bi+3)

which requires a comparison network with depth 2. This, in turn, results in a circuit with

depth 2 · (log(`)+1). Given that there are log(N) levels in the Merge Sort algorithm, the depth
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of the circuit can be calculated as

d(CM−S ORT ) = [1 + 2 + . . . + log(N)][log(`) + 1]

=
log2(N) + log(N)

2
[log(`) + 1]

Consequently, we can conclude that asymptotic complexity for the overall depth is found as

d(CM−S ORT ) = O(log2(N) log(`))

Since in each step, no more than N comparisons are done, number of comparisons isO(N log2(N)).

In the homomorphic case, the given analysis would imply a better strategy for sorting

algorithms where all comparisons can be done first in parallel to decrease the circuit depth.

In what follows we introduce a new sorting circuit inspired from this merge sort circuit that

achieves depth O(log(N) + log(`)).

4.5 Odd-Even Merge Sort

It has a similar recursive structure to Merge Sort. The algorithm considers two already sorted

half-lists, at first sorting odd and even indexed elements seperately and then merging them.

Final step is to compare and swap inner adjacent elements. We can illustrate this algorithm

as in Figure 9.

Here, let each recursive step of the algorithm be a stage and in a stage let there be k

numbers to be sorted in parallel. In order to sort k numbers, we will need log(k) passes in that

stage. In the outermost stage, it is log(N) passes and in the innermost stage, it will be only 1.

So the overall depth can be calculated as;

d(COEM−S ORT ) = [1 + 2 + . . . + log(N)]

=
log2(N) + log(N)

2

This is the depth in terms of comparisons, but since we are interested in the depth in term
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Figure 9: Odd-Even Merge Sort

of multiplication operation we have to consider the depth of one comparison operation, so

that the overall depth will be

d(COEM−S ORT ) =
log2(N) + log(N)

2
[log(`) + 1]

The overall depth complexity is same with classical Merge Sort, with O(log2(N) log(`)) and

the total number of comparisons can be computed as O(N log2(N)).

4.6 Bitonic Sort

It is a parallelizable algorithm for sorting. It has similar complexity measures with Odd-Even

Merge Sort, but with slightly fewer number of comparisons. The sorting network is shown in

Figure 10. The depth is computed as,

d(COEM−S ORT ) = [1 + 2 + . . . + log(N)][log(`) + 1]

=
log2(N) + log(N)

2
[log(`) + 1]
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Figure 10: Bitonic Sort

Similarly, the depth is again in the same order with O(log2(N) log(`)) and as show in

Figure 10, in each stage, there are N/2 comparisons, which lead to a total of O(N log2(N))

comparison operations.

4.7 Proposed Depth Optimized Sorting Algorithms

Here we propose two sorting algorithms which are optimized to achieve the shallowest, in

terms of multiplicative depth, circuit possible. The algorithm takes an array of elements

which are fed to the sorting circuit as an input and gives the ordered elements as the output

vector. For these two proposed circuits, we will use the notation CEQUAL and CLES S−T HAN

introduced in Section 3 where necessary. The algorithms for these circuits is given in the

following sections.

For both of these sorting algorithms, we will use a comparison matrix M, which can be

described as follows:

The Comparison Matrix

Input vector: X = 〈X0, X1, . . . , XN−1〉
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Output vector: Y = 〈Y0,Y1, . . . ,YN−1〉

We construct the comparison matrix M as:

M =



m0,0 m0,1 · · · m0,N−1

m1,0 m1,1 · · · m1,N−1
...

...
. . .

...

mN−1,0 mN−1,1 · · · mN−1,N−1


.

Each mi, j is computed as follows1:

mi j =

 1 if Xi < X j

0 else

where i, j ∈ N and i < j. The diagonal elements are self comparisons, i.e. Xi < Xi, so we

set diagonal values mi,i = 0 without any computation. The remaining entries in the lower

triangular part of the M, whose indices satisfy i > j, are computed as m ji = mi j ⊕ 1. Note that

the lower triangular part corresponds to the comparisons in the form m ji = (Xi ≥ X j).

Notice that, this is a straightforward approach since we are simply comparing every ele-

ment to every other elemen in the input array. But in terms of depth, it has a significant ad-

vantage, since doing all comparisons beforehand (and most importantly in parallel) spares us

d(CLES S−T HAN) depth in each comparison level. In the construction of M we need N(N −1)/2

parallel CLES S−T HAN operations. This means the depth of this initial step will be 1 in terms

of comparison and log(` + 1) in terms of multiplication as stated earlier. By creating this M

initially, we will simply be able to evade further CLES S−T HAN computations during the exe-

cution of later steps and multiplicative depth will be minimized with this approach. We can

illustrate this as a sorting network as in Figure 11.

4.7.1 Direct Sort

First proposed method is based on finding the rankings of the input elements. This means

that for each element of the input vector we will find an index which corresponds to the order

1Note that when there is no ambiguity we will drop the comma, i.e. write mi, j as mi j in the indices for brevity.
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Figure 11: A Sorting Network that compares all pairs in a set - without swapping

of that element in the sorted output vector. For example; for an input vector X = 〈2, 4, 3, 1〉,

the rankings would be as σ = (1, 3, 2, 0). That is to say, the last element 1 will have index 0

in the output vector, the first element 2 will have index 1 and so on.

In order to retrieve these ranking values we will make use of the comparison matrix M

that we have already defined. And σ, the index vector, will be computed as:

σ =

(
N−1∑
i=0

mi,0

N−1∑
i=0

mi,1 · · ·
N−1∑
i=0

mi,N−1

)

Note that in M, the summation of all elements in a column, say column j, gives the

number of elements, which the element X j is larger than, because we are adding 1 to the sum

for each such value. This summation gives, at the same time, the index of X j in the sorted

output vector. In other words, if an element is larger than k other elements, then this implies

that it is the k + 1th largest element and its order is k in a zero-based output array.

For example; for an input vector X = 〈1, 3, 4, 3〉, the comparison matrix M and the index
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vector σ will be obtained as:

M =



0 1 1 1

0 0 1 0

0 0 0 0

0 1 1 0



σ =

(
0 2 3 1

)
And so, the output vector will be Y = 〈1, 3, 3, 4〉.

Now, since all data is in an encrypted form, we have no knowledge of the σ contents, as

a result we cannot use it directly. Hence our problem is reduced to retrieving this final output

from σ vector. For this, we will make use of CEQUAL such that:

Y j =
∑
i∈[N]

(σi = j)Xi for j ∈ [N]

Here, we simply compare each element of the index vector σ with each possible index

value (which is bounded by [0,N−1]) and if there is an equality, then we have the element for

the current element of the output vector. Since CEQUAL outputs 0 or 1, when there is a match

(σi = j) it will become 1 which will result in adding Xi to the value of Y j, and otherwise only

0 will be summed up.

For example, considering our example above we will have for Y0

Y0 =
∑
i∈[N]

(σi = 0)Xi

= (σ0 = 0)X0 + (σ1 = 0)X1 + (σ2 = 0)X2 + (σ3 = 0)X3

= (0 = 0)X0 + (2 = 0)X1 + (3 = 0)X2 + (1 = 0)X3

= (1)X0 + (0)X1 + (0)X2 + (0)X3

= X0.
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4.7.2 Greedy Sort

In our second depth optimized algorithm, we again make use of the comparison matrix M.

However, using σ may not be always efficient since computing σ requires homomorphic

additions of the elements in the columns of M, which are followed by many multiplications

and further additions as shown in the direct evaluation based sorting algorithm. Computation

of homomorphic additions for σ will increase the depth of the circuit by around log ` levels

anf subsequent operations will further increase the depth of the circuit. Therefore we take a

more direct approach to compute the output.

Instead, we compute every possible permutation for each index in the sorted array. For

instance, to determine Y0 we need to check if the candidate X element is smaller than all the

other element in X, to be set as the smallest element of the sorted array. We can provide the

predicate expression yielding the Y0 assignment explicitly as follows.

if (X0 < X1) ∧ (X0 < X2) ∧ . . . ∧ (X0 < XN−1) then

Y0 = X0

else if ¬(X0 < X1) ∧ (X1 < X2) ∧ . . . ∧ (X1 < XN−1) then

Y0 = X1

else if . . . then
...

end if

Similarly, for Y1 if an element is smaller than all others except one, then we can conclude

that it is the second smallest element. In this case, we compute more possibilities, namely(
N−1

1

)
, in each if-else statement since we have the possibility of an element Xi being larger

than any of the other elements. The expression for Y1, which determines the second smallest

element is given as follows.

if [(x0 < x1) ∧ . . . ∧ ¬(x0 < xN−1)] ∨ . . . ∨ [¬(x0 < x1) ∧ . . . ∧ (x0 < xN−1)] then

y1 = x0

else if [(x1 < x0) ∧ . . . ∧ ¬(x1 < xN−1)] ∨ . . . ∨ [¬(x1 < x0) ∧ . . . ∧ (x1 < xN−1)] then

y1 = x1

else if . . . then
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...

end if

Using the comparison matrix M, we can convert the if-else statements into logic cir-

cuits and compute the sorted elements. The if-else statements give us an exact mutually

exclusive partitioning in the output assignments. Therefore, we can use XOR (logical ex-

clusive disjunction ⊕) gates to combine each statement. For instance, Y0 evaluated by the

following circuit

Y0 =
(
m0,1 . . .m0,N−1

)
X0 ⊕

(
m1,0 . . .m1,N−1

)
X1 ⊕ . . . ⊕

(
mN−1,0 . . .mN−1,N−2

)
XN−1

We can write this equation in a more compact form, if we use a coefficient for each Xi,

such as θt,i, where t stands for the index of Yt. Using t = 0 we have

θ0,i = mi,0 . . .mi,k . . .mi,N−1 where i , k

and the overall equation becomes

Y0 = θ0,0X0 ⊕ . . . ⊕ θ0,N−1XN−1 .

In Section 3, we give a proposition claiming that we can convert OR gates to XOR gates,

when at most one conjunction outputs 1. The same rule applies here as well. We can give the

following proposition for the conjunction cases of Xi, to show that it can either have only one

conjunction that outputs 1 or none:

Proposition 2 In the expression for θt,i for element Xi any two distinct conjunctions ρ and ρ′

it holds that ρρ′ = 0.

Proof In order to evaluate all the combinations we always find mk,l ∈ ρ and ml,k ∈ ρ
′

for some k, l ∈ N − 1. Otherwise ρ = ρ′, a contradiction. Since ρρ′ will contain contain the

conjunction mk,lml,k we always have ρρ′ = 0 by mk,l = ml,k ⊕ 1. �

Now we can freely convert all occurrences of OR’s to ⊕. Hence, the circuit for Y1 becomes
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Sorting Circuit CG−S ORT

Input vector: x = 〈x0, x1, . . . , xN−1〉

Output vector: y = 〈y0, y1, . . . , yN−1〉 y = CG−S ORT (x) is defined in three
steps:

Step 1: Using CLES S−T HAN compute mi, j where i, j ∈ N and i < j as

mi j =

{
1 if xi < x j

0 else

Also set mii = 0 and m ji = mi j ⊕ 1 for j > i.

Step 2: Compute θt,i for t, i ∈ [N] as

θt,i =

N−t∑
k1=0
k1,i

mk1i

N−t+1∑
k2=k1+1

k2,i

mk2i . . .

N−1∑
kt=kt−1+1

kt,i

mkti

N−1∏
j=0
j,i

j,k1,...,kt

mi j

Step 3: Compute the output vector yt for t ∈ [N] as

yt =

N−1∑
i=0

xiθt,i

Figure 12: Proposed depth optimized greedy sorting circuit y = CG−S ORT (x)

Y1 =[m0,1m0,2 . . .m0,N−2mN−1,0 ⊕ m0,1m0,2 . . .mN−2,0m0,N−1 ⊕ . . .m1,0m0,2 . . .m0,N−2m0,N−1]x0

⊕ . . . ⊕ [mN−1,0mN−1,1 . . .mN−1,N−3mN−2,N−1 ⊕ mN−1,0mN−1,1 . . .mN−3,N−1mN−1,N−2 ⊕ . . .⊕

m0,N−1mN−1,1 . . .mN−1,N−3mN−1,N−2]xN−1 .
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In a more general formula, the output Y = CG−S ORT (x) is computed as;

Y0 =

N−1∑
i=0

Xi

N−1∏
j=0
j,i

mi j

Y1 =

N−1∑
i=0

Xi

N−1∑
k1=0
k1,i

mk1i

N−1∏
j=0

j,i,k1

mi j

Y2 =

N−1∑
i=0

Xi

N−2∑
k1=0
k1,i

mk1i

N−1∑
k2=k1+1

k2,i

mki

N−1∏
j=0

j,i,k1,k2

mi j

...
...

YN−1 =

N−1∑
i=0

Xi

1∑
k1=0
k1,i

mk1i

2∑
k2=k1+1

k2,i

mk2i

. . .

N−1∑
kN−1=kN−2+1

kN−1,i

mkN−1i

N−1∏
j=0

j,i,k1,...kt

mi j

Each output of the circuit CS computes a summation of the input values X0, . . . , XN−1, where

the values are weighted with θt,i. Note that θt,i evaluates a logic expression that tells us

whether Xi ends up in position t, i.e. Yt = Xi, after sorting. For this sums over all the

possible combinations that would result in ith input value having order t. The sorting circuit

is concisely defined in Figure 12.

In Figure 13 we give a toy example that evaluates CG−S ORT for an input array of size

N = 4.
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Toy Example: N = 4
Input vector: x = 〈x0, x1, x2, x3〉 = 〈2, 4, 1, 2〉
Output vector: y = 〈y0, y1, y2, y3〉

The circuit y = CG−S ORT (x) is instantiated for N = 4 as

y0 = x0(m01m02m03) ⊕ x1(m10m12m13)
⊕ x2(m20m21m23) ⊕ x3(m30m31m32)

y1 = x0[m10(m02m03) ⊕ m20(m01m03) ⊕ m30(m01m02)]
⊕ x1[m01(m12m13) ⊕ m21(m10m13) ⊕ m31(m10m12)]
⊕ x2[m02(m21m23) ⊕ m12(m20m23) ⊕ m32(m20m21)]
⊕ x3[m03(m31m32) ⊕ m13(m30m32) ⊕ m23(m30m31)]

y2 = x0[m10(m20(m03) ⊕ m30(m02)) ⊕ m20(m30m01)]
⊕ x1[m01(m21(m13) ⊕ m31(m12)) ⊕ m21(m31m10)]
⊕ x2[m02(m12(m23) ⊕ m32(m21)) ⊕ m12(m32m20)]
⊕ x3[m03(m13(m32) ⊕ m23(m31)) ⊕ m13(m23m30)]

y3 = x0(m10(m20m30)) ⊕ x1(m01(m21m31))
⊕ x2(m02(m12m32)) ⊕ x3(m03(m13m23))

We evaluate the CG−S ORT (x) in three steps as follows

Step 1: Using CLES S−T HAN we compute mi j for i, j ∈ N and i < j, and then set
mii = 0 and m ji = mi j ⊕ 1 for j > i obtaining

m00 = 0 m01 = 1 m02 = 0 m03 = 1
m10 = 0 m11 = 0 m12 = 0 m13 = 0
m20 = 1 m21 = 1 m22 = 0 m23 = 1
m30 = 0 m31 = 1 m32 = 0 m33 = 0

Step 2: Compute θt,i for t, i ∈ [N] as (the implicants are marked in bold)

θ0,0 = m01m02m03 = 0
θ0,1 = m10m12m13 = 0
θ0,2 = m20m21m23 = 1
θ0,3 = m30m31m32 = 0

θ1,0 = m10(m02m03) ⊕m20(m01m03) ⊕ m30(m01m02) = 1
θ1,1 = m01(m12m13) ⊕ m21(m10m13) ⊕ m31(m10m12) = 0
θ1,2 = m02(m21m23) ⊕ m12(m20m23) ⊕ m32(m20m21) = 0
θ1,3 = m03(m31m32) ⊕ m13(m30m32) ⊕ m23(m30m31) = 0
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θ2,0 = m10(m20(m03) ⊕ m30(m02)) ⊕ m20(m30m01) = 0
θ2,1 = m01(m21(m13) ⊕ m31(m12)) ⊕ m21(m31m10) = 0
θ2,2 = m02(m12(m23) ⊕ m32(m21)) ⊕ m12(m32m20) = 0
θ2,3 = m03(m13(m32) ⊕m23(m31)) ⊕ m13(m23m30) = 1

θ3,0 = m10(m20m30) = 0
θ3,1 = m01(m21m31) = 1
θ3,2 = m02(m12m32) = 0
θ3,3 = m03(m13m23) = 0

Note that in each group θt,i selects only one source i value for each output
position t.

Step 3: Compute the output vector yt =
∑N−1

i=0 xiθt,i for t ∈ [N] as y =

〈1, 2, 2, 4〉.

Figure 13: Toy sorting example with N = 4 elements.
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5 Analysis of Algorithms and Implemen-

tation Details
In this chapter, we provide the analysis of the proposed algorithms for homomorphic sorting

and the results of their implementations in software.

5.1 Direct Sort Circuit

Previously described CD−S ORT algorithm steps can be given as:

• Compute entries of the M matrix in parallel.

• Sum the columns of M using a Hamming Weight circuit and retrieve σ.

• Compare the entries of σ with all possible indices and add the elements conditionally.

The steps of CD−S ORT are described in Algorithm 1.

5.1.1 Complexity of CD−S ORT

In this section, we give the complexity of evaluating CD−S ORT using Algorithm 1 in terms of

number of ANDs and the multiplicaive depth of the circuit.

AND Complexity. The number of ANDs used by CD−S ORT , can be broken down in terms

of ANDs used in the comparisons (to construct M), the evaluation of the σ entries, ANDs

used by CEQUAL evaluations and ANDs used in the final summation. The comparison cir-

cuit CLES S−T HAN for bitwise comparisons and then later compression to a single decision bit
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Algorithm 1 Direct Sorting Algorithm
1: function SORT(X,Y,N)
2: for i← 0 to N − 1 do . Construct M table
3: M[i][i]← 0
4: for j← i + 1 to N − 1 do
5: M[i][ j]← LessThan (X[i], X[ j])
6: M[ j][i]← M[ j][i] + 1
7: end for
8: end for
9: M ← Transpose (M)

10: for i← i + 1 to N − 1 do . Construct σ vector
11: S [i]← HammingWeight (M[i],N)
12: end for
13: for i← 0 to N − 1 do . Construct Y , output vector
14: Y[i]← 0
15: for j← 0 to N − 1 do
16: z← IsEqual (i, S [ j])
17: Y[i]← Y[i] + AND (z, X[ j])
18: end for
19: end for
20: end function

consumes about

#ANDLT ≈ 3`

AND gates. For the comparisons in the lower diagonal half of M (and since computing the

upper diagonal does not require any ANDs) to compute M we need

#ANDM ≈ 3(N2 − N)/2`

AND gates. The σ computations involve the addition of N single bit entries of M resulting

in log(N) size entries. This is repeated N times for each entry of σ. Assuming the maximum

of 2 log(N) AND computations for adding two log(N) size integers then the total number of

ANDs required to compute σ is found as

ANDσ ≈ N2 log(N) .

Computation of the equality comparisons requires log(N) ANDs per comparison and in total

37



to compute all comparisons θt,i we need

ANDθt,i ≈ N2 log(N)

AND gates. The final sum yt =
∑

i∈[N] θt,ixi for t ∈ [N] requires only

AND∑ ≈ N2

AND gates. Therefore the total AND complexity of CD−S ORT comes to

ANDCD−S ORT ≈ N2(2 + log(N)) .

Multiplicative Depth. In Section 3 we have already determined that d(CLES S−T HAN) = log(`+

1) and d(CEQUAL) = log(`). In the computations of the entries of σ we are adding N bits

together to form a log(N)-bit sum. Since we are using a Hamming Weight circuit defined in

Section 3 we arrange adders into a binary tree form, but instead of reducing 2 gates into 1

in each step, we are reducing 3 to 1 by using full adders. Hence the depth complexity of the

addition step is

d(σ) = log3/2(N).

Taking into account the parallel CLES S−T HAN and CEQUAL comparisons and single multi-

plication in the final summation the total depth complexity becomes

d(CD−S ORT ) = (dlog (` + 1)e) + log3/2(N − 1) + log(`) + 1

5.2 Greedy Sort Circuit

In the previous section, we developed a sorting circuit CG−S ORT with low depth. The exact

evaluation complexity depends on how the expressions are grouped together and reused. Here

we further optimize the circuit

• to reduce the number of primitive operations used in evaluating #CG−S ORT . We will

present the breakdown of #CG−S ORT into simple operations such as comparisons, mul-
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tiplications and additions.

• to reduce the multiplicative depth d(CG−S ORT ) of the circuit. The additions have negligi-

ble effect to noise growth during homomorphic evaluation when compared to the effect

of multiplications. The multiplicative depth will determine the size of the parameters

in the SWHE instantiation and the application of noise reduction techniques.

Here we aim to keep the multiplicative depth of the algorithm as low as possible and to

minimize the number of ANDs. For the sake of simplicity, we first focus on i = 0 in the toy

example in Figure 13, where we have coefficients of the form

θ00 = m01m02m03

θ10 = m10m02m03 ⊕ m01m20m03 ⊕ m01m02m30

θ20 = m10m20m03 ⊕ m10m02m30 ⊕ m01m20m30

θ30 = m10m20m30.

Manipulating the above equations, we obtain

θ00 = (m01m02) m03

θ10 = (m10m02 ⊕ m01m20) m03 ⊕ (m01m02) m30

= (m01 ⊕ m02) m03 ⊕ (m01m02) m30

θ20 = (m10m20) m03 ⊕ (m10m02 ⊕ m01m20) m30

= [(m01m02) ⊕ (m01 ⊕ m02) ⊕ 1] m03 ⊕ (m01 ⊕ m02) m30

θ30 = (m10m20) m30

= [(m01m02) ⊕ (m01 ⊕ m02) ⊕ 1] m30 .

From now on, the values of the form m j,i, i.e. i < j, will be labeled as complement.

Also, t − complement will be used for an expression which has all the possible t number of

complement values covered. For instance, θ0,i is a 0 − complement expression, while θ1,i is

1 − complement and θ2,i is 2 − complement.
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In this scheme, we always group our product terms pairwise, i.e. use two input gates.

Starting from the comparisons we will gradually build a step-by-step process for the table

entries eventually forming the expressions for θt,i. Since we fixed i = 0, at first we start with

a table Θ1 given as

m0,1 m0,2 m0,3 . . . m0,N−1

In order to form groups of two, we always take two consecutive column elements. And for

the first step, we need three operations over each pair: 1 AND, 1 XOR and 1 AND of their

inverses.
m0,1m0,2 . . . m0,N−2m0,N−1

m0,1m2,0 m0,N−2mN−1,0

⊕ . . . ⊕

m1,0m0,2 mN−2,0m0,N−1

m1,0m2,0 . . . mN−2,0mN−1,0

Instead of computing the third row, we can save multiplications by simply computing the

XOR of the outputs of the first two operations and take the inverse obtaining Θ2 as

m0,1m0,2 . . . m0,N−2m0,N−1

m0,1 ⊕ m0,2 . . . m0,N−2 ⊕ m0,N−1

(m0,1m0,2) (m0,N−2m0,N−1)

⊕ ⊕

(m0,1 ⊕ m0,2) . . . (m0,N−2 ⊕ m0,N−1)

⊕ ⊕

1 1

The table above now has c = d(N − 1)/2e columns, and 3 rows, and in each row there are

t−complement expressions, where t is the row number. In other words, in Row = 0 there are

all 0 − complement expressions, in Row = 1 there are all 1 − complement expressions and

finally in Row = 2 there are all 2 − complement expressions. In each step, we will protect

this property so that finally when we have the table with t = (N − 1) rows and 1 column, it

will be our coefficient vector θt,i for input Xi.
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In the next step, we again construct our new pairs from the elements of consecutive

columns. But this time, each element of each row will be paired up with each element on

each row of the next column. So that we will have 32 = 9 such pairs for only the first two

columns, since we have c/2 consecutive columns. The total number of pairs will be 9c/2 in

this step. We perform 1 AND operation on each pair. In order to protect the Row = t has

t−complement property, we will always add the new AND outputs to our table, according to

a new concept, namely the weight of the pair. It can be defined as the sum of the row indices

of pair elements. And this weight value gives us, the number of the row, which the pair’s

product will be added to. That is to say, we will XOR the AND output of pairs with the same

weight value. For instance, if a pair P consists of the element of Row = 0 and Column = 0

and the element of Row = 2 and Column = 1 then the pair’s weight is 0 + 2 = 2. This means

that output of pair P will be XORed with the output of all other pairs with weight = 2.

Our new table Θ3 will be

m0,1m0,2m0,3m0,4 . . .

(m0,1 ⊕ m0,2)m0,3m0,4

⊕ . . .

m0,1m0,2(m0,3 ⊕ m0,4)

(m0,1m0,2)(m0,3m0,4 ⊕ m0,3 ⊕ m0,4 ⊕ 1)

⊕

(m0,1m0,2 ⊕ m0,1 ⊕ m0,2 ⊕ 1)(m0,3m0,4) . . .

⊕

(m0,1 ⊕ m0,2)(m0,3 ⊕ m0,4)

(m0,1 ⊕ m0,2)(m0,3m0,4 ⊕ m0,3 ⊕ m0,4 ⊕ 1)

⊕ . . .

(m0,1m0,2 ⊕ m0,1 ⊕ m0,2 ⊕ 1)(m0,3 ⊕ m0,4)

(m0,1m0,2 ⊕ m0,1 ⊕ m0,2 ⊕ 1)

(m0,3m0,4 ⊕ m0,3 ⊕ m0,4 ⊕ 1) . . .

We will repeat the same step with 5 rows and c/2 columns, and then repeat the same steps

until there remains only one column. So there will be a total of k = dlog(N − 1)e iterations,
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and the final table will be as

θ0,0

θ1,0

. . .

θN−1,0

Since for this example we set i = 0, we have the final θt,0 vector, so we need to perform all of

these steps ∀i ∈ [N]. Next we compute the ANDs θt,iXi, ∀t, i ∈ [N].

θ0,0X0 θ0,1X1 . . . θ0,N−1XN−1

θ1,0X0 θ1,1X1 . . . θ1,N−1XN−1

. . . . . . . . . . . .

θN−1,0X0 θN−1,1X1 . . . θN−1,N−1XN−1

In the final step all we have to do is to compute the sum Yt =
∑

i∈[N] θt,iXi, ∀t ∈ [N]. The steps

of the method for efficiently evaluating CG−S ORT are described in Algorithm 2.

5.2.1 Complexity of CG−S ORT

In this section, we determine the complexity of evaluating CG−S ORT using Algorithm 2 in

terms of number of ANDs and the circuit depth (AND levels).

AND Complexity. The total number of AND operations may be broken down into the sum

of the number of ANDs used in the CLES S−T HAN comparisons, and in the computation of the

θt,iXi products as follows

#ANDCG−S ORT = #ANDLT ∗

[
N(N − 1)

2

]
+ #ANDθx .

The comparison circuit CLES S−T HAN for bitwise comparisons and than later compression to a

single decision bit consumes about

#ANDLT ≈ 3`
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Algorithm 2 Greedy Sorting Algorithm
1: function SORT(X,Y,N)
2: for i← 0 to N − 1 do . Construct M table
3: M[i][i]← 0
4: for j← i + 1 to N − 1 do
5: M[i][ j]← LessThan (X[i], X[ j])
6: M[ j][i]← M[ j][i] + 1
7: end for
8: end for
9: iter ← dlog(N − 1)e

10: Row← 1, Col← (N − 1)
11: for i← 0 to N − 1 do . Construct Θ2

12: for j1 ← [(i + 1) mod N] to [(i − 1) mod N] do
13: j2 ← ( j1 + 1) mod N
14: Term1← AND (M[i][ j1],M[i][ j2])
15: Term2← (M[i][ j1] + M[i][ j2])
16: j← ( j1 − i) mod N
17: T [i][0][ j]← Term1
18: T [i][1][ j]← Term2
19: T [i][2][ j]← Term1 + Term2 + 1
20: j1 ← ( j1 + 1) mod N
21: end for
22: if N is even then
23: j← (N/2 − 1)
24: T [i][0][ j]← M[i][ j1]
25: T [i][1][ j]← M[ j1][i]
26: T [i][2][ j]← 0
27: end if
28: end for
29: Row← 3, Col← d(N − 1)/2e
30: for k ← 1 to iter − 1 do . Perform Θ3 iterations
31: Row′ ← 2k+1 + 1
32: for i← 0 to N − 1 do
33: for j← 0 to Col − 1 do
34: for r1 ← 0 to Row − 1 do
35: for r2 ← 0 to Row − 1 do
36: T [i][r1 + r2][ j/2]← T [i][r1 + r2][ j/2]
37: +AND(C[i][r1][ j],C[i][r2][ j]);
38: end for
39: end for
40: j← j + 1
41: end for
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42: if Col is odd then
43: for r ← 0 to Row − 1 do
44: T [i][r][ j/2]← T [i][r][ j]
45: end for
46: for r ← Row to Row′ − 1 do
47: T [i][r][ j/2]← 0
48: end for
49: end if
50: end for
51: Row← Row′

52: Col← Col/2
53: end for
54: for t ← 0 to N − 1 do . Compute θi,tXi products
55: for i← 0 to N − 1 do
56: T X[t][i]← AND (T [i][t][0], X[i])
57: end for
58: end for
59: for t ← 0 to N − 1 do . Sum θi,tXi products
60: for i← 0 to N − 1 do
61: Y[t]← Y[t] + T X[t][i]
62: end for
63: end for
64: end function
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AND gates. To compute the θt,iXi table we need N2 ANDs. Since we are applying bitwise

AND operations with ` bit vector operands we have as a total of N2` ANDs. In each of the

iterations of Θ3, we are halving the width of the table starting from an initial width of N until

we collapse it to a single column. Recall that k = dlog(N − 1)e. If we sum over the iterations

and also include the prior N2` ANDs we obtain the total number of ANDs required for the

computation of θt,iXi products from the comparison matrix as follows:

#ANDθx = N
(
1

(N − 1)
2

+ · · · + (1 + 2k−1)2 (N − 1)
2k

)
+N2`

= [N(N − 1)]

 k∑
n=1

2−n(1 + 2n−1)2

 + N2`

=

[
N(N − 1)

2

] [
k(k + 1) + (2k − 1) + (2 − 21−k)

]
+N2`

Therefore, #ANDθx = O(N3) + O(N2`) and the overall AND complexity of CG−S ORT is found

as

#ANDCG−S ORT = O
(
N2`

)
+ O

(
N3

)
Multiplicative Depth. The overall depth of CG−S ORT is determined by

d(CG−S ORT ) = d(CLES S−T HAN) + d(θt,iXi).

In Section 3 we have already determined that d(CLES S−T HAN) = log(` + 1). During the θt,iXi

summations we employed a circuit arranged in a binary tree of depth d(
∑
θt,iXi) = k + 1.

Substituting k = dlog(N − 1)e the overall circuit depth is found as

d(CG−S ORT ) = 1 + dlog(` + 1)e + dlog(N − 1)e .

5.3 Timing Results

We implemented the proposed depth optimized sorting algorithm in Algorithm 2 using the

SWHE scheme of [16] and evaluated CG−S ORT for a number of array lengths. Here we briefly
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Array Size N 4 8 16 32 64

8-bit
d 8 9 10 11 12

log q 136 153 170 187 204
δ 1.0027 1.0031 1.0035 1.0038 1.0042

32-bit
d 10 11 12 13 14

log q 170 187 204 221 238
δ 1.0035 1.0038 1.0042 1.0046 1.0050

Table 1: Circuit depth d, max. coefficient size log(q), and Hermite factor δ for selected ` and
N

summarize the parameter selection process and present the simulation results.

5.3.1 Parameter Selection

According to [16] the NTRU based SWHE Scheme requires Hermite factor δ < 1.0066 to

achieve a security level of about 80-bit. We set the per level cutting rate log p = 17 and

polynomial degree n = 8191 which allows the message slot size of 630-bit for batching. We

simulate for both ` = 8-bit and ` = 32-bit integer inputs and select array size N as powers of

two2. In Table 1 we give results for circuit depths, maximum bit sizes and Hermite factors for

different cases. The largest Hermite factor we have in among parameter choices is δ = 1.0050

gives us 140-bit security which is the lowest security level for all cases.

5.3.2 Implementation Details

We implemented the proposed homomorphic sorting algorithm in C++ where we relied on

DHS-FHE Library [16]. All simulations were performed on a Intel Xeon @ 2.9 GHz server

running Ubuntu Linux 13.10. We compiled our code using Shoup’s NTL library version 6.0

and with GMP version 5.1.3. The sorting times for 8-bit and 32-bit integers are given in Ta-

ble 2. For 32-bit wide array elements with N = 64 our algorithm runs in about 50 hours. The

amortized running time for homomorphically sorting N = 64 32-bit elements 287 seconds.

For N = 4 the sorting time takes as low as 0.57 seconds per sort. The 32-bit implementation

has 86 relinearizations for each CLES S−T HAN operation whereas 8-bit implementation has only

2Note that N is not restricted to a power of two. Also we include the N = 40 case in our experiments to
enable comparison with [20].
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19 relinearizations.

We note that the ratio of running times which is about ∼ 4.5× for the 32-bit and 8-bit

cases, is proportional to the ratio of the number of relinearization operations. Furthermore,

we observed that %80-85 percent of time is spent on the CLES S−T HAN operations (Step 1 of

Algorithm 2) in all cases.

Array Size 8 Bit 32 Bit
Total Normalized Total Normalized

4 66 0.10 362 0.57
8 338 0.53 1839 2.91

16 1856 2.94 8287 13.15
32 8728 13.85 41034 65.13
40 15121 24.00 69514 110.33
64 39919 63.36 180980 287.26

Table 2: Timings for Homomorphic Sorting for different Array Sizes (in seconds)

In comparison, the homomorphic Lazy Sort implementation of [20] takes about 976 and

1400 seconds for array sizes 10 and 40 respectively. Our implementation takes 13.15 and

110.33 seconds for array sizes 16 and 40. In 40 element case we are 12.7 times faster than

their implementation.

We also have the experimental results for Odd Even Transposition Sort implementation

and it shows us that, the depth of the sorting circuit is directly related with the total time of

the computation as we claimed. Odd Even Transposition Sort takes 519, 19643 and 657682

seconds for 4, 8 and 16 number of 8-bit elements respectively.
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6 Conclusion
In this thesis, we proposed depth optimized sorting algorithms for efficient homomorphic

evaluation. Circuit depth is intimately related to the parameter sizes in leveled homomor-

phic encryption implementations and therefore directly affect the overall performance of the

homomorphic circuit evaluation. We proposed and motivated circuit depth as a new metric

to be studied in the context of sorting algorithm. Existing sorting algorithms are not opti-

mized for homomorphic evaluation and with the new age of parallel computing, there may

be a going back to more simple approaches in sorting problem, as a result we presented the

depth analysis for several classical sorting algorithms: Bubble sort, Insertion Sort and Merge

Sort and then Sorting Networks. An overall comparison is given in Table 3. Inspired by the

performance of Merge Sort, we introduced a new depth-optimized sorting algorithm which

achieves an a circuit depth of O(log(N)+ log(`)) and again inspired by this new sorting circuit

we developed another ranking based algorithm which achieves O(log3/2(N) + log(`)) but with

different constants. An overall comparison with respect to the size of input arrays is given in

Table 4.

To study the real-life performance of our sorting algorithm, we instantiated an NTRU

based SWHE scheme in the DHS FHE library and presented simulation results for selected

array lengths. The implementation performs favorably achieving one to two orders of mag-

nitude speed up over the proposal by [20] for the same array lengths. In addition we imple-

mented the Odd Even Transition Sort algorithm, inspired by Bubble Sort and its execution

times were prohibitively high so that we were not able to run the implementation for more

than 16 elements. Roughly, for 8 bit numbers, it took 520 seconds for 4 elements and 19643

seconds for 8 elements. And yet, the following issues need to be further explored:
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Algorithm Depth #Comparisons
Bubble Sort O(N2 log(l)) O(N2)
Overlapped Bubble O(N log(l)) O(N2)
Odd Even Sort O(N log(l)) O(N2)
Insertion Sort O(N2 log(l)) O(N2)
Merge Sort O(log2(N) log(l)) O(N log2(N))
Odd-Even Merge Sort O(log2(N) log(l)) O(N log2(N))
Bitonic Sort O(log2(N) log(l)) O(N log2(N))
Direct Sort O(log3/2(N) + log(l)) O(N2)
Greedy Sort O(log(N) + log(l)) O(N2)

Table 3: Comparison of different sorting algorithms in terms of multiplicative depth and
number of comparisons

• transforming different problem solutions into Algebraic Normal Form equations/circuits

in a multiplicative depth-optimized way, and

• trade-offs between circuit depth and other traditional metrics such as the number of

additions and multiplications. For this, we plan to propose different sorting network

implementations over our FHE scheme.

• a new bit-based approach can be adopted in sorting problem, since FHE ciphertext con-

sist of bitwise encrypted data. So, instead of considering the integer comparison as a

fundamental operation, whole sorting problem can be achieved over bitwise compar-

isons. This idea, not pursued within the scope of this thesis, can be seen as direction

for future work.
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Algorithm Size=8 Size=16
Bubble Sort 196 840
Overlapped Bubble 91 203
Odd Even Sort 56 112
Insertion Sort 196 840
Merge Sort 42 70
Odd-Even Merge Sort 42 70
Direct Sort 15 17
Greedy Sort 10 11

Table 4: Comparison of different sorting algorithms in terms of multiplicative depth for dif-
ferent array sizes of 32-bit elements
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