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Erçil, and Prof. Engin Maşazade for their precious time and valuable suggestions for the work

done in this dissertation. Additionally, I want to thank to my unit head Oktay Adalıer and for

his understanding during heavy periods.

My endless thanks are to my beautiful family. I should confess that, my desire for academic stud-

ies and consequently this thesis was possible thanks to love and encouragement of my sweety

boy Mustafa Emir Karabat, my beloved wife Burçin Çetin Karabat, and my lovely mother Sevgi
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Abstract

We address improving verification performance, as well as security and privacy aspects of bio-

hashing methods in this thesis. We propose various methods to increase the verification perfor-

mance of the random projection based biohashing systems. First, we introduce a new biohash-

ing method based on optimal linear transform which seeks to find a better projection matrix.

Second, we propose another biohashing method based on a discriminative projection selection

technique that selects the rows of the random projection matrix by using the Fisher criterion.

Third, we introduce a new quantization method that attempts to optimize biohashes using the

ideas from diversification of error-correcting output codes classifiers. Simulation results show

that introduced methods improve the verification performance of biohashing.

We consider various security and privacy attack scenarios for biohashing methods. We propose

new attack methods based on minimum l1 and l2 norm reconstructions. The results of these

attacks show that biohashing is vulnerable to such attacks and better template protection methods

are necessary. Therefore, we propose an identity verification system which has new enrollment

and authentication protocols based on threshold homomorphic encryption. The system can be

used with any biometric modality and feature extraction method whose output templates can

be binarized, therefore it is not limited to biohashing. Our analysis shows that the introduced

system is robust against most security and privacy attacks conceived in the literature. In addition,

a straightforward implementation of its authentication protocol is sufficiently fast enough to be

used in real applications.



BİYOMETRİK KIYIM İÇİN ARTTIRILMIŞ GÜVENLİK VE MAHREMİYET KORUMASI

IMPROVED SECURITY AND PRIVACY PRESERVATION FOR BIOMETRIC HASHING

ÇAĞATAY KARABAT

EE, Doktora Tezi, 2013

Tez Danışmanı: HAKAN ERDOĞAN

Anahtar Kelimeler: Biyometrik Kıyım, Güvenlik, Mahremiyet, Kriptografik Protokoller,
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Özet

Bu tezde biyometrik kıyım yöntemlerinin doğrulama performanslarının arttırılmasının yanısıra

güvenlik ve mahremiyet boyutlarını da ele aldık. Rastgele izdüşümü tabanlı biyometrik kıyım

yöntemlerinin doğrulama performanslarını arttırmak için çeşitli yöntemler önerdik. lk olarak, en

iyi doğrusal dönüşüme dayalı daha iyi bir izdüşümü matrisi bulmaya çalışan yeni bir biyometrik

kıyım yöntemi önerdik. kinci olarak, rastgele izdüşümü matrisinin satırlarını Fisher kriterine

göre seçen ayrıştırıcı bir izdüşümü seçimi tekniğine dayalı biyometrik kıyım yöntemi önerdik.

Üçüncü olarak, biyometrik kıyım dizilerini hata düzeltme çıkış kodları sınıflandırıcılarının çeşit-

lendirilmesi için kullanılan fikirleri kullanarak optimize etmeye çalışan yeni bir nicemleme

yöntemi sunduk.

Biyometrik kıyım yöntemleri için çeşitli güvenlik ve mahremiyet saldırıları düşündük. En az l1

ve l2 ölçütü yeniden yapılandırmalarına dayalı yeni saldırı yöntemleri önerdik. Bu saldırıların

sonuçları biyometrik kıyımın böyle saldırılara karşı kırılgan olduğunu ve daha iyi şablon ko-

ruma yöntemlerinin gerekli olduğunu göstermektedir. Bu yüzden, eşik homomorfik şifrelemeye

dayalı yeni kayıt ve doğrulama protokolleri içeren bir kimlik doğrulama sistemi önerdik. Sis-

tem, çıkış şablonları ikili sayı dizisi haline getirilebilen herhangi bir biyometrik tür ve öznitelik

çıkarma yöntemi ile çalışabilir, böylece biyometrik kıyım ile sınırlı değildir. Yaptığımız ana-

lizler sunduğumuz sistemin literatürde düşünülmüş birçok güvenlik ve mahremiyet saldırılarına

karşı dayanıklı olduğunu göstermektedir. Ek olarak, sistemin doğrulama protokolünün basit bir

gerçeklenmesi gerçek hayat uygulanmalarında kullanılabilecek derece hızlıdır.
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Chapter 1

Introduction

1.1 Motivation

With the development of computers, Internet and its applications that require authentication,

the number of passwords that users have increased enormously in the digital age. Thus, users

cannot generate and remember sufficiently strong keys, that are difficult to guess, for various

applications. An alternative approach depends on authentication using biometrics that use phys-

iological and/or behavioral traits (e.g. face, fingerprint, iris) for verifying the identity of individ-

uals [5, 6]. Recent years have seen increased usage of biometric verification systems in many

applications. Public and commercial organizations invest on secure electronic authentication

(e-authentication) systems to reliably verify identity of individuals. Biometrics is one of the

rapidly emerging technologies for e-authentication systems [7]. It offers several advantages (i.e.

no need to remember your password, user friendly and convenient, cannot be shared, unique

characteristics of individuals) over the traditional password based authentication systems. In

biometric authentication systems, an input biometric template is compared to the reference bio-

metric template either stored in a database server or a smart card for verification. The reference

biometric template is stored as plaintext in a database or a smart card in most such systems.

It is impossible to discuss biometrics without security and privacy issues [1, 8]. Biometrics,

which are stored in a smart card or a central database, is under security and privacy risks due

to increased number of attacks against identity management systems in recent years [1, 8–10].

These systems are deemed insecure and raise about security and privacy concerns [11, 12]. A

1
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Figure 1.1: Three main aspects of biohashing methods.

proposed solution to handle aforementioned threats is to encrypt the reference biometric tem-

plate stored in a smart card or a database by using cryptographic algorithms [13, 14]. The main

problem of such solutions is that the encrypted reference biometric template must be decrypted

to compare it with the claimer’s input biometric template. This makes the systems weak against

possible attacks at the verification stage.

Cancelable biometrics that combine the biometric with a secret key to enable randomized bio-

metric hashing is a promising solution to cope with such problems [2, 15–17]. Biohashing

schemes are one of the emerging biometric template protection methods [16, 18–21]. These

methods offer low error rates and fast verification at the authentication stage. However, they

suffer from several attacks reported in the literature [17, 22–24]. These schemes should be

improved in order to be safely used in a wide range of real life applications.

In this thesis, we address three main aspects of biohashing methods as illustrated in Figure 1.1.

These are

1. Performance aspects

2. Security aspects

3. Privacy aspects

First, we propose new biohashing methods in order to improve the verification performance of

the existing random projection based biohashing methods. There are three main phases in a
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biohashing method: 1) Feature extraction, 2)Dimension reduction, and 3)Quantization. We try

to improve the verification performance by proposing new techniques in the dimension reduction

and the quantization phases which have a large effect on the verification errors. We also take into

account the key-stolen scenario where an attacker acquires the secret key of a legitimate user

because if we assume that the key is always unknown, there would be no need for biometrics

since it would be impossible to break into a system. The additional benefit of biometrics needs

to be quantified. Our proposed methods have superior performance in comparison with the

existing methods.

In addition to that, we address security and privacy aspects of the biohashing schemes. Although

it is stated that random projection based biohashing methods satisfy irreversibility and cancela-

bility property, we demonstrate that they cannot guarantee to satisfy these properties under some

circumstances. We define some attack scenarios and perform them against a random projection

based biohashing method in order to demonstrate security threats. For privacy threats, we focus

on testing the irreversibility property of a biohash vector and try to obtain the biometric data

under certain conditions.

Finally, we propose a new biometric verification system in order to cope with security and pri-

vacy flaws of the biohashing methods. The proposed system can also be seen as a new biometric

template protection method. The proposed system includes novel enrollment and authentication

protocols based on a threshold homomorphic cryptosystem in which the private key is shared

between the user and the verifier. The system is designed for the malicious attack model where

neither of the parties is assumed to be honest. Security of the system is enhanced using a two fac-

tor authentication scheme involving the users private key and the biometric data. In the proposed

system, only encrypted binary biometric templates are stored in the database and verification is

performed via homomorphically randomized templates, hence, original templates are never re-

vealed even during authentication. Since threshold homomorphic encryption scheme is used, a

malicious party cannot perform decryption on encrypted templates of the users in the database

using a single key.
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1.2 Contributions

In this thesis, we address verification performance and security and privacy preservation aspects

of biohashing schemes. First, we develop new biohashing schemes in order to increase the veri-

fication performance even under the key-stolen scenario. Then, we analyze security and privacy

gaps of the existing biohashing schemes and we discuss some possible attacks. Then, we develop

a new biometric authentication system by taking into account previous attacks. Consequently,

The contributions of this work can be summarized as follows:

1. We develop a new face image hashing method based on an optimal linear transformation

[25]. In the proposed method, first, we apply a feature extraction method. Then, we define

an optimal linear transformation matrix based on within-class covariance matrix which

is the maximum likelihood estimate of the variations of the biometric data belonging

to the same user. Next, we reduce the dimension of the feature vector by using this

transform. Finally, we apply quantization and obtain a face image hash vector. We test

the performance of the proposed method with various face databases and show that it has

better performance even under the key-stolen scenario in comparison with the random

projection (RP) based biohashing methods in the literature.

2. We develop a new biohashing scheme whose title is “Discriminative Projection Selection

Based Face Image Hashing” [26]. In this work, we improve the performance of the

random projection (RP) based biohashing schemes. The proposed method selects the

rows of an RP matrix, which is a user dependent dimension reduction matrix, by using the

Fisher criterion [27]. We also employ Gaussian mixture model (GMM) at the quantization

step to obtain more distinct face image hash vectors for each user. The proposed method

has better performance even under the key-stolen scenario in comparison with the RP

based biohashing methods in the literature.

3. We develop a new biohashing scheme whose title is “Error-Correcting Output Codes

Guided Quantization For Biometric Hashing” [28]. In this work, we improve the perfor-

mance of the RP based biohashing schemes by introducing a new quantization method that

attempts to optimize biometric hash vectors by using some ideas from Error-Correcting

Output Codes (ECOC) classifiers. The proposed scheme shows superior performance

even under the key-stolen scenario.
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4. We analyze security and privacy gaps of the biohashing schemes. We perform irreversibil-

ity attacks and show that these attacks can threaten the privacy of the users. We also

demonstrate that these attacks can threaten the security of the system since they allow an

adversary to gain access with a high probability.

5. We develop a novel biometric authentication system which we call “THRIVE: Threshold

Homomorphic encRyption based secure and privacy preserving bIometric VErification

system” by taking into account the attacks against biohashing schemes [29]. It can be

used in the applications where the user does not trust the verifier since the user does not

need to reveal her biometric template and/or private key in order to authenticate herself

and the verifier does not need to reveal any data to the user at the proposed authentication

protocol. It is a two-factor authentication system (biometric and secret key) and is secure

against illegal authentication attempts. In other words, a malicious adversary cannot gain

access to the proposed system without having the biometric data and the private key of a

legitimate user by performing adversary attacks described in [4] as well as hill-climbing

attacks [30–33]. In the THRIVE system, the generated protected biometric templates are

irreversible since they are encrypted.The proposed THRIVE system is developed in the

malicious model and can be used with any existing biometric modality whose output can

be binarized (not only with biohashing schemes). The THRIVE system lets only a legit-

imate user to enroll since signature scheme is used at the proposed enrollment stage. It

is a new and advanced biometric template protection method without any helper data and

only encrypted versions of binary templates are stored in the database and they are never

released even during authentication. The THRIVE system also offers high level security

and privacy features i.e. even if an adversary gains an access to the database and steals en-

crypted biometric templates, neither he can authenticate himself by using these encrypted

biometric templates due to the authentication protocol nor he can decrypt these encrypted

biometric templates due to the (2, 2)-threshold homomorphic encryption scheme. Further-

more, neither the verifier nor the user can perform decryption by themselves on encrypted

biometric templates since the (2, 2)-threshold homomorphic encryption scheme is used.

Instead, the verifier and the user can perform decryption collaboratively using their own

private key shares. The verifier does not need to know the user’s biometric template or

private key in order to authenticate the user. In this system, authentication is performed

via randomized templates which ensures privacy. Even if an adversary intercepts the
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communication channel between the user and the verifier, he cannot obtain any useful in-

formation on the biometric template since all exchanged messages are randomized and/or

encrypted and he cannot perform decryption due to the (2, 2)-threshold homomorphic en-

cryption scheme. Furthermore, he cannot use the obtained data from message exchanges

in this communication channel since nonce and signature schemes are used together in

the authentication. In the THRIVE system, the generated protected biometric templates

are cancelable. Even if they are stolen, they can be re-generated. It can also generate

a number of protected templates from the same biometric data of a user due to the ran-

domized encryption and biohashing. Thus, it ensures diversity. It is implemented and a

successful authentication protocol run requires 0.218 seconds on average. Consequently,

the proposed system is sufficiently efficient to be used in real world applications.

1.3 Thesis Organization

The thesis is structured as follows. Chapter 2 focuses on the basic background for the bio-

hashing methods. Chapter 3, Chapter 4, and Chapter 5 address our works on performance

improvement of biohashing methods. Chapter 3 explains a face image hashing method based

on optimal linear transform under colored Gaussian noise assumption [25]. Chapter 4 intro-

duces discriminative projection selection based face image hashing [26]. Chapter 5 is devoted

to error-correcting output codes guided quantization for biometric hashing [28].

In addition to these works, security and privacy aspects of biohashing methods are covered in

Chapter 6 and Chapter 7. We address security and privacy attacks against biohashing methods

in Chapter 6. Finally, we propose a novel biometric verification system called “THRIVE” in

Chapter 7 by taking into account the security flaws and privacy threats in the previous chapter

[29]. Finally, we conclude the thesis and discuss the future work in Chapter 8.
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Figure 1.2: Classification of the work that has been performed in this thesis.



Chapter 2

Background

2.1 Preliminaries

2.1.1 Biohashing Based Verification System

In recent years, biohashing is one of the emerging biometric template protection methods in the

literature [16, 18–21]. Biohash is a binary and pseudo-random representation of a biometric

template. Biohashing methods use two inputs: 1) Biometric template, 2) User’s secret key.

A biometric feature vector is transformed into a lower dimensional sub-space using a pseudo-

random set of orthogonal vectors which are generated from the user’s secret key. Then, the result

is binarized to produce a bit-string which is called the biohash. In an ideal case, the distance

between the biohashes belonging to the biometric templates of the same user is expected to be

relatively small. On the other hand, the distance between the biohashes belonging to different

users is expected to be sufficiently high to achieve lower false acceptance rates. The desired

properties of the biohashes are summarized as follows:

1. The biohash should be irreversible so that biometric template cannot be obtained from a

biohash vector.

2. The biohash should be cancelable so that it can be renewed when an attacker steals it.

3. The biohash should be robust against different biometric images belonging to the same

user so that the Hamming distance between the biohash vectors (i.e. generated from the

8
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same secret key but different biometric image collected at different session) of the same

user should be small.

4. Biohash should be fragile to the biometric images which do not belong to the same legiti-

mate user so that the Hamming distance between the biohash vectors (i.e. generated from

different secret key and different biometric image) of the different users should be high.

Biohashing based verification systems perform an automatic verification of a user based on her

specific biometric data and secret key. There are two main stages in these systems:

1. Enrollment stage,

2. Authentication stage.

The user is enrolled to the system at the enrollment stage. Then, the user again provides her

biometric data to the system at the authentication stage in order to prove her identity. Biohashing

schemes are simple yet powerful biometric template protection methods [16, 18–21]. In this part,

we describe the random projection (RP) based biohashing scheme proposed by Ngo et al. [2].

In a RP based biohashing method, there are three main phases in each stage and these phases

are described as follows:

1. Feature extraction,

2. Dimension reduction,

3. Quantization.

These three phases for the face biometric are explained in the following.

2.1.1.1 Enrollment Stage

In the enrollment stage, a user enrolls to the biometric verification system by giving her face

image and secret key to the system. Then, the system computes her biohash and stores it for

verification purposes at the authentication system.
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Figure 2.1: Illustration of biohashing based verification.

Feature Extraction At this phase, a user gives her face image, Ienroll ∈ R
m×n, to the system.

The face image is lexicographically re-ordered and the face vector, xenroll ∈ R
(mn)×1, is obtained.

Then, principle component analysis [34] is applied to it for feature extraction as follows:

yenroll = A(xenroll − µ), (2.1)

where A ∈ Rk×(mn) is the pre-computed PCA matrix trained by the face images in the training set,

µ is the pre-computed mean face vector by the face images in the training set, and yenroll ∈ R
k×1

is the vector containing PCA coefficients belonging to the user.

Dimension Reduction At this phase, a RP matrix, R ∈ R`×k, is generated to reduce the

dimension of the PCA coefficient vectors. The RP matrix elements are independent and iden-

tically distributed (i.i.d) and generated from a Gaussian distribution with zero mean and unit

variance by using a Random Number Generator (RNG) with a seed derived from the user’s

secret key. The Gram-Schmidt (GS) procedure is applied to obtain an orthonormal projection

matrix RGS ∈ R
`×k to have more distinct projections. Finally, PCA coefficients are projected

onto a lower `-dimensional subspace as follows:

zenroll = RGS yenroll, (2.2)

where zenroll ∈ R
`×1 is the intermediate biohash vector belonging to the user.
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2.1.1.2 Quantization

At this phase, the intermediate biohash vector zenroll elements are binarized with respect to a

threshold as follows:

Benroll (i) =

 1 if zenroll (i) ≥ β,

0 Otherwise,
(2.3)

where i = 1, . . . , `, Benroll ∈ {0, 1}` denotes biohash vector of the user and β is the mean value

of the intermediate biohash vector zenroll.

The computed binary biohashes are stored in the database in the enrollment stage for verification

purpose during the authentication stage.

2.1.1.3 Authentication Stage

In the authentication stage, exactly same operations are performed on the biometric face image

supplied by the user. The user is authenticated when the Hamming distance between Benroll

(which denotes the biohash of the user generated at the enrollment stage) and Bauth (which de-

notes the biohash of the user generated at the authentication stage) is below a distance threshold

t as follows:

d (Benroll,Bauth) =
∑̀
i=1

Benroll (i) ⊕ Bauth (i) ≤ t, (2.4)

where d (Benroll,Bauth) denotes the Hamming distance between Benroll and Bauth, ⊕ denotes the

binary XOR (exclusive OR) operator and t denotes the decision threshold. Therefore, the verifier

decides whether the user is legitimate or not using the decision threshold.

2.1.2 Performance Measures for Biometric Verification

In a biometric verification system, a user must first claim that he/she is someone who has been

enrolled into the system, and the system then determines if the users claim is true or false. The

biometric verification system makes a decision by using the below decision function:
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decision =

 accept if d (Benroll,Bauth) < t,

reject Otherwise,
(2.5)

where d (Benroll,Bauth) denotes the Hamming distance between the biohashes computed at the

enrollment and the authentication stages as in Eq. 2.4 and t denotes the decision threshold.

In this part, we describe performance measures for biometric verification used in this thesis.

The verification performance of biometric systems is usually expressed in terms of their False

Acceptance Rate (FAR), False Rejection Rate (FRR) and the related Equal Error Rate (EER). In

addition to these metrics, there are some performance charts like detection error tradeoff (DET)

graph which plots FRR versus FAR [35]. These metrics and charts are used for reflecting the

system performance.

The biometric verification systems may make two types of errors due to the accept/reject out-

comes i.e., false acceptance (FA) and false rejection (FR). For biohashing based verification

systems, FAR is an empirical estimate of the probability (the percentage of times) at which the

system incorrectly accepts a biohash of the claimer when the biohash actually belongs to a dif-

ferent user (impostor). In other words, it is the case where the system falsely accepts the claim

although the actual claimer is an impostor. On the other hand, FRR is an empirical estimate of

the probability (the percentage of times) at which the system incorrectly rejects a biohash of the

claimer when the biohash actually belongs to the genuine user. In other words, it is the case

where the system falsely rejects a genuine users claim. The FAR and FRR of the corresponding

system can be estimated in the following ways:

FRR(t) =
FA (t)

Ng
, (2.6)

and

FAR(t) =
FR (t)

Ni , (2.7)

where FA and FR count the number of FA and FR accesses respectively; and Ng and Ni denote

the total number of genuine and imposter accesses respectively.

FAR and FRR curves can be plotted as a function of the decision threshold. The FAR is a

monotonically increasing function of the decision threshold whereas the FRR is a monotonically
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Figure 2.2: Illustration of a DET curve. Each point on a DET curve corresponds to a specific
threshold value although threshold values are not evident from the curve. EER can be found
from the intersection of the DET curve with a straight line hugging the left and the top borders.

decreasing function of the decision threshold. Therefore, it is impossible to minimize the two

error rates simultaneously. EER is related with the FAR and the FRR. It is the rate at which the

FAR is equal to the FRR for a certain threshold te.

EER = FRR (te) = FAR (te) . (2.8)

The DET curve plots FRR versus FAR for all possible values of the threshold t but the axes

are often scaled non-linearly to highlight the region of error rates of interest. Commonly used

scales include normal deviate scale and logarithmic scale. It is similar to receiver operating

characteristics (ROC) curve (which plots probability of correct acceptance (1-FRR) in the Y-

axis versus FAR in the X-axis) except that the axes are often scaled non-linearly to highlight the

region of error rates of interest. An example DET curve can be seen in Figure 2.2.

2.1.3 Principle Component Analysis (PCA)

PCA is one of the most common feature extraction techniques which is used for face images

in the literature [34]. PCA can be used in a number of applications e.g. face recognition, data

compression. PCA is the optimum linear dimensionality reduction technique with respect to
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mean squared error (MSE) of the reconstruction for a given data set. The basic steps of the PCA

is as follows:

1. We are given a set of M training face images Ii ∈ R
m×n where i = 1, . . . ,M. We lexico-

graphically re-order them in order to obtain face vectors xi ∈ R
K×1 where K = m × n. We

compute the sample mean, µ, of the face vectors as follows:

µ =
1
M

K∑
i=1

xi. (2.9)

Then, we subtract the sample mean face image vector from the training face image vectors.

ti = xi − µ. (2.10)

2. We compute covariance matrix C of the training face vectors

C =
1
M

M∑
i=1

(xi − µ) (xi − µ)T =
1
M

M∑
i=1

(ti) (ti)T = BBT , (2.11)

where B = [t1, t2, · · · , tM] ∈ RK×M.

3. We want to compute eigenvalues λ j’s and eigenvectors of C, however, computing the

eigenvectors of C is not an easy task for typical face image sizes when K � M . Thus,

we first compute the eigenvectors of the much-smaller M × M matrix B>B in order

to efficiently compute the eigenvectors, U= {u1, . . . ,uL}, of C. Here, the eigenvalues of

B>B and BB> are the same whereas their eigenvectors are different. The singular value

decomposition of B is as follows:

B = UΣVT , (2.12)

where U∈ RK×K is a unitary matrix, Σ ∈ RK×M is a rectangular diagonal matrix with non-

negative real numbers on the diagonal, and VT ∈ RM×M is a unitary matrix. The diagonal

entries of Σ matrix are known as the singular values of B. The eigendecomposition of

B>B and BB> are as follows:

BT B = VΣ2VT , (2.13)
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BBT = UΣ2UT . (2.14)

From Eq. 2.12 the eigenvectors of BB> can be computed as follows:

U = BVΣ−1, (2.15)

where diagonal entries of the Σ matrix contains the square root of the eigenvalues of BB> .

4. We define a projection matrix A composed of N eigenvectors of C with highest eigenval-

ues U= {u1, . . . ,uN} as follows:

A =


uT

1
...

uT
N

 , (2.16)

where u1 is the eigenvector of C with the highest eigenvalue.

5. Finally, we can compute the N-dimensional representation of the original K-dimensional

face vector as follows:

yi = A(xi − µ). (2.17)

2.1.4 Random Number Generation

Pseudo random number generation is the process of generating a sequence of numbers using

deterministic computations where an outside observer would consider the sequence as being

randomly generated. The pseudo-random number generators require a seed value to start the

computations and would generate exactly the same sequence of numbers if given the same seed.

Mersenne twister is a pseudo random number generator proposed by Makoto Matsumoto and

Takuji Nishimura [36]. The 32-bit Mersenne twister algorithm produces uniformly random

integers between 0 and 232 − 1 and its period is approximately 106001. The integer values can be

normalized to generate what appears to be uniformly random real values between 0 and 1.

The rand(.) function in MATLAB generates a uniformly distributed pseudo-random number by

using this algorithm. The rand(′state′, s) causes the rand(.) function to initialize the generator
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with the seed s which is a scalar integer. The user’s secret key is used as a seed in order to

generate random numbers for the random projection matrix. We generate a matrix containing

pseudo-random values drawn from the standard uniform distribution on the open interval (0, 1).

Let the random projection matrix be R ∈ R`×k and let r (i, j) denote the element located at the

ith row and jth column of R. In this case, the random variable r (i, j) has the standard uniform

distribution with minimum 0 and maximum 1.

2.2 Related Work

Security and privacy concerns on biometrics limit their widespread usage in real life appli-

cations. The initial solution that comes to mind for security and privacy problems is to use

cryptographic primitives. On the other hand, biometric templates cannot be directly used with

conventional encryption techniques (i.e. AES, 3DES) since biometric data are inherently noisy

[37]. In other words, the user is not able to present exactly the same biometric data repeat-

edly. Namely, when a biometric template is encrypted during the enrollment stage, it should be

decrypted to pass the authentication stage for comparison with the presented biometric. This,

however, again leads to security and privacy issues for biometric templates at the authentication

stage [37]. Another problem with regards to such a solution is the key management, i.e. stor-

age of encryption keys. When a malicious database manager obtains encryption keys, he can

perform decryption and obtain biometric templates of all users. Similar problems are valid for

cryptographic hashing methods. Since cryptographic hash is a one-way function, when a single

bit is changed the hash sum becomes completely different due to the avalanche effect [38]. Thus,

successful authentication by exact matching cannot be performed even for legitimate users due

to the noisy nature of biometric templates. Therefore, biometric templates also cannot directly

be used with traditional cryptographic hashing methods.

Biometric systems which use error correction methods are proposed in order to cope with noisy

nature of the biometric templates in the literature [39–41]. In such systems, after using error

correction, the biometric data collected at the authentication stage can become exactly the same

with the biometric data collected at the enrollment stage due to tolerance to a limited number

of errors brought by the error correction methods. In other words, these systems can get error-

free biometric templates and thus cryptographic primitives (i.e. encryption and hashing) can

successfully be employed without suffering from the avalanche effect [13, 37, 41, 42]. However,

large error correcting capability requirements makes them impractical for real life applications
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[43]. Furthermore, side information (parity bits) is needed for error correction and this may

lead to information leakage and even other attacks (i.e., error correcting code statistics, and non-

randomness attacks) [44]. Besides, Zhou et al. clearly demonstrate in their work that redundancy

in an error correction code causes privacy leakage for biometric systems [45].

Biohashing schemes are simple yet powerful biometric template protection methods [16, 18–

21]. It is worth pointing out that biohashing is completely different from cryptographic hashing.

In the literature, researchers propose various biometric hashing methods which mostly depend

on random projections where the biometric template is projected over a set of randomly selected

orthogonal vectors [2, 3, 16–18, 46]. They argue that even when an attacker steals the biometric

hash vector, he cannot obtain the original biometric template. Thus, their scheme preserves

privacy of the users. In these works, they propose a two factor authentication based on a user-

defined password and a biometric template. The feature extraction phase of a biometric system

is randomized by using iterated inner products between a tokenized pseudo-random vector and

the user specific biometric features. The features may be generated from principal component

analysis (PCA), Discrete Wavelet Transform (DWT) and Linear Discriminant Analysis (LDA)

etc. Finally, they employ binary quantization to obtain face image hash vectors. Eventually, they

produce a set of user specific biometric code that they called biometric hash or biohash.

There are various works on biohashing methods that uses different biometric modalities. Ngo et

al. [2, 3] and Karabat et al. [26, 28] propose random projection based biohashing methods for

face images whereas Lumini et al. [16] work on fingerprint based biohashing methods. On the

other hand, Vielhauer et al. [47] develop a biohashing method based on statistical features in

online signatures. Connie et al. [48] develop a biohashing method for palmprints. In addition to

these works, there are other biohashing methods which works with multimodal biometrics. For

instance, Fuksis et al.[49] propose a biohashing method based on fusion of data coming from

palmprint and palm vein.

Although biohashing schemes are proposed to solve security and privacy issues, there are still

security and privacy issues associated with them [16, 17, 22–24]. Lumini et al. [16] report

that when the secret keys are compromised, biohashing methods cannot achieve near zero equal

error rate (EER) and they show that this assumption is unrealistic. They propose a key-stolen

attack scenario and they investigate the performance of the random projection based biohashing

methods when an attacker gets the secret key of a user. In addition to that, other researchers

claim that biohashes can be reversible under certain conditions and an adversary can estimate
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Figure 2.3: General classification of biometric template protection schemes (adapted from [1]).

biometric template of a user from her biohash [17, 22–24]. Consequently, when biohashes are

stored in the databases and/or smart cards in their plain form, they can threaten the security

of the system as well as the privacy of the users. Moreover, an adversary can use an obtained

biohash in order to threaten the system security by performing malicious authentication. When

the secret key is compromised, an adversary may reconstruct a biometric template that resembles

the original template even though an inversion which would yield the exact template may not be

possible. Thus, these schemes are considered as “generally invertible” in some publications [1].

In the literature, Jain et al. classify biometric template protection schemes into two main cate-

gories [1]: 1) Feature transformation based schemes, 2) Biometric cryptosystems as illustrated

in Figure 2.3. Although biometric template protection methods are proposed to overcome secu-

rity and privacy problems of biometrics [1, 18–21, 26, 28, 50–58], recent research shows that

security and privacy issues still persist for these schemes [16, 17, 22–24, 59–61]. Furthermore,

there are a number of works on privacy leakages of biometric template protection methods in

the literature [45, 62–65]. Zhou et al. propose a framework for security and privacy assessment

of biometric template protection methods [45]. Ignatenko et al. analyze the privacy leakage in

terms of the mutual information between the public helper data and biometric features in a bio-

metric template protection method. A trade-off between maximum secret key rate and privacy

leakage is given in their works [63, 66].

The main idea behind biometric cryptosystems (also known as biometric encryption systems) is

either binding a cryptographic key with a biometric template or generating the cryptographic key

directly from the biometric template [67]. Thus, the biometric cryptosystems can be classified
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into two main categories: 1) Key binding schemes, 2) Key generation schemes. Biometric

cryptosystems use helper data, which is public information, about the biometric template for

verification. Although helper data are supposed not to leak any critical information about the

biometric template, Rathgeb et al. show that helper data is vulnerable to statistical attacks

[68]. Furthermore, Ignatenko et al. show how to compute a bound on possible secret rate and

privacy leakage rate for helper data schemes [69]. Adler performs hill-climbing attack against

biometric encryption systems [60]. Besides, Stoianov et al. propose several attacks (i.e., nearest

impostors, error correcting code statistics, and non-randomness attacks) to biometric encryption

systems [44].

In the literature, fuzzy commitment [41] and fuzzy vault schemes [58] are categorized under the

key binding schemes. These schemes aim to bind a cryptographic key with a biometric template.

In ideal conditions, it is infeasible to recover either the biometric template or the random bit

string without any knowledge of the user’s biometric data. However, this is not the case in

reality because biometric templates are not uniformly random. Furthermore, error correction

codes (ECC) used in biometric cryptosystems lead to statistical attacks (i.e., running ECC in

a soft decoding or erasure mode and ECC Histogram attack) [44, 70]. Ignatenko et al. show

that fuzzy commitment schemes leak information in cryptographic keys and biometric templates

which leads to security flaws and privacy concerns [63, 66]. In addition, Zhou et al. argue that

fuzzy commitment schemes leak private data. Chang et al. describe a non-randomness attack

against the fuzzy vault scheme which causes distinction between the minutiae points and the

chaff points [71]. Moreover, Kholmatov et al. perform a correlation attack against the fuzzy

vault schemes [72].

Keys are generated from helper data and a given biometric template in key generation schemes

[1]. Fuzzy key extraction schemes are classified under key generation schemes and use helper

data [73–77]. These schemes can be used as an authentication mechanism where a user is

verified by using her own biometric template as a key. Although fuzzy key extraction schemes

provide key generation from biometric templates, repeatability of the generated key (in other

words stability) and the randomness of the generated keys (in other words entropy) are two

major problems of them [1]. Boyen et al. describe several vulnerabilities (i.e. improper fuzzy

sketch constructions may leak information on the secret, biased codes may cause majority vote

attack, and permutation leaks) of the fuzzy key extraction schemes from outsider and insider

attacker perspectives [78]. Moreover, Li et al. mention that when an adversary obtains sketches,

they may reveal the identity of the users [79].
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Biohashing schemes are simple yet powerful biometric template protection methods [16, 18–21]

which can be classified under salting based schemes. It is worth pointing out that biohashing is

completely different from cryptographic hashing. Although biohashing schemes are proposed

to solve security and privacy issues, there are still security and privacy issues associated with

them [17, 22–24]. In these works, the authors claim that biohashes can be reversible under

certain conditions and an adversary can estimate biometric template of a user from her biohash.

Consequently, when biohashes are stored in the databases and/or smart cards in their plain form,

they can threaten the security of the system as well as the privacy of the users. Moreover, an

adversary can use an obtained biohash in order to threaten the system security by performing

malicious authentication.

Non-invertible transform based schemes use a non-invertible transformation function, which

is a one-way function, to make the biometric template secure [80–82]. User’s secret key de-

termines the parameters of non-invertible transformation function and this secret key should

be provided at the authentication stage. Even if an adversary obtains the secret key and/or the

transformed biometric template, it is computationally hard to recover the original biometric tem-

plate. On the other hand, these schemes suffer from the trade-off between discriminability and

non-invertibility which limits their recognition performance [1].

Apart from the aforementioned schemes, another approach is the use of cryptographic prim-

itives (i.e. encryption, hashing) to protect biometric templates. These works generally focus

on fingerprint-based biometric systems. Tuyls et al. propose a fingerprint authentication sys-

tem which incorporates cryptographic hashes [83]. They use an error correction scheme to get

exactly the same biometric template from the same user in each session which is similar to

the fuzzy key extraction schemes. They store cryptographic hashes of biometric templates in

the database and make comparison in the hash domain. However, there is no guarantee to get

exactly the same biometric templates from the user even if the system incorporates an error cor-

rection scheme in real life applications since it is limited with the pre-defined threshold of error

correction capacity. They also use helper data which are sent over a public channel and this

may lead to security flaws as well. Apart from that, an adversary can threaten the security of the

system when he performs an attack against the database since he can obtain the user id, helper

data and the hashed version of the secret which is generated by the biometric data and the helper

data. Although the adversary cannot obtain the biometric data itself in its plain form, he can get

all needed credentials (i.e. hash values of the secrets) in order to gain access to the system.
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Nowadays, homomorphic encryption methods are used with biometric feature extraction meth-

ods in order to perform verification via encrypted biometric templates [54, 84–86]. These meth-

ods, however, offer solutions in the honest-but-curious model where each party is obliged to

follow the protocol but can arbitrarily analyze the knowledge that it learns during the execution

of the protocol in order to obtain some additional information. Their proposed system is not

designed for the malicious model where each party can arbitrarily deviate from the protocol and

may be corrupted. On the other hand, they do not take into account security and privacy issues

of biometric templates stored in the database [54, 86]. The authors state that their security model

will be improved in the future work by applying encryption methods also on the biometric tem-

plates stored in the database. Furthermore, some of these systems are just designed for a single

biometric modality or a specific feature extraction method which limits their application areas

[84, 85]. Apart from that, an adversary can enroll himself on behalf of any user to their systems

since they do not offer any solutions for malicious enrollment. Finally, all these systems suffer

from computational complexity.

Kerschbaum et al. propose a protocol in order to compare fingerprint templates without actually

exchanging them by using secure multi-party computation in the honest-but-curious model [87].

At the enrollment stage, the user gives her fingerprint template, minutiae pairs and PIN to the

system. Thus, the verifier knows the fingerprint templates which are collected at the enrollment

stage. Although the user does not send her biometric data at the authentication, the verifier al-

ready has the user’s enrolled biometric data and this threatens the privacy of the user in case of a

malicious verifier. In addition to that, a malicious verifier can use these fingerprint templates for

malicious authentication. Furthermore, since the fingerprint comparison reveals the matching

scores (i.e. Hamming distance), the attacker can perform a hill climbing attack against this sys-

tem. Apart from these security and privacy flaws, the authors just focus on secure comparison

in their protocol and they do not develop any solutions for the malicious model.

Erkin et al. [84] propose a privacy preserving face recognition system for the eigen-face recog-

nition algorithm [34]. They design a protocol that performs operations on encrypted images by

using the Pailler homomorphic encryption scheme. Then, Sadeghi et al. improve the efficiency

of this system [85]. In their work, they merge the eigen-face recognition algorithm with homo-

morphic encryption schemes. However, they limit the recognition performance of the system

with the eigen-face method although there are various feature extraction methods which per-

form better than it. Unfortunately, their system cannot be used for any other feature extraction
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method for face images. Moreover, they do not employ a threshold cryptosystem which pre-

vents from a malicious party aiming to perform decryption by himself. Storing face images (or

corresponding feature vectors) in the database in plain is the most serious security flaw of this

system. An adversary, who gains access to the database, can obtain all face images. Therefore,

the adversary can perform an attack against the database which definitely threatens the security

of the system and the privacy of the users.

Barni et al. [54, 86] propose a privacy preservation system for fingercode templates by using

homomorphic encryption in the honest-but-curious model. However, they do not propose any

security and privacy solutions on the biometric templates stored in the database. This issue is

mentioned as future work in their paper. In addition to that, they do not employ threshold en-

cryption which would prevent from a malicious party aiming to perform decryption by himself.

Therefore, their proposed system is open to adversary attacks against the database as stated in

their work as well. They do not address the malicious enrollment issue as well. Moreover,

the user should trust the server in their system. Although they achieve better performance than

[84, 85] in terms of bandwidth saving and time efficiency, they do not address the applications

where the user and the verifier do not trust each other (e.g. the malicious model).



Chapter 3

A Face Image Hashing Method Based

on Optimal Linear Transform Under

Colored Gaussian Noise Assumption

3.1 Introduction

1 In this chapter, the aim is to find a better projection matrix in order to reduce the Hamming

distance between the biometric hash vectors which represent the same user but differ due to

variations in the biometric data. This projection matrix is found by using the optimal linear

transform under colored Gaussian noise assumption [25]. In the literature, Mihcak et al. worked

on the optimal dimension reduction problem for various digital communication problems in their

work [88]. They have modeled the noise between the transmitter and receiver as additive colored

Gaussian noise. The model also assumes the noise is independent of the source signal. Finally,

they derive a formula for the set of optimal linear transforms to reduce the dimension of the data

transmitted through this noisy channel minimizing the probability of error under the assumptions

[88].

The additive colored Gaussian channel noise between the transmitter and receiver can be used

to model the acquisition variability of the biometric images of the same user. In other words,

the user gives different images to the system at each enrollment/authentication session. Thus,

1This chapter is based on [25].

23
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there are a number of different face images belonging to the same user in the system. We as-

sume that difference between the face images belonging to the same user can be modeled as

additive colored Gaussian noise. We have adopted this approach to the biometric hashing meth-

ods and develop a new biometric hashing method which is based on the within-class covariance

matrix. This optimal linear transformation enables us to better define the biometric face images

in a reduced dimensional space. Thus, the proposed method improves the performance of the

biometric verification systems in comparison with biometric hashing methods proposed in the

literature that are based on random projections [2, 3, 16–18, 46]. The set of linear transforms

derived in [88] still allows using random linear projections, so that the random nature of biohash

extraction is also preserved in our approach.

The performance of the proposed face image hashing method increases with the increasing bio-

metric feature vector length as well as the increasing biometric hash vector length. In other

words, we get better performance with the higher dimension in biometric hash vector. It is

obvious that the performance of the proposed method also depends on the database.

3.2 The Biometric Verification System Based on the Proposed Face

Image Hashing Method

In this section, we introduce the proposed biometric verification system based on the proposed

face image hashing method. In the proposed biometric verification method, there are two main

stages:

1. Enrollment stage,

2. Authentication stage.

These stages are addressed in the below parts.

3.2.1 Enrollment Stage

In this part, we introduce the enrollment stage which consists of three main phases. These are

1. Feature extraction,



Optimal Linear Transform Based Biohashing 25

Figure 3.1: Illustration of enrollment stage for the proposed face image hashing method based
on within-class covariance matrix

2. Optimal Linear projection,

3. Quantization.

The enrollment stage is illustrated in Figure 3.1.

3.2.1.1 Feature Extraction Phase

In the feature extraction phase, we first take training face image, Ii, j ∈ R
m×n, i = 1, . . . ,K and

j = 1, . . . , L, where K and L denote number of users and number of images per user respectively.

In simulations, we use two methods in order to extract features from face image. These methods

are well known methods in the literature:
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1. Discrete Wavelet Transform (DWT) [89] only,

2. Discrete Wavelet Transform followed by Principle Component Analysis (PCA) [34].

Case 1: In this case, we compute the one-level Discrete Wavelet Transform (DWT) of the

training face images with Haar filter. Then, we only use the coarse level, Xi, j ∈ R
(m/2)×(n/2),

in order to represent each training face image. Next, we lexicographically re-order the training

face images and obtain training face vectors, xi, j ∈ R
P×1 where P = (m/2) × (n/2).

Case 2: In this case, we compute the one-level Discrete Wavelet Transform (DWT) of the

training face images with Haar filter. Then, we only use the coarse level, Xi, j ∈ R
(m/2)×(n/2), in

order to represent each training face image. Then, we apply principal component analysis in

order to reduce the dimension of the coarse level of discrete wavelet transform Xi, j and obtain

training face vectors, xi, j ∈ R
P×1 where P denotes the number of principal components.

3.2.1.2 Optimal Linear Projection Phase

In the literature, Mihcak et al. [88] have defined the original data at transmitter side with X

and its noisy version as noisy data with Y . In this scenario, they assumed that channel noise

(additive colored Gaussian noise) is independent from the original data, X, and have a zero-

mean Gaussian distribution with covariance matrix Σe. In their work, they have derived the

set of optimal linear transforms for dimension reduction minimizing the probability of error in

communication. They have also stated that this optimal linear transformation can be used in

robust signal hashing problems.

In biometric hashing methods, a genuine user has a number of biometric data that is captured at

different enrollment and test sessions. This causes the genuine user to have a set of associated

biometric hash vectors. The different biometric data belonging to the same genuine user can be

seen as noisy versions of the same biometric data. Thus, this noise can be modeled as channel

noise between a transmitter and a receiver. In this work, we model the difference between the

biometric data of a legitimate user and his average biometric data as channel noise. In our

scenario, a regularized maximum likelihood estimate of the noise covariance which is shared

across users is the within-class covariance matrix defined as follows:

Σe ,
1

KL

K∑
i=1

L∑
j=1

(
xi, j − µi

) (
xi, j − µi

)T
+ αI, (3.1)
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where αI is added for regularization purposes, U∈ RP×P is the identity matrix and α is called the

regularization parameter. Furthermore,

µi ,
1
L

L∑
j=1

xi, j (3.2)

is the class centroid (the transmitted data in the communication scenario above), where xi, j

denotes the jth face feature vector of the ith user.

In this case, the set of projection matrices, T, which minimizes the probability of error can be

written as follows [88]:

T , UΣVT , (3.3)

where T∈ Rk×P is the projection matrix, k denotes the length of the final face hash vector f ∈

Rk×1, U∈ Rk×k is a random matrix whose elements are generated from the standard uniform

distribution on the open interval (0, 1) by using a Random Number Generator (RNG) with a

seed derived from the password and its columns are orthonormal, Σ ∈ Rk×kis a diagonal matrix

with pseudo-random positive diagonal entries which are generated from the standard uniform

distribution on the open interval (0, 1) by using the RNG with a seed derived from the password,

VT ∈ Rk×P is defined as follows:

V , RH, (3.4)

where H∈ Rk×k is a pseudo-random matrix whose elements are generated from the standard

uniform distribution on the open interval (0, 1) by using a RNG with a seed derived from the

password and its columns are orthonormal, R is a column matrix containing k eigenvectors,

which have the k smallest eigenvalues of Σe which has the following eigen-decomposition:

Σe , GZGT , (3.5)

where G is a column matrix containing the eigenvectors of Σe, Z is a diagonal matrix whose

diagonal elements are the corresponding eigen-values sorted from the highest magnitude to the

lowest. The matrix R consists of the k rightmost columns of the matrix G, the eigenvectors

corresponding to the lowest magnitude eigen-values.
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Thus, we can define the projection matrix T as follows:

T , UΣVT , UΣHT RT . (3.6)

Consequently, we will use this projection matrix which is partially generated in a random fashion

in order to generate the final hash vector. Intuitively, the matrix T seeks to project the data to a

lower dimensional subspace where the energy of the projected noise component is lowest.

At the next step, we project the training face images, Ii, j ∈ R
m×n, onto a lower k-dimensional

subspace as follows:

zi, j = Txi, j, (3.7)

where zi, j ∈ R
k×1 denotes the raw face image hash vector for jth face image of the ith user.

3.2.1.3 Quantization Phase

At this phase, we quantize the elements of the raw face hash vector zi, j ∈ R
k×1 in order to obtain

the intermediate hash vector qi, j ∈ R
k×1 of the training face image Ii, j. We employ min-max

method for performing the quantization [90]. This function maps the elements of the raw hash

vector to the interval [0, 1]. This new step brings extra unpredictability to our algorithm. The

quantization function is as follows;

qi, j (`) =
qi, j (`) −min(qi, j)

max(qi, j) −min(qi, j)
, (3.8)

where ` = 1, . . . , k and qi, j ∈ [0, 1]k×1, min(.) function computes the minimum value in its

input vector whereas max(.) function computes the maximum value in its input vector. Finally,

elements of the intermediate hash vector qi, j is rounded to 0 or 1 according to a threshold, which

is the mean value of the qi, j vector as follows:

fi, j (`) =

 1 if qi, j (`) ≥ µ,

0 Otherwise,
(3.9)
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where µ denotes the mean value of the elements of the vector qi, j and fi, j ∈ {0, 1}
k×1 is the binary

hash vector for the training image Ii, j . Finally, we store all training face image hash vectors in

the database for verification purposes during the test stage.

3.2.2 Authentication Stage

At this stage, a claimer aims to gain access to the system via her biohash. For extracting binary

hash vectors, the same phases as in the enrollment stage are used in the test stage as well. The

authentication stage is illustrated in Figure 3.2.

3.2.2.1 Feature Extraction Phase

In the authentication stage, we first take a test face image, Ĩi, j ∈ R
m×n (or the system captures a

face image of a claimer). Then, we use the same biometric feature extraction method used in the

enrollment stage. Recall that we have two cases in the enrollment stage. In case 1, we perform

DWT whereas we perform DWT followed by PCA in case 2 as addressed in the enrollment stage

section. Then, we apply the same procedures as in the enrollment stage in order to compute the

face image hash vector of the test image.

3.2.2.2 Optimal Linear Projection and Quantization Phases

In this part, we first reduce the dimensionality of the test face vector, x̃, by multiplying it with

the projection matrix, T, as follows:

z̃ = Tx̃, (3.10)

where x̃ ∈ Rk×1 denotes the raw face hash vector. Note that the random parts of T are randomly

generated using the secret key provided by the user. At the next step, we process the elements

of the raw face hash vector z̃ in order to obtain the intermediate hash vector q̃ ∈ [0, 1]k×1 of the

test image Ĩ as we have discussed in the enrollment section. By making threshold operation to

the intermediate hash vector, we obtain the binary hash vector f ∈ [0, 1]k×1 for the test image .

For the verification decision, we calculate the Hamming distance between the hash vector of test

face image and the hash vectors of the training images belonging to the claimer and stored in
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Figure 3.2: Illustration of enrollment stage for the proposed face image hashing method based
on within-class covariance matrix
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the database. If Hamming distance is below the pre-determined distance threshold, the claimer

is accepted; otherwise, the user is rejected as show in Figure 3.2.

3.3 Simulation Results

In this section, we report our experimental results of the proposed face image hashing method

using the optimal linear transform. First, we demonstrate the performance of the proposed

method on Cambridge university AT&T face database [91]. There are 400 different face images

from 10 different images of each of 40 distinct subjects. The images were taken at different

times, varying the lighting, facial expressions and facial details. The size of the face images are

m = 112 and n = 92. Some sample images from AT&T face database are shown in Figure 3.3.

We have divided the database into two sets: training set and test set. The training set consists

of 5 images per user and the test set includes also 5 images per user. Secondly, we test the

performance of the proposed method on face images extracted from the Multi Modal Verification

for Teleservices and Security applications (M2VTS) face database [92, 93]. The face images in

this database are taken from the image frames of the video sequences as described in [93]. That

database consists of face images with various expressions, illumination conditions, angles, age,

sex, and glasses. The size of the face images are m = 48 and n = 64. There are 1480 face

images, which consist of 40 different face poses for 37 different people in the database. We

have divided the database into two sets: training set and test set. The training set consists of 20

images per user and the test set includes also 20 images per user.

We employ Hamming distance to measure the distance between the hash values of the face

images. By looking at all possible pairs, we test the performance of the system. In simulations,

we also set the regularization parameter α to 3 in Equation 3.1.

In the simulations with the AT&T database: for feature extraction method in case 1, we set

L = 2576 due to face image dimensions; for feature extraction in case 2, we set L=1024 since

we perform PCA after DWT. In the simulations with the M2VTS database: for feature extraction

method in case 1, we set L = 768 due to face image dimensions; for feature extraction in case

2, we again set L = 768 since we perform full PCA after DWT.



Optimal Linear Transform Based Biohashing 32

Figure 3.3: A preview image of the AT&T face database.



Optimal Linear Transform Based Biohashing 33

3.3.1 Experiments

In this sub-section, we study the performance of the proposed biometric hashing method using

standard verification metrics and compare it with the random projection based biometric hashing

methods proposed in the literature [2, 3].

Before implementing biometric hashing methods, we do not apply any pre-processing to the face

images in AT&T and M2VTS face image databases (i.e. alignment, illumination normalization,

rotation etc.).

Key-unknown Scenario: We assume that unauthorized users (attacker) have neither the secret

key (password or PIN) nor the biometric data (face image).

Key-stolen Scenario: We assume that unauthorized users (the attacker) steal the secret key

(password or PIN) and they can compute the person specific projection matrix T; however, they

do not have the biometric data of the claimed genuine person, so they use other biometric data

(face image of other users in the database)

In this scenario, we simulate the performance of the biometric hashing method in case an at-

tacker takes hold of the secret key of a legitimate user. Thus, we evaluate the actual performance

of the biometric hashing methods in this scenario since the secret key may be lost at any time.

Besides, the performance of the biometric hashing methods should not depend on the secrecy of

the user dependent key [17]. Otherwise, if the key can be kept as a secret, we would not need

biometrics at all.

The simulation results of the key-unknown scenario are given in Table 3.1-Table 3.4 in terms of

equal error rate (EER). The error rates are mostly zero since the randomization of the projections

enables perfect separation of genuine and impostor users. In other words, since the user-defined

secret key is not acquired by the attacker, we achieve perfect separation between genuine and

imposter pairs. The simulation results of the key-stolen scenario are given in Table 3.5-Table

3.8 in terms of EER. It is clearly seen that the introduced method is superior to the method in

[2, 3] since we make use of the noise subspace properties in an intelligent manner.
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3.4 Chapter Summary

In this chapter, we have proposed a new face image hashing method based on optimal linear

transformation defined for a noisy communication channel between transmitter and receiver

[88]. We model the variations between the face images belonging to the same user as channel

noise. In our case, the maximum likelihood estimate of the noise covariance is the within-class

covariance matrix. We evaluate the performance of the biometric verification system based

on the proposed face image hashing method on AT&T and M2VTS face databases with two

different use-case scenarios. The simulation results show that the proposed biometric hashing

method has much better performance in comparison to the random projection based biometric

hashing methods in the literature [2, 3]. Furthermore, in general, performance of the proposed

method increases with the increasing length of the biometric hash vector. Finally, the proposed

method can also be applied to other biometrics such as fingerprint and iris.

Table 3.1: The EERs of the proposed face image hashing method and Ngo et al.s method
[2, 3] for key-unknown scenario with feature extraction method in case 1 (DWT only) and with

AT&T face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

AT&T

128 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

AT&T

256 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

AT&T

512 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

AT&T
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Table 3.2: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-unknown scenario with feature extraction method in case 2 (DWT plus PCA) and with

AT&T face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 0.05 % 0.04 Key-
unknown

Case 2
(DWT plus
PCA)

AT&T

128 bit % 0.02 % 0.00 Key-
unknown

Case 2
(DWT plus
PCA)

AT&T

256 bit % 0.00 % 0.00 Key-
unknown

Case 2
(DWT plus
PCA)

AT&T

512 bit % 0.00 % 0.00 Key-
unknown

Case 2
(DWT plus
PCA)

AT&T

Table 3.3: The EERs of the proposed face image hashing method and Ngo et al.s method
[2, 3] for key-unknown scenario with feature extraction method in case 1 (DWT only) and with

M2VTS face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

M2VTS

128 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

M2VTS

256 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

M2VTS

512 bit % 0.00 % 0.00 Key-
unknown

Case 1
(DWT only)

M2VTS
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Table 3.4: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-unknown scenario with feature extraction method in case 2 (DWT plus PCA) and with

M2VTS face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Teoh et al.s Method
[2, 3]

Scenario Method Database

64 bit % 15.36 % 17.88 Key-
unknown

Case 2
(DWT plus
PCA)

M2VTS

128 bit % 09.03 % 13.18 Key-
unknown

Case 2
(DWT plus
PCA)

M2VTS

256 bit % 06.39 % 10.22 Key-
unknown

Case 2
(DWT plus
PCA)

M2VTS

512 bit % 04.43 % 08.64 Key-
unknown

Case 2
(DWT plus
PCA)

M2VTS

Table 3.5: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-stolen scenario with feature extraction method in case 1 (DWT only) and with AT&T

face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 5.91 % 32.05 Key-stolen Case 1
(DWT only)

AT&T

128 bit % 12.86 % 28.15 Key-stolen Case 1
(DWT only)

AT&T

256 bit % 12.58 % 23.47 Key-stolen Case 1
(DWT only)

AT&T

512 bit % 18.23 % 20.84 Key-stolen Case 1
(DWT only)

AT&T
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Table 3.6: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-stolen scenario with feature extraction method in case 2 (DWT plus PCA) and with

AT&T face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 13.98 % 32.05 Key-stolen Case 2
(DWT plus
PCA)

AT&T

128 bit % 13.45 % 28.15 Key-stolen Case 2
(DWT plus
PCA)

AT&T

256 bit % 13.29 % 23.47 Key-stolen Case 2
(DWT plus
PCA)

AT&T

512 bit % 15.85 % 20.84 Key-stolen Case 2
(DWT plus
PCA)

AT&T

Table 3.7: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-stolen scenario with feature extraction method in case 1 (DWT only) and with M2VTS

face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 13.52 % 36.90 Key-stolen Case 1
(DWT only)

M2VTS

128 bit % 27.86 % 35.15 Key-stolen Case 1
(DWT only)

M2VTS

256 bit % 23.43 % 25.93 Key-stolen Case 1
(DWT only)

M2VTS

512 bit % 37.15 % 25.79 Key-stolen Case 1
(DWT only)

M2VTS



Optimal Linear Transform Based Biohashing 38

Table 3.8: The EERs of the proposed face image hashing method and Ngo et al.s method [2, 3]
for key-stolen scenario with feature extraction method in case 2 (DWT plus PCA) and with

M2VTS face database

Length EER (%) of
the Proposed
Method

EER (%) of EER of
Ngo et al.s Method
[2, 3]

Scenario Method Database

64 bit % 17.75 % 21.14 Key-stolen Case 2
(DWT plus
PCA)

M2VTS

128 bit % 11.22 % 18.33 Key-stolen Case 2
(DWT plus
PCA)

M2VTS

256 bit % 09.84 % 16.59 Key-stolen Case 2
(DWT plus
PCA)

M2VTS

512 bit % 07.64 % 16.13 Key-stolen Case 2
(DWT plus
PCA)

M2VTS



Chapter 4

Discriminative Projection Selection

Based Face Image Hashing

4.1 Introduction

1 In this chapter, we propose a new face image hashing method based on a proposed technique

that we call “discriminative projection selection” to reduce verification errors [26]. This tech-

nique selects the rows of the random projection matrix used in biometric hashing matrix, which

is a user dependent dimension reduction matrix, by using the Fisher criterion [27]. Moreover,

we employ Gaussian mixture model at the quantization step to obtain more distinct face image

hash vectors for each user.

4.2 The Proposed Biometric Verification Method

In this section, we introduce a biometric verification system which employs the proposed face

image hashing method based on the discriminative projection selection technique. In the pro-

posed biometric verification method, there are two main stages:

1. Enrollment stage,

2. Authentication stage.

1This chapter is based on [26].

39
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Figure 4.1: Basic steps of the biometric hashing methods

These stages are addressed in the below parts.

4.2.1 Enrollment Stage

There are three main steps at the enrollment stage:

1. Feature extraction,

2. Dimension reduction,

3. Quantization.

4.2.1.1 Feature Extraction

At the feature extraction phase, we use two sets of data: training set and “others” set. The

training set has training face images of registered users, Ii, j ∈ R
m×n, i = 1, . . . ,K where K

denotes number of users and j = 1, . . . , L where L denotes number of training images per

user. We lexicographically re-order them and obtain training face vectors, xi, j ∈ R
(mn)×1. The

others set contains randomly selected face images which do not belong to any registered users

Ĩs ∈ R
m×n, s = 1, . . . ,M where M denotes the number of face images belonging to the others

set. We again lexicographically re-order them and obtain face vectors, x̃s ∈ R
(mn)×1 of the others

set. We apply PCA to the face images in the training set for feature extraction.

yi, j = A(xi, j − µ), (4.1)
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where A ∈ Rq×(mn) is the PCA matrix trained using the face images in the training set, yi, j ∈ R
q×1

is the PCA coefficient vector belonging to the jth training image of the ith user and µ is the mean

face vector. We project the face images in the others set onto the PCA subspace as follows:

ỹ s = A(x̃s − µ), (4.2)

where ỹ s ∈ R
q×1 is the PCA coefficient vector belonging to the sth image of the others set. We

use these PCA coefficient vectors in the discriminative projection selection technique to find the

most valuable features, which maximize the distance between the face images of a user in the

training set and the face images in the others set, in the lower-dimensional subspace.

4.2.1.2 Dimension Reduction

At the dimension reduction phase, we first generate a random projection (RP) matrix, Ti ∈

R`×q, for each user to reduce the dimension of her feature vector. The RP matrix elements

are identically and independently distributed (i.i.d) and generated from a Gaussian distribution

with zero mean and unit variance by using a random number generator (RNG) with a seed

derived from the user’s secret key. We apply the Gram-Schmidt (GS) procedure to obtain an

orthonormal projection matrix Ri ∈ R
`×q to have more distinct projections. Then, we project the

PCA coefficient vectors of the ith user onto a lower `-dimensional subspace.

zi, j = Riyi, j, (4.3)

where zi, j ∈ R
`×1 is the intermediate face image hash vector belonging to the jth training image

of the ith user.

To determine the competing hash vectors, we also project the others set using the RP matrix as

follows:

z̃ s = Riỹs, (4.4)

where z̃s ∈ R
`×1 is the intermediate face image hash vector of the sth face image of the others

set and Ri is the orthonormal random projection matrix of the ith user.
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The proposed discriminative projection selection technique selects the rows of the matrix Ri

using the Fisher criterion [27] and creates the discriminative random projections. Thus, we aim

to increase discriminability due to mapping the PCA coefficient vectors into a more discriminant

subspace. Fisher criterion is a feature selection method and in this case the features are obtained

after the random projection of a PCA coefficient vector y, namely:

z(k) = rT
i,ky, (4.5)

for k = 1, . . . , `, where z(k) is a scalar value and rT
i,k ∈ R

1×q denotes the kth row of Ri. The

kth feature for the ith user’s jth image is zi, j(k) and the same feature for the sth element of the

others set is z̃s(k) which are the kth elements of the corresponding vectors defined in Equations

(4.3) and (4.4). The features are already uncorrelated due to the GS procedure which ensures

rT
i,kri,m = 0 for k , m.

We define

ek
i ,

[
zi,1 (k) , . . . , zi,L (k)

]
, (4.6)

which is a collection of the kth dimension (or bit position) coefficients of the intermediate hash

vectors belonging to the ith user for each k = 1, . . . , `.

First, we compute the sample mean value, µ̂1,k
i , of each ek

i vector for each bit position k = 1, . . . , `

as follows:

µ̂1,k
i =

1
L

L∑
j=1

ek
i ( j) , (4.7)

where ek
i ( j) is the jth element of the vector ek

i which is defined in Equation (4.6).

Then, we compute the sample standard deviation, σ̂1,k
i , of each ek

i vector for each bit position

k = 1, . . . , ` as follows:

σ̂1,k
i =

 1
L

L∑
j=1

(
ek

i ( j) − µ̂1,k
i

)2


1
2

. (4.8)

Similarly, we collect together the kth dimension values of the intermediate hash vectors of the

“others” data set as follows:
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qk , [z̃1 (k) , . . . , z̃M (k)] , (4.9)

for all k = 1, . . . , `.

First, we compute the sample mean value, µ̂2,k
i , of each qk for each bit position k = 1, . . . , ` as

follows:

µ̂2,k
i =

1
M

M∑
s=1

qk (s) , (4.10)

where qk (s) is the sth element of the vector qk which is defined in Equation (4.9).

Next, we compute the sample standard deviation, σ̂2,k
i , of each qk for each bit position k =

1, . . . , ` as follows:

σ̂2,k
i =

 1
M

M∑
s=1

(
qk (s) − µ̂2,k

)2


1
2

. (4.11)

By applying the Fisher criterion, we try to select the rows that have higher contrast between

genuine user’s data and the others set. In other words, we aim to reduce the distance between

the genuine user’s different face image hash vectors while at the same time we aim to maximize

the distance between the ith user’s data and the others set. We compute the Fisher score for each

row of Ri as follows:

ηi (k) =

∣∣∣µ̂1,k
i − µ̂

2,k
i

∣∣∣2(
σ̂1,k

i

)2
+

(
σ̂2,k

i

)2 . (4.12)

We use these Fisher scores obtained for each dimension k to rank the rows of the random pro-

jection matrix Ri. We define rT
i,k to be the kth row of Ri. That is

Ri =


rT

i,1
...

rT
i,`

 . (4.13)

We choose top ranking rows from the random projection matrix. Let ci be the index vector

which ranks the rows of the matrix in a descending manner from 1 to w where w is the number

of desired rows. That is, ci(1) is the row index of Ri that has the highest Fisher score, ci(2) is



Discriminative Biohashing 44

the index with the second highest score and so on. Thus, we obtain the discriminative random

projection matrix R̂i ∈ R
w×q and the index vector, ci, which contains the indices of top w rows

for each user. We define

R̂i =


r̂T

i,1
...

r̂T
i,w

 , (4.14)

where r̂i,p = ri,ci(p) for p = 1, . . . , w. We only store the index vector, ci, for the ith user in the

database for verification at the test stage.

Next, we project the PCA coefficients, which belong to the training face images of the ith user,

onto a lower w-dimensional subspace by using the calculated R̂i as follows:

f i, j = R̂iyi, j, (4.15)

where f i, j ∈ R
w×1 is the raw face image hash vector belonging to the jth training image of the ith

user.

Ngo et.al [2, 3] uses FLD as a feature extraction method which is applied before the random

projection step in the algorithm. Their FLD transform is not user specific and aims to discrimi-

nate face images belonging to different users in the database. In our case, we employ the Fisher

criterion for projection selection for biometric verification. Therefore, in our case, the projection

selection is user-specific and aims to discriminate the claimed user’s biometric hash vector from

all other possible ones that may come from other face images. In our case, other face images

may even be from outside the database which is more realistic in a real scenario. Our others

set is chosen from another database for this purpose. The projection selection is done after the

random projection step. FLD can reduce dimension at most to K − 1 dimensions, where K is

the number of users in the database, due to the maximal rank of the between class covariance

matrix. However, in our method, we do not have such a limitation since the selection is done by

ranking the Fisher criteria obtained from each projection. In summary, there are fundamental

differences between using FLD as a dimension reducing feature extraction method and using the

Fisher criteria for selection of random projections that best separate the claimed identity from

all others.
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4.2.2 Quantization

In this subsection, we discuss the quantization methods used in this work. We employ two

different quantization methods: (1) Binary quantization (BQ) [2, 3] and (2) The proposed Gaus-

sian mixture model (GMM) based quantization method. In our simulations, we employ these

quantization methods separately to show the performance of the system.

4.2.2.1 Binary Quantization Method with a Fixed Threshold

This technique is employed in Ngo et al.’s method [2, 3]. The raw face image hash vector f i, j

elements are binarized with respect to a fixed threshold as follows:

λi, j (k) =

 1 if f i, j (k) ≥ µ̃,

0 Otherwise,
(4.16)

where the threshold µ̃ is chosen as the sample mean value of elements of the vector f i, j and

k = 1, . . . , w. The computed reference face image hash vectors λi, j ∈ R
w×1 are stored in the

database.

4.2.2.2 The Proposed GMM Based Quantization Method

To the best of our knowledge, there is no face image hashing method employing GMM in the

quantization step. GMM is one of the most widely used data clustering methods in the literature

[94]. Let us assume that we have a set of numbers which are obtained by collecting the kth

elements of raw face image hash vectors and we want to binarize the element of this set. Since

our aim is to make binarization, we fit two Gaussian distributions to the histogram of the kth

elements of the raw face image hash vectors by using the GMM. Then, we choose the average

of the mean values of these two Gaussian distributions as a meaningful threshold for partition of

these two distributions. We repeat it for each bit location k = 1, . . . , w separately. In other words,

we employ bimodal GMM to find a threshold for each bit position for binarization. Let fi, j (k)

denote the kth bit of f i, j ∈ R
w×1, we define the vector dk as the collection of all kth dimension

values of the raw image hashes in the database.

dk ,
[
f i, j (k) : i = 1, . . . ,K, j = 1, . . . , L

]
∈ Rr×1, (4.17)
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where k = 1, . . . , w, r = K × L, K is the number of users and L is the number of training images

per user. Assume that the elements of the vector dk are observations of a single random variable

d.

p
(
d | Ψk

)
=

S∑
s=1

αk
s p

(
d | θk

s

)
, (4.18)

where αk
s is a mixture weight,

∑S
s=1 α

k
s = 1 where S = 2 due to binarization, Ψk =

{
αk

1, α
k
2, θ

k
1, θ

k
2

}
and p

(
d | Ψk

)
is a one-dimensional Gaussian density with its own parameters θk

s =
{
µk

s, σ
k
s

}
as

follows:

p
(
d | θk

s

)
=

1

σk
s
√

2π
e
−(d−µk

s)
2
/
(
2(σk

s)
2
)
, (4.19)

where µk
s and σk

s denote the mean and the standard deviation for the sth component of the GMM

respectively for s = {1, 2}. We find a threshold for each bit position as follows:

Tk =
µk

1 + µk
2

2
, (4.20)

where Tk denotes the threshold for the kth bit position of the raw face image hash vector f i, j,

∀i, j. Note that, the GMM is trained using the whole training set for each bit position. Thus, the

GMM parameters are not user dependent. Finally, the elements of f i, j are binarized with respect

to the system-level thresholds as follows:

λi, j (k) =

 1 if f i, j (k) ≥ Tk,

0 Otherwise,
(4.21)

where k = 1, . . . , w. The computed reference face image hash vectors λi, j ∈ R
wx1 are stored in

the database.

4.2.3 Authentication Stage

At the authentication stage, a claimer claims that she is the ith user and sends her face image and

her secret key to the system. The system computes her test face image hash vector by using her

face image, her secret key (to generate a RP matrix) and the index vector, ci, which belongs to

the ith user. Recall that index vectors and the reference face image hash vectors of the registered
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users are stored in the database; however, the secret keys are not stored in the database. Then, the

Hamming distance [95] is computed between the test face image hash vector and the reference

face image hash vectors which belong to the ith user and were generated at the enrollment stage.

If it is below the pre-determined distance threshold, the claimer is accepted; otherwise, the

claimer is rejected.

We simulate two scenarios in our experiments. These scenarios are described in detail below.

1. Key-unknown Scenario: In this scenario, an unauthorized impostor has neither the secret

key nor the face image template belonging to the genuine user. Note that the index vectors

of the users are stored in the database. Therefore, whenever a claimer claims that she is

the ith user and sends her face image and a secret key to the system, the system computes

a test face image hash vector by using the data sent by the claimer and the index vector,

ci, which belongs to the ith user.

2. Key-stolen Scenario: In this scenario, an unauthorized impostor acquires the secret key of

the ith genuine user but does not have the claimed person’s face image. When an impostor

sends her face image and the secret key of the ith user to the system, the system computes

a test face image hash vector by using the data sent by the impostor and the index vector

ci that belongs to the ith user which is stored in the database.

4.3 Simulation Results

In this section, we discuss our experimental results. We test the performance of the proposed

method on AT&T [91], AR [96] and Sheffield (previously UMIST) face databases [97]. The

AT&T database has 400 different face images corresponding to 40 distinct people. The AR

database has 3120 face images belonging to 120 different people’s faces with different facial ex-

pressions, illumination conditions, and occlusions (sun glasses and scarf). Some sample images

from the AR face database are shown in Figure 4.2. The Sheffield database has 564 differ-

ent face images belonging to 20 different people. Some sample images from the Sheffield face

database are shown in Figure 4.3. Besides, we randomly select 104 face images from Carnegie

Mellon University database [98] and create the others set. Some sample images from the CMU

face database are shown in Figure 4.4.
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Figure 4.2: A preview image of the AR face database.

Figure 4.3: A preview image of the Sheffield face database.

Figure 4.4: A preview image of the CMU face database.
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We compare the performance of the proposed method to Ngo et al.’s PCA+RP and FLD+RP

methods that were introduced in [2, 3] as shown in Table 4.2. We automatically select face im-

ages for training and test sets and evaluate the performance of the proposed method and Ngo et

al.’s methods [2, 3]. We use 1024-length PCA coefficient vectors for the face images belonging

to the training, test and others sets in the simulations. In our experiments, pre-processing tech-

niques such as eye alignment, head region masking, lighting adjustment are not applied to the

face images. In our simulations for both scenarios; for impostor tests, each face image of each

user in the test set is compared against each face image of all other users in the training set. A

successful impostor attempt results in a false acceptance error. For the genuine tests, each face

image of each user in the test set is compared against all face images of the same user in the

training set. A failed genuine attempt results in a false rejection error. The detailed information

on the data sets used in the experiments are given in Table 4.1.

Table 4.1: Datasets and experimental set-up

Database Number of Face Images Train set Test set
AR 3120 images from 120

people
The first 7 images of each
user

The last 2 images
of each user

AT&T 400 images from 40 peo-
ple

The first 5 images of each
user

The remaining 5
images of each user

Sheffield 564 images from 20 peo-
ple

The first 8 images of each
user

The following 8
images of each
user

The proposed method has better performance in terms of equal error rate (EER) in comparison

to Ngo et al.’s methods [2, 3] whereas Ngo et al.’s PCA+RP and FLD+RP methods have com-

parable performances with each other as shown in Table 4.2. As the length of face image hash

vector decreases, the proposed method shows better improvement since the proposed dimension

reduction matrix better preserves the pair-wise distances between feature vectors in the reduced

dimension subspace in comparison with the traditional random projection matrix. The best re-

sults are usually obtained with 128 or 256 bits. Besides, we plot the detection error trade-off

(DET) curves [35] for key-stolen scenario of the 256 bit face image hash length with the AT&T

database in Figure 4.5.

In chapter 3, we obtain zero EERs in the key-unknown scenario whereas very high EERs in the

key-stolen scenario with the optimal linear transform based biohashing method. However, we

focus to reduce the EER in the key-stolen scenario in this chapter and that’s why we use only

PCA for feature extraction. In addition, we do not work for finding better feature extraction

methods in this thesis. It is obvious that the biohashing methods can perform better with better
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Table 4.2: EER performances of the proposed face image hashing method and Ngo et al.’s
methods [2, 3]

Length EER (%) of
Ngo et al.’s
method
[2, 3]
(PCA+RP)

EER (%) of
Ngo et al.’s
method
[2, 3]
(FLD+RP)

EER (%) of
the proposed
method
with binary
quantization
method

EER (%) of
the proposed
method with
GMM based
quantization
method

Scenario Database

64 bit % 12.19 % 10.46 % 3.83 % 2.73 Key-
unknown

AT&T

128 bit % 7.36 % 8.51 % 2.23 % 1.57 Key-
unknown

AT&T

256 bit % 5.81 % 5.50 % 1.80 % 1.15 Key-
unknown

AT&T

512 bit % 3.79 % 4.17 % 2.48 % 2.10 Key-
unknown

AT&T

64 bit % 16.93 % 18.13 % 14.40 % 13.58 Key-stolen AT&T
128 bit % 13.97 % 16.73 % 12.01 % 11.14 Key-stolen AT&T
256 bit % 12.76 % 14.50 % 10.80 % 10.23 Key-stolen AT&T
512 bit % 12.34 % 13.55 % 10.15 % 9.73 Key-stolen AT&T
64 bit % 23.63 % 23.34 % 9.08 % 8.96 Key-

unknown
AR

128 bit % 18.24 % 18.05 % 8.67 % 8.72 Key-
unknown

AR

256 bit % 15.82 % 13.93 % 7.81 % 8.12 Key-
unknown

AR

512 bit % 11.38 % 11.92 % 8.33 % 8.57 Key-
unknown

AR

64 bit % 28.27 % 28.51 % 18.07 % 18.46 Key-stolen AR
128 bit % 27.17 % 27.56 % 18.06 % 18.05 Key-stolen AR
256 bit % 25.50 % 26.44 % 19.10 % 18.83 Key-stolen AR
512 bit % 24.89 % 25.04 % 20.95 % 20.41 Key-stolen AR
64 bit % 17.09 % 22.00 % 15.75 % 16.23 Key-

unknown
Sheffield

128 bit % 16.38 % 19.10 % 13.33 % 14.03 Key-
unknown

Sheffield

256 bit % 15.05 % 14.93 % 11.45 % 11.05 Key-
unknown

Sheffield

512 bit % 14.97 % 14.12 % 10.44 % 12.20 Key-
unknown

Sheffield

64 bit % 21.40 % 24.50 % 19.38 % 20.68 Key-stolen Sheffield
128 bit % 21.92 % 24.30 % 17.51 % 19.71 Key-stolen Sheffield
256 bit % 22.53 % 22.02 % 16.96 % 17.80 Key-stolen Sheffield
512 bit % 23.47 % 22.55 % 19.27 % 18.22 Key-stolen Sheffield
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feature extraction methods. Instead, we try to improve the performance of the random projection

based biohashing methods by proposing better dimension reduction methods and/or quantization

methods since these phases cause verification errors due to large information loss at these phases.

Ngo et al. [2, 3] employ binary quantization method with a fixed threshold for all bits. This

method may be suboptimal in some cases. The proposed GMM-based quantization method

reduces EER most of the time in comparison to the binary quantization since it finds more

meaningful threshold values for each bit position.

4.4 Chapter Summary

In this chapter, we propose a novel biohashing method for a biometric verification system. The

proposed method is based on discriminative projection selection depending on Fisher criteria.

Another novelty of the proposed method is to employ bimodal GMM in the quantization. The

simulations show that it has better performance in comparison with the random projection based

biohashing methods proposed in the literature.
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Figure 4.5: DET plots for the methods with 256 bit face image hash vector length for key-stolen
scenario - AT&T database



Chapter 5

Error-Correcting Output Codes

Guided Quantization For Biometric

Hashing

5.1 Introduction

1 In this chapter, we propose a novel biometric hashing scheme which depends on Error-Correcting

Output Codes (ECOC) [28]. We improve the performance of the random projection based bio-

metric hashing scheme by introducing a new quantization method that attempts to optimize

biometric hash vectors by using the ideas from ECOC classifiers. The proposed scheme shows

superior performance in comparison with Ngo et al.’s scheme [2] on four databases.

5.2 The Proposed Biometric Verification System

In this section, we introduce our new biometric verification system based on the proposed ECOC

guided biometric hash generation method. In the proposed biometric verification method, there

are two main stages:

1. Enrollment stage,

1This chapter is based on [28].

52
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Figure 5.1: The basic steps of the proposed biometric hashing scheme

2. Authentication stage.

These stages are addressed in the following sections.

5.2.1 Enrollment Stage

In this part, we explain the enrollment stage which consists of three main phases:

1. Feature extraction,

2. Dimension reduction,

3. ECOC guided biometric hash generation.

5.2.1.1 Feature Extraction

At this phase, we use face images in the training set. The training set has training face images

belonging to registered users, Ii, j ∈ R
m×n where i = 1, 2, . . . ,K and K denotes the number of

users, j = 1, 2, . . . , L and L denotes the number of training images per user. We lexicographically

re-order the face images and obtain training face vectors, xi, j ∈ R
(mn)×1. Then, we employ
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Principle Component Analysis (PCA) to the face images in the training set for feature extraction

as follows:

yi, j = A(xi, j − µ), (5.1)

where A ∈ Rk×(mn) is the PCA matrix trained by the face images in the training set, µ is the mean

face vector and yi, j ∈ R
k×1 is a vector containing PCA coefficients belonging to the jth training

image of the ith user.

5.2.1.2 Dimension Reduction

We generate a Random Projection (RP) matrix, Ri ∈ R
`×k ∀i, for each user to reduce the di-

mension of the face images in the training set. The RP matrix elements are identically and

independently (i.i.d) generated from a Gauss distribution with zero mean and unit variance by

using a Random Number Generator (RNG) with a seed derived from the user’s secret key. We

apply Gram-Schmidt (GS) procedure to obtain an orthonormal projection matrix RGS ,i ∈ R
`×k

from Ri to have more distinct projections. We project the PCA coefficient vectors onto a lower

`-dimensional subspace as follows:

zi, j = RGS ,iyi, j, (5.2)

where zi, j ∈ R
`×1 is an intermediate biometric hash vector belonging to the jth training image of

the ith user.

5.2.1.3 ECOC Guided Biometric Hash Generation

At this phase, we first calculate a representative intermediate biometric hash vector, Ei, for each

user:

Ei (m) =
1
L

L∑
j=1

zi, j (m) , (5.3)
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where m ∈ {1, 2, . . . , `} and ` is the length of the raw biometric hash vector. Next, we map

the elements of Ei to the interval [0, 1] by employing min-max normalization [99] and obtain a

representative raw biometric hash vector, Vi ∈ R
`×1, for each user as follows:

Vi (m) =
Ei (m) −min (Ei)

max (Ei) −min (Ei)
, (5.4)

where Vi denotes a representative raw biometric hash vector of the ith user, min(.) function

computes minimum value of its input vector and max(.) function computes maximum value of

its input vector.

Conventionally, the Vi vector is binary-quantized by thresholding to obtain the final biometric

hash vector for each user. In Ngo et al.’s scheme [2], a different quantization threshold (tg)

for each user is obtained by computing the average value of each associated vector, that is

tg = 1/`
∑`

m=1 Vi(m). Note that the threshold is the same for each bit position, therefore we can

call it a global threshold.

In contrast, we employ bit-adaptive quantization to improve the performance of the biometric

hashing scheme by generating a more diverse set of biometric hashes for authorized users. We

define C as the codeword matrix which is formed by stacking biometric hashes of all users in its

rows. The ith row of C is obtained by performing quantization on Vi using a set of thresholds

(one for each bit) which we aim to optimize.

C (i,m) =

 1 if Vi (m) ≥ t (m) ,

0 Otherwise.
(5.5)

In the literature, ECOC is proposed to cope with multi-class classification problems using mul-

tiple binary classifiers [100, 101]. Here, our aim is to reduce verification errors by employing

separation criteria used in ECOC classifiers to optimize the biometric hash codeword matrix C

by modifying the threshold vector t.

The ECOC matrices are optimized on two main criteria [102]: 1) Row separation, 2) Column

separation. In the proposed method, we use row and column separation criteria described below

to optimize the biometric hash vectors.

Row Separation: The Hamming distance between the biometric hash vectors, which belong

to different users, should be maximized to reduce errors. The minimum Hamming distance

between any pair of biometric hash vectors is called the row separation:
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Hr(t) = min
i, j,i, j

∑̀
m=1

|C(i,m) −C( j,m)|. (5.6)

Hr is dependent on t since the thresholds determine and change the codeword matrix C. An

ECOC matrix with minimum Hamming distance, Hr, between any pair of biometric hash vectors

will correct up to
⌊

Hr−1
2

⌋
bit errors [10]. Thus, it is beneficial to maximize this minimum distance

to obtain better biometric hash vectors.

Column Separation: Column separation is defined as the minimum Hamming distance between

all the columns of the codeword matrix C. The aim in ECOC matrix design is to maximize the

column separation. In calculating the column separation we should also consider the distance

to the complement of a column as well since it gives the same split of the set of biometric hash

bits.

Hc(t) = min
m,n,m,n

 K∑
i=1

|C(i,m) −C(i, n)| ,
K∑

i=1

|1 −C(i,m) −C(i, n)|

 , (5.7)

where m, n ∈ {1, . . . , `} and K denotes the number of users. Maximizing the column sepa-

ration will increase the verification accuracy of the system by decreasing correlation between

classification errors [101, 102] and makes the system more robust against attacks. We define

H(t) = Hr(t) + Hc(t) as the optimization criterion to maximize. Hence, we have to solve

t̂ = arg max
t

H(t).

Since the user cannot give exactly the same biometric template for each attempt to enter the

system due to sensor imperfections and/or inherent user dependent variability, errors occur in

biometric hashes. To decrease such errors, Hamming distance between the biometric hash vec-

tors belonging to different users should be maximized. Besides, Hamming distance between

each bit position of the biometric hash vectors should be maximized to reduce redundancy and

to increase security against attacks.

We proceed as follows to optimize this complex objective. Initially, we find an optimum system

level quantization threshold t̂s ∈ [0, 1] that maximizes H(ts) = Hr(ts) + Hc(ts) by using the

Golden section search (GSS) algorithm [103] in the range [0, 1]. The optimum system level

threshold, t̂s = arg max
ts

(H(ts)), is a quantization threshold which can be used for all bit positions

of the biometric hash vectors.
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Next, using the optimal system level threshold as an initial value, we find an optimum threshold

for each bit position (m) of the biometric hash vectors that maximizes H(t) = Hr(t) + Hc(t)

by using the Golden section search algorithm [103] within the range [0, 1]. We perform this by

using the coordinate descent method where we update one coordinate at a time while keeping the

rest of the threshold vector constant. So, at each iteration, we solve optimization problem t̂(m) =

arg max
t(m)

(
H( t̃)

)
for m = 1, . . . , ` where t̃ ∈ R1×` is the latest threshold vector which contains the

latest values of the thresholds for all bit positions and t̂(m) ∈ [0, 1] is the optimum threshold

value for mth bit position of the biometric hash vector. We go through all the coordinates multiple

times until the iterations stop changing the objective value H(t). The vector obtained in the end

is the optimal bit-adaptive threshold vector t̂.

The pseudo-code of the optimization algorithm performed in the enrollment phase is given as

Algorithm 1.

5.2.1.4 Relation with ECOC classification

In our scheme, we employ the column and row separation criteria used in ECOC matrix design

to optimize the codeword matrix obtained from the biometric hash vectors. So, we do not

pre-specify the codeword matrix and design classifiers afterward as regularly done in ECOC

classification. Random projection followed by binary quantization that is used in biometric

hashing can be seen as using a set of random linear classifiers wT x−b ≷ 0 where w corresponds

to a single row of the random projection matrix and the bias term b corresponds to the bit-

specific threshold t. Our method can be seen as using a number of random linear classifiers and

modifying their bias value (the threshold) to optimize the row and column separation obtained

by them. So, our method is not a direct application of ECOC multi-class classification, rather

an innovative idea where random linear classifiers are optimized in their bias terms to obtain a

better codeword matrix that will result in better verification performance.

5.2.2 Authentication Stage

At this stage, a claimer sends his face image Ĩ ∈ Rm×n and his secret key to the system. Then,

the system computes the claimer’s test biometric hash vector by using the same procedures in

the enrollment phase with the optimum threshold for each bit position, t(m). Finally, the system

computes the Hamming distance [95] between the test biometric hash vector and the claimed
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Algorithm 1 Pseudo Code of the Enrollment Phase
1: K : number of users and L : number of face images per user
2: ` : Length of biometric hash vector
3: Inputs: Training face images, Ii, j, and secret keys of the users
4: Outputs: The binary codeword matrix, C, and threshold vector t

5: Compute PCA matrix A by using all the training images Ii, j

6: for i← 1 to K do
6: Generate RP matrix RGS ,i by using the secret key of the ith user
7: for j← 1 to L do
7: Compute PCA coefficient vectors xi, j

7: Compute yi, j = A(xi, j − µ)
7: Compute zi, j = RGS ,iyi, j
8: end for
9: end for

10: for i← 1 to K do
11: for m← 1 to ` do
11: Compute Ei (m) = 1

L
∑L

j=1 zi, j (m)
12: end for
13: end for
14: for i← 1 to K do
15: for m← 1 to ` do
15: Compute Vi (m) =

Ei(m)−min(Ei)
max(Ei)−min(Ei)

16: end for
17: end for
18: t0

s ← 0.5 (set initial value of quantization threshold)
19: Solve t̂s = arg max

ts

Hr(ts) + Hc(ts) using GSS algorithm

20: t0(m) = t̂s,m = 1, . . . , ` (set initial value of the threshold vector to the system level thresh-
old)

21: Solve t̂ = arg max
t

Hr(t) + Hc(t) using coordinate descent and GSS algorithm for each coor-

dinate
21: Compute codeword matrix C by using the optimal threshold vector t̂
21: Store binary codeword matrix C and the threshold vector t̂

user’s reference biometric hash vector stored in the database. If the Hamming distance is below

the pre-determined distance threshold, the claimer is accepted; otherwise, the claimer is rejected.

Since the biometric hash vectors can only be computed by the system, a user typically does not

know her biometric hash vector. Whenever a new user wants to enroll in the proposed system,

the threshold vector, t, and the codeword matrix, C, which contains reference biometric hash

vectors, stored in the database need to be updated. Initially, for new users, the system can use

the existing threshold vector to determine their biometric hash vectors. When the number of

new users reach a pre-defined specific number, the system will update itself (e.g. at night time

when the system is idle) and generate a new threshold vector and a new codeword matrix which

are optimal for the new population.
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Figure 5.2: The illustration of the ECOC guided quantization step in the proposed biometric
hashing scheme

In the proposed system, only the threshold vector, t, is stored additionally in comparison with the

Ngo et. al.’s system [2]. It is used for computing biometric hash vectors at the test stage. Even

if an attacker obtains it, he cannot get any more information since the security of the system

depends on the RP matrix and secret key of the users as in Ngo et. al. ’s system [2]. The

attacker can obtain neither the feature vector nor the biometric template of the user by using the

threshold vector, t, and the codeword matrix, C, since there are infinitely many choices when

getting back from binary biometric hash to the face image.

5.3 Simulation Results

In this section, we test and discuss the performance of the proposed scheme on Carnegie Mellon

University (CMU) face database [98], Cambridge university AT&T face database [91], Multi

Modal Verification for Teleservices and Security applications (M2VTS) face database [92, 93],

and the Sheffield (previously UMIST) face databases [97]. Pre-processing methods such as eye

marking, alignment and head region masking are not applied to the face images. Table 5.1 shows

the number of face images used in the enrollment and test phases.
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Table 5.1: Databases and experimental set-up

Database Number of face images Enrollment stage Authentication stage
CMU 975 images from 13 peo-

ple
The first 15 images of
each user

The following 30 im-
ages of each user

AT&T 400 images from 40 peo-
ple

The first 5 images of
each user

The remaining 5 im-
ages of each user

M2VTS 1480 images from 37 peo-
ple

The first 20 images of
each user

The remaining 20 im-
ages of each user

Sheffield 564 images from 20 peo-
ple

The first 8 images of
each user

The following 8 im-
ages of each user

Table 5.2 shows the total number of genuine and imposter pairs. Note that all enrollment images

for a person are used to generate a single reference biometric hash vector for a person. Each test

image indicated in Table 5.1 is used once in a genuine test and as an impostor for all other users.

Table 5.2: Genuine and imposter pairs in each database

Database Number of genuine pairs Number of imposter pairs
CMU 1 × 30 × 13 = 390 1 × 30 × ((12 × 13) ÷ 2) = 2340
AT&T 1 × 5 × 40 = 200 1 × 5 × ((39 × 40) ÷ 2) = 3900
M2VTS 1 × 20 × 37 = 740 1×20× ((36 × 37) ÷ 2) = 13320
Sheffield 1 × 8 × 20 = 160 1 × 8 × ((19 × 20) ÷ 2) = 1520

5.3.1 Equal Error Rate (EER) Performances

In this part, we test the performance of the proposed scheme. Kong et al. state that if unautho-

rized people steal the secret key and the RNG, the performances of biometric hashing schemes

get worse [17]. Therefore, we simulate two scenarios, in our experiments as shown in Table 5.3.

1. Key-unknown Scenario: An imposter user wants to impersonate a genuine user. However,

she has neither the biometric template nor the secret key of the user. She sends her own biometric

template and a secret key to the system to be authenticated as the genuine user. In tests, we have

used each impostor’s own key for their impostor attempts as well.

2. Key-stolen Scenario: An imposter user obtains secret key of the genuine user. She sends her

own biometric template and the secret key of the genuine user to the system to be authenticated

as the genuine user.

As shown in Table 5.3, the proposed scheme has lower EER in comparison with [2]. We show

the detection error trade-off (DET) curves [35] of the proposed method for key-stolen scenario
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Table 5.3: EER performance comparison between the proposed biometric hashing scheme and
Ngo et al.’s scheme [2]

Length EER (%) of Ngo et al.’s
scheme [2] (PCA+RP)

EER (%) of the pro-
posed scheme

Scenario Database

64 bit % 2.05 % 0.15 Key-unknown CMU
128 bit % 0.98 % 0.00 Key-unknown CMU
256 bit % 0.60 % 0.00 Key-unknown CMU
512 bit % 0.22 % 0.00 Key-unknown CMU
64 bit % 4.10 % 2.50 Key-stolen CMU
128 bit % 2.46 % 0.74 Key-stolen CMU
256 bit % 1.72 % 0.08 Key-stolen CMU
512 bit % 1.18 % 0.07 Key-stolen CMU
64 bit % 12.19 % 6.44 Key-unknown AT&T
128 bit % 7.36 % 4.25 Key-unknown AT&T
256 bit % 5.81 % 1.13 Key-unknown AT&T
512 bit % 3.79 % 0.04 Key-unknown AT&T
64 bit % 16.93 % 13.07 Key-stolen AT&T
128 bit % 13.97 % 9.71 Key-stolen AT&T
256 bit % 12.76 % 7.64 Key-stolen AT&T
512 bit % 12.34 % 8.01 Key-stolen AT&T
64 bit % 18.10 % 10.01 Key-unknown M2VTS
128 bit % 14.56 % 7.55 Key-unknown M2VTS
256 bit % 11.15 % 6.38 Key-unknown M2VTS
512 bit % 9.23 % 5.81 Key-unknown M2VTS
64 bit % 21.36 % 14.17 Key-stolen M2VTS
128 bit % 18.08 % 13.01 Key-stolen M2VTS
256 bit % 16.72 % 10.50 Key-stolen M2VTS
512 bit % 16.09 % 10.00 Key-stolen M2VTS
64 bit % 17.09 % 12.30 Key-unknown Sheffield
128 bit % 16.38 % 7.87 Key-unknown Sheffield
256 bit % 15.05 % 6.25 Key-unknown Sheffield
512 bit % 14.97 % 2.93 Key-unknown Sheffield
64 bit % 21.40 % 17.74 Key-stolen Sheffield
128 bit % 21.92 % 16.91 Key-stolen Sheffield
256 bit % 22.53 % 15.25 Key-stolen Sheffield
512 bit % 23.47 % 14.21 Key-stolen Sheffield
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in Figures 5.3-5.6. In addition, we show genuine-imposter distance histograms and false ac-

cept rate (FAR) - false reject rate (FRR) plots in key-stolen scenario for the proposed method

for the AT&T database for 64 and 128 bits in Figures 5.7-5.10. We attribute the performance

improvements to the better scattering of biometric hash vectors due to the maximization of row

and column separation in the codeword matrix in our method.

The proposed method more dramatically reduces the errors as the length of the biometric hash

vector increases as shown in Table 5.3. The proposed scheme approximately reduces the EER

by half in most of the cases. Furthermore, even in some cases, the proposed scheme perfectly

separates the genuine and imposter users with no errors.

The proposed method maximizes the Hamming distance between the biometric hashes belong-

ing to the different users at the enrollment stage. Thus, we achieve lower EERs in comparison

with [2]. Even in the key-stolen scenario, we see improvements in performance which is pos-

sibly due to better placement of reference biometric hash vectors in the space of all possible

hashes.
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Figure 5.3: DET plots of the proposed method for key-stolen scenario - AT&T database
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Figure 5.4: DET plots of the proposed method for key-stolen scenario - CMU database
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Figure 5.5: DET plots of the proposed method for key-stolen scenario - M2VTS database
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Figure 5.6: DET plots of the proposed method for key-stolen scenario - Sheffield database
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Figure 5.7: Genuine-Imposter distance histograms of the proposed method for key-stolen sce-
nario in the AT&T database - 64 bit

Figure 5.8: FAR-FRR plots of the proposed method for key-stolen scenario in the AT&T
database - 64 bit

Figure 5.9: Genuine-Imposter distance histograms of the proposed method for key-stolen sce-
nario in the AT&T database - 128 bit
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Figure 5.10: FAR-FRR plots of the proposed method for key-stolen scenario in the AT&T
database - 128 bit

5.4 Comparison of the ECOC Guided Quantization For Biohash-

ing and the Discriminative Biohashing Methods

In this thesis, we propose new biohashing methods by improving some phases of the random

projection based methods. We develop new dimension reduction and quantization methods and

propose the discriminative biohashing method in Chapter 4. Next, we design a new quantiza-

tion method and propose the ECOC guided quantization for biohashing method in Chapter 5.

Our aim is to improve the verification performance of the random projection based methods. In

this section, we compare the performance of the ECOC guided quantization for biohashing and

the discriminative biohashing methods. The comparison of the simulation results can be found

in Table 5.4. The simulation results show that the ECOC guided quantization for biohashing

method performs better than the discriminative biohashing method in most of the cases, espe-

cially when the bit-length of the hash vector is higher than 128. We conclude that the ECOC

guided quantization for biohashing finds better quantization threshold values and thus improves

the performance of the system. It appears that having better quantization thresholds is more

preferable to using more discriminative projections.
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Table 5.4: Comparison of the EER performances of the proposed biohashing methods in chap-
ter 4 and chapter 5

Length EER (%) of the
ECOC guided
quantization for
biohashing [28]

EER (%) of the
discriminative pro-
jection selection
based biohashing
[26] with binary
quantization

EER (%) of the
discriminative pro-
jection selection
based biohashing
[26] with GMM
quantization

Scenario Database

64 bit % 6.44 % 3.83 % 2.73 Key-
unknown

AT&T

128 bit % 4.25 % 2.23 % 1.57 Key-
unknown

AT&T

256 bit % 1.13 % 1.80 % 1.15 Key-
unknown

AT&T

512 bit % 0.04 % 2.48 % 2.10 Key-
unknown

AT&T

64 bit % 13.07 % 14.40 % 13.58 Key-
stolen

AT&T

128 bit % 9.71 % 12.01 % 11.14 Key-
stolen

AT&T

256 bit % 7.64 % 10.80 % 10.23 Key-
stolen

AT&T

512 bit % 8.01 % 10.15 % 9.73 Key-
stolen

AT&T

64 bit % 12.30 % 15.75 % 16.23 Key-
unknown

Sheffield

128 bit % 7.87 % 13.33 % 14.03 Key-
unknown

Sheffield

256 bit % 6.25 % 11.45 % 11.05 Key-
unknown

Sheffield

512 bit % 2.93 % 10.44 % 12.20 Key-
unknown

Sheffield

64 bit % 17.74 % 19.38 % 20.68 Key-
stolen

Sheffield

128 bit % 16.91 % 17.51 % 19.71 Key-
stolen

Sheffield

256 bit % 15.25 % 16.96 % 17.80 Key-
stolen

Sheffield

512 bit % 14.21 % 19.27 % 18.22 Key-
stolen

Sheffield
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5.5 Chapter Summary

In this chapter, we propose a novel biometric hashing scheme based on the proposed quantization

method that maximizes the row and the column separation of the code matrix as in ECOC

classifiers. We maximize the distance between the genuine-impostor pairs as well as decrease the

correlation between the bit positions in biometric hash vectors belonging to different users. The

proposed method has superior performance in comparison with [2]. The proposed quantization

method can be applied to other biometric hashing schemes that employ various feature extraction

techniques.



Chapter 6

Security and Privacy Attacks Against

Biohashing Schemes

6.1 Introduction

Biohashing scheme is recently proposed as a promising template protection method in the lit-

erature [2, 3, 16, 19–21]. Biohashing schemes offer to preserve privacy via randomization and

enhance security via its cancelability property. Although these schemes achieve high perfor-

mance in terms of authentication error rates and offer lower authentication times due to their

binary nature, they are vulnerable to various attacks reported in the literature [17, 22–24].

Kong et al. [17] state that the performance of the biohashing schemes depend on the secrecy

of the user’s secret key and the actual performance of these methods should be evaluated under

key-stolen attack scenario where an attacker gets the secret key of the legitimate user but does

not have her face image. In this scenario, an attacker sends a face image and the secret key of

the user to the system. Then, the system computes a biohash vector by using the data sent by

the impostor. Finally, the system determines whether the claimer is authentic or not. Key-stolen

scenario and its related attacks are addressed in previous chapters of this thesis.

In the literature, Cheung et al. [23] consider a security attack against the random projection

based biohashing method [2]. The considered security attack can be seen as a simplified ver-

sion of one of the security attacks considered in this chapter. They use the pseudo-inverse

operator to approximately invert the random projection operation. However they assume that a

68
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reconstructed biohash can be provided to the verification system directly for verification without

forming a face image which may not be realistic in all cases. In addition, they do not consider

privacy attacks in their paper. In another study, Lee et al. [104] point out that, the attacker does

not need to know the user’s secret key, just knowing the biohash is enough to come up with

a pre-image attack where one can use any random projection matrix to obtain a feature vec-

tor which would produce the exact same biohash as the one that is discovered. However, such

security attacks can be easily prevented by checking whether the user’s secret key is entered

correctly before comparing the biohashes. Therefore we do not consider such attacks in this

chapter. Similar to Cheung et al. [23], Lee et al. [104] do not consider privacy attacks as well.

Other attacks against biohashing methods are performed by Kümmel et al. [22, 24] in the liter-

ature. They assume that an attacker steals some biohash vectors (in this case handwriting data)

from the user and he tries to reconstruct the raw biometric data by using a genetic algorithm or

a spline interpolation function. In these attacks, they need more than one biohash vector gen-

erated from the same biometric data as well as the secret key of the user. They try to perform

a pre-image like attack. Their main aim is to threaten the security not the privacy since they

do not want to reconstruct visually identical or similar handwriting instead they want to recon-

struct a biometric data which can create a high matching score. In fact, it is almost impossible

to reconstruct visually identical or similar biometric data due to huge information loss at the

quantization phase of the biohashing methods.

In this chapter, we consider various attack scenarios that can threaten the privacy of the users

as well as the security of the system. We perform attacks against random projection based bio-

hashing methods [2, 3]. Since the feature extraction and random projection steps are dimension

reducing linear transformations, there exists infinitely many elements which give the same re-

sult. That is, the inverse image of a single point under a linear dimension reduction operator is

of infinite size. However it is easy to obtain a single element from this inverse image set using

a minimum norm solution which is easy to obtain. The proposed attacks can also be performed

for the biohashing systems that we propose in Chapter 3, Chapter 4, and Chapter 5. In Chap-

ter 3, we propose an optimal linear transform based biohashing method. We develop a new

dimension reduction method which results in a better dimension reduction matrix but we again

use a matrix in the dimension reduction phase. In this method, we use exactly the same building

blocks of a biohashing method: 1) Feature extraction, 2)Dimension reduction, and 3)Quantiza-

tion. Eventually, the proposed attack method can be successfully performed for this method.

In Chapter 4, we propose a discriminative biohashing method. We develop a new dimension
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reduction method which selects the rows of the random projection matrix by applying the Fisher

criterion and the indices of the selected rows are stored in the database. When a claimer sends

her face image and the secret key to the system, the system computes the biohash vector by us-

ing the index vector ci. In other words, the proposed method uses a dimension reduction matrix

defined by the user’s secret key as in the random projection based biohashing method although

our method offer a better dimension reduction matrix in order to obtain better error rates. We

also proposed GMM based quantization in this method but it will not be a problem for apply-

ing our proposed attack method since we use another person’s face image in order to invert the

quantization step and the thresholds will be accessible to the attacker. As a result, the proposed

attack method can successfully be performed for this method as well. In Chapter 5, we propose

ECOC guided quantization for biohashing. Thus, we improve the performance of the system by

developing a new quantization method. The feature extraction and dimension reductions phases

are exactly the same as in the random projection based biohashing method. Since we use another

person’s face image in order to invert the quantization phase and the thresholds will be available

to the attacker, this allows us to use the proposed attack method also for this biohashing method.

Consequently, the proposed attack method can also be applied to the variants of the random

projection based biohashing methods even if they use any other quantization method.

6.2 Desired Properties of Biohashes

In this section, we address the desired properties of the biohashes. They are summarized as

follows:

1. The biohash should be irreversible.

When an attacker gets a biohash of a legitimate user, she should not compute the biometric

data of this user. In other words, even if the attacker get biohash h, no information about

the biometric data itself should be obtained due to the desirable property that biohashes

are irreversible.

2. The biohash should be cancelable.

A biohashing scheme needs two inputs;

(a) Biometric image, Im ∈ I where I is a biometric image space,

(b) Secret key, Key ∈ K where K is a key space.
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By using these two inputs, a biohash can be computed as follows:

h = b (Im,Key) , (6.1)

where h is the biohash and b (.) is a biohashing function. Therefore, a legitimate user

can change/update her biohash by only changing her secret key when an attacker gets

her biohash.

3. The biohash should be robust against different biometric images belonging to the same

user.

In real world applications, the users cannot give exactly the same biometric data in each

enrollment session. Thus, the acquired biometric data of the user changes across different

enrollment sessions. Even in such cases, it is expected that the computed biohashes (with

different biometric data acquired in different sessions) of the same user should be similar.

In other words, the biohashes, which are computed from the same user’s biometric data

and secret key, should be close in some distance metric with high probability.

d (b (Im1,Key) , b (Im2,Key)) ≤ t, (6.2)

where d (.) is the function that computes Hamming distance between two inputs, b (.) is a

biohash function that computes biohash by using its inputs, Im1 and Im2 are two biometric

images that belong to the same user and acquired at different sessions, Key is the user’s

secret key and t is the distance threshold for the decision.

4. Biohash should be fragile to the biometric images which do not belong to the legitimate

user.

The biohashes are not strict as the traditional cryptographic hashes. Thus, a single bit

change in the input does not create a huge change at the output. Although, the biohashing

schemes are robust against some changes in the input, they should be sensitive to the

content changes. When the content of the biometric image is changed (different biometric

image belonging to any other person), its corresponding biohash value should be distant

from the biohash of the corresponding legitimate user.

d (b (Im1,Key) , b (Im2,Key)) > t, (6.3)
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where d (.) is the function that computes Hamming distance between two inputs, Im1 and

Im2 are two biometric images that do not belong to the same user, and t is the distance

threshold for the decision.

6.3 Privacy Threats

In this section, we perform attacks against Ngo et al.’s biohashing scheme [2, 3] in order to

test its privacy preservation capability via its irreversibility property. In this attack scenario, we

act as an attacker and try to threaten the privacy of the users who uses Ngo et al.’s biohashing

scheme.

We address privacy flaws of random projection based biohashing schemes. As mentioned in the

beginning of this chapter, our attacks will be applicable to the introduced methods in Chapters

3, 4, and 5 as well.

The main motivation behind this work is to find the minimum norm solution among the elements

which map to the target value in the inverse image of the target value under the linear transfor-

mation. Although Ngo et al. claim that their random projection based biohashing scheme is

irreversible [2, 3], we introduce a biohashing reconstruction method by using the weakness in

the linear transformation steps of Ngo et al.’s biohashing scheme.

6.3.1 Attacks on the Irreversibility Property

In this part, we introduce our proposed attack method based on the minimum norm solution for

random projection based biohashing schemes for face images. This is a new attack which is

proposed by us in the literature. Although there are some works on pre-image attacks against

biohashing schemes [24, 104] in order to threaten the security, there is no work on privacy threats

Figure 6.1: The basic steps of Ngo et al.’s biohashing scheme [2, 3]
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Figure 6.2: Illustration of Ngo et al.’s scheme’s main phases in terms of functions

of biohashing schemes in the literature to the best of our knowledge. In this attack, we assume

that the biohash vector, h, of a legitimate user and her secret key are compromised. In this case,

the attacker wants to recover the face image of the legitimate user by using the biohash vector

and the secret key in order to threaten the privacy of the users. In other words, the attacker wants

to create an artificial biometric data of the user by using her biohash. This artificially generated

biometric data is desired to have the capability of generating false positive verifications although

they are not necessary visually the same as the original biometric data. We can obtain a face

image by inverting a biohash h as follows:

Î = f †
(
g† (q̃ (h))

)
, (6.4)

where Î ∈ Rm×n is the reconstructed face image, h ∈ R`×1 is the biohash vector, q̃ (.), g† (.),

and f † (.) denote a possible inverse function for the quantization, pseudo-inverse function for

the random projection, and pseudo-inverse function for the feature extraction (i.e. Principle

Component Analysis (PCA) [34]) phase in Ngo et al.’s biohashing method respectively.

Since the feature extraction and the random projection phases, which are illustrated in Figure

6.3, are linear transformations, we can find the elements which give the same results from their

inverse image by using a minimum norm solution. Since Ngo et al.’s biohashing scheme reduces

the dimensionality of the input face image in each step of their method, there exist infinitely

many elements which maps to the same element in the inverse image.
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6.3.1.1 The Proposed Attack Method Based on Minimum `2 Norm Solution

In this part, we introduce the proposed attack method based on the min-`2 norm solution. The

details of the proposed attack method are given in the below part.

1. Step 1: The attacker steals a biohash vector, h ∈ {0, 1}` , of a legitimate user either from

a smart card or database etc.

2. Step 2: In Ngo et al.’s biohashing scheme, the elements of the intermediate biohash

vector, z, are binarized with respect to a fixed threshold as follows:

h = q (z) =

 h (i) = 1, if z (i) ≥ t,

h (i) = 0, Otherwise,
(6.5)

where h ∈ {0, 1}` is the biohash vector of the legitimate user and t is the mean value of

the intermediate biohash vector z.

During this step, the attacker tries to simulate the inverse of the quantization phase in Ngo

et al.’s biohashing scheme as follows:

ẑ = q̃ (h) =

 ẑ (i) = α (i) , if h (i) = 1,

ẑ (i) = β (i) , if h (i) = 0,
(6.6)

where i = 1, . . . , `, q̃ (.) is the function for inverting the quantization phase of Ngo et al.’s

biohashing scheme, and α (i) is a number larger than the threshold and β (i) is a number

less than the threshold. Since the threshold t would be unknown to the attacker, he needs

to determine a threshold from another face image. Note that for methods which use a

pre-determined threshold (such as the ones in Chapter 4 or 5), the attacker can obtain the

threshold directly and act accordingly.

The attacker uses another face image, which does not belong to the legitimate user, in

order to perform this step of the proposed attack algorithm. He takes a face image, I f ake ∈

Rm×n, which does not belong to any legitimate user. Next, he lexicographically re-orders

it and obtains the face vector, x f ake ∈ R
(mn)×1. Then, he applies Principle Component

Analysis (PCA) to the face vector as follows:

y f ake = A(x f ake − w), (6.7)
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where y f ake ∈ R
k×1 is the vector containing PCA coefficients of the face image which does

not belong to the legitimate user.

Then, he projects these PCA coefficients onto lower dimensional space by using the secret

key of the legitimate user.

z f ake = RGS y f ake. (6.8)

Next, he maps the elements of the compromised biohash vector, h, from {0, 1} to {−1, 1}

space as follows:

ĥ =

 ĥ (i) = 1, if h (i) = 1,

ĥ (i) = −1, if h (i) = 0,
(6.9)

where ĥ is the mapped biohash vector.

The he computes the sample mean value of z f ake:

µ =
1
`

∑̀
i=1

z f ake (i) , (6.10)

which would act as the threshold value t in the original system. Then, he computes the

sample standard deviation of z f ake:

σ =

1
`

∑̀
i=1

(
z f ake (i) − µ

)2


1
2

. (6.11)

Finally, he computes ẑ in the equation 6.6 as follows:

ẑ (i) = µ + σ
(
ĥ (i)

)
, (6.12)

where i = 1, . . . , `. That is, the attacker uses one standard deviation above or below the

threshold value for inverting the quantization step.

3. Step 3: In Ngo et al.’s biohashing scheme, PCA feature vectors are projected by a random

projection matrix which is generated with the user’s secret key as follows:

z = RGS y, (6.13)
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where z∈ R`×1 is the randomly projected PCA feature vector (intermediate biohash vec-

tor), RGS ∈ R
`×k is the orthonormal random projection matrix, and y∈ Rk×1 is vector

containing PCA coefficients of a legitimate user.

Since the attacker gets the secret key of the user, he can re-generate RGS of the legitimate

user. Then, he compute R†GS by using the MoorePenrose pseudo-inverse method [1, 105,

106]. Therefore, the attacker performs inverse of the random projection phase with the

help of compromised secret key and by taking into account Ngo et al.’s biohashing scheme

as follows:

ŷ = g† (ẑ) =
(
R†GS

)
ẑ, (6.14)

where g† (.) is the pseudo-inverse function for the random projection in Ngo et al.’s bio-

hashing scheme, RGS ∈ R
`×k is the orthonormal random projection matrix generated via

the secret key compromised from the legitimate user, R†GS is the pseudo-inverse matrix of

RGS .

4. Step 4: In Ngo et al.’s biohashing scheme, first, a face image of the user, I ∈ Rm×n, is

lexicographically re-ordered and the face vector, x∈ R(mn)×1, is obtained. Then, PCA is

applied to the face vector as follows:

y = A(x − w), (6.15)

where A ∈ Rk×(mn) is the PCA matrix trained by the face images in the training set, w is

the mean face vector, and y∈ Rk×1 is vector containing PCA coefficients belonging to the

face image of the user.

The attacker computes inverse of the PCA matrix and reconstruct the face image of the

legitimate user.

Î = f† (ŷ) = A†ŷ + w, (6.16)

where f † (.) is the pseudo-inverse function for the feature extraction (i.e. PCA) phase in

Ngo et al.’s biohashing scheme, Î is the reconstructed face image, and A† is the pseudo-

inverse of the PCA matrix.
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6.3.1.2 The Proposed Attack Method Based on Minimum `1 Norm Solution

In this part, we introduce the proposed attack method based on the min-`1 norm solution. This

attack is similar to the attack method based on minimum `2 norm solution introduced in Section

6.3.1.1. The only difference between them is in the third step. In other words, step 1,2 and 4 are

the same in both attack methods. The step 3 for this attack method is explained in the following.

Step 3: In Ngo et al.’s biohashing scheme, PCA feature vectors are projected onto random

projection matrix which is generated with the user’s secret key as follows:

z = RGS y, (6.17)

where z∈ R`×1 is the randomly projected PCA feature vector (intermediate biohash vector),

RGS ∈ R
`×k is the orthonormal random projection matrix, and y∈ Rk×1 is vector containing PCA

coefficients of a legitimate user.

Since the attacker gets the secret key of the user, he can re-generate RGS of the legitimate user.

Min-`1 with equality constraints solution [107, 108], which is also known as basis pursuit, finds

the vector with smallest `1 norm that explains the observations z.

min ‖y‖1 subject to z = RGS y, (6.18)

min ‖y‖1 =
∑

i

∣∣∣yi

∣∣∣ . (6.19)

If there exists a sufficiently sparse y0 such that z = RGS y0, then the equation 6.18 finds ŷ better

at this step.

6.4 Security Threats

In cryptology, there are cryptographic hash functions which are the members of one-way func-

tions. One-way function is a function that is easy to compute on every input; however, it is hard

to invert given the image of a random input. Cryptographic hash functions take an arbitrary

block of data and return a fixed size bit string. They are mostly used in content authentication,
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Figure 6.3: Security and privacy flaws of Ngo et al.’s scheme

search and indexing applications [109]. In the literature, there are several types of security con-

straints/properties on cryptographic hash functions. These functions are expected to be robust

against the below type of attacks:

1. Pre-Image Resistance: Given a hash h, it is hard to find any message m such that

h = hash(m), (6.20)

where hash(.) is the corresponding cryptographic hash function. This property comes

from the one-wayness. In biohashing schemes, m is analogous to the biometric data of

the user and h is analogous to the biohash vector.

2. Second Pre-Image Resistance: Given an input m1, it is hard to find another input m2,

where m1 , m2 such that

hash (m1) = hash (m2) . (6.21)

This property is sometimes referred as a weak collision resistance in the literature.

3. Collision Resistance: It is hard to find two different messages m1 and m2 such that

hash (m1) = hash (m2) . (6.22)

This property is sometimes referred as a strong collision resistance in the literature.
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Biohashing is totally different than cryptographic hashing. Cryptographic hash is a one-way

function, when a single bit is changed the hash sum becomes completely different due to the

avalanche effect [38]. On the other hand, for biohashing schemes several bits changes should

not affect the performance of the system since they are designed by taking into account the

noisy nature of the biometric templates. Therefore, we cannot expect from biohashing schemes

to have exactly the same properties of cryptographic hashing. However, we use aforementioned

properties in order to define attack models for biohashing schemes in Section 6.4.

6.4.1 Attacks on the Cancelability Property

In this part, we discuss possible attack scenarios on the cancelability property of the biohashing

schemes. Let us assume that an attacker steals the biohash of a legitimate user. The legitimate

user recognizes that her biohash has been stolen and she re-issues a new biohash vector by

changing her secret key. In this case, the attacker wants to authenticate himself by using the old

biohash of the legitimate user. In this case, we assume that providing a biohash directly to a

verification system is possible.

6.4.2 Attack Scenarios for the Minimum `1 and Minimum `2 Norm Solution Based

Attack Methods

In this part, we introduce other possible attack scenarios which uses the minimum `1 and mini-

mum `2 norm solution based attack methods described in Section 6.3.1.2 and Section 6.3.1.1.

These attacks can also threaten the security of the random projection based biohashing schemes

and they are analogous to an attack against the pre-image resistance property of a cryptographic

hash function described in Section 6.4 since they both try to reconstruct the face image of the

legitimate user. Recall that pre-image resistance property states that given a hash h, it is hard to

find any message m such that h = hash(m). Consequently, we come up with three main attack

scenarios which are described below.

1. Scenario 0: Consider a remote biometric verification system where a user and a verifier

communicate via a communication channel and a biohashing scheme based verification

is used. In this scenario, the verification is done via biohash values. From the security

point of view, the attacker wants to cheat the system by getting a legitimate users biohash

during the communication session or directly from the database. Thus, he gets both the
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biohash and the secret key of a legitimate user. Then, he reconstructs the face image of

the legitimate user by using the biohash and the secret key. Finally, he wants to enter the

system by using the reconstructed face image and the secret key of the user.

2. Scenario 1: Consider a remote biometric verification system where a user and a verifier

communicate via a communication channel and a biohashing scheme based verification

is used. In this scenario, the verification is done via biohash values. From the security

point of view, the attacker wants to cheat the system by getting a legitimate users biohash

during the communication session or directly from the database. Thus, he gets the bio-

hash of a legitimate user from this communication channel. He also gets the secret key of

the user. Then, he reconstructs the face image of the legitimate user by using the biohash

and the secret key. However, the user notices that her biohash was stolen and changes/up-

dates her biohash by changing her secret key. Besides, the system administrator increase

the security of the communication channel between the user and the verifier so that the

attacker cannot enter this communication channel (i.e. use SSL (Secure Sockets Layer)

connection). In this case, the attacker wants to authenticate himself to the system by using

the reconstructed face image and the old secret key.

3. Scenario 2: In this scenario, an attacker again gets biohash of a legitimate user from the

communication channel between the user and the verifier. He also acquires the secret

key of the user. Then, he reconstructs the face image of the legitimate user by using the

biohash and the secret key. However, the user notices that her biohash was stolen and

changes/updates her biohash by changing her secret key. Besides, the system administra-

tor increase the security of the communication channel between the user and the verifier

so that the attacker cannot enter this communication channel (i.e. use SSL connection).

On the other hand, the attacker again steals the secret key of the user. Therefore, the

attacker wants to authenticate himself to the system by using the reconstructed face im-

age and the new secret key. This attack scenario is very similar to the key-stolen attack

scenario addressed in previous chapters. The main difference is that this attack scenario

is performed by a skilled imposter since he uses the reconstructed face image of a legiti-

mate user whereas the attacker uses another person’s face image in the key-stolen attack

scenario.

In addition to these attacks, it is obvious that biohashing systems inherently have verification

errors. These verification errors may cause intrinsic failure attacks (i.e., zero-effort attacks, brute
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force attacks) which are derived from the fact that there is always a non-zero probability that two

biometric templates generated from two different individuals are sufficiently alike to produce a

positive match [1]. Thus, an incorrect decision can be made by a biometric recognition system

(e.g., a false accept). For instance, an attacker can try to authenticate herself to the system

by using a biometric data and a secret key which do not belong to any legitimate user. It is

analogous to an attack against the second pre-image resistance or collision resistance property

of a cryptographic hash function described in Section 6.4. This attack scenario is covered as

“key-stolen scenario” in other chapters of this thesis.

6.5 Simulation Settings and Results

In this section, we give the simulation settings and the results of the simulations for privacy and

security attacks.

6.5.1 Simulations for the Privacy Threats: Attacks on the Irreversibility Property

In this part, we give the simulation settings and results of the attacks in order to test the irre-

versibility property of Ngo et al.’s random projection based biohashing scheme for face images

[2]. In simulations, k is set to 1024 for y ∈ Rk×1 which is the vector containing PCA coefficients

belonging to the face image of the user. Besides, `, which is the length of a biohash vector, is

set to {64, 128, 256, 512}.

The reconstructed, original and mean face images are shown in Figure 6.4 - Figure 6.7. We

recontruct visually similar face images by using min `2 and min `1 norm solutions with various

biohash vector lengths. It is obvious that if noise removal filters and some image processing

techniques are applied to the reconstructed face image, it is possible to obtain better images.
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Figure 6.4: Illustration of the original image, mean face image and the reconstructed face
images by using min `2 and min `1 norm solutions with 64 bit biohash vector.

Figure 6.5: Illustration of the original image, mean face image and the reconstructed face
images by using min `2 and min `1 norm solutions with 128 bit biohash vector.
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Figure 6.6: Illustration of the original image, mean face image and the reconstructed face
images by using min `2 and min `1 norm solutions with 256 bit biohash vector.

Figure 6.7: Illustration of the original image, mean face image and the reconstructed face
images by using min `2 and min `1 norm solutions with 512 bit biohash vector.
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6.5.2 Simulations for the Security Attacks

In this part, we give the simulation setting and results for the security attacks against Ngo et

al.’s random projection based biohashing scheme for face images [2]. We perform experiments

in order to demonstrate the general validity of attack models with various face databases. First,

we demonstrate the performance of the proposed attack method on the Cambridge university

AT&T face database [91]. In this database, there are 400 different face images from 10 different

images of each of 40 distinct subjects. The images were taken at different times, varying the

lighting, facial expressions and facial details. The size of the face images are m = 112 and

n = 92. Next, we test the performance of the proposed attack method on the Multi Modal

Verification for Teleservices and Security applications (M2VTS) face database [92]. The face

images in this database are taken from the videos as explained in [93]. That database consists

of face images with various expressions, illumination conditions, angles, age, sex, and glasses.

The size of the face images are m = 48 and n = 64. There are 1480 face images, which consist

of 40 different face poses for 37 different people in the database. Next, we test the performance

of the proposed attack method on the Sheffield (previously UMIST) face databases [97]. The

Sheffield database has 564 different face images belonging to 20 different people. Each people

have various face images with wide range of poses from profile to frontal views. Finally, we

test the performance of the proposed attack method on the AR database which has 3120 face

images belonging to 120 different people’s faces with different facial expressions, illumination

conditions, and occlusions.

6.5.2.1 Simulations for the attacks against cancelability property

In this part, we perform simulations in order to test whether Ngo et al.’s random projection based

biohashing scheme satisfies the cancelability property or not as defined in Section 6.4.1. We also

perform random guess attacks where an attacker tries to guess the biohash of a legitimate user

without knowing her new or any previous biohash vector. In this case, the attacker neither knows

the biometric data nor the secret key of a legitimate user as well. We compare this two attack

scenarios. The simulation results, which are shown in Figure 6.8-Figure 6.11, demonstrate that

random projection based biohashing methods satisfy the cancelability property. In other words,

the attacks against cancelability property are not better than the random guess attacks.
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Figure 6.8: The change of false accept probability with respect to various decision thresholds
for stolen biohash of 64-bit length on AT&T database.
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Figure 6.9: The change of false accept probability with respect to various decision thresholds
for stolen biohash of 128-bit length on M2VTS database.
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Figure 6.10: The change of false accept probability with respect to various decision thresholds
for stolen biohash of 256-bit length on Sheffield database.
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Figure 6.11: The change of false accept probability with respect to various decision thresholds
for stolen biohash of 512-bit length on AR database.

6.5.2.2 Simulations for the attack scenarios using the minimum `1 and minimum `2 norm

solution based attack methods

In this part, we provide the simulation setting and results for the attack scenarios, which are

defined in Section 6.4.2, in Figure 6.16-Figure 6.15 and in Table 6.2-Table 6.1. In particular,

the simulation results for the proposed attack based on min-`1 norm solution can be seen in

Figure 6.16, Figure 6.17 and Table 6.2. Furthermore, the simulation results for the proposed

attack based on min-`2 norm solution can be seen in Figure 6.14, Figure 6.15 and Table 6.1.

The simulation results show the attack based on the min-`2 norm solution performs better than

the attack based on the min-`1 norm solution. It is expected since the PCA feature vectors are

not sparse enough.

It is obvious that when an attacker gets the biohash and the secret key of a legitimate user and

reconstructs the face image of the user, she can enter the system successfully as long as the user

is not aware that her biohash is stolen. This corresponds to the attack scenario 0. The simulation

result of the min-`1 norm solution for 64 bit biohash vectors can be seen in Figure 6.12. In

addition, the simulation result of the min-`2 norm solution for 512 bit biohash vectors can be

seen in Figure 6.13. Note that, this simulation result can also be obtained for all lengths of

biohash vector (64, 128, 256 and 512 bit) on all face databases (AT&T, Sheffield, M2VTS, AR)

by using either the min-`1 norm solution or the min-`2 norm solution.

The proposed attack methods, especially, perform better (i.e. they yield higher EERs) with 256

and 512 bit biohash vectors. From the simulation results, we deduce that as the attacker gets

more information either on biometric data or secret key, he performs more successful attacks. It
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Table 6.1: EER performance of the proposed attack methods based on min-`2 norm solution
against Ngo et al.’s method [2, 3]

Length Key-
unknown
scenario

Key-stolen
scenario

Scenario 0 Scenario 1 Scenario 2 Database

64 bit % 12.19 % 16.93 % 100.00 % 11.97 % 22.78 AT&T
128 bit % 7.36 % 13.97 % 100.00 % 7.12 % 21.93 AT&T
256 bit % 5.81 % 12.76 % 100.00 % 5.30 % 26.58 AT&T
512 bit % 3.79 % 12.34 % 100.00 % 3.61 % 45.16 AT&T
64 bit % 17.09 % 21.40 % 100.00 % 21.38 % 30.69 Sheffield
128 bit % 16.38 % 21.92 % 100.00 % 17.49 % 35.12 Sheffield
256 bit % 15.05 % 22.53 % 100.00 % 17.97 % 43.36 Sheffield
512 bit % 14.97 % 23.47 % 100.00 % 14.43 % 58.57 Sheffield
64 bit % 18.10 % 21.36 % 100.00 % 12.20 % 21.30 M2VTS
128 bit % 14.56 % 18.08 % 100.00 % 7.21 % 21.64 M2VTS
256 bit % 11.15 % 16.72 % 100.00 % 5.69 % 27.48 M2VTS
512 bit % 9.23 % 16.09 % 100.00 % 3.87 % 44.58 M2VTS
64 bit % 23.63 % 28.27 % 100.00 % 24.95 % 32.50 AR
128 bit % 18.24 % 27.17 % 100.00 % 21.95 % 32.20 AR
256 bit % 15.82 % 25.50 % 100.00 % 12.45 % 45.86 AR
512 bit % 11.38 % 24.89 % 100.00 % 15.30 % 61.03 AR

is concluded that the attacker is more successful in the second attack scenario than in the first

attack scenario since he also knows the new secret key in this case.
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Figure 6.12: The change of false accept probability with respect to “attack scenario-0” defined
in Section 6.4.2 for 64 bit biohash vector on all face databases (AT&T, Sheffield, M2VTS, AR)

by using the min-`2 norm solution.
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Table 6.2: EER performance of the proposed attack methods based on min-`1 norm solution
against Ngo et al.’s method [2, 3]

Length Key-
unknown
Scenario

Key-stolen
Scenario

Scenario 0 Scenario 1 Scenario 2 Database

64 bit % 12.19 % 16.93 % 100.00 % 12.60 % 15.91 AT&T
128 bit % 7.36 % 13.97 % 100.00 % 8.58 % 13.96 AT&T
256 bit % 5.81 % 12.76 % 100.00 % 5.66 % 16.50 AT&T
512 bit % 3.79 % 12.34 % 100.00 % 4.00 % 32.37 AT&T
64 bit % 17.09 % 21.40 % 100.00 % 19.42 % 25.54 Sheffield
128 bit % 16.38 % 21.92 % 100.00 % 15.94 % 26.22 Sheffield
256 bit % 15.05 % 22.53 % 100.00 % 15.28 % 34.82 Sheffield
512 bit % 14.97 % 23.47 % 100.00 % 15.48 % 41.18 Sheffield
64 bit % 18.10 % 21.36 % 100.00 % 11.87 % 16.00 M2VTS
128 bit % 14.56 % 18.08 % 100.00 % 8.15 % 14.84 M2VTS
256 bit % 11.15 % 16.72 % 100.00 % 5.32 % 17.37 M2VTS
512 bit % 9.23 % 16.09 % 100.00 % 4.05 % 34.44 M2VTS
64 bit % 23.63 % 28.27 % 100.00 % 26.55 % 20.33 AR
128 bit % 18.24 % 27.17 % 100.00 % 15.51 % 22.40 AR
256 bit % 15.82 % 25.50 % 100.00 % 13.75 % 23.23 AR
512 bit % 11.38 % 24.89 % 100.00 % 12.23 % 37.44 AR
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Figure 6.13: The change of false accept probability with respect to “attack scenario-0” defined
in Section 6.4.2 for 512 bit biohash vector on all face databases (AT&T, Sheffield, M2VTS,

AR) by using the min-`1 norm solution.
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Figure 6.14: The change of FRR and FAR with respect to the decision threshold for “attack
scenario-1” and “attack scenario-2” defined in Section 6.4.2 with 64 bit biohash vector on

Sheffield database by using the min-`2 norm solution.
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Figure 6.15: The change of FRR and FAR with respect to the decision threshold for “attack
scenario-1” and “attack scenario-2” defined in Section 6.4.2 with 256 bit biohash vector on AR

database by using the min-`2 norm solution.
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Figure 6.16: The change of FRR and FAR with respect to the decision threshold for “attack
scenario-1” and “attack scenario-2” defined in Section 6.4.2 with 128 bit biohash vector on

AT&T database by using the min-`1 norm solution.
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Figure 6.17: The change of FRR and FAR with respect to the decision threshold for “attack
scenario-1” and “attack scenario-2” defined in Section 6.4.2 with 512 bit biohash vector on

M2VTS database by using the min-`1 norm solution.

6.6 Chapter Summary

In this chapter, we categorize the threats into two groups: 1) Privacy threats, 2)Security threats.

We introduce new privacy and security attacks against the random projection based biohashing

schemes. We propose attacks based on minimum norm solutions of linear projections and a

possible inversion of the quantization step. These attacks threaten the privacy of the users as

well as the security of the system. The simulation results demonstrate that the random projection

based biohashing methods do not satisfy the irreversibility property under some conditions and

this makes them vulnerable against severe privacy and security attacks.

In addition to these attacks, there may be other attacks that can be performed against the random

projection based biohashing methods. For instance, the attacker may use a face image database

containing face images which do not belong to any legitimate user instead of reconstructing the

face image by using the biohash and the secret key of the user. Thus, he can use the face image

whose biohash has the minimum Hamming distance with the user’s biohash.



Chapter 7

THRIVE: Threshold Homomorphic

encRyption based secure and privacy

preserving bIometric VErification

system

7.1 Introduction

1 Recently, homomorphic encryption methods are used with biometric feature extraction meth-

ods in order to perform verification via encrypted biometric templates [54, 84–86]. However,

these methods offer solutions in the honest-but-curious model where each party is obliged to

follow the protocol but can arbitrarily analyze the knowledge that it learns during the execution

of the protocol in order to obtain some additional information. Their proposed system is not

designed for the malicious model where each party can arbitrarily deviate from the protocol and

may be corrupted. On the other hand, they do not take into account security and privacy issues

of biometric templates stored in the database [54, 86]. The authors state that their security model

will be improved in the future work by applying encryption methods also on the biometric tem-

plates stored in the database. Furthermore, some of these systems are just designed for a single

biometric modality or a specific feature extraction method which limits their application areas

1This chapter is based on [29]. I would like to especially thank Dr. Mehmet Sabir Kiraz for his valuable contri-
butions to this chapter especially on cryptography related parts.
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[84, 85]. Apart from that, an adversary can enroll himself on behalf of any user to their systems

since they do not offer any solutions for malicious enrollment. Finally, all these systems suffer

from computational complexity.

Biohashing schemes are one of the emerging biometric template protection methods [16, 18–21].

These schemes offer low error rates and fast verification at the authentication stage. However,

they suffer from several attacks reported attacks as shown in Chapter 6 and in the literature

[17, 22–24]. These schemes should be improved in order to be safely used in a wide range of real

life applications. In this chapter, we develop new enrollment and authentication protocols for

biometric verification methods and we call it “THRIVE: Threshold Homomorphic encRyption

based secure and privacy preserving bIometric VErification system”. Our goal is to increase

security and enhance privacy of the biometric schemes. The THRIVE system can work with

any biometric feature extraction scheme whose outputs are binary or can be binarized. Since

biohashing schemes can output binary templates called a biohash, they can be successfully used

with the proposed system. We address adversary attacks (which are introduced in [4]) when a

malicious attacker aims to gain access to the system. By taking into account these adversary

attacks, we develop a new biometric authentication system based on threshold homomorphic

encryption in the malicious model. Our general aim is to increase security of the system and

enhance privacy of biometric templates belonging to the users of the system. The contributions

of the THRIVE system introduced in this chapter can be summarized as follows:

1. A new biometric authentication system (which we call the THRIVE system) is proposed

in the malicious model and the proposed system can be used with any existing biometric

modality whose templates are fixed size vectors and they can be binarized.

2. Only a legitimate user can enroll in the proposed system since a signature scheme is used

at the proposed enrollment stage.

3. Only encrypted versions of binary templates are stored in the database and biometric

templates are never released even during authentication. Thus, the proposed system offers

a new and advanced biometric template protection method without any helper data.

4. Even if an adversary gains an access to the database and steals encrypted biometric tem-

plates, neither he can authenticate himself by using these encrypted biometric templates

due to the authentication protocol nor he can decrypt these encrypted biometric templates

due to the (2, 2)-threshold homomorphic encryption scheme.
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5. Neither the verifier nor the user can perform decryption by themselves on encrypted bio-

metric templates since the (2, 2)-threshold homomorphic encryption scheme is used. In-

stead, the verifier and the user can perform decryption collaboratively using their own

private key shares.

6. The verifier does not need to know the user’s biometric template or private key in order to

authenticate the user.

7. The THRIVE system can be used in the applications where the user does not trust the

verifier since the user does not need to reveal her biometric template and/or private key in

order to authenticate herself and the verifier does not need to reveal any data to the user at

the proposed authentication protocol.

8. Authentication is performed via randomized templates which ensures privacy.

9. Even if an adversary intercepts the communication channel between the user and the veri-

fier, he cannot obtain any useful information on the biometric template since all exchanged

messages are randomized and/or encrypted and he cannot perform decryption due to the

(2, 2)-threshold homomorphic encryption scheme. Furthermore, he cannot use the ob-

tained data from message exchanges in this communication channel since nonce and sig-

nature schemes are used together in the authentication.

10. The THRIVE system is a two-factor authentication system (biometric and secret key) and

is secure against illegal authentication attempts. In other words, a malicious adversary

cannot gain access to the proposed system without having the biometric data and the

private key of a legitimate user by performing adversary attacks described in [4] as well

as hill-climbing attacks [30–33].

11. In the THRIVE system, the generated protected biometric templates are irreversible since

they are encrypted.

12. In the THRIVE system, the generated protected biometric templates are cancelable. Even

if they are stolen, they can be re-generated.

13. The THRIVE system can generate a number of protected templates from the same bio-

metric data of a user due to the randomized encryption and biohashing. Thus, it ensures

diversity.
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14. The THRIVE system is implemented and a successful authentication protocol run requires

0.218 seconds on average. Consequently, the proposed system is sufficiently efficient to

be used in real world applications.

7.2 Attacks on Biometric Systems

In the literature, attacks to a biometric system are classified into two categories [4]: 1) Intrinsic

failure attacks, 2) Adversary attacks. These attacks are introduced in the below part. In these

attacks, an adversary may have two main aims:

1. Threaten security by gaining access to the system,

2. Threaten privacy by obtaining the biometric data of a user.

7.2.1 Intrinsic failure attacks

Intrinsic failure attacks (i.e., zero-effort attacks, brute force attacks) [1] are derived from the

fact that there is always a non-zero probability that two biometric templates generated from

two different individuals are sufficiently alike to produce a positive match. Thus, an incorrect

decision can be made by a biometric recognition system (e.g., a false accept).

7.2.2 Adversary attacks

Adversary attacks are caused by a malicious behavior which can be classified into two cate-

gories: 1) Direct attacks, 2) Indirect attacks. Ratha et al. define a comprehensive security and

privacy framework that captures eight possible adversarial attack scenarios to a biometric recog-

nition system [4] as depicted in Figure 7.1: 1- Spoofing&Mimicry attack, 2- Replay attack, 3-

Attack against the feature extractor, 4- Tampering the communication channel between the fea-

ture extractor and the matcher, 5- Attack against the matcher, 6- Attack against the database,

7-Tampering the communication channel between the database and the matcher, 8- Override

Response.
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Figure 7.1: Possible attack points to a biometric recognition system (adapted from [4]).

7.2.2.1 Direct Attacks

Only spoofing (physiological biometric traits) & mimicry (behavioral biometric traits) attacks

can be classified under direct attacks. These kinds of attacks are carried out by presenting a

fake biometric template to the sensor, thus the adversary aims to gain access to the system by

impersonating an authentic user [51, 52, 110]. The definitions of these attacks are given in the

below.

Attack 1.a - Spoofing attack: This attack corresponds to the first attack type in Figure 7.1. In

this attack, a fake biometric trait (i.e., face, fingerprint, face) or an artifact (i.e. gummy finger,

high quality face image) is introduced to the sensor of a biometric recognition system in order

to gain access to the system as a legitimate user [111, 112]. This attack is directly performed on

the biometric sensor and the adversary does not need to know anything about the system (i.e.

matching algorithm, feature extraction method).

Attack 1.b - Mimicry attack: This attack also corresponds to the first attack type in Figure 7.1.

In this attack, a fake behavioral trait (e.g., signature, voice) is introduced to the sensor of a

biometric recognition system in order to gain access to the system as a legitimate user [113]. In

this type of attack, the adversary tries to break the system by imitating a legitimate user. This

attack is directly performed on the biometric sensor and the adversary does not need to know

anything about the system (i.e. matching algorithm, feature extraction method).
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7.2.2.2 Indirect Attacks

Indirect attacks, on the other hand, include all the remaining seven attacks depicted in Figure 7.1.

A Trojan horse might be used in order to carry out the third attack (attack against the feature

extractor) and the fifth attack (attack against the matcher). In these cases, an adversary replaces

the feature extractor or the matcher respectively, and outputs a feature vector or matching score

(also final decision) different from the original. The sixth attack (attack against the database)

targets the system database where an adversary aims to manipulate biometric templates (steal,

delete, substitute, change, or add) in order to gain access to the system. The second attack type

(replay attack), the fourth attack type (tampering the communication channel between the fea-

ture extractor and the matcher), the seventh attack type (tampering the communication channel

between the database and the matcher) and the eight attack type (override response) focus on

exploiting possible vulnerabilities in the communication channels of a biometric recognition

system in order to extract, add or change the information. One of the most common indirect

attack is the hill-climbing attack which can be performed by using the output of the matcher

[30–33]. The definitions of aforementioned attacks are given in the below.

Attack 2 - Replay attack between the biometric sensor and the feature extractor: This

attack corresponds to the second attack type in Figure 7.1. It uses weaknesses in the communi-

cation channel between the biometric sensor and the feature extractor in order to gain access to

the system. In this attack, an adversary eavesdrops on the communication channel between the

biometric sensor and the feature extractor and tries to obtain the biometric template of a user.

When message interchange is over, the adversary connects to the feature extractor and sends the

obtained biometric template of the user to the feature extractor in order to gain access to the

system as a legitimate user.

Attack 3 - Attack against the feature extractor: This attack corresponds to the third attack

type in Figure 7.1. It can be performed by using a Trojan horse that replaces the feature extractor

and outputs a feature vector different than the original.

Attack 4 - Tampering the communication channel between the feature extractor and the

matcher: This attack corresponds to the fourth attack type in Figure 7.1. In this attack, an adver-

sary aims either to obtain information from the communication channel or to change information

in the communication channel.
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Attack 5 - Attack against the matcher: This attack corresponds to the fifth attack type in

Figure 7.1. It can be performed by using a Trojan horse that replaces the matcher and outputs a

matching score different than the original.

Attack 6 - Attacks against the database: This attack corresponds to the sixth attack type in

Figure 7.1. In this attack, an adversary aims to manipulate biometric templates (steal, delete,

substitute, change, or add) stored in the database.

Attack 7 - Tampering the communication channel between the database and the matcher:

This attack corresponds to the seventh attack type in Figure 7.1. In this attack, an adversary

aims either to get information from the communication channel or to change the information in

the communication channel by manipulating the biometric data.

Attack 8 - Override response: This attack corresponds to the eight attack type in Figure 7.1. In

a biometric authentication system, the verifier sends its decision (either Accept or Reject) to the

user after making some computations. In this attack, an adversary aims to change the response

of the verifier in order to gain access to the system.

Attack 9 - Hill-climbing attack: In this attack, an adversary iteratively updates a synthetically

created biometric template using a specific modification scheme according to the score given by

the matcher. It is assumed that the adversary can access the scores. When the score exceeds a

fixed decision threshold, adversary gains access to the system.

7.3 Preliminaries

7.3.1 Threshold Homomorphic Cryptosystem

In this section, we briefly describe underlying cryptographic primitives of the protocols. Given

a public key encryption scheme, let m ∈ M denote its message or plaintext space, c ∈ C the

ciphertext space, and r ∈ R its randomness. Let c = Encpk(m; r) depict an encryption of m

under the public key pk where r is a random value. Let sk be its corresponding private key,

which allows the holder to retrieve a message from a ciphertext. The decryption is done with

the private key sk as m = Decsk(c).

In a (t, n)-threshold cryptosystem, the aim is to distribute the knowledge of a private key among

parties P1, . . . , Pn such that at least t of these parties are required for successful decryption. In
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Table 7.1: Comparison between the THRIVE system and the existing solutions

THRIVE Salting
Based
Schemes

Non-
Invertible
Trans-
form
Based
Schemes

Key
Binding
Schemes

Key
Gener-
ation
Schemes

[83] [87] [84] [54,
86]

Irreversibility Yes No Yes Yes Yes Yes Yes Yes Yes
Cancelability Yes Yes Yes Yes Yes Yes Yes Yes Yes
Diversity Yes Yes Yes Yes Yes Yes Yes Yes Yes
Helper Data
Usage

No No No Yes Yes Yes No No No

Homomorphic
Encryption

Yes No No No No No Yes Yes Yes

Threshold
Homo-
morphic
Encryption

Yes No No No No No No No No

Malicious
Attack
Model

Yes No No No No No No No No

other words, each party holds a ’share’ of the private key, the overall private key can collabora-

tively be reconstructed to let them recover the message in a given ciphertext. On the other hand,

there is a public key that is used as in a regular public key scheme to perform decryption. More

formally, let P1, . . . , Pn be the participants. We define a (t, n)-threshold encryption scheme with

three phases as follows:

• In the key generation phase, each participant Pi receives a pair (pki, ski), where pki and

ski are the shares of the public and secret key, respectively. Then, the overall public key

pk is constructed by collaboratively combining the shares. Finally pk is broadcast to allow

anyone to encrypt messages inM. The shares of this public key are also broadcast which

allow all parties to check the correctness of the decryption process.

• The encryption phase is done as in any public key encryption cryptosystem. If m ∈ M is

the message, a (secret) random value r from R is chosen and c = Encpk(m; r) is broadcast

under a public key pk.

• In the threshold decryption phase, given that t (or more) participants agree to decrypt a

ciphertext c, they follow two steps. First, each participant produces a decryption share
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by performing S i j = Decski j
(c), j = 1, . . . , t. After broadcasting S i j , they all can apply a

reconstruction function Z on these shares so that they can recover the original message

by performing m = Z(S i1 , . . . , S it ) where Pi1 , . . . , Pit represent the group of t participants

willing to recover m.

In case of a (t, n)-threshold scheme, the additional requirement is that if less than t parties gather

their correct shares of the decryption of a given ciphertext, they will get no information what-

soever about the plaintext. In the proposed system, we use the (2, 2)-threshold cryptosystem

between the claimer (the user) and the verifier where both players must cooperate in order to

decrypt.

A public key encryption scheme is said to be additively homomorphic if given c1 = Enc(m1; r1)

and c2 = Enc(m2; r2) it follows that c1c2 = Enc(m1 + m2; r3). As a consequence, it is also true

that Enc(m; r)s is equal to Enc(ms; rs) for a known integer s. Another consequence of these

properties is the re-randomization of encryption, by observing that Enc(m; r)Enc(0; r′) is a new

encryption whose plaintext is again m (and its randomness is r′′).

There are various versions of threshold homomorphic cryptosystems. The most widely used

are ElGamal [114] or Paillier [115] cryptosystems. Threshold homomorphic ElGamal has the

drawback of only allowing decryption of values belonging to a relatively small set, for which it

is feasible to compute discrete logs. On the other hand, Paillier does not have this problem and

allows decryption of encrypted values in an arbitrarily large set (e.g., 1024-bit integers). How-

ever, the distributed key generation protocol for threshold Paillier is very expensive compared

to that for threshold ElGamal. In the proposed protocol, we consider a variant of the threshold

decryption protocol, the so-called private threshold decryption [116]. Here, the requirement is

that one of the t parties will be the only party who will recover the secret. This is easily achieved:

all t − 1 other parties follow the protocol, and broadcast their shares (along with the proofs of

correctness). The party who will learn the plaintext proceeds with the decryption process pri-

vately, collects all decryption shares from the t − 1 other parties, and privately reconstructs the

message. Note that the remaining parties will not get any information about this message.

7.3.2 The Paillier Encryption System

The Paillier cryptosystem, which is invented by Pascal Paillier in 1999, is a probabilistic asym-

metric algorithm for public key cryptography [115]. In this part, we briefly describe the Paillier
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encryption algorithm. In the key generation phase; an RSA common modulus n = pq with p

and q large primes is generated and the Carmichael function of n : λ = lcm(p − 1, q − 1) is

computed. Then, a generator g of Z∗
n2 such that g = 1(mod n) is computed. Next, the public key,

(n, g) is published while λ forms the secret key. Finally, the encryption of a message m ∈ Zn is

computed as:

c = gmrn (mod n2), (7.1)

where r ∈R Z∗n.

Moreover, the decryption is performed as follows:

m =
L(cλ(mod n2))
L(gλ(mod n2))

(mod n), (7.2)

where, for convenience, we simply define L(x) = (x − 1)/n.

7.3.3 Digital Signatures

A digital signature is a cryptographic primitive which is used for proving the authenticity of its

digital content. The digital signatures are used to associate the user’s identity to the electronic

documents. They should be easy to produce, check and difficult to forge. They are generated

by using the private key and verified by using the public key. Thus, only the user can perform

digital signature operation whereas everybody can verify it. Eventually, the digital signature

schemes have two main stages:

• Signature creation,

• Signature verification.

In the literature, there are two widely used digital signature schemes: 1) RSA digital signa-

ture scheme, 2) Digital Signature Algorithm (DSA) [117]. Here we describe the RSA digital

signature scheme.

Signature creation stage: A signer follows the below steps for performing signature opera-

tion:
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1. She chooses secret odd primes p, q and computes n = pq.

2. She chooses eA with gcd (eA,Φ (n)) = 1 where gcd(.) denotes the greatest common divisor

function of its inputs and Φ (n) denotes Euler’s phi function.

3. She computes dA = e−1
A mod Φ (n). Therefore, she computes her public (eA, n) and pri-

vate keys (dA, p, q).

4. She signs the message m as in the following.

y ≡ mdA mod n. (7.3)

5. She sends the signed message (y,m) to the verifier.

Signature verification stage: A verifier receives (y,m) and downloads the signer’s public

keys (eA, n). Then, he computes

z ≡ yeA mod n. (7.4)

The signature is valid iff m ≡ z.

7.3.4 Biometric Verification Scheme

Biometric verification schemes perform an automatic verification of a user based on her specific

biometric data (e.g., face, fingerprint, iris). There are two main stages in these schemes: 1) En-

rollment stage, and 2) Authentication stage. The user is enrolled to the system at the enrollment

stage. Then, the user again provides her biometric data to the system at the authentication stage

in order to prove her identity. Any biometric scheme, which provides binary fixed size templates

or whose templates can be binarized, can work with the proposed threshold homomorphic cryp-

tosystem. The THRIVE system can work with any biometric feature extraction method which

produces fixed size vectors as templates and perform verification with distance calculations be-

tween the enrolled and the provided template at the authentication stage. When the output of a

biometric feature extraction method is not binary, locality sensitive hashing can be used in order

to binarize the feature vector [118]. After binarization, the binary templates can successfully

be used with the proposed system. In this chapter, we use biohashing as an example algorithm
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for extracting binary biometric templates. Although biohashing has its own security and privacy

preservation mechanism, we do not rely on these for the security or the privacy preservation of

the proposed system. Thus it can be replaced with any other binary feature extraction method.

We call the fixed size binary biometric templates as ”biohash” in this chapter although we are

not limited to ”biohashing” method for obtaining them.

Biohashing schemes are simple yet powerful biometric template protection methods [16, 18–

21]. Biohash is a binary and pseudo-random representation of a biometric template. Biohashing

schemes use two inputs: 1) Biometric template, 2) User’s secret key. A biometric feature vec-

tor is transformed into a lower dimension sub-space using a pseudo-random set of orthogonal

vectors which are generated from the user’s secret key. Then, the result is binarized to produce

a pseudo-random bit-string which is called the biohash. In an ideal case, the distance between

the biohashes belonging to the biometric templates of the same user is expected to be relatively

small. On the other hand, the distance between the biohashes belonging to different users is

expected to be sufficiently high to achieve higher recognition rates.

In this part, we describe the random projection (RP) based biohashing scheme proposed by Ngo

et al. [2]. In a RP based biohashing scheme, there are three main phases: 1) Feature extraction,

2) Random projection, 3) Quantization. These steps for the face biometric are explained below.

7.3.4.1 Feature Extraction

At this phase, face images in the training set, which are collected during the enrollment stage,

are used. The set has training face images belonging to the registered users, Ii, j ∈ R
m×n where

i = 1, . . . ,K and K denotes number of users, j = 1, . . . , L and L denotes number of training

images per user. The faces images are lexicographically re-ordered and the training face vectors,

xi, j ∈ R
(mn)×1, are obtained. Then, Principle Component Analysis (PCA) [34] is applied to the

face images in the training set for feature extraction as follows:

yi, j = A(xi, j − w), (7.5)

where A ∈ Rk×(mn) is the PCA matrix trained by the face images in the training set, w is the mean

face vector, and yi, j ∈ R
k×1 is vector containing PCA coefficients belonging to the jth training

image of the ith user.
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7.3.4.2 Random Projection

At this phase, a RP matrix, R ∈ R`×k, is generated to reduce the dimension of the PCA coef-

ficient vectors. The RP matrix elements are independent and identically distributed (i.i.d) and

generated from a Gauss distribution with zero mean and unit variance by using a Random Num-

ber Generator (RNG) with a seed derived from the user’s secret key. The Gram-Schmidt (GS)

procedure is applied to obtain an orthonormal projection matrix RGS ∈ R
`×k to have more dis-

tinct projections. Finally, PCA coefficients are projected onto a lower `-dimensional subspace

as follows:

zi, j = RGS yi, j, (7.6)

where zi, j ∈ R
`×1 is an intermediate biohash vector belonging to the jth training image of the ith

user.

7.3.4.3 Quantization

At this phase, the intermediate biohash vector zi, j elements are binarized with respect to a thresh-

old as follows:

λi, j (k) =

 1 if zi, j (k) ≥ β,

0 Otherwise,
(7.7)

where λi, j ∈ {0, 1}` denotes biohash vector of the jth training image of the ith user and β denotes

the mean value of the intermediate biohash vector zi, j.

The computed binary biohashes are stored in the database in the enrollment stage for verification

purpose during the authentication stage. The user is authenticated when the Hamming distance

between Benroll (which denotes the biohash of the user generated at the enrollment stage) and

Bauth (which denotes the biohash of the user generated at the authentication stage) is below a

pre-determined distance threshold µ as follows:

n∑
k=1

Benroll (k) ⊕ Bauth (k) ≤ µ, (7.8)
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Figure 7.2: Illustration of the THRIVE enrollment stage: the user has control over the biometric
sensor, the feature extractor and the biohash generator whereas the verifier has control over the

database.

where ⊕ denotes the binary XOR (exclusive OR) operator. Therefore, the verifier decides

whether the user is legitimate or not using the pre-defined distance threshold.

7.4 The Proposed Biometric Authentication System

In this section, the proposed biometric authentication system is introduced. In the proposed

system, there are two major roles: 1. User (U) and 2. Verifier (V). The user has control of

the biometric sensor, the feature extractor, and the biohash generator whereas the verifier has

control of the database and the matcher. We assume that there is a trusted third party (TTP)

which initially sets up the system public/private keys.

The TTP distributes the keys in the proposed THRIVE system. There are public-private key

pairs (pki, (sk1
i , sk2

i )) which are shared between the user and the verifier. pki is the public key

of the ith user, Ui, and both the user and the verifier have it. Recall that, when an enrollment

biometric template is encrypted by pki, this can solely be decrypted using the private key shares

of the user (sk1
i ) and the verifier (sk2

i ) collaboratively since the proposed system is based on

the (2, 2)-threshold homomorphic cryptosystem. Here, sk1
i is the private key share of the ith

user, Ui, and sk2
i is the private key share of the verifier. Besides, there is a public-private key

pair (pkUi , skUi) which belongs to the ith user, Ui, where pkUi is the public key and skUi is its

associated private key in order to perform the signature operation. The verifier also has the

public key pkUi of the ith user, Ui.
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User (Ui) Verifier (V)
Public: pkUi , pki Public: pki, pkUi

Private: skUi , sk1
i ,Benrolli Private: sk2

i

Compute Ci = Encpki

(
Benrolli

)
−

SignskUi
(Ci)

−−−−−−−−−−−−→
Verify & Store SignskUi

(Ci)

Figure 7.3: The THRIVE Enrollment Protocol

7.4.1 Enrollment Stage

Access rights of the verifier and the user to the biometric authentication system at the enrollment

stage are illustrated in Figure 7.2. At this stage, the ith user, Ui, has control over the biometric

sensor, the feature extractor, and the biohash generator whereas the verifier has control over the

database. It is worth mentioning that biometric sensor authentication must be achieved in the

proposed system before executing the enrollment protocol to prevent unauthorized sensors to be

used as clients in the system by malicious users. However this is not explicitly indicated in the

protocol in order not to clutter the chapter. The proposed enrollment protocol is illustrated in

Figure 7.3 and steps of the proposed enrollment protocol are introduced as follows:

1. Step 1: The ith user, Ui, computes her biohash, Benrolli . Next, the user encrypts her

biohash, Ci = Encpki

(
Benrolli

)
, by using the public key pki. Then, the user signs her

encrypted biohash, SignskUi
(Ci), and sends it to the verifier.

2. Step 2: The verifier verifies SignskUi
(Ci) of Ui by using pkUi and stores it in the database.

These data will be used for verification at the authentication stage.

Recall that the proposed enrollment protocol uses the (2, 2)-threshold homomorphic cryptosys-

tem. Namely, both the user and the verifier have to cooperate in order to decrypt a ciphertext.

Furthermore, the signature ensures that the data stored in the database are generated by a legiti-

mate user.

Lemma 1. Biohashes are not revealed at the enrollment stage.

Proof. (Sketch) At the enrollment stage, user first encrypts her biohash and then signs it. Af-

ter these computations, the user sends her encrypted and signed biohash (SignskUi
(Ci)) to the

verifier. Since the user’s biohash is not sent in plain form, biohashes are not revealed at the

enrollment stage.
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Figure 7.4: Illustration of the THRIVE authentication stage: the user has control over the
biometric sensor, the feature extractor and the biohash generator whereas the verifier has control

over the database, the matcher and the decision maker.

Lemma 2. An adversary cannot register as a legitimate user at the enrollment stage.

Proof. (Sketch) At the enrollment stage, user encrypts her biohash by using the public key

pki and then signs her encrypted biohash by using her private key skUi . Thus, the user sends

encrypted and signed biohash (SignskUi
(Ci)) to the verifier. The verifier knows pkUi of each

genuine user. Since verifier verifies the signature of the user, an adversary cannot register himself

as a genuine user without having the private key of the user skUi for computing SignskUi
(Ci).

7.4.2 Authentication Stage

Access rights of the verifier and the user to the biometric authentication system at the authen-

tication stage are illustrated in Figure 7.4. At this stage, the ith user, Ui, has control over the

biometric sensor, the feature extractor, and the biohash generator whereas the verifier has con-

trol over the database, the matcher and the decision maker. The user Ui tries to prove herself to

the verifier by executing the proposed authentication protocol shown in Figure 7.5. Similar to

the enrollment case, the biometric sensor must be authorized by the system before the authenti-

cation protocol is carried out. Steps of the proposed authentication protocol are as introduced as

follows:

1. Step 1: The ith user wants to verify her identity to the verifier by using her biohash and

sends connection request to the verifier. Then, the ith user, Ui, computes her biohash

Bauthi . Note that the user cannot produce exactly the same biometric template at each at-

tempt and this results in different biohashes computed by the same user. Therefore, Benrolli
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User (Ui) Verifier (V)
Public: pkUi , pki Public: pkUi , pki, SignskUi

(Ci)
Private: skUi , sk1

i ,Bauthi Private: sk2
i

Choose ri ∈R {0, 1}`

Compute C′i = Encpki(ri + Bauthi)
Compute X = Decsk1

i
(C′i )

−−−−−−−−−−−−
C′i ,X,nonceUi
−−−−−−−−−−−−−−−−−−−−−−−−−→

Retrieve SignskUi
(Ci) from the database

←−−−−−−−−−−

SignskUi
(Ci),nonceV

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Verify SignskUi
(Ci)

Compute C′′i = Encpki(ri) ·Ci = Encpki(ri + Benrolli)
Compute Y = Decsk1

i
(C′′i )

−

SignskUi
(Encpki(ri),Y,nonceUi ,nonceV )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Verify SignskUi
(Encpki(ri),Y,nonceUi ,nonceV )

Compute C′′i = Encpki(ri) ·Ci

Compute Ti = Z(X,Decsk2
i
(C′i ))

Compute Wi = Z(Y,Decsk2
i
(C′′i ))

Compute
∑n

j=1 Ti( j) ⊕Wi( j) ≤ µ

←−−−−−−−−−−−
Accept or Reject
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 7.5: The THRIVE Authentication Protocol

and Bauthi are different although they are assumed to be generated by the same user at dif-

ferent sessions (enrollment and authentication). First of all, the user chooses a random

vector r ∈R {0, 1}` where ` is the length of the biohash vector and ∈R denotes that the

variable is chosen uniformly randomly. She computes C′i = Encpki(ri + Bauthi) by using

the public key pki. Then, she performs partial decryption over C′i , which is denoted by

X = Decsk1
i
(C′i ), by using her private key share sk1

i . Then, the ith user generates a nonce

called nonceUi which is an arbitrary number which is used only once in a cryptographic

communication. nonceUi contains information about user id, session id and time stamp.

Finally, the user sends C′i , X, nonceUi to the verifier.
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2. Step 2: The verifier retrieves SignskUi
(Ci) from the database where Ci = Encpki

(
Benrolli

)
.

Then, it generates a nonce called nonceV which contains information about the verifier,

session id and time stamp. Finally, it sends SignskUi
(Ci),nonceV to the user.

3. Step 3: The user verifies SignskUi
(Ci) by using public key pkUi . She computes C′′i =

Encpki(ri + Benrolli). Thanks to the homomorphic encryption scheme properties. Note that

C′′i = Encpki(ri + Benrolli) = Encpki(ri) · Ci due to the homomorphic encryption. Then,

she performs partial decryption over C′′i , which is denoted by Y = Decsk1
i
(C′′i ), by using

her private key share sk1
i . Finally, she sends SignskUi

(Encpki(ri),Y,nonceUi ,nonceV ) to the

verifier.

4. Step 4: The verifier verifies the signature, SignskUi
(Encpki(ri),Y,nonceUi ,nonceV ), by us-

ing the public key pkUi . Then, it computes C′′i = Encpki(ri) · Ci since it does not trust the

user. Note that the verifier also has to compute C′′i in order to verify that C′′i is computed

correctly by the user. Next, it performs full decryption by using reconstruction function,

Z(.), whose inputs are X and Decsk2
i
(C′i ) and computes Ti = ri + Benrolli . Similarly, it

performs full decryption by using reconstruction function, Z(.), whose inputs are Y and

Decsk2
i
(C′′i ) and computes Wi = ri + Bauthi . Finally, the Hamming distance [95] between

Ti = ri + Benrolli and Wi = ri + Bauthi is computed and and compared to a threshold as

follows:

n∑
j=1

Ti ( j) ⊕Wi ( j) ≤ µ, (7.9)

where Ti ( j) and Wi ( j) is the jth bit of Ti and Wi respectively, µ is a pre-defined distance

threshold. Therefore, the verifier decides whether the user is authentic with respect to the

pre-defined distance threshold. Note that the Hamming distance between Ti = ri + Benrolli

and Wi = ri + Bauthi is equal to the Hamming distance between Benrolli and Bauthi .

5. Step 5: Finally, the verifier sends its decision (either Accept or Reject) to the user. How-

ever, the user may get dummy output if there is an error or an attack (i.e., override re-

sponse attack) in the communication channel. The proposed system can easily be updated

to cope with such an attack, for instance, by allowing the verifier to sign its decision in-

cluding the nonces generated during the authentication session (i.e. either Sign(Accept,
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nonceUi , nonceV )or Sign (Reject, nonceUi , nonceV ) and then send it to the user. In this

way, authenticity, integrity and origin of the data can easily be verified. Besides, signing

the nonces (nonceUi and nonceV ) also make the communication unique and avoids replay

attacks.

Lemma 3. Biohashes are not revealed at the authentication stage.

Proof. Authentication is performed in a randomized domain. In other words, the authentication

is determined by comparing Ti and Wi. An adversary can only obtain Ti and Wi which are

revealed at the authentication stage. Recall that these are randomized biohashes. Thus, from

the adversary’s perspective, there are three unknowns (ri, Benrolli and Bauthi) and two equations

which are shown in the below.

Ti = ri + Benrolli , (7.10)

Wi = ri + Bauthi , (7.11)

where ri is the random number generated by the ith user. Since this is a system of linear equations

with fewer equations than unknowns, the system has infinitely many solutions. Consequently, it

is impossible for the adversary to obtain a legitimate user’s biohash by using Ti and Wi which are

revealed at the authentication stage. As a result, the proposed biometric authentication system

ensures security and privacy.

7.5 Security and Privacy Analysis

In this section, the security and privacy preservation capability of the THRIVE system is ana-

lyzed. Further details are given below.

7.5.1 Security and privacy arguments against possible attacks

In addition to the malicious party attacks, Ratha et al. classify adversary attacks against bio-

metric systems into two groups [4] in the literature: 1) Direct attacks, 2) Indirect attacks. They

define eight main attack points to a biometric system as illustrated in Figure 7.1. These attacks
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are introduced in Section II - Attacks on Biometric Systems. In these attacks, there are two main

threats:

1. the adversary can threaten the security by gaining access to the proposed system,

2. the adversary can threaten the privacy by obtaining the biometric data of a user or the

users.

There are some other attack types in the literature e.g. denial-of-service (DoS) attack [119]. DoS

attack is an adversary attack which aims to make the system unavailable to its legitimate users.

Note that, when an adversary just aims to prevent a legitimate user from gaining access to the

proposed system, he can succeed in such DoS attacks. The proposed system does not provide

protection against DoS attacks and these type of attacks are out of scope for this chapter. The

proposed system aims to improve the security against illegal authentication attempts. Besides,

the proposed system enhances privacy of the biometric data of the users.

In this section, informal security and privacy analysis of the proposed biometric authentication

system is made against the adversary attacks (including hill climbing attack which is a special

case of the indirect attacks) which are classified as follows:

1. Direct Attacks

(a) Attack 1 - Spoofing & Mimicry attacks

2. Indirect Attacks

(a) Attack 2 - Replay attack

(b) Attack 3 - Attack against the feature extractor

(c) Attack 4 - Tampering the communication channel between the feature extractor and

the matcher

(d) Attack 5 - Attack against the matcher

(e) Attack 6 - Attack against the database

(f) Attack 7 - Tampering the communication channel between the database and the

matcher

(g) Attack 8 - Override response

(h) Attack 9 - Hill-climbing attack
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1. Protection against Attack 1 - Spoofing & Mimicry attack: An adversary can neither

gain access to the proposed system nor obtain biometric template of a user by performing a

spoofing & mimicry attack. Let us assume that an adversary introduces a fake biometric data to

the sensor in order to impersonate a real user. Even if the fake biometric data is very similar to

the original biometric data of the user, the adversary cannot gain access to the proposed system

since he does not know the private keys of the user (i.e. the user’s private key share (sk1
i ) and

the user’s private key skUi for signature) which are also required at the authentication stage. In

other words, the proposed system is a two-factor authentication system where a claimer must

provide biometric data and her private key simultaneously at each authentication attempt.

On the other hand, let us assume that the adversary obtains private keys of the user. In this

case, security of the proposed system depends on the secrecy of the biometric data. As soon

as the adversary does not provide similar biometric data, he cannot gain access to the proposed

system. Note that the adversary cannot obtain the original biometric data of the user even if he

obtains private keys of the user since the (2,2)-threshold homomorphic cryptosystem is used.

Therefore, the adversary cannot perform decryption over Ci = Encpki

(
Benrolli

)
since he does not

know private key share of the user (i.e. sk1
i ). Consequently, the proposed system also preserves

the privacy of the users.

2. Protection against Attack 2 - Replay Attack: An adversary cannot gain access to the

proposed system by performing a replay attack. Let us assume that an adversary eavesdrops on

the communication channel between the biometric sensor and the feature extractor. Then, he

can only obtain the biometric template of a legitimate user. The adversary, however, cannot gain

access to the proposed system since he does not know private keys of the user (i.e. the user’s

private key share (sk1
i ) and the user’s private key skUi for signature) which are also required at

the authentication stage. Recall that the proposed system is a two-factor authentication system

and the system security depends on the secrecy of private keys of the user in this case.

3. Protection against Attack 3 - Attack against the feature extractor: An adversary cannot

gain access to the proposed system by performing an attack against the feature extractor. Let

us assume that an adversary targets the feature extractor and uses trojan horse in order to obtain

the biometric feature vector of the legitimate user. Even if the adversary can obtain the feature

vector, he cannot gain access to the proposed system since he does not know the private keys

of the user (e.g. the user’s private key share (sk1
i ) and the user’s private key skUi for signature).
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Recall that the proposed system is a two-factor authentication system where a claimer must

provide biometric data together with her private key at each authentication attempt. In this case,

the system security depends on the secrecy of the private keys of the user.

4. Protection against Attack 4 - Tampering the communication channel between the fea-

ture extractor and the matcher: An adversary can neither gain access to the proposed

system nor can obtain biometric template of a user by performing an attack on the communi-

cation channel between the feature extractor and the matcher. Recall that the communication

channel between the feature extractor and the matcher is actually the communication channel

between the user and the verifier as depicted in Figure 7.2 and Figure 7.4. Thus, it may suffer

from several attacks:

i) Replay attack

ii) Man-in-the-middle attack

iii) Ciphertext-only attack

iv) Known plaintext attack

i)Replay attack in the communication channel between the feature extractor and the matcher:

Let us assume that an adversary eavesdrops on the communication channel between the user and

the verifier and records the exchanged messages in the proposed authentication protocol. In other

words, let us assume that the adversary wants to perform a replay attack in this communication

channel. In this case, the adversary aims either to use these data for deceiving the verifier and

gaining access to the proposed system or to obtain the biometric template of a user in order to

threaten privacy.

The proposed authentication protocol is secure against the replay attack in the communication

channel between the user and the verifier since

1. the user uses nonceUi at the first step of the proposed authentication protocol,

2. the verifier uses nonceV at the second step of the proposed authentication protocol,

3. the user signs the whole communication, SignskUi
(Encpki(ri),Y,nonceUi ,nonceV ), during

the authentication stage at the third step of the proposed authentication protocol.
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Since the nonce is different for each authentication request, this makes the communication be-

tween the user and the verifier unique for each authentication session. Moreover, the adversary

cannot perform sign operation since he does not know the private key of the user skUi and he

must perform the third step of the authentication protocol for the new nonce introduced by the

verifier. Therefore, the adversary cannot gain access to the proposed system by performing re-

play attack in the communication channel between the feature extractor and the matcher. On

the other hand, the proposed authentication protocol preserves privacy of the user in case of

the replay attack in the communication channel between the user and the verifier since only

encrypted biometric templates can be obtained from the communication channel. Even if the

adversary obtains the private keys of the user, he cannot decrypt and compromise the biomet-

ric template of the user since the (2, 2) threshold homomorphic cryptosystem is used. In other

words, the adversary also needs private key share of the verifier in order to perform a successful

decryption.

ii)Man-in-the-middle attack attack in the communication channel between the feature ex-

tractor and the matcher: In the literature, man-in-the-middle attack is an active attack where

an adversary makes independent connections with the users and relays messages between them.

Let us assume that an adversary wants to perform man-in-the-middle attack in the communica-

tion channel between the user and the verifier. In this case, the adversary aims either to gain

access to the proposed system or obtain the biometric template of the user. When the adversary

eavesdrops on the communication channel between the user and the verifier, he can only obtain

the below items.

1. C′i , X, nonceUi from the first step of the proposed authentication protocol,

2. SignskUi
(Ci),nonceV from the second step of the proposed authentication protocol, and

3. SignskUi
(Encpki(ri),Y,nonceUi ,nonceV ) from the second step of the proposed authentica-

tion protocol.

However, all exchanged messages in the proposed authentication protocol are encrypted and

randomized and the adversary cannot perform decryption to learn the content since he does not

know the private keys of the user and the verifier. Thus, he cannot properly modify the content

of the exchanged messages in the proposed authentication protocol in order to gain access to the

proposed system as a legitimate user.
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iii) Ciphertext-only attack in the communication channel between the feature extractor and

the matcher: Another type of attack that can be performed in this communication channel is a

ciphertext-only attack (COA). The COA is an attack model for cryptanalysis where an adversary

is assumed to have access only to a set of ciphertexts. When corresponding plaintexts can be

deduced or private key is obtained, the COA is successful. For our case, biohashes (Bauthi) are

plaintexts and encryption of biohashes (Encpki(Bauthi)) are ciphertexts. Let us assume that the

adversary obtains encryption of biohashes (Encpki(Bauthi)) and he wants to gain access to the

proposed system. For this case, there are three options:

1. The adversary cannot deduce the plaintext (the user’s biohash (Bauthi)) from the ciphertext

(encryption of the user’s biohash (Encpki(Bauthi))) since he does not have the user’s private

key share (sk1
i ).

2. The adversary cannot use the verifier in order to decrypt Encpki(Bauthi) since the verifier

only sends SignskUi
(Ci) and nonceV where Ci = Encpki

(
Benrolli

)
to the user at the second

step of the proposed authentication protocol. Thus, the adversary does not obtain any

useful information from the verifier since the verifier only sends the data stored in the

database. Besides, it does not perform decryption and does not send these decrypted data

back to the adversary. Furthermore, since the adversary also does not have the user’s

private key share (sk1
i ) and the verifier’s private key share (sk2

i ), he cannot decrypt Ci.

3. The adversary cannot gain access to the proposed system even if he obtains biohash

(Bauthi) and encrypted biohashes (Encpki(Bauthi)) of the user without having her private

key share (sk1
i ).

Therefore, the adversary cannot gain access to the proposed system by using the COA in the

communication channel between the user and the verifier.

iv)Known-plaintext attack in the communication channel between the feature extractor and

the matcher: In addition to the above mentioned attacks, an adversary can perform known-

plaintext attack (KPA) by tampering the communication channel between the user and the ver-

ifier. The KPA is an attack where the adversary has samples of plaintext and its encrypted

version. The adversary aims to reveal further secret information such as private keys by us-

ing these information and gain access to the system. Let us assume that the adversary obtains

biohashes (Bauthi) and encryption of biohashes (Encpki(Bauthi)) and he wants to gain access to
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the proposed system as a legitimate user. He needs to execute the authentication protocol in

order to gain access to the proposed system. In this manner, the adversary generates a random,

ri ∈R {0, 1}`. Thus, he can compute C′i = Encpki(ri + Bauthi) by using the user’s public key pki

since public key of the user is known by all. However, he cannot perform X = Decsk1
i
(C′i ) since

he does not know the user’s private key share (sk1
i ). Therefore, he cannot execute the proposed

authentication protocol in order to enter the proposed system. Furthermore, the adversary can-

not obtain further information about the user’s private key share (sk1
i ) from the communication

channel between the user and the verifier via the KPA since

1. all the exchanged messages are encrypted in the communication channel between the user

and the verifier,

2. the verifier can only send the encrypted data stored in the database to the adversary.

These messages do not help the adversary for deducing the private key of the user. Therefore,

the adversary cannot gain access to the proposed system by using the KPA in the communication

channel between the user and the verifier.

5. Protection against Attack 5 - Attack against matcher: An adversary cannot obtain

biometric template of a user even if he gains access to the proposed system by performing an

attack against the matcher. Let us assume that an adversary uses a Trojan horse for manipulating

the matcher and hence to gain access to the system. If an adversary gains access to the matcher,

clearly it can give access to whomever it wants and breaks the security of the system. However

in this case, even if the adversary can gain access to the proposed system, he cannot obtain the

biometric templates since the (2,2)-threshold homomorphic cryptosystem is used. Therefore,

the adversary cannot perform decryption since he does not know the private key share of the

user (i.e. sk1
i ). Consequently, the proposed system preserves the privacy of the users.

6. Protection against Attack 6 - Attacks against database: An adversary can neither gain

access to the proposed system nor obtain biometric template of the users by performing an

attack against the database. Let us assume that an adversary aims to gain access to the proposed

system by performing this attack. In this case, the adversary must substitute or add data into

the database since erasing data from the database does not allow access to the proposed system

for the adversary. Let us again assume that the adversary adds data into the database (e.g.
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Table 7.2: The experimental results

Length of biohash
vector (bit)

Modulus(bit) Enrollment time (s) Authentication
protocol run (s)

0-256 256 0.3488 0.0080
257-512 512 2.1724 0.0341
513-1024 1024 16.3735 0.2180
1025-2048 2048 280.195 1.5528

encrypted version of the biohash of the adversary) or substitute data stored in the database. For

such cases, only adding data into the database or substituting data stored in the database is not

sufficient to gain access to the proposed system as a legitimate user since the adversary must

also successfully execute the proposed authentication protocol. Recall that the verifier verifies

the signature on SignskUi
(Encpki(ri),Y,nonceUi ,nonceV ) at the beginning of the fourth step of

the proposed authentication protocol since adversary cannot generate a valid signature without

having the private key of the user skUi .

On the other hand, let us assume that the adversary aims to obtain the biometric templates of the

users by performing an attack on the database. In this case, he can only obtain encrypted versions

of the biohashes (Ci = Encpki

(
Benrolli

)
) belonging to the legitimate users. However, biohashes

are encrypted by using the (2, 2) threshold homomorphic cryptosystem which makes decryption

impossible without having both the user’s private key share (sk1
i ) and the verifier’s private key

share (sk2
i ). Consequently, the adversary cannot threaten the privacy of the user even if he steals

encrypted data from the database due to the (2,2)-threshold homomorphic cryptosystem.

7. Protection against Attack 7 - Tampering the communication channel between the database

and the matcher: An adversary can neither gain access to the proposed system nor obtain

biometric template of a user by tampering the communication channel between the database

and the matcher. Let us assume that an adversary aims to gain access to the proposed system by

performing this attack. The database sends Ci = Encpki

(
Benrolli

)
to the matcher. Thus, when the

adversary performs this attack, he can only obtain Ci = Encpki

(
Benrolli

)
. On the other hand, the

adversary cannot use these data in order to gain access to the proposed system as a legitimate

user since

1. he cannot decrypt it because he does not have the user’s private key share (sk1
i ) and the

verifier’s private key share (sk2
i ),
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2. he does not have the private key of the user skUi for signing the data.

Therefore, the adversary cannot successfully execute the proposed authentication protocol in

order to gain access to the proposed system even if he tampers the communication channel

between the database and the matcher. Furthermore, he cannot threaten the privacy of the users

since he cannot perform decryption on the obtained data Ci = Encpki

(
Benrolli

)
due to the (2,2)-

threshold homomorphic cryptosystem. Consequently, the proposed system also preserves the

privacy of the users.

8. Protection against Attack 8 - Override response: An adversary can neither gain access to

the proposed system nor obtain biometric template of a user by performing an override response

attack. The proposed system can easily be updated in order to overcome this attack as described

in the step 5 of the proposed authentication protocol. In the proposed authentication protocol,

the verifier signs its decision including the nonces generated during the authentication session

(i.e. either Sign(Accept, nonceUi , nonceV )or Sign (Reject, nonceUi , nonceV ) and then sends it

to the user. Thus, it is explicitly known that the decision is taken by the verifier and it cannot be

changed. The signature guarantees authenticity, integrity and origin of the data. The user must

provide the signed decision including the nonces generated during the authentication session to

the verifier in order to gain access to the system. In this case, the adversary cannot perform the

override response attack since he cannot generate the signature of the verifier. Even if he obtains

Sign(Accept), he cannot make replay attack since the nonces are also used in the response (e.g.

Sign(Accept, nonceUi). On the other hand, the adversary cannot obtain the biometric template

of a user by performing this attack since biometric data is never released at this step.

9. Protection against Attack 9 - Hill-climbing attack: An adversary can neither gain access

to the proposed system nor obtain the biometric template of a user by a hill-climbing attack. Let

us assume that an adversary aims to perform a hill-climbing attack by using the output of the

matcher. In the hill-climbing attack, the adversary improves quality of the synthetically created

biometric template by iteratively updating it using a specific modification scheme according to

the score given by the matcher. For a one factor authentication system which is only based

on biometric data, when the score exceeds a fixed decision threshold, the adversary can gain

access to the system. However, the proposed system is a two-factor authentication system where

biometric data and private key are needed for successful authentication. Even if the private
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keys of the user are compromised, the matcher does not output a score instead outputs just

an accept/reject decision (i.e. either Sign(Accept, nonceUi , nonceV )or Sign (Reject, nonceUi ,

nonceV ) in the proposed system. Consequently, the adversary cannot obtain the scores which

are needed for performing the hill-climbing attack. Moreover, the adversary cannot estimate the

biometric data of the user since he cannot reach the matching scores and hence the user privacy

is not threatened.

7.6 Complexity Analysis

In this section, we discuss the complexity of the THRIVE enrollment and authentication pro-

tocols. The complexity of the THRIVE enrollment and authentication protocols cover protocol

steps for the round complexity, exponentiation for the computational complexity and messages

sent to the parties for the communication complexity. Without loss of generality, we will provide

complexity of the THRIVE protocols using the (2,2)-threshold homomorphic Paillier cryptosys-

tem as an instance [115].

The round complexity of the enrollment protocol is only 1. For the computational complexity,

the enrollment protocol requires only 4 exponentiations for a user but 1 exponentiation for the

server. The enrollment protocol has only 2 encryption and 1 signature and 1 signature verifica-

tion for the communication complexity.

As regards the authentication protocol, two different encryption schemes are used, i.e., a con-

ventional public key operation for (pkUi , skUi) (e.g., for the conventional encryption scheme like

RSA) and (2, 2)-threshold homomorphic encryption scheme for (pki, (sk1
i , sk2

i )) (e.g.; for the

Paillier encryption). In the authentication protocol, there are only 4 rounds. For the computa-

tional complexity of the authentication protocol, the user computes 2 exponentiations for C′i , 2

exponentiations for the decryption shares X and Y , 1 exponentiation for the signature verifica-

tion, 2 exponentiations for C′′i , and 1 exponentiation for the signature during the first and the

third steps of the proposed protocol. Consequently, there are 8 exponentiations computed during

the authentication protocol for a user. On the other hand, the verifier computes 1 exponentiation

for the signature verification, 1 exponentiation for C′′i , and 4 exponentiations for the decryp-

tion shares Dsk2
i
(C′i ) and Dsk2

i
(C′′i ). Therefore, there are 6 exponentiations computed during the

authentication protocol for the verifier. In total, there are 14 exponentiations computed during
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the authentication protocol for the user and the verifier. The authentication protocol has only 1

encryption and 2 signature operations for the communication complexity.

7.7 Implementation of the Proposed System

In this section, we introduce implementation results of the THRIVE enrollment and authenti-

cation protocols. We implement the THRIVE enrollment and authentication protocols in Java

language on a PC which has Intel 2.27 GHz Core2 Duo processor and 4 GB RAM. In the pro-

tocol implementation, we use RSA for the signing scheme and Paillier Threshold scheme for

the encryption. In the proposed system, there are two protocol stages such as enrollment and

biometric authentication. During the enrollment stage, RSA signing certificates are generated

for both the user and the server in order to register a user into the server. Then, a new Paillier

threshold scheme is constructed between the user and the server for each enrollment and the

required prime numbers are generated in each construction. After that the enrollment protocol

is executed. We also utilize a Java library which implements the Paillier Threshold Encryption

systems [120] in our implementation. The security of the RSA depends on the difficulty of the

factorization of its own common modulus (n = pq). The Paillier encryption scheme is based

on the problem to decide whether is an n-th residue modulo n2. This problem is believed to be

computationally hard in the cryptographic domain, and is linked to the hardness to factorize its

own common modulus n = pq where n is the product of two large primes p and q. In order

to provide 80-bit security level for RSA signing, we have to use 1024-bit common composite

modulus (512-bit for p and 512 bit for q) for RSA signing. Similarly, the common modulus for

Paillier threshold system is also 1024-bit.

In our experiments, we simulate 1000 clients and a single server. We create random credentials

for each user. Both the user and the verifier are run on the same PC. A successful authentication

protocol run requires 0.218 seconds on average. The average time for the enrollment and the

authentication protocol run for different security parameters are depicted in Table II. The en-

rollment requires much higher than the authentication protocol because of the generation of the

common modulus. Recall that the enrollment time shown in Table II includes set-up time and

enrollment protocol execution time. Besides, it is clear that an implementation in C would be

much faster. Note that the maximum length of the biohash vector can be the number of mod-

ulus bits. For instance, if modulus is 1024 bit, the length of the biohash can be from 513 bit

(minimum) to 1024 bit (maximum).
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7.8 Chapter Summary

In this chapter, we propose a novel biometric authentication system. The aim of the proposed

system is to increase security against adversary attacks defined in [4] when an adversary aims to

gain access to the system as a legitimate user and protect the privacy of the users by encrypting

the biometric templates stored in the database. We design new enrollment and authentication

protocols in order to increase the security against attacks reported in the literature and preserve

the privacy of the users. The proposed system can be used with any biometric feature extrac-

tion method which can produce binary templates or whose templates can be binarized. The

biohashing is chosen as an example binary biometric template generation system since it offers

satisfactory error rates and fast authentication. The comparison is performed in a randomized

domain in the authentication stage and the binary templates (e.g biohashes) are never released.

In addition to that, only encrypted binary templates are stored in the database. Since we use the

(2, 2)-threshold cryptosystem, the verifier cannot, in polynomial time, decrypt the data stored in

the database by himself. The user and the verifier can only decrypt the encryption of the binary

templates collaboratively. The proposed system can be used in applications where the user and

the verifier do not necessarily trust each other. Furthermore, we implement the proposed system

and a successful authentication protocol run requires 0.218 seconds on the average. Conse-

quently, it can be stated that the proposed system is sufficiently efficient to be used in the real

world applications.
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Conclusion

8.1 Conclusions

In this thesis, we address performance, security and privacy aspects of biohashing methods. We

propose new biohashing methods in order to increase authentication performance of the existing

random projection based biohashing methods. We develop several biohashing methods in order

to improve the performance of the existing random projection based biohashing methods even

for the key-stolen scenario. First, we try to find a better projection matrix in order to reduce the

Hamming distance between the biometric hash vectors which represent the same user but differ

due to variations in the biometric data. We develop a new face image hashing method based on

optimal linear transform under colored Gaussian noise assumption. The simulation results show

that the proposed biometric hashing method has much better performance in comparison to the

random projection based biometric hashing methods in the literature [2, 3]. Furthermore, in gen-

eral, performance of the proposed method increases with the increasing length of the biometric

hash vector. Next, we develop a new face image hashing method based on a proposed technique

that we call discriminative projection selection to reduce verification errors. This technique se-

lects the rows of an RP matrix, which is a user dependent dimension reduction matrix, by using

the Fisher criterion. In addition, we employ Gaussian mixture model at the quantization step to

obtain more distinct face image hash vectors for each user. The proposed method has better per-

formance in terms of EER in comparison to the Ngo et al.’s methods [2, 3]. As the length of face

image hash vector decreases, the proposed method shows better improvement since the proposed

dimension reduction matrix better preserves the pair-wise distances between feature vectors in

the reduced dimension subspace in comparison with the traditional random projection matrix.

121
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The best results are usually obtained with 128 or 256 bits. Finally, we propose another new bio-

metric hashing method which depends on Error-Correcting Output Codes (ECOC). We improve

the performance of the random projection based biometric hashing scheme by introducing a new

quantization method that attempts to optimize biometric hash vectors by using the ideas from

ECOC classifiers. The proposed scheme shows superior performance in comparison with Ngo

et al.’s method. The proposed scheme approximately reduces the EER by half in most of the

cases. Furthermore, even in some cases, the proposed scheme perfectly separates the genuine

and imposter users with no errors. Discriminative biohashing method in Chapter 4 and ECOC

guided biohashing in Chapter 5 have better performance especially in key-stolen scenario in

comparison with the random projection based biohashing methods. Discriminative biohashing

method performs better for biohash vectors with 64 and 128 bits since this method can select

more discriminative bits. As the length of the biohash vector increases, there is not enough dis-

criminative bits to be selected. Thus, the performance of the discriminative biohashing method

decreases. On the other hand, the performance of the ECOC guided biohashing increases with

the increasing biohash vector length since it is based on optimization of the Hamming distance

between the columns and rows of the codeword matrix which contains biohashes in its rows.

Dimension reduction and quantization phases introduces verification errors due to information

loss at these phases. From the simulation results, it can be stated that ECOC guided biohashing

performs better than discriminative biohashing method. We conclude that information loss at

the quantization phase is much more than information loss at the dimension reduction phase.

Thus, improving the quantization phase more significantly increases the system performance.

In addition to these works, we analyze the security and privacy preservation aspects of the ran-

dom projection based biohashing methods by performing various attacks against them. We

classify threats against these systems into two groups: 1) Security threats, 2)Privacy threats.

For security threats, we demonstrate the performance of the proposed methods under key-stolen

scenario where an attacker gets the secret key of the legitimate user but does not have her face

image. For privacy threats, we perform attacks against random projection based biohashing

schemes in order to test its privacy preservation capability via its irreversibility property. We

propose new attack methods based on minimum norm solutions for random projection based

biohashing schemes for face images. We can reconstruct the biometric data (not exactly the

same but similar) of the user by using the minimum norm solutions when the biohash and the

secret key of the user are stolen. Therefore, we show that an attacker can threaten the privacy of

the users. We also demonstrate that the attacker can also threaten the security of the system by
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using the reconstructed image and the secret key of the user even if the user changes her secret

key.

Finally, we propose a new biometric verification and template protection system which we call

the THRIVE system. The system includes novel enrollment and authentication protocols based

on threshold homomorphic encryption in which the private key is shared between the user and

the verifier. The system is designed for the malicious attack model where neither of the parties

is assumed to be honest. Security of the system is enhanced using a two factor authentication

scheme involving the users private key and the biometric data. In the proposed system, only en-

crypted binary biometric templates are stored in the database and verification is performed via

homomorphically randomized templates, hence, original templates are never revealed even dur-

ing authentication. Since threshold homomorphic encryption scheme is used, a malicious party

cannot perform decryption on encrypted templates of the users in the database using a single

key. We analyze the security and privacy preservation capability of the proposed system against

various adversary attacks. The analysis results show that the system is robust against malicious

attacks and preserves privacy of the users. The proposed system is suitable for applications

where the user and the verifier do not necessarily trust each other. The system can be used

with any biometric modality and biometric feature extraction scheme whose output templates

can be binarized. We implemented the proposed THRIVE system and found that a successful

authentication protocol run requires 0.218 seconds on average. Consequently, the system can be

efficiently used in real life applications.

8.2 Future Work

In this thesis, we address security and privacy issues as well as verification performance of the

biohashing methods. We work on face images but different biometric modalities as well as

multi-modal biometrics can be studied as future work. For performance aspects, the feature ex-

traction has utmost importance in a biohashing method. Better verification performance can be

achieved with better feature extraction methods (e.g. Zernike moments for face images). Fixed

length feature extraction methods can be very useful for developing new biohashing methods.

Furthermore, the quantization is one of the most critical phases in the biohashing schemes since

it causes verification errors. The verification performance of the biohashing methods can be

improved by using better quantization methods.
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In addition, there may be different security and privacy attack scenarios against biohashing meth-

ods. Security and privacy preservation capability of the biohashing methods can be tested with

these attack scenarios. For instance, Hellman et al. propose rainbow tables in order to crack

cryptographic hashed passwords [121]. These tables contain pre-computed values and are used

for reversing cryptographic hash functions. Their aim is to recover the plaintext password by

using only a hashed value. This idea can be adopted to attacks against the biohashing methods.

In this attack scenario, an attacker gets the secret key and the biohash of a user. The user is not

aware that her secret key and biohash are stolen. The attacker also has a face image database

containing face images which do not belong to any legitimate user. He computes biohashes by

using the face images and the secret key of the user. Then, he computes the Hamming distance

between the original biohash and the computed biohashes. He uses the face image whose bio-

hash has the minimum Hamming distance with the original biohash. He uses this face image and

the secret key of the user to gain access to the system. In another attack scenario, the attacker

again gets the secret key and the biohash of a user. The attacker applies exactly the same method

in order to find a face image. Consequently, the attacker uses this face image and the secret key

of the user to gain access to the system. However, the user notices that her biohash is stolen

and changes her secret key for updating her biohash. These attack scenarios can be performed

against the biohashing methods as future work. Moreover, security and privacy attacks can be

investigated under insider and outsider attacker models. The security and privacy metrics can

be proposed in order to evaluate the security and privacy preservation capability of the biohash-

ing methods. The cryptographic protocols which are developed for the THRIVE system can be

analyzed by using formal methods.

Finally, new cryptographic protocols can be proposed for biohashing methods according to the

usage scenario and for different attack models. Fully homomorphic encryption methods can be

used for securing biometric template as well as ensuring privacy.
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