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Railway vehicle detection from audio recordings using one-class classification
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Abstract

In this thesis, we focus on detecting a train from the sound generated by it. An audio

sensor is placed close to a railway track to record ambient sounds which may or may

not originate from a train. In this problem, we define the target event as the recording

of a train sound and non-target events are all other audio events that are recorded by

the audio sensor.

In machine learning and pattern recognition, classifiers are trained from labeled data to

categorize a new observation. Classifiers are usually trained from data which contain

all possible classes, however it is possible that during training the classifier, for some

classes the data is either not available or it is so diverse in nature that it cannot be used

reliably. In case of binary classification, if one of the classes do not have reliable training

data, we can use a “one class classification” strategy which only uses single class data

for training.

For train detection from audio, we compared a one-class classifier called support vector

data description (SVDD) with binary classifiers and showed that SVDD performs well

in cases where data from the outlier class is scarce. We also tested the SVDD trained

model in real time and the results indicate that the goal of reducing the false positive

rate is satisfactorily achieved. The tests are performed using audio data recorded in

Bathmen, a town in eastern Netherlands, by the company Sensornet for a project about

railway vehicle detection and sound level monitoring.



Tek-sınıf sınıflandırma kullanılarak ses kayıtlarından demiryolu araç tespiti
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Özet

Bu tezde, ses kayıtlarından demiryolundan geçen araçları tespit etme problemine odak-

landık. Araçlardan kaynaklanması muhtemel çevresel sesleri kaydetmek için bir ses

sensörü, bir demiryolunun yakınına yerleştirilmiştir. Bu problemde, araçların ses kayıtlarını

hedef olaylar, diğer bütün ses kayıtlarını ise aykırı olaylar olarak tanımladık.

Makine öğrenimi ve örüntü tanımada, sınıflandırıcılar, yeni bir gözlemi sınıflandırmak

için, etiketli veriden eğitilmiştir. Sınıflandırıcılar genellikle bütün muhtemel sınıfları

içeren veriden eğitilirler ancak sınıflandırıcının eğitimi sırasında, bazı sınıflar için verinin

mevcut olmaması veya verinin doğasının çok farklı olmasından ötürü güvenilir bir şekilde

kullanılamaması mümkündür. İkili sınıflandırma durumunda, eğer sınıflardan biri güvenilir

veriye sahip değilse, eğitim için sadece bir sınıfın verisini kullanan ”tek sınıf sınıflandırma”

stratejisini kullanabiliriz.

Sesten tren tespiti için, destek vektör veri açıklaması (DVVA) adlı tek sınıf sınıflandırıcıyı

ikili sınıflandırıcılar ile karşılaştırdık ve aykırı sınıftan verinin az olduğu durumlarda

DVVA’nın iyi performans sergilediğini gösterdik. Ayrıca, DVVA eğitim modelini gerçek

zamanda da test ettik ve yanlış pozitif oranını düşürme hedefini tatmin edici bir şekilde

gerçekleştirdik. Testler, Sensornet adlı firma tarafından demiryolu araç tespiti ve ses

seviyesi izleme üzerine bir proje için Hollanda’nın doğusundaki Bathmen kasabasında

kaydedilen ses verileri kullanılarak yapılmıştır.
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Chapter 1

Introduction

In our surroundings, we hear sounds from different sources. The sources producing these

sounds might be important for the society but at same time the sound produced might

be inconvenient for the citizens living in surroundings. For example, transportation

systems are important for social and economic growth of cities but at same time they

cause environmental problems because of noise produced by them. In recent years, with

the increase in demand of transportation for passenger and freight traffic, railways are

considered comparatively more environment friendly [3].

The expansion of railway tracks can help in restraining the congestion in traffic on roads.

This in turn helps reduce the noise in residential areas but unfortunately train noise is

perceived as an environmental problem as well [4].

In [5] the effects of environmental noise on public health is described in detail. In

particular, it has been observed that citizens living near the railway track sometimes

complain about the increase in level of noise by trains.

For optimally controlling the noise produced by trains, there are some rules proposed

by different government agencies. For example in the technical specification for interop-

erability of railway noise, the European Union enact the maximum noise limit of freight

trains and passenger trains moving at 80 km/hr as 87 and 80 dB (A) respectively [6].

To enforce the rules and identify mitigation solutions, the noise measurements can be

recorded by a technician in a log book manually when train is noticed at different

train stations or near the track at residential area. However it needs a lot of man

1



Chapter 1. Introduction 2

power to record noise produced by trains manually and government certainly cannot be

everywhere at once 24 hours a day.

 

Figure 1.1: Sensornet’s system overview. Image retrieved from [1].

Sensornet is a company specialized in accurate, long-term measurement of environmental

noise in Netherlands. The company has installed a large number of strategically placed

unmanned noise meters which continuously transmit their measurement data to a central

database using Internet connections in real time [1].

The audio sensors are placed at different fixed locations and not in the moving trains

because it is important to monitor region specific noise levels particularly near residential

areas. Also the location specific microphones can be used for other audio source detection

in future. For detecting train, use of microphone over video camera is preferred because

the final goal is to monitor audio noise produced by train, which can be achieved only

by using a microphone. Detecting train only from audio data will remove the costs

of placing a video camera along with the costs of transmitting video data for train

detection.

 

Figure 1.2: Microphones transmitting data in real time to Sensornet’s database.
Image retrieved from [2]
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The audio data transmitted and recorded on the server in real time contain data from

diverse sources. Besides passenger and freight trains, the noise of vehicles such as trucks,

buses, cars, tractors and other non-train noises are recorded and transmitted to the

servers as well. The challenge is to identify the source of data coming in real time.

Manually labeling hundreds of audio files as trains, and throwing out the redundant

audio files of non-trains every day after listening is very tedious and prone to error.

Intelligent software which identifies the data between train and non-train would certainly

increase the efficiency of noise measurement and classification system.

Figure 1.3: Abstract view train and non-train classification.

Numerous techniques and feature extraction methods are proposed in the literature for

audio classification. In [7], Bark scale features and K-NN technique is proposed for audio

noise classification. High speed train noise analysis in an open country environment is

done in [8] while in [9] a hierarchical system for audio classification and retrieval based on

audio analysis is presented. Features like linear predictive coefficients, linear predictive

cepstral coefficients and mel-frequency cepstral coefficients are used to train support

vector machines for classification of audio data in [10]. In [11], a study is conducted to

show that cepstral-based features such as the Mel-frequency cepstral coefficients (MFCC)
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and linear prediction coefficients (LPC) provide better classification accuracy compared

to temporal and spectral features for classification of continuous general audio data.

For classification of data in cases where the only information available is from target

class, the term “one-class classifier” was first proposed in [12]. A method aimed at

recognizing environmental sounds using one-class SVMs and wavelets for audio surveil-

lance is proposed in [13]. In [14], it is stated that one-class SVM is well suited for

event-recognition tasks.

In our work, we focused on studying and developing different techniques which would

help us identify sound measurements of trains in real time. To carry out this project,

the thesis has been divided into five sections briefly described below.

In the first (current) section, the reader is introduced to the thesis and background,

motivation and objectives are presented.

In Section 2, classification types of interest are discussed. This section is further divided

into two sections. In 2.1, we describe the difference between one class and two class

classification. In 2.2, we explain in detail the one-class classifier support vector data

description (SVDD) and briefly discuss the difference between support vector machines

(SVM) and SVDD.

In Section 3, we explain various details of the system. Section 3 is further divided

into six sections. In 3.1, we discuss briefly about frame extraction. In 3.2 and 3.3 on-

line target detection and offline target detection details are given respectively. In 3.4,

extraction of MFCC features is described in detail. In 3.5, computing score for audio files

in offline detection is explained briefly. In 3.6, evaluation procedure of the experiments

is discussed in detail. All the numerical results from different classifiers are presented in

Section 4. Finally the conclusions are presented in Section 5.
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Classification types

In classification of data in pattern recognition, an attempt is made to assign each input

value to one of a given set of classes. The pattern recognition systems can be trained

in two ways, namely supervised and unsupervised. In supervised method, the system

is trained from known labeled “training” data while in unsupervised, no labeled data

are available and some algorithms are used to discover unknown patterns. Since we

have labeled data available for experiments, we will use supervised classification for the

system.

2.1 Multi-class and one-class classification

In multi-class classification each training data point belongs to one of N different classes.

A conventional multi-class classification problem can be decomposed into several two-

class classification problems [15]. The goal is to construct a function which will correctly

predict the class of a new point to which it belongs. In multi-class classification problems,

data from all the classes are available which are used for training a classifier. In one-class

classification, we are always dealing with a two-class classification problem, where each

of the two classes has particular meaning and importance. In one-class classification,

we have two classes, namely, a target class and a non-target class. Target class is the

one which is sampled well in a sense that all information is available about this class

while for non-target class either no data is available or it is so diverse and random

that it cannot be modeled properly. In one-class classification, objects are identified by

5
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learning from a training set which contains objects only from the target class and not

from the non-target class. However for testing, some of the points from non-target class

are taken into account. If no non-target data is available, the system can be tested on

artificially generated non-target data. In problem of classifying data at Sensornet, the

source of target audio data can be a freight train or passenger train. Both possibilities

are combined together which form the target class. While for not-a-train class, there are

theoretically infinite possibilities, the non-target source can be car, bus, tractor, scooter

and so on. We consider not-a-train as the non-target class.

2.2 SVDD

The support vector data description (SVDD) is a one-class classifier which fits a closed

boundary namely a hyper-sphere, around the target class. The hyper-sphere is char-

acterized by centre a and radius R. The centre and radius are defined under some

constraints [16] which minimize the volume of the hyper-sphere and include all the

points xi of training set.

The error function to minimize is as follow

F (R, a) = R2 + C
∑

i
ζi (2.1)

under the constraints

‖ xi − a‖2 ≤ R2 + ζi , ζi ≥ 0 (2.2)

where ζi are slack variables and parameter C controls the trade-off between the hyper-

sphere’s volume and the errors.

By using Lagrange multipliers, Equation 2.2 can be incorporated into Equation 2.1 as

L(R, a, αi, γi, ζi) = R2 + C
∑

i
ζi−

∑
i
αi{− ‖ xi − a‖2 +R2 + ζi}−

∑
i
γiζi (2.3)
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L(R, a, αi, γi, ζi) = R2 + C
∑

i
ζi

−
∑

i
αi{R2 + ζi− ‖ xi‖2 − 2a · xi+ ‖ a‖2}−

∑
i
γiζi, (2.4)

where Equation 2.4 should be maximized with respect to Lagrange multipliers αi ≥ 0

and γi ≥ 0 and minimized with respect to R, a and ζi. These equations are further

simplified to obtain a maximization problem involving αi’s only, with some constraints

[16].

Sometimes the hyper-sphere might not separate the target and non-target class ade-

quately in original feature space. To make one-class classifier more flexible, a “kernel

trick” is used [17]. In kernel trick, the data is assumed to be mapped to a higher dimen-

sion and inner products between data vectors are replaced with a function known as the

kernel function.

A good kernel function would be one which maps all the target data inside the hyper-

sphere and the non-target data outside the hyper-sphere in the new kernel feature space.

One such kernel function is Gaussian kernel which has some favourable properties. For

Gaussian kernel, a parameter σ is defined which control the width of the kernel. Small

σ will result in tighter boundary of the sphere while increasing the σ to very large value

will result in almost a spherical hyper-sphere.

k(xi, xj) = exp

(
−||xi − xj ||2

σ2

)
. (2.5)

Equation 2.5 shows the Gaussian kernel function, where xi and xj are samples from the

input feature space. During testing an object z outside the radius r of the hyper-sphere

will be labelled as non-target and inside the hyper-sphere will be labelled as target

∑
i
αi exp

(
−||z − xi||2

σ2

)
≥ −R

2

2
+ CR, (2.6)

where CR in 2.6 depends only on the support vectors xi and not on z [16].

Figure 2.1 shows the working of SVDD over banana set. A 2-dimensional banana shaped

distribution of 2-classes with 500 points each for target and non-target data is generated
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artificially. The target points are indicated by the red points while the non-target points

are indicated with blue points.

Four different boundaries, shown in Figure 2.1, are fitted over the data by just using

the data from target class during training. For all boundaries the RBF kernel was used

but with different width. For the strict boundary the width parameter used is σ = 2

while for the other boundary which appear to be flexible and almost a sphere, the width

parameter is σ = 8. Another hyper-parameter C in the example is fixed as C = 1/(Nε).

Where N is the number of target training samples and ε is the error on the target

class supplied as default value of 0.1. It is clear that increasing the σ value results in

a more flexible and more spherical boundary which can be optimized according to the

requirement of data.
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Figure 2.1: SVDD boundaries with different σ.

SVDD can be used for a range of applications where data collection from one of the two
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classes is expensive or impossible. For example, it can be applied to machine diagnostics

problem [18]. In machine diagnostics problem, SVDD is applied to find out the normal

working situation of a pump in a pumping station. Similar usage of SVDD can be applied

to any machine for finding out normal and abnormal working of its components. The

advantage of SVDD over SVM is that for SVM there should be some samples available

from every class for training while for SVDD the training is done only by considering

data from one-class i.e. target class. For example in case of machine diagnostics, it is

expensive to collect data of all the abnormal behaviors of machine and certainly SVM

cannot be used.



Chapter 3

System description

At Sensornet, the continuous data transmitted is stored in a buffer temporarily until

the system is triggered for complete audio event storage. The audio events are stored

permanently in the database when noise level reaches a particular threshold (65 dBA

usually) for some specific time. The system when triggered will save all the data per-

manently from the buffer along with the new coming data till the noise level goes well

below the threshold.

Audio event detection 

Feature extraction 

Classification 

Testing online 

Windowing 

Audio files collection 

Testing offline 

Feature extraction 

Classification 

Scoring 

Segmentation 

Training 

Figure 3.1: Flowchart for online and offline classification

10
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Figure 3.1 shows the steps involved in the classification of audio events in online and

offline systems. In online system, the features are extracted at frame level in real time

without doing any segmentation. In offline system, the audio files are segmented before

feeding to a trained classifier for testing. More details about online and offline target

detection are discussed in Section 3.2 and 3.3 respectively.

3.1 Frame extraction

The analysis of audio events is usually done at frame level. An audio frame contains

amplitude (loudness) information at a particular time period. For example an audio file

with sampling rate of 32000 Hz, if analysed with a frame size of 200 milliseconds will

contain 6400 samples in one frame. The audio events at Sensornet are analysed at frame

level (200 milliseconds) in online system as well. The frames are analysed independently

of each other and during the process there is no overlapping among the frames.

3.2 Online target detection

The audio events when detected at Sensornet are classified as target or non-target at

frame level in real time. The decision is based on the percentage of target frames detected

in a sliding window of 20 frames (4 seconds). The final decision can be made by deciding

maximum threshold (percentage) value predicted by classifier within the sliding window.

 

Figure 3.2: Online train detection example.
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In Figure 3.2, an example of the audio event in the online system is depicted. The sliding

window attains the maximum value of 90 percent in the event.

3.3 Offline detection

In offline setup, the detection of target event is based on frame level decisions as well. The

segment level decision is made on the basis of ratio of frames within the segment detected

as target by the trained classifier. In offline setup, clearly the data at the beginning and

end of audio events which was stored from the buffer might cause misleading results if

fed to classifier. The audio event should be segmented properly for the offline detection.

In the following section, the segmentation process of audio events is explained.

3.3.1 Segmentation

 

Figure 3.3: Audio file with low energy at starting and ending point.

In Figure 3.3, it can be clearly seen that the data marked inside the red window have

low energy. To avoid any ambiguity, we follow the procedure below to cut off the silence
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parts from start and end of the audio target files. In the first step, the absolute values of

audio signals are passed through the simple moving average filter of 6400 points (200ms

window). The output is shown in Figure 3.4
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Figure 3.4: Output of sample train audio after passing its absolute values from moving
average filter.

In next step, the threshold is decided, i.e. the starting and ending point of the signal.

If the threshold is too high then the segmented signal obtained will be very small and

important frames will be lost. If it’s too low it will still contain low energy data. We

opted for 50 percent of the maximum value in the “simple moving averaged” data. With

50 percent of maximum value, in the example the threshold obtained is 0.958 ∗ 10−3

i.e. the indices (time) where the signal (simple moving averaged audio file) touch the

threshold for first and last time are considered the cut off points for the signal. Figure

3.5 shows the audio file after segmentation.
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Figure 3.5: The segmented sample audio train.

3.4 Feature extraction

Feature extraction is most important stage for audio recognition systems. The aim in

feature extraction from audio recordings is to identify the components of the audio signal

that are good for identifying the content and discarding all redundant components which

carries useless information.

One sample spectrogram of passenger train recording with sampling rate of 32kHz is

depicted in Figure 3.6. It is clear from Figure 3.6 that the most dominant frequencies

throughout the time signal are less than 4200 Hertz. The red colour indicates the strong

presence while the blue indicates less energy of the frequency.
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Figure 3.6: Spectrogram of sample passenger Train.

We opted for MFCCs as our features for train vs non train. MFCCs are used extensively

for human speech recognition. Human speech is filtered by the shape of the vocal tract,

tongue and teeth etc. The main idea is to determine the shape accurately which would

give the idea of accurately representing the phoneme being produced. Similar idea is

applied for extracting features from the audio of train signals. The shape of source

producing the audio signal can be manifested in the envelope of the short time power

spectrum. MFCCs are used to accurately represent this envelope. In the following

sub-sections, the extraction process of MFCCs are explained

3.4.1 Pre-emphasis

In order to compensate the high frequency part of the audio signals, audio recordings are

first pre-emphasised using a first order FIR filter with preemphasis coefficient α. The

intention is to flatten the spectrum of the audio recordings such that dynamic range of

the spectrum is reduced and low frequency components are restricted from dominating

the spectral envelope.
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Figure 3.7: Pre-emphasis filter with α=0.97.

3.4.2 Windowing

The audio recordings over the whole time are non-stationary. For analyzing and ex-

tracting features, the behaviour of the signal should be close to stationary. Thus the

signal is decomposed to short audio sequences, called frames, and then each frame is

analysed independently from each other. If the frame size is too short then we don’t

get enough samples, if it is too long then signal changes too much throughout the frame

and becomes non-stationary.
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Figure 3.8: Hamming window which has a length of 50 samples.

To smooth the edges of frames they are passed through a Hamming window of width

N . Hamming window is described in Equation 3.1 and depicted in Figure 3.8.

w(n) = 0.54− 0.46 cos

(
2π(n− 1)

N − 1

)
. (3.1)

3.4.3 Mel-frequency cepstrum

In first step of computing MFCC, for every frame, fast Fourier transform (FFT) is com-

puted and its magnitude is obtained. The magnitude of FFT identifies the frequencies

present in the frames. To get an idea of how much energy exists in various frequency

regions a filter bank of 20 triangular filters uniformly spaced in Mel scale are formed.

The mappings from linear frequency (f) to mels (m) and vice versa are given by the

following equations.

m(f) = 1125 ln

(
1 +

f

700

)
, (3.2)
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f(m) = 700
(

exp(
m

1125
)− 1

)
. (3.3)

Equation 3.2 is used for converting frequencies to Mel while Equation 3.3 for converting

them back to hertz.
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Figure 3.9: Hertz to mel scale transformation.

For example for range of 10Hz (15.99 Mels) to 4200Hz (2193.04 Mels), following would

be the frequencies to consider. In Mel [15.99, 119.66, 223.32, 326.99, 430.66, 534.33,

638.00, 741.67, 845.34, 949.01, 1052.68, 1156.35, 1260.02, 1363.69, 1467.36, 1571.03,

1674.69, 1778.36, 1882.03, 1985.70, 2089.37, 2193.04]. The frequencies after converting

to Mel scale linearly separated with equal difference of 103.67 from each other. There are

two extra points which we need for starting and ending banks. After converting to Hz we

get the following frequency points. In hertz [10.00, 78.41, 153.41, 235.64, 325.78, 424.62,

532.98, 651.77, 782.02, 924.81, 1081.36, 1253.00, 1441.17, 1647.47, 1873.65, 2121.63,

2393.49, 2691.55, 3018.33, 3376.59, 3769.37, 4200.00] We get the filter bank shown in

Figure 3.10. The first filter start from 10Hz, which is the first point, it gets its peak at

second point while goes to zero at 3rd point. Similarly the second filter starts at second
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point, reach its maximum at 3rd point and goes to zero at fourth point. And similarly

it continues for the rest of banks, ending at 4200Hz (2193.04 Mels).
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Figure 3.10: Filter banks.

For producing cepstral coefficients, log-compressed filterbank energies are then decor-

related using discrete cosine transform. Then, we pick some number of lower indexed

outputs of the DCT as MFCC features.

Same procedure is repeated for all the audio files in the dataset. The 13 dimensional

features (MFCCs) are extracted from each frame of the original segmented audio files

for experiments.

Figure 3.11 summarizes the steps involve in extraction of MFCCs.

Audio signal 

Processing 
Framing and  
windowing 

FFT 

Mel filter bank Log DCT MFCC 

Figure 3.11: MFCC flowchart.
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3.5 Audio type detection from a segment

An audio file is analysed as target or non-target at frame level by classifier. The classifier

predict all the frames of complete audio file as target or non-target one by one. The

decision in offline train detection is based on score predicted by classifier. The score for

an audio segment in offline detection is the average number of target frames predicted

by the classifier for that particular audio file. The final decision is taken by comparing

the segment score with a threshold.

3.6 Evaluation criteria

There are several ways to evaluate the performance of a binary classifier. We will explain

different evaluation methods in this section.

3.6.1 Sensitivity and specificity

For one class classifier, where the output is binary i.e. positive or negative, two kinds

of errors are possible. It might wrongly label a target as non-target or non-target as

target. If it correctly classifies a target as target, it’s called a true positive. If the

classifier correctly classifies non-target as non-target, it’s called a true negative. The

mistake/error if made by classifying a target as non-target is called a false negative

while the mistake/error made by classifying non-target as a target is a false positive.

Figure 3.12 summarises all the possible outputs.

 

Figure 3.12: Summary of possible outcomes.
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The true positive rate is called sensitivity while true negative rate is called specificity.

The ideal classifier would be 100 percent sensitive and 100 percent specific.

True positive rate (or sensitivity):

TPR = TP/(TP + FN).

False positive rate:

FPR = FP/(FP + TN).

True negative rate (or specificity):

TNR = TN/(FP + TN).

3.6.2 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is an effective method of evaluating

the performance of binary tests. The curve is created by plotting the true positive rate

against the false positive rate at various threshold settings.
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Figure 3.13: ROC example.
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Plotting ROC curve as shown in Figure 3.13 gives good summary of the performance of a

one-class classifier; however it’s hard to compare two ROC curves. To summarize ROC

in single number, area under ROC’s are computed. Greater area under ROC means

better performance of classifier. For an ideal classifier the area would be 1. This means

it accurately separates the target from non-target.

3.6.3 Cross-validation

Cross-validation is primarily a way of measuring the predictive performance of a clas-

sifier. It is a technique of estimating the accuracy of a classifier on an independent

dataset. In cross validation first the available data is divided to k mutually exclusive

subsets of approximately equal size [19]. Then out of k subsets, a single subset is used for

testing the classifier while the remaining k-1 subsets are used for training. The process

is repeated k times where every subset is tested once while not used during training.

The audio recordings for our experiments are not of same length and we want to use

all frames of single audio recording either for training or for testing. Usually 10-fold

cross validation is used for evaluation, but in case the length of audio files are different

in length, there is a possibility that from same audio recording some frames might be

used for training while other frames from same recording are used for testing . It is

desirable to make sets of corresponding objects (e.g. frames from the same recordings)

all together in the training set or in the test set. For this purpose, we use a leave-one-out

cross-validation strategy where all the frames of one recording are considered for testing

while the rest of the recordings are considered for training.
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Experiments and results

In this chapter, we performed experiments for comparing the performance of SVDD with

some other binary classifiers for the railway vehicle detection problem. Different models

(classifiers) were trained and tested with MFCCs extracted from audio files provided by

Sensornet. In one-class classifier, AUC is computed by testing every audio recording one

by one by using leave-one-set-out cross validation. Every time the score is computed for

a single file by considering the number of frames detected as a train in an audio file by

the trained classifier. No data from non-target class is used during training of SVDD.

For target files testing, all the target audio files except the one which is under test is

used as the training set. For non-target testing, all the target data is used while no file

is used for training from the non-target class.

For multi-class classifiers, leave-one-set-out cross validation is used for evaluating the

performance with varying number of non-target training data samples. The purpose

of this experiment is to show that when there is limited amount of non-target training

data, we get suboptimal performance from a binary classifier. AUC is computed after

all audio recordings (target and non-target) are tested and for each test data, we train a

separate classifier. During the experiments, in the beginning, only one audio recording

from non-target class is randomly selected for training the classifier. The process is

repeated by increasing the number of audio recordings from non-target class (randomly

selected for every test file) till all the non-target recordings except the one to be tested

are used.

23
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4.1 Data

Our data consist of 245 audio recordings in total. Out of total recordings, 200 audio

files are target and the rest 45 are non-target. The target files consist of passenger and

freight trains while non-target data contain recordings of tractors, cars, buses, aero-

planes, scooters and other vehicles. Further details of data are given in Appendix D

We performed experiments on the 13 MFCCs extracted from the given data. The 13

dimensional feature vectors are extracted for 200 millisecond frame from the audio files

after segmentation. Matlab toolboxes Prtools [20] and DDtools [21] were used exten-

sively for the experiments.

4.2 Multi-class results

In the following sections, different multi-class classifiers are tested with data from Bath-

men. AUC is reported for range of experiments where in every experiment, different

number of audio recordings from non-target class are used for training. Every time

“leave-one-set-out cross validation” with random picking for non-target files is done for

testing each file.

4.2.1 LDC results
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Figure 4.1: Full area under ROC curve, train and test on Bathmen with the LDC
classifier.
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Figure 4.1 shows the area under ROC curve calculated after leave-one-set-out cross

validation for range of experiments using linear Bayes normal classifier.

It is clear from Figure 4.1 that training with less number of recordings from non-target

class, the accuracy is very low. Starting with single audio recording from non-target

class for training, the AUC is merely 0.6. The AUC gets better with increase in number

of non-train recordings and it reaches the mark of 0.8 when 20 non-target recordings

are used during training. Also there is fluctuation in results and the reason behind

this is random nature and picking of audio files during each loop of testing a single

audio recording. Certainly LDC cannot be used for classification of audio data when

the non-target examples are scarce and diverse in nature.

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC (LDC) for non-train files used=5, AUC=0.68494

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Figure 4.2: ROC curve for the LDC classifier when 5 outlier recordings are used

Figure 4.2 shows the ROC curve obtained after “leave-one-set-out cross validation”

for linear Bayes normal classifier when five files are used from non-target class during

training. In this case, 100 percent accuracy for true positive rate can be achieved but

at cost of 60 percent false positive rate, which is not acceptable because of abundant

non-targets in real scenario.
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4.2.2 QDC results
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Figure 4.3: Full area under ROC curve, train and test on Bathmen with QDC.

Figure 4.3 shows the area under ROC curve calculated after “leave-one-set-out cross

validation” for range of experiments using quadratic Bayes normal classifier.

With just one file used from non-target class, the AUC is 0.5, which means random

prediction. In the beginning, the performance of classifier is worse but with increase in

number of non-target audio recordings, the performance is drastically increased. The

results indicate that if reliable and well sampled data is available from the non-target

class, QDC can perform well. In our case, the data from non-target class is diverse in

nature and we do not want to use any information from it. Since with few files (less than

5) from non-target class the AUC is less than 0.8, so its usage cannot be recommended

for audio cases where less data is available for non-target classs.
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Figure 4.4: ROC curve for the QDC classifier when 5 non-target recordings are used.

Figure 4.4 shows the ROC curve obtained after “leave-one-set-out cross validation” for

quadratic Bayes normal classifier when five files are selected randomly from non-target

class during training for testing every audio file. It can be seen that true positive rate

goes to 1 (100 percent) but at cost of around 0.7 (70 percent) false positive rate.

4.2.3 Naive Bayes results
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Figure 4.5: Full area under ROC curve, train and test on Bathmen for Naive Bayes
classifier.
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Figure 4.5 shows the area under ROC curve calculated after “leave-one-set-out cross

validation” for range of experiments using naive Bayes classifier. Initially, with just

one file used from the non-target class, the AUC is just above 0.6. There is a bit of

improvement noticed when the number of non-target recordings are increased to 7. The

AUC goes to 0.8 when 17 audio recordings are used for training to test every single

audio file. In naive Bayes classifier, the AUC is less than 0.9 when all the non-target

(44) recordings are used for training.

Figure 4.6 shows the ROC curve obtained after “leave-one-set-out cross validation” for

naive Bayes classifier when five files are selected randomly from non-target class during

training for testing every audio file. It can be seen that true positive rate goes to 1 (100

percent) but at cost of around more than 0.7 (70 percent) false positive rate for naive

Bayes classifier when 5 non-target recordings are used for training the classifier.
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Figure 4.6: ROC curve for the Naive Bayes classifier when 5 non-target recordings
are used.
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4.2.4 SVM with RBF kernel
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Figure 4.7: AUC for SVM (RBF kernel).

Figure 4.7 shows the area under ROC curve calculated after leave-one-set-out cross

validation for range of experiments using support vector machines using RBF kernel

with optimized parameters.

For SVM with radial basis function kernel (RBF kernel), optimized parameters are found

in a separate experiment. The parameters to be optimised are C and σ. The coefficient

C affects the trade-off between complexity and proportion of non-separable samples [22].

For finding optimized parameters C and σ, the data is divided into two sets (Train and

test). 100 target files out of 200 total target files were selected for training while rest

100 for testing, 23 non-target files out of 45 were used for training while rest 22 for

testing. The experiment was repeated for range of C and σ values combination. Results

for finding the best parameters can be found in Appendix C.

Figure 4.7 shows the area under ROC curve calculated after leave-one-set-out cross

validation for range of experiments using support vector machines with RBF kernel

with optimized parameters. Figure 4.7 shows that initially the AUC is less than 0.6

when single non-target recording is used for training. The AUC becomes more than 0.8

when 9 or more than 9 non-target recordings are used for training the classifier.
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Figure 4.8: ROC curve for SVM (RBF kernel) when 5 non-target recordings are used.

Figure 4.8 shows the ROC curve obtained after leave-one-set-out cross validation for

SVM with RBF kernel when five files are selected randomly from non-target class during

training for testing every audio file.

4.3 SVDD results
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Figure 4.9: ROC curve for SVDD
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Figure 4.9 shows the area under ROC curve calculated after leave-one-set-out cross

validation for support vector data description. No Data was used from non-target class

during the training. It is clear from the figure that more than 0.8 (80 percent) true

positive rate is achieved with less than 0.3 (30 percent) false positive rate without using

any information from non-target class during training the classifier. These results show

that SVDD can perform better than binary classifiers when non-target training data is

limited.

4.4 Real time results

The SVDD model was put on test in real time at a town in eastern Netherlands (Bath-

men). The audio event is decided to be a target if the maximum threshold value after

windowing is greater or equal to 10 percent. To evaluate the performance of the classi-

fier, the results are cross checked with the video recorded at that particular time in real

time as well.

Table 4.1 shows the detailed count of events and results for 24 hours test while Table 4.2

summaries the results in real time. The results indicate that SVDD is effective in getting

low false alarms in online operation, while it may miss some percentage of genuine trains.
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Time start Time End No. of events No. of trains No. of outliers TP count FN count FP count TN count

17:00 17:30 14 4 10 2 2 0 10

17:30 18:00 19 5 14 4 1 0 14

18:00 18:30 8 5 3 2 3 0 3

18:30 19:00 12 4 8 3 1 1 7

19:00 19:30 10 4 6 3 1 0 6

19:30 20:00 6 4 2 4 0 0 2

20:00 20:30 7 6 1 5 1 0 1

20:30 21:00 3 2 1 2 0 0 1

21:00 21:30 6 4 2 3 1 0 2

21:30 22:00 8 5 3 5 0 0 3

22:00 22:30 6 4 2 3 1 0 2

22:30 23:00 5 4 1 3 1 0 1

23:00 23:30 7 6 1 5 1 0 1

23:30 00:00 3 3 0 1 2 0 0

00:00 00:30 4 4 0 4 0 0 0

00:30 01:00 2 2 0 2 0 0 0

01:00 01:30 0 0 0 0 0 0 0

01:30 02:00 0 0 0 0 0 0 0

02:00 02:30 1 1 0 1 0 0 0

02:30 03:00 0 0 0 0 0 0 0

03:00 03:30 0 0 0 0 0 0 0

03:30 04:00 0 0 0 0 0 0 0

04:00 04:30 4 0 4 0 0 0 4

04:30 05:00 16 1 15 1 0 0 15

05:00 05:30 15 1 14 1 0 0 14

05:30 06:00 8 1 7 1 0 0 7

06:00 06:30 6 3 3 3 0 0 3

06:30 07:00 6 2 4 2 0 0 4

07:00 07:30 9 4 5 2 2 0 5

07:30 08:00 8 3 5 3 0 0 5

08:00 08:30 4 4 0 2 2 0 0

08:30 09:00 5 5 0 5 0 0 0

09:00 09:30 8 6 2 5 1 0 2

09:30 10:00 4 4 0 2 2 0 0

10:00 10:30 9 6 3 3 3 0 3

10:30 11:00 10 6 4 5 1 0 4

11:00 11:30 7 3 4 3 0 0 4

11:30 12:00 8 4 4 4 0 0 4

12:00 12:30 6 4 2 3 1 0 2

12:30 13:00 5 4 1 4 0 0 1

13:00 13:30 6 4 2 3 1 0 2

13:30 14:00 8 5 3 4 1 0 3

14:00 14:30 10 5 5 4 1 0 5

14:30 15:00 8 3 5 2 1 0 5

15:00 15:30 8 3 5 2 1 0 5

15:30 16:00 5 4 1 4 0 0 1

16:00 16:30 6 4 2 2 2 0 2

16:30 17:00 11 4 7 2 2 0 7

17:00 17:30 7 4 3 3 1 0 3

Total 328 164 164 127 37 1 163

Table 4.1: Detailed count of audio events and classifier output for Bathmen

True positive rate 77.44

False positive rate 0.61

True negative rate 99.39

False negative rate 22.56

Table 4.2: Summary of the results in Table 4.1.



Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we discussed the problem of detecting target audio (train) data using one

class classification. We used SVDD for training the model without using any data from

non-target class and compared it with multi-class classifiers where data is used from

both classes for training the classifier.

In detecting a train, it is impossible to model representative distribution of non-trains

because of diverse possibilities. The results indicated that SVDD works well in cases

where one of the classes is severely under-sampled due to the diverse nature of data or

cost of measurement for that class.

One of the main goals at Sensornet was to decrease the false positive rate in real time

and it was achieved very well as reported in real time test results.

5.2 Future work

There is possibility of extending this work further by classifying target data as passenger

train and cargo (freight) train. Also the SVDD results may be further optimized by

repeating the experiments for a range of σ values. In real time, the results can be

further improved by adding all the missed trains into the data-set for training.
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Matlab codes

A.1 Removing redundant starting and ending points from

audio target signals

clc

close all

clear all

percent =75;

Fhandle=fopen(’AllTrainsAgain.txt’,’r’);

F=textscan(Fhandle ,’%s’,’delimiter ’,’\n’);

TrainsTotal=length(F{1});

for i=1: TrainsTotal

Filename = F{1}{i};

fprintf(’reading %s\n’,Filename );

[Ntrain ,Fs]= audioread(Filename );

NtrainT=Ntrain ’;

envelope = abs(NtrainT );

VO1 = tsmovavg(envelope , ’s’, 6400);

Maxval=max(VO1)

Threshould =( Maxval /100)* percent;

YESNO=VO1 >= Threshould;

idx1 = find(YESNO~=0, 1, ’first ’);

idx2 = find(YESNO~=0, 1, ’last’);
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Cut=NtrainT(idx1:idx2);

Namefiles =[’CroppedTrain ’ num2str(i) ’.wav’] ;

wavwrite(Cut ,Fs,Namefiles );

i

end

A.2 Extracting features

clc

clear all

close all

Tw = 200; % analysis frame duration (ms)

Ts = 200; % analysis frame shift (ms)

alpha = 0.97; % preemphasis coefficient

R = [ 10 4200 ]; % frequency range to consider

M = 20; % number of filterbank channels

C = 13; % number of cepstral coefficients

L = 22; % cepstral sine lifter parameter

% hamming window

hamming = @(N)(0.54 -0.46* cos(2*pi*[0:N-1]. ’/(N -1)));

%Complete trains (change list for other locations)

Fhandle=fopen(’alltrainsCroppedHengelo.txt’,’r’);

F=textscan(Fhandle ,’%s’,’delimiter ’,’\n’);

numNoises=length(F{1});

TrainFeatures =[];

SUBlabelTrain =[];

for i=1: numNoises

Filename = F{1}{i};

fprintf(’reading %s\n’,Filename );

[Ntrain ,Fs]= audioread(Filename );

[FMFCCs , FBEs , frames ] =...

mfccforsensornetmethod(Ntrain , Fs, Tw, Ts, alpha , hamming , R, M, C, L );

FMFCCs=transpose(FMFCCs );

TrainFeatures =[ TrainFeatures;FMFCCs ];

Size=size(FMFCCs ,1);

Indexlabel=genlab(Size ,i);

SUBlabelTrain =[ SUBlabelTrain;Indexlabel ];
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end

sizee=size(TrainFeatures ,1);

Tlabel=repmat ([1],sizee ,1);

% outliers list (may change for different locations )

Fhandle=fopen(’hengelooutliers.txt’,’r’);

F=textscan(Fhandle ,’%s’,’delimiter ’,’\n’);

numNoises=length(F{1});

OutlierFeatures =[];

SublabelOutliers =[];

for j=1: numNoises

Filename = F{1}{j};

fprintf(’reading %s\n’,Filename );

[Ntrain ,Fs]= audioread(Filename );

[FMFCCs , FBEs , frames ] =...

mfccforsensornetmethod( Ntrain , Fs, Tw , Ts , alpha , hamming , R, M, C, L );

FMFCCs=transpose(FMFCCs );

OutlierFeatures =[ OutlierFeatures;FMFCCs ];

Size=size(FMFCCs ,1);

Indexlabel=genlab(Size ,(j+i));

SublabelOutliers =[ SublabelOutliers;Indexlabel ];

end

sizee=size(OutlierFeatures ,1);

OutlierLabel=repmat ([0],sizee ,1);

Features =[ TrainFeatures;OutlierFeatures ];

labels =[ Tlabel;OutlierLabel ];

SUBlabel =[ SUBlabelTrain;SublabelOutliers ];

MissClassifyCountW1 =0;

Totalfiles=max(SUBlabel );

filename = ’CroppedTrains75Hengelooutliersoutliers10to4200200wsize200.mat’;

save(filename)

A.3 SVDD experiments codes

% %%%%%%%%%%%%%%%%%
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% this is for sensornet

clc

close all

clear all

addpath dd_tools

addpath prtools

prmemory(inf)

load V4NEWLISTCroppedTrains50_Bathmen_50Cropoutliersoutliers10to4200200wsize200

prmemory(inf)

tic

MissClassifyCountW1 =0;

s1=25; %Sigma Value

eotg =0.1; %Error on target class

for i=1: Totalfiles

i

TestIndex=find(SUBlabel == i);

Testrows=TestIndex ’;

TeFeatures=Features(Testrows ,:);

Telabels=labels(Testrows );

TrainIndex=find(SUBlabel ~= i);

Trrows=TrainIndex ’;

TrFeatures=Features(Trrows ,:);

Trlabels=labels(Trrows );

TrData=prdataset(TrFeatures ,Trlabels );

TeData=prdataset(TeFeatures ,Telabels );

if Telabels (1)==1

TstSet = gendatoc(TeData ,[]);

end

if Telabels (1)~=1

TstSet = gendatoc ([], TeData );

end

[TrSet ,I1] = oc_set(TrData ,2);

LABELSorig = getlab(TeData );

OriginalClass=mode(LABELSorig );

%%speedup because we dont have to train again and again for outliers class

%%testing

if i<202

W1= svdd(target_class(TrSet),eotg ,s1);



Appendix A. Matlab codes 38

end

%% speedupends

%W1

TesterrorW1=testc(TstSet*W1);

LABELSPredictW1=TstSet*W1*labeld;

LABELSPredictW1 = double(LABELSPredictW1 );

LABELSPredictW1 = LABELSPredictW1 (: ,1);

LABELSPredictW1(LABELSPredictW1 ==116) = 1; %116 is target

LABELSPredictW1(LABELSPredictW1 ==111) = 0;

PredictedClassW1=mode(LABELSPredictW1 );

if OriginalClass ~= PredictedClassW1

MissClassifyCountW1=MissClassifyCountW1 +1;

end

e1(i)= TesterrorW1;

OriginalLabel(i)= OriginalClass;

PredictedLabelW1(i)= PredictedClassW1;

CorrectLabelsframesW1(i)= length(find(LABELSPredictW1 == OriginalClass ));

end

Mean1=mean(e1);

SDeviation1=std(e1);

FileErrorW1=MissClassifyCountW1/Totalfiles;

timeElapsedd=toc

filename = ’V4_5DEC2015NEWLISTLOSOCroppedTrains50vs50bathmanDataW1_sigma25_fr0p1.mat’;

save(filename)

close all

clear all

A.4 ROC and area under ROC for multiclass experiment

% %%%%%%%%%%%%%%%%% This code is for finding Area under ROCs

% %%%%%%%%%%%%%%%%% and plot the maximum area under ROC

% every time n (1:44) outlier files were selected

clc

clear

close all
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for kk = 1: 44 %loop is according to number of outlier files

kk

%change name accordingly if different

load([’Latest_V216OctLDC50vs50sabanciFullTest_ ’ num2str(kk) ’.mat’])

TotalTrains= Totalfiles -numNoises;

score (1: TotalTrains )= pctCorFrames (1: TotalTrains );

score(( TotalTrains +1): Totalfiles )=100- pctCorFrames (( TotalTrains +1): Totalfiles );

score=score /100;

[X1 ,Y1,T1,AUC1] = perfcurve(OriginalLabel ,score ,1,’XVals’ ,[0:0.001:1]);

X{kk}=X1;

Y{kk}=Y1;

T{kk}=T1;

AUC(kk)=AUC1;

end

stem(AUC);

xlabel(’Number of recordings used from Outlier -Class during Training ’)

ylabel(’Area uner ROC’)

title({’LOSO for LDC ’,’Trained and tested on Bathmen ’})

grid on

figure

[maxaucVALUE , maxauxINDEX ]=max(AUC);

Xmax2=X{maxauxINDEX}

Ymax2=Y{maxauxINDEX}

Tmax=T{maxauxINDEX}

plot(Xmax2 ,Ymax2)

title([’ROC for AUC=’,num2str(maxaucVALUE),’...

non -target files used=’,num2str(maxauxINDEX )]);

grid on

xlabel(’False positive rate’)

ylabel(’True positive rate’)

A.5 Plotting filterbank

%This code is for finding/plotting filterbnks

clc

clear all
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close all

fs =32000;

M=20;

MinF =10;

MaxF =4200;

Frameduration =200; %ms

Nw = round( 1E -3*200* fs ) ; % frame duration (samples)

nfft = Nw;

K = nfft /2+1 ;

hz2mel = @( hz )( 1127* log (1+hz /700) ); % Hertz to mel warping function

mel2hz = @( mel )( 700* exp(mel /1127) -700 );

R = [ MinF MaxF ];

first=hz2mel(MinF);

last=hz2mel(MaxF);

difference=last -first;

onefiltersize_inMelz=difference /(M+1) % Difference in MELZ

for i=1:(M+2)

inmilz(i)= first;

first=first+onefiltersize_inMelz;

end

for i=1:(M+2)

value= inmilz(i);

inhz(i)= mel2hz(value) ;

end

for i=1:M

yax =[0 1 0];

xax=[inhz(i) inhz(i+1) inhz(i+2)];

plot(xax ,yax ,’r’)

hold on

grid on

end
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Extra results and experiments

B.1 Extra experiments SVDD

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

ROC for SVDD after LOSO,Sigma=40,fracrej=0.01

AUC=0.76944

Figure B.1: ROC for SVDD with σ=40.
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AUC = 0.7694 (Time Elapsed 151.94 hours)

False positive rate True positive rate Threshold

0 0 1.0000

0 0.1600 0.8913

0.0222 0.2400 0.7692

0.0444 0.3150 0.7029

0.0667 0.3250 0.6923

0.0889 0.3550 0.6667

0.1111 0.4100 0.6071

0.1556 0.4800 0.5172

0.2222 0.5400 0.4063

0.2667 0.6000 0.3333

0.2889 0.6850 0.2100

0.3111 0.7900 0.1176

0.3333 0.8150 0.0968

0.3556 0.8400 0.0833

0.3778 0.8550 0.0714

0.4000 0.8550 0.0667

0.4222 0.8600 0.0588

0.4444 0.8850 0.0303

0.4667 0.8850 0.0227

1.0000 1.0000 0

Table B.1: Thresholds for Figure B.1.
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Figure B.2: ROC for SVDD with σ=30.
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AUC1 =0.805

False positive rate True positive rate Threshold

0 0 1.0000

0 0.2300 0.7813

0.0222 0.2950 0.7143

0.0444 0.3150 0.6667

0.0667 0.3700 0.6098

0.0889 0.4600 0.5217

0.1111 0.4600 0.5172

0.1333 0.5650 0.4138

0.1556 0.6150 0.3333

0.1778 0.6550 0.2857

0.2000 0.6750 0.2609

0.2444 0.7250 0.2083

0.2667 0.7950 0.1200

0.2889 0.7950 0.1148

0.3111 0.8350 0.0833

0.3333 0.8400 0.0769

0.3556 0.8450 0.0714

0.3778 0.8600 0.0156

1.0000 1.0000 0

Table B.2: Thresholds for Figure B.2.
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Figure B.3: ROC for SVDD with σ=25.

AUC =0.80717

False positive rate True positive rate Threshold

0 0 1.0000

0 0.1650 0.8545

0.0222 0.3000 0.7100

0.0444 0.3350 0.6667

0.0667 0.3850 0.6121

0.1111 0.4100 0.5882

0.1333 0.4650 0.5093

0.2000 0.5650 0.4058

0.2222 0.6300 0.3333

0.2444 0.6950 0.2286

0.2667 0.7550 0.1818

0.2889 0.8450 0.1000

0.3111 0.8550 0.0870

0.3333 0.8550 0.0833

0.3556 0.8850 0.0714

0.3778 0.9150 0.0156

1.0000 1.0000 0

Table B.3: Thresholds for Figure B.3.
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B.2 Real time results

True positive rate 75.33

False positive rate 2.08

True negative rate 97.91

False negative rate 24.66

Table B.4: Summary of the results in Table B.6.

True positive rate 82.20

False positive rate 0.00

True negative rate 100.00

False negative rate 17.79

Table B.5: Summary of the results in Table B.7.
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Time Start Time End
No. of
events

No. of
trains

No. of
outliers

TP count FN count FP count TN count

14:00 14:30 5 4 1 3 1 0 1

14:30 15:00 9 4 5 4 0 0 5

15:00 15:30 8 5 3 4 1 0 3

15:30 16:00 9 5 4 3 2 0 4

16:00 16:30 5 4 1 3 1 0 1

16:30 17:00 4 3 1 3 0 0 1

17:00 17:30 11 4 7 4 0 1 6

17:30 18:00 6 5 1 3 2 0 1

18:00 18:30 7 3 4 3 0 0 4

18:30 19:00 6 5 1 4 1 0 1

19:00 19:30 8 4 4 4 0 0 4

19:30 20:00 4 4 0 3 1 0 0

20:00 20:30 7 7 0 5 2 0 0

20:30 21:00 6 4 2 2 2 0 2

21:00 21:30 4 4 0 1 3 0 0

21:30 22:00 8 4 4 4 0 0 4

22:00 22:30 5 4 1 3 1 0 1

22:30 23:00 5 5 0 5 0 0 0

23:00 23:30 4 4 0 3 1 0 0

23:30 00:00 3 3 0 2 1 0 0

00:00 00:30 1 1 0 1 0 0 0

00:30 01:00 4 3 1 1 2 0 1

01:00 01:30 3 3 0 1 2 0 0

01:30 02:00 1 0 1 0 0 0 1

02:00 02:30 2 1 1 1 0 0 1

02:30 03:00 0 0 0 0 0 0 0

03:00 03:30 0 0 0 0 0 0 0

03:30 04:00 1 0 1 0 0 0 1

04:00 04:30 0 0 0 0 0 0 0

04:30 05:00 1 0 1 0 0 0 1

05:00 05:30 0 0 0 0 0 0 0

05:30 06:00 3 0 3 0 0 0 3

06:00 06:30 2 1 1 1 0 0 1

06:30 07:00 3 2 1 2 0 0 1

07:00 07:30 3 3 0 3 0 0 0

07:30 08:00 4 3 1 3 0 0 1

08:00 08:30 6 4 2 3 1 0 2

08:30 09:00 6 4 2 3 1 0 2

09:00 09:30 6 4 2 3 1 0 2

09:30 10:00 5 4 1 3 1 0 1

10:00 10:30 5 3 2 1 2 0 2

10:30 11:00 5 3 2 2 1 0 2

11:00 11:30 9 3 6 3 0 1 5

11:30 12:00 10 4 6 2 2 0 6

12:00 12:30 10 4 6 3 1 0 6

12:30 13:00 5 3 2 1 2 0 2

13:00 13:30 6 4 2 3 1 0 2

13:30 14:00 9 4 5 3 1 0 5

14:00 14:30 12 4 8 4 0 0 8

Total 246 150 96 113 37 2 94

Table B.6: Detailed results from real time test of SVDD on March 27 2015.
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Time Start Time End
No. of
events

No. of
trains

No. of
outliers

TP count FN count FP count TN count

14:00 14:30 3 3 0 0 3 0 0

14:30 15:00 2 2 0 2 0 0 0

15:00 15:30 4 4 0 4 0 0 0

15:30 16:00 3 3 0 3 0 0 0

16:00 16:30 3 3 0 2 1 0 0

16:30 17:00 3 3 0 3 0 0 0

17:00 17:30 3 3 0 2 1 0 0

17:30 18:00 4 4 0 3 1 0 0

18:00 18:30 6 5 1 4 1 0 1

18:30 19:00 3 3 0 3 0 0 0

19:00 19:30 4 4 0 4 0 0 0

19:30 20:00 6 4 2 4 0 0 2

20:00 20:30 4 4 0 3 1 0 0

20:30 21:00 3 3 0 3 0 0 0

21:00 21:30 3 3 0 3 0 0 0

21:30 22:00 3 3 0 3 0 0 0

22:00 22:30 3 3 0 2 1 0 0

22:30 23:00 3 3 0 3 0 0 0

23:00 23:30 4 3 1 3 0 0 1

23:30 00:00 4 3 1 3 0 0 1

00:00 00:30 3 3 0 3 0 0 0

00:30 01:00 2 2 0 2 0 0 0

01:00 01:30 1 1 0 1 0 0 0

01:30 02:00 0 0 0 0 0 0 0

02:00 02:30 0 0 0 0 0 0 0

02:30 03:00 0 0 0 0 0 0 0

03:00 03:30 0 0 0 0 0 0 0

03:30 04:00 0 0 0 0 0 0 0

04:00 04:30 0 0 0 0 0 0 0

04:30 05:00 0 0 0 0 0 0 0

05:00 05:30 0 0 0 0 0 0 0

05:30 06:00 0 0 0 0 0 0 0

06:00 06:30 0 0 0 0 0 0 0

06:30 07:00 0 0 0 0 0 0 0

07:00 07:30 0 0 0 0 0 0 0

07:30 08:00 1 1 0 1 0 0 0

08:00 08:30 3 3 0 2 1 0 0

08:30 09:00 3 3 0 2 1 0 0

09:00 09:30 4 4 0 4 0 0 0

09:30 10:00 4 4 0 3 1 0 0

10:00 10:30 5 5 0 5 0 0 0

10:30 11:00 3 3 0 2 1 0 0

11:00 11:30 4 4 0 3 1 0 0

11:30 12:00 3 3 0 0 3 0 0

12:00 12:30 4 4 0 1 3 0 0

12:30 13:00 3 3 0 3 0 0 0

13:00 13:30 3 3 0 2 1 0 0

13:30 14:00 4 3 1 3 0 0 1

14:00 14:30 6 3 3 3 0 0 3

Total 127 118 9 97 21 0 9

Table B.7: Detailed results from real time test of SVDD on June 28 2015.
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Optimizing RBF kernel

σ = 2−10 σ = 2−5 σ = 20 σ = 25 σ = 210

C = 2−5 0.9278 0.9278 0.9278 0.9245 0.9225

C = 2−4 0.9278 0.9278 0.9278 0.924 0.9225

C = 2−3 0.9278 0.9278 0.9278 0.9235 0.9273

C = 2−2 0.9278 0.9278 0.9278 0.9324 0.9276

C = 2−1 0.9278 0.9278 0.9278 0.9316 0.9273

C = 20 0.9278 0.9278 0.9278 0.9334 0.9263

C = 21 0.9278 0.9278 0.9278 0.9311 0.9271

C = 22 0.9278 0.9278 0.9278 0.9288 0.9273

C = 23 0.9278 0.9278 0.9278 0.9286 0.9271

C = 24 0.9278 0.9278 0.9278 0.9357 0.9273

C = 25 0.9278 0.9278 0.9278 0.9426 0.9271

Table C.1: SVM (RBF kernel) optimization.

σ = 23 σ = 24 σ = 25 σ = 26 σ = 27

C = 26 0.9451 0.9484 0.9469 0.9299 0.925

C = 27 0.9451 0.9484 0.9416 0.9291 0.9276

C = 28 0.9451 0.9484 0.9413 0.9375 0.9319

C = 29 0.9451 0.9484 0.9423 0.939 0.9281

C = 210 0.9451 0.9484 0.9418 0.9433 0.9319

C = 211 0.9451 0.9484 0.9418 0.9398 0.9281

C = 212 0.9451 0.9484 0.9418 0.941 0.9357

C = 213 0.9451 0.9484 0.9418 0.9466 0.938

C = 214 0.9451 0.9484 0.9418 0.9441 0.9428

C = 215 0.9451 0.9484 0.9418 0.9441 0.939

C = 216 0.9451 0.9484 0.9418 0.9441 0.9413

Table C.2: SVM (RBF kernel) optimization.
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Details of data

D.1 PCA plots of features
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Figure D.1: Principal component analysis of features extracted from original audio
files.
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Figure D.2: Principal component analysis of features extracted from segmented audio
files.

D.1.1 Length of audio files

Total Trains= 200 (30 Freight Trains + 170 passenger Trains)

Total Outliers=45

Sampling Frequency for all the audio files=32000

Average length of trains before segmentation= 8.8887 seconds

Average length of trains After segmentation= 6.0465 seconds

Average length of non-trains before segmentation= 34.7061 seconds

Average length of non-trains After segmentation= 2.6143 seconds
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