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Abstract

With the recent release of low-cost depth acquisition devices, there is an
increasing trend towards investigation of depth data in a number of important
computer vision problems, such as detection, tracking and recognition. Much
work has focused on human action recognition using depth data from Kinect
type 3D cameras since depth data has proven to be more e�ective than 2D
intensity images.

In this thesis, we develop a new method for recognizing human actions
using depth data. It utilizes both skeletal joint information and optical �ows
computed from depth images. By drawing an analogy between depth and
intensity images, 2D optical �ows are calculated from depth images for the
entire action instance. From the resulting optical �ow vectors, patches are
extracted around each joint location to learn local motion variations. These
patches are grouped in terms of their joints and used to calculate a new
feature called `HOOFD' (Histogram of Oriented Optical Flows from Depth).
In order to encode temporal variations, these HOOFD features are calculated
in a pyramidal fashion. At each level of the pyramid, action instance is
partitioned equally into two parts and each part is employed separately to
form the histograms. Oriented optical �ow histograms are utilized due to
their invariance to scale and direction of motion. Naive Bayes and SVM
classi�ers are then trained using HOOFD features to recognize various human
actions. We performed several experiments on publicly available databases
and compared our approach with state-of-the-art methods. Results are quite
promising and our approach outperforms some of the existing techniques.
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Abstract

Dü³ük maliyetli derinlik yakalayan cihazlar�n piyasaya sürülmesiyle tespit,
takip ve tan�ma gibi birçok önemli bilgisayarla görme probleminde derin-
lik verisinin kullan�m� yükselen bir trend haline geldi. Kinect 3D kameras�
kullan�larak insan aktivitelerini tan�ma konusu üzerine de bir çok çal�³ma
yap�lm�³ ve bu ba§lamda derinlik verisinin 2D imgelerden daha efektif oldu§u
kan�tlanm�³t�r.

Biz bu tezde derinlik verisinden insan aktivitelerini tan�ma üzerine yeni
bir yöntem geli³tirdik. Bu yöntem hem 3D eklem bilgisini hem de derinlik
imgelerinden hesaplanan optik ak�³� kullanmaktad�r. Derinlik ve yo§unluk
imgeleri aras�nda kurdu§umuz ba§�nt� do§rultusunda derinlik imgelerinden
2D optik ak�³ vektörleri bütün bir aktivite örne§i süresince hesaplanmak-
tad�r. Sonra, 3D eklem konumlar� baz al�narak bölgesel hareket de§i³im-
lerini ö§renebilmek için her bir eklemin çevresinden optik ak�³ vektörlerini
içeren parçalar ç�kart�lmaktad�r. Bu parçalar bulundu§u ekleme göre gru-
plan�p geli³tirdi§imiz HOOFD (Histogram of Oriented Optical Flows from
Depth) özniteli§ini hesaplamakta kullan�lmaktad�r. Zamansal de§i³imleri de
takip edebilmek için HOOFD öznitelikleri piramitsel bir yakla³�mla hesa-
planm�³t�r. Piramidin her seviyesinde aktivite e³it iki bölüme ayr�l�p her
bölüm histogramlar� doldurabilmek için ayr� de§erlendirilmi³tir. Ölçek ve
hareket yönü de§i³mezli§i avantajlar�ndan dolay� optik ak�³ vektörlerinin
yönelimlerinden olu³an histogramlar kullan�lm�³t�r. Naive Bayes ve Destek
Vektör Makinalar� (DVM) s�n��and�r�c�lar� HOOFD öznitelikleri kullan�larak
e§itilmi³ ve birbirinden farkl� birçok aktiviteyi tan�mak için kullan�lm�³t�r.
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Farkl� veri kümeleri ile birçok deney yap�lm�³ ve önerilen yöntem literatürdeki
en geli³kin yöntemlerle kar³�la³t�r�lm�³t�r. Sonuçlar oldukça umut vericidir ve
önerdi§imiz yöntem mevcut baz� tekniklerden daha iyi performans göster-
mektedir.
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Chapter I

1 Introduction

Computer vision is one of the most active and �ourishing disciplines among

today's research areas. Various solutions are proposed to the problems of

detection, recognition and tracking objects. Most of them employ heuristic

approaches that use 2D intensity images, even though we are living and

interacting in a 3D world.

(a) Structure from Motion [1] (b) Triangulation [2]

Figure 1.1: Depth estimation techniques

One of the most challenging tasks in computer vision is to estimate 3D

depth data. For a computer it is impossible to understand the depth infor-

mation from a single 2D image. Even though there are several estimation

methods, e.g. structure from motion [1] and triangulation [2] that achieved

promising results, they are not robust enough in certain real world scenarios.

Another method for 3D depth estimation is using range sensors or motion

capture systems.



Earlier range sensors were quite expensive and not easily accessible, and

their application range was limited upto 6-7 meters.

Marker-based motion capture systems are also used to extract movement

of the people in the 3D environment. However even today they are expensive

and need a static working environment for the installation of the cameras.

(a) Color Image (b) Depth Image

Figure 1.2: Images acquired from the Kinect sensor

With the release of Microsoft Kinect [3] and low-cost and relatively ac-

curate other sensors such as ASUS Xtion Pro Live, it has become easier to

capture depth information. Despite its initial purpose, which was support-

ing a gaming console for interactive gaming, it also took lots of attention by

scienti�c authorities who are in the �elds of robotics, health and medicine,

education, and vision. Due to Kinect's real-time depth capture feature var-

ious computer vision problems can be solved using very low computational

power.

Latest products that are spread to the market, e. g. Leap Motion, LG G3

smartphone and even the upcoming Google Tango prove that the depth data

acquired directly from a sensor can be used in many important applications.

In this thesis we used depth information to be able to recognize human
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(a) Leap motion sensor [4] (b) Google Tango [5]

Figure 1.3: Sensors that acquires depth data

actions.

1.1 Motivation

Human action recognition is one of the most active areas in computer vision.

Due to its importance in a number of real-world applications e.g. human-

computer interaction, health-care, surveillance and smart-home applications,

it maintains its signi�cance among other research areas. One of those areas,

human machine interaction, possess the highest potential applicability in real

world scenarios. Examples can be given as, interactive gaming, smart home

systems (especially for elderly people), e�ective presentation possibilities,

better user interfaces, (dynamic advertising, guerilla marketing) etc..

Furthermore, almost all of the metropolices around the world has a closed

circuit television system (CCTV) to monitor di�erent districts of the city. Ac-

cording to the British Security Industry Authority (BSIA) there are approxi-

mately 5.9 million CCTV cameras in the county of United Kingdom [6]. Even

though there are automated systems that are integrated to these CCTVs,

such as plate recognition and facial recognition systems with satisfactory

recognition accuracies, there is not a reliable human action recognition frame-

3



(a) Multiple CCTVs are employed
to perform surveillance

(b) For performing surveillance task a
CCTV personel has to check multiple
screens for hours in order to recognize any
suspicious behaviour

Figure 1.4: Cameras and a CCTV station

work that is trusted as much as the mentioned ones.

There are also applications in the medical �eld [7]. During rehabilita-

tions and physical therapies subjects behaviours are analyzed and assisted

to increase the e�ciency of the movement. The work of Venkataraman et

al. [8] is resulted with a home rehabilitation system for patients who survived

with a stroke. They claimed that every year 15 million people su�er from a

stroke. Their system tracks the body movements of the patients and guide

them by performing repetitive tasks for the therapy. Sung et al. [9] proposed

an indoor surveillance system for elderly people in order to check their daily

activities.

In some of the sports activities, trainers are used to track their athletes

performances using human behaviour analysis techniques. Li et al. [10] pro-

posed a work for automatically investigating complex diving action in chal-

lenging dynamic backgrounds. They obtained joint angles of the athlete and

performed an analysis or a comparison of the athletes overall performance.

An o�ine application, video categorization also makes use of human ac-

4



tion recognition approaches. Due to the vast amount of data collected by

popular video sharing websites, e.g. YouTube, Vimeo, Dailymotion etc., it

becomes essential to categorize videos in terms of their content [11, 12]. In

this context, Ullah et al. [13] proposed a supervised approach to learn lo-

cal motion features �actlets� from annotated video data. They characterized

actions with respect to joint features and their motion patterns.

1.2 Thesis Contributions and Organization

The main contribution of this thesis is to propose a new feature extraction

and representation technique for human action recognition using depth im-

ages. We make an analogy between depth and intensity images and calculate

2D optical �ows from the depth image sequences in order to capture 3D lo-

cal motion variations throughout an action. Before binning the Histogram

of Oriented Optical Flows from Depth (HOOFD), for data reduction pur-

poses we de�ne local patches around each joint by using tracked 3D skeleton

data and extract optical �ows from those patches. Although this step gen-

erates features that contain 3D local motion variations around each joint of

an entire action sequence, it does not have su�cient temporal content. To

capture the temporal evolution of the optical �ow vectors, we partition the

action instance into a pyramidal structure and bin the HOOFD at each level

seperately. Thus, temporal information of the 3D local motion vectors are

injected into the feature descriptor.

The organization of this thesis is as follows: In Chapter 2 related works

regarding human action recognition are presented. These works are divided

into three categories, which are intensity based methods, depth map based

methods and skeletal data based methods respectively. Chapter 3 details

5



our approach to human action recognition using depth images. In particular,

the notion of depth data is described, and feature extraction and represen-

tation along with classi�cation methods used in the thesis are presented.

Experimental results and discussions are provided in Chapter 4. Chapter

5 concludes the thesis with several remarks and indicates possible future

research directions.
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Chapter II

2 Related Work

In the literature, there are several techniques proposed for human action

recognition. Most promising ones are collected and compared in the latest

surveys [14�17].

Earlier works were focused on recognizing human actions from video

sequences captured by RGB cameras and some of them employed spatio-

temporal interest points (Cuboids [18], STIP [19]). These were statistical

methods which rely on sparse features used to represent actions and they are

view-invariant and robust to noise due to the characteristics of those features

(Fig 2.1).

2.1 Intensity based methods

Yilmaz et al. [20] proposed a method that model both shape and motion

of the subject. Sequence of 2D contours were extracted and formed spa-

tiotemporal volumes (STV). To classify actions they analyzed these STVs

with respect to di�erential geometric surface properties. A similar method

was proposed by Gorelick et al. [21]. Their method was faster and did not

require video alignment. In order to predict actions they employed a descrip-

tor based on a solution to a Poisson equation. On the other hand, silhouettes

that are generated by extracting foreground regions of a person image were



Figure 2.1: Extraction of cuboids from two di�erent action instances, even
though the posture of the mouse is quite di�erent, extracted cuboid patches
are similar [18]

stacked consecutively to analyze surface changes of the spatio-temporal vol-

ume [22]. These sequences form Motion History Images (MHI) and Motion

Energy Images (MEI) [23], which were employed as as feature descriptors for

template matching (see Figure 2.2).

As a grid based approach, Ikizler and Duygulu [24] used oriented rect-

angular patches in order to bin a grid. Each cell of the grid contained a

histogram that shows the orientation distribution of the rectangular patches.

Nowozin et al. [25] had a di�erent approach. Rather than using a spatial grid

as in [24], they used a temporal grid for feature representation. After extract-

ing vectors around each interest points, they applied Principal Component

Analysis (PCA) and clustered them using K-means algorithm in order to

construct a codebook.

In the work of Mikolajczyk et al. [26] shape and motion features were

extracted in each frame. Then, they employed the center of mass of the

8



(a) Motion History Images

(b) Motion Energy Images

Figure 2.2: MHI and MEI notions proposed in [21]

subject, who performed the action instance. In feature representation step

they clustered these features and represented them as vocabulary trees.

Another approach is employed by Song et al. [27], they tracked points in

each frame and �tted them to a triangulated graph to do the classi�cation.

There are also remarkable works on human pose estimation from 2D still

images [28]. Although these algorithms produce successful pose estimation

results, they can not be used in an action recognition framework due to their

signi�cant processing time (approximately 6.6 sec).

With the release of the low-cost RGBD cameras, it has become easier

to capture depth image sequences in real-time. Thus, there is an increasing

research interest towards human action recognition using depth-data. Meth-

ods can be divided into two classes as in [29] which are depth map based

9



methods and skeletal data based methods respectively.

2.2 Depth map based methods

Most of the depth based methods employs spatio-temporal features. Depth

data provides better understanding of the scene and the motion in the �eld

of view. It is also invariant to sudden lighting changes. Li et al. [30] used

an action graph to model the dynamics of human actions. They made use of

bag of 3D points approach to characterize salient postures. These postures

correspond to the nodes in the action graph. They aimed to charazterize 3D

shape of the salient postures with a small number of 3D points. Then, in

order to capture the distribution of the points, a Gaussian Mixture Model

(GMM) was �tted. Additionally authors collected a dataset, which is later

called MSRAction3D and achieved 74.6 % overall recognition accuracy. The

disadvantage of this method was the lack of correlation between the extracted

interest points.

Yang et al. [31] proposed the feature Depth Motion Maps (DMM) to

capture human actions. A DMM is generated by projecting depth frames

onto three pre-de�ned othogonal planes. Histogram of Gradients (HOG) were

extracted from resulting depth motion maps and concatenated to generate

�nal feature vectors. Zhang et al. [32] proposed another local spatio-temporal

descriptor, which is generated by extracting intensity and depth gradients

around selected feature points. For dimension reduction purposes k-means

clustering was appliced to the collected data and as a result a codebook was

generated. To be able to perform prediction, Latent Dirichlet Allocation

model (LDA) is used.

Oreifej et al. [33] proposed a new action descriptor, histogram of oriented

10



4D normals (HON4D) to represent depth sequence as a function of space and

time. To make the descriptors more discriminative, they quantized the 4D

space using the vertices of a polychoron (see Figure 2.3).

Figure 2.3: Generated 3D surface normals are illustrated in the work of [33]

In the recent work of Xia et al. [34], STIPs (Spatio-Temporal Interest

Points) are extracted from depth image sequences (DSTIP). They propose a

depth cuboid similarity feature (DCSF) to describe the 3D local variations

around each DSTIP.

Shotton et al. [35] proposed a method to estimate 3D joint locations of a

person from a single depth image. This eases the emergence of such methods

since it provides real-time skeletal-data of a person.

2.3 Skeletal data based methods

An example of these types of works was proposed by Yang et al. [36]. They

presented a new feature descriptor �EigenJoints� which combines 3 di�erent

action information; static posture, motion property and overall dynamics. In

order to eliminate noise and perform data reduction, they used Accumulated

Motion Energy (AME) method. Ohn-Bar et al. [37] characterize actions

11



using pairwise similarities between joint angle features over time. They also

proposed a new feature descriptor called HOG2 which is derived by applying

HOG in spatial and temporal dimensions, respectively. Lv et al. [38] designed

features based on single or multiple joints. They claimed that by splitting

the body parts into 3 subsets, namely leg and torso, arm, and head, they

increased the discriminative power of the feature vector. Then, HMMs are

built for each feature and action to be able to preserve temporal information.

They also employed a multiclass Adaboost [39] classi�er by combining each

weak HMM classi�er.

Another remarkable action recognition representation is proposed by O�i

et al. [40] which is called Sequence of the Most Informative Joints (SMIJ). At

each time step they compared the joints in terms of their informativeness. A

joint is the most informative one, if it has the largest variance or mean among

entire action instance (see Figure in 2.4). They sorted these joints with

respect to their information content and generated corresponding feature

vectors. 1-nearest neighbor (1NN) and SVM methods were then employed

to perform the recognition step.

Vemulapalli et al. [41] represented sequence of human postures as points

in the Lie Group SE(3)× . . .×SE(3). This feature description modeled the

3D relationship between body parts using rotations and translations. After

modeling all action instances as curves, they applied temporal modelling and

classi�ed actions using the Lie Algebra.

A di�erent approach was proposed by Lillo et al. [42]. They modeled

activities in a hierarchical manner. At the bottom level they encoded body

postures using skeletal data provided by [35] and formed a dictionary of body

poses. At the intermediate level in order to describe action primitives (atomic

12



Figure 2.4: Illustration of the most informative joints during an action in-
stance [40]

actions) they used bag-of-words (BoW) representation. Basically, they bin a

histogram to model an action instance which consists of multiple sequencially

body posture words. At the third level they combined these action primitives

and composed complex activities.

Recently, Gupta et al. [43] propose a new approach to cross-view action

recognition using 3D Mo-Cap data. Using unlabeled skeletal datas, 3D pos-

ture sequences (3D joint trajectories) are recovered. Then they match these

posture sequences without any need of an annotated data. Additionally, they

also proposed a motion-based desciptor that is capable to compare 3D motion

capture data with a 2D video data directly.

In recent works there is a trend towards the fusion of spatiotemporal and

skeleton information. It implies generation of highly discriminative features.

Xia et al. [44] proposed Histogram of 3D Joint Locations as a feature.

They mapped cartesian joint location coordinates into spherical coordinates

(r,θ,φ) to satisfy view invariance. After performing linear discriminant anal-

ysis (LDA) on the feature vectors to reduce the dimension, they clustered

13



every posture into k visual words. Finally, in the recognition step they used

discrete HMM for classi�cation.

Zhu et al. [45] also followed this trend in their work. As a spatio-temporal

feature they combined several methods and selected the ones that performed

the best. These are Harris3D detector [46], Hessian Detector, HOG/HOF

descriptor [47], HOG3D descriptor [48] and lastly ESURF descriptor [49]. By

using skeletal data, they extracted three di�erent features, namely pair-wise

joint distances in each frame, joint location di�erences between subsequent

frames and joint location di�erences between current frame and the �rst

frame. They then applied k-means clustering to perform feature quantization.

In order to perform the fusion at feature level, they proposed to use Random

Forest method.

Chaaraoui et al. [50] combined skeletal data and silhouette based features

to utilize human action recognition. A method similar to pair-wise joint dif-

ferences is employed with a di�erent normalization scheme. They proposed

a radial scheme as in [51] to obtain silhouette based features. Bag of poses

method is used to perform discriminative and low dimensional feature repre-

sentation. In the recognition step they used dynamic time warping (DTW)

to be able to �nd similar action instances.

Another interesting method is proposed by Wang et. al. [52]. They

calculated a combination of appearance features for each frame, namely local

occupancy patterns (LOP) and pairwise relative position features of each

joint. To represent temporal variation, they recursively divided the action

instance into parts and generated a pyramid where short Fourier transforms

were applied for all levels of the pyramid seperately. Their results show

that they generated su�ciently enough discriminative features to perform
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the classi�cation.

Luo et al. [53] proposed a framework that employes sparse coding and

temporal pyramid matching methods for recognizing human actions. For

classi�cation stage they presented a class-speci�c dictionary learning algo-

rithm. It holds the best recognition result in MSRAction3D dataset. This

work is a good example of how feature representation and classi�cation tech-

niques a�ect the performance of the overall system.

A similar method with HON4D [33] was proposed by Yang et al. [54].

They collected low-level polynormals in each spatio-temporal grid. These

polynormals are local clusters of extended surface normals. In addition to

that, they also proposed an adaptive spatio-temporal pyramid in order to

capture spatial and temporal information precisely. To represent these fea-

tures, they used sparse coding and learned a dictionary accordingly.

Recently, Lu et al. [55] proposed a new feature which is called �range-

sample�.This is a binary descriptor, which is generated by using the τ test

in [56]. Final binary descriptor is formed by concatenating a sef of τ test

results of randomly sampled pixel pairs on a patch. It is claimed that this

binary descriptor or similar ones such as HOG and SIFT are powerful due to

their characterization of local edge structures. The steps of this method are

as follows. First, they perform an estimation of human-activity depth range.

Then, they partition the depth map into three layers, namely background, ac-

tivity and occlusion layer. At the classi�cation step they �rst cluster feature

vectors and use them for training SVM classi�ers.

Another recent approach is proposed by Lin et al. [57] for recognizing

actions in RGB videos. By collecting 3D depth and skeletal data using a

Kinect, they formed a database. By employing this dataset, they enhance
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the capabilities of their descriptor and used it to classify actions from 2D

intensity images.
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Chapter III

3 Action Recognition using Depth Data

Proposed technique is explained in four subsections, which is also represented

as a �ow chart in Figure 3.1. First, depth data is acquired using Kinect sensor

and some operations are performed on the acquired data to be used by our

algorithm. Then, two di�erent features are extracted, 3D joint features and

HOOFD (Histogram of Oriented Optical Flows from Depth) features. These

features are represented using two di�erent techniques: signal warping and

temporal pyramid. In the classi�cation step, Naive Bayes and Support Vector

Machines classi�ers are used to recognize human actions.

Figure 3.1: Flow Chart of the Proposed Method

3.1 Acquiring Depth Data

Depth sensor Kinect provides 640x480 RGB and Depth images in 30 frames

per second. Its working range of depth is from 0.8 to 4 meters with an an-

gular �eld of 57 degrees horizontally and 43 degrees vertically. The depth

acquistion method is named as �Light Coding� which the company Prime-



sense has patented [58, 59]. Objects that are too near or too far away are

shown as a black pixel on depth images (raw depth value of 2048).

There are some issues that should be taken into account before using

depth data for any application. These are:

• Formation of shadows in depth data

• Eliminating the noise

The occurance of shadows in depth data are caused by the depth measure-

ment system of the sensor. The measurement is done with a triangulation

method. IR transmitter constantly emits rays to the scene and these rays

are re�ected when they encounter with an object. Then, IR camera capture

these re�ected rays. By calculating the roundtrip time of a ray, the distance

between the camera and the object is provided (see Figure 3.2). When the

IR rays are obstructed by an object, IR camera cannot capture any ray from

the corresponding region on the background. Thus, shadows are formed as

a re�ection of the object on the background.

On the other hand rough object boundaries caused noise on depth data.

Therefore some regions are inaccurate, contains gaps and holes. In order to

eliminate this noise, bilateral �lters are used. The idea of bilateral �lter is

�rst proposed by Tomasi et al. [60]. It is a nonlinear �lter employed both

in spatial and range domain. It can also be interpreted as a Gaussian �lter

that has no e�ect across edges (sudden lighting changes).

Fbilateral =
1

cn

∑
s(‖p− q‖)r(‖Ip − Iq‖) (1)

First term in equation (1) �s(‖p− q‖)� is referred as the space term and

the second term �r(‖Ip − Iq‖)� is referred as the range term. cn is a normal-
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Figure 3.2: Illustrating the cause of shadow

ization factor and Ip is the intensity value of pixel p in the input image I.

After applying this �lter, depth data can be used for feature extraction.

3.2 Feature Extraction

While searching for a robust and rich feature descriptor for an action recog-

nition framework, we observed that 3D joint locations or joint angles were

not discriminative enough to represent an entire action. Even though spatial

relations were encoded to the descriptor by using these features, e.g. pair-

wise a�nities [37] or LOP [52], they do not carry the temporal information.

Furthermore, a single action can be executed quite di�erently (in space and

time). Thus, instra-class variations arise; for example one person can bend

towards the camera and other can bend away from the camera. Besides one

person can complete bending action in 10 seconds and another one can be

faster and �nish it in 5 seconds. Di�erent solutions such as Dynamic Tem-

poral Warping (DTW) [61] and Fourier Temporal Pyramid [52] have been
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proposed to handle such cases.

In this thesis two di�erent feature sets are used to classify human ac-

tions from depth data. First, joint features, e.g. joint angles, joint angular

velocities, joint positions, and their linear velocities are calculated and inves-

tigated in terms of their performance. Next, as a new feature extraction and

representation method, Histogram of Oriented Optical Flows from Depth

(HOOFD) is proposed.

3.2.1 Joint Features

As mentioned before, Shotton et al. [35] proposed a human pose estimation

algorithm using depth data and achieved satisfactory results. It provides

real-time skeleton data of the subjects. Skeleton data consist of joints that

belong to L/R foot, L/R ankle, L/R knee, L/R hand, L/R wrist, L/R elbow,

L/R shoulder, neck, head, hip center, spine and shoulder center, respectively.

While extracting features for an action recognition framework, it is im-

portant to choose features that ensure scale and view invariance. Scale-

invariance brings the advantage that even if di�erent persons with various

physical conditions (thin/overweight,tall/short etc.) performed the actions,

it would not a�ect the systems recognition performance. To increase robust-

ness, these invariances should be guaranteed.

Inspired from [44], 3D joint coordinates Pposture = {p1, . . . , p20} where

pn = (xn, yn, zn) they are mapped to spherical coordinates sn = (r, θ, φ) for

a better and compact representation. We exclude the radius parameter r

to gain scale-invariance. In addition to that, to remove the e�ect of view

variance between the action instances, the origin of this spherical coordinate

system is aligned with the person's hip center as illustrated in Figure 3(c).
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(a) Depth Data of a Person (b) Extracted Skeleton Data

(c) Calculated Joint Angles (d) Reference vectors and spherical coordi-
nate system

Figure 3.3: Joint Features Illustration

Thus, instead of representing a posture with 3 × 20 = 60 parameters we

reduce it to 2× 19 = 38 while providing scale and view-invariance.

Furthermore, after extracting joint locations we calculate 10 joints angles
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from these 20 joints. Let u = (ux, uy, uz) and v = (vx, vy, vz) be vectors in 3

dimensional space de�ning a skeleton line segment between 2 joints two joints

(see Figure 3.4). For example, u can be the vector that connects shoulder and

elbow joints and v can be the vector that connects elbow and hand joints.

The angle between these two vectors is calculated as follows:

Θuv = tan−1

(
‖u× v‖
u · v

)
(2)

Figure 3.4: An illustration of joint angle calculation by de�ning vectors be-
tween each joint locations

Once joint angles are determined, their time derivatives can be computed

in an approximate fashion using consecutive frames. Joints are then sorted

based on their approximate velocities. While constructing the feature vec-

tor,both joint angles and joint velocities are concatenated. Their performance

will be compared and investigated in Chapter 4.
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3.2.2 Optical Flow from Depth Data

Optical �ow is a motion estimation technique to calculate each pixel's in-

dependent motion using 2D intensity images. Common assumption of this

estimation is that pixel intensities are translated from one pixel to the next

continuously (brightness constancy constraint). As an result, an approxima-

tion of 2D motion �eld (projection of 3D motion �eld) is achieved. Brihgtness

constancy constraint (BCC) is formulated by the following condition:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (3)

A depth image contains 3D world coordinates (x, y, z) of the scene points

with respect to the camera frame. We make the important observation that

the depth values (z) can be represented as an intensity image. Thus, a

grayscale image can be produced from a depth image by mapping depth

values (z) to 8-bit integers [0, 255] (Figure 3.5).

Figure 3.5: Mapping depth data to grayscale intensity image

Since we have produced a grayscale image we can now perform a 2D

optical �ow analysis on the resulting images. In this work, Horn-Schunck's

global method [62] is employed to compute optical �ow components (ux, uy).
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However, it should be noted that other optical �ow techniques such as Lukas-

Kanade (LK) [63] can be used for the same purpose.

By embedding depth informationas a pixel intensity we strenghtened the

output of the optical �ow calculation in a classi�cation perspective. As an

output, we are able to generate a feature, which is invariant to sudden change

of brightness.

3.3 Feature Representation

In most of the works, recognition accuracies are strongly dependent on its fea-

ture representation technique. In this thesis we used two di�erent approaches

to represent our features. These are signal warping, and patch extraction and

temporal pyramid.

3.3.1 Signal Warping

This method is used for the joint features in section 3.2.1. Due to the vary-

ing time intervals of action instances, signal warping is chosen. For each

experiment a global action instance interval is set. An action instance S

with n number of frames is basically warped and its duration (number of

frames) is increased/decreased with respect to the assigned global variable.

It is done by randomly replicating some of the frames in the frame sequence

and concatenating one another (see Figure 3.6).

3.3.2 Patch Extraction and HOOFD Features

The joint location estimation algorithm [35] provides 20 2D/3D joint location

coordinates from depth data in a very precise manner. In our work, we use

only 10 joints, namely L/R shoulder, L/R elbow, L/R knee, L/R wrist,

24



(a) Discarded Frames (b) Inserted Frames

Figure 3.6: Randomly selected frames are discarded / replicated and insterted
in a action sequence

shoulder center and head, to extract m×m (typical value of m is 11) patches

around each of them.

During our experiments we observed that remaining joint locations were

less robust to noise and viewing conditions than the selected ones.

Optical �ow patches of joint J in frame i are de�ned as:

P
(i)
J,ux

=


ux,1 · · · ux,m

ux,m+1 · · · ux,2m
...

. . .
...

ux,m(m−1) · · · ux,m2

 , P
(i)
J,uy

=


uy,1 · · · uy,m

uy,m+1 · · · uy,2m
...

. . .
...

uy,m(m−1) · · · uy,m2

 (4)

After calculating optical �ows (ux, uy) from depth images and extracting

patches PJ around each joint J ∈ {1, . . . , 10}, these optical �ow patches are
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concatenated for the entire action sequence. Next, a novel depth feature,

Histogram of Oriented Optical Flows from Depth (HOOFD) is proposed.

In order to calculate HOOFDs using concatenated optical �ow patches, a

similar procedure to [64] is used.

An orientation image θ and a magnitute image M are calculated by

θ = atan2(
uy
ux

) , M =
√
u2x + u2y (5)

These images are used to bin a histogram based on two features, the pri-

mary angle between the �ow vector and the horizontal axis, and magnitude of

the �ow vector. While constructing the histogram, this combination encodes

both the direction and the magnitude of the �ow vectors. The contribution

of each vector to its corresponding bin is proportional to its magnitude.

Inspired from temporal Fourier Pyramid reported in [36], we construct a

new feature as Pyramidal Histogram of Oriented Optical Flows from Depth

to capture temporal motion information.

Pseudo code of the Pyramidal HOOFD construction algorithm is given

below.

Additionally pyramidal feature construction for a 2-level pyramid can be

illustrated as follows.

At the �rst level, feature vector FL1 of the entire action instance is cal-

culated:

FL1 = HOOFD(P
(1:n)
J,ux

, P
(1:n)
J,uy

) (6)

26



Algorithm 1: Pyramidal HOOFD feature construction

Input: Joint Patches PJ〈P (1)
J , P

(2)
J , . . . , P

(n)
J 〉 & number of pyramid

levels L

Output: Feature vector F that is generated by concatenating

HOOFD outputs at each level respectively

level← L;

for each joint J do

Vx = concat(P
(1)
(J,ux)

, P
(2)
(J,ux)

. . . , P
(n)
(J,ux)

);

Vy = concat(P
(1)
(J,uy)

, P
(2)
(J,uy)

. . . , P
(n)
(J,uy)

);

for each level do

Divide the vectors into 2level−1 parts;

Calculate HOOFD of each part

end

Concatenate resulting histograms into F

end

return F ;

At the second level, sequences with the length of n/2 are employed.

FL2,1 = HOOFD(P
(1:n/2)
J,ux

, P
(1:n/2)
J,uy

) (7)

FL2,2 = HOOFD(P
(n/2+1:n)
J,ux

, P
(n/2+1:n)
J,uy

) (8)

The �nal feature vector F is constructed by concatenating the feature

vectors computed at each temporal level, i.e. F = (FL1, FL2,1, FL2,2). General

overview of the proposed framework is illustrated in Figure 3.7.
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Calculating Optical Flow in Depth 

Image Sequences

Extracting Patches around the Vicinity 

of Joints

Optical Flow 

Outputs

Ux

Uy

HOOFD for all selected Joints seperately

Pyramid Level 1 

Pyramid Level 2 

Pyramid Level 3 

Concatenate all the histograms to generate the final feature vector

Linear SVM for Action Classification

Figure 3.7: Overview of the proposed method
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3.4 Classi�cation Methods

3.4.1 Naive Bayes Classifer

Naive Bayes is a popular and supervised learning method, which works quite

well in real world scenarios. Main assumption of this method is that the val-

ues of the features are independent of each other given their class (conditional

independence assumption). Given data ((x(1), y1), (x
(2), y2), . . . , (x

(n), yn)),

where x(i) = (x
(i)
1 , . . . , x

(i)
d ) is the feature vector and yi is the class label.

A distribution of features is interpreted as a joint probability distribuution

p(x, y) = p(x|y)p(y). Due to the independence assumption conditional prob-

ability p(x|y) can be expressed as (p(x1|y) . . . p(xd|y)). To be able to predict

a test data xtest we compute maximum posterior probability as follows:

ŷ = argmax
yεY

P (y|x) (9)

ŷ = argmax
yεY

(
P (x|y)P (y)

P (x)
) (10)

P (x) does not depend on y so it is usually discarded from this calcula-

tion. Additionally during the experiments we assumed that distributions are

Gaussians with identical diagonal covariance matrices.

3.4.2 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning method de�ned

by a seperating hyperplane. Brie�y, it calculates as an output the choice

of the most optimal hyperplane in Figure 3.8, which is the one that possess

the maximum margin from the training data. In order to �nd detailed in-

formation, More details can be found in books on pattern recognition such
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as [65�67].

Figure 3.8: SVM classsi�er returns maximum margin decision boundary (hy-
perplane)

There are several SVMs that employ with di�erent kernel functions, e.g.

linear, polynomial, sigmoid etc.. We employed the one with a linear kernel.

A popular SVM package libSVM [68] is used during our implementations.
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Chapter IV

4 Experiments

4.1 Datasets

We assessed the performance of our proposed method by conducting sev-

eral experiments with publicly available human action recognition datasets,

MSRAction3D [30], MSR Action Pairs 3D [33] and MSRC-12 Gesture Dataset

[69].

4.1.1 MSR Action3D Dataset

MSR-Action3D is a widely used action recognition dataset, which consists of

depth sequences captured by Microsoft Kinect at 15 Hz, and image and world

joint coordinates of each subject. An example sequence of depth images from

this dataset is depicted in Figure 4.1. Dataset contains 20 actions performed

by 10 subjects.

Additionally, depth images were preprocessed in order to clear back-

ground noises caused by the depth sensor. This is a challenging dataset

because it includes highly similar actions. We followed the same experimen-

tal settings as in [30] and splitted the dataset into 3 subsets as shown in

Table 4.1.

AS1 and AS2 represent actions with similar movements, e.g. in AS1



Action Sets
Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)
Hammer (2) Wave (1) Throw (6)
Smash (3) Catch (4) Forward Kick (14)
Forward Punch (5) Draw X (7) Side Kick (15)
Throw (6) Draw Tick (8) Jogging (16)
Clapping Hands (10) Draw Circle (9) Tennis Swing (17)
Bend (13) 2 Hand Wave (11) Tennis Serve (18)
Tennis Serve (18) Side Boxing (12) Golf Swing (19)
Pickup and Throw (20) Forward Kick (14) Pickup and Throw (20)

Table 4.1: Actions of MSRAction3D are divided into 3 subsets (numbers in
paranthesis represents the action annotations)

(a) Hand Wave Action (b) 2 Hand Wave Action

Figure 4.1: Depth image sequence examples from MSRAction3D dataset

�forward punch� and �hammer� are likely to be confused by each other. AS3

contains more complex and distinct actions.

4.1.2 MSR Action Pairs Dataset

This dataset is used by [33]. There are two important di�erences that dis-

tinguishes this dataset from previous MSRAction3D. First, in the MSRAc-
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tion3D dataset, many actions are performed while subjects are standing still,

thus skeletal data seems reliable to represent an entire action. Second, some

actions have very similar and limited body part motions (e.g. hammer and

forward punch), which reduce the reliability of extracted motion cues. For

these reasons, six pairs of activities are selected in this new dataset: �Pick

up a box/Put down a box�, �Lift a box/Place a box�, �Push a chair/Pull a

chair�, �Wear a hat/Take o� a hat�, �Put on a backpack/Take o� a backpack�

and �Stick a poster/Remove a poster� (see Figure 4.3). We used the same

experimental settings and employed the comparison presented in [33].

Figure 4.2: Depth image examples of MSR Action Pairs dataset

4.1.3 MSRC-12 Gesture Dataset

This dataset is collected at MSR Cambridge as a part of the work in [69].

It consist of 594 sequences and 719359 frames of 12 gestures (actions) that

is performed by 30 subjects. However they did not share publicly the depth

data of the frames, they only gave access to 3D skeletal coordinates at each

frame. They categorized gestures into two sub categories, namely Iconic

gestures and Metaphoric gestures. Iconic gestures are crouch, war a goggles,
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shoot a pistol, throw an object, change weapon and kick. Metaphoric gestures

represent a more abstract object, such as starting the music or raising the

volume, where the subject lifts and outstreched him/her arms. Others are

moving arm to the right, wind it up, bow, had enough and beat both. It

should be noted that �had enough� action can be performed di�erently across

subjects.

Figure 4.3: Gestures and captured frames from gesture instances of MSRC-12
dataset [70]
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4.2 Joint Features with Signal Warping

In order to evaluate joint features, we performed several experiments by

combining multiple features. We employed MSRC-12 Gesture dataset and

extracted all the joint features that are mentioned in feature extraction sec-

tion (Joint Angles, Spherical Coordinates, list of the most active joints and

joint angle velocities). We generate 4 di�erent feature sets as follows:

Feature Sets Feature Content
F1 Joint Angles + Joint Locations in Sph. Coord.
F2 Joint Angles + Joint Angular Velocities
F3 F1 + Joint Angular Velocities
F4 F3 + List of the most active Joints

Table 4.2: Feature sets are generated in order to use on MSRC-12 Gesture
dataset

First, employing leave-one-subject-out-cross-validation (LOSOCV) we com-

pare the classi�cation accuracy results of both between features and between

classi�ers. This gives us an understanding about the reliability of both fea-

ture representation and selected classi�cation methods. Then, we split the

subjects into two equal subsets (1:1 in Table 4.3) . We used �rst 6 subjects

for training the classi�er and the remaining ones for prediction test. Further-

more, we split the subjects as 1:3, �rst 4 subjects are used for testing and

the rest 8 are used for training the classi�er. Results and comparisons are

shown in Table 4.3.

From the results in Table 4.3 and in Figure 4.4 it can be easily conluded

that feature set F2, which consists of joint angles and joint angular veloc-

ities, is the least discriminative one between the feature sets. The reason

is that while calculating joint angular velocities, information is lost due to

di�erentiating joint angles. We tested this approach because it is the most
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SVM Naive Bayes
Feature Sets 1:1 1:3 LOSOCV 1:1 1:3 LOSOCV

F1 76.45% 76.32% 75% 78% 76.8% 77%
F2 67.4% 67.4% 59.8% 74.5% 76.8% 72%
F3 75.16% 74.4% 72.7% 78% 77.3% 77.9%
F4 77.4% 76.8% 74.1% 77.7% 77.3% 72.8%

Table 4.3: Recognition accuracies (%) Comparison of di�erent tests for
MSRC-12 Gesture dataset

intuitive way to model human actions from the 3D skeletal joint features.

Even though the recognition accuracies do not di�er signi�cantly, highest

rates are achieved while employing Feature Set 1. It can be concluded that

joint velocities and the list of the most active joints had almost no contri-

bution to the output of the classi�cation algorithm. This opinion can be

further investigated by looking at the recognition rates of SMIJ feautre in

the work [40].

4.3 Pyramidal HOOFD Features

For the �rst experiment we carried out a Cross Subject test, half of the

subjects are used for training and the rest for testing. For classi�cation, we

trained a linear SVM classi�er. The results are shown and compared in Table

4.4.

CrsSubj Test Li et al. [30] Yang et al. [36] Xia et al. [44] HOOFD
AS1 72.9% 74.5% 87.8% 75.47%
AS2 71.9% 76.1% 85.48% 77.88%
AS3 79.2% 96.4% 63.46% 76.79%

Table 4.4: Recognition accuracies (%) Comparison of Cross Subject Test for
MSR Action 3D

Figure 4.5 shows confusion matrices of the classi�cation results with re-
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(a) F1 using Naive Bayes Classi�er (b) F1 using SVM Classi�er

(c) F2 using Naive Bayes Classi�er (d) F2 using SVM Classi�er

(e) F3 using Naive Bayes Classi�er (f) F3 using SVM Classi�er

Figure 4.4: Confusion matrices of MSRC-12 dataset using (1:1) experimental
settings
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spect to the Action Sets. For the �rst Action Set AS1, it can be observed

From Figure 5(a) that our classi�er mismatches `smash', `forward punch'

and `throw' actions due to similar skeletal motions and local �ow �elds. For

the second Action Set AS2, it can be seen from Figure 5(b) that we achieved

77.88% recognition rate. However, our classi�er fails during categorizing very

similiar actions such as `Catch' and `Drawing' actions. Finally, for the third

Action Set AS3, Figure 5(c) shows misclassi�cation results due to the noise

on the skeletal data while subjects performing `Golf Swing' action.

(a) Action Set 1 (b) Action Set 2

(c) Action Set 3

Figure 4.5: Confusion matrix of di�erent action sets under Cross Subject
Test

Table 4.5 provides another comparison of our method with the state-of-

the-art algorithms. Recently proposed method [71] that uses sequence of
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most informative joints achieved 47.1% recognition rate. This relatively low

recognition result could be due to the noise on the skeleton tracker results as

shown in Figure 4.6 and short duration of action instances. DTW [61] and

HMM [38] are both typical approaches toward modeling `temporal' dynam-

ics of an action. They achieved 54% and 63% recognition rates respectively.

Figure 4.6: Visualization of the skeleton tracker Failure on bend action

The work in [52] used actionlet mining method and achieved 88.2% accuracy

by fusing multiple features (skeleton joints and local occupancy patterns).

HON4D method [33] did not employ 3D joint locations, instead they cal-

culated the distribution of the surface normal orientations in 4D space at

pixel-level. This has a high discriminitive power due to its dense structure.

Our method achieved 76.71% on this test, since skeleton trackers were failed

drastically in some of the action instances. For that reason we could not al-

ways extract meaningful patches and this leads to relatively low classi�cation

rates.

While testing the method with MSR Action Pairs Dataset �ve subjects

were used for training a linear SVM classi�er and the rest for testing the

performance of this classi�er. Results are provided in Table 4.6 and the
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Method Classi�cation Accuracy
Sequence of Most Informative Joints (SMIJ) [71] 47.1%
Dynamic Temporal Warping [61] 54%
Hidden Markov Model [38] 63%
Action Graph on Bag of 3D Joints [30] 74.7%
HOOFD 76.71%
EigenJoints [36] 82.3%
Actionlet Ensemble [52] 88.2%
HON4D + Ddisc [33] 88.89%
OhnBar et al. [37] 94.84%
Range-Sample Depth Feature [55] 95.62%
DL-GSGC+TPM [53] 96.7%

Table 4.5: Comparison of classi�cation accuracy with state-of-the-art meth-
ods for MSRAction3D dataset

Method Classi�cation Accuracy
Skeleton + LOP [52] 63.33%
Skeleton + LOP + Pyramid [52] 82.22%
HOOFD 91.67%
HON4D [33] 93.33%
HON4D + Ddisc [33] 96.67%

Table 4.6: Classi�cation accuracy comparison for MSR Action Pairs dataset

corresponding confusion matrix is shown in Figure 4.7. We compared our

method with state-of-the-art methods, namely HON4D and pairwise joint

a�nities with local occupancy patterns (LOP). First, skeleton features and

LOP were calculated in each frame of an action instance and then an SVM

was trained accordingly. This method achieved 63.3% classi�cation accuracy.

Even though this feature fuses motion and shape features, it su�ers from the

lack of temporal relations. By employing Fourier temporal pyramid, the

recognition rate was increased to 82.22%. Our method achieved 91.67%

classi�cation rate on this dataset.
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Figure 4.7: Confusion Matrix of MSR Action Pairs dataset under Cross
Subject Test

Additionally, we also evaluated our algorithm with MSR Action Pairs

using leave-one-subject-out-cross-validation while varying the pyramid level.

Classi�cation accuracies are tabulated in Table 4.7. These results clearly

verify that employing a pyramidal approach to model the temporal variations

of local motion vectors improves the classi�cation accuracies signi�cantly.

Pyramid Level Feature Dimension Classi�cation Accuracy
Level 1 300 77.92%
Level 2 900 88.54%
Level 3 2100 93.58%
Level 4 4500 95.26%

Table 4.7: Classi�cation accuracy of our method at each pyramid level

In order to investigate the e�ect of the patch size on the recognition ac-

curacy, another experiment is conducted. This time action Set 2 is employed

and HOOFDs are calculated with di�erent sizes of patches (7x7, 11x11,

15x15, 21x21, 25x25, 29x29). Two di�erent experimental settings are used
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which are LOSOCV (leave one subject out cross validation) and (1:1) cross

subject test. Results are shown in Figure 4.8.

Figure 4.8: Recognition results for comparing patch size

It is clear that while increasing the area of the extracted patches around

each joint, recognition accuracies tend to decrease. On the other hand, there

is a lower bound of patch area which is between 9 and 13. It was found

empirically during the experiments.
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Chapter V

5 Conclusion & Future Work

We have now presented a new human action recognition method from depth

images. By drawing an analogy between depth and intensity images, we

introduced a new feature called Histogram of Oriented Optical Flows from

Depth (HOOFD). To reduce the dimension of the feature vectors, we used

tracked 3D skeleton data to extract patches around the vicinity of each joint.

After combining these patches throughout the action instance, HOOFDs are

generated. To encode coarse to �ne temporal variations, a pyramidal ap-

proach is utilized. Experimental results performed on three publicly avail-

able datasets and comparisons with the state-of-the-art algorithms verify

the success of the proposed approach. Besides, in order to test the reliability

of the HOOFDs, di�erent experimental settings (leave-one-subject-out-cross-

validation and (1:1)) and di�erent classi�ers (Naive Bayes and SVM) are em-

ployed and compared. Results prove that HOOFD features provide enough

discriminativeness to represent various human actions.

Regarding future work, the potential of HOOFD features will be fully

explored. Fusing HOOFD with features extracted from RGB images can

enrich the resulting feature vectors. Moreover, recognition accuracies can

also be increased by using pyramidal HOOFD features for training di�erent

classi�ers.
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