
HIDING QUERY ACCESS PATTERNS IN RANGE

QUERIES USING PRIVATE INFORMATION

RETRIEVAL AND OBLIVIOUS RAM

by

GAMZE TİLLEM

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University

August 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/190017842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Gamze Tillem 2015

All Rights Reserved

HIDING QUERY ACCESS PATTERNS IN RANGE

QUERIES USING PRIVATE INFORMATION

RETRIEVAL AND OBLIVIOUS RAM

Gamze Tillem

Computer Science and Engineering, Master’s Thesis, 2015

Thesis Supervisor: Erkay Savaş

Abstract

This work addresses the problem of hiding query access patterns in privacy-

preserving range queries while guaranteeing data and query confidentiality. We

propose two methods, which are based on Private Information Retrieval (PIR) and

Oblivious RAM (ORAM) techniques, respectively. For the PIR based search op-

eration, we introduce a new scheme based on Lipmaa’s computationally-private

information retrieval (CPIR) method. We reduce the computation cost of CPIR by

reducing the number of modular exponentiation operations, employing shallow trees

and utilizing multi-exponentiation techniques. Furthermore, we improved the per-

formance of CPIR by applying parallel algorithms. For the ORAM based method,

we adapted Stefanov’s Path ORAM method to the privacy-preserving range search.

Our analyses show that, in terms of communication cost, CPIR provides better

bandwidth usage especially in large database sizes, while in computational cost,

Path ORAM based method performs better due to the negligible cost of server op-

erations. The results imply that, despite some advantageous qualitative aspects of

CPIR and its highly parallel implementation, it is still an expensive scheme in terms

of computation complexity in comparison with Path ORAM for hiding query access

patterns in privacy preserving range queries.

iv

MAHREMİYET KORUMALI ERİM SORGULARINDA

MAHREMİYET KORUMALI BİLGİ ERİŞİMİ VE İLGİSİZ

BELLEK KULLANARAK SORGU ERİŞİM

ÖRÜNTÜSÜNÜN GİZLENİMİ

Gamze Tillem

Bilgisayar Bilimleri ve Mühendisliği, Yüksek Lisans, 2015

Tez Danışmanı: Erkay Savaş

Özet

Bu çalışma mahremiyet korumalı erim sorgulamalarında veri ve sorgu gizliliğinin

yanı sıra, sorgunun erişim örüntüsünün gizlenmesi sorununu işlemektedir. Bu soruna

çözüm olarak Mahremiyet Korumalı Bilgi Erişimi (PIR) ve İlgisiz Bellek (ORAM)

tekniklerine dayalı iki farklı yöntem önerilmiştir. PIR’e dayalı mahremiyet koru-

malı erim sorguları için Lipmaa’nın daha önce sunmuş olduğu hesaba dayalı PIR

(CPIR) yöntemi üzerinden yeni bir CPIR yöntemi sunulmaktadır. Özgün yöntemin

hesaplama süresini düşürmek amacıyla, yeni CPIR yönteminde toplam modüler

üst alma işlemi sayısının azaltımı, daha az derinlikli agaçların kullanımı ve üst

hesaplamaları için eş zamanlı çoklu üst alma algoritmalarının kullanımı önerilmiştir.

Dahası, koşut algoritmalar kullanılarak yeni CPIR yönteminin hesaplama süreleri

iyileştirilmiştir. ORAM’a dayalı mahremiyet korumalı erim sorgulama tekniğinde

ise Stefanov’un daha önce sunmuş olduğu Path ORAM yöntemi erim sorgularına

uyarlanmıştır. Çözümleme sonuçları göstermektedir ki, iletişim maliyeti göz önünde

bulundurulduğunda, PIR yöntemi özellikle büyük veritabanlarında daha düşük ağ

kullanımı sağlamaktadır. Öte yandan, hesaplama maliyetleri düşünüldüğünde, sunucu

tarafındaki maliyetin göz ardı edilebilir olmasından dolayı ORAM temelli yöntem

daha iyi sonuçlar sunmaktadır. Bu sonuçlardan yola çıkarak, mahremiyet koru-

malı erim sorgularında sorgu erişim örüntüsünün gizlenmesinde,nitel açıdan yarar-

ları olmasına rağmen, hesaplama maliyetleri açısından CPIR yönteminin ORAM

yöntemine göre daha pahalı olduğu söylenebilir.

v

Acknowledgements

First of all, I would like to thank to my thesis advisor Prof. Dr. Erkay Savaş for

his support and guidance throughout my graduate education. His motivation and

immense knowledge helped me to complete my research and to write this thesis.

Besides my advisor, I would like to thank my thesis jury, Asst. Prof. Dr. Kamer

Kaya and Asst. Prof. Dr. Ahmet Onur Durahim for their valuable suggestions. I

am extremely grateful for the good advice and help of Asst. Prof. Dr. Kamer Kaya.

My sincere thanks goes to all the members of the Cryptography and Information

Security Lab for the great environment they provided me in terms of both research

and friendship. Especially, Naim Alperen Pulur, Dilara Akdoğan and Berkay Dinçer

deserve infinite thanks for their support and motivation during our undergraduate

and graduate studies. Likewise, I have to acknowledge Ecem Ünal for the support

she provided whenever I need her.

I also want to mention my gratitude to my friends Ömer Faruk Koru and Melike

Kocacık for encouraging me in all parts of my graduate education. Besides, I am

grateful to Merve Beydemir, Kardelen Akın and Nazlı Akyurt for their existence.

My special thanks is to The Scientific and Technological Research Council of

Turkey, TÜBİTAK for the financial support provided under BİDEB program.

Finally, I would like to thank to my parents Fatma Tillem and Mehmet Tillem,

my brother Salih Zeki Tillem and my sisters Merve Tillem and Zeynep Özkılınç

Tillem. I am grateful for their unlimited love and support throughout my life.

vi

Contents

Introduction xii

1 Background 1

1.1 Cryptographic Primitives . 1

1.1.1 Homomorphic Encryption . 2

1.1.2 Damg̊ard - Jurik Cryptosystem 2

1.1.3 Advanced Encryption Standard 3

1.2 Private Information Retrieval . 4

1.2.1 Lipmaa’s CPIR Scheme . 5

1.2.2 Improving Lipmaa’s CPIR . 7

1.2.3 Lim-Lee Multi-Exponentiation Algorithm 8

1.3 Oblivious RAM . 8

1.3.1 Path ORAM . 9

1.4 Bucketization Method for Privacy Preserving Range Queries 10

2 A New Method for CPIR 13

2.1 The New CPIR using BDDs . 14

2.1.1 (2, 1) - CPIR . 14

2.1.2 (n, 1) - CPIR . 16

2.2 Implementing the New CPIR on Octal Trees 18

2.2.1 (8,1)-CPIR for Octal Trees . 18

2.2.2 (n,1)-CPIR for Octal Trees . 20

2.3 Implementing the New CPIR on Hexadecimal Trees 20

2.3.1 (16,1)-CPIR for Hexadecimal Trees 20

2.3.2 (n,1)-CPIR for Hexadecimal Trees 22

vii

2.4 Utilizing Lim-Lee Multi-Exponentiation Method to Accelerate The

New CPIR . 23

2.5 A Parallel Implementation for the New CPIR 25

2.5.1 Client Side Parallel Implementation 25

2.5.2 Server Side Parallel Implementation 26

2.6 A Scalable Approach for The Parallel Implementation 29

3 Privacy Preserving Range Queries using PIR and ORAM 32

3.1 CPIR Technique for Privacy Preserving Range Queries 32

3.2 Path ORAM Technique for Privacy Preserving Range Queries 34

4 Communication and Computational Analysis 36

4.1 Analysis of Communication and Computation for CPIR 36

4.1.1 Analysis of Communication Complexity 37

4.1.2 Analysis of Computational Complexity 40

4.2 Analysis of Communication and Computation for Privacy Preserving

Range Queries . 43

4.2.1 Computational Complexity Analysis 46

5 Implementation Results 48

5.1 Timing results for the new CPIR . 48

5.1.1 Timings for Client Side Computations 49

5.1.2 Timings for Server Side Computations 49

5.2 Timing results for the Privacy Preserving Range Queries 56

6 Conclusion 61

viii

List of Figures

1.1 An illustration of Bdd which contains 4 files 6

1.2 An example of (n,1) - CPIR for a database of 4 files 7

4.1 Ratio of exchanged bits to database size in CPIR based technique on

octal and hexadecimal trees for different number of buckets 44

4.2 Ratio of exchanged bits to database size in Path ORAM based tech-

nique for different number of buckets 45

4.3 The bandwidth usage in the CPIR and ORAM method to retrieve

multiple buckets . 46

ix

List of Tables

4.1 The total bandwidth usage in number of bits for changing database

sizes, where dlog2(N)e = 1024 . 38

4.2 Total bandwidth usage in scalable CPIR for octal trees (number of

bits), where dlog2(N)e = 1024 . 39

4.3 Total bandwidth usage in scalable CPIR for hexadecimal trees (num-

ber of bits), where dlog2(N)e = 1024 39

4.4 Estimated timings of server side computations for different tree types

in ms, where |N | = 1024 . 41

4.5 Estimated timing values for binary trees in ms 42

4.6 Estimated timing values for octal trees in ms 43

4.7 Estimated timing values for hexadecimal trees in ms 43

5.1 Timings of client computation for encryption of selection bits and

decryption of results with |N | = 1024 50

5.2 Timings of server computation in serial case for binary, octal and

hexadecimal trees with |N | = 1024 51

5.3 Timings of server computation in parallel case for octal and hexadec-

imal trees . 52

5.4 Timings of server computation in scalable case for octal trees 52

5.5 Timings of server computation in scalable case for hexadecimal trees . 53

5.6 Timings of server computation in octal trees for various number of

cores in ms . 54

5.7 Timings of server computation in hexadecimal trees for various num-

ber of cores in ms . 54

x

5.8 Timings of server computation in octal tree with scalable method for

various number of cores in sec . 55

5.9 Timings of server computation in hexadecimal tree with scalable

method for various number of cores in sec 55

5.10 Timings of client computation for CPIR and Path ORAM method in

octal case utilizing 4 cores (in ms) . 57

5.11 Timings of client computation for CPIR and Path ORAM method in

hexadecimal case utilizing 4 cores (in ms) 57

5.12 Timings of client computation for the CPIR method in octal case

utilizing multiple cores (in ms) . 58

5.13 Timings of client computation for the CPIR method in hexadecimal

case utilizing multiple cores (in ms) 58

5.14 Timings of serial server computation for the new CPIR method in

octal case in ms . 58

5.15 Timings of serial server computation for the new CPIR method in

hexadecimal case in ms . 59

5.16 Timings of parallel server computation for the new CPIR method in

octal case in ms . 60

5.17 Timings of parallel server computation for the new CPIR method in

hexadecimal case in ms . 60

xi

Introduction

While outsourcing storage of data to cloud is beneficial for data owners to reduce

the associated costs thereof, ensuring secure and private access to data becomes

the next big challenge. The threat is that a curios data holder may try to retrieve

information from the stored data, from the queries sent by the data owner or from the

results of the queries. Therefore, several approaches are proposed in the literature

to securely search over outsourced data for an item or for items in a range. One

approach considers preserving the order of plaintext [3], or the order of prefix in

plaintext [21], in ciphertext using deterministic encryption methods, known as order-

preserving encryption. Boldyreva et al. [4], [5] improve the performance of order-

preserving encryption and provides formal security definitions for the method. The

second approach is known as predicate encryption [6], or Hidden Vector Encryption

(HVE), based on public key encryption. In the setup phase of HVE, based on the

characteristics of the plaintext, a vector x is generated and the data is encrypted for

storage. When a user wants to query a range from the encrypted data, he needs to

create a query token. The token contains a query vector w which is generated for the

requested range based on the characterization rules of x vector. Thus, to search for

a range, the token should compare the corresponding elements of w and x vectors.

If they match, then the token is able to decrypt the corresponding ciphertext [31].

Another solution is utilizing special data structures used to store the encrypted data.

For example, Vimercati et al. [26] proposes a privacy-preserving range query method

on B+ trees. The method consists of three main parts. The first part involves cover

searches which hides the actual request within fake requests. The second part is

cached searches which stores some recent data in a cache on client side. The third

part performs shuffling on the accessed nodes of B+ tree and rewrites them to

the server. The last approach for privacy-preserving range queries is bucketization

xii

methods which partitions the data into buckets according to a predefined rule. An

early approach for bucketization, [16], uses simpler methods, such as equi-depth or

equi-width partitioning, to partition the data into buckets. According to this model,

each data item is assigned a bucket id depending on the partitioning method and

stored encrypted in the database along with its bucket id. When a query needs to

be performed, the query is first translated into the corresponding bucket id based on

the partitioning method. Then, the encrypted data items with the matching bucket

ids are retrieved from the database. The main problem of bucketization schemes

is the existence of false positives caused by retrieving the data as a bucket instead

of one by one. While the existence of false positives benefits the security of the

scheme by obfuscating the retrieved data range, it creates an overhead in terms of

performance. Hore et al., [17], [18], improve bucketization methods by introducing

algorithms for optimized buckets in terms of performance and security.

The proposed methods are generally successful in satisfying two security concerns

of privacy-preserving range queries: data confidentiality and query confidentiality.

Since almost all schemes store the data in encrypted form, the confidentiality of

data is provided trivially. The security of a query content can be achieved by its

transformation into a secure representative such as tokens [6], bucket ids [18] or fake

requests [26]. However, apart from those concerns, a good privacy-preserving range

query scheme should prevent the disclosure of query access patterns. Especially in

precise query protocols, as HVE or order preserving schemes, the observation of

query access patterns can reveal useful information about query or data [19], [10].

Although, Vimercati et al.’s B+ scheme achieves hiding the query access patterns

by using the shuffling method, the cryptographic primitives of the scheme are weak.

Instead, usage of Oblivious RAM (ORAM) or Private Information Retrieval (PIR)

methods can provide stronger security for range queries. ORAM and PIR methods

are proposed to enable retrieve an item from an encrypted database without leaking

any information related to the retrieved data [7], [14]. The high overheads of these

methods are an obstacle for PIR and ORAM based techniques, but, both methods

provide favorable properties for privacy-preserving range queries provided that their

performances are improved.

Indeed, recent advances in the literature such as the Path ORAM method of

xiii

Stefanov et al. [28], which is fast and easy to implement, provide almost practical

schemes in hiding query access patterns. Similarly, certain acceleration techniques

in PIR schemes [24], [30] may also result in acceptable performance results.

The aim of this thesis is to explore the feasibility of hiding access patterns in

privacy-preserving range queries. We implement two techniques, one based on the

Lipmaa’s CPIR [24] method, and the other on the Path ORAM [28] method and

compare them in terms of their communication and computation costs. For the

CPIR based technique, we propose a new computation method which improves the

performance of Lipmaa’s CPIR by reducing the total number of modular exponentia-

tion operations, introducing shallow trees using octal and hexadecimal constructions,

where internal tree nodes have 8 and 16 children, respectively, and enabling employ-

ment of simultaneous modular exponentiation operations. In addition, we present

parallel algorithms to further accelerate the computations in the CPIR technique.

The thesis starts with providing necessary preliminary information about the

utilized techniques in Chapter 1. Chapter 2 introduces the new method for CPIR

technique in detail. Then, in Chapter 3 the application of CPIR and Path ORAM

on privacy-preserving range query schemes is explained. Once the methods are

introduced, Chapter 4 presents the analysis of communication and computation

complexities both for the new CPIR scheme and for the range query schemes which

utilize CPIR and Path ORAM. Finally, the actual results of the implementations

for the new CPIR scheme and the range query schemes are provided in Chapter 5.

Chapter 6 concludes the thesis.

xiv

Chapter 1

Background

As it has been already mentioned, this thesis addresses the problem of hiding query

access patterns in privacy-preserving range queries. To that end, two different tech-

niques, based on CPIR and Path ORAM, respectively, are employed. This chapter

provides the necessary background information for PIR, Oblivious RAM (ORAM)

and range queries, which is necessary to follow the discussions in the subsequent

chapters. First, we start with introducing the utilized cryptographic preliminar-

ies, which are the concept of homomorphic encryption, the Damg̊ard Jurik homo-

morphic cryptosystem and the Advanced Encryption Standard (AES). Since the

proposed CPIR method is based on the Lipmaa’s CPIR method [24], the CPIR

method and an extension on the CPIR method [30] are explained. In addition,

Lim-Lee’s multiexponentiation method, utilized for accelerating the CPIR scheme,

is presented. The chapter continues with the detailed explanations of the ORAM

and Path ORAM methods as a simple implementation of ORAM. Finally, since

the proposed CPIR based range query scheme is constructed using bucketization

technique [18], an overview of a bucketization scheme adapted to range queries is

provided.

1.1 Cryptographic Primitives

The security of the CPIR methods generally depends on the security of the under-

lying cryptosystem. The Lipmaa’s CPIR method and our new CPIR method are

based on additive homomorphism and multiple encryption. Thus, we first explain

1

the concept of homomorphic encryption, then continue with Damg̊ard-Jurik cryp-

tosystem which satisfies the necessary cryptographic properties for CPIR scheme.

Finally, brief information on AES cryptosystem, which is utilized for confidentiality

of stored data in range query schemes, is provided.

1.1.1 Homomorphic Encryption

A cryptosystem is homomorphic if it allows to perform operations on encrypted data

without decrypting it. The homomorphic property enables the data owners to op-

erate on their data, which is stored on a remote server, without sharing the private

key with server. The homomorphic property of most homomorphic cryptosystems

is based on a specific operation such as addition or multiplication. RSA [2] and El-

Gamal [11] cryptosystems are examples of multiplicatively homomorphic cryptosys-

tems while Goldwasser-Micali [15], Paillier [25] and Damg̊ard-Jurik [9] cryptosystems

are representatives of additively homomorphic cryptosystems. Furthermore, there

are some homomorphic cryptosystems that can perform both addition and multipli-

cation on the ciphertext, which are known as fully homomorphic schemes [12].

1.1.2 Damg̊ard - Jurik Cryptosystem

Retrieving a file from the database using CPIR protocol requires utilizing an addi-

tively homomorphic cryptosystem. A possible candidate can be the Paillier cryp-

tosystem. However, Paillier is not a convenient scheme as it cannot accomodate

changing block sizes, which is required in CPIR schemes. An alternative is the

Damg̊ard - Jurik cryptosystem. It is a generalization of the Paillier cryptosystem,

which enables to change the block length of the scheme without losing the homo-

morphic property [9], and, thus, allows multiple encryptions.

The setting of the Damg̊ard - Jurik cryptosystem is similar to RSA that employs

the operations on a modulus N which is the product of two sufficiently large primes,

p and q. However, its security assumption differs from the RSA cryptosystem.

Rather than relying on the hardness of integer factorization, the security of the

Damg̊ard-Jurik scheme is based on the hardness of decisional composite residuosity

problem.

The key property of the Damg̊ard - Jurik cryptosystem that makes it useful for

2

the CPIR protocol is the positive integer s which is used as the power of modulus

N . This value allows multiple encryptions in different levels by adjusting the block

length for the same public key. The cryptographic operations and homomorphic

properties of the Damg̊ard-Jurik cryptosystem are as follows:

Key Generation:

� Choose large primes p and q, and set N as N = p · q.

� Choose an element g ∈ Z∗Ns+1 such that g = (1 +N)jx mod N s+1 with j being

an integer relatively prime to N and x ∈ H, where the group H is isomorphic

to Z∗N

� Compute λ = lcm(p − 1, q − 1), and choose d such that d ≡ 1 mod N s and

d ≡ 0 mod λ.

� Public key : (N, g)

� Private key: d

Encryption:

� E(m, r) = gmrN
s

mod N s+1, where m ∈ ZN is the plaintext and r ∈ ZNs+1 is

a random number.

Decryption:

� Compute cd mod N s+1, then using the algorithm proposed in [9] find m.

Additive Homomorphic Properties:

� E(m1) · E(m2) = E(m1 +m2)

� E(m)c = E(m · c)

1.1.3 Advanced Encryption Standard

The secure storage of data in a remote server is possible by guaranteeing the con-

fidentiality of data which can be provided by encryption. Advanced Encryption

3

Standard (AES) is the current standard for data encryption based on Rijndael ci-

pher [1]. It is a symmetric block cipher with 128, 192 and 256 bit key sizes. The

cryptosystem is based on repetitive permutation and substitution operations. The

size of the message in AES may be larger or smaller than the block size which re-

quires an adaptation of the plaintext to the block size. To that end, the modes of

operation are utilized on AES. There are several types of modes of operation to use

on block ciphers. The modes may work in parallel blocks or may apply a feedback

mechanism such that each block depends on the result of the former method. Such

modes of operation require usage of an initialization vector (IV) for the first block

which enables to produce distinct ciphertexts for each encryption of a plaintext.

Cipher block chaining (CBC) is an example of modes which utilize feedback mech-

anism using IV. In this method each block encryption depends on the encryption

of the previously encrypted blocks. To provide data confidentiality in the proposed

privacy preserving range query schemes, we encrypted the database with AES using

CBC mode of operation in our experiments.

1.2 Private Information Retrieval

Private Information Retrieval (PIR), introduced by Chor et. al [7], is a method

which enables users to retrieve an item from a remote database without leaking

any information about the retrieved item to database server. The trivial solution

of PIR is downloading the entire data from the server and applying a local retrieve

operation. However, it is not a feasible solution considering the size of the database

and the access rights of the user. Instead, using PIR methods, an item can be re-

trieved by exchanging less data than the size of the original database. PIR can be

achieved either securing the client against computationally unbounded servers, re-

ferred as Information Theoretic PIR (itPIR); or relying the security of the protocol

on a computationally difficult problem, known as Computational PIR (CPIR). Ex-

isting CPIR schemes benefit from the security assumption of a cryptosystem as the

computationally difficult problem. For instance, The CPIR protocol of Kushilevitz

and Ostrovsky [20] is developed on the Goldwasser-Micali [15] cryptosystem which

depends on the intractability of quadratic residuosity problem. Similarly, Lipmaa

4

proposed a CPIR method [24] using Damg̊ard-Jurik cryptosystem, the security of

which is based on the decisional composite residuosity problem [9]. Since Lipmaa’s

method has a better communication complexity than other CPIR methods, we select

it as the basis of our PIR protocol for our privacy-preserving range query scheme.

1.2.1 Lipmaa’s CPIR Scheme

Lipmaa’s CPIR method, which is known as Binary Decision Diagram CPIR, or

BddCPIR, combines a non-cryptographic data structure with a cryptographic pro-

tocol [24]. Binary decision diagrams (Bdd), as the non-cryptographic data structure

of BddCPIR, enable to improve the efficiency of the scheme in terms of communi-

cation and computation complexity. On the other hand, the security of the scheme

is guaranteed by the security assumption of the Damg̊ard-Jurik cryptosystem. The

cryptographic properties of Damg̊ard-Jurik cryptosystem are explained previously.

Hence, this section continues with the definition of binary decision diagrams and

then introduces the Lipmaa’s CPIR protocol.

Binary Decision Diagrams

A binary decision diagram (Bdd) is a directed acyclic graph, whose internal nodes

have at most two outgoing edges, which are labeled as 0 or 1. Since in the Lipmaa’s

scheme Bdds always have exactly two outgoing edges, they can be considered as

binary trees, as well. For each level i of the binary tree, the jth internal node of the

current level is represented as Ri,j. The data items are stored in the leaf nodes and

represented as fx. The index x is a d-bit string that shows the route taken from the

root node to the corresponding sink node, where d is the depth of the tree. A Bdd

storing 4 files is demonstrated in Figure 1.1.

Octal and Hexadecimal Trees In this work, we use a slightly different method

based on Lipmaa’s BddCPIR, which employs octal and hexadecimal trees, instead

of binary trees due to performance reasons as explained in the subsequent sections.

In general, octal and hexadecimal trees share the same properties with binary trees,

but, the main difference is the number of children for each internal node. While

octal trees have 8 children in each node, hexadecimal trees have 16. The sink nodes

5

R2,0

R1,1

f3f2

0 1

R1,0

f1f0

0 1

0 1

Figure 1.1: An illustration of Bdd which contains 4 files

of octal and hexadecimal trees are represented by 3d and 4d bits, repectively, where

d is the depth of the tree.

(2,1)-CPIR

(2,1)-CPIR is the base protocol of the Lipmaa’s 1-out-of-n construction, where n is

the number of data items. In this protocol, the client inputs either 0 or 1 to retrieve

one of the 2 files -f0 or f1- stored in the server without leaking information. The

flow of the protocol is as follows:

� Client generates public and private keys (pk, sk). According to the value of

input x ∈ {0, 1}, client computes the encrypted selection bit c = Epk(x) and

sends pk and c to the server.

� Server computes R = Epk(f0) · cf1−f0 and sends R to the client.

� Client decrypts R with his private key sk to find the selected file fx

Proof. Based on the homomorphic properties of the Damg̊ard-Jurik cryptosys-

tem, we can show the correctness of the above operation as follows:

R = E(f0) · cf1−f0

= E(f0) · E(x)f1−f0

= E(f0 + x(f1 − f0)) = E(fx)

6

Generalization of (2,1)-CPIR to (n,1)-CPIR

On the basis of Lipmaa’s (2,1)-CPIR protocol, a 1-out-of-n method can be con-

structed by repeating the protocol to 2-file sub-trees in each time. The protocol

starts with the sink nodes of the tree and continues towards the root node. For

the nodes in each level of the tree, the R values are calculated and used for the

subsequent computations in the upper level of the tree. The final result is stored in

the root of the tree and the server sends the value of the root node to the client.

Different from (2,1)-CPIR, in (n,1)-CPIR protocol, the client needs to send d selec-

tion bits as x = (x0, x1, , xd−1). Furthermore, the result should be decrypted d times

to retrieve the requested file. Figure 1.2 illustrates the (n, 1)−CPIR protocol for a

4-file case based on the binary tree in Figure 1.1.

(n,1) - CPIR with 4 files
Client:

� Computes the encrypted selection bits c0 = E(x0) and c1 = E(x1) for
the two levels of the tree and send them to the server.

Server:

� For the lowest level of the tree, computes
R1,0 = E(f0) · cf1−f00

R1,1 = E(f2) · cf3−f20

� For the next level, repeats the computations using R1,0 and R1,1, instead
of files and corresponding encrypted selection bit of the level:
R2,0 = E(R1,0) · c

R1,1−R1,0

1

� Sends R2,0 to the client.

Client:

� Applies double decryption to R2,0 to retrieve the selected file.

Figure 1.2: An example of (n,1) - CPIR for a database of 4 files

1.2.2 Improving Lipmaa’s CPIR

In [30], Ünal and Savaş propose an improvement on Lipmaa’s BddCPIR which

employs a method based on octal trees. Although this form of the tree representation

does not change the asymptotic complexity, it results in faster implementation by

reducing the depth of the tree.

7

To show the computations in octal tree case, the (8,1)-CPIR is exemplified below:

� Client prepares the encrypted selection bits and sends them to the server:

c0 = E(x0) c1 = E(x1) c2 = E(x2)

c0,1 = E(x0 · x1) c0,2 = E(x0 · x2) c1,2 = E(x1 · x2)

c0,1,2 = E(x0 · x1 · x2)

� Server computes:

R1,0 = E(f0) · cf1−f00 · cf2−f01 · cf4−f02

·cf3+f0−f2−f10,1 · cf5+f0−f4−f10,2 · cf6+f0−f2−f41,2

·cf7−f6−f5−f3−f0+f4+f2+f10,1,2

sends the result R1,0 to the client.

� Client decrypts R1,0 to retrieve the selected file.

1.2.3 Lim-Lee Multi-Exponentiation Algorithm

The implementation of cryptographic protocols in CPIR requires modular multipli-

cation of several exponentiations, in the form of xa11 · xa22 . . . xatt mod N s, where s

indicates the current level in the tree. As the number of modular exponentiations

increases, applying exponentiation in each term separately and then performing mul-

tiplication on them become prohibitively time consuming. An algorithm which can

perform these exponentiation operations concurrently can help reduce the total cost

of operations in CPIR. A candidate is Lim-Lee multi-exponentiation algorithm [22]

which is based on precomputation techniques of [23]. The algorithm enables to op-

erate modular exponentiation and multiplication simultaneously for multiple terms

which improves the performance up to 4 times [22]. The pseudo-code for Lim-Lee

multi-exponentiation algorithm is given in Algorithm 1.

1.3 Oblivious RAM

Private Information Retrieval is not the only solution for achieving hidden retrieval

of encrypted data. Another well known method is Oblivious RAM which is based on

shuffling and re-encryption operations in each access of data [14]. Different from PIR,

8

Algorithm 1 LIMLEE: Multi-Exponentiation Algorithm
. Precomputation
for k ← 0 to h− 1 step 1 do

for e← 0 to 2w − 1 step 1 do
e←

∑w−1
i=0 ei · 2i

Yk,e ←
∏w−1

i=0 y
ei
kw+i

end for
end for

. Main Part
Y ← 1
for k ← 0 to h− 1 step 1 do

e←
∑kw+w−1

i=kw ci,t−1 · 2i−kw
Y ← Y · Yk,e

end for

for j ← t− 2 to 0 step -1 do
Y ← Y 2

for k ← 0 to h− 1 step -1 do
e←

∑kw+w−1
i=kw ci,j · 2i−kw

Y ← Y · Yk,e
end for

end for
return Y

in ORAM access pattern can be observed but since the location and the encryption

of the data item changes after every access to it, the adversary cannot obtain useful

information by observing access patterns. Since operating ORAM may require a

small client storage and considerable bandwidth usage, several constructions are

proposed to achieve a practical ORAM method ([27], [13], [8]). In 2013 Stefanov

et al. proposed a method which is claimed as the most practical ORAM scheme by

utilizing a small client storage. Thus, in our privacy preserving range query scheme

we utilize Stefanov’s ORAM method, which is explained in the following section in

detail.

1.3.1 Path ORAM

Stefanov’s ORAM method which is known as Path ORAM is a simple Oblivious

RAM based on shuffling and re-encryption operations by requiring a small client

storage. Path ORAM is constructed on binary tree in which a full path of the tree

is retrieved in each access. The details of the protocol is as follows:

9

Server stores the data in a binary tree structure. Each node of the tree is called

a bucket. In each bucket, Z blocks of data are stored. If a bucket has less than Z

blocks, dummy blocks are added. At the beginning, all buckets are initialized with

some dummy values.

Client maintains a local stash, a small and private storage, to perform shuffling

and re-encryption operations on the accessed data path and a position map that

gives the current location of a data item. At the beginning of the protocol, the

stash is empty and the position map assigns data items into some random buckets.

Access Protocol for Read and Write Operations to read or write data a

client executes the following steps:

� Remap block: Client remaps the position of a data block to a new random

position.

� Read path: Client reads the path of a data block from the server according

to its value before remap operation.

� Update block: In write operations, client updates the value of data in the

block.

� Write path: Client writes the accessed path back to the tree. If the operation

is read, it only writes the original accessed path; but if it is a write operation

it may add some values from the stash to the path.

1.4 Bucketization Method for Privacy Preserving

Range Queries

In our model, to employ CPIR for range queries, we use the bucketization method

by Hore et al. [18] as the underlying range query scheme. In bucketization, a secure

index tag for each data item is generated using a predefined rule and assign it to a

bucket depending on the tag. The query response is retrieved as buckets, instead

of single data items which introduces false positives in the scheme. On one hand,

retrieving all data items as buckets is a good approach in terms of security, since,

10

false positives within each bucket obfuscate the retrieved data range. On the other

hand, however, the existence of false positives creates overhead on the client side

computations, since client needs to clean the false positives to retrieve the target

data items. Hore et al. [18] optimizes the buckets such that the existence of false

positives helps to hide actual data while the overhead on client computations based

on false positives become tolerable.

The optimal performance in the bucketization method is achieved by two algo-

rithms. The first one is a greedy multi-partitioning algorithm, is introduced in [18]

(see Algorithm 2). The algorithm minimizes the number of false positives within

each bucket to maximize the performance of the scheme. It takes two inputs which

are the dataset D and the number of buckets M and returns M buckets, where the

cost of each bucket on client side is minimized. Greedy multi-partitioning algorithm

assumes each data item as a point, such that the number of its attributes determines

the dimensions of the point. To create optimal buckets, firstly, it computes the total

cost of the dataset by the following formula:

Cost (D,Rj) = |D| ·
d∑
i=1

rj
i (1.1)

In Equation 1.1 |D| represents the number of data items. d is the dimension

of each point which is the number of attributes a data item has. Rj is the bucket

candidate which is considered as a rectangle and rj is the length of the ith edge

of rectangle Rj which is actually the range of the bucket for the given attribute.

At the beginning, the dataset considered as a bucket and is represented as R1 in

Algorithm 2 which is the largest rectangle that contains all data items. To partition

R1 into M buckets, two data points which forms the largest sub-rectangle based on

the cost function in Equation 1.1. The rectangle is assigned as a new bucket and

using the same method the remaining dataset is distributed into buckets.

While greedy multi-partitioning algorithm maximizes the performance of the

bucketization scheme, the reduced number of false positives causes a vulnerability

in the privacy of the scheme. Therefore, a second algorithm, known as Controlled

Diffusion [18], is applied to the buckets’ contents, which aims to redistribute bucket

contents based on a pre-defined degradation factor, K. Thus, it optimizes the num-

ber of false positives within each bucket. A large K leads to an increase in false

11

Algorithm 2 Greedy Multidimensional Partitioning

Input Dataset of multidimensional points D, number of buckets M
Output M buckets, Total Cost
Cost(D,R1) = |D| ∗

∑d
i=1 r1

i

. /*rj
i is the length of the ith edge of rectangle Rj*/

for j ← 2 to M do
Over all pairs of points in D, choose the pair (p1

∗, p2
∗) and the cor-

responding rectangle R∗ s.t. the cost reduction cost Cost(D,
⋃j−1
t−1 Rt) −

[Cost(D\DR∗ ,
⋃j−1
t−1 Rt) + Cost(DR∗ , R∗)] is maximized;

Assign points within R∗ to a new cluster Rj and recompute the minimum
bounding rectangles (MBRs) of all the affected clusters;

Make one pass on D and reassign all points to these j clusters (readjusting
MBRs if necessary) to further reduce total cost;
end for
return M clusters and the total cost of the scheme;

positives, while small values of K decrease false positives. Therefore, based on the

security and performance concerns, an optimal value for K can be determined. The

Controlled Diffusion method is described in Algorithm 3.

Algorithm 3 Controlled-Diffusion (D,M,K)

Input Data set D = (V, F) , M = number of CBs (usually same as number opt
buckets), K = maximum performance-degradation factor

Output An M-Partition of the data set (i.e. M buckets)
Compute optimal buckets Bi,, BM using QOB algorithm;
Initialize M empty composite buckets CB1,, CBM ;

for each Bi do
Select di = K ∗ |Bi| ÷ fCB distinct CBs randomly, fCB = |D| ÷M
Assign elements of Bi equiprobably to the di CB

′s;
. /*(roughly |Bi| = di elements of Bi go into each CB)*/
end for
return the set of buckets CBj|j = 1, ...,M ;

12

Chapter 2

A New Method for CPIR

In BddCPIR proposed by Lipmaa, one factor which dominates the computation

cost is modular exponentiation operations. Since the original method requires per-

forming many modular exponentiations, an approach which reduces the number of

exponentiation operations can improve the performance of the scheme. Also, as it

is addressed in [30], the message expansion property of the Damg̊ard - Jurik cryp-

tosystem affects the computations significantly. Considering the increase in modulus

N s+1 while proceeding to the upper levels of the tree (s indicating the level in the

tree), decreasing the depth of the tree for the same number of data items results in

reduced computation cost [30].

In response to the two dominant factors in computational complexity, we propose

an accelerated scheme for CPIR in this chapter. Firstly, a new computation method

is developed, which reduces the number of modular exponentiation operations per

node of the tree. Secondly, octal and hexadecimal trees are utilized for shallow

trees in computations. Thirdly, the Lim-Lee multi-exponentiation algorithm [22] is

applied to lower the cost of multiple modular exponentiation operations. Further-

more, similar to [30], a non-trivial, efficient parallel algorithm is proposed for the

new method. Finally, a hybrid approach for the parallel method is presented which

enables the scheme to scale to large database sizes by taking advantage of small

subtrees.

13

2.1 The New CPIR using BDDs

In the Lipmaa’s CPIR protocol with binary decision diagrams, for each internal

node of the tree, 3 modular exponentiation operations must be performed. Two of

the exponentiations are needed in the Damg̊ard-Jurik encryption operation and the

third is applied to the encrypted selection bit. Since, modular exponentiation is the

most expensive operation in the computations, decreasing the number of modular

exponentiation operations will improve the performance of the scheme. To that end,

we propose a new protocol which reduces the number of exponentiation operations

by one for the internal nodes and by two for the lowest level (leaf) nodes of the

binary decision diagram. In the new method, we eliminate the encryption operation

in the original method and instead utilize the complements of selection bits, which

are obtained through homomorphic computation. The next section explains the new

CPIR protocol for 1-out-of-2 construction and the following section extends it to the

1-out-of-n CPIR construction.

2.1.1 (2, 1) - CPIR

The construction of the new scheme is similar to the original CPIR method [24].

Namely, the server stores in a database two files, f0 and f1. The client can retrieve

one of the files, fx, from the server by using one selection bit x ∈ (0, 1). The rest of

the new CPIR protocol with binary decision trees works as explained in the following

steps:

� Client generates public and private keys (pk, sk). For the selection bit x, client

computes E(x) and sends the encrypted selection bit and the public key to

the server.

� Server

– first, finds the complement of the selection bit by the following formula:

C(x) = E(1) · E(x)N−1 mod N2

– Then, computes R = C(x)f0 ·E(x)f1 mod N2 and sends R to the client.

� Client decrypts R to get the file that corresponds to the selection bit.

14

Proof. To show the correctness of the CPIR operation, first, we need to show

the correctness of the complement calculations based on the additive homomorphic

property of the Damg̊ard-Jurik cryptosystem:

C(x) = E(1) · E(x)N−1 mod N2

= E(1) · E((N − 1) · x) mod N2

= E(1) · E(Nx− x) mod N2 which equals to E(1 +Nx− x) mod N2

Since the operations over the plaintext are in mod N , then we have Nx ≡ 0

mod N . Thus, the result is E(1 − x). Specifically, if x = 0, namely the encrypted

selection bit is E(0), then its complement is C(0) = E(1 − 0) = E(1). And con-

versely if x = 1, namely the encrypted selection bit is E(1), then its complement is

C(1) = E(1− 1) = E(0).

Now, we can prove the correctness of CPIR operation:

R = C(x)f0 · E(x)f1 mod N2

= E(1− x)f0 · E(x)f1 mod N2

= E(f0 − x · f0) · E(x · f1) mod N2

= E(f0 − x · f0 + x · f1) mod N2

= E(f0 − x · (f0 + f1)) mod N2

Consequently, if x = 0, then R = E(f0 − 0 · (f0 + f1)) = E(f0) mod N2. Then, the

decryption of R gives f0 for the selection bit x = 0.

Similarly, if x = 0, then R = E(f0 − 1 · (f0 + f1)) = E(f1) mod N2. Finally,

decrypting R results in f1 for the selection bit x = 1.

In the above calculation, C(x) = E(1) · E(x)N−1 mod N2 requires two modu-

lar exponentiation operations, i.e. one exponentiation for the encryption of 1 and

one exponentiation for the exponent of the encrypted selection bit. However, we

can rewrite the equation as C(x) = g1 · rN1 · gx·(N−1) · r
N ·(N−1)
2 mod N2, which

is actually equivalent to C(x) = g1−x · rN mod N2. Therefore, we obtain the

following formula to compute the homomorphic complement of the selection bit

C(x) = g · E(x)N−1 mod N2.

Now, we can derive the following formula to compute the value of R

R = C(x)f0 · E(x)f1 mod N2

= (g · E(x)N−1)f0 · E(x)f1 mod N2

= gf0 · E(x)(N−1)·f0 · E(x)f1 mod N2

15

= gf0 · E(x)N ·f0−f0+f1 mod N2

= gf0 · E(x)f1−f0 mod N2

The server has already known the files and g. Therefore, the value of gf0 can be

pre-computed and stored on server side, which means the CPIR operation can be

handled by only one exponentiation operation for binary decision diagrams.

2.1.2 (n, 1) - CPIR

The new method can be extended to (n,1)-CPIR by using (2,1)-CPIR for each

internal node of the tree. Similar to the original CPIR method, it will start from

the sink nodes and will continue up to the root node by repeating the operations.

The database consists of n files which are represented as (f0, f1, f2, · · · , fn−1). Since

the depth of the tree is greater than 1, now, the client needs to send a selection bit

for each level of the tree. Therefore, to retrieve a file, fx, the client should prepare

the encryptions for the selection bits (x0, x1, · · · , xd−1), where d is the depth of the

tree, i.e.i d = dlog(n)e. Once he receives the response from the server, the client

needs to decrypt it d times. An example (n,1)-CPIR scheme for a database of 4 files

is provided as follows:

� Client:

– Generates public and private keys.

– Computes encrypted selection bits

E(x0) = gx0 · rN mod N2

E(x1) = gx1 · rN2
mod N3

for each level of the tree and sends them to the server.

� Server:

– Computes the complements of the encrypted selection bits for each level

of the tree:

C(x0) = E(1) · E(x)N−1 mod N2

C(x1) = E(2)(1) · E(x)N
2−1 mod N3

16

– Computes Ri,j values for the lowest level of the tree:

R1,0 = C(x0)
f0 · E(x0)

f1 mod N2

R1,1 = C(x0)
f2 · E(x0)

f3 mod N2

– Continues to the computations for the next level:

R2,0 = C(x1)
R1,0 · E(2)(x1)

R1,1 mod N3

– Sends R2,0 to the client.

� Client:

– Apply double decryption to R2,0 to retrieve the selected file.

Proof. The correctness of the method can be showed by the following operations:

R2,0 = C(x1)
R1,0 · E(2)(x1)

R1,1 mod N3

We know that C(xi) = E(1− xi), then:

R2,0 = E(2)(E(1− x0)f0 · E(x0)
f1 · (1− x1)) · E(E(1− x0)f2 · E(x0)

f3 · x1)

= E(2)(E(f0+x0 ·(f1−f0))+x1 ·(E(f2+x0 ·(f3−f2))−E(f0+x0 ·(f1−f0)))

Applying double encryption on the resulting R2,0 based on the value of x1 and

x0 gives the requested file fx.

In the above formulation, the superscript of E(2)(x1) represents the value of s

used in encryption operation, e.g., (mod N)3. Similarly, in the rest of the thesis,

E(s)(xi) = gxirN
s

(mod N)s+1.

Similar to the (2,1)-CPIR method in the previous section, we can apply an

optimization to reduce the cost of exponentiation operations caused by complement

operations. For the lowest level of the tree, using the precomputed gfi values for

i = 0, 2, 4, . . ., Ri,js are computed as follows:

R1,0 = gf0 · E(x0)
f1−f0 mod N2

R1,1 = gf2 · E(x0)
f3−f2 mod N2

17

Although, the precomputation techniques is utilized for the sink nodes, it is not

possible for the internal nodes. The reason is that the value of R2,0 depends on

the value of encrypted selection bits which are not known by the server before-

hand. However, eliminating the extra computations for complement operations is

still possible by the following optimizations:

R2,0 = C(x1)
R1,0 · E(x1)

R1,1 mod N3

= (g · E(x1)
N2−1)R1,0 · E(x1)

R1,1 mod N3

= gR1,0 · E(x1)
(N2−1)·R1,0 · E(x1)

R1,1 mod N3

= gR1,0 · E(x1)
N2·R1,0−R1,0+R1,1 mod N3

= gR1,0 · E(x1)
R1,1−R1,0 mod N3.

In summary, while the original scheme by Lipmaa requires three modular multipli-

cation for the same computation, the new technique requires only two.

2.2 Implementing the New CPIR on Octal Trees

As mentioned in the beginning of this chapter, another factor that affects the per-

formance of the CPIR scheme is the expansion of message size in each level of tree

due to the construction of the Damg̊ard-Jurik cryptosystem. Therefore, similar to

the method proposed in [30], the performance of the new method can be improved

with an octal tree implementation since it reduces the depth of the tree. The next

sections explain the CPIR method for octal trees first for 1-out-of-8 construction

and then, generalizes for 1-out-of-n case.

2.2.1 (8,1)-CPIR for Octal Trees

In 1-out-of-8 construction of CPIR for octal trees, the server stores 8 files represented

as (f0, f1, · · · , f7) in a database. The client retrieves one file fx from the database,

where x corresponds to the selection bits. The operations of octal tree implementa-

tion differs from the original BddCPIR in the preparation of the encrypted selection

bits, since each node has 8 children instead of 2. The children of a node can be

represented by 3 bits as 000, 001, 010, 011, 100, 101, 110, 111.

At the beginning, the client prepares the encrypted selection bits for 7 of the

children and sends them to the server:

18

e(0,0) = E(x̄2x̄1x̄0), e(0,1) = E(x̄2x̄1x0), e(0,2) = E(x̄2x1x̄0)

e(0,3) = E(x̄2x1x0), e(0,4) = E(x2x̄1x̄0), e(0,5) = E(x2x̄1x0)

e(0,6) = E(x2x1x̄0)

After receiving the encrypted selection bits, the server performs the complement

operation to find the encrypted selection bit for the remaining child f7:

E0 = e(0,0) · e(0,1) · e(0,2) · e(0,3) · e(0,4) · e(0,5) · e(0,6) mod N2

C0 = E(1) · EN−1
0 mod N2

Then, server computes R1,0:

R1,0 = ef0(0,0) · e
f1
(0,1) · e

f2
(0,2) · e

f3
(0,3) · e

f4
(0,4) · e

f5
(0,5) · e

f6
(0,6) · C

f7
0 and sends the result R1,0

to the client. The client decrypts R1,0 to retrieve the selected file.

The optimization of the complement operations which is proposed for binary

trees is valid for octal trees, as well. We can optimize the calculation of R1,0 as

follows:

R1,0 = ef0(0,0) · e
f1
(0,1) · e

f2
(0,2) · e

f3
(0,3) · e

f4
(0,4) · e

f5
(0,5) · e

f6
(0,6) · C

f7
0

= ef0(0,0) · e
f1
(0,1) · e

f2
(0,2) · e

f3
(0,3) · e

f4
(0,4) · e

f5
(0,5) · e

f6
(0,6) · g · E0

N−1f7

= ef0(0,0) · e
f1
(0,1) · e

f2
(0,2) · e

f3
(0,3) · e

f4
(0,4) · e

f5
(0,5) · e

f6
(0,6)·

[g · (e(0,0) · e(0,1) · e(0,2) · e(0,3) · e(0,4) · e(0,5) · e(0,6))N−1]
f7

= e
f0+(N−1)·f7
(0,0) ·ef1+(N−1)·f7

(0,1) ·ef2+(N−1)·f7
(0,2) ·ef3+(N−1)·f7

(0,3) ·ef4+(N−1)·f7
(0,4) ·ef5+(N−1)·f7

(0,5) ·

e
f6+(N−1)·f7
(0,6) · gf7

= ef0−f7(0,0) · e
f1−f7
(0,1) · e

f2−f7
(0,2) · e

f3−f7
(0,3) · e

f4−f7
(0,4) · e

f5−f7
(0,5) · e

f6−f7
(0,6) · gf7

The new method for complement computations enables to reduce the number of

exponentiation operations to 7 for the sink nodes of octal trees by utilizing precom-

puted values of gfi .

19

2.2.2 (n,1)-CPIR for Octal Trees

Now we can generalize the new CPIR method with octal trees to n files case, where

n = 8d. Deriving from the preparation of the selection bits in 8 files case, a general

formula can be developed to prepare 7 selection bits for each level of the tree,

s = 1, ..., d:

e(s−1,0) = E(x̄3s−1x̄3s−2x̄3s−3), e(s−1,1) = E(x̄3s−1x̄3s−2x3s−3),

e(s−1,2) = E(x̄3s−1x3s−2x̄3s−3), e(s−1,3) = E(x̄3s−1x3s−2x3s−3),

e(s−1,4) = E(x3s−1x̄3s−2x̄3s−3), e(s−1,5) = E(x3s−1x̄3s−2x3s−3),

e(s−1,6) = E(x3s−1x3s−2x̄3s−3)

The operations of the server, including the computation of the complement bit for

each level of the tree, are explained in Algorithm 4 in detail. The algorithm includes

the optimizations for the complement operations such that seven and eight modular

exponentiation operations are performed for the sink nodes and the internal nodes,

respectively.

2.3 Implementing the New CPIR on Hexadecimal

Trees

Considering the bandwidth usage, the depth of the tree for CPIR can be further

decreased by using hexadecimal trees. The method is similar to binary and octal tree

implementations except for the number of selection bits per level. 16 children of a

node are represented with 4 bits, thus, for each level, 15 encrypted selection bits are

prepared by client and the 16th bit is calculated on the server side by applying the

homomorphic complement operation. The methods for 1-out-of-16 and 1-out-of-n

CPIR on hexadecimal trees are explained in the following sections, respectively.

2.3.1 (16,1)-CPIR for Hexadecimal Trees

In (16,1)-CPIR method with hexadecimal trees, the database has 16 files, which are

represented as (f0, f1, · · · , f15). To request the file fx from the server, the client

prepares the encrypted selection bits x, where x = (x3x2x1x0), as described below:

20

Algorithm 4 OCTO-SERIAL: Server computations of the new (n,1)-CPIR scheme
for the octal tree
Input E = {e0,0, . . . , ed−1,6} where in es,i s = 1 · · · d, i = 0 · · · 6 and F =
{f0, . . . , f8d−1}

Output Rd,0

for i← 0 to 8d − 1 do
R0,i ← fi

end for

for s← 1 to d do
. Utilize precomputations in the sink nodes

if s = 1 then
for j ← 0 to 8d−s − 1 do

for k ← 0 to 6 do
tk ← Rs−1,8j+k −Rs−1,8j+7

end for
Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4
·e(s−1,5) t5 · e(s−1,6) t6 · gRs−1,8j+7

end for
. Computations for internal nodes

else
for j ← 0 to 8d−s − 1 do

for k ← 0 to 7 do
if k 6= 7 then

tk ← Rs−1,8j+k −Rs−1,8j+7

else
tk ← Rs−1,8j+7

end if
end for
Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4
·e(s−1,5) t5 · e(s−1,6) t6 · g t7

end for
end if

end for
return Rd,0

21

e(0,0) = E(x̄3x̄2x̄1x̄0), e(0,1) = E(x̄3x̄2x̄1x0), e(0,2) = E(x̄3x̄2x1x̄0),

e(0,3) = E(x̄3x̄2x1x0), e(0,4) = E(x̄3x2x̄1x̄0), e(0,5) = E(x̄3x2x̄1x0),

e(0,6) = E(x̄3x2x1x̄0), e(0,7) = E(x̄3x2x1x0), e(0,8) = E(x3x̄2x̄1x̄0),

e(0,9) = E(x3x̄2x̄1x0), e(0,10) = E(x3x̄2x1x̄0), e(0,11) = E(x3x̄2x1x0),

e(0,12) = E(x3x2x̄1x̄0), e(0,13) = E(x3x2x̄1x0), e(0,14) = E(x3x2x1x̄0)

The server receives the encrypted selection bits and calculates the complement

of the product of the selection bits as the 16th selection bit.

E0 = e(0,0) · e(0,1) · e(0,2) · e(0,3) · e(0,4) · e(0,5) · e(0,6) · e(0,7) · e(0,8) · e(0,9) · e(0,10) · e(0,11) ·

e(0,12) · e(0,13) · e(0,14) mod N2

C0 = E(1) · EN−1
0 mod N2

Later, the server performs the CPIR operation and computes R1,0:

R1,0 = ef0(0,0) · e
f1
(0,1) · e

f2
(0,2) · e

f3
(0,3) · e

f4
(0,4) · e

f5
(0,5) · e

f6
(0,6) · e

f7
(0,7) · e

f8
(0,8) · e

f9
(0,9) · e

f10
(0,10) · e

f11
(0,11) ·

ef12(0,12) · e
f13
(0,13) · e

f14
(0,14) · C

f15
0

R1,0 is sent to the client, which decrypted to retrieve the selected file.

Similar to the octal tree implementation, the computation cost of the complement

operations can be eliminated in hexadecimal trees. The method is the same as the

octal tree case. The resulting formula for the computation of R1,0 is given in the

following:

R1,0 = ef0−f15(0,0) · e
f1−f15
(0,1) · e

f2−f15
(0,2) · e

f3−f15
(0,3) · e

f4−f15
(0,4) · e

f5−f15
(0,5) · e

f6−f15
(0,6) · e

f7−f15
(0,7) · e

f8−f15
(0,8) ·

ef9−f15(0,9) · e
f10−f15
(0,10) · e

f11−f15
(0,11) · e

f12−f15
(0,12) · e

f13−f15
(0,13) · e

f14−f15
(0,14) · gf15

2.3.2 (n,1)-CPIR for Hexadecimal Trees

In the general form of the new CPIR with hexadecimal trees, the database consists of

n files, where n = 16d. The aim is to retrieve file fx out of n files. The computation

of the encrypted selection bits is formulated as below:

e(s−1,0) = E(x̄4s−1x̄4s−2x̄4s−3x̄4s−4), e(s−1,1) = E(x̄4s−1x̄4s−2x̄4s−3x4s−4),

e(s−1,2) = E(x̄4s−1x̄4s−2x4s−3x̄4s−4), e(s−1,3) = E(x̄4s−1x̄4s−2x4s−3x4s−4),

22

e(s−1,4) = E(x̄4s−1x4s−2x̄4s−3x̄4s−4), e(s−1,5) = E(x̄4s−1x4s−2x̄4s−3x4s−4),

e(s−1,6) = E(x̄4s−1x4s−2x4s−3x̄4s−4), e(s−1,7) = E(x̄4s−1x4s−2x4s−3x4s−4),

e(s−1,8) = E(x4s−1x̄4s−2x̄4s−3x̄4s−4), e(s−1,9) = E(x4s−1x̄4s−2x̄4s−3x4s−4),

e(s−1,10) = E(x4s−1x̄4s−2x4s−3x̄4s−4), e(s−1,11) = E(x4s−1x̄4s−2x4s−3x0),

e(s−1,12) = E(x4s−1x4s−2x̄4s−3x̄4s−4), e(s−1,13) = E(x4s−1x4s−2x̄4s−3x4s−4),

e(s−1,14) = E(x4s−1x4s−2x4s−3x̄4s−4)

The server computations are similar to the general algorithm for the octal tree

case (i.e., Algorithm 4) and are explained in Algorithm 5.

2.4 Utilizing Lim-Lee Multi-Exponentiation Method

to Accelerate The New CPIR

The proposed method achieves to reduce the number of modular exponentiation

operations and improves the performance of the CPIR. The current version of the

protocol requires multiplication of 8 exponentiations for octal trees and multiplica-

tion of 16 exponentiations for hexadecimal trees per internal node, as it is explained

in Section 2.2 and Section 2.3, respectively. In this section, we propose a new method

to reduce the cost of multiple exponentiation operations. To that end, the Lim-Lee’s

multi-exponentiation algorithm [22] is utilized. The algorithm allows simultaneous

execution of multiple exponentiation operations of the form
∏t

i=1 a
xi
i = ax11 ·ax22 · · · axtt

using pre-computation techniques and outputs the multiplication of exponentiations.

In this method, the operations on the client side are not affected, only the server

computations are updated. Algorithm 6 illustrates the server computations by em-

ploying the Lim-Lee technique on the new CPIR with hexadecimal trees. In the

previous sections, for octal and hexadecimal trees the cost of the homomorphic

complement bit computations is reduced by some optimizations techniques. These

techniques can be applied in the new CPIR with Lim-Lee method, as well. The

Lim-Lee algorithm requires a block of t modular exponentiations, where t equals 8

for octal trees and 16 for hexadecimal trees. Therefore, the optimization for the sink

23

Algorithm 5 HEX-SERIAL: Server computations of the new (n,1)-CPIR scheme
for the hexadecimal tree
Input E = {e0,0, . . . , ed−1,14} where in es,i s = 1 · · · d, i = 0 · · · 14 and F =
{f0, . . . , f16d−1}

Output Rd,0

for i← 0 to 16d − 1 do
R0,i ← fi

end for

for s← 1 to d do
. Utilize precomputations in the sink nodes

if s = 1 then
for j ← 0 to 16d−s − 1 do

for k ← 0 to 14 do do
tk ← Rs−1,16j+k −Rs−1,16j+15

end for
Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4 · e(s−1,5) t5

·e(s−1,6) t6 · e(s−1,7) t7 · e(s−1,8) t8 · e(s−1,9) t9 · e(s−1,10) t10

·e(s−1,11) t11 · e(s−1,12) t12 · e(s−1,13) t13 · e(s−1,14) t14 · gRs−1,16j+15

end for
. Computations for internal nodes

else
for j ← 0 to 16d−s − 1 do

for k ← 0 to 15 do do
if k 6= 15 then

tk ← Rs−1,16j+k −Rs−1,16j+15

else
tk ← Rs−1,16j+15

end if
end for
Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4 · e(s−1,5) t5

·e(s−1,6) t6 · e(s−1,7) t7 · e(s−1,8) t8 · e(s−1,9) t9 · e(s−1,10) t10

·e(s−1,11) t11 · e(s−1,12) t12 · e(s−1,13) t13 · e(s−1,14) t14 · g t15
end for

end if
end for
return Rd,0

24

level, which reduces the number of exponentiation operations to 7 or 15 for octal

and hexadecimal trees, respectively, does not work in Lim-Lee method.

Algorithm 6 Server computation for the new (n,1)-CPIR scheme for hexadecimal
trees using Lim-Lee multi-exponentiation technique

Input E = {e0,0, . . . , ed−1,14} where in es,i s = 1 · · · d, i = 0 · · · 14 and F =
{f0, . . . , f16d−1}

Output Rd,0

for i← 0 to 16d − 1 do
R0,i ← fi

end for

for s← 1 to d do
for j ← 0 to 16d−s − 1 do

for k ← 0 to 15 do do
if k 6= 15 then

ek ← Rs−1,16j+k −Rs−1,16j+15

bk ← es−1,k
else

ek ← Rs−1,16j+15

bk ← g
end if

end for
Rs,j = LIMLEE(e, b)

end for
end for
return Rd,0

2.5 A Parallel Implementation for the New CPIR

The CPIR method is suitable for parallel implementations since it has several re-

peating operations which are not dependent on each other. An efficient parallel al-

gorithm for the CPIR on binary and octal trees is proposed by Ünal and Savaş [30].

In this section, we adapt the proposed algorithm to the new CPIR method for the

server operations on octal and hexadecimal trees. Before that, a brief explanation

for client side parallelization is provided.

2.5.1 Client Side Parallel Implementation

The client is responsible for two main operations: encrypting the selection bits and

decrypting the server response. In the decryption of a single response, parallelism

25

cannot be utilized, since each operation is dependent on the previous one. On the

other hand, parallelism is applicable on encrypting the selection bits. Algorithm 7

and Algorithm 8 present the parallelization of encryption operations for octal and

hexadecimal trees, respectively.

Algorithm 7 Parallel client side encryptions for the new CPIR on octal trees

Input x = (x3d−1x3d−2 . . . x0), pk
Output E
1: for s← 1 to d in parallel do
2: e(s−1,0) ← E(s)(x̄3s−1x̄3s−2x̄3s−3)

3: e(s−1,1) ← E(s)(x̄3s−1x̄3s−2x3s−3)

4: e(s−1,2) ← E(s)(x̄3s−1x3s−2x̄3s−3)

5: e(s−1,3) ← E(s)(x̄3s−1x3s−2x3s−3)

6: e(s−1,4) ← E(s)(x3s−1x̄3s−2x̄3s−3)

7: e(s−1,5) ← E(s)(x3s−1x̄3s−2x3s−3)

8: e(s−1,6) ← E(s)(x3s−1x3s−2x̄3s−3)
9: end parallel for
10: return E

2.5.2 Server Side Parallel Implementation

The private information retrieval operation on server side requires processing of

each data item in the database. Thus, applying parallelism can allow significant

improvements on the performance of the method. The parallel algorithm in [30]

achieves parallelism by dividing the main tree into subtrees, numbers of which are

equal to the number of cores. The computations within each sub-tree are performed

in serial. Once the cores finish the computations in subtrees, the PIR operations

in the remaining (upper) part of the tree are distributed on the available cores in

a straightforward manner to utilize parallelizm. The parallel algorithm can be em-

ployed for the new CPIR method using both octal and hexadecimal trees including

the implementation of the Lim-Lee multi-exponentation method. Parallel server

computations for the octal tree case are described in Algorithm 9.

26

Algorithm 8 Parallel client side encryptions for the new CPIR on hexadecimal
trees
Input x = (x4d−1x4d−2 . . . x0), pk
Output E
1: for s← 1 to d in parallel do
2: e(s−1,0) ← E(s)(x̄4s−1x̄4s−2x̄4s−3x̄4s−4)

3: e(s−1,1) ← E(s)(x̄4s−1x̄4s−2x̄4s−3x4s−4)

4: e(s−1,2) ← E(s)(x̄4s−1x̄4s−2x4s−3x̄4s−4)

5: c(s−1,3) ← E(s)(x̄4s−1x̄4s−2x4s−3x4s−4)

6: e(s−1,4) ← E(s)(x̄4s−1x4s−2x̄4s−3x̄4s−4)

7: e(s−1,5) ← E(s)(x̄4s−1x4s−2x̄4s−3x4s−4)

8: e(s−1,6) ← E(s)(x̄4s−1x4s−2x4s−3x̄4s−4)

9: e(s−1,7) ← E(s)(x̄4s−1x4s−2x4s−3x4s−4)

10: e(s−1,8) ← E(s)(x4s−1x̄4s−2x̄4s−3x̄4s−4)

11: e(s−1,9) ← E(s)(x4s−1x̄4s−2x̄4s−3x4s−4)

12: e(s−1,10) ← E(s)(x4s−1x̄4s−2x4s−3x̄4s−4)

13: e(s−1,11) ← E(s)(x4s−1x̄4s−2x4s−3x4s−4)

14: e(s−1,12) ← E(s)(x4s−1x4s−2x̄4s−3x̄4s−4)

15: e(s−1,13) ← E(s)(x4s−1x4s−2x̄4s−3x4s−4)

16: e(s−1,14) ← E(s)(x4s−1x4s−2x4s−3x̄4s−4)
17: end parallel for
18: return E

27

Algorithm 9 OCTO-PARALLEL: Parallel server computations for the new CPIR
on octal trees

Input E = {e0,0, . . . , ed−1,14} where in es,i s = 1 · · · d, i = 0 · · · 6, F =
{f0, . . . , f8d−1} , 2κ: number of cores, κ < d

Output Rd,0

1: α = log8 2κ , λ = 8α , γ = λ/2κ

2: for p← 0 to 2κ − 1 in parallel do
3: for y ← 1 to γ − 1 do
4: for i← 1 to 8d − 1/λ do
5: R0,i = fp·γ·(8d−1/λ)+y·(8d−1/λ)+i
6: end for
7: for s← 1 to d− α do
8: if s = 1 then
9: for j ← 0 to 8d−λ−s − 1 do
10: for k ← 0 to 6 do
11: tk ← Rs−1,8j+k −Rs−1,8j+7

12: end for
13: Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4
·e(s−1,5) t5 · e(s−1,6) t6 · gRs−1,8j+7

14: end for
15: else
16: for j ← 0 to 8d−λ−s − 1 do
17: for k ← 0 to 7 do do
18: if k 6= 7 then
19: tk ← Rs−1,8j+k −Rs−1,8j+7

20: else
21: tk ← Rs−1,8j+7

22: end if
23: end for
24: Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3 · e(s−1,4) t4
·e(s−1,5) t5 · e(s−1,6) t6 · g t7

25: end for
26: end if
27: end for
28: end for
29: end parallel for

. cores sync and continue with the rest of the tree concurrently

30: for s← d− α + 1 to d do
31: for j ← 0 to 8d−s − 1 in parallel do
32: for k ← 0 to 7 do
33: tk ← Rs−1,8j+k −Rs−1,8j+7

34: end for
35: Rs,j = e(s−1,0)

t0 · e(s−1,1) t1 · e(s−1,2) t2 · e(s−1,3) t3·
e(s−1,4)

t4 · e(s−1,5) t5 · e(s−1,6) t6 · g t7

36: end parallel for
37: end for

38: return Rd,0

28

2.6 A Scalable Approach for The Parallel Imple-

mentation

Reducing the number of exponentiation operations, utilizing shallow trees and ex-

ploiting parallelism improve the performance of CPIR significantly. However, for

large database sizes, the cost of computations are still high due to increase in the

size of the modulus in the Damg̊ard-Jurik algorithm. In [30], a scalable method is

proposed to overcome the performance issues of large database sizes. In this method,

the database is maintained as a set of several reasonable-sized subtrees. Apart from

the selection bits for the requested file, the client needs to send additional bits for

subtree selection. The main concern is that the number of subtrees should be de-

termined carefully, so that the bandwidth usage should not be adversely affected by

large amount of subtrees.

Algorithm 10 demonstrates generation of the subtree selection bits and the regu-

lar selection bits for octal tree implementation. The size of the database is n = 2m.

The number of the subtrees, µ = 2m−3l, and the size of each subtree 8l are pre-

determined values between the server and the client. The selection bits for the

subtrees are represented by ς, and the regular selection bits for file operations rep-

resented by the set of E .

After the server retrieves the selection bits, first it employs the subtree selection

bits on the trees to collapse them into one subtree, as it is shown in Algorithm 11

from step 1 to 10. In step 11 of the algorithm, the retrieval operation for the

requested file is operated on a single subtree using Algorithm 9 . The important point

is that after collapsing subtrees, the modulus of the regular retrieval computations

start from N3 instead of N2.

In Algorithm 11, the subtree collapsing operation requires multiple modular

exponentiation and multiplication operations repeatedly. Therefore, using the Lim-

Lee’s multi-exponentiation algorithm, the performance of the scalable method can

be improved. Algorithm 12 shows the scalable method which utilizes the Lim-Lee

multi-exponentiation algorithm.

29

Algorithm 10 Client-side computation the scalable new CPIR on octal tree

Input m, l, and x = xl−1 . . . x1, x0
Output E = {e0,0, . . . , el,6} where in es,i s = 1 · · · l, i = 0 · · · 6 and {ς0, . . . , ς23d−3l−1}

1: µ← 23d−3l

2: ζ ← x3d−1, . . . , xl
3: for i← 0 to µ− 1 do
4: if i 6= ζ then
5: ςi ← E(0)
6: else
7: ςi ← E(1)
8: end if
9: end for
10: for s← 1 to l do
11: e(s−1,0) ← E(s)(x̄3s−1x̄3s−2x̄3s−3)

12: e(s−1,1) ← E(s)(x̄3s−1x̄3s−2x3s−3)

13: e(s−1,2) ← E(s)(x̄3s−1x3s−2x̄3s−3)

14: e(s−1,3) ← E(s)(x̄3s−1x3s−2x3s−3)

15: e(s−1,4) ← E(s)(x3s−1x̄3s−2x̄3s−3)

16: e(s−1,5) ← E(s)(x3s−1x̄3s−2x3s−3)

17: e(s−1,6) ← E(s)(x3s−1x3s−2x̄3s−3)
18: end for
19: return {e0,0, . . . , el−1,7} and {ς0, . . . , ςµ−1}

Algorithm 11 Server-side computation the scalable new CPIR on octal trees

Input m, E = {e0,0, . . . , el,6} where in es,i s = 1 · · · l, i = 0 · · · 6 , F =
{f0, . . . , f23d−1}, {ς0, . . . , ς23d−3l}, l and κ < l

Output Rl,0

. Collapse the subtrees into one
1: µ = 23d−3l

2: γ = 23l−κ

3: for p← 0 to 2κ − 1 in parallel do
4: for i← 0 to γ − 1 do
5: for k ← 0 to µ− 1 do

6: f ′k ← ς
f
i+pγ+k23l

k mod N2

7: end for
8: R0,pγ+i ←

∏µ−1
k=0 f

′
k

9: end for
10: end parallel for

. Parallel CPIR computation for the remaining subtree
11: Rl,0 = OCTO − PARALLEL(E , R)
12: return Rl,0

30

Algorithm 12 Server-side computation the scalable new CPIR on octal trees using
LimLee Algorithm

Input m, E = {e0,0, . . . , el,6} where in es,i s = 1 · · · l, i = 0 · · · 6 , F =
{f0, . . . , f23d−1}, {ς0, . . . , ς23d−3l}, l and κ < l

Output Rl,0

. Collapse the subtrees into one
1: µ = 23d−3l

2: γ = 23l−κ

3: for p← 0 to 2κ − 1 in parallel do
4: for i← 0 to γ − 1 do
5: for k ← 0 to (µ/8)− 1 do
6: for x← 0 to 7 do
7: bx ← ς8k+x
8: ex ← fi+pγ+(8k+x)23l

9: end for
10: f ′k = LIMLEE(e, b)
11: end for
12: R0,pγ+i ←

∏(µ/8)
k=0 f ′k

13: end for
14: end parallel for

. Parallel CPIR computation for the remaining subtree
15: Rl,0 = OCTO − PARALLEL(E , R)
16: return Rl,0

31

Chapter 3

Privacy Preserving Range Queries

using PIR and ORAM

As stated previously, preventing the disclosure of query access patterns is possible

by employing ORAM and PIR techniques. So far, we introduced a new method for

PIR, based on Lipmaa’s CPIR scheme, which enables to improve the performance of

CPIR significantly. Further, we present a simple and fast method for ORAM which

is known as Path ORAM [28] . Depending on these two techniques, in this chapter

we develop two different methods for privacy preserving range queries. In the rest

of the chapter, first the range query protocol based on CPIR is explained. Then, it

continues with the explanation of the Path ORAM based range query protocol.

3.1 CPIR Technique for Privacy Preserving Range

Queries

We introduce a new approach for privacy preserving range queries by implementing

Private Information Retrieval protocol on an existing range query scheme. The

base scheme for range query is Hore et al.’s [18] bucketization method. In retrieval

operations the new CPIR method described in Chapter 2 is employed. The flow of

the range query protocol can be summarized as follows:

Setup In the setup phase, initially the data is partitioned into buckets according to

the Greedy Multi Partitioning (Algorithm 2) and Controlled Diffusion (Algorithm 3)

32

algorithms [18]. The number of buckets are assigned as powers of 8 and 16 to utilize

octal and hexadecimal trees in CPIR. The bucketization algorithms do not guarantee

to create same sized buckets. Thus, once the buckets are generated, some dummy

values are inserted to make them equal in size.

Once the buckets are generated, the next step is to send them to server for

storage. The buckets are stored on leaf nodes of octal and hexadecimal trees. As

the bucket size can be relatively large, generally we need more than one tree to store

the buckets. Thus, they are placed in trees in such a way that each leaf node of a

tree holds one part of each bucket, which means the number of trees is proportional

to the bucket size. Moreover, the size of the trees becomes equal to the number

of buckets, since each leaf node maps to one bucket. Here we assume that the

data within each bucket is encrypted using a secure symmetric cipher algorithm,

therefore, the confidentiality of data is guaranteed.

To exemplify the distribution of a bucket into trees, consider a bucket which

contains 16 items as the result of bucketization algorithms including the addition of

dummy values. Each data item has 5 integer attributes including the primary key

which is equal to 160 bits. Since an encrypted storage is required, the encryption

of an item using AES maps to 256 bit of ciphertext for 160 bit plaintext in 256 bit

block size. If each node of tree can contain 1024 bits of information, then we can

place 4 of the items in a tree. Since we have 16 items in total, we need to distribute

the bucket on 4 trees.

Sending Query To perform a range query operation, first the client needs to

find the buckets which include the requested data range using a query translation

operation. Later, based on the bucket ids, the client needs to prepare the selection

bits to retrieve its content from the server. Since the requested bucket is stored on

the same leaf node in each tree, the selection bits can generated for once and used

on each tree repetitively.

Query Response Based on the selection bits sent by the client, server needs to

perform CPIR on each tree to retrieve the corresponding bucket. In our method,

we utilized the new CPIR method instead of Lipmaa’s original method due to per-

formance reasons. To utilize the parallelism in the best way, when the number of

33

trees exceeds the number of available cores, we employed a parallelism on tree level.

Meanly, each tree operates in parallel, but the CPIR operation in trees is operated

serially. Since this case occurs for small tree sizes, such as 8 or 16 nodes for each tree,

the serial usage of CPIR method does not affect performance significantly. On the

other hand, when there are less trees than the core size, the trees are operated seri-

ally while CPIR operations in each tree employ in parallel. The server computations

for CPIR based range query method on octal trees are presented in Algorithm 13.

Algorithm 13 RQ-CPIR: Server computations for CPIR based Range Query on
octal trees
Input E = {e0,0, . . . , ed−1,6} where in es,i s = 1 · · · d, i = 0 · · · 6 and T =
{T1, . . . , Tt}, where t: number of trees, 2κ: number of cores

Output R[1 : t]d,0
. Number of trees per core:
ω = t/2κ

. Number of trees ≥ number of cores
if T ≥ 2κ then

for p← 0 to 2κ − 1 in parallel do
for k ← 1 to ω do

R[p · ω + k]d,0 = OCTO-SERIAL(E , T [p · ω + k])
end for

end parallel for
else
. Number of trees ≤ number of cores

for k ← 1 to t do
R[k]d,0 = OCTO-PARALLEL (E , T [p · ω + k], 2κ)

end for
end if
return R[1 : t]d,0

3.2 Path ORAM Technique for Privacy Preserv-

ing Range Queries

Implementation of Path ORAM for privacy preserving range queries is rather straight-

forward compared to the CPIR model. The method does not require any change

on the server side. The server is only responsible for sending all nodes in the path

of the requested bucket id to the client. Similarly, the client side operations do not

require any fundamental change to the Path ORAM method.

In the setup phase of the method, the binary tree structure on server which stores

34

the database is filled with dummy values. To place the data items into binary tree,

client performs repetitive write operations using the access protocol. The properties

of data item are same with CPIR method. Meanly, each item has several attributes

and based on the total size of the item, it is encrypted with AES using a suitable

block size. After each retrieval operation, the data is re-encrypted. To enable

different ciphertext values for the same data item, in each encryption operation

some random values are padded to plaintext.

For query sending step, different from the original algorithm [28], a query pro-

cessing operation is added. Thus, when client wants to search for a range, the query

processor finds the buckets which stores the requested items. Since the query range

can map to several buckets, the client may need to perform more than read operation

to retrieve the items.

Path ORAM method does not require any computation on server side. Thus,

the server is only responsible for sending the path that contains the requested data

and writing the path back to the tree, without any additional computations.

35

Chapter 4

Communication and

Computational Analysis

The trivial solution to retrieve a data item or a data range from an outsourced

database without leaking any information is to download the entire database and to

perform the query in local. However, for large database sizes, this is not a practical

solution due to excessive bandwidth usage. Instead, using Private Information Re-

trieval or Oblivious RAM methods can enable a more bandwidth-efficient retrieval of

data by preserving its privacy. However, bandwidth usage is an important concern

for both schemes, such that the cost of communication for good PIR and ORAM

schemes should not exceed the cost of the trivial solution. To that end, in this chap-

ter, we first analyze the cost of communication for the new CPIR scheme introduced

in Chapter 2. Since CPIR requires processing each item of the database an analysis

of computation complexity is also provided. Then, the bandwidth requirements of

the new CPIR and the Path ORAM methods in privacy-preserving range queries

are examined. Finally, the computational analysis of two methods are provided.

4.1 Analysis of Communication and Computation

for CPIR

We start our analysis with the cost of communication and computation on the new

CPIR method. In the following section, first the bandwidth requirements for octal

and hexadecimal trees are explained. Later, the bandwidth usage of the scalable

36

method on both trees are analyzed. Finally, for the computation cost, the estimated

timings of computations are provided. In the tables of this section, to differentiate

the methods from each other, specific notations are used for server computations.

‘octo-old’ and ‘binary-old’ display the performance on octal and binary trees for

Lipmaa’s CPIR method. ‘binary-new’, ‘octo-new’ and ‘hex-new’ show the timings

for the new CPIR method on binary, octal and hexadecimal trees. Finally, ‘octo-LL’

and ‘hex-LL’ show the timing results of the implementation of Lim-Lee technique

on the new CPIR method for octal and hexadecimal trees.

4.1.1 Analysis of Communication Complexity

The communication complexity of Lipmaa’s CPIR method based on binary decision

diagrams scheme is sub-linear which makes it a promising scheme for PIR. In Bd-

dCPIR, the bandwidth usage is determined by two message exchanges. First one

is sending the encrypted selection bits from client to server and the second one is

the response of server to client as a result of CPIR computations. For a database

with n files, the number of selection bits is log2 n. At the lowest level of the binary

tree, when the modulus is N , the size of the encrypted selection bit is 2|N | due to

message expansion in encryption, where |N | = dlog2(N)e. On the next level, the

size increases to 3|N | and at the root, it is equal to (log2n+ 1) · |N |. Thus, the total

size of the encrypted selection bits sent from client to the server is:

[2 + 3 + · · ·+ (log2 n+ 1)] · |N |

After completing CPIR computations using the encrypted selection bits, the

server sends a response of size (log2n+ 1) · |N |.

The bandwidth usage in octal and hexadecimal trees can be computed similarly.

In octal trees, for each level of the tree 7 encrypted selection bits need to be sent

by the client while for hexadecimal trees it is equal to 15. Since the depth of the

trees are log8n and log16n respectively, the total amount of bits sent to server can

be formulated as follows:

Octal : [7 · (2 + 3 + · · ·+ (log8 n+ 1))] · |N |

Hexadecimal : [15 · (2 + 3 + · · ·+ (log16 n+ 1))] · |N |

37

The response of the server is (log8 n+1)·|N | for octal method and (log16 n+1)·|N |

for hexadecimal method. Based on these formulations, Table 4.1 demonstrates the

total bandwidth usage for various database sizes, when |N | = 1024. From the values

in Table 4.1, it is not immediate to identify the best scheme. For smaller datasets,

binary tree implementation is advantageous. However, when database size is larger

than 4096 items, the communication cost of the octal case becomes advantegous.

Hexadecimal tree has the maximum bandwidth usage, but the computational cost

of hexadecimal tree can balance its higher bandwidth usage.

n Database size binary octal hex
2 2048 4096 - -
4 4096 8192 - -
8 8192 13312 16384 -
16 16384 19456 - 32768
32 32768 26624 - -
64 65536 34816 38912 -
128 131072 44032 - -
256 262144 54272 - 79872
512 524288 65536 68608 -
1024 1048576 77824 - -
2048 2097152 91136 - -
4096 4194304 105472 105472 142336
8192 8388608 120832 - -
16384 16777216 137216 - -
32768 33554432 154624 149504 -
65536 67108864 173056 - 220160
131072 134217728 192512 - -
262144 268435456 212992 200704 -
524288 536870912 234496 - -
1048576 1073741824 257024 - 313344
2097152 2147483648 280576 259072 -

Table 4.1: The total bandwidth usage in number of bits for changing database sizes,
where dlog2(N)e = 1024

Bandwidth Usage In Scalable CPIR

The scalable approach requires to send additional selection bits for the subtrees,

which adds an overhead in bandwidth usage. In [30] the number of bits sent from

client to server in scalable case is formulated as

(2µ+ (2g − 1) · (3 + 4 + · · ·+ (l + 2)))|N |

38

where l is the depth of the subtree, µ = 2m−y·l is the number of subtrees, while 2m

is equal to the number of items in original tree. Also, g is the number of encrypted

selection bits prepared by client for each level which is 1, 3, and 4 for binary, octal,

and hexadecimal trees, respectively. Depending on the tree used, namely binary,

octal, or hexadecimal, y also becomes 1, 3 and 4, respectively. Finally N is the

modulus of Damg̊ard-Jurik cryptosystem. Different from the normal case, the size

of the response sent from server to the client is (l + 2) · |N |.

The costs of overall communication in scalable case for octal and hexadecimal

trees are presented in Table 4.2 and Table 4.3, respectively. Accordingly, smaller

subtree sizes have significantly greater bandwidth requirements. On the other hand,

the advantage of small subtrees in computational cost, as showed in Chapter 5,

causes a trade off for the optimal subtree size in the scalable method.

2m Database size l Bandwidth usage

4096 4194304
2 185344
3 107520

32768 33554432
2 1102848
3 222208
4 151552

16777216 17179869184

2 536925184
3 67200000
4 8523776
5 1234944
7 326656

Table 4.2: Total bandwidth usage in scalable CPIR for octal trees (number of bits),
where dlog2(N)e = 1024

2m Database size l Bandwidth usage
4096 4194304 2 144384

65536 67108864
2 635904
3 222208

16777216 17179869184

2 134329344
3 8578048
4 806912
5 423936

Table 4.3: Total bandwidth usage in scalable CPIR for hexadecimal trees (number
of bits), where dlog2(N)e = 1024

39

4.1.2 Analysis of Computational Complexity

In this section, we provide a theoretical analysis to show the improvement in CPIR

computations by the improvements presented in Chapter 2. For calculations of

estimated timing results of the new scheme, we adopted the formulations given

in [30].

Since the computations are dominated by modular exponentiation operations, we

measured the time spent for one exponentiation on different levels of the tree which

is represented as τs, where s indicates the level of the tree. In the original CPIR

each node requires 3 modular exponentiations for the binary tree and 9 modular

exponentiation for the octal tree. Then the total time spent for one node is tbs = 3 ·τs
and tos = 9 · τs [30]. However, in the new CPIR scheme, since the number of

exponentiations are reduced by one for each node, the total time becomes tbs = 2 · τs,

tos = 8 · τs and ths = 16 · τs for binary, octal and hexadecimal trees, respectively. For

the sink nodes, the time should be calculated as tb1 = τs, t
o
1 = 7 · τs and th1 = 15 · τs.

Based on this information and using the derivations of [30], we can compute the

total cost of retrieval operation for the new CPIR method as follows:

T2m =
m∑
s=2

2m−stbs + 2m−1tb1 for m ≥ 1

T8m =
m∑
s=2

8m−stos + 8m−1to1 for m ≥ 1

T16m =
m∑
s=2

16m−sths + 16m−1th1 for m ≥ 1. (4.1)

Similar to this formulation, to compute estimated timing values of the Lim-Lee

extension, we measured the time spent for the Lim-Lee operation in each level of the

tree, which is represented as τLLs . Using this measurement, we compute the total

estimated time spent for the new CPIR using the Lim-Lee acceleration technique in

the following equations:

40

TLL8m =
m∑
s=1

8m−sτLLs for m ≥ 1

TLL16m =
m∑
s=1

16m−sτLLs for m ≥ 1 (4.2)

Using these formulas, the estimated cost of computation for several data sizes is

calculated. Table 4.4 demonstrates the results of computations.

No.
items

binary octal hexadecimal
old new old new LL old new LL

2 4 1 - - - - - -
4 26 15 - - - - - -
8 98 60 13 10 5 - - -
16 280 175 - - - 24 21 7
32 703 446 - - - - - -
64 1625 1039 155 126 50 - - -
128 3560 2284 - - - - - -
256 7549 4853 - - - 483 432 125
512 15670 10088 1373 1131 432 - - -
1024 32069 20663 - - - - - -
2048 65057 41938 - - - - - -
4096 131248 84631 11239 9274 3526 7980 7152 2036
8192 263884 170188 - - - - - -
16384 529436 341489 - - - - - -
32768 1060856 684300 90346 74573 28333 - - -
65536 2124015 1370135 - - - 128153 114880 32654

Table 4.4: Estimated timings of server side computations for different tree types in
ms, where |N | = 1024

In our method, we improved the performance of the CPIR scheme by utilizing

parallel algorithms. Therefore, in theoretical analysis, the effect of parallelism on

the new CPIR method is observed. Based on the equations provided in [30], the

computation cost of the new CPIR model on binary trees can be computed by

following equation:

T p2m = T2σ +
m∑

s=σ+1

d2σ−s · 2eτs, (4.3)

41

where

σ =

m− κ m ≥ κ

0 otherwise.

In Equation 4.3, 2κ is the number of cores where m ≥ κ ≥ 0. Based on this equation,

Table 4.5 shows the calculated timing values for CPIR on binary trees.

n
Number of Cores

4 8 16 32

binary
old

64 449 275 205 180
128 952 552 378 308
256 1974 1095 695 521
512 4037 2165 1286 886
4096 33059 16840 8858 4964

binary
new

64 296 209 179 171
128 622 399 312 282
256 1285 765 542 455
512 2618 1668 956 733
4096 21347 11395 5971 3545

Table 4.5: Estimated timing values for binary trees in ms

In an octal tree implementation where the number of items in database is 8m,

c is the number of cores and λ = dlog8 ce, the formula for estimated timing of the

computations can be given as follows

T p8m =

⌈
8λ

c

⌉
T8σ +

m∑
s=σ+1

⌈
8m−s · 8

c

⌉
τs, (4.4)

where

σ =

m− λ m ≥ λ

0 otherwise.

Using Equation 4.4, estimated timing values for various database sizes on octal

trees are demonstrated in Table 4.6.

Similar to octal case, in hexadecimal tree implementation for a database of 16m

items and c cores,λ = dlog16 ce. Based on these values, the timings can be calculated

using Equation 4.5. Table 4.7 presents the estimated cost of server computations on

hexadecimal trees for several database sizes.

T p16m =

⌈
16λ

c

⌉
T16σ +

m∑
s=σ+1

⌈
16m−s · 16

c

⌉
τs, (4.5)

42

n
Number of cores

4 8 16 32

octo
old

64 43 25 13 10
512 355 185 95 58
4096 2831 1429 722 383

octo
new

64 32 16 12 9
512 283 141 78 47
4096 2318 1159 594 311

Table 4.6: Estimated timing values for octal trees in ms

where

σ =

m− λ m ≥ λ

0 otherwise.

n
Number of Cores

4 8 16 32
256 108 54 27 17
4096 1788 894 447 231

Table 4.7: Estimated timing values for hexadecimal trees in ms

4.2 Analysis of Communication and Computation

for Privacy Preserving Range Queries

Both Path ORAM and CPIR guarantees the security of privacy-preserving range

queries by guaranteeing data confidentiality, query confidentiality and hiding the

query access patterns. However, the performance of the two methods differs in

terms of efficiency, which is a crucial aspect for any application over outsourced

data. Hence, the rest of this section provides a qualitative comparison of CPIR and

Path ORAM methods in terms of bandwidth usage and computation cost.

CPIR technique for Privacy Preserving Range Queries: The proposed

model for privacy preserving range queries using Private Information Retrieval meth-

ods requires employing computations on multiple trees. Although the proposed

method achieves good performance results, the size of communication is an impor-

tant issue for the efficiency of the model which requires a detailed inspection of

bandwidth requirements.

43

In our model, two message exchanges determine the cost of communication. First

one is sending the selection bits prepared on client side to server side. Although there

are multiple trees, since in each tree the corresponding nodes preserve the order of

buckets, generating the selection bits only for one tree and applying them repetitively

on each tree can provide the intended selection. However, the size of the selection

bits is still an important issue to decide the optimal bucket size for changing database

sizes. Furthermore, the size of the server response is determined by the number of

trees, since each tree computes a response for the corresponding bucket. Therefore,

the server response needs to be multiplied by the number of trees to compute the

total bandwidth usage. Section 4.1 provides a detailed analysis on the calculation of

the number of bits exchanged for octal and hexadecimal trees in the CPIR method.

Based on the provided calculation methods, an analysis of bandwidth usage in CPIR

scheme is presented on Figure 4.1 for octal and hexadecimal tree implementations

to retrieve one bucket. Since the bandwidth usage of a good CPIR scheme needs to

be less than the size of the database, the plots demonstrate the ratio of exchanged

bits to database size with respect to increasing database size. The results suggest

that increasing database size favors using more buckets.

Number of Data Items
16.384 131.072 1.048.576

R
a
ti
o
 o

f
e
x
c
h
a
n
g
e
d
 b

it
s
 t
o
 d

a
ta

b
a
s
e
 s

iz
e

10-3

10-2

10-1
64 buckets - octoCPIR
512 buckets - octoCPIR
4096 buckets - octoCPIR
256 buckets - hexCPIR
4096 buckets - hexCPIR

Figure 4.1: Ratio of exchanged bits to database size in CPIR based technique on
octal and hexadecimal trees for different number of buckets

Path ORAM technique for Privacy Preserving Range Queries: While

Path ORAM is a simple and fast method for the retrieval of encrypted data, since

the method requires repetitive path reading and writing, a careful construction is

required to optimize the bandwidth usage. Similar to CPIR, the bandwidth usage

is determined by two messages. The first one is reading the path of the intended

44

bucket from the database, which requires server to send Z log T blocks, where Z is

the number of blocks within each bucket, T is the number of buckets and logT is the

length of the path from the retrieved node to the root node. The second message

is writing the accessed path back to tree, which requires to send Z log T blocks of

data back to the server, as well. Therefore, the total cost of communication for Path

ORAM can be summarized as 2Z log T . In computations of the bandwidth usage,

Z is fixed to 4 to keep in line with original Path ORAM method [28]. Since the size

of a block is determined by the number of data items assigned into it, the size of the

data item is important for bandwidth computations. In our analysis, each data item

is considered as a tuple with 5 integer attributes stored including the primary key.

Since each integer is 32-bit, the total size of a tuple becomes 160 bits. Furthermore,

the data needs to be stored in encrypted form. Using AES encryption, a 160 bit

plaintext value maps to 256 bit ciphertext because of the block size of encryption.

Based on the above explanations, the bandwidth usage in Path ORAM method

is presented in Figure 4.2 along with CPIR technique. For compatibility of CPIR

and Path ORAM method, the number of buckets utilized in Path ORAM is selected

close to the number of buckets in CPIR. Similar to CPIR, a higher number of buckets

is advantageous in terms of bandwidth usage for large database sizes.

Number of data items
16.384 131.072 1.048.572

R
a
ti
o
 o

f
e
x
c
h
a
n
g
e
d
 b

it
s
 t
o
 d

a
ta

b
a
s
e
 s

iz
e

10-3

10-2

10-1

100

63 buckets - ORAM
255 buckets - ORAM
511 buckets - ORAM
4095 buckets - ORAM

Figure 4.2: Ratio of exchanged bits to database size in Path ORAM based technique
for different number of buckets

Based on Figure 4.1 and Figure 4.2, a comparison between CPIR and Path

ORAM technique can be made. The results show that as database size increases,

the decline of the ratio for bandwidth usage in the CPIR based method is clear for

the same number of buckets. An important issue in the provided analyses is that

45

they demonstrate bandwidth usage to retrieve one bucket from the trees. However,

querying for a range may require to retrieve more than one buckets. Especially,

utilizing a method to introduce false positives in buckets for privacy concerns, which

is Controlled Diffusion mechanism in our case, causes the increase of the number of

retrieved buckets for range queries. Thus, in Figure 4.3, an analysis of the bandwidth

usage in CPIR and Path ORAM based range query scheme for increasing number

of buckets is presented. In figure, the bandwidth usage is represented as the ratio of

exchanged bits to database size. To compare the performance of hexadecimal and

octal tree implementation of CPIR, the results are provided separately for the two

implementations. According to the results, there is not a significant difference in

bandwidth consumption between octal tree and hexadecimal tree CPIR technique

for increasing number of buckets. However, the bandwidth usage of the Path ORAM

based technique clearly are much higher compared to the CPIR methods.

Number of Buckets
1 2 4 8 16

R
at

io
 o

f e
xc

ha
ng

ed
 b

its
 to

 d
at

ab
as

e
si

ze

0

0.02

0.04

0.06

0.08

0.1

CPIR - octo
CPIR - hex
ORAM

Figure 4.3: The bandwidth usage in the CPIR and ORAM method to retrieve
multiple buckets

4.2.1 Computational Complexity Analysis

Apart from the simplicity of implementation, Path ORAM is a fast method in

encrypted data retrieval; since the server does not perform any further computation,

but only returns the requested path to the client. Therefore, there is no burden on

the server in terms of computational complexity. The cost of computation on the

client side for one access is O(logK) · ω(1), where K is the number of total blocks

46

outsourced to the server. The cost contains decryption, shuffling and re-encryption

operations on log(K) blocks in each access.

On the other hand, Lipmaa’s CPIR requires O(n) computation cost on server

side and O(log2n) computation cost on client side. Furthermore, since each bucket

is partitioned into several trees, the cost of computation on the server side will

be increased by a constant magnitude. However, although in terms of asymptotic

complexity CPIR scheme is slower, by changing the structure of the tree and adding

parallelism into the implementation [30], CPIR can be a practical scheme for privacy

preserving range queries.

Based on the analysis of communication and computation, in terms of asymptotic

complexity, Path ORAM gives better results. However carefully selection of bucket

sizes and utilizing parallellization techniques makes CPIR a practical scheme for

range queries, as well. Apart from the concerns of bandwidth and computation

performance, the requirement of additional storage, the private stash, on the client

side makes Path ORAM less advantageous against CPIR. On the CPIR method, the

client does not need a storage but only responsible for computation of encrypted

selection bits once. The encrypted selection bits can be used on each tree on the

server side without a re-computation. Furthermore, the existence of a private stash

may create difficulties in a multi-client scenario. It requires a separate stash for each

client. When a client performs a read or write operation, he needs to write back the

retrieved items to a new path. Thus, in each access operation, the clients need to

inform each other for the new locations, which causes additional cost on operations.

On the other hand, a multi-client implementation of CPIR scheme does not affect

the cost of operations.

47

Chapter 5

Implementation Results

To show the correctness of the improvements on the BddCPIR method, all of the

proposed schemes, serial, parallel, Lim-Lee technique and scalable technique, are

implemented. Furthermore, these schemes adapted to range query scheme to com-

pare its performance with Path ORAM. The programming language used for all

implementations is C++. For big integer operations GMP, The GNU Multiple Pre-

cision Arithmetic Library, is utilized. Parallel operations are handled by OpenMP

API. The experiments are employed on two different computers. The first machine

runs 64 bit Ubuntu 12.04 operating system. It is a 6-core platform where each core

is an Intel Xeon CPU E5-1650 v2 operating at 3.50 GHz. We used 4 of the cores

in the experiments which show the improvements on the BddCPIR method. The

second machine has 64 bit CentOS 6.5 as operating system. It has 30 cores where

each one is an Intel Xeon CPU E7-4870 v2 operating at 2.30 GHz. This machine is

utilized to show the scalability of the new CPIR scheme on large database sizes and

to compare the performance of CPIR and Path ORAM.

5.1 Timing results for the new CPIR

The implementation includes binary, octal and hexadecimal approaches for the new

CPIR method. The experiments for the usage of the Lim-Lee technique is only

applied on octal and hexadecimal trees. For the scalable method, the results of the

new CPIR method and the new method with Lim-Lee technique are demonstrated

separately. To show the improvement in performance the results on binary and

48

octal trees for the original method [30] are included in each table. To clarify the

notation in tables for server computations, ‘octo-old’ and ‘binary-old’ display the

performance on octal and binary trees for Lipmaa’s CPIR method. ‘binary-new’,

‘octo-new’ and ‘hex-new’ show the timings for the new CPIR method on binary, octal

and hexadecimal trees. Finally, ‘octo-LL’ and ‘hex-LL’ show the timing results of

the implementation of Lim-Lee technique on the new CPIR method for octal and

hexadecimal trees.

The proposed methods in this work change the computations on the server side,

but the computations on client side is the same as the original method. Therefore,

the performance measurements for the client side operations are categorized based

on the type of the tree used in implementation, as binary, octal and hexadecimal.

5.1.1 Timings for Client Side Computations

On the client side, two operations are important in measuring the performance of

the CPIR. These are encryption of the selection bits and iterative decryption of

server response. As proposed in Section 2.5, the encryptions are performed using

parallel algorithms. Since decryption operations are dependent on each other, it is

performed serially.

The timings for the client operations of CPIR on binary, octal and hexadecimal

trees for various data sizes are presented in Table 5.1. The results show that the

message expansion property of the Damg̊ard-Jurik cryptosystem benefits shallower

trees in encryption and decryption operations. Namely, increasing the number of

items in database, hexadecimal tree has the best performance results and octal tree,

obviously, performs better than binary tree implementation.

5.1.2 Timings for Server Side Computations

The server operations are the dominant part of the CPIR method in terms of per-

formance since it requires employment on each file of the database. However, this

performance drawback can be handled by utilization of parallel methods in imple-

mentation. The CPIR method is suitable for parallelism since it involves repetitive

independent operations. In our experiments, we tested the proposed CPIR method

both for serial and parallel versions including the scalable case. Further, we observed

49

No. of
Items

Client Encryption (ms) Client Decryption (ms)
binary octo hex binary octo hex

2 2 - - 2 - -
4 7 - - 5 - -
8 19 5 - 11 2 -
16 34 - 8 19 - 2
32 55 - - 30 - -
64 78 19 - 41 5 -
128 114 - - 58 - -
256 151 - 40 78 - 5
512 200 48 - 102 10 -
1024 257 - - 130 - -
2048 324 - - 163 - -
4096 416 93 93 200 18 10
32768 - 197 - - 28 -
65536 - - 176 - - 18

Table 5.1: Timings of client computation for encryption of selection bits and de-
cryption of results with |N | = 1024

the change in performance by increasing the number of cores.

Serial Case

In the experiments, we first tested the performance of the new method with the

original BddCPIR method. Since the original scheme is a serial implementation,

Table 5.2 lists the timing values without utilizing any parallel method. Since the

message size increases in each level, the performance of binary tree implementation

becomes prohibitively poor for large data sizes. On the other hand, octal and

hexadecimal trees gain significant advantage on the original BddCPIR scheme.

As mentioned in Chapter 2, another dominant factor on the performance of CPIR

is the number of exponentiation operations. Comparing the values of ‘binary-old’

and ‘binary-new’ in Table 5.2, we can observe the improvement by reducing the

number of exponentiations. Furthermore, the effect of simultaneous exponentiation

in computation time by utilization of the Lim-Lee multi-exponentiation algorithm is

apparent in timings. For example, in octal case a speed up of 96, 808/35, 691 = 2.71

is achieved for a database with 4096 files compared to the performance of Lipmaa’s

CPIR method on octal trees.

The overall change in the performance by usage of shallow trees and the new

CPIR method is remarkable. For a database size of 4096, while BddCPIR method’s

50

cost is 135249 ms, the hexadecimal tree implementation by utilizing Lim-Lee multi-

exponentiation has a cost of 2002 ms which is equal to 68 times acceleration.

No of.
items

Server Computations - Serial (ms)
binary-new binary-old octo-LL octo-new octo-old hex-LL hex-new

2 2 5 - - - - -
4 16 28 - - - - -
8 62 102 5 11 16 - -
16 181 292 - - - 7 25
32 460 730 - - - - -
64 1,067 1,682 61 135 182 - -
128 2,358 3,683 - - - - -
256 4,999 7,786 - - - 128 484
512 10,359 16,167 535 1,205 1,580 - -

1,024 21,260 33,053 - - - - -
2,048 43,124 67,141 - - - - -
4,096 87,111 135,249 4,368 9,869 12,052 2,002 7,703
32,768 - - 35,691 79,484 96,808 - -
65,536 - - - - - 32,385 123,540

Table 5.2: Timings of server computation in serial case for binary, octal and hex-
adecimal trees with |N | = 1024

Parallel Case

The structure of CPIR algorithms is suitable to employ computations in parallel.

Therefore, using the parallel algorithms defined in Section 2.5, we utilized parallelism

on the new CPIR method. As the results of Table 5.3 imply, parallel algorithms

do not only benefit the new CPIR method, but it also improves the original Bdd-

CPIR method. Especially for larger databases, the effect of parallel implementation

against serial implementation is obvious. For example, in a database with 64 files,

the speedup of the parallel implementation of the new CPIR method using octal

trees (octo-new) over its serial implementation is approximately 135 / 47 = 2.87.

However, when the number of items in database are increased to 4096, the acceler-

ation increases up to 9,869 / 2,603 = 3.79.

As the actual timing results show, adding parallelism into the new CPIR method

makes it a more feasible scheme compared to Lipmaa’s BddCPIR scheme. To sup-

port this claim we can analyze the performance of the BddCPIR and the new CPIR

on hexadecimal tree by utilizing multi-exponentiation technique. It requires 135249

ms to complete computations of 4096 files for BddCPIR in serial computation while

51

the new CPIR on hexadecimal tree can finish it in 573 ms, which is equal to an

improvement by 135249 / 573 = 236, approximately.

No of.
items

Server Computations - Parallel (ms)
binary-new binary-old octo-LL octo-new octo-old hex-LL hex-new

2 2 5 - - - - -
4 13 23 - - - - -
8 34 61 6 4 6 - -
16 84 138 - - - 7 8
32 164 289 - - - - -
64 338 566 35 47 58 - -
128 676 1,138 - - - - -
256 1,390 2,282 - - - 56 139
512 2,814 4,551 186 329 407 - -

1,024 5,689 9,063 - - - - -
2,048 11,444 18,076 - - - - -
4,096 22,938 36,039 1,219 2,603 3,199 573 2,031
32,768 - - 9,336 20,817 25,409 - -
65,536 - - - - - 8,448 32,370

Table 5.3: Timings of server computation in parallel case for octal and hexadecimal
trees

Scalable Case

For larger data sizes, we conducted experiments using the scalable approach for

CPIR proposed in Section 2.6. To compare the performance of octal and hexadeci-

mal trees we used a database of 4096 files with subtree sizes 8, 64 and 512 for octal

and 16 and 256 for hexadecimal case. Furthermore, to observe larger data sizes,

we tested databases with 32768 and 65536 files for octal and hexadecimal trees

respectively. The results of experiments are displayed on Table 5.4 and Table 5.5.

No. of
items

Size of
Subtree

Server Computation (ms)
octo-LL octo-new octo-old

4096
64 799 1,755 1,803
512 1,256 2,688 2,956

32768
64 5,588 13,146 13,259
512 6,048 14,127 13,347
4096 9,324 21,534 23,528

Table 5.4: Timings of server computation in scalable case for octal trees

Analyses of Table 5.4 and Table 5.5 suggest that when the size of subtree is

smaller, the performance of the scalable scheme is better. However, when subtree

52

No. of
items

Size of
Subtree

Server Computation (ms)
hex-LL hex-new

4096
16 440 1,665
256 567 2,094

65536
16 6,699 26,250
256 6,832 26,699
4096 8,515 33,404

Table 5.5: Timings of server computation in scalable case for hexadecimal trees

size gets small, the number of subtrees increases which adversely affects the band-

width of the scheme. Another important issue in scalable case is the performance of

the new CPIR with Lim-Lee multi exponentiation method. Applying Lim-Lee’s tech-

nique in subtree collapsing operations improves the performance of scalable method

significantly. Using Lim-Lee’s method, the performance of the new CPIR method

in octal trees for 4096 files is improved by 2956 / 1256 = 2.35 times approximately.

The speed up value increases to 2094 / 567 = 3.69, when the method is implemented

on hexadecimal trees for the same database size.

Timings on 30-Core Computer Platform

Finally, in order to demonstrate the scalability of the new CPIR scheme on large

database sizes, we conducted experiments on a machine which utilizes 30 cores. The

observations include both the parallel and scalable approaches of the new CPIR on

octal and hexadecimal trees. Table 5.6 and Table 5.7 list the timings of parallel

implementation for various number of cores. The improvement in timings are in line

with the change in the number of cores. For example, in Table 5.6 for 32768 items,

the computation time of the new CPIR method utilizing Lim-Lee technique is 49671

ms for 1 core. When the number of cores doubled, the time decreases to 25031 ms,

almost half of the former one. Similarly, for 4 cores, the computation time reduces

to 12656 ms which is again half of the result with 2 cores. Table 5.8 and Table 5.9

show the results of computations for the scalable method on octal and hexadecimal

trees with large database sizes.

53

No. of
items

Number of Cores
1 2 4 8 16 30

octo
LL

octo
new

octo
old

octo
LL

octo
new

octo
old

octo
LL

octo
new

octo
old

octo
LL

octo
new

octo
old

octo
LL

octo
new

octo
old

octo
LL

octo
new

octo
old

8 7 15 19 7 8 11 7 4 6 7 3 4 7 3 4 7 3 4
64 85 190 234 57 95 121 42 47 65 35 24 37 35 27 52 35 27 53
512 748 1,692 2,065 407 847 1,044 237 423 534 152 213 278 123 153 262 123 143 248
4096 6,106 13,880 16,868 3,117 6,938 8,472 1,625 3,471 4,257 878 1,744 2,154 537 980 1,369 447 723 1,117
32768 49,225 111,759 135,738 24,630 55,584 68,022 12,461 27,800 34,114 6,339 13,927 17,088 3,350 7,204 9,070 2,307 4,697 6,330
262144 * * * 195,484 446,293 542,879 98,421 223,470 271,456 49,372 112,311 136,266 24,919 56,751 68,977 15,910 33,829 44,487
2097152 * * * * * * * * * 400,844 971,242 1091,510 199,177 485,164 555,415 113,385 274,862 317,615

Table 5.6: Timings of server computation in octal trees for various number of cores in ms

No. of
items

Number of Cores
1 2 4 8 16 30

hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL
16 32 9 17 9 8 9 5 9 6 9 6 9
256 653 171 326 102 164 67 82 50 41 43 48 43
4096 10,775 2,818 5,399 1,449 2,708 762 1,359 419 680 250 541 217
65536 173,469 45,241 86,540 22,765 43,510 11,399 21,770 5,794 10,969 2,974 6,696 2,004
1048576 2,752,900 719,958 1,383,160 361,099 697,282 181,716 348,686 90,749 174,412 45,579 101,279 28,561

Table 5.7: Timings of server computation in hexadecimal trees for various number of cores in ms

54

No. of
items

Subtree
size

Number of Cores
1 2 4 8 16 30

octo
old

octo
new

octo
LL

octo
old

octo
new

octo
LL

octo
old

octo
new

octo
LL

octo
old

octo
new

octo
LL

octo
old

octo
new

octo
LL

octo
old

octo
new

octo
LL

4096
64 9.14 9.12 8.98 4.63 4.6 4.52 2.42 2.36 1.05 1.22 1.19 0.56 0.66 0.64 0.33 0.57 0.56 0.29
512 11.88 11.71 10.42 6.02 5.92 5.21 3.96 3.60 1.64 2.01 1.81 0.88 1.28 1.01 0.54 1.07 0.83 0.46

32768
64 70.44 70.62 70.49 35.46 35.36 35.35 17.87 17.72 7.53 8.87 8.86 3.76 4.51 4.48 1.95 3.29 3.02 1.40
512 73.26 73.1 71.65 36.82 36.66 36.05 19.34 19.07 8.16 9.64 9.52 4.12 5.11 4.84 2.17 3.72 3.53 1.62
4096 95.44 93.78 82.75 48.03 47.01 41.03 31.72 28.88 12.52 15.93 14.51 6.37 8.48 7.43 3.36 5.86 5.31 2.51

262144

64 * * * 282.83 280.89 117.44 140.35 140.06 59.55 70.17 70.41 29.57 35.05 35.04 14.82 23.81 23.27 9.77
512 * * * 282.16 283.74 118.47 141.26 142.38 59.91 71.14 71.35 28.88 35.74 35.46 15.08 23.12 23.20 9.74
4096 * * * 293.12 292.90 127.77 153.73 152.92 64.31 77.13 76.06 32.20 39.10 38.89 16.32 26.13 24.16 10.55
32768 * * * 383.80 375.76 197.14 252.98 231.40 98.88 126.65 115.89 49.57 64.14 58.57 25.17 42.93 38.11 16.05

Table 5.8: Timings of server computation in octal tree with scalable method for various number of cores in sec

Number
of

Items

Subtree
Size

Number of Cores
1 2 4 8 16 30

hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL

65536
256 143.75 36.23 70.82 18.17 35.51 9.06 17.85 4.60 8.90 2.35 6.32 1.81
4096 179.86 45.09 89.79 22.40 45.70 11.34 22.59 5.73 11.37 3.00 7.71 2.17

1048576
256 * * * * 558.41 143.05 280.75 71.48 139.79 35.77 94.11 23.42
4096 * * * * 567.29 144.64 284.46 72.30 142.25 36.38 92.14 23.43
65536 * * * * 721.67 180.33 360.36 90.42 180.91 45.43 115.26 29.41

Table 5.9: Timings of server computation in hexadecimal tree with scalable method for various number of cores in sec

55

5.2 Timing results for the Privacy Preserving Range

Queries

For the range query experiments, we implemented the new CPIR model both in

serial and parallel versions and the Path ORAM technique based on the algorithm

in [28]. As data set, to keep in line with the experiments of the bucketization

method in [18], the Lineitem table of TPCH benchmark is used [29] which is a

common benchmark for the evaluation of database management systems. Since the

table contains more than 6 million data entries, random subsets of data are created

for experiments. Each data set contains 128, 1024 and 16384 entries respectively.

To evaluate multi-dimensional range queries, four integer attributes of the Lineitem

table - Quantity, Linenumber, ExtendedPrice and Tax- are selected with primary

key PartKey-SuppKey. Further, to apply multi-dimensional range queries, query

sets are generated within the boundaries of each dataset. Since the confidentiality

of data is a requirement in privacy preserving range queries, each data tuple is

encrypted for server storage using AES with 256-bit block size. For the operations

of Damg̊ard-Jurik cryptosystem, 1024-bit modulus is used to provide 80-bit security.

Our first experiment compares the performance of the new CPIR and Path

ORAM in terms of client computation cost. For the CPIR method we measured the

performance on octal and hexadecimal trees by utilizing the new CPIR method and

its Lim-Lee extension. Table 5.10 and Table 5.11 give the measurements of client side

computations for octal and hexadecimal case, respectively. To make Path ORAM

scheme consistent with the CPIR scheme, we tested the schemes on the same bucket

sizes. Considering the current capabilities of a clients machine, in CPIR timings 4

threads are utilized to compute client side operations. The results show the average

time for processing a query. AES encrypt and decrypt operations comprise majority

of computation in Path ORAM. In the CPIR technique, exponentiation of large

numbers during encryption of selection bits and decryption of query response put

burden on computation cost. As the computational analysis of the two techniques

suggests, Path ORAM performs better than CPIR. According to results, in CPIR

method, for large datasets hexadecimal implementation is advantageous. The bet-

ter performance of hexadecimal tree is a result of decryption operations. Meanly,

56

for example, for 16384 items with 4096 buckets, octal tree implementation requires

decryption of 512 trees on average while in hexadecimal tree this number is around

256 trees. Therefore, in that case while the total cost of client is 208 ms for octal

tree, it reduces to 107 ms for hexadecimal trees.

n
Number of buckets

CPIR Path ORAM
8 64 512 4096 7 63 511 4095

128 5 23 - - 0.17 0.20 - -
1024 16 22 62 - 0.52 0.30 0.40 -
16384 208 96 71 129 6.20 2.10 1.00 0.40

Table 5.10: Timings of client computation for CPIR and Path ORAM method in
octal case utilizing 4 cores (in ms)

n
Number of buckets

CPIR Path ORAM
16 256 4096 15 255 4095

128 9 - - 0.17 - -
1024 13 39 - 0.51 0.30 -
16384 107 53 112 6.40 1.00 0.40

Table 5.11: Timings of client computation for CPIR and Path ORAM method in
hexadecimal case utilizing 4 cores (in ms)

Although the measurements of client side operations are performed on 4 cores

for CPIR method, the development in computation technologies may lead to utilize

computers with more cores for users. Thus, we, also, measured the cost of client

side operations using larger core sizes. The results for encryption and decryption

operations are provided in Table 5.12 and Table 5.13 separately.

The second experiment is based on the cost of the server side operations. Since

the Path ORAM method does not require any computation on server side, we con-

ducted experiments only for the CPIR method. Our measurements include the

timing results for serial and parallel implementation of the new CPIR method on

octal and hexadecimal trees. Table 5.14 and Table 5.15 demonstrate the average

time spent to retrieve one bucket for a query in serial method utilizing octal and

hexadecimal trees in ms, respectively. However, a range query may require to re-

trieve multiple buckets which means spending more time for server side operations.

The results show that while the data size increases, the hexadecimal implementa-

tion gains advantage over the octal tree implementation. Furthermore, usage of the

57

Client Encryption Client Decryption
Number of cores Number of cores

n No. buckets 1 2 4 8 16 1 2 4 8 16

128
8 15 9 4 2 2 9 4 2 2 2
64 76 41 22 11 8 7 7 7 7 7

1024
8 15 9 4 2 2 68 34 17 9 4
64 76 41 22 11 9 27 13 7 7 7
512 227 128 65 32 30 14 14 14 14 14

16384

8 15 9 4 2 2 1099 549 274 138 69
64 76 41 22 11 9 424 213 106 53 27
512 227 128 65 32 30 113 56 28 14 14
4096 512 281 144 73 62 25 25 25 25 25

Table 5.12: Timings of client computation for the CPIR method in octal case uti-
lizing multiple cores (in ms)

Client Encryption Client Decryption
Number of cores Number of Cores

n No. buckets 1 2 4 8 16 1 2 4 8 16
128 16 32 17 9 4 2 4 2 2 2 2

1024
16 32 17 9 4 2 34 17 9 4 2
256 163 85 44 22 11 7 7 7 7 7

16384
16 32 17 9 4 2 549 274 137 69 34
256 163 85 44 22 11 106 53 27 13 7
4096 487 258 130 65 32 17 17 17 15 15

Table 5.13: Timings of client computation for the CPIR method in hexadecimal
case utilizing multiple cores (in ms)

multi-exponentiation algorithm reduces the cost significantly. For example, for a

data set of 16384 items with 4096 buckets, Lim-Lee method provides a speed up by

10781/2823 = 3.81.

n
Number of buckets

8 64 512 4096
octo-new octo-LL octo-new octo-LL octo-new octo-LL octo-new octo-LL

128 60 28 189 85 - -
1024 479 227 759 338 1689 743 - -
16384 7656 3647 12117 5425 13518 5944 13819 6067

Table 5.14: Timings of serial server computation for the new CPIR method in octal
case in ms

Table 5.16 and Table 5.17 show the timings for parallel implementation of CPIR

technique to retrieve one bucket on octal and hexadecimal trees, respectively. The

results are similar with serial implementation. Increasing data size benefits hexadec-

imal tree implementation. To show the consistency between the serial and parallel

58

n
Number of buckets

16 256 4096
hex-new hex-LL hex-new hex-LL hex-new hex-LL

128 64 17 - - - -
1024 513 139 652 172 - -
16384 8192 2245 10457 2760 10781 2823

Table 5.15: Timings of serial server computation for the new CPIR method in
hexadecimal case in ms

implementation, the results of parallel implementation utilizing 1 core is added, as

well.

59

Number of cores

n No. buckets
1 2 4 8 16

octo-new octo LL octo-new octo-LL octo-new octo-LL octo-new octo-LL octo-new octo-LL

128
8 60 28 30 14 15 7 15 7 15 7
64 189 84 130 56 100 42 85 35 85 35

1024
8 479 227 239 114 120 57 60 29 30 15
64 759 338 379 170 190 85 95 53 65 41
512 1692 743 933 405 554 236 364 152 303 124

16384

8 7678 3649 3827 1827 1916 914 959 454 479 230
64 12204 5149 6071 2712 3043 1358 1519 680 762 341
512 13561 5946 6757 2976 3384 1488 1700 748 942 407
4096 13870 6089 7109 3103 3713 1614 2020 873 1260 537

Table 5.16: Timings of parallel server computation for the new CPIR method in octal case in ms

Number of cores

n No. buckets
1 2 4 8 16

hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL hex-new hex-LL
128 16 64 17 32 9 32 9 32 9 32 9

1024
16 513 140 257 72 129 36 65 19 32 11
256 653 171 396 102 269 67 204 50 173 43

16384
16 8218 2235 4104 1128 2052 574 1026 296 514 156
256 10441 2750 5223 1386 2615 702 1312 353 663 183
4096 10770 2813 5568 1441 2971 757 1658 418 1005 247

Table 5.17: Timings of parallel server computation for the new CPIR method in hexadecimal case in ms

60

Chapter 6

Conclusion

To address the problem of hiding query access patterns in privacy preserving range

query scheme, we proposed two methods using PIR and ORAM techniques. Our

methods aim to prevent the disclosure of access patterns, in addition to provid-

ing the confidentiality of data and query. For Private Information Retrieval, we

introduced an improved version of Lipmaa’s BddCPIR. To that end, we propose

a new method which reduces the number of modular exponentiation operations in

each node of the tree. We implemented our CPIR method on octal and hexadeci-

mal trees to utilize shallow trees in implementation. Furthermore we benefit from

a multi-exponentiation algorithm [22] which enables to operate multiplication of

several exponentiation terms simultaneously. The new CPIR method is applied on

an existing scheme based on bucketization method [18] for range query operations.

For ORAM, we adapted Stefanov et al.’s [28] Path ORAM to range query scheme.

We analyzed two methods for the cost of communication and computation. The

results of bandwidth analysis to retrieve one bucket show that for large database

sizes the communication cost of the CPIR method is less than the Path ORAM

method. We analyzed the bandwidth usage for retrieval of multiple buckets, since a

range query may map to more than one bucket. The results of communication for

multiple buckets, also, benefits the usage of CPIR compared to Path ORAM. On

the other hand, in terms of computation cost, although the method we proposed for

CPIR improves the performance of Lipmaa’s BddCPIR scheme significantly, it can-

not make CPIR an advantageous scheme against Path ORAM. While Path ORAM

scheme has insignificant server cost, the cost of computations on server side dom-

61

inates the computations in CPIR. Apart from communication and computational

comparison, the qualitative aspects of two methods is, also, important in privacy-

preserving range queries. For example, CPIR method is suitable for multi-client

applications. However, on Path ORAM method utilizing a multi-client application

requires an additional cost to inform each client for each access to database due to

the change in data path.

In conclusion, depending on the bandwidth usage and the qualitative aspects,

CPIR based privacy-preserving range query scheme is more advantageous than Path

ORAM based privacy-preserving range query scheme for hiding query access pat-

terns. However, in terms of computational cost, CPIR is still an expensive scheme

compared to Path ORAM.

62

References

[1] ”Announcing the Advanced Encryption Standard”, Federal Information Pro-

cessing Standards Publication 197. United States National Institute of Stan-

dards and Technology (NIST). November 26, 2001.

[2] Adleman,L.M., Rivest, R.L., Shamir, A. “Cryptographic communications sys-

tem and method”, U.S. Patent No. US4405829 A. 1983.

[3] Agrawal, R., Kiernan, J., Srikant R., and Xu, Y. “Order preserving encryption

for numeric data”, In Proceedings of the 2004 ACM SIGMOD international

conference on Management of data (SIGMOD ’04), pp. 563-574. ACM, New

York, NY, USA, 2004

[4] Boldyreva,A., Chenette,N., Lee, Y., O’Neill,A. “Order Preserving Symmetric

Encryption”, In Proceedings of the 28th Annual International Conference on

Advances in Cryptology: the Theory and Applications of Cryptographic Tech-

niques (EUROCRYPT ’09), pp.224-241. Springer-Verlag, Berlin, Heidelberg,

2009.

[5] Boldyreva,A., Chenette,N., O’Neill,A. “Order Preserving Encryption Revisited:

Improved Security Analysis and Alternative Solutions”, In Proceedings of the

31st annual conference on Advances in cryptology (CRYPTO’11), pp. 578-595.

Springer-Verlag, Berlin, Heidelberg, 2011.

[6] Boneh,D., Waters,B. “Conjunctive, Subset, and Range Queries on Encrypted

Data”, In Proceedings of the 4th conference on Theory of cryptography

(TCC’07), pp.535-554. Springer-Verlag, Berlin, Heidelberg, 2007.

63

[7] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M., ”Private Information Re-

trieval”, In FOCS 95: Proceedings of the 36th Annual Symposium on the Foun-

dations of Computer Science, pp. 41-50, 1995.

[8] Chung,K.M., Pass,R. ”A Simple ORAM”, IACR Cryptology ePrint Archive

2013: 243, 2013.

[9] Damg̊ard, I., and Jurik, M. “A Generalisation, a Simplification and Some Appli-

cations of Paillier’s Probabilistic Public-Key System”, In Proceedings of the 4th

International Workshop on Practice and Theory in Public Key Cryptography:

Public Key Cryptography (PKC ’01), pp.119-136. Springer-Verlag, London, UK,

2001.

[10] Dautrich, J., and Ravishankar,C.V. “Compromising privacy in precise query

protocols”, In Proceedings of the 16th International Conference on Extending

Database Technology (EDBT ’13), pp.155-166. ACM, New York, NY, USA,

2013.

[11] El Gamal, T. “A Public Key Cryptosystem and A Signature Scheme Based on

Discrete Logarithms”, In Proceedings of CRYPTO 84 on Advances in cryptol-

ogy, pp.10-18. Springer-Verlag New York, New York, NY, USA, 1985.

[12] Gentry, C. “Fully homomorphic encryption using ideal lattices”, In Proceedings

of the forty-first annual ACM symposium on Theory of computing (STOC ’09),

pp. 169-178, ACM, New York, NY, USA, 2009.

[13] Gentry, C., Goldman,K., Halevi,S., Julta,C., Raykova,M., Wichs,D. ”Optimiz-

ing ORAM and Using it Efficiently for Secure Computation”, In Privacy En-

hancing Technologies 2013: 1-18, 2013.

[14] Goldreich, O., Ostrovsky, R. ”Software Protection and simulation on oblivious

RAMs”, J. ACM 43, pp. 431-473. 1996.

[15] Goldwasser, S., Micali, S. “Probabilistic Encryption”, In Journal of Computer

and System Sciences, 28(2), pp.270-299, 1984.

[16] Hacıgümüş, H., Iyer,B., Li,C., Mehrotra, S. “Executing SQL over Encrypted

Data in the Database-Service-Provider Model”, SIGMOD ’02Proceedings of the

64

2002 ACM SIGMOD international conference on Management of data, pp. 216-

227. ACM, New York, NY, USA, 2002.

[17] Hore, B., Mehrotra, S., Tsudik, G. “A privacy-preserving index for range

queries”, In Proceedings of the Thirtieth international conference on Very large

data bases - Volume 30 (VLDB ’04), Vol. 30. VLDB Endowment pp. 720-731.

2004

[18] Hore, B., Mehrotra S., Canım, M. Kantarcıoğlu, M. “Secure multidimensional

range queries over outsourced data”, The VLDB Journal, 21(3):333?58, 2012.

[19] Islam, M.S., Kuzu,M., Kantarcıoğlu, M. “Inference attack against encrypted

range queries on outsourced databases”, In Proceedings of the 4th ACM con-

ference on Data and application security and privacy (CODASPY ’14), pp.

235-246. ACM, New York, NY, USA, 2014.

[20] Kushilevitz, E., Ostrovsky, R., ”Replication Is Not Needed: Single Database,

Computationally-Private Information Retrieval”, FOCS ’97, 1997.

[21] Li, J., Omiecinski, E.R. “Efficiency and security trade-off in supporting range

queries on encrypted databases”, In Proceedings of the 19th annual IFIP WG

11.3 working conference on Data and Applications Security (DBSec’05), pp.

69-83. Springer-Verlag, Berlin, Heidelberg, 2005.

[22] Lim,C.H. “Efficient Multi-Exponentiation and Application to Batch Verifica-

tion of Digital Signatures”,Manuscript, 2000.

[23] Lim,C.H., Lee, P.J. “More Flexible Exponentiation with Precomputation”, In

Advances in Cryptology-CRYPTO’94,LNCS389, pp. 95–107. Springer-Verlag,

1994.

[24] Lipmaa, H. “First CPIR protocol with data-dependent computation”, In In-

formation, Security and Cryptology ICISC 2009, pp. 193-210. Springer Berlin

Heidelberg, 2009.

[25] Paillier, P. “Public-key cryptosystems based on composite degree residuosity

classes”, In Advances in cryptology, EUROCRYPT’99, pp. 223-238. Springer

Berlin Heidelberg, 1999.

65

[26] Vimercati,S., Foresti,S., Paraboschi,S., Pelosi,G., Samarati, P. “Efficient and

Private Access to Outsourced Data”, In Proceedings of the 2011 31st Interna-

tional Conference on Distributed Computing Systems (ICDCS ’11),pp. 710-719.

IEEE Computer Society, Washington, DC, USA, 2011.

[27] Shi, E., Chan, T.H.H., Stefanov,E., Li, M. ”Oblivious RAM with O((logN)3)

worst-case cost”, In Proceedings of the 17th international conference on

The Theory and Application of Cryptology and Information Security (ASI-

ACRYPT’11), pp. 197-214. Springer-Verlag, Berlin, Heidelberg, 2011.

[28] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L. “Path ORAM: An

Exteremely Simple Oblivious RAM Protocol”, In Proceedings of the 2013 ACM

SIGSAC conference on Computer and communications security (CCS ’13), pp.

299-310. ACM, New York, NY, USA, 2013.

[29] TPC-H, Decision Support Benchmark, http://www.tpc.org/tpch

[30] Ünal, E. and Savaş, E., “On Acceleration and Scalability of Number Theoretic

Private Information Retrieval”, To appeared in IEEE, Transactions on Parallel

and Distributed Systems.

[31] Wen, M., Lu, R., Zhang,K., Lei,J., Liang, X., Shen,X. ”PaRQ: A Privacy Pre-

serving Range Query Scheme Over Encrypted Metering Data for Smart Grid”,

In IEEE Transactions on Emerging Topics in Computing, Vol. 1, No. 1, pp.

178-191, 2013.

66

