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c©Çiğdem Çelik 2015

All Rights Reserved



He, who knows nothing, loves nothing. He, who can do nothing,

understands nothing. He who understands nothing is worthless. But he who

understands also loves, notices, sees.... The more knowledge is inherent in

a thing, the greater the love ... Anyone who imagines that all fruits ripen at

the same time as the strawberries knows nothing about grapes.

PARACELSUS.
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Abstract

Plurisubharmonic functions have been introduced by Lelong and Oka in

1942, play a major role in the theory of several complex variables. The

richness of their properties and, most importantly, their close connection

with holomorphic functions have assured these functions a indelible place in

several variables.

In this thesis, we present a survey of plurisubharmonic functions as one of

the generalization of subharmonic functions. Thereby, in the first part of

this study, after giving a short brief of topological notions, we recall the

main definitions and theorems of subharmonic functions in one dimensional

case. In the rest parts, we focus on multidimensional case and we aim to

give the main principles of the theory of plurisubharmonic functions.



Çoklu-altharmonik Fonksiyonlar Üzerine Bir Derleme
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Tez Danışmanı: Prof. Dr. Aydın Aytuna

Anahtar Kelimeler: Altharmonik fonksiyon, Dirichlet problemi,

çoklualtharmonik fonksiyon, Gluing lemma, Fusion lemma, maksimal
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Özet

1942 senesinde Lelong ve Oka tarafından tanımlanan çoklu-altharmonik

fonksiyonlar çok kompleks değişkenli teoride büyük bir role sahiptir. Zengin

özelliklerin oluşu ve en önemlisi anatilik fonksiyonlarla olan yakın ilişkisi,

bu fonksiyonlarn çok değişkenli teoride hatırı sayılır bir yere sahip oluşunu

garanti altına almaktadır.

Bu tezde, tek değişkenli altharmonik fonksiyonların bir genellemesi olarak,

çoklu-altharmonik fonksiyonlar üzerine bir derleme sunduk. Bu bağlamda,

çalışmanın ilk kısmında, gerekli topolojik kavramlar hakkında kısa bir özet

verdikten sonra, bir kompleks değişkenli altharmonik fonksiyonlarn temel

tanım ve teoremlerini hatırlattık. Diğer bölümlerde ise çok değişkenli

duruma odaklanarak, çoklu-altharmonik fonksiyonların ana prensiplerini

vermeyi amaçladık.
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Introduction

Plurisubharmonic functions have been introduced independently by Lelong[32]

and Oka[41] while studying properties of domain of holomorphy and the en-

tire and meromorphic functions, in France and Japan, respectively.

Oka’s paper was received by Tôhoku Mathematical Journal on October

25, 1941 and published in May, 1942. Lelong’s definition emerged in a note in

the Comptes Rendus presented on November 3, 1942. Even if Oka’s definition

is in two variables, it agrees with the one in use even since. The generalization

to n arose in [42]

Lelong defined a plurisubharmonic function as one that take finite values or

minus infinity and is bounded from above on relatively compact domains.

The function is not allowed to be minus infinity identically unlike Oka’s

definition and he did not impose the upper semicontinuity. In the common

definition today upper semicontinuity is imposed, just as Oka did.

In this thesis, we present a survey of plurisubharmonic functions which

appear in complex analysis as logarithms of moduli of holomorphic functions

and analogues of potentials and play a major role in the theory of functions

of several complex variable. It is our ambition to set the foundation of the

theory of plurisubharmonic functions. and, in particular, to make this text

comprehensible for who is in the primary stage of the study of several complex

variable.

For the convenience of the reader, we devote the prologue to the topolog-

ical preliminaries and present the main tools and theorems of subharmonic

x



functions in one dimensional case that will be used throughout this study.

In the first chapter, we start with the elementary properties of plurisub-

harmonic functions in Cn as a generalization of subharmonic functions in C.

The framework of this part is based on [43]. Then we continue with polar

and pluripolar sets that have been defined by Lelong [33] and [34] and have

a remarkable importance in pluripotential theory. Lastly, we mention the

relation between convex functions in Rn and plurisubharmonic functions in

Cn. This relation is quite natural since the plurisubharmonic functions are in

many ways analogous to convex functions. Indeed they relate to subharmonic

functions of one complex variable as convex functions of several variables do

to convex functions of one real variable.

In the second chapter, we focus on construction new plurisubharmonic

functions. Accordingly, we give some fruitful instruments that can be used

for that purpose.

In the last part of this study, we take a look at the theory of maximal

plurisubharmonic functions, or, roughly, the plurisubharmonic solutions to

the complex Monge-Ampère equation (ddcu)n = 0 where u is a plurisubhar-

monic function. Finally, we present extremal functions as most important

examples of maximal plurisubharmonic functions.
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Prologue

0.1 Some Topological Preliminaries

0.1.1 Upper semicontinuous Functions

Definition 1. Let X be topological space. We say that a function

u : X → [−∞,∞) is upper semicontinuous if the set {x ∈ X : u(x) < α} is

open in X for each α ∈ R.
Also v : X → (−∞,∞] is called lower semicontinuous if −v is upper semi-

continuous.

Clearly, one can show that u is upper semicontinuous if and only if

lim sup
y→x

u(y) := inf
δ>0

sup
0<‖y−x‖≤δ

u(y) ≤ u(x) (x ∈ X ).

We shall make frequent use of following basic properties of upper semicon-

tinuous functions.

Proposition 0.1.1. [44]

(i) If u, v are upper semicontinuous functions and λ ≥ 0, then u + v, λu

and max{u, v} are upper semicontinuous functions.

(ii) If (ui) is a collection of upper semicontinuous functions, then infi ui is

upper semicontinuous. In particular, if u1 ≥ u2 ≥ . . . then

u(x) := limn un(x) is upper semicontinuous.
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(iii) If u be an upper semicontinuous function on a metric space (X , d),

and u is bounded above on X , then there exists continuous functions

φn : X → R such that φ1 ≥ φ2 ≥ . . . ≥ u on X and limn→∞ φn = u

(iv) If u be an upper semicontinuous functions on a topological space X , and

K be a compact subset of X , then u is bounded above on K and attains

its bound.

Proof. [44]

(i) Let α ∈ R and Y = {x : u(x) + v(x) < α}. To show that Y is open, let

x0 ∈ Y and ε = α−u(x0)−v(x0) > 0. Then U = {x : u(x) < u(x0)+ ε
2
}

and V = {x : v(x) < v(x0) + ε
2
} are neighbourhoods of x0 and hence

U ∩ V is a neighbourhood of x0 contained of Y .

Next, {x : λu(x) < α} = {x : u(x) < α
λ
} for all λ ≥ 0 and α ∈ R hence

λu is upper semicontinuous if λ ≥ 0.

Furthermore, {x : max{u(x), v(x)} < α} = {x : u(x) < α}∩{v(x) < α}
is open for every α ∈ R.

(ii) If α ∈ R, then {x : infi ui(x) < α} = ∪i{x : ui(x) < α} is open.

(iii) We can suppose that u 6≡ −∞ (otherwise just take φn ≡ −n). For

n ≥ 1, define φn : X → R by

φn(x) = sup
y∈X

(u(y)− nd(x, y)) (x ∈ X ).

Then for each n we have

|φn(x)− φn(x
′
)| ≤ nd(x, x

′
) (x, x

′ ∈ X ),

so φn is continuous on X . Clearly, also φ1 ≥ φ2 ≥ . . . ≥ u. So

in particular limn→∞ φn ≥ u. Writing B(z, ρ) for the ball {y ∈ X :

d(x, y) ≤ ρ}, we have
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φn ≤ max

(
sup
B(z,ρ)

u, sup
X
u− nρ

)
(x ∈ X , ρ > 0).

As u is upper semicontinuous and bounded from above, letting ρ → 0

gives limn→∞ φn ≤ u.

(iv) The sets {x ∈ X : u(x) < n} (n ≥ 1) form an open cover of K,

so have a finite subcover. Hence u is bounded from above on K. Let

M = supK u. Then the open sets {x ∈ X : u(x) < M − 1/n} (n ≥ 1)

cannot cover K, because they have no finite subcover. Hence u(x) = M

at least one x ∈ K.

Let X be a topological space and let (uα)α∈I be a family of upper semi-

continuous functions X → [−∞,∞). We assume that (uα) is locally bounded

from above. Then the upper envelope

u(x) := supα{uα(x)}
need not to be upper semicontinuous, so we may consider its upper semicon-

tinuous regularization:

u∗(z) := lim
ε→0

sup
w∈B(z,ε)

u(w).

It is easy to check that u∗(z) ≥ u(z) and u∗ is the smallest upper semicon-

tinuous function which is greater than u. Our goal is to show that u∗ can be

computed with a countable subfamily of (uα).

Lemma 0.1.1. (Choquet’s Lemma) [9]. Let X be a second countable

metric space. If (uα) is a family of upper semicontinuous functions defined

on X, then it has a countable subfamily (vj) =
(
uα(j)

)
whose upper envelope

satisfies v ≤ u ≤ u∗ = v∗.

Proof. [9] Let B(zj, εj) be a countable basis of the topology of X. For each

j, let (zjk) be a sequence of points in B(zj, εj) such that
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sup
k
u(zjk) = sup

B(zj ,εj)

u,

and for each pair (j, k), let α(j, k, l) be a sequence of indices α ∈ I such that

u(zjk) = supl uα(j,k,l)(zjk). Set

v = sup
j,k,l

uα(j,k,l).

Then v ≤ u and v∗ ≤ u∗. On the other hand

sup
B(zj ,εj)

u ≥ sup
k
v(zjk) ≥ sup

k,l
uα(j,k,l)(zjk) = sup

k
u(zjk) = sup

B(zj ,εj)

u.

As every ball B(z, ε) is a union of balls B(zj, εj), we easily conclude that

v∗ ≥ u∗, hence v∗ = u∗.

0.1.2 Partition of Unity

Now, we introduce a tool of extreme importance in analysis.

Theorem 0.1.1. [54] Let A ⊂ Rn and let O be an open cover of A. Then

there is a collection of Φ of C∞ functions ϕ defined in an open set containing

A, with the following properties;

(i) For each x ∈ A we have 0 ≤ ϕ(x) ≤ 1.

(ii) For each x ∈ A there is an open set V containing x such that all but

finitely many ϕ ∈ Φ are 0 on V .

(iii) For each x ∈ A we have
∑

ϕ∈Φ ϕ(x) = 1.

(iv) For each ϕ ∈ Φ there is an open set U in O such that ϕ = 0 outside of

some closed set containing in U .

A collection Φ satisfying (i) to (iii) is called C∞- partition of unity for A.

If Φ also satisfies (iv), it is said to said to be subordinate to the cover O.

5



Proof. [54] Case 1. A is compact.

For each point x ∈ A choose balls Cx ⊂ C̄x ⊂ Bx such that x ∈ Cx and

Bx ⊂ Uα for some α. By compactness, finitely many of the balls Cx suffice

to cover A; call them C1, C2, . . . , Cn.

Having constructed the sets C̄1, . . . , C̄n, let ψi be a nonnegative C∞ func-

tion which is positive on C̄i and 0 outside of some closed set contained in Ui

(see [54], p. 29). Since {C̄1, . . . , C̄n} covers A, we have that ψ1 + . . .+ψn > 0

for all x in some open set U containing A. Define the function ϕi on U as

ϕi(x) =
ψi(x)

ψ1 + . . .+ ψn
.

If f : U → [0, 1] is a C∞ function which is 1 on A and 0 outside of some

closed set in U , then Φ = {f ·ϕ1, . . . , f ·ϕn} is the desired partition of unity.

Case 2. A =
⋃
iAi, where each Ai is compact and Ai ⊂ A0

i+1.

For each i let Oi consist of all U ∩ (A0
i+1 \Ai−2) for U in O. Then Oi is an

open cover of the compact set Bi = Ai \ A0
i−1. By case 1 there is a partition

of unity for Φi for Bi, subordinate to Oi. For each x ∈ A and each i the sum

σ(x) =
∑
ϕ∈Φi

ϕ(x)

is a finite sum in some open set containing x, since x ∈ Ai we have ϕ(x) = 0

for ϕ ∈ Φj with j ≥ i + 2. For each ϕ in each Ψi, define ϕ
′

= ϕ(x)
σ(x)

. The

collection of all ϕ
′

is the desired partition of unity.

Case 3 A is open

Let

Ai = {x ∈ A : |x| ≤ i d(x, ∂A) ≥ 1/i},

and apply case 2.

Case 4 A is arbitrary
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Let B be the union of all U in O. By case 3 there is a partition of unity for

B; this is also a partition of unity for A.

0.1.3 Smoothing

Now we will give some smoothing theorems. Let Ω be an open subset of Rn

and for r > 0 define

Ωr := {x ∈ Ω : d(x,Ωc) > r}.

Let u : Ω → [−∞,∞) be a locally integrable function, and let φ : Rn → R
be a continuous function with supp(φ) ⊂ B(0, r). Then their convolution is

the function

u ∗ φ(x) =

∫
C
u(x− w)φ(w)dV (w) x ∈ Ωr.

After a change of variable we also have

u ∗ φ(x) =

∫
C
u(w)φ(x− w)dV (w) x ∈ Ωr.

This shows that if φ ∈ C∞, then also u ∗ φ ∈ C∞ since we can differentiate

under the integral sign arbitrarily many times. Now we shall show that

convolutions are useful in smoothing of functions.

Consider the function h : R→ R given by the formula

H(Ω)(t) :=

{
exp(−1/t) for t > 0

0, for t ≤ 0.

Then it is easy to see that h ∈ ∞(R). Now define χ : Rn → R so that

χ(x) = h(1− ||x||2)/K

7



where

K = (

∫
B(0,1)

h(1− ||x||2)dV (x))

and

χ ∈ C∞, χ ≥ 0, suppχ ⊂ B(0, 1),

∫
C
χdV = 1.

For ε > 0 define

χε =
1

ε2
χ(
x

ε
) x ∈ Rn.

The function χε is called a mollifier or standard smoothing kernel. If Ω

is an open set in Rn let C∞0 (Ω) denote the family of all C∞-functions on Ω

whose support is compact subset of Ω.

If ϕ ∈ C∞(Rn), then by using continuity of ϕ at the origin, we get

lim
ε→0

∫
Rn

χε(x)ϕ(x− w)dV (w) = ϕ(0)

Proposition 0.1.2. [44]. Let u ∈ L1
loc(Ω) and Ω ⊂ Rn is open. Then For

any compact set K ⊂ Ω, if u ∈ C (Ω), then u ∗ χε → u uniformly on K as

ε↘ 0.

Proof. [44] Take a compact set K ∈ Ω and fix ε0 > 0 such that Kε0 ⊂ Ω,

where

Kε = {x ∈ Rn : d(x,Ωc) ≤ ε}, ε > 0.

Let 0 < ε < ε0. We have;

(u ∗ χε − u)(x) = (χε ∗ u− u)(x) =

∫
χε(x− w)(u(w)− u(x))dV (w).

Therefore

‖u ∗ χε − u‖K = sup
x∈K

sup
w∈B(z,ε)

|u(x)− u(w)|.

The right-hand side goes to zero as ε↘ 0, because u is uniformly continuous

8



on Kε0 .

0.1.4 Distribution

In classical differential calculus historically there were some difficulties due

to the existence of functions which are not differentiable. In 1945 Schwartz

introduced the theory of distributions and by his work allowed us to extend

differentiability properties to a more general class of functions [51]. Here we

want to give a short review of test functions and distributions.

Definition 2. Let Ω be an open subset of C, then the space of test functions

D(Ω) is the vector space of functions ϕ with compact support of class C∞.

We give the topology to the space D(Ω) which gives following notion of a

convergence of sequences: A sequence of test functions ϕn ∈ D(Ω) converges

in D(Ω) to ϕ if,

(i) there is a compact set K ⊂ Ω with supp(ϕn) ⊂ K for all n,

(ii) all derivatives ∂iϕn converge uniformly to ∂iϕ.

Definition 3. A distribution T is a continuous linear functional on D(Ω),

and whenever ϕn ∈ D(Ω) and ϕn → ϕ in D(Ω) then T (ϕn) → T (ϕ). The

space of all distributions is the space of topological dual of D(Ω). Equipped

with the w∗-topology, this space will be shown by D′(Ω). In other words, a

sequence of distributions Tj ∈ D
′
(Ω) converges in D′(Ω) to T ∈ D′(Ω) if for

every ϕ ∈ D(Ω), Tj(ϕ) converges to T (ϕ).

Fundamentally, convergence of sequence is not enough to define the topol-

ogy on D(Ω). However, we can control the continuity of test functions only

by sequences. For the full version of the definition of the topology on D(Ω),

you may see Chapter 6 in [46].
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Example 1. Let f be a function in L1
loc(Ω) and ϕn → ϕ in D(Ω), we define

Tf (ϕ) :=

∫
Ω

f(x)ϕ(x)dx.

For ϕn − ϕ, suppose K is the compact set which containing support of

ϕn − ϕ then we have

|Tf (ϕ)− Tf (ϕn)| =
∣∣∣∣∫

Ω

(ϕ(x)− ϕn(x)) f(x)dx

∣∣∣∣
≤ sup

x∈K
|ϕ(x)− ϕn(x)|

∫
K

|f(x)|dx,

which goes zero as n → ∞. Moreover Tf is linear and hence it defines a

distribution.

If a distribution T is given by Tf (ϕ) :=
∫

Ω
fϕdx for some f ∈ L1

loc(Ω),

then we will identify Tf with f . This identification makes sense Tf = Tg if

and only if f = g almost everywhere.

A distribution T is called positive if T (ϕ) ≥ 0 for all ϕ ∈ D(Ω) such that

ϕ(x) ≥ 0 for all x ∈ Ω. Given a positive distribution T , we can consider it

is a positive linear operator on the space C0(Ω) can regarded as a positive

measure by Riesz Representation Theorem. (For Riesz Representation The-

orem see [44])

0.2 Subharmonic Functions

Subharmonic functions and the foundations of the associated classical poten-

tial theory are sufficiently well exposed in the literature, and so we introduce

here only a few fundamental results which we require. More detailed expo-

sitions can be found in the monograph of Ransford[44]. See also Hörmander

[17] and Vladimirov [55]. See also Brelot [7], where a history of the develop-

ment of the theory of subharmonic functions is given.
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0.2.1 Harmonic Function

Let Ω be an open subset of C. A function h : Ω→ R is called a harmonic if

h ∈ C2(Ω) and ∆h = ∂2h
∂x2

+ ∂2h
∂y2

= 0 on Ω.

If we write the function h as h(z) = h(z, z̄) = h(x, y) = h(r cos θ, r sin θ),

then one can gets the following formulas for Laplacian operator

∆h = 4∂2h/∂z∂z̄

and

∆h =
1

r

∂

∂r

(
r
∂h

∂r

)
+

1

r2

∂2h

∂θ2
=

1

r

∂h

∂r
+
∂2h

∂r2
+

1

r2

∂2h

∂θ2
.

The space of harmonic functions on a domain Ω form a vector space since

the Laplace operator is linear. This space will be denoted by H(Ω). The

following basic result provides a useful tool in deriving elementary properties

of harmonic functions from holomorphic functions.

Proposition 0.2.1. [44] Let Ω be a domain in C.

(i) If f is holomorphic on Ω, then Ref and Imf are harmonic.

(ii) If h is harmonic on Ω, and if Ω is simply connected, then h = Ref

for some f holomorphic on Ω. Moreover f is unique up to an additive

constant.

Proof. [44]

(i) Writing f = h + ik, where u, k are real valued functions on Ω, the

Cauchy-Riemann equations give

∂h

∂x
=
∂k

∂y

∂h

∂y
= −∂k

∂x
,

11



since f is holomorphic. Therefore,

∆h =
∂2h

∂x2
+
∂2h

∂y2
=

∂2k

∂y∂x
− ∂2k

∂x∂y
= 0.

Then h := Ref is harmonic on Ω. Harmonicity of Imf is proved in a

similar fashion.

(ii) If h = Ref for some holomorphic function f , say f = h+ ik, then

∂f

∂x
=
∂h

∂x
+ i

∂k

∂x
=
∂h

∂x
− i∂h

∂y
. (0.2.1)

Hence, if f exists, then ∂f
∂x

is completely determined by h, and so f is

unique up to adding a constant.

Equation 0.2.1 also suggests how we may construct such a function f .

Now, define φ : Ω→ C by

φ =
∂h

∂x
− i∂h

∂y
.

Then φ ∈ C 1(Ω) and φ satisfies the Cauchy-Riemann equations. There-

fore, φ is holomorphic on Ω. Fix z0 ∈ Ω, and define f : Ω→ C by

f(z) = h(z0) +

∫ z

z0

φ(w)dw,

the integral being taken over any path in Ω from z0 to z. As Ω is simply

connected, Cauchy’s theorem provides that the integral is independent

of the particular path chosen. Then f is holomorphic on Ω and

∂f

∂x
= φ =

∂h

∂x
− i∂h

∂y
.

12



Writing h̃ = Ref , we have

∂h̃

∂x
− i∂h̃

∂y
=
∂f

∂x
=
∂h

∂x
− i∂h

∂y
,

such that (∂h̃−h)
∂x
≡ 0 and (∂h̃−h)

∂y
≡ 0. It follows that h̃−h is constant on

Ω, and putting z = z0 shows that the constant is zero. Thus, h = Ref

indeed.

Corollary 0.2.1. [44] If h is a harmonic function on an open subset Ω of

C, then h ∈ C∞(Ω).

Another foremost consequence of relation between harmonic and holo-

morphic functions is following:

Theorem 0.2.1. (Mean-Value Property)[44]. Let h be a harmonic on

an open neighbourhood of the disc B̄(z, ρ). Then

h(z) =
1

2π

∫ 2π

0

h(z + ρeiθ)dθ

Proof. [44] Choose ρ
′
> ρ such that h is harmonic on B(z, ρ

′
). Applying the

previous proposition, there exists f on B(z, ρ
′
) so that h = Ref there. Then

by using Cauchy’s integral formula, we have

f(z) =
1

2πi

∫
|ζ−z|=ρ

f(ζ)

ζ − z
=

1

2π

∫ 2π

0

f(z + ρeiθ)dθ.

The result comes from upon taking real parts of both sides.

Theorem 0.2.2. (Identity principle)[44]. Let h and k are harmonic

functions on a domain Ω in C. If h = k on a non-empty open subset U of

Ω, then h = k throughout Ω.

13



Proof. [44]. Assume that k = 0 and set g = hx− ihy. Then g is holomorphic

on Ω and also g = 0 on U since h = 0 there. By identity principle for

holomorphic function, g = 0 on whole Ω and hence hx = 0 and hy = 0 on Ω.

Therefore h is constant on Ω and since h = 0 on U , it must be zero.

Theorem 0.2.3. (Maximum Principle)[44]. Let h be a harmonic func-

tion on a domain Ω in C.

(i) If f attains a local maximum on Ω, then h is constant.

(ii) If h extends continuously Ω and h ≤ 0 on ∂Ω, then h ≤ 0 on Ω.

Proof. [44]

(i) Suppose that h has a local maximum at w ∈ Ω. Then for some r > 0

we have h ≤ h(w) on D(w, r). By Proposition 0.2.1 (ii), Ref = h for

some holomorphic function f on D(w, r). Then |ef | attains a local max

at w, so ef must be constant. Therefore h is constant on D(w, r), and

hence on the whole Ω by identity principle.

(ii) Since Ω̄ is compact ,h must attain a maximum at some point w ∈ Ω̄.

If w ∈ ∂Ω, then h(w) ≤ 0 by assumption, and so h ≤ 0 on Ω. On the

other hand, if w ∈ Ω, then by part (a) h is constant on Ω and hence on

Ω̄, and so h ≤ 0 on Ω.

Corollary 0.2.2. [44]. Let Ω be a domain in C and h : Ω̄ → R be a

continuous function where Ω̄ is compact. Assume that h is harmonic on

Ω. Then h attains it maximum M and minimum m on the boundary ∂Ω of

Ω. Further if u and v are two continuous real valued functions on Ω̄, both

harmonic in Ω, and if u = v on ∂Ω then u = v on Ω̄

Proof. [44] If h is constant then clearly h attains its maximum and minimum

on the boundary of Ω. Assume therefore that h is not constant. Since h is

14



continuous on compact Ω̄, it attains its maximum and minimum in Ω̄. Since

h is non constant and harmonic in Ω then it attains M and m on ∂Ω.

To prove the second part put h = u− v which is continuous in Ω̄, harmonic

in Ω and vanishes on ∂Ω. By the first part of the corollary, the maximum

and minimum of h are zero in Ω hence u = v in Ω.

Definition 4. Let Ω be o subdomain of C, and let φ : ∂Ω → R be a

continuous function. The Dirichlet problem is to find a harmonic function h

on Ω such that limz→ζ h(z) = φ(ζ) for all ζ ∈ ∂Ω

The theorem of uniqueness is easily settled.

Theorem 0.2.4. (Uniqueness Theorem)[44]. With the notations of above

definition, there is at most one solution of Dirichlet problem.

Proof. [44] Suppose h1 and h2 are both solutions. Then h1 − h2 is harmonic

on Ω, extends continuously Ω̄, and zero on ∂Ω. Applying the maximum

principle to ±(h1 − h2), we conclude that h1 − h2 = 0.

If we interpret the Laplacian classically, we must require that harmonic

functions be a priori C 2. However, even if we interpret the definition in the

sense of distributions, harmonic functions are still smooth.

A function Ω → R is called weakly harmonic if it satisfies Laplace equation

in distribution sense. The Dirichlet problem is the problem of finding a

harmonic function on a domain with prescribed boundary values. It is one of

the great advantages of harmonic functions over holomorphic ones that for

‘nice’ domains, a solution to the Dirichlet problem always exists. This is a

capable tool with many applications.

Definition 5. (a) The Poisson kernel P : B(0, 1)× ∂B(0, 1)→ R, is defined

by

P (z, ζ) := Re

(
ζ + z

ζ − z

)
=

1− |z|2

|ζ − z|2
(|z| < 1, |ζ| = 1).
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(b) If B = B(w, ρ) and φ : ∂B → R is Lebesgue integrable function, then

its Poisson integral PBφ : B → R is defined by

PBφ(z) :=
1

2π

∫ 2π

0

P

(
z − w
ρ

, eiθ
)
φ(w + ρeiθ)dθ (z ∈ B).

More explicitly, if r < ρ and 0 ≤ t < 2π, then

PBφ(w + reit) =
1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
φ(w + ρeiθ)dθ.

The following result is fundamental.

Theorem 0.2.5. [44]. With the notions of Definition 5:

(i) PB is harmonic on B;

(ii) if φ is continuous at ζ0 ∈ ∂B, then limz→ζ0 PBφ(z) = φ(ζ0).

In particular, if φ is continuous on the whole ∂B, then h = PBφ solves

the Dirichlet problem on B.

Proof. See [44]

Corollary 0.2.3. (Poisson Integral Formula) [44] If h is a harmonic

on an open neighbourhood of the disc B̄(w, ρ), then for r < ρ and 0 ≤ t < 2π

h(w + reit) =
1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
φ(w + ρeiθ)dθ.

Proof. See [44]

Note that this result is a generalization of the mean-value property, which

is just the case r = 0. It allows us to recapture the values of h everywhere

on B from knowledge of h on ∂B.

The following theorem indicates that the Poisson integral formula enable to

derive some useful inequalities for positive(non-negative) harmonic functions.
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Theorem 0.2.6. (Harnack’s Inequality)[44]. Let h be a positive har-

monic function on the disc B(z, ρ). Then for r < ρ and 0 ≤ t < 2π,

ρ− r
ρ+ r

h(z) ≤ h(z + reit) ≤ ρ+ r

ρ− r
h(w).

Proof. [44]. Let s be a positive number with r < s < ρ and by using Poisson

integral formula applied to h on B(z, s),

h(z + reit) =
1

2π

∫ 2π

0

s2 − r2

s2 − 2sr cos(θ − t) + r2
h(z + seiθ)dθ

≤ 1

2π

∫ 2π

0

s+ r

s− r
h(z + seiθ)dθ

=
s+ r

s− r
h(z),

the last equality being just the mean-value property for h. Letting s → ρ,

we deduce that

h(z + reit) ≤ ρ+ r

ρ− r
h(z),

which is desired upper bound. The lower bound is proved in a similar way.

Corollary 0.2.4. (Liouville Theorem)[44]. Every harmonic function on

C which is bounded from above or below is constant.

Proof. [44]. It is enough to show that every positive harmonic function h

is constant. Given z ∈ C, put r = |z| and let ρ > r. Applying Harnack’s

inequality to h on B(0, ρ) = B(ρ) gives

h(z) ≤ ρ+ r

ρ− r
h(0).

Hence h(z) ≤ h(0) as ρ → ∞. Thus h attains its maximum at 0, and by

Theorem 0.2.1 this implies h is constant.

The mean-value property actually characterizes harmonic functions. This

is given in the next theorem, which also illustrates well the value of being
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able to solve Dirichlet problem.

Theorem 0.2.7. (Converse to Mean Value Property)[44]. Let h :

Ω→ R be a continuous function on an open set Ω of C, and suppose that it

posseses the local mean-value property, i.e. given z ∈ Ω, there exists ρ > 0

such that

h(z) =
1

2π

∫ 2π

0

h(z + reiθ)dθ (0 ≤ r < ρ). (0.2.2)

Then h is harmonic on Ω.

Proof. [44]. It is enough to show that h is harmonic on each open disk B

with B̄ ⊂ Ω. Fix such a B, and define ν : B → R by,

ν =

{
h−PBh, on B,

0, on ∂B.

Then ν is continuous on B and has a local mean-value property on B.

As B is compact, ν attains a maximum value M at some point of B. Define

∇1 := {w ∈ B : ν(w) < M} and ∇2 := {w ∈ B : ν(w) = M}.

Then ∇1 is open, since ν is continuous. Also ∇2 is open, for ν(z) = M , then

the local mean-value property forces to ν to be equal to M on all sufficiently

small circles around z. As ∇1 and ∇2 are partition of the connected set B,

either ∇1 = B, in which case ν attains its maximum on ∂B and so M = 0,

or else ∇2 = B in which case ν ≡ M and again M = 0. Thus ν ≤ 0, and a

similar argument shows that ν ≥ 0. Hence h = PBh on B, and since PBh is

harmonic there, so is h.

A useful feature of Theorem (0.2.7) is that one only needs to check that

the mean-value property holds locally(i.e. the value ρ can depend upon z).
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0.2.2 Subharmonic Functions

Definition 6. A function defined on an open set Ω ⊂ C and with values

[−∞,∞) is called subharmonic if,

(i) u is upper semicontinuous,

(ii) For every compact set K ⊂ Ω and every continuous function h on K

which is harmonic in the interior of K and h ≥ u on the boundary of K we

have h ≥ u in K.

Additionally, v : Ω→ (−∞,∞] is called superharmonic if−v is subharmonic.

A function f is harmonic if and only if it is both subharmonic and super-

harmonic. Indeed: f is continuous since f and −f are upper semicontinuous.

By using converse mean value property with the fact that f and −f satisfy

submean value condition f is a harmonic function.

The space of all subharmonic functions on Ω will be denoted by SH(Ω).

By our definition the function which is −∞ identically is subharmonic; some

authors exclude this function in the definition. Other equivalent definitions

of subharmonic functions are often useful:

Theorem 0.2.8. [17] Let Ω be an open subset of C and u : Ω → [−∞,∞)

be an upper semicontinuous function.Then each of the following conditions

is necessary and sufficient for u to be subharmonic:

(i) If D is a closed disc in Ω and f is an analytic polynomial such that

u ≤ Ref on ∂D, it follows that u ≤ Ref in D.

(ii) If Ωδ : {z : d(z,Ωc) > δ}, we have

u(z)2π

∫
dµ(r) ≤

∫ 2π

0

∫
u(z + reiθ)dθdµ(r), z ∈ Ωδ, (0.2.3)

for every positive measure dµ on the interval [0, δ].
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(iii) For every δ > 0 and every z ∈ Ωδ there exists some positive measure

dµ with support in [0, δ] has some mass outside the origin and (0.2.3)

is valid.

Proof. [17] Definition 6 implies (i), and it is also trivial that (ii) implies (iii).

Thus we only have to prove (i)⇒ (ii) and (iii) implies that u is subharmonic.

(i) ⇒ (ii) Let z ∈ Ωδ and 0 < r ≤ ρ. Set D = {ζ : |ζ − z| ≤ r} ⊂ Ω. If

ϕ(θ) =
∑

k ake
ikθ is a trigonometric polynomial such that

u(z + reiθ) ≤ ϕ(θ)

for all θ, the polynomial f(ζ) = a0 + 2
∑

k>0 ak(ζ − z)k/rk has a real part

which is an upper bound for u on ∂D. Hence u ≤ Ref in D and in particular

u(z) ≤ a0 =
1

2π

∫ 2π

0

ϕ(θ)dθ. (0.2.4)

Now if φ is an arbitrary continuous function such that u(z+ reiθ) ≤ φ(θ), by

Weierstrass approximation theorem, for every ε > 0 we can find a trigono-

metric polynomial ϕ with φ ≤ ϕ ≤ φ + ε and conclude that (0.2.4) is valid

with ϕ replaced ϕ + ε. Hence (0.2.4) for every continuous function ϕ which

is an upper bound for u(z + reiθ), and by definition of the integral of a

semicontinuous function this proves that

u(z) ≤ 1

2π

∫ 2π

0

u(z + reiθ)dθ.

Integration with respect to dµ(r) gives (0.2.3).

(iii) implies that u is subharmonic. Let K be a compact subset of Ω and h

is a continuous function which is harmonic in the interior of K, and assume

that h ≥ u on ∂K. If M := supK v = u− h is positive, the semicontinuity of

v shows that v = M on a non-empty compact subset F of the interior of K.

Let z0 be a point in F with minimal distance to ∂K. If the distance is bigger

than δ, then every circle |z0− z| = r, r ≤ δ, contains points where v(z) < M
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and, in fact, a whole arc, since v is upper semicontinuous. This implies that∫ ∫
v(z0 + reiθ)dµ(r) < M2π

∫
dµ(r) = v(z0)2π

∫
dµ(r)

if dµ is a measure with the properties list in (iii). But this contradicts

the hypothesis (iii) and the fact that (0.2.3) is valid with the equality for

harmonic functions.

Note that the integrals in (ii) exist and are not ∞ since u is upper semi-

continuous.

Corollary 0.2.5. [17] A function u defined on an open set Ω ⊂ C is sub-

harmonic if every point in Ω has a neighbourhood where u is subharmonic.

In other words, subharmonicity is a local property.

Theorem 0.2.9. [45] If u is subharmonic on Ω, and if ϕ is a monotonically

increasing convex function on R, then ϕ ◦ u is subharmonic.

Proof. [45] First, ϕ ◦ u is upper semicontinuous since ϕ is increasing and

continuous. Next, if B̄(z, r) ⊂ Ω we have,

ϕ(u(z)) ≤ ϕ

(∫ 2π

0

u(z + reiθ)dθ

)
≤
∫ 2π

0

ϕ(u(z + reiθ))dθ.

The first of the inequalities holds since u is subharmonic and ϕ is increasing;

the second follows from the Jensen’s inequality for real convex functions.

Proposition 0.2.2. [45] If f is a holomorphic function on a domain Ω in

C, then log |f | is subharmonic.

Proof. [45] If f(z) ≡ 0 then the result is trivial. If f(z) 6≡ 0, we assume

w.l.o.g z = 0 and apply the classical Jensen formula:

Let f be a holomorphic function on B(0, r) and 0 < r < R. Let the zeros of

f in B̄(0, r) be α1, . . . , αN with repeated multiplicity. Then
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log |f(0)| = 1

2π

∫ 2π

0

log |f(reiθ)|dθ − log | rN

α1 . . . αN
|

≤ 1

2π

∫ 2π

0

log |f(reiθ)|dθ.

Proposition 0.2.3. [45] Let (sα)α∈A be a family of subharmonic functions

on a domain Ω ⊂ C. If s := sup sα is upper semicontinuous and finite

everywhere, then s is subharmonic.

Proof. If s ≤ h on ∂Ω, where D ⊂⊂ Ω and h : D̄ → R is continuous and

harmonic on D, then sα ≤ h on ∂D for every α ∈ A. Since the sα are

harmonic, it follows that sα ≤ h on D for every α ∈ A. But then s ≤ h on

D as well.

Theorem 0.2.10. [44] Let u ∈ SH(Ω) and not −∞ identically in any com-

ponent of Ω. Then u ∈ L1
loc(Ω), which implies u > −∞ almost everywhere.

Proof. [44] If z ∈ Ω, u(z) > −∞, and D is a closed disc with center z con-

tained in Ω, we obtain from (0.2.3) and the fact that u is bounded from above

on D that u is integrable over D. If E is the set of all z such that u is inte-

grable over a neighborhood of z, it follows that u = −∞ in a neighborhood

of every point in Ω \ E. Hence both E and Ω \ E are open so that Ω \ E is

a union of components of Ω, all of must be empty by the hypothesis since

u = −∞ on Ω \ E.

Now we can give another description of subharmonic functions in distri-

bution sense.

Since subharmonic functions are locally integrable, their Laplacians can

be evaluated in the sense of distributions.

Theorem 0.2.11. [17] Let Ω ⊂ C be open and u ∈ SH(Ω), then ∆u ≥ 0 in

the sense of distribution, i.e.∫
Ω

u(x)∆ϕ(x)dΛ(x) ≥ 0
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for any non-negative test function ϕ ∈ C∞0 . Conversely, if v ∈ L1
loc(Ω) is such

that ∆v ≥ 0 in Ω in the sense of distribution, then the function u = limε→0(v∗
χε) is well-defined, subharmonic in Ω and equal to v almost everywhere in

Ω.

Since the proof of the theorem is quite similar to n-dimensional case in

section 1 Theorem 1.1.1 so we skip it.

Lemma 0.2.1. [44] Let u, v are subharmonic functions on a domain Ω in C
with u, v 6= −∞. If ∆u = ∆v, then u = v + h where h is harmonic on Ω.

Proof. [44] Let (χr)
∞
r=1 be the functions used in smoothing theorem, and for

r > 0 write

Ωr = {z ∈ Ω : d(z,Ωc) > r}.

Then u ∗ χr ∈ C∞(Ωr), and for z ∈ Ωr we have

∆(u ∗ χr)(z) =

∫
u(w)∆zχr(z − w)dA(w)

=

∫
u(w)∆wχr(z − w)dA(w)

=

∫
ϕ∆u.

where ϕ = χr(z−w) ∈ C∞c (Ω). Since ∆u = ∆v, with the same calculation

for v, we get ∆(u ∗ χr) = ∆(v ∗ χr) on Ωr. Therefore there exist a harmonic

function hr on Ωr with

u ∗ χr = v ∗ χr + hr on Ωr.

Now, applying the smoothing lemma to ±hr, we have hr ∗ χs = hr on

Ωs+r for each s > 0 and hence

hr = hr ∗ χs = (u− v) ∗ χr ∗ χs = hs ∗ χr = hs on Ωr+s
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Therefore, there is a single harmonic function h on Ωr so that for every r > 0

u ∗ χr = v ∗ χr + hr on Ωr

Letting r ↘ 0 with using smoothing theorem we deduced u = v+h on Ω.

0.3 Generalized Dirichlet Problem

As we mentioned before, if Ω is a disk then a solution always exists and we

even have a formula for it. But, for a general domain Ω, the situation is more

complicated. In this case, the Dirichlet problem may have no solution. For

example, take Ω = {z : 0 < |z| < 1}, and let φ : ∂Ω→ R be given by

φ(ζ) =

{
0, |ζ| = 1,

1, |ζ| = 0.

Then, any solution h would have a removable singularity at 0, and the

maximum principle would then imply that h(0) ≤ 0, violating the condition

that limz→0 φ(0) = 1.

Henceforth, we shall consider conditions under which a solution does exist,

and also, even more importantly, derive a natural reformulation of Dirichlet

problem which always has a solution. Firstly, we shall allow Ω to be any

proper subdomain of C∞. The other generalization will be consider arbitrary

bounded functions φ : ∂Ω → R, rather than continuous ones. Although

certainly no solution to the Dirichlet problem is possible if φ is discontinuous,

it is nevertheless useful to allow this extra freedom.

The key idea, called the Perron method, is in the following definition.

Definition 7. Let Ω be a proper subdomain of C∞, and let φ : ∂Ω→ R be a

bounded function. The associated Perron function HΩφ : Ω → R is defined

by
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HΩφ = sup
u∈U

u,

where U denotes the family of all subharmonic functions u on Ω such that

lim supz→ζ u(z) ≤ φ(ζ) for each z ∈ Ω and ζ ∈ ∂Ω.

The motivation for this definition is that, if the Dirichlet problem has a

solution at all, then HΩφ is it! Indeed, if h is such a solution, then h ∈ U ,

and so h ≤ HΩφ. On the other hand, by the maximum principle, if u ∈ U ,

then u ≤ h on Ω, and so HΩφ ≤ h. Hence HΩφ = h.

Our first result is that, regardless of whether the Dirichlet problem has a

solution, HΩφ is a always a bounded harmonic function.

Lemma 0.3.1. (Poisson Modification)[44]. Let Ω be a domain in C, let

B be an open disc with B̄ ⊂ Ω, and let u be a subharmonic function on Ω

with u 6≡ −∞. If we define ũ on Ω by

ũ =

{
PBu, on B,

u, on Ω \B.

then ũ is subharmonic on Ω, harmonic on B, and ũ ≥ u on Ω.

Proof. [44] Since u is Lebesgue integrable on ∂B, PBu makes sense and har-

monic on B, thus PBu ≥ u there. It thus remains to show that ũ is subhar-

monic on Ω, and by the gluing theorem for subharmonic functions this will

follow provided that for all ζ ∈ ∂B,

lim sup
z→ζ

PBu(z) ≤ u(ζ).

To prove this inequality, choose continuous functions φn on ∂B such that

ψn ↘ u there. Then for all ζ ∈ ∂B we have,

lim sup
z→ζ

PBu(z) ≤ lim
z→ζ

PBψn(z) = ψn(ζ),
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and by letting n→∞ we get the desired conclusion.

Theorem 0.3.1. [44] Let Ω be a proper subdomain of C∞, and let φ : ∂Ω→
R be a bounded function. Then the function HΩφ is harmonic on Ω, and

sup
Ω
|HΩφ| ≤ sup

∂Ω
|φ|. (0.3.1)

Proof. [44] Let U be the family defined in Definition 7. Set M = sup∂Ω |φ|,
then −M ∈ U , so HΩφ ≥ −M . Also given u ∈ U , by maximum principle

u ≤M and hence HΩφ ≤M . So we have the required inequality.

For harmonicity of HΩφ on Ω, we need to prove harmonicity on each open

disk B with B̄ ⊂ Ω. Fix such a B and a point w0 ∈ B. We can find

(un)∞n=1 ∈ U such that un(w0) → HΩφ(w0) by definition of HΩφ. We may

further suppose that u1 ≤ u2 ≤ on Ω by replacing un by max(u1, . . . , un).

Now, for each n let ũn denote the Poisson modification of un. Then we also

have ũ1 ≤ ũ2 ≤ . . . on Ω, and we claim that ũ := limn→∞ ũn satisfies:

(i) ũ ≤ HΩφ on Ω;

(ii) ũ(w0) = HΩφ(w0);

(iii) ũ is harmonic on Ω.

Indeed, by previous lemma each ũn is subharmonic on Ω and for all ζ ∈ ∂Ω,

lim sup
z→ζ

ũn(z) = lim sup
z→ζ

un(z) ≤ φ(ζ)

such that ũn ∈ U . Hence ũn ≤ HΩφ for all n, and so ũn ≤ HΩφ, which gives

(i).

Again by the previous lemma, ũn ≥ un, so

ũ(w0) = lim
n→∞

ũn(w0) ≥ lim
n→∞

un(w0) = HΩφ(w0).
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Since the reverse inequality follows from (i), this proves (ii). finally, each ũn

is subharmonic on B, so by Harnack’s theorem the same is true for ũ, which

gives (iii). So, to finish to proof, we would show that ũ = HΩφ on B.

Take an arbitrary point w ∈ B, and choose (vn)∞n=1 ∈ U such that vn(w) →
HΩ(φ)(w). With replacing vn by max(u1, . . . , un, v1, . . . , vn), we can suppose

that v1 ≤ v2 ≤ and vn ≥ un on Ω. Let ṽn denote the Poisson modification of

vn. Then ṽn ↗ ṽ, where:

(i) ṽ ≤ HΩφ on Ω;

(ii) ṽ(w) = HΩφ(w);

(iii) ṽ is harmonic on Ω.

In particular, (i) implies that

ṽ(w0) ≤ HΩφ(w0) = ũ(w0).

On the other hand, for each n, ṽn ≥ ũn so ṽ ≥ ũ. Hence ũ − ṽ is harmonic

on B and attains its maximum value of 0 at w0. In particular, ,t follows

ũ(w) = ṽ(w) = HΩφ(w).

Therefore, ũ = HΩφ on B since w is arbitrary.

From the definition of HΩφ, one may expect that limz→ζ HΩφ(z) = φ(ζ)

at each point ζ ∈ ∂Ω. But if Ω = {z : 0 < |z| < 1} then this cannot be true,

because, as we have seen, the Dirichlet problem may have no solution. It is

explanatory to see exactly what goes wrong.

First let

φ(ζ) =

{
0, |ζ| = 1,

1, |ζ| = 0.
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If u ∈ U , then by maximum principle u ≤ 0 on Ω, and so HΩφ ≤ 0. Since

0 ∈ U , in fact HΩφ ≡ 0 on Ω.

Now let

φ(ζ) =

{
0, |ζ| = 1,

−1, |ζ| = 0.

The same argument as before shows that HΩφ ≤ 0. In this case 0 6∈ U .

However, it is true that ε log |z| ∈ U for each ε > 0 and so once again HΩφ = 0

on Ω.

Definition 8. Let Ω be a proper subdomain of C∞, and ζ0 ∈ ∂Ω. A barrier

at ζ0 is a subharmonic function b defined on Ω ∩ N , where N is an open

neighbourhood of ζ0, satisfying

b < 0 on Ω ∩N and lim
z→ζ0

b(z) = 0.

A boundary point at which a barrier exists is called regular, otherwise it is

irregular. If every ζ ∈ ∂Ω is regular, then Ω is called a regular domain.

Lemma 0.3.2. [44] If Ω is a proper subdomain of C∞ and φ : ∂Ω→ R is a

bounded function, then on the domain Ω

HΩφ ≤ −HΩ(−φ)

Proof. [44] Let U be the family of subharmonic function as the Definition 7

and let V be the corresponding family for −φ. Given u ∈ U and v ∈ V , their

sum is subharmonic on Ω and for ζ ∈ ∂Ω satisfies

lim sup
z→ζ

(u+ v)(z) ≤ φ(ζ)− φ(ζ) = 0

Hence by maximum principle u + v ≤ 0 0n Ω. So, HΩφ + HΩ(−φ) ≤ 0 on

Ω.

The following lemma enables us to globalize barrier functions.
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Lemma 0.3.3. (Bouligand’s Lemma)[44] Let ζ0 be a regular boundary

point of a domain Ω, and let N0 be an open neighborhood of ζ0. Then, given

ε > 0, there exists a subharmonic function bε on Ω so that

bε < 0 on Ω, bε ≤ −1 on Ω \N0 and lim inf
z→ζ

bε(z) ≥ −ε.

Proof. [44] Since ζ0 is regular, there exists a neighborhood N of ζ0 and a

barrier b on D ∩N as in Definition 8.

Now, let B = B(ζ0, ρ), with ρ satisfying B̄ ⊂ N ∩ N0. Then normalized

Lebesgue measure on ∂B is a regular measure, so we can find a compact set

K ⊂ Ω ∩ ∂B such that Υ := (Ω ∩ ∂B) \K has measure less than ε. Since Υ

is open in ∂B, it follows that for all z ∈ Ω and η ∈ Υ

lim
z→η

PBχΥ(z) = 1.

Set m = − supK b, such that m > 0. Then for η ∈ Ω ∩ ∂B and z ∈ Ω ∩B

lim sup
z→η

(b(z)

m
− PBχΥ(z)

)
≤ Θ(η) ≤ 1

where

Θ(η) =

{
b(η)/m, if η ∈ K,
−1, if η ∈ Υ.

Therefore, if we define bε on D by

bε =

{
max(−1, (b/m− PBχΥ), on Ω ∩B,
−1, on Ω \B.

then by gluing theorem for subharmonic functions bε is subharmonic on Ω.

Obviously,

bε < 0 on Ω and bε ≤ −1 on Ω \N0.
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Lastly, we have

lim inf
z→ζ0

bε(z) ≥ lim
z→

(b(z)

m
− PB1Υ(ζ0

)
= 0− PB1Υ(ζ0) > −ε,

the last inequality coming from the fact that, as ζ0 is the center of B, the

value of PBχΥ(ζ0) is exactly the normalized Lebesgue measure of Υ.

Theorem 0.3.2. [44] Let Ω be a proper subdomain of C∞, and let ζ0 be a

regular boundary point of Ω. If φ : ∂Ω → R is a bounded function which is

continuous at ζ0, then

lim
z→ζ0

HΩφ(z) = φ(ζ0).

Proof. [44] Let ε > 0. Since φ is continuous at ζ0, there exists an open

neighborhood N0 of ζ0 so that |φ(ζ)− φ(ζ0)| < ε for all ζ ∈ ∂Ω ∩ N̄0. Let bε

be as in previous lemma and set

u = φ(ζ0)− ε+ (M + φ(ζ0))bε,

where M = sup∂Ω |φ|. Then u is subharmonic on Ω, and if ζ ∈ ∂Ω then

lim sup
z→ζ

u(z) ≤ Φ(ζ) ≤ φ(ζ),

where

Φ(ζ) =

{
φ(ζ0)− ε, if ζ ∈ ∂Ω ∩ N̄0,

φ(ζ0)− ε− (M + φ(ζ0)), if ζ ∈ ∂Ω \ N̄0.

Hence from definition of Perron function u ≤ HΩφ on Ω. In particular,

lim inf
z→ζ0

HΩφ(z) ≥ lim inf
z→ζ0

u(z) ≥ φ(ζ0)− ε(1 +M + φ(ζ0)).

Since ε is arbitrary, it follows that

lim inf
z→ζ0

HΩφ(z) ≥ φ(ζ0).

30



Repeating the same procedure for −φ, we also have

lim inf
z→ζ0

HΩ(−φ)(z) ≥ −φ(ζ0).

Hence by Lemma 0.3.2, HΩ ≤ −HΩ(−φ), and so it follows that

lim sup
z→ζ0

HDφ(z) ≤ φ(ζ0).

Putting together what we have learned, we obtained the following result.

Corollary 0.3.1. (Solution of Dirichlet Problem)[44] Let Ω be a reg-

ular domain, and let φ : ∂Ω → R be a continuous function. Then there

exists a unique harmonic function h on Ω such that limz→ζ h(z) = φ(ζ) for

all ζ ∈ ∂Ω.

Proof. [44] Uniqueness of the solution was proved in Theorem 0.2.4., and the

existence comes from the Theorem 0.3.1 and Theorem 0.3.2. with taking

h = HΩφ.
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Chapter 1

Plurisubharmonic Functions

1.1 Plurisubharmonic Functions and Elemen-

tary Properties

Let Ω ⊂ Cn be open. For u : Ω→ [−∞,∞), a ∈ Ω, and X ∈ Cn, we define

Ωa,X = {λ ∈ C : a+ λX ∈ Ω}, Ωa,X 3 λ
ua,X7−→ u(a+ λX).

Definition 9. A function u : Ω → [−∞,∞) is called plurisubharmonic

(briefly psh; u ∈ PSH(Ω)) if

(i) u is uppersemicontinuous on Ω

(ii) For every a ∈ Ω and X ∈ Cn the function ua,X is subharmonic in a

neighborhood of zero.

We say that a function u : Ω → [−∞,∞) is logaritmically plurisubhar-

monic if log u ∈ PSH(Ω).

Notation We denote a point in Cn by z = (z1, . . . , zn) and use the standard

notion

zj = xj + iyj, z̄j = xj − iyj,

dzj = dxj + idyj, dz̄j = dxj − idyj,
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∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

We denote by dV the standard Euclidean volume form on Cn, i.e.

dV = (dx1 ∧ dy1) ∧ . . . ∧ (dxn ∧ dyn)

=

(
i

2

)n
(dz1 ∧ dz̄1) ∧ . . . ∧ (dzn ∧ dz̄n).

Consider an R-linear mapping L : Cn → Cm. It can be split in a unique

manner, into a C-linear part and an anti C-linear part:

L(z) =
1

2
(L(z)− iL(iz)︸ ︷︷ ︸

C−linear

+
1

2
(L(z) + iL(iz))︸ ︷︷ ︸
anti C−linear

(z ∈ Cn)

In particular, if f : Ω → C is differantiable at a ∈ Ω ⊂ C, then the

differential daf can be split into the C-linear part ∂af and the anti C-linear

part ∂af :

df = ∂f + ∂̄f,

and we have that,

df =
n∑
j=1

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)
,

∂f =
n∑
j=1

∂f

∂zj
dzj,

∂̄zj =
n∑
j=1

∂f

∂z̄j
dz̄j.

If f ∈ C 2(Ω) and a ∈ Ω then the complex Hessian of f at point a is defined

as the matrix [∂2u(a)

∂zj∂z̄k

]n
j,k
.
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We shall denote its transpose by L u. Let

〈z, w〉 =
n∑
j=1

zjw̄j

for z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn. If u : Ω → R is twice R-

differentiable at a point a ∈ Ω, then we define the Levi form of u at a:

L u(a;X) := 〈L u(a)X,X〉 =
n∑

j,k=1

∂2u

∂zj∂z̄k
(a)XjX̄k, X = (X1, . . . , Xn) ∈ Cn.

(1.1.1)

Example 2. Let f(z) := ‖z‖2 =
∑n

i=1 ziz̄i. Then L f(a;X) = ‖X‖2 for

every a ∈ Cn.

Proposition 1.1.1. [43] Let ∈ C 2(Ω,R). Then u ∈ PSH(Ω) if and only if

L u(a;X) ≥ 0 for any a ∈ Ω and X ∈ Cn.

Proof. First, fix a ∈ Ω and X ∈ Cn. Since u is plurisubharmonic, ua,X is

subharmonic. Therefore ∆ua,X(λ)|λ=0 = 1
4

∑n
j,k=1

∂2u
∂zj∂z̄k

(a)XjXk ≥ 0.

Conversely assume that L u(a;X) ≥ 0 for all a ∈ Ω, X ∈ Cn. Then

∆ua,X(0) = 1
4

∑n
j,k=1

∂2u
∂zj∂z̄k

(a)XjXk which is nonnegative by assumption.

Hence, ua,X is subharmonic and thus u is plurisubharmonic on Ω.

Plurisubharmonicity can also be characterized in terms of distributional

derivatives

Theorem 1.1.1. [24] If Ω ⊂ Cn is open and u ∈ PSH(Ω), then for each

X = (X1, . . . , Xn) ∈ Cn,

n∑
j,k=1

∂2u

∂zj∂z̄k
XjX̄k ≥ 0
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in Ω, in the sense of distributions, i.e.∫
Ω

u(z)〈Lϕ(z)X,X〉dV (z) ≥ 0

for any non-negative test function ϕ ∈ C∞0 (Ω). Conversely, if v ∈ L1
loc(Ω) is

such that X = (X1, . . . , Xn) ∈ Cn

n∑
j,k=1

∂2v

∂zj∂z̄k
XjX̄k ≥ 0

in Ω, in the sense of distributions then there is a plurisubharmonic function

u on Ω that is equal to v almost everywhere in Ω.

Proof. [24] Let u ∈ PSH(Ω), and let uε = u∗χε for ε > 0. For a non-negative

test function ϕ ∈ C∞0 (Ω) and a vector X = (X1, . . . , Xn) we have∫
Ω

u(z)〈Lϕ(z)X,X〉dV (z) = lim
ε→0

∫
Ω

uε(z)〈Lϕ(z)X,X〉dV (z)

= lim
ε→0
〈L uε(z)X,X〉ϕ(z)dV (z) ≥ 0.

where the first equality is obtained by Lebesgue’s dominated convergence

theorem and the second one is obtained by using the integration by parts

formula twice for smooth functions and ϕ has compact support. It is positive

since uε is plurisubharmonic and smooth.

Conversely assume v ∈ L1
loc(Ω), and

∑n
j,k=1

∂2v
∂zj∂z̄k

XjX̄k ≥ 0 satisfied. Let

vε = v ∗ χε for ε > 0. Then,
∫

Ω
vε(z)〈Lϕ(z)X,X〉dV (z) ≥ 0. Therefore, vε

is plurisubharmonic in the sense of distribution. Further, vε is smooth hence,

it is plurisubharmonic in the usual sense. For ε2 > ε1 > 0 and x ∈ Ω, we

have

vε2 = lim
δ→0

(v ∗ χε2) ∗ χ = lim
δ→0

(v ∗ χε ∗ χε2

≥ lim
δ→0

(v ∗ χδ) ∗ χε1 = lim
δ→0

(v ∗ χε1) ∗ χδ = vε1 .
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Hence, the limit function u is plurisubharmonic.

The following properties of plurisubharmonic functions directly related

to the theory of subharmonic functions.

For a ∈ Cn and r > 0, the polydisc with center a and radius r is the set

P(a; r) := {z ∈ Cn : ‖z − a‖∞ < r}

where ‖.‖∞ is the maximum norm in Cn.

Proposition 1.1.2. (Maximum principle)[43]. Let D ∈ Cn be a domain

and let u ∈ PSH(D). If u ≤ u(a) for some points a ∈ D, then u ≡ u(a).

Proof. [43] Let D0 = {x ∈ D : u(x) = u(a)}. Observe that the set

D \D0 = {x ∈ D : u(x) < u(a)}

is open, therefore, D0 is closed in D. Let z0 ∈ D0. Applying the maxi-

mum principle for subharmonic function to each of the functions uz0,X with

‖X‖∞ = 1, we conclude that P(z0, d(z0, D
c)) ⊂ D0. Thus D0 is open and

therefore D = D0.

Proposition 1.1.3. [43] Let Ω ⊂ Cn. For an upper semicontinuous function

u : Ω→ [−∞,∞) the following conditions are equivalent:

(i) u ∈ PSH(Ω)

(ii) For all a ∈ Ω and X ∈ Cn with ‖X‖∞ = 1, there exists an R such that

0 < R ≤ d(a,Ωc) satisfying,

u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθX)dθ, 0 < r < R;
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(iii) For all a ∈ Ω and X ∈ Cn with ‖X‖∞ = 1, there exists an R, 0 < R ≤
d(a,Ωc) such that,

u(a) ≤ 1

πr2

∫
B(r)

u(a+ ξX)dΛ2(ξ), 0 < r ≤ R;

(iv) For all a ∈ Ω and X ∈ Cn with ‖X‖∞ = 1, there exists an R, 0 <

R ≤ d(a,Ωc) such that, if u(a + λX) ≤ Ref(λ) for |λ| = r, then

u(a) ≤ Ref(0) for all 0 < r < R and f ∈ P(C) where P(C) denotes

the spaces of all complex polynomials of one complex variable;

(v) For all a ∈ Ω and X ∈ Cn with ‖X‖∞ = 1, there exists R, 0 < R ≤
d(a,Ωc) such that, if ua,X(λ) ≤ h(λ) for |λ| = r, then u(a) ≤ h(0) for

all 0 < r < R and h ∈ H(B(r)) ∩ C (B̄(r)) where H(B(r)) denotes the

spaces of all real-valued harmonic functions on B(r);

(vi) for any a ∈ Ω and X ∈ Cn the function ua,X is subharmonic in Ωa,X .

Proof. Let u be an upper semicontinuous function on Ω. The implication (i)

⇒ (ii) directly comes from definition. For (ii)⇒ (iii), by hypothesis we have

u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Now, by integrating both sides with respect to R for 0 < r < R,∫ R

0

u(a)RdR ≤ 1

2π

∫ R

0

∫ 2π

0

u(a+ reiθ)dθRdR

=
0

2π

∫
B(r)

u(a+ ξX)dΛ2(ξ).

(1.1.2)

this result in

u(a) ≤ 1

πr2

∫
B(r)

u(a+ ξX)dΛ2(ξ).

Since all polynomials are holomorphic functions, for any f ∈ P(C), real
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part of f is a harmonic function. So the implication (ii) ⇒ (iv)and hence

(iv) ⇒ (v) comes from the Poisson formula. For (v) ⇒ (vi) this is direct

consequence of translation invariance of the Lebesgue measure. The last

implication is trivial.

Proposition 1.1.4. [43] Let Ω ⊂ Cn.

(i) If (uv)
∞
v=1 ⊂ PSH(Ω) and uv ↘ u pointwise on Ω, then u ∈ PSH(Ω)

In particular, if (uv)
∞
v=1 ∈ PSH(Ω) and uv ≤ 0 for all v ∈ N, then∑∞

v=1 uv ∈ PSH(Ω).

(ii) If (uv)
∞
v=1 ∈ PSH(Ω) and uv → u locally uniformly in Ω, then u ∈

PSH(Ω).

Proof. (i) The upper semicontinuity of u comes from Proposition 0.1.1.

For any v ∈ N, we have

lim
v→∞

uv(a) ≤ 1

2π
lim
v→∞

∫ 2π

0

uv(a+ reiθX)dθ

=
1

2π

∫ 2π

0

u(a+ reiθX)dθ,

where the equality comes from the monotone convergence theorem.

Hence u ∈ PSH(Ω).

In particular, if we define αn :=
∑n

v=1 uv for uv ∈ PSH(Ω) with uv ≤ 0

for all v. Then αn ↘ α hence α ∈ PSH(Ω).

(ii) The upper semicontinuity again follows from Proposition 0.1.1. On one

hand, the similar procedure as in part (i) with the dominated converges

theorem gives us the mean value inequality for u.
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Our next aim is to characterize plurisubharmonic functions in terms

of mean value inequalities. To this end, let a = (a1, . . . , an) ∈ Cn, r =

(r1, . . . , rn) ∈ Rn
>0.

If u : ∂0P(a, r)→ [−∞,∞) is bounded from above and measurable, then

we define

P(u; a, r; z) :=
1

(2π)n

∫
[0,2π]n

(
n∏
j=1

r2
j − |zj − aj|2

|rjeiθj − (zj − aj)|2

)
u(a+ r.eiθ)dΛn(θ),

for z = (z1, . . . , zn) ∈ P(a, r) and,

M(u; a, r) := P(u; a, r; a) =
1

(2π)n

∫
[0,2π]n

u(a+ r.eiθ)dΛn(θ).

If u : P(a, r)→ [−∞,∞) is bounded from above and measurable then we

define

A(u; a, r) :=
1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

udΛ2n =
1

(π)n

∫
(D)n

u(a+ r.w)dΛ2n(w)

Observe that

A(u; a, r) =
2

r2
1

. . .
2

r2
n

∫ r1

0

. . .

∫ rn

0

M(u; a, (τ1, . . . , τn))τ1 . . . τndτ1 . . . dτn

= 2n
∫ 1

0

. . .

∫ 1

0

M(u; a, (τ1r1, . . . , τnrn))τ1 . . . τndτ1 . . . dτn.

In light of this observation, we may give the following:

Proposition 1.1.5. [43] Let Ω ⊂ Cn be open and let u ∈ PSH(Ω), a ∈ Ω.

Then

M(u; a, r)↘ u(a) when r ↘ 0, A(u; a, r)↘ u(a)when r ↘ 0

Proof. [43] According to observation above, it is enough to consider only

M(u; a, ·). First, we prove that M(u; a, r
′
) ≤M(u; a, r

′′
) for r

′
= (r

′
1, . . . , r

′
n), r

′′
=
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(r
′′
1 , . . . , r

′′
n), 0 < r

′
j ≤ r

′′
j < d(a,Ωc), j = 1, . . . , n.

To see this in the case n = 1, let r
′

and r
′′
, where r

′
< r

′′
be arbitrary

numbers in (0, d(a,Ωc)), and let U?(z) be the smallest harmonic majorant of

the function u(z) in the circle |z − a| < r
′′
. Then,

M(u; a, r
′
) ≤M(U?; a, r

′
) = M(U?; a, r

′′
) = M(u; a, r

′′
),

which shows that the function M(u; a, r) is an increasing function of r in

(0, d(a,Ωc)) [See [55], p. 59]. Hence, for j = 1, . . . , n

M(u(z
′
, . . . , z

′′
); aj, r

′

j) ≤M(u(z
′
, . . . , z

′′
); aj, r

”
j ), (z

′
, aj, z

′′
) ∈ P(a, d(a,Ωc)).

Consequently, using a finite induction, one can easily get the desired inequal-

ity.

By Fatou’s lemma we have

u(a) ≤ lim
r→0

1

(2π)n

∫
[0,2π]n

u(a+ r.eiθ)dΛn(θ)

≤ 1

(2π)n

∫
[0,2π]n

lim sup
r→0

u(a+ r · eiθ)dθ

≤ u(a),

which proves that M(u; a, r)↘ u(a) when r ↘ 0.

Corollary 1.1.1. [43] Let u1, u2 ∈ PSH(Ω). If u1 = u2 Λ2n-almost every-

where in Ω, then u1 ≡ u2.

Proof. [43] Fix an a ∈ Ω. Since u1 = u2 Λ2n-almost everywhere, for 0 <
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r < d(a,Ωc), we get

A(u1, a, r) =
1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

u1dΛ2n

=
1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

u2dΛ2n

= A(u2, a, r)

Therefore, by the above proposition, u1(a) = u2(a).

Plurisubharmonic functions, as a several complex variable counterpart of

subharmonic functions, have many properties that can be deduced from the

theory of one-dimensional case. For example;

Proposition 1.1.6. [43] Let Ω ⊂ Cn be open, let u ∈ PSH(Ω), and let

P̄(a, r) ⊂ Ω (r = (r1, . . . , rn) ∈ Rn
>0). Then for z ∈ P(a, r)

u(z) ≤ 1

(2π)n

∫
[0,2π]n

(
n∏
j=1

r2
j − |zj − aj|2

|rjeiθj − (zj − aj)|2

)
u(a+ r.eiθ)dΛn(θ), (1.1.3)

u(z) ≤ 1

(0, 2π)n

∫
[0,2π]n

u(a+ r.eiθ)dΛn(θ) (1.1.4)

u(z) ≤ 1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

udΛ2n =
1

(π)n

∫
(D)n

u(a+ r.w)dΛ2n(w) (1.1.5)

Proof. [43] Inequality (1.1.3) is well known for n = 1. In particular,

u(w
′
, zj, w

′′
) ≤ P(u(w

′
, ·, w′′); aj, rj; zj), (w

′
, zj, w

′′
) ∈ P(a, r)

j = 1, . . . , n.
(1.1.6)

Hence, after a finite induction, we get (1.1.3). Inequalities (1.1.4) and (1.1.5)

can be shown in a similar way.

Corollary 1.1.2. [43] Let D ∈ Cn be a domain. If u ∈ PSH(D) and

u 6≡ −∞, then u ∈ L1
loc(D); in particular Λ2n (u−1(−∞)) = 0.
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Proof. [43] Suppose that there exists a point a ∈ D such that
∫
U
udΛ2n =

−∞ for every neighbourhood U of a. Let 2r := d(a,Dc). Observe that∫
P(z,r)

uΛ2n = −∞ for any z ∈ P(a, r). Consequently,

u(z) ≤ 1

(πr2
1) . . . (πr2

n)

∫
P(a,r)

udΛ2n = −∞, z ∈ P(a, r).

Hence u = −∞ in P(a, r). Let

D0 := {z ∈ D : u = −∞ in a neighbourhood of z}.

We have proved that D0 6= ∅. The same method of proof shows that D0 is

closed in D. Thus D0 = D is a contradiction.

Now we will give some theorems about the smoothing of plurisubharmonic

functions. This is the generalization of the main approximation theorem of

subharmonic functions in one-dimensional cases.

Let Ω ⊂ Cn, set

Ωε := {z ∈ Ω : d(z,Ωc) > ε}, ε > 0.

For every function in u ∈ L1
loc(Ω) and Φ ∈ C∞0 (Cn,R+) , define

uε(z) :=

∫
Ω

u(w)Φε(z − w)dΛ2n(w)

=

∫
Dn

u(z + εw)Φ(w)dΛ2n(w), z ∈ Ωε.

(1.1.7)

where

This function uε is called the ε-regularization of u.

Proposition 1.1.7. [43] If u ∈ PSH(Ω), u 6≡ −∞, then uε ∈ PSH(Ωε) ∩
C∞(Ωε) and uε ↘ u pointwise in Ω when ε↘ 0.

Proof. [43] It is clear that uε ∈ C∞(Ωε). Take an a ∈ Ωε. By the second part
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of (1.1.7), we get

uε(a) = (2π)n
∫ 1

0

. . .

∫ 1

0

M(u; a, ε(τ1, . . . , τn))Φ(τ1, . . . , τn)τ1, . . . , τndτ1, . . . , dτn.

Consequently, uε ↘ u. It remains to show that uε is plurisubharmonic. Now,

if we fix a ∈ Ωε, X ∈ Cn with ‖X‖∞ = 1, and 0 < r < d(a,Ωn
ε ), then

1

2π

∫
0

2πuε (a +reiθX
)
dθ

=

∫
Dn

(
1

2π

∫ 2π

0

u(a+ reiθX + εw)dθ

)
Φ(w)dΛ2n(w)

≥
∫
Dn

u(a+ εw)Φ(w)dΛ2n(w) = uε(a).

1.2 Polar and Pluripolar Sets

Let M be a subset of a domain Ω in C, we shall say that it is polar if there

is a subharmonic function u in Ω which is not identically minus infinity and

such that E ⊂ u−1(−∞).

Lelong called a set polar if it is contained in u−1(−∞) for some plurisub-

harmonic function u (a global definition) in 1945 [33], but later, in 1957 [34]

he changed the definition to a local one as follows.

Definition 10. A set M ⊂ Cn is called pluripolar if any point a ∈ M has

a connected neighborhood Ua and a function va ∈ PSH(Ua) with va 6≡ −∞,

M ∩ Ua ⊂ v−1
a (−∞).

By Corollary 1.1.1, pluripolar sets are of Lebesgue measure zero. The

problem of whether an arbitrary pluripolar set can be described by one global

plurisubharmonic function was solved by B. Josefson in 1978.
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Theorem 1.2.1. (Josefson theorem)[19] If M ⊂ Cn is pluripolar, then

there exist a a v ∈ PSH(Cn), v 6≡ −∞, such that M ⊂ v−1(−∞).

Proposition 1.2.1. [43] Let Mj ⊂ Cn be pluripolar, j ∈ N. Define

M :=
∞⋃
j=1

Mj.

Then M is pluripolar.

Proof. [43] By Josefson’s theorem, for each j ∈ N there exists a vj ∈ PSH(Cn),

vj 6≡ −∞, such that Mj ⊂ v−1
j (−∞). Since, for each j the set v−1

j (−∞) is

of measure zero, there exists a point b ∈ Dn such that vj(b) > −∞ for all

j. We may assume that vj ≤ 0 on P(0, j) and vj(b) ≥ −2−j, j ∈ N. Define

v :=
∑∞

j=1 vj. Then v ∈ PSH(Cn), v(b) ≥ 1, and M ⊂ v−1(−∞).

Definition 11. A subset E of an open set Ω ⊂ Cn is called negligible if

E ⊂ {u < u∗}, where (ui)i∈I ⊂ PSH(Ω) locally bounded from above and

u = supui.

Here the family ui can be chosen to be countable by Chouquet’s lemma.

It is easy to see that if E ⊂ {v = −∞} for v ∈ PSH(Ω) then E is negligible

since E ⊂ {u < u∗} for u = supj∈N v/j. In other words, pluripolar sets are

negligible. The question whether the converse is true, posed by Lelong in 1966

[35] , remained unanswered until 1982, when Bedford and Taylor showed that

this was indeed in case [2]. Cartan had solved the corresponding problem for

subharmonic functions in 1942 [8].

Theorem 1.2.2. (Bedford-Taylor theorem)[24] Negligible sets are pluripo-

lar.

Theorem 1.2.3. (Removable singularities of plurisubharmonic functions)[43]

Let M be a closed pluripolar set in Ω.
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(i) Let u ∈ PSH(Ω\M) be locally bounded from above in Ω. For w ∈ Ω\M
and z ∈ Ω, define

ũ(z) := lim sup
w→z

u(w)

Then ũ ∈ PSH(Ω).

(ii) For every function u ∈ PSH(Ω) and w ∈ Ω \M we have

u(z) = lim sup
w→z

u(w), z ∈ Ω.

(iii) If Ω is a domain, then the set Ω \M is connected.

Proof. [43]

(i) The result has a local character. Then we may assume Ω is connected,

u ≤ 0 in Ω\M and M ⊂ v−1(−∞) with v ∈ PSH(Ω), v ≤ 0, v 6≡ −∞.

For i ∈ N, put

ui =

{
u+ (1/i)v, on Ω \M,

−∞, on M.

Then ui ∈ PSH(Ω). If we define u0 = supi∈N, we get u0 = u on

Ω \ P and u0 = −∞ on P where P := v−1(−∞). The envelope of u0,

(u0)∗ ∈ PSH(Ω). Since the set A := {z ∈ Ω : u0(z) ≤ (u0)∗(z)} is of

measure zero, (u0)∗ = u0 = u on Ω\ (P ∪A). Therefore, by proposition

1.1.5, (u0)∗ = u on Ω \M .

It remains to prove (u0)∗ = ũ. Clearly, (u0)∗ = u = ũ on Ω \M . Take

an a ∈M , then

ũ(a) = lim sup
Ω\M3z→a

u(z) = lim sup
Ω\M3z→a

(u0)∗(z) ≤ lim sup
z→a

(u0)∗(z) = (u0)∗(a)

= lim sup
z→a

u0(z) ≤ lim sup
Ω\P3z→a

u0(z) = lim sup
Ω\P3z→a

u(z)

≤ lim sup
Ω\P3z→a

u(z) = ũ(a).
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(ii) Let

ũ(a) := lim sup
Ω\M3w→a

u(w), z ∈ Ω.

Then by part (a), ũ ∈ PSH(Ω). Further, ũ = u on Ω \M . Now, since

Λ2n(M) = 0, by applying proposition 1.1.5, we get the required result.

(c) Suppose that Ω \M = U1 ∪ U2 where U1 and U2 are disjoint and

nonempty open sets. Define u : Ω \M → [−∞,∞) by

u =

{
0 on U1,

−∞, on U2.

Then, in view of part (a), u has a plurisubharmonic extension to the

whole Ω. Since u is locally integrable, if U2 6= ∅, then u = −∞ on Ω

and so U1 = ∅. Hence, Ω \M is connected.

We finish this section with one of the most important results about

plurisubharmonic functions; the Hartogs lemma.

Lemma 1.2.1. (Hartogs Lemma)[43] Let (uv)
∞
v=1 ⊂ PSH(Ω) be a se-

quence locally bounded from above. Assume that for some m ∈ R,

lim sup
v→∞

uv ≤ m.

Then for every compact subset K ⊂ Ω for every ε > 0, there exists a v0 such

that

max
K

uv ≤ m+ ε, v ≥ v0.

Proof. [43] Take an ε > 0. It is sufficient to show that for every a ∈ Ω there

exist δ(a) > 0 and v(a) such that uv ≤ m+ ε in P(a, δ(a)) for v ≥ v(a). Fix

a and 0 < R < d(a,Ωc)/2. We may assume that uv ≤ 0 in P(a, 2R) for any
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v ≥ 1, and m < 0. Let 0 < δ < R/2. Then

lim sup
v→∞

sup
z∈P(a,δ)

uv(z) ≤ lim sup
v→∞

sup
z∈P(a,δ)

1

πn(R + δ)2n

∫
P(z,R+δ)

uvdΛ2n

≤ lim sup
v→∞

R2n

(R + δ)2n

1

πnR2n

∫
P(z,R)

uvdΛ2n

≤ R2n

(R + δ)2n

1

πnR2n

∫
P(z,R)

lim sup
v→∞

uvdΛ2n

≤ R2n

(R + δ)2n

1

πnR2n

∫
P(z,R)

mdΛ2n

≤ R2n

(R + δ)2n
m < m+ ε,

provided that δ is sufficiently small.

1.3 Relation between convex functions and

plurisubharmonic functions

Convex functions constitute an important part of plurisubharmonic func-

tions. Therefore, a certain number of propositions in the theory of convex

functions follow from the corresponding assertions regarding plurisubhar-

monic functions. For more detailed information on convex functions, see, for

example Hörmander [18], and Bremermann [4].

Definition 12. A real valued function u(x) of real variable x is said to be

convex in an interval (a, b) if, for all x and x
′

in (a, b) and for all λ ∈ [0, 1],

it satisfies

u(λx+ (1− λ)x
′
) ≤ λu(x) + (1− λ)u(x

′
).

A function u(x), where x = (x1 . . . , xn) is said to be convex in a domain

U ⊂ Rn if, for all x0 ∈ U and b such that |b| = 1, the function u(x0 + tb) is
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convex with respect to t in every interval contained in the open set

Ux0,b = {t : x0 + tb ∈ U}.

The properties of convex functions are analogues of continuous plurisub-

harmonic functions and they follow from the properties of convex functions of

one variable like as the most of the properties of plurisubharmonic functions

follow from the properties of subharmonic functions of one complex variable

case.

Let U ⊂ RN is open and v ∈ C 2(U,R), then we define the real Hessian

H v(x; ξ) :=
N∑

j,k=1

∂2v

∂xj∂xk
(x)ξjξk, x ∈ U, ξ = (ξ1, . . . , ξN) ∈ RN .

Then the function v is said to be convex in U if H v is positive semidefinite

in U , i.e. H v ≥ 0 for all x ∈ U and ξ ∈ Rn ( [55], section 11.3).

Proposition 1.3.1. [55] Let If a real valued function u(z) = u(x, y) is convex

in a domain U ⊂ Cn ≈ Rn + iRn, it is plurisubharmonic in that domain.

Proof. [55] If we take ξj = αj + iβj, we have,

∑
j,k

∂2u

∂zj∂z̄k
=

1

4

∑
j

(
∂2u

∂x2
j

+
∂2u

∂y2
j

)(α2
j + β2

j )

+
1

4

∑
j 6=k

[(
∂2u

∂xj∂xk
+

∂2u

∂yj∂yk
)(αjαk + βjβk)

+ (
∂2u

∂xj∂yk
− ∂2u

∂xk∂yj
)(βjαk − βkαj)].

(1.3.1)

That is, we have

4L u((x+ iy); (ξ)) = H ((x, y); (α, β)) + H ((x, y), (β,−α))

which gives the desired.
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Proposition 1.3.2. [43] Let U be a domain in Rn and let v : U → [−∞,∞).

Define

Ũ := U + iRn ⊂ Cn, ṽ(x+ iy) := v(x), x+ iy ∈ Ũ .

Then ṽ ∈ PSH(Ũ) if and only if v is convex on U .

Proof. [55] First consider the case where v is of class C 2(U). Since ∂v
∂yj

= 0

for j = 1, . . . , n by the equation (1.3.1), we get

4L ṽ(x+ iy; a+ ib) = H v(x; a) + H v(x; b),

which implies the desired result.

In general case, assume that ṽ is plurisubharmonic and let ṽε denote the

ε-regularization of ṽ. Observe that Ũε + iRn = Ũε. Hence Ũε = U ε + iRn for

an open set Uε ⊂ Rn. Moreover,

ṽε(z + it) =

∫
Dn

ṽ(z + it+ εw)Φ(w)dΛ2n(w)

=

∫
Dn

ṽ(z + εw)Φ(w)dΛ2n(w) = ṽε(z), z ∈ Ũε, t ∈ Rn

Hence ṽε(x + iy) = vε(x), x + iy ∈ Ũε, where vε : U ε → R. Note that

vε ↘ v. By the first part of the proof, vε is convex in U ε for any ε > 0.

Consequently, v is convex.

The following can be seen as consequences of the above proposition.

Proposition 1.3.3. [36] Suppose Ω is a domain in Cn with the following

property: for z = (zk) = (xk + iyk) ∈ Ω and 0 ≤ t ≤ 1, we have z
′

=

(xk + ityk) ∈ Ω. Then if ϕ ∈ PSH(Ω) depends only on xk, it is continuous

convex function of x = (x1, . . . , xn)
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Proof. [36] Let π be the natural projection onto the real coordinate, i.e.

π(z) = x for z = x + iy. Then ϕ extends in a natural way to a plurisub-

harmonic function on Ω
′

= ω × Rn, where ω = φ(Ω). Let ε > 0 and

Ωε = {z ∈ Ω
′

: d(z,Ω
′c

) > ε}. Then ϕε ∈ PSH(Ω
′
) ∩ C∞(Ω

′
ε) and ϕε de-

pends only on x. Further, Lϕε(·, X) =
∑n

j,k=1
∂2ϕε

∂xj∂xk
XjX̄k, and if X ∈ Rn,

ϕε is seen to be convex. Since a decreasing sequence of convex functions is

convex φ is convex, and since a convex function locally bounded from above

is continuous([55], Section 11.2), ϕ is continuous.

Corollary 1.3.1. [36] Let Ω ∈ Cn be a domain Ω = {z : 0 ≤ r
′
j ≤ |zk| ≤ r

′′
j }.

A function ϕ(r), r = (r1, . . . , rn), rj = |zj| defined in Ω is in PSH(Ω) if

and only if it is a convex function of the variable v = (v1, . . . , vn), where

vj = log rj.

Proof. [36] Let z = (z1, . . . , zn) ∈ Ω. Then we can find a neighborhood ωz of

z such that we can define a branch log zk = vk + iv
′

k of zk in ωz for every k.

For ϕ ∈ PSH(Ω), ψ(vk) = ψ̃(vk + iv
′

k) = ϕ(ev1 , . . . , evn) is plurisubharmonic

function of the variable (v1 + iv
′
1, . . . , vn + iv

′
n). By above proposition, it is a

convex function of v = (v1, . . . , vn). Conversely, if ψ(v) is defined in an open

set ω = {v : log r
′
j ≤ vj ≤ log r

′′
j } and is convex function of the variable v,

we extend ψ as a convex function on ω+ iRn by ψ(vk) = ψ̃(vk + iv
′

k). Hence

ψ̃ ∈ PSH(ω + iRn).
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Chapter 2

Construction New

Plurisubharmonic Functions

In this chapter we will review certain instruments of obtaining new plurisub-

harmonic functions from the given ones.

2.1 New Plurisubharmonic Functions From

Old

In this section we will give some elementary but convenient ways to get new

plurisubharmonic functions from old ones. Up to now we have encountered

some instruments of forming plurisubharmonic functions. For example, it is

well known that the family PSH(Ω) is a positive cone, i.e. If α and β are

non-negative numbers and u, v are plurisubharmonic functions on Ω, then

αu+βv is plurisubharmonic on Ω. We have already mentioned in Proposition

1.2.1 that if f is holomorphic then log |f | is plurisubharmonic. If (uj)j∈N is a

decreasing sequence of plurisubharmonic functions then limj→∞ uj = u(z) is

plurisubharmonic hence if (vj)j∈N is a sequence of negative plurisubharmonic

functions then v :=
∑∞

j=1 vj is plurisubharmonic.
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The upper semicontinuiy of the above functions follows from Proposi-

tion 0.2.1. In addition to these ones, upper semicontinuous regularization of

supremum of a sequence of plurisubharmonic functions is plurisubharmonic.

Besides of these, a very useful tool is the following.

Proposition 2.1.1. [24] Let Ω ⊂ Cn and u ∈ PSH(Ω). If ψ is a real valued

increasing convex function, then ψ ◦ u is plurisubharmonic.

Proof. [24] Since convex functions are continuous on intervals φ ◦ u is obvi-

ously upper semicontinuous. Also if B̄(z, ρ) ⊂ Ω,

ψ ◦ u(z) ≤ ψ

(
1

2π

∫ 2π

0

u(z + reiθX)dθ

)
≤ 1

2π

∫ 2π

0

ψ ◦ u(z + reiθX)dθ,

where the second inequality comes from Jensen’s Inequality([44] Theorem

2.6.2) for convex functions. Hence φ ◦ u is a plurisubharmonic function.

Proposition 2.1.2. [36] Let Ω be a domain in Cn, and (Ωi)
∞
i=1 be a covering

of Ω by domains Ωi. If u is defined on Ω and u ∈ PSH(Ωi) for every i, then

u ∈ PSH(Ω).

Proof. [36] Since u is upper semicontinuous on domains Ωi for all i, it is

also upper semicontinuous on Ω :=
⋃∞
i=1 Ωi and submean value inequality

holds also for Ω since it is a local property, it is satisfying on each connected

component Ωi.

2.2 Pushout and Pullback

Let u ∈ PSH(Ω) ∩ C 2(Ω) and F : Ω
′ → Ω be holomorphic, where Ω

′ ⊂ Cm

is open. Then by using the definition of Levi form, for b ∈ Ω
′

and Y ∈ Cn

we have

L (u ◦ F )(b;Y ) = L u(F (b);F
′
(b)(Y )).
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Indeed, from the chain rule we have

∂2(u ◦ F )

∂zj∂z̄j
=

∂

∂zj

( m∑
r=1

∂u

∂w̄r

∂f̄r
∂z̄k

)
=
( m∑
r,s=1

∂2u

∂ws∂w̄r

∂fs
∂zj

∂fr
∂zk

)
+

m∑
r=1

∂u

∂w̄r

∂

∂zj
(
∂f̄r
∂z̄k

)

and the last sum vanish because f is holomorphic. Hence

L (u ◦ F ) =
m∑

r,s=1

∂2u

∂ws∂w̄r

∂fs
∂zj

∂fr
∂zk
≥ 0

Proposition 2.2.1. [24] Let Ω
′ ⊂ Cn be open and let F ∈ O(Ω

′
,Ω). Then

u ◦ F ∈ PSH(Ω
′
) for all u ∈ PSH(Ω).

Proof. [24] We may assume that u ∈ L1
loc(Ω). If u ∈ C 2 then the re-

sult follows from the above formula. In general case, let uε denote the

ε-regularization of u. Put Ω
′

:= F−1(Ωε), then u ◦ F ∈ PSH(Ω
′
ε) and

uε ◦ F ↘ u ◦ F . Consequently, u ◦ F ∈ PSH(Ω).

The following proposition gives tools for defining new plurisubharmonic

functions by using special holomorphic functions. Before stating it, we will

describe some basic facts concerning proper holomorphic mappings and the

notion of analytic cover. We refer to reader [47] and [16], for detailed infor-

mation.

Definition 13. Let X and Y be topological spaces. A continuous map

f : X → Y is said to be proper if f−1(K) is compact in X for every compact

set K ⊂ Y .

We shall study proper holomorphic maps f : Ω→ Ω
′

where Ω and Ω
′

are

domains in Cn. In this context, the compactness of f−1(K) for every compact

K ⊂ Ω
′

is equivalent to the following requirement: if {αi} is a sequence of

in Ω that has no limit point in Ω, then {f(αi)} has no limit point in Ω
′
.
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Some elementary facts. Let Ω and Ω
′

are domains in Cn and suppose

that f : Ω→ Ω
′

is holomorphic and proper.

If w = (w1, . . . , wn) ∈ Ω
′
, then f−1(w) is a subvariety of Ω, being the inter-

section of zero sets fi − wi, where fi is ith component of f and f−1(w) is

compact since f is proper. Hence f−1(w) is a finite set (Theorem 14.3.1 in

[47]).

Let M := {J = 0}, J being the Jacobian of f . Its image f(M) is called the

critical set of f . Each w ∈ f(M) is a critical value of f . Every other point

of f(Ω) is called a regular value of f .

Since f is proper, it is a closed map: if E is closed in Ω then f(E) is closed

in Ω
′
. In particular, f(M) and f(Ω) are closed in Ω

′
, and the set of regular

values of f form an open set.

Let Ω be a domain in Cn. By a covering of Ω, we mean that a domain Ω
′

and proper map

π : Ω
′ → Ω that is a covering space in the topological sense of word.

This means by definition that every point z ∈ Ω has a neigborhood Uz with

π−1(Uz) is a disjoint union of open sets {Vj} such that π|Vj : Vj → Ω is a

homeomorphism onto Uz.

A topological surface Ω
′
, one can put a complex structure on Ω

′
by using

π. In this case π|Vj : Vj → Ω becomes a biholomorphism onto Uz, by the

notation above. More information about topological covering can be found

in [12] and [13].

Definition 14. A mapping f : X → Y is called light if f−1(y) consists of

only a discrete set of points, for all y ∈ Y .

In view of the above material, we introduce the notion of analytic cover.

Definition 15. An analytic cover is a triple (X, π,Ω) such that
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(i) X is locally compact Hausdorff space;

(ii) Ω is a domain in Cn;

(iii) π is proper, light, continuous mapping of X onto Ω;

(iv) there is a negligible set A ⊂ Ω, and an integer λ such that π is a

λ-sheeted covering map from X \ π−1(A) onto Ω \ A;

(v) X \ π−1(A) is dense in X.

The following theorem is a useful instrument for constructing new plurisub-

harmonic functions by pullback, which is our purpose and the reason that

why we mentioned above procedure.

Theorem 2.2.1. [16]. Let Ω be a domain in Cn. Suppose Ω
′

is a domain in

and f : Ω→ Ω
′

is proper. Then (Ω, f,Ω
′
) is an analytic cover.

Finally, we give our construction by pullback.

Proposition 2.2.2. [25] Let f : Ω→ Ω
′

be a proper holomorphic surjection

between two open sets in Cn. If u ∈ PSH(Ω), then the formula

v(z) = max{u(w) : w ∈ f−1(z)} (z ∈ Ω
′
)

defines a plurisubharmonic function.

Proof. [24][25] Without lost of generality, assume that Ω
′

is connected. De-

note by A the zero locus of the Jacobian of f , i.e. A is the critical set of f

which is a subvariety of Ω. Then, by proper mapping theorem ([16] p.162),

f(A) is a subvariety in Ω
′
, hence it is negligible.

In view of the main approximation theorem, it is enough to show that the

proposition is true for continuous function. Assume that u ∈ Ω ∩ PSH(Ω).

By previous theorem, the proper mapping f is a analytic cover. Hence f is

open [16] and closed. Let a and b are real numbers with a < b, then

v−1 ((a, b)) = f−1
(
u−1 ((a,∞))

)
\ f−1

(
u−1 ([b,∞))

)
.
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Consequently, v is continuous on Ω
′
. Now, by proposition of holomorphic

functions (Theorem 1.3.1 in[24]), the proper surjection

f |f−1(Ω′\f(A)) : Ω
′ \ f(A)→ Ω

′ \ f(A)

is locally biholomorphic. Hence, there is a natural number k such that for

each z ∈ Ω
′ \ f(A) there exist a neighborhood V ⊂ Ω

′ \ f(A) of z, and

mutually disjoint neighborhoods U1, . . . , Uk of w1, . . . , wk, respectively where

{w1, . . . , wk} = f−1(z) such that f |Uj
: Uj → V is a biholomorphic mapping

for each j and f−1(V ) =
⋃k
j=1 Uj.

Consequently, v ∈ PSH(Ω
′\f(A)) and since v is continuous, f(A) is pluripo-

lar. By removable singularities theorem, v ∈ PSH(Ω
′
), as required.

2.3 Gluing Lemma

In many situations we need to glue two plurisubharmonic functions together

and next lemma help us with this.

Lemma 2.3.1. (Gluing lemma)[43] Let G ⊂ Ω ⊂ Cn be open and let

v ∈ PSH(G) and u ∈ PSH(Ω). Assume that

lim sup
G3z→ξ

v(z) ≤ u(ξ) ξ ∈ Ω ∩ ∂G.

Put

ũ(z) :=

{
max{v(z), u(z)}, for z ∈ G
u(z), for z ∈ Ω \G.

Then ũ ∈ PSH(Ω).

Proof. [43] The upper semicontinuity of ũ is obvious from assumption. Ob-

viously ũ is plurisubharmonic on Ω \ ∂G. Take a point a ∈ Ω∩ ∂G, a vector
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X ∈ Cn with ‖X‖∞ = 1, and 0 < r < d(a,Ωc). Then

ũ(a) = u(a) ≤ 1

2π

∫ 2π

0

ua,X(reiθ)dθ ≤ 1

2π

∫ 2π

0

ũa,X(reiθ)dθ.

Then ũ ∈ PSH(Ω).

Notice that, if u ≤ v on G, then ũ can be seen as a plurisubharmonic

extension of u to whole Ω. In view of that observation, we may give the

following corollaries of Gluing lemma.

Proposition 2.3.1. Let Ω1 and Ω2 are domains in Cn such that Ω := Ω1 ∩
Ω2 6= ∅. Suppose that u1 ∈ PSH(Ω1) and u2 ∈ PSH(Ω2) such that

lim inf
z→ζ

u1(z) ≤ u2(ζ) ζ ∈ ∂Ω ∩ Ω2

and

lim inf
z→ξ

u2(z) ≤ u1(ξ) ξ ∈ ∂Ω ∩ Ω1.

Define a function Ψ on Ω1 ∪ Ω1 as

Ψ(z) :=


u1 for z ∈ Ω1 \ Ω

max{u1(z), u2(z)}, for z ∈ Ω

u2 for z ∈ Ω2 \ Ω .

Then Ψ ∈ PSH(Ω1 ∪ Ω2)

Proof. Since Ω ⊂ Ω1, applying Gluing lemma for u1 ∈ PSH(Ω1) and u2 ∈
PSH(Ω), we obtain a new plurisubharmonic function, Ψ1, on Ω1. Likewise,

for u2 ∈ PSH(Ω2) and u1 ∈ PSH(Ω), we get Ψ2 ∈ PSH(Ω2). Now, since

Ψ1|Ω = Ψ2|Ω, we may define Ψ as a plurisubharmonic extension of Ψ1 on

Ω1 ∪ Ω2 such that Ψ(z) = Ψ2(z) for all z ∈ Ω2 \ Ω1.

Proposition 2.3.2. Let Ω1 and Ω2 are disjoint open sets and K be a compact

set in Cn and let u1 ∈ PSHc(Ω1 ∪ K) and u2 ∈ PSHc(Ω2 ∪ K) where

57



PSHc(Ω) denotes the set of continuous plurisubharmonic functions on Ω.

Choose a neighborhood of V of K such that uj ∈ PSH(V ) for j = 1, 2. If

u1|Ω2∩V = u2, then u1 has an extension, u, on Ω1 ∪K ∪Ω2 such that u(z) =

u2(z) on Ω2. Similarly, if u2|Ω1∩V = u1, then u2 has a plurisubharmonic

extension, v, on Ω1 ∪K ∪ Ω2 such that v(z) = u1(z) on Ω1.

2.4 Fusion Lemma

In the conclusions above, we mentioned that, under which conditions, we may

extend a plurisubharmonic functions by applying Gluing lemma. Strictly

speaking, we are given a function u on a set G and we seek to approximate

u by a function v plurisubharmonic on a larger open set Ω containing G.

This type of approximation is related to the problem of plurisubharmonic

extensions. In fact, if we find a plurisubharmonic function v on Ω which

is actully agrees with u on G, then, without any doubt, v is a very good

approximation indeed, for the error function u− v is identically is zero on G,

as the derived corollaries above. But, what if the error function is nonzero?

The Fusion lemma gives allows to approximate two functions simultaneously.

Lemma 2.4.1. (Fusion Lemma)[14] Let δ be a strictly plurisubharmonic

function on Cn. Let Ω1 and Ω2 be open subsets of Cn with Ω̄1 ∩ Ω̄2 = ∅ and

Ω̄2 compact. Then, there is a constant C such that if K ⊂ Cn is any compact

set, ε > 0, and uj are functions such that uj ∈ PSHc(Ωj ∪K) for j = 1, 2, .

Then there exists v ∈ PSHc(Ω1 ∪K ∪ Ω2) such that, for all z ∈ Ωj ∪K,

|v(z)− uj(z)| ≤ C ·max{|δ(z)|, 1} ·max{‖u1 − u2‖K , ε}. (2.4.1)

for j = 1, 2.

Proof. Let χ1 ∈ C∞0 (Cn) such that −1 ≤ χ1 ≤ 0, χ1 = −1 on Ω̄2 and χ1 = 0

on Ω̄1. Set χ2 = −1 − χ1. Choose λ positive and so small that δ + λχj are

both plurisubharmonic for j = 1, 2. Choose a neighborhood V of K so that
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uj ∈ PSHc(V̄ ) and

‖u1 − u2‖V < 2 max{ε, ‖u1 − u2‖K}.

We define a positive constant η by

λη := 2 max{ε, ‖u1 − u2‖K}.

Now set

fj = uj + η(δ + λχj)

on Ωj ∪ V and fj ≡ −∞ elsewhere. Finally, we set

v = max{f1, f2}.

Obviously, v is plurisubharmonic and continuous on (Ω1 ∪ V ∪ Ω2) \ ∂V .

Assume that z0 ∈ ∂V ∩ Ω1. Since χ1 = 0 on Ω1 and χ2 = −1 on Ω1, if z is

near z0 and z ∈ V̄ , then

f2(z) = u2(z) + η(δ − λ) = f1(z) + [u2(z)− u1(z)]− λη < f1(z).

Since f2(z) = −∞ on Ω1 \ V̄ , we have that f2(z) ≤ f1(z) for all z near

z0. The point z0 was arbitrary point of ∂V ∩ Ω1 ans so it follows that v

is continuous and plurisubharmonic on a neighborhood of ∂V ∩ Ω1 and, by

similar argument, on a neighborhood of ∂V ∩Ω2. Thus, v ∈ PSH(Ω1 ∪ V ∪
Ω2).

There remains to verify that v has required approximation property.

On Ω1 \ V̄ ,

|v(z)− u1(z)| = |f1(z)− u1(z)| = η|δ(z) + λχ1(z)|

= η|δ(z)| = 2λ−1 max{ε, ‖u1 − u2‖K}δ(z).

On Ω1∩ V̄ , we consider two cases. First of all, if |v(z)−u1(z)| = v(z)−u1(z),
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then, since v ≤ max{u1, u2}+ η(|δ|+ λ), we have

|v(z)− u1(z)| ≤ max{(u1(z), u2(z))− u1(z) + η(|δ(z)|+ λ)}

≤ 2 max{ε, ‖u1 − u2‖K}+ λ−12 max{ε, ‖u1 − u2‖K}(|δ(z)|+ λ).

On the other hand, if |v(z)− u1(z)| = u1(z)− v(z), then

|v(z)− u1(z)| = u1(z)−max{f1(z), f2(z)}

≤ u1 −max{u1(z)− η(|δ(z)|+ λ), u2(z)− η(|δ(z)|+ λ)}

= u1(z)−max{u1(z), u2(z)}+ η(|δ(z)|+ λ)

which yields the same estimate as in the first case. Thus, for C = 4 + 2λ−1,

2.4.1 holds on Ω1 ∩ V̄ . The same estimates on Ω2 ∩ V̄ are similar. This

completes the proof of the fusion lemma.

Note that, if we are interested in finding v plurisubharmonic in Ω1∪K0∪
Ω2 rather than Ω1 ∪ K ∪ Ω2, then, in case ‖u1 − u2‖K = 0, the inequality

2.4.1 is trivial, for of course u1 and u2 are then plurisubharmonic extensions

of each other and we may set v = uj on Ωj ∪K0, as in proposition above.

Moreover, the formula 2.4.1 can be simplified for most applications. Indeed,

if

(i) ‖u1 − u2‖K 6= 0, then |v(z)− uj(z)| ≤ C ·max{|δ(z)|, 1} · ‖u1 − u2‖K ;

(ii) ‖u1 − u2‖K = 0, then |v(z)− uj(z)| ≤ ε ·max{|δ(z)|, 1};

(iii) δ is bounded on Ω1∪K∪Ω2, then |v(z)−uj(z)| ≤ C ·max{‖u1−u2‖K , ε};

(iv) ‖u1 − u2‖K 6= 0 and δ is bounded on Ω1 ∪K ∪ Ω2, then

|v(z)− uj(z)| ≤ C · ‖u1 − u2‖K ;
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(v) ‖u1 − u2‖K = 0 and δ is bounded on Ω1 ∪K ∪ Ω2, then

|v(z)− uj(z)| ≤ ε.

In particular, from (iii) we see that if we assured of existence of a bounded

strictly plurisubharmonic function on Ω1 ∪ K ∪ Ω2, then we may omit any

mention of δ in lemma.

Example 3. Let Ω1, Ω2 and K as in the above lemma with the property

that Ω1 ∩K = Ω2 ∩K = ∅. Then we may construct the function v as

v(z) :=

{
u1(z) for z ∈ Ω1 ∪ V
u2(z), for z ∈ Ω2.

or

v(z) :=

{
u1(z) for z ∈ Ω1

u2(z), for z ∈ Ω2 ∪ V .

Example 4. Let Ω1, Ω2 and K be as in the Fusion lemma. Assume that

Ω1 ∩K 6= ∅ and Ω2 ∩K = ∅. In this case, we may define the function v with

the following fashion

v(z) :=

{
u1(z) for z ∈ Ω1 ∪ V
u2(z), for z ∈ Ω2.
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Chapter 3

Maximal Plurisubharmonic

Functions

As mentioned before, plurisubharmonic function are generalizations of the

subharmonic functions. A natural counterpart to the class of harmonic func-

tions is the class of so called maximal plurisubharmonic functions which will

be discussed in this chapter.

In Cn, if α = (α1, . . . , αk) ∈ Zk+, k ≤ n, using multi-index notation, we

define

dzα := dzα1 ∧ . . . ∧ dzαk , dz̄α := dz̄α1 ∧ . . . ∧ dz̄αk .

Now we will define another very important operator

dc := i(∂̄ − ∂)

noting that

ddc = 2i∂∂̄,

and, if u ∈ C 2(Ω), then

ddcu = 2i
n∑

j,k=1

∂2u

∂zj∂z̄k
dzj ∧ dz̄k.
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From this formula and the fact that for any b, c ∈ Cn,

dzj ∧ dz̄k(b, c) = bj c̄k − b̄kcj,

we deduce that

(ddcu)(a)(b, c) = −4Im < L u(a)b, c >

for any a ∈ Ω and b, c ∈ Cn.

3.1 Maximal Plurisubharmonic Functions

In the definition below, we use the same terminology of Sadullaev ([49] and

[50]).

Let Ω be an open subset of Cn.

Definition 16. Let Ω ⊂ Cn be a domain. A function u ∈ PSH(Ω) is said

to be maximal if for any open set G ⊂⊂ Ω and v ∈ PSH(G) such that

lim supz→p v(z) ≤ u(p) for all p ∈ ∂G it follows that v ≤ u in G.

We shall be using the symbol MPSH(Ω) to denote the family of all

maximal plurisubharmonic functions on Ω.

Notice that if n = 1, thenMPSH(Ω) = H(Ω). Indeed, let u be a continuous

maximal function on Ω and û is a harmonic function with u = û on ∂B for

an arbitrary ball B ⊂⊂ Ω. Then since û ≤ u on ∂B, by maximality of u,

we have û ≤ u on B. On the other hand, since û ≥ u on ∂B, by maximum

principle for subharmonic functions, û ≥ u on Ω. Hence, u = û meaning u is

a harmonic function. If u is not continuous, by the suitable approximation

arguments one can get the result.

Unlike the classical case n = 1, where every maximal subharmonic function

is smooth, the maximal plurisubharmonic function in Cn, n > 1, not need

be even continuous. The next proposition is useful in many applications.
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Proposition 3.1.1. [5] Let Ω ⊂ Cn be a domain. Let u ∈ PSH(Ω). The

followings are equivalent:

(i) u is maximal.

(ii) For every relatively compact open subset G of Ω and for every function

v ∈ PSH(G), if

lim infz→p (u(z)− v(z)) ≥ 0 for all p ∈ ∂G, then u ≥ v in G.

(iii) For each open set G ⊂⊂ Ω and v ∈ PSH(Ω) such that

lim infG3z→p(u(z)− v(z)) ≥ 0 for all p ∈ ∂G it follows u ≥ v in G.

(iv) For each v ∈ PSH(Ω) which has the property that for each ε > 0 there

exists a compact set K ⊂ Ω such that u− v ≥ −ε in Ω \K then u ≥ v

in Ω.

(v) For each open set G ⊂⊂ Ω and v ∈ PSH(Ω) such that v(p) ≤ u(p) for

all p ∈ ∂G it follows u ≥ v in G.

Proof. [5] Assume that u is maximal and let v,G be as in (ii). Then

lim supz→p v(z) ≤ u(p) for all p ∈ ∂G. Indeed, let {zk} ⊂ G be such that

zk → p and let L := lim supz→p v(z) = lim supk→∞ v(zk). Then

0 ≤ lim inf
z→p

(u(z)−v(z)) ≤ lim inf
k→∞

(u(zk)−v(zk)) ≤ lim sup
k→∞

u(zk)−L ≤ u(p)−L.

Thus lim supz→p v(z) ≤ u(p) for all p ∈ ∂G and by (i) v ≤ u in G, which

gives (ii).

Since PSH(Ω)|G = PSH(G), it is obvious to see that (ii) implies (iii).

Now assume (iii) holds. Let v ∈ PSH(Ω) with the property that for every

ε > 0 there exists a compact set K ⊂ Ω such that u−v ≥ −ε in Ω\K. To get

a contradiction, assume that there exists a a ∈ Ω such that u(a) ≤ v(a)− δ
for some δ > 0. By hypothesis, there exists a compact set K ⊂ Ω so that
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u(z) − v(z) ≥ −δ/2 for all z ∈ Ω \K. Notice that a ∈ K. Let G ⊂⊂ Ω be

an open set such that K ⊂ G. Then lim infG3z→p(u(z)− v(z) + δ/2) ≥ 0 for

all p ∈ ∂G. Since (v− δ/2) ∈ PSH(Ω) then (iii) implies that u ≥ v− δ/2 in

G and in particular than u(a) ≥ v(a)− δ/2, which is a contradiction. Thus

(iii) gives (iv).

Assume (iv) holds. Let G ⊂⊂ Ω be an open set and v ∈ PSH(Ω) be so that

u(p) ≥ v(p) for all p ∈ ∂G. Define

w(z) :=

{
max{u(z), v(z)}, z ∈ G,
u(z), z ∈ Ω \G.

By Gluing lemma, w ∈ PSH(Ω). By construction, for all ε > 0 it follows

that 0 = u(z) − w(z) ≥ −ε for all z ∈ Ω \ Ḡ. By (iv) it follows that u ≥ w

in Ω and thus u ≥ v in G as desired.

Finally, if (v) holds, given G ⊂⊂ Ω an open set and v ∈ PSH(G) such

that lim supz→p v(z) ≤ u(p) for all p ∈ ∂G we define w as above. Then

w ∈ PSH(Ω), w ≤ u on ∂G and by (v) it follows that w ≤ v in G, proving

that v ≤ u in G and then (i).

3.1.1 Characterization of maximal plurisubharmonic

functions of class C 2

In this subsection, we characterize maximal plurisubharmonic functions of

class C 2 by means of their Levi form. In several variables the Pluricomplex

Dirichlet problem asks to find an upper-semicontinuous function u on Ω̃,

u : Ω̃ → R for a given extended real valued function f defined in ∂Ω such

that (u|Ω) ∈ MPSH and u|∂Ω ≡ f. Recall that the complex Monge-Ampére

operator in Cn is defined as the n-th exterior power of ddc, namely

(ddc)n = ddc ∧ . . . ∧ ddc.︸ ︷︷ ︸
n−times
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Let Ω ⊂ Cn and let u ∈ C 2(Ω) then we have the following equality

(ddcu)n = 4nn!det

[
∂2u

∂zj∂z̄k

]
dV,

where

dV =

(
i

2

)n
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ . . . ∧ dzn ∧ dz̄n (3.1.1)

is the usual volume form in Cn. In particular if n = 1,then (ddc)n becomes

usual Laplacian times the area form in R2.

For an arbitrary plurisubharmonic function u, it is well known that ddcu

is a positive (1, 1) current [24]. But it is not clear that the powers of ddcu

are well defined. In fact, examples indicate that it is not possible to define

(ddcu)n as a distribution for all plurisubharmonic function u. If u ∈ L∞loc

then Bedford-Taylor was able to define (ddcu)n as a measure. For more

information, we refer to reader to [1].

One of the important features of the Monge Ampére operators is the fact

that the maximality of plurisubharmonic functions can be characterized in

terms of equations.

Theorem 3.1.1. [24] Let u ∈ C 2(Ω), where Ω ⊂ Cn is open.

If u ∈MPSH(Ω) then

det

[
∂2u

∂zj∂z̄k

]
1≤j,k≤n

≡ 0 in Ω

Proof. [24][5] Assume that u ∈ C 2 ∩ PSH(Ω) is maximal and assume that

there exists a ∈ Ω so that det
[
∂2u(a)
∂zj∂z̄k

]
> 0 in Ω. This implies that L u(a;X)

is positive definite for each X ∈ Cn with ‖X‖ = 1.

In view of the continuity of the second order derivatives of u, one can find

a ball B(a, r) ⊂⊂ Ω and C > 0 such that L u(z;X) ≥ C for all X ∈ Cn such

that ‖X‖ = 1 and z ∈ B(a, r). Then u(z) + C(r2 − ‖z‖2) ∈ PSH(B(a, r))
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since L (u+C(r2−‖.‖2))(z;X) = L u(z;X)−C‖X‖2 ≥ 0 by construction.

Define

v(z) =

{
u(z), z ∈ Ω \ B̄(a, r),

u(z) + c(r2 − ‖z − a‖2), z ∈ B(a, r).

By Gluing lemma, v ∈ PSH(Ω). Moreover v = u on ∂B(a, r) and v(a) =

u(a) + Cr2 > u(a) against to maximality of u.

Theorem 3.1.2. [24] Let Ω be an open subset of Cn, and let u ∈ C 2(Ω) ∩
PSH(Ω). Then u is maximal in Ω if and only if (ddcu)n = 0 in Ω.

Proof. [5] Assume that (ddcu)n = 0. Let G ⊂⊂ Ω be an open set and

v ∈ PSH(Ω) such that v(p) ≤ u(p) for all p ∈ ∂G. What we need to show

that is v ≤ u in G and by proposition 3.1.1 and by the arbitrariness of v

implies that u is maximal. Seeking for a contradiction, we assume that there

exists a ∈ G such that 0 < v(a) − u(a) ≤ supz∈G(v − u)(z). Let δ > 0

satisfying v(a) − δ > u(a). Then v(z) − δ ∈ PSH(Ω) and v(p) − δ < u(p)

for all p ∈ ∂G. Thus, if {vε} is the decreasing sequence of regularizing

plurisubharmonic functions for v− δ, there exists ε > 0 such that G ⊂⊂ Ωε,

vε ∈ C∞(Ωε) ∩ PSH(Ωε), vε(a) > u(a) and vε(p) ≤ u(p) for all p ∈ ∂G.

LetM := maxz∈Ḡ ‖z‖2. Let λ > 0 be such that vε(a)+λ(‖a‖2−M) > u(a)

and let w(z) := vε(z)+λ(‖z‖2−M). Then w ∈ PSH(Ωε), w(p) ≤ u(p) for all

p ∈ ∂G and w(a) > u(a) and Lw(z;X) > 0 for all z ∈ G and X ∈ Cn \ {0}.
Let τ ∈ G be the local maximum of w − u. Since w(a) − u(a) > 0 and

w − v ≤ 0 on ∂G such a point exists.

Notice that det[ ∂
2u(τ)
∂zj∂z̄k

] = 0 is equivalent to the vector X ∈ Cn \ {0} such

that L u(τ ;X) = 0. Let f(ζ) := (w − u)(τ +Xζ) for ζ ∈ C, |ζ| << 1. Since

ζ = 0 is a local maximum and f is of class C 2 then ∆f(0) ≤ 0. Therefore

0 ≥ ∆f(0) = 4L (w − u)(τ ;X) = 4Lw(τ ;X) > 0,

a contradiction. Therefore u is maximal.
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Conversely, let u be maximal plurisubharmonic function then by above

theorem ,we have

det

[
∂2u

∂zj∂z̄k

]
1≤j,k≤n

≡ 0

hence (ddcu)n = 0 by equation (3.1.1).

3.2 The Relative Extremal Functions

An extremal function, which has become known as the relative extremal func-

tion, was introduced by Siciak[52] in 1962 and Zaharyuta[60] in 1976. Given

an open set Ω in Cn and a compact subset E of Ω he defined a function

h := u∗E,Ω, where the star denotes the upper semicontinuous envelope and

where

uE,Ω(z) := sup
u
{v(z) : v ∈ PSH(Ω), v ≤ −1 on E, v ≤ 0 in Ω} z ∈ Ω

The function (uE,Ω)∗ is plurisubharmonic in Ω. Since in one-dimensional case

(uE,Ω)∗ is closely related to the notion harmonic measure in higher dimen-

sions, it sometimes called the plurisubharmonic measure of E relative to

Ω[48].

As a direct consequence of definition, we have the following monotonicity

property of the relative extremal function.

Proposition 3.2.1. [24] If E1 ⊂ E2 ⊂ Ω1 ⊂ Ω2 then

uE1,Ω1 ≥ uE2,Ω1 ≥ uE2,Ω2 .

Definition 17. A function u : Ω→ R is called an exhaustion function if for

any t ∈ R the set {z ∈ Ω : u(z) ≤ t} is relatively compact in Ω and an open
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set Ω in Cn is called hyperconvex (or pluriregular) if there exists a function

u ∈ PSH(Ω), u < 0, such that

{z ∈ Ω : u(z) < t} ⊂⊂ Ω, t < 0.

Proposition 3.2.2. [24] If Ω is hyperconvex and E is a relatively compact

subset of Ω, then at any point of w ∈ ∂Ω

lim
z→w

uE,Ω(z) = 0.

Proof. [24] If % < 0 is an exhaustion function for Ω, then for some M > 0,

M% < −1 on E. Thus M% ≤ uE,Ω in Ω. Clearly, limz→w %(z) = 0, and so we

obtained the required result.

Proposition 3.2.3. [2] Let Ω ⊂ Cn be a connected open set, and let E ⊂ Ω.

The following conditions are equivalent

(i) u∗E,Ω ≡ 0;

(ii) there exists a negative function v ∈ PSH(Ω) such that

E ⊂ {z ∈ Ω : v(z) = −∞}

Proof. [2] If E ⊂ {z ∈ Ω : v(z) = −∞}, where v ≤ 0 and v ∈ PSH(Ω),

then uE,Ω ≥ sup{v/j : j = 1, 2, . . .}. So uE,Ω = 0 on the complement of a

set of measure zero. Hence u∗E,Ω ≡ 0[1]. Conversely, assume that u∗E,Ω ≡ 0.

Then by main approximation theorem there exist a point a ∈ Ω such that

uE,Ω(a) = 0. Therefore, we may choose vj ∈ PSH(Ω) such that v ≤ 0 for all

j ∈ N, vj ≤ −1 on E and vj(a) ≤ −2−j. Now, define

v(z) :=
∞∑
j=1

vj(z).

Since v 6≡ −∞ and v ∈ PSH(Ω) with v|E = −∞, we get the desired.
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Proposition 3.2.4. [24] Let Ω be a domain in Cn. Suppose that E =
⋃
j Ej,

where Ej ⊂ Ω for j = 1, 2, . . .. If u∗Ej ,Ω
≡ 0 for each j then u∗E,Ω ≡ 0

Proof. [24] Choose vj ∈ PSH(Ω) such that vj ≤ 0 and v|E ≡ −∞. Take

a point a ∈
(

Ω \
⋃
j v
−1
j ({−∞})

)
. By multiplying all vj’s with a suitable

constants, we may assume that vj(a) > −2−j. Define v(z) :=
∑∞

j=1 vj(z).

Since v ∈ PSH(Ω), v ≤ 0 and v|E ≡ −∞, by the above proposition, u∗E,Ω ≡
0.

Proposition 3.2.5. [24] Let Ω be a hyperconvex subset of Cn, and let K be

a compact subset of Ω. Suppose that Ωj is an increasing sequence of open

subsets of Ω such that Ω =
⋃∞
j=1 Ωj and K ⊂ Ω1. Then

lim
j→∞

uK,Ωj
(z) = uK,Ω(z) z ∈ Ω.

Proof. [24] Take a point z0 ∈ Ω and assume w.l.o.g. that K ∪ {z0} ⊂ Ω1.

Let % < 0 be an exhaustion function for Ω such that % ≤ −1 on K.

Take ε ∈ (0, 1) satisfying %(z0) < ε. There is j0 ∈ N for which the open set

ω = %−1((−∞, ε)) is relatively compact in Ωj0 . Now, take u ∈ PSH(Ωj0)

such that u ≤ 0 on Ωj0 and u ≤ −1 on K. Then

v(z) =

{
max{u(z)− ε, %(z)} z ∈ ω,
%(z), z ∈ Ω \ ω

defines a plurisubharmonic function with v ≤ −1 on K and v ≤ 0. Hence

v(z0) ≤ uK,Ω(z0). Since u is an arbitrary function in the family of defining

uK,Ωj0
, we have

uK,Ωj0
(z0)− ε ≤ uK,Ω(z0).

By monotonicity property of relative extremal functions, for all j ≥ j0 we

have,

uK,Ωj
(z0)− ε ≤ uK,Ω(z0) ≤ uK,Ωj

(z0).
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Since ε arbitrarily small, the result follows.

Proposition 3.2.6. If Ω ⊂ Cn is hyperconvex and K is compact, then u∗K,Ω
is maximal in Ω \K, that is,

(ddcu∗K,Ω)n = 0 in Ω \K.

Proof. Consider a ball B ⊂ Ω\K and let ΦB be the solution of the Dirichlet

problem in B:

(ddcΦ)n = 0, ΦB|∂B = u∗K,Ω|∂B.

By maximality of ΦB, for z ∈ B we have ΦB(z) ≥ u∗K,Ω(z). Now, define

w(z) =

{
ΦB z ∈ B,
u∗K,Ω, z ∈ Ω \B

Then w is plurisubharmonic, non-positive and v ≤ −1 on K. Hence w ≤ u∗K,Ω
in Ω. On the other hand, ΦB ≥ u∗K,Ω in B. Therefore u∗K,Ω = ΦB in B, which

means u∗K,Ω is maximal in B. Since B was chosen arbitrarily, we arrived the

required result.

3.3 Siciak-Zaharyuta Extremal Functions

Let X be a locally compact metric space, and let X̄ be a compactification

of X. We write that f(x) = O(g(x)) as x → a, to indicate that, for some

M > 0 and for all x ∈ X sufficiently close to a we have |f(x)| ≤M |g(x)|. If

f is real valued, the notation ‘f(x) ≤ O(g(x)) as x → a’ means that there

exists a h : X → R such that h(z) = O(g(x)) as x→ a and f(x) ≤ h(x) for

all x ∈ X sufficiently close to a.

A function u ∈ PSH(Cn) is said to be minimal growth if

(u(z)− log ‖z‖) ≤ O(1) as ‖z‖ → ∞.
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The family of these functions is called Lelong class and will be denoted by

L(Cn) or, simply, L if no confusion can arise.

Definition 18. [60][53] Let E be any set in Cn. The function

VE(z) = sup{u(z) ∈ PSH(Cn) : u ∈ L, u ≤ 0 on E}

is called Siciak-Zaharyuta extremal function of E.

Example 5. For any complex norm ‖ · ‖ on Cn, let B̄‖·‖(a, r) denote the

closed ball with center a and radius r. Then for all z ∈ Cn,

VB̄‖·‖(a,r)(z) = log+ ‖z − a‖
r

(3.3.1)

where log+ is positive part of logarithm function.

Indeed, let E = B̄‖·‖(a, r). Since all norms on Cn are equivalent (Lemma 5.14

in [40]), there is a constant C such that ‖.‖ ≤ C|.| an Cn. Then the function

log+ ‖z−a‖
r

belongs to Lelong class L and since it is 0 on E, log+ ‖z−a‖
r
≤ VE(z).

Therefore we need to show for any u ∈ L, such that u ≤ 0 on E, that

u(z) ≤ log+ ‖z−a‖
r

. Note that this is clearly holds when z ∈ E
Now, for such u and w ∈ Cn \E we define a function v on B(0, ‖w− a‖/r) \
{0} ⊂ C,

v(ζ) = u
(
a+ ζ−1(w − a)

)
− log+ ‖w − a‖

|ζ|r
.

Then v is subharmonic and v(ζ) is bounded when ζ → 0 since u ∈ L.

Therefore, by removable singularities theorem, v can be extended over 0 to

a subharmonic function ṽ on B(0, ‖w − a‖/r). Now, lim|ζ|→‖w−a‖/r u(ζ) ≤ 0,

so by maximum principle, ṽ ≤ 0 on B(0, ‖w − a‖/r). In particular, v(1) is

defined since ‖w − a‖/r ≥ 1 and v(1) = ṽ(1) = u(w) − log+ ‖w−a‖
r
≤ 0 as

desired.

Proposition 3.3.1. [2] If K is a compact subset of Cn, then VK is lower

semicontinuous.
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Proof. [2] Note that if v ∈ L then also v ∗ χε ∈ L where χε is the standard

smoothing kernel in Cn. Then if u ∈ L, u ≤ 0 on K, and δ > 0, then in view

of the main approximation theorem for the plurisubharmonic functions and

the compactness of K we can find ε > 0 such that (u ∗ χε − δ) ≤ 0 on K.

As a consequence, we see that VK is the supremum of a family of continuous

functions, and hence the result follows.

Proposition 3.3.2. [24] If K1 ⊃ K2 ⊃ . . . is sequence of compact subsets in

Cn and K =
⋂
jKj, then

lim
j→∞

VKj
= VK

Proof. [24] Clearly, VK1 ≤ VK2 ≤ . . . ≤ VK , and so the limit of left-hand

side exists and is not grater than VK . Take u ∈ L such that u ≤ 0 on K.

If ε > 0, then if j is sufficiently large, Kj is not contained in the open set

{z ∈ Cn : u(z) ≤ ε}. Thus for such values of j, u− ε ≤ VKj
≤ limj→∞ VKj

in

Cn. Consequently, VK ≤ limj→∞ VKj
.

To prove the maximality of envelope function of VE, V ∗E , we need to

propose the following.

Proposition 3.3.3. [2] Let Ω be open in Cn and ψ ∈ PSH(Ω) ∩ L∞loc(Ω).

If D ⊂⊂ Ω is strongly pseudoconvex, then there exists a unique function

ψ̃ ∈ PSH(Ω) ∩ L∞loc(Ω) such that

(ddcψ̃)n = 0 on D, (3.3.2)

ψ̃ = ψ on Ω \D. (3.3.3)

Proof. [2] Let ψj be a continuous plurisubharmonic function which decreases

to ψ on a neighborhood of D̄. By theorem 8.3, p.42 of [1], there exists

ψ̃j ≥ ψj continuous and plurisubharmonic on a neighborhood of D̄ satisfying

(ddcψ̃j)
n = 0 on D and ψ̃j = ψj on Ω \ D. Then since (ddcψ̃j)

n → (ddcψ̃)n

as j →∞, ψ̃ satisfies 3.3.2 on D. Now, since ψ̃j ↘ ψ̃ on a neighborhood of

D̄ and ψ̃ = ψj on Ω \D, the function ψ̃ = ψ on Ω \D satisfies 3.3.3 also.
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Now, we consider some envelope function more general than V ∗E .

Corollary 3.3.1. [2] Let h be a bounded, lower semicontinous function on

Ω̄ ⊂⊂ Cn. If

uh(z) := sup{v(z) ∈ PSH(Ω) ∩ L∞loc(Ω), v ≤ h},

then the envelope function u∗h is maximal on the set {u∗h < h}.

Proof. [2] If z ∈ {u∗h < h}, then since u∗h is upper semicontinuous and h is

lower semicontinuos there exists a small ball B centered at z with sup{u∗h(ζ) :

ζ ∈ B̄} < inf{h(ζ) : ζ ∈ B̄}. Let function ψ be as in the above proposition

with ψ = u∗h. It follows that, we have that ψ̃ ≤ h. Hence ψ̃ ≤ u∗h, so

ψ̃ ≤ u∗h. Since (ddcψ̃)n = 0 on B, we have (ddcu∗h)
n = 0 on B. Because

B is a neighborhood of an arbitrary point z ∈ {u∗h < h}, the corollary is

proved.

Corollary 3.3.2. [2] Let E ⊂ Cn. Then (ddcV ∗E)n = 0 on Cn \ Ē.

Proof. [2] If B is a small ball in Cn \ Ē, then Ṽ ∗E = V ∗E as in the previous

corollary. Hence (ddcV ∗E)n = 0 on B, therefore on Cn \ Ē.

3.4 Pluricomplex Green Functions with a

Logarithmic Pole

Let Ω be an open bounded subset of C and let a be a point Ω. Suppose that

the function z 7→ GΩ(z, a) has the following properties:

(i) GΩ(., a) is harmonic on Ω \ a, and bounded outside neigborhood of a;

(ii) for each w ∈ ∂Ω we have limz→wGΩ(z, a) = 0;

(iii) z 7→ GΩ(z, a) + log |z − a| extends a harmonic function on Ω.
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Then the function z 7→ GΩ(z, a) is called the classical Green function for Ω

with pole a. In view of the maximum principle, each set Ω can have at

most one Green function with a given pole. Furthermore, if u is the solution

to the Dirichlet problem
u ∈ C 2(Ω) ∩ C (Ω̄), ,

∆u = 0 in Ω,

u(z) = log |z − a| for each z ∈ Ω, .

then u(z) − log |z − a| is the classical Green function with pole at a. Con-

versely, if Ω has a classical Green function, the function defined by (iii) solves

the Dirichlet problem.

Lempert [38],[39] constructed an analogues function in several variables:

his function is plurisubharmonic in Ω, has a logarithmic pole at a given

point a ∈ Ω and tends to zero at the boundary of Ω. Further, it solves

the homogenous Monge-Ampère equation in Ω \ {a}, in other words, it is

maximal on this set. Namely, the function forms as the following

u(z) =


u ∈ C∞(Ω \ {a}) ∩ PSH(Ω),

(ddcu)n = 0 in Ω,

u(z)− log ‖z − a‖ = O(1) as z → a,

u(z)→ 0 as z → w ∈ ∂Ω .

For the case n = 1 the function −u is just the classical Green function for

Ω with pole a. Bearing in mind the analogue between the Laplacian in C
and the Mongére-Ampere in Cn, one can regard u as a Cn-version of classical

Green function.

Let Ω be a connected open subset of Cn and a be a point in Ω. If u is a

plurisubharmonic function in a neighborhood of a, we say u has a logarithmic

pole at a if

u(z)− log ‖z − a‖ ≤ O(1) as z → a.
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In 1985, Klimek, replaced Lempert’s construction by a Perron-Bremermann

approach in [26] as follows

gΩ := sup{u(z) : u ∈ PSH(Ω), u ≤ 0, u has a logarithmic pole at a}.

It is assumed here sup ∅ := −∞. Later and independently, Demailly [10],[11]

proved regularity results of the pluricomplex Green’s function and its relation

to Monge-Ampère equation. Moreover, Guan [15] and Blocki [3] provided

finer regularity for strongly pseudoconvex domains D.

In next proposition we give basic properties of the pluricomplex Green

function gΩ.

Proposition 3.4.1. [5] If Ω and Ω
′

are domains in Cn and w ∈ Ω, then the

following statements hold:

(i) if z ∈ Ω and Ω ⊂ Ω
′
, then gΩ(z, w) ≥ gΩ′ (z, w);

(ii) if z ∈ Ω, Ω ⊂ Ω
′

and Ω
′ \ Ω is pluripolar, then gΩ(z, w) = gΩ′ (z, w);

(iii) if R > r > 0 and B̄(w, r) ⊂ Ω ⊂ B(w,R) then

log(‖z − w‖/R) ≤ gΩ(z, w) ≤ log(‖z − w‖/r);

(iv) if Ω is bounded, then z 7→ gΩ(z, w) is a negative plurisubharmonic func-

tion with a logarithmic pole at w;

(v) if f ∈ O(Ω,Ω
′
), then

gΩ′ (f(z), f(w)) ≤ gΩ(z, w) (z ∈ Ω);

Proof. [5] First property (i) comes from directly definition and (ii) is a con-

sequence of removable singularities theorem for plurisubharmonic functions.

First inequality in (iii) comes from definition and second inequality is a spe-

cial case of Lemma 1.2.1. For (iv), note that, according to (iii), we have
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(z 7→ gΩ(z, w))∗ belongs to the family that defines the gΩ.

To see property (v), let w ∈ Ω and u be a function from the defining family

for gΩ′ (·, f(w)). Then u ◦ f ∈ PSH(Ω, [−∞, 0]) and

u(f(z))− log ‖z − w‖ =

u(f(z))− log ‖f(z)− f(w)‖+ log
‖z − w‖

‖f(z)− f(w)‖
≤ O(1)

as z → w which means u ◦ f has a logarithmic pole at w and hence u ◦ f ≤
gΩ(·, w).

Corollary 3.4.1. [24] If (Ωj)j∈N is an increasing sequence of domains in Cn

and Ω =
⋃

Ωj, then

gΩ(z, w) = lim
j→∞

gΩj
(z, w) (z, w ∈ Ω1).

Proof. [24] Fix w ∈ Ω1. If for any j, gΩj
(., w) ≡ −∞, the result is obvious.

Suppose that for each j, gΩj
(., w) ∈ PSH(Ωj). Then g(z) = limj→∞ gΩj

(z, w)

is a plurisubharmonic function. The former implies the desired convergence,

g ≥ gΩ(., w) by (i).

Proposition 3.4.2. [24] If Ω ⊂ Cn is bounded, then z 7→ gΩ(z, w) is maximal

in Ω \ w, i.e.

(ddcgΩ(z, w))n ≡ 0 in Ω \ w.

Proof. [24] Take a point w ∈ Ω. Let G be a domain which is relatively

compact in Ω \ {w}, and let v ∈ PSH(Ω \ {w}) be such that v ≤ gΩ(·, w) on

∂G. Define

u(z) =

{
max{v(z), gΩ(z, w)}, z ∈ G,
gΩ(z, w), z ∈ Ω \G.

Then u belongs to defining family of gΩ(·, w). Hence, v ≤ gΩ(·, w) in G and

this proves the maximality of function z 7→ gΩ(·, w) by Proposition 1.2.1.
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Lemma 3.4.1. [24] Suppose that h : Cn → [0,∞) is upper semicontinuous,

h−1(0) = 0 and h(ξz) = |ξ|h(z) for each ξ ∈ C and z ∈ Cn. If Ω = {z ∈ Cn :

h(z) < 1}, then

gΩ(z, 0) ≤ log h(z) (z ∈ Ω

Proof. [24] Take a point w ∈ Ω. For ζ ∈ B(0, h−1(w)) consider the function,

v(ζ) = gΩ(ζw, 0)− log h(ζw).

Then v ∈ SH(B(0, h−1(w)) \ {0}) and for each ζ ∈ B(0, h−1(w)) we have

lim supζ→ξ ≤ 0. Also, since h is homogeneous and upper semicontinuous, for

all z ∈ Cn we have

0 ≤ h(z) ≤ ‖h‖B(0,1)‖z‖.

Hence v is bounded in a neighborhood of the origin and, by removable sin-

gularities theorem, extends to a subharmonic function in B(0, h−1(w)). In

view of maximum principle, v ≤ 0 and gΩ(w, 0) ≤ log h(w), as required.
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