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Abstract

Finding recurring motifs is an important problem in bioinformatics. Such mo-

tifs can be used for any number of problems including sequence classification, label

prediction, knowledge discovery and biological engineering of proteins fit for a spe-

cific purpose. Our motivation is to create a better foundation for the research and

development of novel motif mining and machine learning methods that can ex-

tract class-specific and discriminative motifs using both sequence and structural

features.

We propose the building blocks of a general machine learning framework to

act on a biological input. This thesis present a combination of elements that are

aimed to be applicable to a variety of biological problems. Ideally, the learner

should only require a number of biological data instances as input that are classi-

fied into a number of different classes as defined by the researchers. The output

should be the factors and motifs that discriminate between those classes (for rea-

sonable, non-random class definitions). This ideal workflow requires two main

steps. First step is the representation of the biological input with features that

contain the significant information the researcher is looking for. Due to the com-

plexity of the macromolecules, abstract representations are required to convert the

real world representation into quantifiable descriptors that are suitable for motif

mining and machine learning. The second step of the proposed workflow is the

motif mining and knowledge discovery step. Using these informative representa-

tions, an algorithm should be able to find discriminative, class-specific motifs that

are over-represented in one class and under-represented in the other.

This thesis presents novel procedures for representation of the proteins to be

used in a variety of machine learning algorithms, and two separate motif mining
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algorithms, one based on temporal motif mining, and the other on deep learning,

that can work with the given biological data. The descriptors and the learners are

applied to a wide range of computational problems encountered in life sciences.

v



Özet

Biyolojik motiflerin keşfi biyoinformatik için önemli problemlerden biridir. Bu

tür motifler, dizilerin sınıflandırılması, veri madenciliği ve rasyonel protein mühendisliği

gibi amaçlarla kullanılabilir. Bu tez, proteinlerin dizi ve yapısal özelliklerinden

ayrımcı motiflerin bulunması ve makine öğrenimi yöntemlerinin araştırma ve geliştirilmesinde

kullanılmak üzere daha iyi bir temel oluşturma amacı barındırmaktadır.

Bu tez, çeşitli biyolojik problemlere uygulanabilirliği olan makine öğrenim yapı

blokları önermektedir. Öğrenim algoritmalarının girdisi ideal olarak yalnızca biy-

olojik veri örneklemleri ve bu örneklerin ait olduğu sınıf verileri olmalıdır. Bu

girdiye denk gelen çıktı ise bu sınıfları ayıran faktör ve motifler olmalıdır (rastgele

olmayan, makul sınıf tanımları için). Bu ideal iş akışı iki ana adıma ihtiyaç du-

yar. Birinci adım, biyolojik örneklerin araştırma için önem arz eden özelliklerle

temsil edilmesidir. Makromoleküller kompleks üç boyutlu yapılar olduğu için,

bu komplike gösterimin soyutlaştırılarak makine öğrenimi ve motif keşfi için kul-

lanmaya daha uygun sayısal ve simgesel temsillere dönüştürülmesi gerekmekte-

dir. İkinci adım ise bu temsili gösterimler üzerinde kullanılmaya uygun mo-

tif keşfi ve makine öğrenimi algoritmalarının geliştirilmesidir. Bir algoritma ilk

adımda çıkartılan tanıtıcı temsilleri kullanalarak sınıflandırıcı ve ayırt edici moti-

fleri keşfedebilmelidir.

Bu çalışma ile çeşitli makine öğrenimi yöntemlerinde kullanılmak üzere bir

çok yeni protein temsil yöntemleri; ve bu temsil sistemleri ile çalışmak üzere iki

ayrı motif keşif yöntemi (zamana bağlı motif madenciliği ve derin öğrenim temelli

motif keşfi) geliştirilmiştir. Bu temsil ve öğrenim algoritmaları yaşam bilimlerinde

karşılaşılan çeşitli hesaplamalı problemlere uygulanmıştır.
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1 INTRODUCTION

1.1 Motivation

Finding recurring motifs is an important problem in bioinformatics. Such motifs

can be used for any number of problems including sequence classification, label

prediction, knowledge discovery and biological engineering of proteins fit for a

specific purpose. In the biological context, the word motif usually connotes the

concept of a sequence motif. However, the concept that discriminates between

a set of macromolecules from others can be in any form, whether it is based on

sequence identity, structural homology or functional similarity is irrelevant from

a global point of view. The fact is, the concept of similarity is an abstract idea

that is defined subjectively by the viewer. A protein can be assigned an arbitrary

number of labels based on any of its features, thus two proteins that have identical

labels when classified from a specific standpoint (e.g. having the same catalytic

activity) can be assigned completely different labels when analyzed by another

aspect (e.g. functional efficiency).

Due to this abstract concept of class, a formal definition of what a motif is and

what type of information it should utilize cannot be defined. For this reason, there

are large number of motif mining algorithms that deal with different aspects of

the biological problems. The biological problems usually carry significant similar-

ities within themselves, but are marginally different in one aspect to necessitate a

slightly different approach during the development of the algorithm. This causes
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the number of available tools to approach the number of biological sub-problems.

It can be argued that this approach is inefficient from the point of both the method

development (since the developers frequently try to solve problems which were al-

ready solved for another case) and the use of those methods in research (large

number of available but under-utilized tools, each with their own strengths and

limitations).

Our motivation is to create a better foundation for the research and devel-

opment of novel motif mining and machine learning methods. Thus, we propose

the elements of a machine learning framework to act on biological input. This

thesis present a combination of elements that are aimed to be applicable to a

variety of biological problems. As mentioned, the class is an abstract concept,

therefore a researcher may be looking for a specific feature when trying to find

a motif. Ideally, the algorithm should only require a number of biological data

instances as input that are classified into a number of different classes as defined

by the researchers. The output should be the factors and motifs that discriminate

between those classes (for reasonable, non-random class definitions). This ideal

workflow requires two main steps, representation of the data and the extraction of

the information from the input.

First step is the representation of the biological input with features that contain

the significant information the researcher is looking for. Due to the complexity

of the macromolecules, abstract representations are required to convert the real

world representation into quantifiable descriptors that are suitable for motif min-

ing and machine learning. By its definition, motif mining and machine learning

experiments require the input representation to have a high generalization capa-

bility; the representation should be able to ignore slight noises in the input during

2



the learning and decision making processes.

To give an example, we usually ignore or tolerate the presence of mutations and

insertion/deletions while comparing two sequences, minor or even major differences

between two sequences can be ignored to find the most common elements during

motif extraction. However, the opposite also holds true, a slight mutation can

have paramount effects on the whole protein, e.g. one mutation can significantly

alter the fold, function and the stability of a protein.

As a result, the relationship between the input (e.g. primary structure for this

case) and the output (3D structure, function, dynamics etc.) cannot be charac-

terized linearly: Two perturbations of the same magnitude applied to an input

data can result in two outputs that are significantly different. Ideally, the protein

representation should be able to capture such a non-linear relationships. Then, the

problem becomes, which slight changes in the input are noise and can be discarded,

and which changes are informative. Unfortunately, this is not a problem that can

be solved with the knowledge and technology of today. However, we try to find

a very diverse set of higher-level representations that can be used in conjunction

with machine learning methods to learn to approximate the relationship between

the input and the output.

The second step of the proposed workflow is the motif mining and knowledge

discovery step. Using these informative representations, an algorithm should be

able to find discriminative, class-specific motifs that are over-represented in one

class and under-represented in the other. The resulting motifs can be analyzed for

the discovery of biological knowledge, or used with other machine learning tools to

predict the label of unknown instances, characterize and quantify the relationship

between other data sources or any combination of tasks.
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1.2 Background

1.2.1 Biological Background

1.2.1.1 Amino Acids

Proteins are polymers that composed of amino acids linked through amide bonds

(also called peptide bond). The peptide bonded polymer that forms the backbone

of polypeptide structure is called the main chain. The peptide bonds of the main

chain are rigid planar units formed by the dehydration reaction of the carboxyl of

one amino acid with the amino group of another releasing one molecule of H2O in

the process. The carbonyl-amino amide bond has partial double bond character

and also possesses no rotational freedom [1].

The physiochemical properties of each amino acid in a protein sequence ulti-

mately determine its structure, reactivity, and function. Each amino acid is com-

posed of an amino group and a carboxyl group bound to a central carbon, called

the Cα. Also bound to the Cα are a hydrogen atom and a side chain that deter-

mines the physiochemistry of each amino acid. The side chains are not directly

involved in the formation of the polypeptide backbone and are free to interact with

their environment [1].

Amino acids may be grouped based on their side chain characteristics. There

are 20 standard common amino acids found throughout nature, each containing a

side chain with particular size, structure, charge, hydrogen bonding capacity, polar-

ity, and reactivity. There are seven amino acids that contain aliphatic side chains,

which are relatively non-polar and hydrophobic in character: glycine, alanine, va-

line, leucine, isoleucine, methionine, and proline. Glycine (Gly) is the simplest
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amino acid with its side chain consisting of only a hydrogen atom. Alanine (Ala)

possesses a single methyl group for its side chain. Valine (Val), leucine (Leu), and

isoleucine (Ile) are slightly more complex with three or four carbon branched-chain

constituents. Methionine (Met) contains a thioether (-S-CH3) group at the ter-

minus of its hydrocarbon chain. Proline (Pro) is actually the only imino acid and

its side chain forms a ring structure with its amino group resulting in two cova-

lent linkages to its Cα atom. Due to its unique structure, Pro often causes severe

turns in a polypeptide chain and cannot be accommodated in normal α-helical

structures, except at the ends where it may create a turning point for the chain

[2].

Phenylalanine (Phe) and tryptophan (Trp) contain aromatic side chains that,

like the aliphatic amino acids, are also relatively non-polar and hydrophobic. All

of the aliphatic and aromatic hydrophobic residues are usually encountered at the

interior of protein structure or in areas that are not readily accessible to water or

other hydrophilic molecules.

Tyrosine (Tyr) contains a phenolic side chain with a pKa of about 9.7-10.1.

Although the amino acid is only slightly soluble in water, the ionizable nature of

the phenolic group makes it often appear in hydrophilic regions of a protein [1].

There are four amino acids which have relatively polar side chains and are

hydrophilic: asparagine (Asn), glutamine (Gln), threonine (Thr), and serine (Ser).

They are usually found at or near the surface where they can have favorable

interactions with the surrounding hydrophilic environment. There is also another

group of hydrophilic amino acids that contain ionizable side chains: aspartic acid

(Asp), glutamic acid (Glu), lysine (Lys), arginine (Arg), cysteine (Cys), histidine

(His), and tyrosine (Tyr). Both Asp and Glu contain carboxylate groups with
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similar ionization properties as the C-terminal carboxylate. The theoretical pKa

of the carboxyl of Asp (3.7-4.0) and the carboxyl of Glu (4.2-4.5) are somewhat

higher than the carboxyl groups at the C-terminal of a polypeptide chain (2.1-

2.4). At pH values above their pKa, these groups are generally ionized to form

negatively charged carboxylates. Thus at physiological pH, they contribute to the

overall negative charge of a protein [1].

Lys, Arginine, and His have ionizable amine containing side chains that, similar

to the N-terminal amine, contribute to a protein’s overall net positive charge. Lys

contains an unbranched four-carbon chain terminating in a primary amine group.

The theoretical pKa of Lys amine is around 9.3-9.5 and at pH values lower than

the pKa of this group, Lys is generally protonated to have a positive charge. At

pH values greater than the pKa, Lys is unprotonated and has no net charge. Arg

contains a strongly basic group on its side chain called a guanidino group. The

ionization point of this residue is so high (pKa of 12.0) that keeps Arg always

protonated with a positive charge. The side chain of His is an imidazole ring that

is potentially protonated at slightly acidic pH values (pKa of 6.7-7.1). Thus, at

physiological pH, these residues contribute to the overall net positive charge of

an intact protein molecule. The amine containing side chains in Lysine, Arginine,

and Histidine typically are located at the surface of proteins and can be involved

in salt bridges through their interactions with the aspartic and glutamic acids [2].

Cys is the only amino acid containing a thiol group (-S-H). At physiological pH,

this residue is normally protonated and possesses no charge. Ionization only occurs

at high pH (pKa = 8.8-9.1) and results in a negatively charged thiolate group. The

most important reaction of Cys residues in proteins is the formation of disulfide

crosslinks with another Cys residue. Cys disulfides (also called cystine or disulfide
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bridges) often are key points in stabilizing protein structure and conformation.

They frequently occur between polypeptide subunits, creating a covalent linkage

to hold two chains together. Cysteines are relatively hydrophobic due to the small

electronegativity difference (i.e., 2.58 vs. 2.20) between the sulfur and hydrogen

atoms and usually can be found within the core of a protein [1]. For this reason,

strong deforming agents may be needed to open up the protein core to fully reduce

the disulfides bonds within structure.

1.2.1.2 Secondary and Tertiary Structures

Amino acids are linked through peptide bonds to form long polypeptide chains.

The primary structure of protein molecules is simply the linear sequence of each

amino acid residue along the main chain. Each amino acid in the chain can form

various interactions with surrounding groups through its unique side chain func-

tionalities. Noncovalent forces such as hydrogen bonding and ionic and hydropho-

bic interactions work together to create each protein’s unique shape. The sequence

and types of amino acids and the shape that they are folded into is the main fac-

tor which provides protein molecules with specific structure, activity, and function.

Ionic charge, hydrogen bonding capability, and hydrophobicity are the major de-

terminants for the resulting three-dimensional structure of protein molecules.

The main chain is twisted, folded, and formed into structural units called sec-

ondary structures based upon the intramolecular interactions such as H-bonds

between the different parts of the peptide backbone. Major secondary structures

of proteins such as α-helices and β-sheets are held together solely through a net-

work of hydrogen bonding created through the carbonyl oxygens of peptide bonds

interacting with the hydrogen atoms of other peptide bonds. Other minor sec-
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ondary structures can also be found in the proteins such as 310 helix, α-helix,

turns, and β-bridges.

In addition, negatively charged residues may become bonded to positively

charged groups through ionic interactions. Non-polar side chains may attract

other non-polar residues and form regions of hydrophobicity to the exclusion of

water and other ionic groups. Occasionally, disulfide bonds also are found holding

different regions of the polypeptide chain together. All of these forces combine to

create the secondary structure of proteins, which is the way the polypeptide chain

folds in local areas to form larger, sometimes periodic structures.

On a larger scale, the unique folding and structure of one complete polypeptide

chain is termed the tertiary structure of protein molecules. The difference between

local secondary structure and complete polypeptide tertiary structure is arbitrary

and sometimes of little practical difference. Larger proteins often contain more

than one polypeptide chain. These multi-subunit proteins have a more complex

shape, but are still formed from the same forces that twist and fold the local

polypeptide. The unique three-dimensional interaction between different polypep-

tides in multi-subunit proteins is called the quaternary structure. Subunits may be

held together by noncovalent contacts, such as hydrophobic or ionic interactions,

or by covalent bonds formed by the cysteine residue of one polypeptide chain to

another [2].

Aside from the covalently polymerized main chain itself, the protein structure

is dominated by weaker, noncovalent interactions that are extremely susceptible

to the environmental changes such that protein structure can be disrupted or

denatured by fluctuations in pH, temperature, or by small amounts of chemicals

that interferes with the inter-molecular interactions within a protein.
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1.2.2 Machine Learning

Machine learning is a branch of artificial intelligence that deals with systems that

can learn from the data. A machine learning system will ”learn” the relation-

ship within a training data, and can predict the outcome of an input using these

known properties. The core of machine learning deals with representation and

generalization. Representation of data instances and functions evaluated on these

instances is the main basis of the learning process. Generalization is the ability of

an algorithm to perform accurately on new, unseen examples after having trained

on a learning data set. The core objective of a learner is to generalize from its

experience. The training examples come from some generally unknown probability

distribution and the learner has to extract a general trend within that distribution

that allows the learner to produce useful predictions in new cases.

Machine learning methods can be separated into two main classes, supervised

and unsupervised. In supervised (or discriminative) learning, we have a labelled

vector of attributes Y, and an unlabelled vector of attributes X. Discriminative

learning is the task of finding model parameters Θ such that the conditional prob-

ability P (Y |X,Θ) matches the trend seen in the X and Y values of the training

set. In unsupervised (or generative) learning, there is no difference between the

labelled and unlabelled attributes in the representation of the model. What is

built is a joint probability model P (X, Y |θ). This means that all attributes, both

labelled or unlabelled, can be predicted from the values of the model’s parameters

Θ. However, it is possible to use the joint model for classification. By condi-

tioning the joint probability, we can obtain the conditional model for the labelled

attributes Y given the unlabelled ones.

In a general context, the term ”machine learning” is used to usually represent
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discriminative learning which focuses on prediction based on known properties

learned from the training data. The term data mining is used when the task

focuses on the discovery of previously unknown properties on the data. However,

these distinctions are not clear and are usually based not on the approach but the

goal in mind. Machine learning also employs data mining methods as unsupervised

learning, which we’ll focus on in the later chapters.

Classification is a supervised learning technique which deals with nominal la-

bels on the instances. The learner will try to find attributes which discriminate

between the inputs taken from different classes, and will use this knowledge to

predict unknown class labels. Classification of proteins is an important process

in many areas of bioinformatics including drug target identification, drug design,

protein family characterization, and protein annotation. In a biological context,

classification of proteins refers to the determination of the class of a protein or the

assignment of a protein into a predefined category based on the existence of cer-

tain similarities to other members of the same category. Proteins can be classified

based on their structural components, catalytic function, cellular location, pH and

optimum working temperature and so on.

In classification, it is often interest to determine the class of a novel protein

using features extracted from raw sequence or structure data rather than directly

using the raw data. For example, a typical manual annotation of a novel protein

can be carried out against a database which contains expert annotated proteins

with other secondary attributes. The best match in the database can be used as

a template and its properties may be transferred to the novel protein. The search

would take the raw sequence information as input and find sequences that are

similar to the given query sequence at a given similarity threshold. However, in
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a machine learning framework, the same process may be carried out as follows:

i) obtain representative sequences from the database, ii) extract features from

these sequences such as number and kind of domains, motif, signal regions, length

of proteins, and post-translational modification sites, iii) utilize machine learning

classifiers to learn from this training data, and iv) generate a model that can be

used to predict the class of a new sample by testing the model on it.

Classification starts with the definition of a class and class properties that

make it unique or different from other classes. Class boundaries may sometimes

be difficult to establish due to following reasons: i) Class definition process is

abstract in nature and does not represent underlying classes. ii) Established classes

are not applicable to all proteins because of non-discovered classes. To eliminate

boundary-related problems, a classification scheme may need to be updated with

the availability of more data.

Previously, machine learning algorithms have been used in many classification

problems particularly protein interaction prediction [3], cluster analysis of gene

expression data [4], annotation of protein sequences by integration of different

sources of information [5], automated function prediction [6], protein fold recog-

nition and remote homology detection [7], SNP discovery [8], prediction of DNA

binding proteins [9], and gene prediction in metagenomic fragments [10]. In the

absence of experimental validation, similarity searches are routinely employed to

transfer function or attribute of a known protein to a novel protein if the similar-

ity is above a certain threshold. However, similarity searches may not necessarily

perform well when similar proteins belong to different classes or families are used

and significant mis-annotations can occur even at high sequence identity levels. In

such cases, machine learning approaches can predict the class of a novel protein
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using features derived from raw sequence or structure data. In many cases, classi-

fication with machine learning approaches provides simple and yet advantageous

solutions over more traditional, laborious and sometimes error-prone means that

employ protein similarity measures.

1.3 Organization

This thesis is organized into six chapters. Chapter 1 (this chapter) is a general

introductory chapter. Chapters 2, 3, 4 and 5 are organized as roughly self-sufficient

individual units with their own Introduction, Methods, Results, and Conclusions

sections. Each chapter is organized to address a different aspect of the motif mining

and classification problems encountered in biological molecules. Chapters 2 and 3

deal with novel representations of the protein sequence and structure, and contain

applications of the developed representations in real world problems. Building

upon the works presented in Chapter 2 and 3, Chapters 4 and 5 present two novel

robust motif mining methods suitable for extracting discriminative motifs in a

variety of biological data. Those methods can work in both sequence and structure-

level information using the feature representations described in Chapters 2 and 3.

The algorithm definitions are supplemented with their applications to real world

problems. Finally, Chapter 6 is a general conclusion chapter that summarizes the

results of the studies.

Chapter 2 deals with representing the sequence and the structure of proteins

in a local fashion. In this context, local means the sub-units of a protein that may

be used for alignment, similarity and disparity calculations, database searches,

biologically relevant motif discoveries and so on. To compare and contrast be-
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tween two proteins, or to define reoccurring motifs, it is important to be able to

match and quantify the relationships between the sub-units of different proteins.

This quantification step requires the simplification of the physical molecule of the

protein into more abstract parts.

The most common abstraction is the primary structure of the protein, defining

the molecule as a collection of residue labels. This simplification allows us to rep-

resent the protein as a sequence of an alphabet of 20 amino acids. By defining a

quantitative metric for the comparison of such an alphabet, such as the BLOSUM

and PAM similarity scores between any two residues, it becomes trivial to check

whether two proteins sequences are ”equivalent”. After this abstraction, we can

define complex concepts such as similarity of two sequences and their alignment,

database search of a sequence, DNA and protein domain detection/search/predic-

tion, and a great number of biological problems as a mathematical problem that

can be solved by a number of algorithms and heuristics. Therefore, it is important

to be able to conceptualize the biological molecules into more abstract classes,

nominal labels or numerical vectors.

Even though the abstraction process increases the signal-to-noise ratio of the

input, and thus the generalization power, too much abstraction can filter out the

information that we want to extract from the raw data. From there on, it becomes

a trade-off to optimize the amount of task-relevant information versus irrelevant

noise that is embedded in the abstraction. Therefore, it is important to be able to

define a descriptor that contains enough discriminative power (but only the spe-

cific information we are looking for and no more), is robust to changes and random

fluctuations in the input data that we are not interested in, allows the definition

of similarity/dissimilarity metrics within different descriptors, and finally, compu-
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tationally easy to calculate and compare. To this end, Chapter 2 investigates the

use of different novel representation schemes suitable for use in machine learning

methods. These descriptors focus on the different aspects of the sequence and

structural information contained within a protein, from physicochemical features,

contact and neighborhood information, relative angles and orientation between the

residues and so on. The novel representations we introduce are then tested on two

specific biological problems to test whether they are feasible in real world problems

of local motif mining. The results of those tests as well as their comparisons with

other techniques in the literature are given.

Whereas Chapter 2 focuses on local representations, Chapter 3 deals with the

problem of finding descriptors in a global scale, descriptors that can be used to

find the similarities or differences of multiple proteins. Such global features can

help on finding similar clusters in data sets by unsupervised learning, or can be

used to learn factors that differentiate between two sub-classes of the data. Find-

ing descriptors that are informative even when averaged over the whole protein

is a challenging but important task. Chapter 3 describes a variety of known and

novel descriptors that use information from a wide range of domains; from cod-

ing nucleic acid sequence, amino acid sequence, secondary and tertiary structure,

physicochemical data, catalytic and active site information, residue interaction and

mechanics/dynamics data, and finally 3D surface patches and hot spots. We use

those features for predicting mRNA and protein expression levels from an input

sequence and the expression host. This enables us to predict whether the protein

will be expressed or not and an approximate level of steady-state protein abun-

dance within the host, the solubility or aggregation of the final gene product, and

whether it will correctly fold or be degraded. Using a very comprehensive data set
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collected from the literature consisting of 19 independent studies from 5 different

organisms (both homologous/autologous and heterologous expression), a compre-

hensive statistical analysis was done on the features, which were further used to

build a novel machine learning tool for prediction of protein abundance. The stud-

ies resulted in descriptors that explain a significant portion of the variance within

the protein levels, some of which are organism-independent. The developed de-

scriptors and the prediction tool can both be used to better understand the inner

mechanisms of the cellular machinery. We also show that our prediction tool can

help on the identification of the rate limiting step during translation and can be

used for codon optimization to increase protein yield in experimental studies.

Chapter 4 describes a motif mining method that can find discriminative

gapped short motifs that are highly variable within their composition. Such weak

motifs usually cannot be extracted due to variable key elements which are inter-

rupted by long segments of non-specific residues. Therefore, those motifs are can

only be found on sequences with elements specific anchor positions, which cre-

ates dependance on fixed-length input. This chapter explains the partial periodic

pattern mining algorithm, a length-independent and alignment-free motif mining

method which can also be used to find discriminative, class-specific motifs. Given

a set of sequences, our algorithm will give a list of over-represented motifs (com-

pared to a background set, or in a discriminative manner). These motifs can be

used in conjunction with machine learning methods for the prediction of any label

or quantitative value that is correlated with the sequence motifs. We apply our

algorithm to the MHC class I and II peptide binding prediction problem where the

majority of the methods in the literature require a fixed length input. We show

that our algorithm outperforms the state-of-the-art methods in different data sets.
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Further, the method doesn’t require the removal of the unwanted sequences that

cannot be used for either training or prediction using the conventional methods.

Chapter 5 introduces a variety of deep learning techniques. Deep learning

is an area of machine learning which utilizes a set of hierarchical learners that

operate in a sequential fashion. The motivation behind the idea is inspired by the

hierarchical architecture of the neocortex in the mammalian brains. This kind of

layered, ”deep” approach allows learning new representations of the raw input data,

which are then fed to the next learner. Since the higher levels use the processed,

informative features extracted from the input instead of its raw form, they can

perform decision making in a much more abstract level. The recently developed

architecture, Deep Belief Networks [11] can also utilize unlabeled data and perform

learning in an unsupervised fashion. In the last few years, deep belief networks and

similar approaches became the state-of-the-art machine learning methods for image

and sound based learning. However, they haven’t been applied to the biological

problems, and with good reasons. The first problem is, proteins are not of fixed

length. In the nature of the classification, fixed length inputs are nearly a universal

requirement. Proteins are also highly variable in their composition and structure,

and can be either very robust or very fragile to slight changes in their make-up

depending on the context, e.g. some proteins can conserve their fold and function

despite a great number of mutations, some proteins can retain their overall 3D

structure but lose their activity with very few number of mutations, and some

proteins will completely misfold even with one mutation. This disproportionate

relationship between the input (e.g. primary structure for this case) and the

output (3D structure, function, dynamics etc.) makes it very hard to create a

non-case-specific machine learning method to find motifs in protein structures.
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We propose some workarounds and solutions to some of the problems. Com-

bining the representations from Chapters 2 with our approach, we performed deep

learning methods which can be used to classify, cluster, and finally, find discrimi-

native length-independent motifs in any set of input protein data for both sequence

and structural representations. Due to the very general approach presented here,

our algorithm was not developed for a specific problem or representation. We

present its application to a set of very diverse problems to show its feasibility and

performance.

In Chapter 6, important findings of this thesis are summarized along with

remarks for future research topics.

17



2 LOCAL DESCRIPTORS FOR
PROTEINS

2.1 Introduction

Structural studies of proteins for motif mining and other pattern recognition tech-

niques require the abstraction of the structure into simpler elements for robust

matching. To compare and contrast between two proteins, or to define reoccur-

ring motifs, it is important to be able to match and quantify the relationships

between the sub-units of different proteins. This quantification step requires the

simplification of the physical molecule of the protein into more abstract parts. In

analysis protein structures, different models of representations on various levels

of structural details are used. From coarse-grained to all-atom models, simplified

lattice to continuous representations, each model can be used in different areas of

research.

The need for abstraction in computational methods (such as structure search

and comparison, fold matching, structural motif mining and other areas of pattern

recognition) is especially high. The very high amount of data and precision in the

3D coordinates makes computational analysis very complex and very rigid in its ap-

plicability. Simplified models capture relevant information and hide unimportant

details through abstraction, conferring the ability to group complex 3D informa-

tion into manageable clusters that can be searched for, compared and ”learned”

by machine-learning algorithms in a flexible fashion.
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The most common abstraction is the primary structure of the protein, defining

the molecule as a collection of residues. This simplification allows us to repre-

sent the protein as a sequence of an alphabet of 20 amino acids. By defining a

quantitative metric for the comparison of such an alphabet, such as the BLOSUM

and PAM similarity scores between any two residues, it becomes trivial to check

whether two proteins sequences are ”equivalent”. After this abstraction, we can

define complex concepts such as similarity of two sequences and their alignment,

database search of a sequence, DNA and protein domain detection/search/predic-

tion, and a great number of biological problems as a mathematical problem that

can be solved by a number of algorithms and heuristics. Therefore, it is important

to be able to conceptualize the biological molecules into more abstract classes,

nominal labels or numerical vectors.

However, this abstraction comes with its own cost; too much abstraction can

filter out the information that we want to extract from the raw data. From there

on, it becomes a trade-off to optimize the amount of task-relevant information ver-

sus irrelevant noise that is embedded in the abstraction. Generally, the simpler the

abstraction, the more generalized and noise-resistant it is. While more complex

and specific descriptors can include much more information in their representa-

tions, the relevant information we are looking for may be lost in the ocean of data,

and even if that information can be extracted, it is usually much less robust to

slight variations in the input, making it harder to find generalized motifs.

Therefore, it is important to be able to define a descriptor that contains enough

discriminative power (but only the specific information we are looking for and no

more), is robust to changes and random fluctuations in the input data that we are

not interested in, allows the definition of similarity/dissimilarity metrics within
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different descriptors, and finally, computationally easy to calculate and compare.

The descriptor can use any number of information; sequence data, physicochemical

properties, secondary or tertiary structure, information on the local neighborhood,

dynamics based data, domain information, any number of tagging/modification

related information, and so on.

A local descriptor can define any size of a sub-unit. The most commonly used

abstraction level is residue based; it defines a nominal label or a feature vector

on each and every residue in a protein (or in the case of nucleotide sequences, for

every nucleotide). It is also common to use coarse-graining; grouping a number

of residues as a single entity. If the coarse-graining is done carefully, this adds

the neighborhood information into each sub-unit and can increase the specificity

of the descriptor. While fixed size coarse-graining is the most common, adaptive,

dynamically-sized units are entirely possible [12, 13]. In the further end, we have

all-atom models; each atom, bond and even dynamics data can be embedded into

a descriptor of an atom. Due to the sheer number of data and the noise, such

embeddings are usually not preferred.

In this chapter, we investigate measures that convey information about the

protein. Using these measures, we define a collection of possible protein represen-

tations that are suitable for use in machine learning algorithms. Since the exact

information contained in a measure is as important as how it’s represented, we

selected a wide range of measures that can be useful during motif learning or

classification tasks.
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2.2 Residue-specific Representations

In a residue-specific representation, a collection of descriptors are created for every

residue in a protein chain. The relationship between different residues is not taken

into account (except for the information contained in the representation itself).

2.2.1 Amino acid Sequence

As we already mentioned, the primary structure of a protein is the most common

abstraction. Even though representing them as nominal labels from an alphabet

of 20 amino acids are sufficient for many motif mining algorithms, most machine

learning methods cannot directly deal with such sequences and require the repre-

sentation of the sequence by other means.

Binary representation

Direct counterpart of the nominal labels, this approach uses a 20xN matrix of

binary values for a sequence of length N . Each residue is represented as a ”1” in

the corresponding index in the 20-long vector based on their amino acid labels,

with the rest of the vector being ”0”.

Similarity-score representation

While the binary representation can correctly identify each and every amino acid,

it requires further knowledge of the similarities between different amino acids dur-

ing the calculation of similarities for two vectors. Since addition of this meta-

information requires (generally not-trivial) modifications to the machine learning

algorithm, it is better to embed this knowledge into the data vector itself.
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In the similarity-score representation, the sequence is also a 20 × N matrix.

However, different than the binary representation, instead of using 1 or 0 values

to denote an amino acid, it embeds the 20×1 similarity score between that amino

acid and all the other amino acids. Therefore, similar amino acids will have similar

feature vectors, whereas the binary representation will penalize any two different

amino acids equally.

During our experiments, we use BLOSUM-62 matrix (see Table A.1) with every

column normalized within itself into [0, 1] range.

Profile representation

The profile representation is a further step for embedding meta-information into

the data itself. To create the 20 × N matrix, we first search the sequence using

PSI-BLAST [14] in a predefined database (task-specific or global). The results of

the PSI-BLAST search will result in a collection of similar sequences, which are

used to create a position-specific scoring matrix (PSSM) from the local alignment

of the search results. The PSSM motif is placed into the 20 ×N matrix. In case

there are no matches to the database query, the resulting PSSM will be equivalent

to the BLOSUM scores (and therefore the similarity-score representation). Thus,

instead of embedding the static background information about the amino acid

similarity, it will actively try to find the general knowledge about the sequence

motif in the databases.

Profile representation is very useful when the amount of available data is too

low for the machine learning algorithm to ignore the noise in the input set and

learn generalizations. However, such generalizations may also reduce the specificity

of the input data since the information contained therein is being diluted by the
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background database. Coupled with the high computational overhead for the PSI-

BLAST search, it is generally used if embedding the knowledge contained in the

database is likely to increase the performance of the machine learning method.

2.2.2 Secondary Structure

The most common simplified representation of the protein states are the secondary

structural assignments to the coordinates, which can be overlaid onto the sequence

to create a 1D representation. We used STRIDE [15] to predict and label the

secondary structural elements from the 3D protein structure. Secondary structures

assigned to protein segments by STRIDE are represented in a 3-class and 7-class

fashion. The 7 classes are α helix, 310 helix, π helix, β-sheet, coil, turn and bridge.

Those 7 classes can be simplified to 3 classes as ”Helix”, ”Sheet” and ”Loop”.

The 3-class labels can be represented in a binary matrix similar to mentioned

above. 7-class labels can also be represented in a binary form, or using a more

suitable score matrix that takes the similarity between the helices into account.

2.2.3 Protein Blocks

While secondary structure is enough for describing many local folds, the simpli-

fication can result in losing too much information to abstraction. For example,

representing the structure with two states (α-helix and β-sheet) causes the diver-

sity of helices and sheets to be lost, as α-helices are frequently curved (58%) or

kinked (17%) [16].

There have been studies with aims to create local structural alphabets to repre-

sent the structure as a 1D sequence of structural blocks [17]. A structural alphabet

is defined as a set of small prototypes that can approximate each part of the back-
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bone. Creating such an alphabet requires the identification of a set of recurrent

blocks that can identify all possible backbone conformations. A commonly used

structural alphabet is Protein Blocks (PB) [18], which uses the backbone dihedral

angles of the 5 consecutive amino acids (resulting in 10 φ and ψ angles). The

study by de Brevern found that majority of the protein structures found in the na-

ture can be represented by a combination of only 16 different local 5-residue folds.

Using the definition of folds, a 3D structure can be converted into a PB sequence

by matching the dihedral angles of 5 residues in a sliding window to match the

segment to one of 16 pre-defined blocks by choosing the block that has the lowest

angle between the 5 residue unit in question.

The dihedral angles used during the block matching process is given in Ta-

ble A.3, and a a graphical representation of the 16 protein blocks is shown in

Figure A.1.

2.2.4 Other quantitative measures

It is possible to define a number of additional metrics for a given residue or sub-

unit. Although it is possible to use extra information about the residue label

itself, such as its hydrophobicity, aromaticity, charge and so on, such additional

information is not guaranteed to add increase the information already available in

the sequence data itself. That is, motifs and relationships that are based on such

measures that utilize look-up values for a residue labels (hydrophobicity etc.) can

be extracted from the data itself with enough data points.

For those reasons, it is best to add structural features instead of those that are

based on sequence. Some of the features that are used during Chapter 5 are;

• B-factor, a measure of local flexibility of residues within a protein
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• Solvent accessible portion of that residue

• Number and type of contacts, H-bonds, salt-bridges for that residue

During our experiments, proteins without known structures were homology

modeled using templates and therefore were missing experimental B-factors. For

those cases, we predicted the auto-correlation values (mean squared displacements)

of the protein by using a Gaussian Network Model [19, 20] to approximate the

flexibility of that residue.

2.3 Pairwise representation for Amino acids

While the protein structure can be approximated as a vector of similarity scores for

Protein Blocks or any other structural alphabet, this inherently bins the possible

values into discrete number of classes, i.e. 16 for PB. The residue-centric view

also discards most of the information contained in the relationship of two residues.

Addition of such relational information is entirely possible.

For a protein of length N , we can think of the residue-specific representations

as a list of N feature vectors, whereas the pairwise representation will be some

sort of NxN matrix. The most common example to pairwise representation is the

contact map of a protein.

It is possible to use the N2 feature vectors by themselves; however, the amount

of redundant information and noise contained in such a large number of features

may hinder the motif mining process. To limit the effects of the non-linear rela-

tionship, we can convert the NxN matrix into a NxM matrix, where M << N is

a constant denoting the number of consecutive neighbors to include in the feature
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vector. Thus, instead of using the all-versus-all matrix, we just take a M -wide

band along the diagonal.

In both cases, NxN , and NxM , we can define the relationship between any

residues in multiple ways.

2.3.1 Label similarity between amino acid pairs

Pairwise score of two residues might be taken as the distance between their labels.

In the case of nominal labels, a similarity measure must be defined beforehand.

For example, in the case of amino acid labels, BLOSUM (Table A.1) or any anal-

ogous matrix can be used to find the similarity between the two residues. Note

that the use of the BLOSUM matrix is not comparable to the similarity-score rep-

resentation for single residues. In a single residue, we take the similarity of residue

i with all of the 20 amino acids and return this 20-feature vector. In pairwise

similarity, we look at the similarity of residue i and residue j and repeat this for

every consecutive neighbor we wish to take (all j for |j − i| ≤M).

A similar approach can be taken when dealing with Protein Blocks instead of

the residues. A similarity matrix of the 16 PB elements are defined in Table A.4

[21].

If we are representing the protein with continuous values, any distance met-

ric can be used to find their similarities. Depending on the application, most

commonly used alternatives are;

• Minkowski distance measures; Euclidean, Manhattan, Chebyshev etc.

• A Mahalanobis distance metric [22] based on the joint probability distribu-

tion of the features
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• Correlation of the feature vectors; Pearson, Spearman

• The ”angle” between the feature vectors; Cosine-similarity, Tanimoto coeffi-

cient

2.3.2 Interaction between amino acid pairs

Distance matrix

The most continuous representation of the residue contacts will be the distances

between them, which will give us a matrix filled with all pairwise distances between

the central atoms of all residues. To find motifs within directly or semi-directly

interacting protein pairs, it is important to put a cap on this distance value; as

the distance between two residues grow larger, their contributions to a specific

local structural motif diminishes. To capture this non-linear relationship, we use

a sigmoidal transformation function on the actual distance. As a final step, we

take the negative of the distance (shifted to make the minimum 0), such that the

nearest contacts (small distance) get a larger value, and further residues get scores

that are lower than the distance ratio between them.

Contact map

We can further simplify the distance matrix by creating a specific cut-off distance,

and marking every residue pair as contacting (”1”) if the distance between them

is less than this cut-off, and ”0” otherwise. Contact maps are powerful and very

simple to work with; however the sharp cut-off can reduce the performance of the

probabilistic machine learning algorithms.
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Figure 2.1: The probabilistic contact map function defined in Eq.2.1

Probabilistic contact map

We can mix the continuous nature of the distance matrix and the simplicity of

contact maps by defining a new metric. We define a probabilistic contact value

between two residues with distance of d between them as:

C =
1

1 + e(d×A−B)
(2.1)

where A andB are scaling factors. We use A = 1.75 andB = 16 to approximate

the probability of two residues ”interacting”. The resulting function can be seen in

Figure 2.1. The function is bounded between 0 and 1, is continuous on the range

we expect the residues to be in contact, but returns to 1 or 0 for too small or

too large distances. These features make this metric very suitable for Restricted

Boltzmann Machines defined in Chapter 5.
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Contact potential

Contact potential is a measure of the interaction potential between two residues

and is a combination of the previously defined metrics. The BLOSUM similarity

scores are based on the interchangeability of two residues in the databases, but it

does not take the interaction probability of those residues within themselves. The

contact measures look at the distance physically separating two residues, but they

lack any information about the label of the residues. However, it is known that the

energy pairing between different residues are not equivalent [23]. Contact potential

is an energy-like quantity of the interaction potentials between different residues.

An example of such measure is the Thomas-Dill contact potential [24], which were

calculated statistically from the inter-residue interaction potentials from a protein

database. While the Dill contact potentials given in Table A.2 are fixed, the energy

potential can be modified based on the distance between the residues as discussed

in [24].

Relative orientation

In the protein backbone, the dihedral angles are defined are calculated from 4 con-

secutive atoms (φ: dihedral angle between C’-N-Cα-C’, ψ: N-Cα-C’-N). However,

defining the angles between two non-consecutive residues is more problem-prone.

We define the relative orientation of residue j with respect to residue i as the

angle(s) between them. To make the measure rotationally invariant, we assume

residue i to be the origin and define the coordinate system with the ”up” vector

as the vector (Cβ - Cα), the ”right” vector as the vector (C’ - Cα), and the ”back”

vector as the cross product of those two vectors. By using this i-centric coordinate

space, we find the location of residue j relative to the orientation of residue i by
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converting the cartesian coordinates of its center atom into the spherical coordi-

nate system and taking the two polar angles. We can opt to take the angle value

as signed ([−π, π]) or unsigned ([0, π]).

It should be noted that this method is not perfect. The ”up” and ”right” vectors

are not exactly perpendicular due to the structure of the amino acids. Another

point is, we are looking at the angle for a point j. The relative orientation of

the sidechain of j is not taken into account; as long as the center stays the same,

whether the sidechains point towards each other or not cannot be deduced.
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2.4 Graph Properties

Another common approach for structure abstraction is to convert the protein struc-

ture into a graph from distance or contact maps. In this representation, each

residue is coarse-grained into one center node that is connected to other nodes

on the graph on the basis of distance (or other criteria). This allows each amino

acid to be represented with its contacts and the topology of the network around

it. Representing the structure as a graph allows for sub-graph matching to find

reoccurring common motifs in a data set [25] and use of elastic network models for

normal mode analysis [26]. Here, we explore the use of the graph theoretical prop-

erties that convey information about a residues contacts, local neighborhood, its

centrality and importance on the global scale. Such connectivity information can

capture the interactions between unconnected (physically separated) residues. We

use a large number of conventional measures of network analysis as well as novel,

modified indices to better capture the structural information of the proteins.

2.4.1 Graph Properties

2.4.1.1 Contact map

In the creation of the graph from the protein structure, each residue is taken as

a node. To connect the nodes between themselves, we first calculate the contact

map of the protein and use it as the adjacency matrix. For each residue pair i, j

in the protein, we calculate the distance between their central atoms, rij. If the

distance between the two residues are less than a pre-defined cutoff value, we add

an edge between the nodes i and j.

In the adjacency matrices, for a given residue pair i, j, Aij value is usually either
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taken as 0 or 1. However, it is known that the energy pairing between different

residues are not equivalent [23]. For this purpose, we are using the interresidue

interaction potentials defined by Thomas and Dill [24] which were calculated sta-

tistically from a protein database as an energy-like quantity.

The contact potentials matrix contains negative values, which are problematic

in the calculation of the shortest paths. As defined in the Shortest Path section,

our results do not change for any operation that modify the weights monotonically,

therefore to make all of the edge weights positive, contact potentials are shifted

as to make the minimum contact potential value 1 between any residue pair. This

allows us to define the most favourable negative contact potential as 1, and other

less favourable potentials as having greater distance than 1. The shifted contact

potentials table is given in Table A.2.

As a result, our adjacency matrix becomes:

Aij =

{
P (Seq[i], Seq[j]) i 6= j and rij < rcutoff

0 otherwise
(2.2)

where Seq[i] is the ith amino acid, P (X, Y ) is the shifted Dill contact potential

between the amino acids X and Y , and rij is the distance between the center

points of the ith and jth residues.

Center of a residue is usually taken as the coordinate of Cα or Cβ atom of that

residue. Even though Cα distances are commonly used in the literature, they can

not differentiate between the cases where the sidechains are oriented away from

each other and another case where sidechains face each other (loosely defined as

an ”interaction” for our case). For our experiment, we are using Cβ atoms as the

center, since they can capture the relative orientation and interaction of the side
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chains better than the Cα atoms. Glycine residues, which lack the Cβ atoms are

represented as their Cα coordinates. The cutoff distance rcutoff can span a wide

range depending on the problem. For our experiments, the cutoff distance is taken

as 8 Å unless noted otherwise.

2.4.1.2 Shortest Path

The total weight of a path is the sum of the weights of the links along the path.

The ”optimal path” between a pair of nodes is the path of minimal total weight

between these vertices. While we defined the edges between our nodes (amino

acids) with the Thomas-Dill contact potentials, due to the different interaction

types within a macromolecule, we use three different path distance measures and

find the shortest paths between nodes with respect to them.

If a path between the vertices v to v′ is P , and P = (v1, v2, . . . , vn) where v1 = v

and vn = v′, then the weight of P will be |P |, which can be defined three different

ways as below. The shortest path between v and v′ will be the P over all possible

paths that minimize |P |.

Homogeneous Shortest Path

If the weights in the network are drawn from a relatively narrow distribution, the

weight of a path will be closely related to its hop number, since every edge will

contribute a similar weight. In that case, the length of the optimal path will be

proportional to the length of the shortest path. To simulate this behaviour, the

network can be constructed without edge weights, in which the shortest path will

be the path with the minimum number of hops.
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|Ph| = n− 1 (2.3)

For our implementation, homogeneous paths are calculated using Dijkstra’s

algorithm [27] using no edge weights.

Weak Disorder Shortest Path

The weak disorder case is similar to the homogeneous path such that the edge

weights come from a narrow distribution. However, we no longer restrict ourselves

to a 0, 1 weight scheme and take the actual edge weights (contact potentials in

our case). The weak-disorder weight for P will be:

|Pw| =
n−1∑
i=1

ei,i+1 (2.4)

where ei,j is the edge weight between the nodes i and j.

For our implementation, weak disorder paths are calculated using Dijkstra’s

algorithm using the contact potentials as described above.

Strong Disorder Shortest Path

If the distribution of weights is broad enough, the total weight of a path will be

determined by the highest weight along the path, and is almost independent of all

other weights. In this case, paths can be compared by the highest weight on them.

This case is called strong disorder. Shortest path in a strong disorder graph can be

interpreted as the shortest path that causes minimal maximum disturbance along

the path, i.e. the path that minimizes the maximum edge weight that is crossed.
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In strong disorder networks, the optimal path is very different compared to

weak disorder. The optimal paths will attempt to avoid high weight links whenever

possible. Thus, the optimal path may travel a longer total distance to avoid

passing through high weight edges. Atilgan et al. [28] found that the interactions

in biological networks can be more accurately defined by their strong-disorder

distances, which emphasize the largest barrier to be crossed along the way and

define the bottleneck residue.

The strong disorder weight for P is defined as:

|Ps| = max(ei,i+1 for i = 1 to n− 1) (2.5)

If different paths share the highest weight edge, the lower weight path can be

either determined by comparing the highest weight between the non-shared links,

or by taking the one with the lowest hops. We opted to use the latter definition.

Strong disorder paths are calculated using two passes of Dijkstra’s algorithm;

the first will determine the maximum edge weight that needs to be traversed to

reach v′ from v, and the second will find the path with the minimum number of

hops that do not exceed the given maximum weight.

2.4.1.3 Centrality Measures

Centrality measures determine the relative importance of a vertex within the graph

[29, 30, 31, 32]. These measures can quantify the key nodes which are important in

information flow/propagation within the network, or the bottleneck vertices that

may be improved. Due to the projection of the entire global network topology to

an easily quantifiable value for each node, they can be used to map the important

nodes of different graphs in subgraph matching heuristics.
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The centrality measures, with the exception of Degree and 2nd Degree, depend

on the shortest path calculations. For those reasons, they are calculated indepen-

dently for both weak- and strong- disorder shortest paths.

Degree Centrality

Degree centrality is defined as the number of neighbors of a node. In directed

graphs, it can be separated into two separate measures for indegree and outdegree.

For undirected graphs, they are equivalent.

Degree centrality of a node i is defined as:

CD(i) = deg(i) (2.6)

Second Degree Centrality

A more generalized version of the degree centrality is the second degree, which

measures the number of distinct second neighbors of a node. that is, nodes that

can be reached from i in 2 hops.

Closeness

For a graph, there is a distance metric between all pairs of nodes, defined by

the length of their shortest paths. The farness of a node i is defined as the sum

of its distances to all other nodes, and its closeness is defined as the inverse of

the farness. Thus, central nodes will have a lower distance to all other nodes in

the network. Closeness can be regarded as a measure of how fast it will take to

propagate information/perturbation from node i to all other nodes sequentially.
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Closeness can be defined as:

CC(i) =
1∑N

j=1 d(i, j)
(2.7)

where d(i, j) is the shortest distance between the nodes i and j. CC(i) can also be

normalized as:

C ′C(i) = CC(i)(n− 1) (2.8)

Notice that closeness centrality for all the nodes will be 0 for an unconnected

graph. To prevent this behavior, only the distances between the reachable nodes

are taken. However, since our protein networks are calculated in a way to disallow

unconnected graphs, this correction was not necessary.

Betweenness

Betweenness centrality quantifies the number of times a node acts as a bridge along

the shortest path between two other nodes. It can be said that nodes with high

betweenness values are critical in preserving the flow of the network and can act

as bottlenecks.

Betweenness centrality of a node i is the sum of the fractions of all the shortest

paths for each pair of nodes (j, k) that pass through that node i. To find the

betweenness of a node i, shortest path (i.e. geodesic) between all pairs of nodes

(j, k) are calculated, denoted as gjk. From those paths, the number of geodesics

that pass through i are counted to find gjk(i). Then, the betweenness centrality

CB(i) of a node i becomes:
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CB(i) =
∑
j<k
i 6=j 6=k

gjk(i)

gjk
(2.9)

It is usually normalized as:

C ′B(i) =
CB(i)

(n−1)(n−2)
2

(2.10)

Distinct Betweenness and Non-redundant Betweenness

We define two further measures of betweenness. Distinct betweenness is a normal-

ized version of betweenness. It is the ratio of the number of distinct occurrences of

a node on the total number of distinct shortest paths between all pairs of nodes.

If there are multiple shortest paths between a given pair of nodes, only the first

occurrence of a node i is counted towards its betweenness.

CBD
(i) =

∑
j<k
i 6=j 6=k

min(gjk(i), 1)

(n−1)(n−2)
2

(2.11)

We define another special case of distinct betweenness, non-redundant between-

ness as the number of node pairs j, k that will be affected by the removal of node i.

That is, if all shortest paths between the pairs j, k pass through i, then i acts as a

bottleneck and there is no redundancy in the case i is removed from the network;

the shortest path distance will increase for j and k.
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CBnr(i) =

∑
j<k
i 6=j 6=k

1 gjk(i) = gjk

0 otherwise

(n−1)(n−2)
2

(2.12)

Stress Centrality

Stress centrality of a node is the fraction of all shortest paths that pass through

that node. Note that this is different than betweenness; betweenness is the sum

(for all pairs) of the fraction of the shortest paths between a given pair that pass

through a node.

Stress centrality is defined as:

CS(i) =

∑
i 6=j 6=k gjk(i)∑
i 6=j 6=k gjk

(2.13)

2.4.1.4 Cliques

In graph theory, a clique in an undirected graph is a subset of its nodes such

that every pair of nodes in the subset are connected by an edge. In small-world

networks, some nodes tend to create groups with relatively higher density of con-

nection within themselves, compared to the probability of establishing an edge

between two random nodes. In such networks, cliques or near-cliques give infor-

mation about tightly connected groups within the graph.

A measure of local cliquishness is the clustering coefficient. Clustering coeffi-

cient is a measure of degree to which nodes in a graph tend to cluster together

and quantifies a node on how close its neighbors are to being a clique. For an
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undirected graph G = (V,E), the neighbourhood Ni for a vertex vi ∈ V is defined

as its immediately connected neighbours. The clustering coefficient Ci for a vertex

vi is given by the proportion of links between the vertices within its neighbourhood

divided by the number of links that could possibly exist between them. Thus;

Ni = {vj : eij ∈ E} (2.14)

Ci =
|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(2.15)

2.4.2 Multiple Sequence Alignment using Graph Proper-

ties

The feasibility and the performance of those graph properties are tested by us-

ing them in a biological problem of multiple structural alignment. Finding the

similarities between proteins has been one of the important issues in biological

sciences. Multiple sequence alignment allows the similar and conserved proteins

to be aligned within each other, essentially defining a motif. While the conven-

tional multiple alignment algorithms deal with sequence information, structural

similarity is much more important since the function of a protein follows its shape.

Therefore, the ability to extract the structural homology between proteins even

in the case of very low sequence identity is important for discovering class-specific

motifs.

We propose the use of the graph properties to obtain a multiple alignment

based on structural data. This approach differs from the structural superposi-

tion algorithms in the literature: Superposition algorithms try to align the 3D

structures by rotating and translating the structures to obtain a suitable overlay
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betweem them, whereas our method will produce a sequence alignment using the

structural information.

The overall idea is to calculate the graph properties for every residue. We can

measure the similarity between different residues by applying a distance function

on the graph properties, essentially replacing the sequence similarity matrices such

as BLOSUM during the multiple alignment algorithm. Using our metric, we per-

formed multiple structural alignment to capture over-represented structural folds

that occur in a set of proteins. The results are compared within the literature and

show that the graph properties can capture the global information about a residue

better than the conventional methods.

2.4.2.1 Alignment algorithm

Alignment with affine gap penalty

During the pairwise alignment of two proteins, S and T , each protein is represented

as a sequence where each node contains the graph properties as their inherent

labels.

In order to account for affine gap penalties (to differentiate between first po-

sition of a gap and further gap extensions), three distinct matrices of size [nxm]

are created where n and m are the sequence lengths. The matrices A, B and C

are defined as:

A[i, j] = max. score of an alignment between S[1 . . . i] and T [1 . . . j] that ends

in S[i] matched with T [j].

B[i, j] = max. score of an alignment between S[1 . . . i] and T [1 . . . j] that ends

in a gap matched with T [j].
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C[i, j] = max. score of an alignment between S[1 . . . i] and T [1 . . . j] that ends

in S[i] matched with a gap.

These matrices are initialized as follows:

A[0, 0] = 0

A[i, 0] = −∞, for 1 ≤ i ≤ m

A[0, j] = −∞, for 1 ≤ j ≤ n

B[i, 0] = −∞, for 0 ≤ i ≤ m

B[0, j] = Gopen + j.Gext, for 1 ≤ j ≤ n

C[i, 0] = Gopen + j.Gext, for 0 ≤ i ≤ m

C[0, j] = −∞, for 1 ≤ j ≤ n

where Gopen is the gap opening penalty and Gext is the gap extension penalty for

affine gap penalty function.

Then, the matrices A, B and C are filled for all 1 ≤ i ≤ m and 1 ≤ j ≤ n by a

dynamic programming algorithm, defined by the following equations:
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A[i, j] = p(i, j)+max


A[i− 1, j − 1]

B[i− 1, j − 1]

C[i− 1, j − 1]

(2.16)

B[i, j] = Gext +max


Gopen +A[i, j − 1]

0 +B[i, j − 1]

Gopen +C[i, j − 1]

(2.17)

C[i, j] = Gext +max


Gopen +A[i, j − 1]

0 +C[i, j − 1]

Gopen +B[i, j − 1]

(2.18)

where p(i, j) is the score of a matching ith and jth residues, calculated by the node

similarity scoring function that is defined in the following section.

To get the final result, the optimal alignment is constructed by tracing back

from the maximum among the matrices A[m,n], B[m,n] and C[m,n], from (m,n)

to (0, 0). During back tracing, each previous step is the same one followed during

the selection of the maximum scoring path. This will give us the both the optimal

alignment between S and T , and their alignment score.

Pairwise Match Scoring

We define p(Z,X), the score of aligning a residue Z with another residue X as;

p(Z,X) =

√√√√ N∑
i=1

wi(Zi −Xi)2 (2.19)

where Zi denotes the ith graph property of Z, and wi is the weight vector to control

the importance of each property to the similarity.
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To optimize wi, we use a genetic algorithm. The fitness function of the genetic

algorithm is taken as the SP-score of alignments our method produces and the

reference alignments set. As the reference, we opted on the curated benchmark

set of structure alignments from CATH [33] for 3 families.

Guide tree construction

Using the alignment algorithm described above, all proteins are aligned with each

other. This results in a similarity matrix of all proteins, where the similarity is

the obtained pairwise alignment score. Using these scores, we create a hierarchical

clustering tree using the neighbor joining algorithm [34]. We first create the Q

matrix:

Q(i, j) = (r − 2)d(i, j)−
r∑

k=1

d(i, k)−
r∑

k=1

d(j, k) (2.20)

where d(i, j) is the distance between two proteins. Then the minimum element of

the Q matrix, Q(f, g) is found. This means that the element pair (f, g) will be

clustered together to create the new element u which will be added to the tree.

The distances between the newly created u node and other nodes are calculated

as:

d(f, u) =
1

2
d(f, g) +

1

2(r − 2)

[
r∑

k=1

d(f, k)−
r∑

k=1

d(g, k)

]
(2.21)

d(g, u) = d(f, g)− d(f, u) (2.22)

d(u, k) =
1

2
[d(f, k) + d(g, k)− d(f, g)] for all k 6= f, g, u (2.23)

Afterwards, the new Q matrix is calculated (with the addition of u and removal

44



of f, g), and the process is repeated until no more nodes are left.

Multiple Alignment

Using the order and the topology of the guide tree, the multiple alignment of

sequences are created in a hierarchical manner. The lowest layer of the tree will

contain single proteins that will be aligned in a pairwise manner as shown above.

The resulting alignment will be added to the tree as the parent element of the two

proteins. When aligning an element that contains multiple proteins with another

element, the similarity score between aligning the multiple elements are calculated

by sum-of-pairs scoring (SP-score). SP-score of aligning the ith position of an

element A with the jth position of an element B is the sum of the similarity scores

between all proteins of Ai and Bj.

This process is continued by merging the alignments of different proteins until

all of the proteins are aligned.

2.4.2.2 Data set

Use of an objective and reliable benchmark is needed to better understand the

weak points and problems associated with a proposed alignment method. BAL-

IBASE [35, 36] is the most commonly used alignment benchmark set for sequence

alignment. It contains 217 reference alignments with 6255 sequences. Balibase

focuses on ”subfamily specific features, motifs in disordered regions, the effect of

fragmentary or otherwise erroneous sequences on MSA quality” [36]. The refer-

ence alignments are manually curated based on 3D structural superpositions with

detailed annotations.

Sequences in BALIBASE provide challenging test cases for both global and

45



local alignment programs, as not only all of the alignments are provided with full-

length sequences, 168 of them have one additional version where sequences are

trimmed so that the focus is more on homologous regions. BALIBASE typically

focuses on sequences with lower identities. Since sequences with higher identities

are easier to align, low identity sequences -so called twilight zone sequences- are

much more informative when assessing the performance of an alignment.

We used the 67 families given in reference set 1.0 of BALIBASE.

Evaluation Metric

For all of the data sets, a reference alignment is given. We compare the graph-

based alignment results with the reference alignment using either sum-of-pairs

score (SPS), or a column score (CS) [37]. In this context, SPS compares the

alignments by checking the fraction of elements that are aligned correctly in the

test alignment compared to the reference alignment. For all pairwise matches

between the residues that are present in a specific position in the reference set,

SPS will check whether that residue pair is aligned together in the test set (in any

position). If they are aligned together, the score is incremented by 1. The final

score will be divided by the total number of pairs, thus resulting in a value between

0.0 and 1.0, where 1.0 means perfect replication of the reference alignment.

CS follows a similar route. Only, instead of looking at all the specific residue

pairs for a position, it considers the whole column at that position. If the residues

present in a specific position are also aligned as a column in the test set (in any

position), the column is considered to be aligned. For the whole alignment, CS

will give the fraction of columns that are conserved between the two alignments.

SPS is beneficial when determining the percentage of correctly aligned residues
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for each individual sequence in the alignment. CS measures the performance of

the algorithm in correctly aligning all sequences together.

BALIBASE database also includes the core columns for a family of alignments.

Core columns are the columns where a specific domain, fold or any conserved im-

portant region is located. Thus, the core segments depict which columns are

described as being reliably aligned, whereas other regions are annotated as ”am-

biguous”. Therefore, the optimal aim of an alignment algorithm should be to align

those core regions. Two other metrics, SPScore and CScore are defined to check the

performance of an alignment on those core regions. Instead of looking at the whole

of the alignment, Core-SP and -CS will compare only the residues present in the

columns marked as ”core” in the data and discard the rest of the alignment.

2.4.2.3 Results

The comparison of the average scores over the whole 67 families with the results

for other alignment algorithms is given in Table 2.1 [38, 39]. Individual results for

the given reference families selected in BALIBASE are given in Table 2.2.

Looking at Table 2.1, we can see that our alignment performs quite well when

compared to the state-of-the-art algorithms. GraphAlign ranks 4th by SPS and 3rd

by CS out of the 10 algorithms compared. It is important to note that our align-

ment algorithm is the same one as used by CLUSTAL [40], without the sequence

weighting and gap optimization techniques of CLUSTALW2 [41]. Using the same

alignment algorithm but scoring with graph properties instead of the sequence

information outperforms CLUSTAL in both SPS and CS. This is an important

distinction; the state-of-the-art MAFFT [42] evaluates a much more complicated

scoring scheme with a very high complexity and running time. However, since our
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scoring method is not based on the alignment algorithm, we can implement graph

property scoring into the main idea of MAFFT to utilize its powers in sequence

alignment, with our strengths in capturing structural similarity.

A detailed view of individual scores for 12 families are given at Table 2.2. We

can see a great variance within the results. 4/12 of the families were predicted

with very high CS and SP scores including one family with a perfect alignment,

another 3/12 of the families were aligned with about CS of 0.4 and SPS of 0.65.

However, the rest 5/12 of the families are very problematic with regards to their

column scores of 0 even though they have an average SP-score of 0.41. This means

that, even though a relatively high percent of the residues were aligned correctly,

none of the families have any columns with elements aligned perfectly in a row.

It should be noted that the reference alignments in the BALIBASE were criti-

cized by several studies [43, 37] sequence alignment based on the BAliBASE bench-

mark]. The studies show that there are many problems in the reference alignments;

Many sets align regions that are definitively not homologous or structurally sim-

ilar, even in families that contain structural similarity, the structural alignments

used by BALIBASE are wrong. Another big problem is that the core blocks should

have unambiguously conserved secondary structure to ensure that structure and

sequence alignments agree, however for many cases they don’t. And finally, many

sets are not globally alignable because they contain different domains in different

orders. Often, only a single, small domain is common to all proteins in the input

set.

Therefore, the problems with the families resulting in a column score of 0̃

might either result from our method, or the reference alignment itself. It has been

reported that most alignment algorithms such as MUSCLE, T-COFFEE, PROB-

48



CONS etc. also face problems with BALIBASE families [43]. It is possible that

some families also result in significantly low column scores using other methods

as well. However, we cannot test this claim since the benchmark studies do not

report their findings in a family specific manner.

Table 2.1: Comparison of the MSA results to other alignment algorithms.

Algorithm SPcore CScore

DIALIGN-TX 0.515 0.265

DIALIGN-T 0.2.2 0.493 0.253

DIALIGN 2.2 0.507 0.265

CLUSTAL W2 0.501 0.227

T-COFFEE 5.56 0.582 0.313

POA V2 0.38 0.153

MAFFT 0.671 0.446

MUSCLE 3.7 0.579 0.33

PROBCONS 1.12 0.67 0.417

GraphAlign 0.55 0.33

2.4.2.4 Discussion

This section explores the feasibility of using network information in capturing the

local information of proteins. We propose the use of a variety conventional and

novel graph theoretical measures as a similarity metric between local sub-units

of proteins. We then use these descriptors in a multiple sequence and structural

alignment method.

From the results of our experiments, we show that such descriptors are viable

and can give comparable results even though the actual 3D structural information

is converted into a more abstract form by the graph properties. An important
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Table 2.2: Comparison of the multiple sequence alignment results with the bench-
mark alignments.

Data set # CScore SP

BB11001 10 1.00 1.00

BB11002 10 0 0.422

BB11003 10 0.45 0.78

BB11017 10 0.83 0.895

BB11020 10 0 0.704

BB11021 10 0.4 0.582

BB11022 10 0 0.318

BB11027 10 0.32 0.592

BB11028 10 0 0.623

BB11030 10 0.02 0.439

BB12020 10 0.98 0.99

BB12036 10 0.91 0.958

advantage of the descriptors presented here is the ability to obtain alignments that

capture the similarities between the folds and domains of multiple sequences even

in the absence of sequence similarity. It is known that structural information is

mostly conserved through the evolutionary processes, or reach similar structures

due to convergent evolution. This results in a variety of protein families that

have very low sequence similarity but high structural similarity. Instead of using

the amino acid label, we can add the structural information to perform better

alignments.

Structural alignment of multiple proteins is problematic in the case of proteins

that are dissimilar in overall shape but carry a common similar domain. This is

an important problem, but a problem that has already been tackled and remedied

in the case of multiple sequence alignment algorithms [39]. A very important part
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to focus is that our descriptors are mainly a similarity metric; the features do not

depend on a specific implementation. Even though we used the alignment approach

used by CLUSTAL, it is trivial to implement the distance matrix described here

into any other sequence alignment algorithm. Since our results improve upon the

classical CLUSTAL, we speculate that our results will improve the baseline of

performance if applied to a better alignment technique.
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2.5 Bond-Orientational Order Parameters

The previous section has shown the power of graph-based measures in capturing

the global information about a protein. Even though this simplification is very

powerful, it has a distinct disadvantage: the loss of the 3D topology. By definition,

the graph construction will project the 3D structure into a flat presentation that

only contains the distance information. That is, as long as the 2+ points of a

3+ point sytem are close together to form a contact, the relative topology and

the orientation of the non-contacting points relative to the others is lost. It can

be argued that the contact information, when analyzed in a global scale, contains

enough implicit information to approximate topology, as shown by the algorithms

that can correctly predict a 3D structure based only on the contact map [44, 45].

However, mining this implicit information require the analysis of the graph as a

whole, i.e. use of the contact information of a residue as a constraint for another,

irrelevant residue. Since the machine learning algorithm will operate on a local

scale, the relative orientation information between the residues cannot be captured.

As a result, the graph properties contain information about the centrality in

a global scale, but they lose the structural fidelity. And in contrast, while the

structural alphabet approaches (such as Protein Blocks) can capture the local ge-

ometry of a fold specifically, they lose the position and the locale of the residue in

the global scale of the protein. To approximate both the local structural informa-

tion with a relatively high degree of certainty and the neighborhood information

including the directionality of those contacts with a single model, we propose the

use of bond-orientational order parameters as local descriptors of proteins.

Bond-orientational order is a well-established metric that is used in analysis
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and comparison of the crystal structures packing of atoms [46]. Due to the use

of spherical harmonics, they can capture the directional information around each

residue, and since they are invariant of the rotations of the reference frame, match-

ing two structures require only the comparison of numbers, instead of the more

computationally costly and problem-prone structural alignment methods.

As a first step, we wanted to test whether the number and placement (angle

and distance) of neighboring atoms around each residue show a repeating pattern

in average protein structures. If there is such a pattern, we can use the protein

descriptors to approximate the local structure around a center point. To test

the feasibility of representing the protein structure with such orientational order

descriptors, we tried to use those descriptors to capture and differentiate the sec-

ondary structural elements from each other. Recognizing and assigning secondary

structures to atomic coordinates is a complex task [47] and require the ability to

recognize both the local structure (for helices) and contact information (between

β strands). If orientational order descriptors can predict secondary structural ele-

ments, it shows that they capture the necessary information and can be evaluated

further for more complex motif discovery purposes.

2.5.1 Method

2.5.1.1 Bond-orientational Order

The bond-orientational order parameter is previously described by Steinhardt et

al. [46] in the study of packed spheres. It has also been employed in the analysis

of protein structures by means of local connectivity around each residue [48]. The

bond-orientational order parameters are given as
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Q̄`m(i) =
1

Nb(i)

Nb(i)∑
n=1

Y`m [θ(~rn − ~ri), φ(~rn − ~ri)] (2.24)

Q`(i) =

(
4π

2`+ 1

1∑
m=−`

∣∣Q̄`m(i)
∣∣2)1/2

(2.25)

W`(i) =
∑

m1,m2,m3
m1+m2+m3=0

[
` ` `
m1 m2 m3

]
Q̄`m1Q̄`m2Q̄`m3 (2.26)

where ` is the bond orientational parameter. ~rn denotes the position vector of

the nth residue. (~rn − ~ri) is the bond vector from residue i to n, and θ, φ are the

polar angles of this bond, measured with respect to an arbitrary reference frame.

Ylm[θ(~rn − ~ri), φ(~rn − ~ri)] are Laplaces spherical harmonic functions [49] for the

given angles. Nb(i) is the total number of contacts of i that are below a given cutoff

distance. The coefficients shown as a matrix in Equation 2.26 are the Wigner-3-j

symbols [50].

While the spherical harmonics of the bonds for a given l can change drastically

by rotating the coordinate system, combining the Q`m values into a quadratic

invariant Q` (Equation 2.25) and third-order invariant W` (Equation 2.26) will

result in a rotationally invariant parameter. These order parameters are invariant

under reorientations of the external coordinate system. For l = 2n, spherical

harmonics are also invariant under inversion and therefore independent of reference

frame.

In research of the crystal packing, most commonly used parameter is the Q6

[46, 51, 52] as ` = 6 is the smallest value of ` that can capture both cubic (simple,

face centered, and body centered) and icosahedral orders (whereas Q4 will miss
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icosahedral and Q2 will miss both) [48].

2.5.1.2 Data set

For experimentation, a total of 120 protein structures were collected from the

Protein Data Bank [53]. Protein structures belonging to different SCOP [54] classes

and folds were selected for more even representation of different folds in the dataset.

On top of those, the benchmark set of non-homologous (<30% sequence identity)

PDB proteins of Zhang et al. were also added to the final dataset [55].

For each residue, Q` (Equation 2.25) and W` (Equation 2.26) values are calcu-

lated from the contacts of that residue, where contact is defined as residues with

distance between the Cα atoms that is less than a predefined cutoff threshold.

During the calculation, different cutoff distances and l values were tried. Result-

ing Q`m and W` values were merged in a feature vector by using sliding window

on the backbone.

The secondary structure of each protein was calculated using STRIDE [15].

The secondary structure values of the windows were assigned as a class value on

the basis of occurring in the majority of the segment (> 60%) in a continuous

fashion in the sliding window. The transition regions between different secondary

structures that contain two or more different secondary structure classes in the

protein segment were removed from the dataset since there is no clear secondary

structure to be used in learning and prediction. After those removals, extracting

the features from the 120 proteins (using a window size of 5) results in 15273 rows

(protein segments) in the final dataset.
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2.5.1.3 Secondary structure prediction

Secondary structures assigned to protein segments by STRIDE [15] are represented

in a 3-class and 7-class fashion. The 7 classes are α helix, 310 helix, π helix, β-

sheet, coil, turn and bridge. Those 7 classes were simplified to 3 classes as Helix,

Sheet and Loop. The final dataset was created using both 3-class and 7-class

representations. However, in the resulting dataset the classes bridge, 310 helix

and π helix had only few copies, as either they are uncommon or are rarely found

consecutively. Also, STRIDE is believed to underpredict π helices [56], possibly

lowering their count even further. Due to very low sample size, 310 helix and π

helix classes were merged with the α helix class, and bridge regions were removed

completely, resulting in a 4-class (helix, sheet, coil, turn) data.

In the feature vector, Q` values always result in a value between 0 and 1, while

W` values can take arbitrary values. To overcome this, Wl values were normalized

to the [0− 1] range before the prediction.

Using the calculated Q` and normalized W` values from the sliding windows as

the feature vector, and assigned secondary structure as the class value (for both

3-class and 4-class), a classification was performed using the SVM implementation

libsvm [57] inside the Orange data mining software [58].

Optimization of the window size, l-values and the cutoff distance was carried

out on a smaller independent set consisting of 15 proteins. The optimal results

were obtained using a cutoff of 7 Å in conjunction with ` = 2 to 10, with a window

size of 5.

Training and prediction was done on separate data sets, created from inde-

pendent proteins (i.e. no protein segment was predicted with a classifier that was

trained with a segment belonging to the same protein). The data was split in a
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50-50% fashion (of the PDBs) to create the training and the testing sets.

2.5.2 Results

2.5.2.1 Prediction Results

The accuracy and the AUC (area under the receiver-operating-characteristic curve)

of the predictions of the test set are given in 2.3. Accuracy of the prediction is

92.3% and the AUC is 0.993. AUC gives the probability that a randomly selected

positive instance will score higher than a random negative instance, and is a more

robust performance measure than accuracy itself [59].

Looking at the confidence table, helices (sensitivity of 0.99) can be represented

exceptionally well by the bond-orientational order parameters, followed by sheet

structures (sensitivity of 0.91). In 4-class representation, coils and turns have

lower sensitivity (respectively 0.71 and 0.75). However, as can be expected, they

are more likely to be mistaken as each other than a sheet or helix. In 3-class

representation, assigning the class value of loop-region to coils and turns will result

in a significantly higher sensitivity of 0.87.

2.5.2.2 Feature Analysis and Clustering

Due to the very high accuracy and AUC values, we investigated whether the high

accuracy was because of the high predictive performance of SVM due to the use

of non-linear kernels, or whether the accuracy could be replicated with a simple,

human-understandable method.

We first investigated the effects of different Q` and W` features for each residue

in the segment to the corresponding secondary structure. To see the importance
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Table 2.3:

Area under the ROC curve, accuracy and confusion matrix of the test set
predictions. In the confusion matrix, number of predicted instances and ratio of
the correct predictions are given.The last row (C+T) represents Coil and Turns

being classified as Loop-region in the 3-class prediction.

 AUC Accuracy 

 0.993 92.3% 

  

 
Predicted 

 
Helix Sheet Coil Turn Sensitivity 

A
ct

u
a

l 

Helix 
3768 

(98.9%) 

12 

(0.3%) 

0 

(0.0%) 

26 

(0.7%) 
0.990 

Sheet 
3 

(0.2%) 

1199 

(90.70%) 

12 

(0.9%) 

105 

(7.9%) 
0.907 

Coil 
3 

(0.7%) 

27 

(6.1%) 

316 

(71.0%) 

99 

(22.2%) 
0.710 

Turn 
71 

(10.1%) 

43 

(6.1%) 

48 

(6.9%) 

527 

(75.3%) 
0.753 

C+T 
74 

(6.5%) 

70 

(6.1%) 

990 

(87.3%) 
0.873 
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of each feature and a visual representation of their relationship with samples, we

created a 2D linear projection [60] of the data using 6 features, selected by running

the VizRank heuristic [61] for 2000 generations on the training set. The rotation

of the axes and the final projection was optimized using the FreeViz algorithm [62]

to optimize separation of data points. The result is given in Figure 2.2. From the

perspective of the Q3 and W3 parameters, sheets and coils form the opposing ends

of the spectrum. Notice that the classes show a non-perfect but distinct separation

even on a linear projection.

To further investigate the quantitative importance of each feature to the predic-

tion, we looked at the information gain and the linear SVM weight of the features.

The features that have the highest information gain are the Q3 and Q4 values for

the middle 3 residues of the window of 5 aminoacids. When ranked by their SVM

weights, Q9 values of the middle 3 residues were also selected as well as the Q4

values. Not surprisingly, the center portion of the window was ranked higher than

the boundary portions. No W` values were selected as informative. We can con-

clude that Q3, Q4 and Q9 are the most important features for classification, since

they were all selected at least 3 times for that center portion without exception.

Using the top 6 features from the SVM weights (Q4 and Q9 for the 3 center

residues of each window), we performed unsupervised k-means clustering on the

dataset. The distance between each row was calculated as the distance between

their vectors. Euclidean, Manhattan, Hamming distances and Pearson and Spear-

man correlation values were tried during the clustering. The optimal distance

measure was found to be the Manhattan distance. Results for clustering with

k = 6 in k-means algorithm are given in Figure 2.3 and Table 2.4. Figure 2.3

shows the frequency of the secondary structural elements in the resulting clusters,
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Table 2.4:

Relative assignment of each class to the clusters. Cluster representations show
which class is more likely to be in that cluster.

 
# Helix # Sheet # Turn # Coil Representation 

Cluster 1 98.3% 1.1% 0.5% 0.2% Helix 

Cluster 2 90.4% 4.1% 3.8% 1.7% Helix 

Cluster 3 90.1% 5.1% 3.1% 1.7% Helix 

Cluster 4 19.7% 68.9% 8.1% 3.3% Sheet 

Cluster 5 5.8% 20.9% 47.3% 26.0% Loop region ~ Turn 

Cluster 6 0.0% 0.7% 35.9% 63.4% Loop region ~ Coil 

 Clustering 

Accuracy 
84.6% 

AUC 0.932 

 

and Table 2.4 gives the clustering accuracy and relative assignments of each class

to each cluster.

As we can see, even after discretizing the feature vectors to only 6 clusters

with an unsupervised method, the clustering has 84.6% accuracy and 0.932 AUC.

The clusters show relatively high sensitivity. That is, clusters 1,2 and 3 can rep-

resent helix structures with high certainty, cluster 4 is mostly sheet structures

and the cluster 5, 6 is commonly loop regions, with most of the errors are due to

misclassifying Turns as Coils and vice versa.

2.5.3 Discussion

In our study, we tested the feasibility of using bond-orientational order parameters

as descriptors of protein structure in predicting secondary structure from the co-

ordinates Cα atoms. This resulted in 92.3% accuracy and 0.993 AUC. The helices
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Figure 2.2:

Distribution of the class values with respect to different features in 2D linear
projection. ResX Y represents the feature Y of the residue X (out of 5) in the
protein segment.
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Figure 2.3: The number of elements in each cluster by their secondary structural
elements.
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can be predicted at 99% sensitivity. Since helices are formed by local interactions

that are established within the close vicinity of each amino acid, we can conclude

that this structure can easily be captured by the orientational order parameters.

While helices can be predicted quite easily using backbone dihedral angles,

this is not the case for sheet structures due to non-local, long range interactions.

We show that orientational order parameters can capture the representation of β-

sheets equally well (91% sensitivity) since strands stand parallel to each other to

form the sheets. There is less information coming from the sequentially adjacent

residues forming the sheet in comparison to helices (which makes it difficult to

predict them in secondary structure prediction algorithms) but the orientational

order descriptors can still capture the necessary local and neighbor information.

Addition of orientational order parameters with higher cutoff distance values may

help in this regard.

Turns and coils are more difficult to predict in comparison to helices and sheets,

(75% and 71% sensitivity respectively). This is expected as they are short, can

be found in different local environments (i.e. buried in the core or exposed to

water) and lack a rigid structure. Turns are easier to predict than random coils

since they are more structured and may have conserved hydrogen bonds between

the backbone residues. Some coil structures can be mistakenly classified as turns

(22.2%) but the rate of misclassification of turns as coils is not as high (6.9

While the continuous features are shown to be enough to capture secondary

structure, we also investigated the applicability of comparing two orientational

order feature vectors to evaluate structural similarity (i.e. whether a vector can

be assigned to a class based on just a distance value and not by a complex rule

learned by the SVM). By using an unsupervised clustering method with a simple
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Manhattan distance metric, we have obtained 6 clusters that correctly predict the

secondary structure with 84.6% accuracy and 0.932 AUC, showing that similar

structures definitely have similar vector characteristics, which is very important

for use in structural alphabets. We can also see this effect in Figure 2.2; the classes

have distinctive characteristics in their features that can be recognized even on a

linear projection with few features.

We also looked at the relative importance of each feature in the descriptor

vector. Q3, Q4 and Q9 seem to be the most important features in prediction of

the secondary structure elements, but a more through experimentation is needed.

We conclude that there is very strong potential application of orientational

order parameters, especially in establishment of a new structural alphabet that

takes local backbone structure as well as contact information from the neighboring

regions into account. Such an alphabet can be exploited to identify structural

motifs in a protein family that cannot be captured with other methods.
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3 GLOBAL DESCRIPTORS FOR
PROTEINS

3.1 Introduction

This chapter deals with the problem of finding descriptors in a global scale, de-

scriptors that can be used to find the similarities or differences of multiple proteins.

Such global features can help on finding similar clusters in data sets by unsuper-

vised learning, or can be used to learn factors that differentiate between two sub-

classes of the data. Finding descriptors that are informative even when averaged

over the whole protein is a challenging but important task. Due to the complexity

of the macromolecules, abstract representations are required to convert the real

world representation into quantifiable descriptors suitable for machine learning.

This chapter describes a variety of known and novel descriptors that use infor-

mation from a wide range of domains; from coding nucleic acid sequence, amino

acid sequence, secondary and tertiary structure, physicochemical data, catalytic

and active site information, residue interaction and mechanics/dynamics data, and

finally 3D surface patches and hot spots. Our motivation is that such a combina-

tion of elements will be applicable to a wide range of biological problems without

requiring much user input. Using information from such different biological do-

mains can help in finding features that can differentiate between the user-defined

classes for a list of input data, and may result in automatic exploratory analysis

of the vast amounts of data without very little user intervention.
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To test the plausibility of combining our features with novel machine learn-

ing algorithms, we apply those features to the problem of predicting mRNA and

protein expression levels. This enables us to predict whether the protein will be ex-

pressed or not and an approximate level of steady-state protein abundance within

the host, the solubility or aggregation of the final gene product, and whether it

will correctly fold or be degraded.

Using a very comprehensive data set consisting of 19 independent studies from

5 different organisms (both homologous/autologous and heterologous expression),

a comprehensive statistical analysis was carried out, which were further used to

build a novel machine learning tool for prediction of protein abundance. This

results in descriptors that explain a significant portion of the variance within the

protein levels, some of which are organism-independent. The developed descriptors

will help the understanding of the inner mechanisms of the cellular machinery.

3.2 Features from Protein Coding Nucleotide Se-

quences

3.2.1 Raw features of the coding sequence

These features are organism independent and rely only on the nucleotide sequence

of the gene in question.

Codon Frequency and Relative Synonymous Codon Usage (RSCU)

In its simplest version, codon frequency is the number of occurrences of a specific

triplet, divided by the number of all codons in a gene. Even though it is very basic,

it contains a great deal of information about the codon usage patterns of the gene
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in question. However, since the frequency of each codon is dependent and limited

by the frequency of amino acids that they code for, that bias can be removed by

looking not only at the counts of a specific codon, but its synonyms as well. To

this end, Relative Synonymous Codon Usage [63] is a measure of uniformity in the

selection of synonymous codons of a gene . RSCU values are the number of times

a particular codon is observed, relative to the number of times that the codon

would be observed for a uniform synonymous codon usage (if all the synonyms for

a given amino acid had the same probability). A codon that is used less frequently

than expected will have an RSCU value ¡ 1 and a codon that is preferred more

often will have RSCU of ¿ 1.

G+C content of the gene (GC)

The frequency of nucleotides that are guanine or cytosine. Even though the ge-

nomic GC content is highly variable within organisms, it is known that genes

have higher GC content compared to the whole genome, and length of the coding

sequence is directly proportional to higher GC content [64].

G+C content 3rd position of synonymous codons (GC3s)

This the fraction of codons that are synonymous at the third codon position, which

contain either a guanine of cytosine at that third codon position.

Base composition at silent sites (G3s, C3s, A3s, T3s)

These 4 features quantify the usage of each base at synonymous third codon po-

sitions. Although correlated with GC3s, they are not directly comparable. For

the calculation of GC3s, each synonymous amino acid has at least one synonym
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with G or C in the third position. Therefore, amino acids with 2 or 3 synonyms

do not have an equal probability when choosing a base in the synonymous third

position. Thus, A3s is the frequency that codons have an A at their synonymous

third position, relative to the amino acids that could have a synonym with A in

the synonymous third codon position.

3.2.2 Indices of Codon Usage

Due to the multivariate nature of the codon usage, statistical analyses are required

to analyze such data in its entirety. While the frequency of each codon within a

gene carries some part of the information about the selection of codons, that

information is spread over 61 different features. To tackle this problem, multiple

measures and codon usage indices were developed throughout the years. These

indices attempt to summarise, simplify and explain the bias within the codon

usage of a gene by unifying the information contained within those 61 frequency

values. While these measures can be organism independent, it is usually necessary

to add a priori knowledge about the preferred codons of an organism to identify the

major trends in the variation of the data. Using the codon selection trends of an

organism, we can summarize the codon usage of a gene in question by positioning

it in accordance with these trends.

Here we define some of the indices that can be used to analyze the codon

sequence. An overview of the methods is given in Table 3.4.

Effective number of codons (Nc)

The effective number of codons [65] is a measure that quantifies the deviation of

the codon selection of a gene from the random usage of synonymous codons. Nc
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is related to the amount of entropy in the codon usage of a sequence. It reaches

is maximal value of 61 when all codons are used equally, and its minimal value of

20 when only one codon is used per amino acid. Since the selection bias results

in a decrease of the entropy of codon usage in a sequence, Nc provides a reliable

way of testing this effect. Nc requires no knowledge of the optimal codons or a

reference set of highly expressed genes, and therefore applicable to any organism

with minimal effort.

Since the silent G+C content in the third position (GC3s) of a gene g (shown

as xg for brevity) affects its Nc value, Wright et al. [65] proposed an equation to

approximate this relationship (Ncg) under the hypothesis of no selection. dos Reis

et al. [66] proposed a modification of the general formula to optimize this metric to

better capture the selection bias within a gene (Ncopt) using the external variables

a, b, c. The a, b, c values that optimize the function for E.coli and H.sapiens

gene data sets (as well as the average values we used in this study) are given in

Table 3.1.

Ncg = 2 + xg +
29

x2
g + (1− xg)2

(3.1)

Ncopt = a+ xg +
b

x2
g + (c− xg)2

(3.2)

Table 3.1: Parameters for Ncopt

par E.coli K12 H.sapiens Used

a -6.459 -6.650 -6.0
b 34.01 34.43 34.0
c 1.023 1.028 1.025
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Codon Adaptation Index (CAI)

Codon Adaptation Index [67] is a measurement of the relative adaptiveness of the

codon usage of a gene towards the codon usage of highly expressed genes for that

organism. CAI is the most widespread technique for analyzing codon usage bias.

While the Nc index measures the deviation of the codon selection from a uniform

bias, CAI measures the deviation with respect to a reference set of genes.

CAI is defined as the geometric mean of the relative adaptiveness score w of

each codon (predefined for an organism) over the length of the gene sequence.

CAI = exp

(
1/L

L∑
l=1

log (wi(l))

)
(3.3)

The relative adaptiveness of each codon is the observed frequency of each codon

fi to the usage ratio of the most abundant codon for the same amino acid.

wi =
fi

max(fj)
i, j ∈ [synonymous codons for amino acid] (3.4)

Calculated codon adaptation indices for E.coli and S.cerevisiae are given in

Table A.5.

Frequency of Optimal Codons (Fop)

Frequency of Optimal Codons [68] is the ratio of optimal codons to synonymous

codons that are predefined for an organism. Fop values are calculated as

Fop =
Noptimal −Nnon-optimal

Noptimal +Ncommon +Nnon-optimal

(3.5)
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where N is the number of codons that are defined as either ”optimal”, ”common”

or ”non-optimal (rare)”. Thus, Fop values are always between 0 (where no optimal

codons are used) and 1 (where only optimal codons are used).

Calculated codon optimality indices for E.coli and S.cerevisiae are given in

Table A.5.

Codon Bias Index (CBI)

Codon bias index [69] is a measure of directional codon bias. CBI measures the

extent to which a gene uses a subset of optimal codons defined for an organism.

While it is similar to Fop, CBI uses expected usage factor for scaling instead

of using equal weights. Using the list of preferred triplets for an organism, CBI

measures the distance between any given mRNA sequence and the preferred mRNA

sequence that could code for that particular protein, i.e. fraction of codon choices

that are biased towards the preferred triplets.

In a gene with an extreme codon bias (in which only the preferred codons are

used for all of the triplets in the gene), CBI will be 1. In a gene with random codon

usage CBI will be 0. However, CBI can also take on negative values, which means

the number of optimal codons is less than what can be expected in a random

selection. If CBI is significantly lower than zero, this shows a bias towards rare,

non-preferred triplets.

Calculated codon optimality indices for E.coli and S.cerevisiae are given in

Table A.5.
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3.2.3 tRNA Based Indices

tRNA Adaptation Index (tAI)

The tRNA adaptation index [66] is a measure of the tRNA usage by coding se-

quences. tRNA gene copy number across some genomes has a high and positive

correlation with tRNA abundance within the cell [68, 70]. It is fair to assume tRNA

abundance as the driving force for translational selection. Therefore, measuring

the tRNA usage of a gene may provide an indirect way for detecting translational

selection. In this context, tAI will quantify how well the gene in question is adapted

to the tRNA gene pool of an organism.

The absolute adaptiveness value Wi for each codon i is defined as:

Wi =

ni∑
j=1

(1− sij)tGCNij (3.6)

where ni is the number of tRNA isoacceptors that recognize the ith codon,

tGCNij is the gene copy number of the jth tRNA that recognizes the ith codon,

and sij is a selective constraint on the efficiency of the codonanticodon coupling

(Table 3.2).

The 64 codons that comprise the genetic code can be clustered into groups

of four elements, which reflect the natural way in which tRNAs recognize them

(by Crick’s wobble rules [71] for codonanticodon pairing). To calculate Wi values,

it is best to sort the codons as {T,C,A,G}{3}, resulting in {TTT, TTC, TTA,

TTG, TCT, TCC, TCA, TCG ...}. Then, the formulas in Table 3.3 can be used

to calculate all Wi values by incrementing i from 1 to 61 by 4.

From the Wi values the relative adaptiveness value wi of a codon is obtained
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Table 3.2: s values for codon-anticodon pairing. (I=Inosine, L=Lysidine)

s value

sI:U 0
sG:C 0
sU :A 0
sC:G 0
sG:U 0.41
sI:C 0.28
sI:A 0.9999
sU :G 0.68
sL:A 0.89

Table 3.3: Formulas for calculating W according to Crick’s wobble rules

n Anticodon Codon W

i INN NNU (1− sI:U)tGCNi + (1− sG:U)tGCNi+1

i+ 1 GNN NNC (1− sG:C)tGCNi+1 + (1− sI:C)tGCNi

i+ 2 UNN NNA (1− sU :A)tGCNi+2 + (1− sI:A)tGCNi

i+ 3 CNN NNG (1− sC:G)tGCNi+3 + (1− sU :G)tGCNi+2
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as:

wi =

{
Wi/Wmax if Wi 6= 0,

wmean else
(3.7)

where Wmax is the maximum Wi value and wmean is the geometric mean of all

wi with Wi 6= 0.

Finally, tRNA adaptation index tAIg of a gene g is defined as the geometric

mean of the relative adaptiveness values of its codons.

tAIg =

(
lg∏
k=1

wikg

)1/lg

(3.8)

where ikg is the codon defined by the kth triplet in gene g and lg is the length of the

gene in codons (except the stop codon). The measure tAIg estimates the amount

of adaptation of a gene g to its genomic tRNA pool.

Table A.6 contains the tRNA gene counts for several organisms that were used

in this study.

Translation Efficiency Bottleneck Calculations

tRNA adaptation index of a gene is the geometric mean of the adaptiveness value

of all of its codons. Since it measures the overall adaptation of the gene to the

tRNA pool, the effects of locally unfit regions may be averaged out when the whole

sequence is used during the calculation. To capture the information about the

”bottleneck” residues that may have negative effects on the translation efficiency,

we developed several new indices based on the tAI measure.
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tAI bottleneck value uses a sliding window of size m over all of the codons of

the gene g, where the geometric mean of the relative adaptiveness values of the m

codons are calculated, and the minimum value over all of the gene is taken.

tAI Bottleneck(g,m) = min
lg−m+1
j=1

(j+m−1∏
k=j

wikg

)1/m
 (3.9)

We use m = {1, 3, 6, 9, 12, 15, 20, 25} during calculations.

Our other measures look at the length and adaptiveness value of consecutive

”unfit” codons. For a pre-defined threshold t, we find the longest segment S in g

where geometric mean of the wi values are below the threshold t. This measure

can be defined in two separate ways:

• The longest segment Sa where ∀ i ∈ Sa, wi < t

• The longest segment Sb where w̄i < t (for i ∈ Sb)

That is, all elements in Sa will be < t, whereas Sb may contain elements greater

than t as long as the mean of the segment is less than t. Calculation of Sa is trivial.

We used the linear-time algorithm defined in [72] for the calculation of Sb.

From those segments, we can use the absolute and relative length of the segment

(compared to the length of the whole gene) and the geometric mean of the w values

inside the segment.

During the runs, we used t = {0.1, 0.2, 0.3, 0.4, 0.5}.

Ribosome Flow Model (RFM)

Ribosome Flow Model [73] is a complex probabilistic model of the translation

elongation process. RFM and tAI are similar since they are both based on codon
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adaptation to the tRNA pool. However, in contrast to the RFM, tAI is not sen-

sitive to the order of codons or to the effect caused by ribosome jamming. RFM

considers the stochastic nature of the translation process and the excluded volume

interactions between ribosomes and aims to capture the effect of codon order and

composition on translation rates. RFM is based on the Totally Asymmetric Ex-

clusion Process (TASEP) [74]. In the TASEP model, initiation time as well as the

time a ribosome spends translating each codon is exponentially distributed (mean

translation times are codon dependent). In addition, ribosomes span over several

codons, and if two ribosomes are adjacent, the trailing one is delayed until the

ribosome in front of it has proceeded onwards.

RFM has two free parameters, where λ is the initiation rate and the C is the

”size” of the ribosome. mRNA molecules are coarse-grained into sites of C codons.

A C value of 25 is suggested by the authors, and we tried C=10, 15, 25, 35, 50

during the final experiments.

It is possible to estimate the translation rate of single codons based on tAI or

similar measures. RFM uses the absolute adaptiveness value Wi to calculate pi,

which is the probability that a tRNA will be coupled to the codon i.

pi =
Wi∑61

j=1 tCGNj

(3.10)

The expected time on codon i, ti is defined as:

ti = 1/pi (3.11)

Table A.7 contains the codon time values for several organisms that were used

in this study. The expected time on a site spanning C residues is the sum of times
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of all the codons in that site.

Using these definitions, Ribosome Flow Model is defined as

dp1(t)

dt
= λ[1− p1(t)]− λ1p1(t)[1− p2(t)] (3.12)

dpi(t)

dt
= λi−1pi−1(t)[1− pi(t)]− λipi(t)[1− pi+1(t)] 1 < i < n (3.13)

dpn(t)

dt
= λn−1pn−1(t)[1− pn(t)]− λnpn(t) (3.14)

where pi(t) as the probability that the ith site will be occupied at time t.

The rate of ribosome flow into/out of the system is given by: λ[1 − p1(t)] and

λnpn(t) respectively. The rate of ribosome flow from site i to site i+ 1 is given by

λipi(t)[1−pi+1(t)]. The steady-state solutions of the equations results can be used

to simulate the rate of protein production.

An important feature that emerges from the RFM model is the fact that the

translation rate converges to a constant value as λ increases. This means that

each gene has a different translation elongation capacity. This capacity is the

maximal translation rate of the gene, achievable for infinitely large λ. In reality,

the translation rate increases sharply and converges to a constant value even for

small λ, the limiting capacity can be easily achieved for finite and biologically

feasible values of λ.

3.3 Features from Amino Acid Sequences

Amino acid usage

Amino acid composition is a simple but usually powerful measure. We include the

following indices for analyzing the overall amino acid usage of a protein.
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Table 3.4: Traditional measures of translation elongation efficiency.

Explicitly factors in/discriminates between

Index Name Model tRNA
availability

Aminoacid
composi-

tion

Efficiency
of

individual
codons

Fop Freq. of optimal codons [68] Freq. of optimal codons in a gene Yes No Low

CBI Codon Bias Index [69] Freq. of preferred codons relative
to random usage of synonymous
codons

Yes No Low

CAI Codon Adaptation Index [67] Geo. mean of the ratios of the
frequency of each codon in highly
expressed genes to the frequency
of its most abundant synonymous
codon

No Partially Partially

Nc Effective number of codons [65] Divergence of codon usage from
equal usage of synonymous codons

No No None

tAI tRNA Adaptation Index [66] Geo. mean of the availability of
the tRNAs that serve a codon

Yes Yes High

RFM Ribosome Flow Model [73] Physical model of the translation
elongation process

Yes Yes Very High

Protein frequency indices give the absolute count and the relative frequency of

each amino acid in a given protein sequence. These 20 frequency values can be

merged to give a summary about specific classes of amino acids within the protein

sequence. We define the such indices for the frequency of Hydrophobic, Polar and

Charged amino acids. We further include the count of (+) charged and (-) charged

residues, as well as the total length of the protein sequence.

IVYWREL

IVYWREL corresponds to the total number of IVYWREL residues in a protein

normalized by the length of the protein sequence.

Hydropathicity of protein

The general average hydropathicity (GRAVY) index is an estimate of the over-

all hydrophobicity of the protein. Each amino acid has a hydrophobicity score

that ranges between -4.6 and 4.6 with negative and positive values indicating hy-
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drophilic and hydrophobic residues, respectively. GRAVY is calculated by taking

the average of all hydrophobicity scores in a given protein sequence according to

the hydropathic indices of by Kyte-Dolittle [52].

Aromaticity score

Aromaticity [75] is calculated using the frequency of aromatic amino acids. It is

total number of Phe, Trp, and Tyr residues divided by the total number of residues

in a protein sequence.

Aliphatic index

The aliphatic index [76] of a protein is defined as the relative volume occupied by

aliphatic side chains (Ala, Val, Ile, and Leu).

Instability Index

Instability index is an estimate of the stability of a protein in a test tube based

on the instability potential for each of the 400 dipeptides as defined by [77]. It is

calculated using [78].

Isoelectric Point (pI)

pI is the pH value at which net charge of the protein is equal to 0. Theoretical pI

value of the protein is calculated using [78].

Molecular Weight (MW)

Theoretical molecular weight for each protein is calculated using [78].
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Helix, sheet, turn propensity

Secondary structural propensity values are calculated by counting the total number

of residues which are more likely to be included in a given secondary structural

element and dividing by protein sequence length. Residues that are more likely to

be in each of these structures are:

• Helix: V, I, Y, F, W, L

• Turn : N, P, G, S

• Sheet: E, M, A, L

When the protein contains 3D structure information, these features become

redundant due to the addition of the actual frequency of secondary structural

elements.

FoldIndex

FoldIndex [79] is an algorithm which predicts if a given protein sequence is intrin-

sically unfolded. It is based on the average residue hydrophobicity and net charge

of the sequence and uses a sliding window to identify large regions within a protein

that possess folding propensities different from those of the whole protein.

We utilize the FoldIndex web server to predict the measures for unfoldabil-

ity, charge and phobic potentials along the protein, number of unordered regions,

length of the longest unordered segment and the total length of the unordered

segment. The length segments are taken as both absolute and relative to the total

protein length.
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PEST Motif

A PEST sequence is a peptide sequence which is rich in Pro (P), Glu (E), Ser

(S), and Thr (T). This sequence is associated with proteins that have a short

intracellular half-life and it is hypothesized that the PEST sequence acts as a signal

peptide for protein degradation [80]. Using the EMBOSS/ePESTFind server [81],

we predict the potential PEST motifs within a protein, and we summarize the

results as the following features: the maximum PEST score and the longest region

among all the predicted sites, number of potential PEST sites, sum of the lengths

and scores for all potential PEST regions.

3.4 Secondary Structural Features

Secondary structure content

Secondary structure content is defined as the percentage of total number of amino

acids taking the form of a particular secondary structural element in a protein.

We use both of the 3-class and 7-class secondary structural element definitions

explained in Chapter 2. The secondary structural makeup of a protein is useful

for characterizing the overall type of the protein fold, such as those defined in the

SCOP [82] and CATH [33] databases.

Amino acid content in secondary structures

Amino acid content in secondary structures is calculated for each amino acid by

finding the frequency of a specific residue with a specific secondary structure. This

results in 60 features (20 amino acids × 3 secondary structure classes)
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Secondary structure embedded sequence alphabet (SSESA)

SSESA corresponds to a structural sequence alphabet that is composed as a com-

bination of 3 features, resulting in 180 triplets. The three conditions making up

the alphabet are;

• Amino acid: 20 amino acids

• Secondary Structure: Helix, Sheet, Loop

• Relative Solvent Accessibility: Buried, Partially buried, Exposed

Relative Solvent Accessibility (RSA) is calculated by finding the solvent acces-

sible surface area of each amino acid in a protein and dividing this value by the

maximum surface area of that particular amino acid according to standard values

provided in [83]. An amino acid is considered Buried if RSA ¡ 0.09, Partially-buried

if 0.09 ¡ RSA ¡ 0.36, and Exposed if RSA ¿ 0.36.

3.5 Structural Features

3.5.1 Active Site Composition

The region around the active site of a protein is usually of more importance. To

analyze the makeup of this region, we look at a number of features.

To calculate the following measures, we first check the Catalytic Site Atlas [84]

for any records that protein might have. If there is no known data about the active

site of the protein, we use the metaPocket algorithm [85] to predict the cavities

and the most probable region that is biologically active. The center coordinates of

the residues that are predicted to be functional is taken as the coordinate of the
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active site. Then, we define spheres of radii 8, 12, 20 Å centered on the active site.

We analyze the residues within those spheres and extract the following features.

• Amino acid composition within the sphere (20 features)

• Amino acid+Secondary structural composition within the sphere (20x3 fea-

tures)

• Hydrophobic (H), Polar (P) and Charged (C) amino acid composition (3

features)

• Number of contacting HPC residues within the sphere (6 features; Polar-

Polar (P-P), P-C, P-H, H-H, H-C, C-C)

• Secondary structural composition, Helix (H), Sheet (S), Loop (L) (3 features)

• Number of contacting HSL within the sphere (6 features; Helix-Helix (H-H),

H-S, H-L, S-S, S-L, L-L)

We repeat this process to find these features for all sphere diameters.

3.5.2 Structural rigidity

The B-factor (also called B-value, DebyeWaller factor, or temperature factor) is

used to measure local flexibility of residues [86]. B-factor values are reported from

experimental atomic-resolution structures. High values indicate higher mobility of

residues in crystal structures.

We use the mean B-value of the protein, as well as the mean B-values for the

residues belonging to each of the 3 secondary structural elements.
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3.5.3 Hinge region related features

We use the HingeProt [87] algorithm for predicting rigid parts of proteins and the

flexible hinge regions connecting them in the native topology of protein chains.

HingeProt utilizes two elastic network models, Gaussian Network Model (GNM)[19,

20] and Anisotropic Network models (ANM) [88]. Using normal mode analysis, it

will predict a list of rigid parts and hinge regions for the two slowest modes as well

as a list of short flexible fragments for the two slowest modes which correspond to

rigid segments with less than 15 amino acid residues.

We include the number of rigid fragments, the length of the longest rigid frag-

ment and the number of short flexible fragments for both slow mode 1 and slow

mode 2.

3.6 Chemical Bond and Interactions

3.6.1 Disulfide bonds

Disulfide bridges are formed through the coupling of thiol groups of two Cys

residues. Disulfide bridges exert their stabilizing effects by reducing the entropy of

the protein’s unfolded state. The bridge usually brings different parts of a polypep-

tide chain to close proximity and reduces the size of the allowable conformational

space, termed entropic effect [89].

We use two approaches in calculating the Disulfide features. First feature is

the number of disulfide bridges present in the PDB file if the file contains linkage

information. Second feature is a simple predictive approach based on distance. A

disulfide bridge or disulfide bond is defined between two residues if the distance

between their sulfur atoms is less than 2.3Å.
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According to the study by Zhang et al. [89], the magnitude of the entropic

effect of a disulfide bridge is proportional to the logarithm of the number of residues

separating the two Cys residues involved in the formation of the bridge. In other

words, the higher the number of residues separating two Cys residues forming the

disulfide bridge, the higher the magnitude of entropic stabilization. To this end,

we also add the longest distance (i.e. highest number of residues separating any

Cys pair) within the experimental and predicted disulfide bridges if there are any.

Therefore, we define 6 features for disulfide bridges as:

• Number of disulfide bridges (experimental)

• Number of disulfide bridges (predicted)

• Number of CYS residues

• Number of metal bound CYS residues

• Number of free CYS residues

• Longest distance between the indices of CYS any disulfide bridge

3.6.2 Salt bridges

A salt bridge is an ionic interaction between the oppositely charged amino acids of

a protein. A salt bridge is a combination of two noncovalent interactions, hydrogen

bonding and electrostatic interactions. Different criteria exist in the literature for

the definition of a salt bridge. For this study, the criterion for determining salt

bridges is that the distance between any of the two carboxyl oxygen atoms on the

side chain of Glu or Asp and nitrogen atoms on the side chain of Arg or Lys is ≤
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4.00 Å. Histidine is excluded as a potential partner in a salt-bridge or ion pair due

to the fact that it is very sensitive to pH changes in the physiological range. We

add the total number of predicted salt bridges and the number of ions as features.

3.6.3 Cation-π interactions

Proteins contain amino acids that are called aromatic because they contain ring

structures with delocalized conjugated π systems which allow the movement of elec-

trons over the entire ring structure providing resonance stabilization. Aromatic

amino acids are phenylalanine, tyrosine, tryptophan and histidine. Two different

approaches exist in the literature to define cation-π interactions. In the first ap-

proach, a cation-π pair is considered interacting if the distance between them is

less than 6 Å. In the second approach, only energetically significant cation-π pairs

are considered interacting.

We use ExPASy [78] to extract the number of C/P interacting pairs and the

number of energetically significant C/P cation-pi interactions where C (cation)

takes values from ARG, LYS and P (π) takes values from PHE, TYR, TRP,

resulting in 12 = 2× 3× 2 features.

3.7 Surface Features

Protein surfaces serve as an interface with the molecular environment and is ex-

tremely important for its function. On the surface, geometric and chemical in-

teractions with other molecules provides interaction specificity for ligand binding,

docking of macromolecules, and enzymatic catalysis. Ability to characterize and

represent the informative and unusual features that occur in a protein is very
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important for those reasons.

The surface of the protein can be defined in two ways. Molecular surface area

(MSA) is the physical surface created by the union of spherical atom surfaces

defined by the Van der Waals radius of each atom in the molecule representation.

The solvent accessible surface area (SASA or ASA) is the surface that is exposed

to the solvent. The difference between ASA and MSA is called Excluded surface

area (ESA), regions on the surface which are not accessible by the solvents.

To find ASA, we can take a solvent atom (sphere of size 1.4 Å for Hydrogen

in aqueous environments) and roll that atom along the Van der Waals surface of

the protein, marking the regions it touches and triangulating the surface to create

a topological mesh of the surface. The cavities that are smaller than that solvent

atom will not be reached, therefore not accessible.

We calculate the surface of a protein using SurfaceRacer [90] with water as the

solvent. The list of features extracted from this surface is shown below.

• Solvent excluded volume and surface area

• Total ASA/MSA

• Total Backbone ASA/MSA

• Polar ASA/MSA

• Polar Backbone ASA/MSA

• Polar Sidechain ASA/MSA

• Nonpolar ASA/MSA

• Nonpolar Backbone ASA/MSA
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• Nonpolar Sidechain ASA/MSA

• (+) Charged ASA/MSA

• (-) Charged ASA/MSA

• Total number of cavities

3.7.1 Surface Patches

The features given above calculate the total ASA and MSA on a global scale. How-

ever, research has shown that specific surface patches affect the folding and activity

of a protein [91]. Averaging the surface information around the whole surface area

causes the information about the patches to be lost. It is therefore important to

distinguish between a protein with multiple small hydrophobic patches versus an-

other one with a large hydrophobic patch, even though the total nonpolar surface

areas for the two proteins may be equal.

To find such patches, we first take the Van der Waals area of each atom and

represent it with a sphere. The molecular surface of the protein is found by cre-

ating the union surface of those spheres using the marching cubes algorithm [92],

resulting in a mesh created from triangle polygons. For each vertex in the fi-

nal mesh, the two measures Lipophilic Potential (LP) and Electrostatic Potential

(ESP) of an atom along a surface point are calculated by [93]. Those potentials

are interpolated along the vertices by taking the weighted average of the LP and

ESP for specific atoms neighboring that vertex [94].

After the creation of the mesh with the node-embedded LP and ESP measures,

the mesh is converted into a graph structure. Each vertex vi in the mesh is

connected to its 6 neighboring vertices vj (6 due to the triangular polygons) with an
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edge weight of either |LPi−LPj| or |ESPi−ESPj|. Using this graph, we perform

the spectral clustering method ClusterX [95] to cluster the network into a collection

of subgraph clusters, based on the LP or ESP properties. The resulting subgraphs

will be surface patches that are significantly different than the neighboring surface

features.

Using those patches, we calculate the following measures.

• Mean LP and total area of the patch with the:

– largest mean LP

– smallest mean LP

– largest max LP

– smallest min LP

– largest area

• Mean ESP and total area of the patch with the:

– largest mean ESP

– smallest mean ESP

– largest max ESP

– smallest min ESP

– largest area

To give an example, among all the patches in P , we find the patch with the

”largest mean LP” pm as

pm = argmaxm

∑n
(i∀vi∈pm) LPi

n

89



and the patch with the ”largest max LP” pk as

pk = argmaxk
(
max(i∀vi∈pk)LPi

)
The rest of the features follow similar definitions. We calculate the mean LP

or ESP and the total surface area for the selected patches.
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3.8 Application: Prediction of protein abundance

3.8.1 Introduction

Recombinant protein production is an important area of research especially for

pharmaceutical and biotechnology industry [96, 97]. Up to date various approaches

have been established to express proteins in a variety of host organisms ranging

from bacteria, yeast to mammalian cells. Even though there are great advantages

of heterologous protein production, such as high production yield potential and

low cost, there are also great challenges since the production of a functional protein

is highly related to the cellular machinery of the host organism. The quantitative

relationship between change in absolute protein concentrations in response to bi-

ological stimuli are still not completely understood [98]. The complexity of this

problem mainly arises from the imperfect understanding regulation of proteome

models [99, 100]. Despite many studies investigating gene expression from a global

perspective, there is still lack of information on the synthetic potential of target

genes [101, 102]. Understanding the factors that are involved in protein expression

efficiency of the host would enable optimization of protein production process,

enhancing the yields and thus driving down the cost of production. Particularly,

predictive models for gene expression would be beneficial for the production of

proteins of biotechnological interest at low costs [103].

Gene expression occurs through a sophisticated machinery which is initiated by

the mRNA synthesis and finalized by the formation of functional protein. Protein

levels within the cell are controlled and regulated at many levels during transcrip-

tion and translation, and can be affected by factors such as the mRNA stability,
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post-translational modifications and degradation of the expression products [101].

Hence, to understand how and why proteins accumulate or degrade to reach their

absolute concentrations, one should consider each step involved in the synthesis

of mRNA and functional protein [98]. Protein production process can be divided

into two stages, the expression stage and the post-translational stage and each

may influence the production yield of the physiologically active protein.

Transcriptional regulation is the first controlling step of gene expression since

it determines when and how much mRNA will be synthesized. However, control

of the transcription rate alone is not sufficient to decide on the expressed protein

abundance [104], and less than 50% of variation in protein abundance can be ex-

plained by transcriptional regulation [105]. Such high variations between mRNA

and protein abundance points to further levels of regulation than that can be ac-

counted by the variation in the transcription rates. After eukaryotic transcription,

mRNA maturation occurs through multiple modifications such as capping, adeny-

lation of mRNA ends and splicing of the intronic segments. Primarily the longevity

of eukaryotic mRNA survival depends on such modifications that protect mature

mRNA from degradation [105]. Moreover, the localization of mRNA also affects

stability of mRNA and thus protein abundance [106]. Such kind of extensive spa-

tial and post-transcriptional modifications may impact the steady-state levels of

protein abundance leading to low correlation between mRNA and protein levels

[107]. In this sense, post-transcriptional regulation, albeit it is an integral part of

gene expression, might rival the sophistication and importance of transcriptional

control.

Parallel to post-transcriptional control, translational regulation also affects sta-

bility of mRNA and thus protein abundance in many ways through initiation,
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elongation and termination [108, 109, 110]. mRNA sequences may contain specific

sequences and secondary structural elements in their untranslated regions (UTR)

[107, 111] that can lower the translation rate of the main ORF [112]. In addition

to the fact that mRNA poly-adenylation influences mRNA stability, it also affects

translation as the length of the poly (A) tail usually correlates with translation

efficiency [113].

Translation efficiency may also be limited by the availability of the tRNAs

specific to the codon composition of the mRNA sequence. Since organisms contain

unequal number of tRNA molecules for each codon-anticodon pair, some codons

are favored more than the rare codons in the sense that they have more tRNAs

available than infrequent codons [114]. Thus, codon usage and tRNA adaptation of

the coding sequence relative to the host organism can deeply impact the absolute

protein levels within the cell.

On top of translational regulation, protein degradation also affects protein

abundance. The traits that cause some proteins to be degraded rapidly in vivo

apparently include surface features and the nature of the amino and carboxyl ter-

mini [115, 80, 116]. The ubiquitin and ATP-dependent proteolytic system is the

best characterized means of degradation of soluble proteins and it does not readily

hydrolyze substrates with blocked NH2-terminal groups. In addition, it preferen-

tially degrades peptides that contain basic or bulky, hydrophobic NH2-terminal

amino acids, relative to peptides that contain other groups [116]. Moreover sev-

eral degradation signals have been related with protein turnover. For example,

PEST sequences [117] that contain proline, glutamate, serine and threonine amino

acids were shown to lead protein degradation through ubiquitin-proteasome path-

way [118, 119]. Lastly, unstructured protein regions that cannot have a distinct
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three-dimensional (3D) fold are also found to lower protein stability [120, 121, 122].

For a detailed review of variables (gene, vector, strain and the fermentation)

involved in all the stages of recombinant protein production, refer to [123].

The studies in the literature up to now may be broadly divided into two over-

lapping camps; studies that research the control and regulation mechanisms of

the cellular machinery due to different stimuli in the global context of the cell,

and the studies that try to quantify the effects of such factors into the translation

efficiency of the coding sequence to better control and optimize gene expression.

In these respects global protein expression analyses carry a particular importance

for today’s science and technology. However it is a complicated task to utilize bulk

information for shedding light on the expression capabilities [98].

In this study, we aim to find factors that are consistently shown to affect pro-

tein expression by combining a large number of data sources in different organisms

and experimental sets, consisting of results from both homologous/autologous and

heterologous expression. We develop and combine different descriptors to explain

the relationship between the coding sequence and the resulting mRNA/protein

yield in a very diverse set. Analyzing these factors can help us gain further in-

sights into the workings, limitations and regulation of cellular mechanisms present

(and vice versa, lacking) in protein expression. We show that the usually preferred

codon usage indices such as codon adaptation index (CAI) and frequency of op-

timal codons (Fop) show little to no relation to the protein yield in heterologous

expression and are not good measures of codon optimization, and suggest more

robust indices to use in future studies.

Furthermore, we apply these features to predict the translation efficiency and

steady-state abundance of expressed protein for a given coding sequence and the
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expression host. Such a prediction tool can simplify the technical aspects of protein

expression, and can be used to filter out infeasible targets, select suitable hosts

for a target and can be used for codon optimization by detecting the rate limiting

factors of translation efficiency.

3.8.2 Methods

3.8.2.1 Data sets

Experimental quantification of protein abundance is an essential component for im-

plementation of predictive models of gene expression behavior. Various approaches

employing spectroscopy, flow cytometry or western blotting are used for measuring

expressed protein abundances in either homologous or heterologous host systems.

We used 12 experimental datasets for homologous expression systems and 7 for

heterologous systems. A review of the data sets used in this study is given in

Table 3.5 . The data sets can be classified under two main categories; Homologous

and Heterologous expression. For easier comprehension, the data sets are named

with a prefix that defines their content.

Homologous expression data

Homologous expression data contains a number of large scale experiments carried

out on E. coli and S. cerevisiae.

Lu et al. (2007) has utilized absolute protein expression (APEX) profiling

method that utilizes the proportionality between the fractions of peptides expected

and observed from a given protein using experimental analyses of the fragmenta-

tion spectra (MS/MS)[124]. They applied APEX methodology to quantify the
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homologously expressed 430 proteins in E. coli, 833 in S. cerevisiae and 782 in H.

sapiens to estimate the relative contributions of transcriptional- and translational-

level regulation of gene expression in single cells.

Newman et al. used flow cytometry in a high throughput manner for measure-

ment of a collection of S. cerevisiae proteins (a total of 1942) in which each protein

is expressed as a carboxy-terminal GFP fusion protein [98]. In this approach flow

cytometry allowed monitoring abundances of expressed proteins from single cells

and following changes in the concentrations in response to environmental influ-

ences.

Similar to APEX and flow cytometry approach, Ishihama et al. also has quan-

tified protein abundances for 731 E. coli proteins [125]. Using a combination of

LC-MS/MS analyses, they presented a measure of abundance value for each pro-

tein based on the emPAI approach that takes into account the number of sequenced

peptides per protein.

Ghaemmaghami et al. have used a library of S. cerevisiae genes whose ORF

is tagged with a high-affinity epitope and expressed this fusion library from their

original chromosamal location in S. cerevisiae [126]. They were able to analyze al-

most 98% of the all ORFs (a total of 2874) in the Saccharomyces genome database

[127]. This particular study used western blotting for detecting fused proteins and

measuring their abundances. Additionally, they compared the protein abundances

with mRNA levels from an ealier microarray study [128].

More recently, Niwa et al. [129] developed a method to evaluate abundance

of individual proteins using a cell-free translation system that was reconstituted

to contain molecular machinery of E. coli responsible for protein synthesis [130,

131]. They carried out a comprehensive analysis, in which the complete E. coli
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ORF library (ASKA library) [132] was translated in the reconsituted system in

a chaperone-free manner [133] and soluble cell lysates for 2963 different proteins

were fractionated by by SDS/PAGE and the band intensities were quantified by

autoradiography.

Other than microbial host systems, Vogel et al. has used human cell line to

express 1000 homologous genes [107] and quantified absolute protein levels and

corresponding mRNA concentrations using shotgun proteomics and microarrays,

respectively.

Homologous expression data sets are prefixed only with an organism identifier

(”EC” for E. coli, ”SC” for S. cerevisiae, ”PP” for P. pastoris, ”HS” for H. sapiens

or ”CFS” for cell-free synthesis).

Heterologous expression data

Heterologous expression data can further be divided into two sub-classes: i) The

data sets prefixed with ”HET” (plus an identifier for the host organism) contain

absolute quantification data for the heterologously expressed product. ii) Data

sets with the prefix ”OPT” contain no absolute abundance values, instead they

reported relative change in the abundance values. In those data sets, the same

amino acid sequences were expressed twice using a pair of nucleic acid sequences

differing only in synonymous codon usage.

Data Pre-processing and Sanitization

During calculation, author provided nucleotide sequences were used where possible.

For the other studies, provided gene/protein ID values were cross-referenced in

various databases to get a one-to-one mapping between IDs. In the studies where
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only the protein identifier (instead of the coding sequence/transcript ID) were

available, the coding sequence for that protein from the specified organism/strain

that matches the amino acid sequence were used. Due to the very large number

of sequences spanning so many different studies, it is inevitable that some of the

inputs are not clean (e.g. wrong nucleotide sequence due to inexact ID conversions

between databases, deprecated IDs and so on). To minimize such errors, the data

sets were validated within themselves wherever possible, making sure that the

intrinsic features such as coding length, molecular weight and so on match between

the input sequences and the author provided values.

In all the data sets, the inputs were filtered to exclude nucleotide sequences i-)

that are not divisible by 3, ii-) contain stop codons in the middle, and iii-) that do

not have a stop codon in the end. Furthermore, for the S.cerevisiae data sets, only

the genes with verified open reading frames in Saccharomyces Genome Database

(SGD, [127]) were used.

The resulting number of data rows for each data set after the data sanitization

step is given in Table 3.5. The inter-correlation of experiments for S.cerevisiae and

for E.coli are given in respectively Table 3.6 and Table 3.7. While the majority

of SC experiments agree on some level, SC-Western has very low correlation with

other data sets. EC data shows very little inter-correlation, except for EC-emPAI

and EC-APEX.

3.8.2.2 Learning and Prediction

For prediction of protein abundance, we opted on a deep neural network architec-

ture for our final tests, instead of PLS (partial least squares) regression as used

by [145]. While PLS regression can give acceptable results as well, it is known to
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Table 3.5: Details of the datasets used for learning/prediction.

Dataset
Identifier

Source
Organism

Target
Organism

#

P
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in
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ie

ld

m
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o
lu

b
il

it
y

Details

R
e
fe

re
n

c
e
s

Homologous Expression

CFS-PURE E.coli Cell Free
Synthesis 2963 + + [129]

EC-emPAI E.coli E.coli 731 + [125]

EC-APEX E.coli E.coli 430 + [124]

EC-mRNA E.coli E.coli 378 + Normalized mean of different mRNA studies. See Text.
[134,

135, 136,
137]

HS-APEX H.sapiens H.sapiens 843 + + [107]

SC-Spectral S.cerevisiae S.cerevisiae 1415 + [138]

SC-APEX S.cerevisiae S.cerevisiae 833 + Data available for growth in both YPD and YMD media. [124]

SC-GFP S.cerevisiae S.cerevisiae 1942 + Data available for growth in both YPD and YMD media. [98]

SC-Western S.cerevisiae S.cerevisiae 2874 + [126]

SC-Combined S.cerevisiae S.cerevisiae 3114 + Non-linear combination of 4 different studies. [139]

SC-mRNA S.cerevisiae S.cerevisiae 3961 + Combination of 36 different mRNA studies [140]

SC-ProdRate S.cerevisiae S.cerevisiae 3974 * *
Protein production rate based on mRNA & Ribosome
density

[140,
141]

Heterologous Expression

HET-EC-SYN (Mixed) E.coli 62 +
Heterologous expression of 2 proteins (40 copies each)
differing only in synonymous codon usage.

[142]

HET-EC-Pfalc P.falciparum E.coli 984 +* +*
62 expressed/soluble, 270 expressed/non-soluble
(non-quantified), 652 non-expressed

[143]

HET-PP H.sapiens P.pastoris 72 +* *Categorized Protein expression (No/Low/Medium/High) [144]

OPT-Gileadi H.sapiens E.coli 30 x 2 %* *Relative change in PA after optimization (+/0/-) [145]

OPT-Schafer H.sapiens E.coli 73 x 2 %* *Relative change in PA after optimization (%) [146]

OPT-Wagner H.sapiens H.sapiens 44 x 2 %* *Relative change in PA after optimization (%) [147]

OPT-SGDB (Mixed) (Mixed) 65 x 2 %* *Relative change in PA after optimization (+/0/-) [148]
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Table 3.6:

Correlation of the S.cerevisiae data sets within themselves.
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  SC-Western   0.84 0.39 0.37 0.36 0.46 0.26 0.13 0.23 0.40 0.46 

  SC-Combined 0.90   0.30 0.29 0.54 0.60 0.40 0.60 0.67 0.48 0.51 

  SC-GFPYPD 0.34 0.38   0.96 0.80 0.78 0.73 0.60 0.71 0.64 0.57 

  SC-GFPYMD 0.33 0.37 0.76   0.78 0.78 0.71 0.59 0.70 0.63 0.56 

  SC-APEXYPD 0.37 0.39 0.43 0.43   0.95 0.87 0.65 0.74 0.71 0.69 

  SC-APEXYMD 0.39 0.43 0.43 0.46 0.64   0.86 0.76 0.70 0.70 0.70 

  SC-Spectral 0.31 0.42 0.43 0.45 0.51 0.56   0.71 0.73 0.51 0.48 

  SC-2Dgel 0.49 0.48 0.54 0.55 0.73 0.73 0.61   0.56 0.52 0.60 

  SC-Gygi 0.46 0.46 0.52 0.53 0.71 0.71 0.59 0.95   0.77 0.74 

  SC-ProdRate 0.48 0.55 0.33 0.32 0.42 0.44 0.33 0.48 0.46   0.93 

  SC-mRNA 0.45 0.53 0.34 0.32 0.41 0.41 0.33 0.48 0.46 0.93   

 

100



Table 3.7:

Correlation of the E.coli data sets within themselves.
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  CFS-PURE 
 

0.26 0.16 0.12 0.15 

  EC-emPAI 0.29 
 

0.62 0.39 0.29 

  EC-APEX 0.35 0.60 
 

0.62 0.29 

  EC-mRNA 0.36 0.56 0.81 
 

0.22 

  CFS-Solubility 0.14 0.29 0.36 0.34 
  

be very sensitive to outliers and feature selection [149] and was unreliable within

different datasets in our own experiments. Due to the very diverse nature of our

datasets, we opted on a neural network architecture with dropout, which was more

robust to changes and the selection of input features.

Training was carried through a 4 layer deep feed-forward neural network. A

symbolic view of the network architecture is given in Figure 3.1 The hidden layer

neurons use a rectified linear activation function (ReLU) instead of the common

sigmoid activations (logistic function or hyperbolic tangent variations) due to their

better performance in our tests. The top layer uses linear activations to apply a

linear regression on the non-linear output of the previous layers. The network was

trained using stochastic gradient descent with a minibatch size of 100. To prevent

the weights from getting too large, we employed `2-norm regularization. During

learning, momentum was increased linearly from 0.5 to 0.9 in increments of 0.1.

An equal learning rate was used for all layers, and the learning rate was scaled

101



down every epoch with 0.98. Due to the difficulty of learning deep networks using

backpropagation, we initialized the weights to semi-optimal values using layer-wise

prelearning.

While neural networks require extensive regularization and stopping criteria

to prevent overfitting, the newly developed dropout technique [150] is shown to

greatly limit over-training and ensures sparsity, even in the absence of non-sparsity

penalties [151]. With a dropout value of p, each input and hidden unit has its

output zeroed with probability of p. This random dropping out prevents the

complex co-adaptation of neurons, since a neuron cannot rely on other hidden

units for its output, and learns to perform better on its own. Using a dropout

value of 0.5 and N hidden units, the network can be thought of as sampling

2N different networks and performing model averaging on them, which greatly

reduces overfitting and is shown to improve upon the state-of-the-art [150, 152].

This network architecture consistently outperformed PLS regression.

3.8.3 Results

5-fold cross validation results for within-set evaulation is given in Table 3.8. A

representation of the predictions in E.coli data sets are given in Figures 3.2, 3.3

and 3.4. We can see that, with a minimum Pearson correlation of 0.6 among all the

different sets, we conclude that the features are strong enough to capture patterns

in the expression levels. The results indicate that the protein levels S.cerevisiae

are much more correlated with our features. The predictions in SC have 0.71

to 0.78 Pearson correlation with the experimental data, whereas EC predictions

range from 0.65 to 0.73. H.sapiens set also results in this range, with 0.65. We

can explain a greater portion of the variance in the expression levels in S.cerevisiae
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Codon-Level Features

Hidden Layer

Protein 
Abundance

mRNA 
Level

Protein 
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Protein-Level Features

⋯

Hidden Layer

Linear Activation
f(x) = x

Rectified Linear Activation
f(x) = max(0, x)

Dropout = 0.5

Dropout = 0.5

Figure 3.1: Schematic of the Artificial Neural Network used during prediction.
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compared to the other organisms.

Results of the inter-experiment predictions are given in Table 3.10 for S.cerevisiae

across many different experiments. Since the input instances overlap to a certain

extent within the different experimental sets, we take care not to introduce any

bias. During training and testing, genes that are exclusive to the training set are

always included during training. The intersection set of training and test sets are

evaluated in a 5-fold manner (training in 4 parts in the training set and testing

the remaining part in the test set). Instances that are exclusive to the test set

use all of the available training data. Also given in Table 3.10 are the correlation

values of the experimental data (similar to Table 3.6, but log-log correlation). The

predictions match with the experimental results consistently. Although, interest-

ingly some predictions result in better correlation compared to the experimental

results; we reason that since our method will eliminate the experimental noise

during prediction, it agrees better with the two experimental sets by acting as a

consensus between the two experiments.

The same cross-set predictions are repeated for E.coli as well, reported in

Table 3.9. Unlike the SC results, EC sets have lower correlation in their predic-

tions, maybe with the exception of EC-emPAI and EC-APEX. In fact, the model

trained on EC-emPAI performs better on EC-APEX compared to the 5-fold cross-

validation result of EC-APEX itself.

Table 3.11 gives the prediction of heterologous expression using our model. The

first top part of the table looks at the prediction capabilities of different homologous

sets when applied to heterologous expression. The middle segment gives the inter-

correlation of the heterologous data within themselves, and the bottom segment

gives the results in reverse; trained in heterologous data and tested in homologous

104



sets. Results that are greater than 0.3 are marked with bold. The first results are

not very promising with the exception of HET-EC-SYN. Cell-free expression data

from CFS-PURE can capture the heterologous expression levels with a Pearson

correlation of 0.66 (higher than 5-fold in CFS-PURE itself), but other EC sets

fail to show such good predictive capabilities. However, HET-EC-Pfalc and HET-

PP cannot be predicted with confidence, having highest correlation of 0.28 and

0.22. We show the results for the P.pastoris in Figure 3.5 as well; since it lacks

the absolute protein quantifications (having the categories no/low/medium/high

expression instead), the given correlation values in Table 3.11 may not show the

true relationship. Since the predictions don’t show a normal distribution, we opt

on using kernel density estimation. Notice that there is a pattern of increasing

average prediction as we move through the empirical categories from low to medium

to high. But; the ”no expression” set have predictions that range from the whole

range. We discuss the importance of these in the next section.

As shown in the middle segment of Table 3.11, heterologous sets don’t agree

within themselves either, again with the exception of HET-EC-SYN. However, the

bottom part of the table is interesting; training with only the 62 instances in HET-

EC-SYN (which lack the amino acid features since the proteins are synonymous),

we can predict the 2956 genes in CFS-PURE with a correlation 0.54, just below

the 5-fold results in CFS-PURE with 0.6, using very limited data. HET-EC-Pfalc

can predict the SC sets with a correlation of 0.6, much higher than the reverse of

0.28.

We also give cross-dataset results without regards to species, i.e. cross-species

prediction. The prediction results can be seen in Table 3.12. Some data sets exhibit

correlations that are quite acceptable. We can predict HS-APEX using CFS-PURE
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(rp =0.48) or SC-GFP (0.48); predict EC-APEX using HS-mRNA (0.56) or SC-

mRNA (0.58); predict EC-emPAI using SC-APEX (0.64); and predict SC-APEX

using either HS (0.75) or EC data (EC-emPAI: 0.71, EC-APEX: 0.66). These

results are promising, since most of the time we won’t have enough data for ”less

popular” organisms.

Table 3.8: Pearson and Spearman correlation values for prediction with 5-fold
cross-validation.

Correlation of Prediction

Dataset # rp rs

CFS-PURE 2956 0.602 0.520

CFS-PURESolubility 2956 0.646 0.653

EC-APEX 430 0.664 0.638

EC-emPAI 731 0.727 0.690

EC-mRNA 378 0.598 0.541

HS-APEX 843 0.657 0.660

SC-GFPYPD 1940 0.747 0.670

SC-GFPYMD 1873 0.768 0.691

SC-Spectral 1415 0.792 0.731

SC-Combined 3112 0.735 0.712

SC-APEXYPD 833 0.771 0.604

SC-APEXYMD 828 0.792 0.675

SC-Western 2872 0.688 0.641

SC-mRNA 3958 0.717 0.650

SC-ProdRate 3971 0.751 0.722

HET-EC-SYN 62 0.721 0.725
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(a) Scatter plot of prediction vs experimental protein yields, colored
by experimental solubility.

(b) Prediction vs binned experimental protein yields. Mean (red) and
median (black/white) of the bins and the best fit line for mean of
the bins are shown.

Figure 3.2: Prediction vs experimental protein yields for CFS-PURE.107



(a) Scatter plot of prediction vs experimental protein yields.

(b) Prediction vs binned experimental protein yields. Mean (red) and
median (black/white) of the bins and the best fit line for mean of
the bins are shown.

Figure 3.3: Prediction vs experimental protein yields for EC-APEX.
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(a) Scatter plot of prediction vs experimental protein yields.

(b) Prediction vs binned experimental protein yields. Mean (red) and
median (black/white) of the bins and the best fit line for mean of
the bins are shown.

Figure 3.4: Prediction vs experimental protein yields for EC-emPAI.
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Figure 3.5: Violin plot of the predicted yield versus the experimental expression
levels.

110



Table 3.9: Pearson and Spearman correlations for cross-dataset predictions in
E.coli

# of Rows Correlation of prediction

Training Set Test Set Train Test rp rs

CFS-PURE CFS-Solubility 2956 2956 0.452 0.485

EC-APEX 2956 430 0.451 0.456

EC-emPAI 2956 731 0.406 0.466

EC-mRNA 2956 378 0.402 0.452

CFS-Solubility CFS-PURE 2956 2956 0.438 0.409

EC-APEX 2956 430 0.556 0.536

EC-emPAI 2956 731 0.495 0.553

EC-mRNA 2956 378 0.454 0.473

EC-APEX CFS-PURE 430 2956 0.417 0.375

CFS-Solubility 430 2956 0.468 0.481

EC-emPAI 430 731 0.701 0.669

EC-mRNA 430 378 0.613 0.603

EC-emPAI CFS-PURE 731 2956 0.323 0.337

CFS-Solubility 731 2956 0.466 0.496

EC-APEX 731 430 0.685 0.657

EC-mRNA 731 378 0.555 0.563

EC-mRNA CFS-PURE 378 2956 0.239 0.216

CFS-Solubility 378 2956 0.283 0.286

EC-APEX 378 430 0.654 0.629

EC-emPAI 378 731 0.553 0.514

3.8.3.1 Factors influencing protein expression and abundance

Each feature was correlated against the given expression level for a data set to find

features that are correlated with protein abundance and mRNA levels. We show

the Spearman correlation of the important and statistically significant features for

the specific groups of experiments. Spearman correlation was preferred over the
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Pearson correlation coefficient (unlike the prediction results in the previous step),

because the former makes no assumptions about the underlying distributions of

the variables. The significance tests use a base p-value of 0.01, divided by the

number of features to correct for multiple testing (Bonferroni correction, [153]),

resulting in a p-value of approximately 2× E−5.

In each of the tables, significantly correlated features are marked with bold.

Table 3.13 shows the features that are globally important, significant in most of

the experiments. Table 3.14 and Table 3.15 lists the features that are exclusively

important for S.cerevisiae (significant in SC, but not in others) and E.coli (signif-

icant in EC, but not in others) respectively. Finally, we show the features that are

significant in in vivo experiments among the homologous expression data, but not

on cell-free synthesis or heterologous expression, in Table 3.16.

To better understand the correlation of the features among themselves, we

show the representation of the Self-Organizing Map (SOM) trained on the SC

databases. Figure 3.6 and 3.7 shows the features that are clustered with respect

to the 4 data sets (given as the first 4 elements of Figure 3.6) with a very high

weight (feature-class correlation), and with respect to each other (feature-feature

correlation) in a weak fashion. We can see that majority of the indices can agree

on the high- and low-expressed proteins on the average, and some features have

very high inter-correlation within themselves.

The features that have the highest correlation are the ”tAI bottleneck” and

”tAI longest segment” descriptors proposed in this Chapter, along with RFM.

These indices use the tRNA availability and consider the order of the codons.

On the other hand, indices such as Codon Adaptation Index (CAI) and Codon

Bias Index (CBI) which are widely used in the literature show very good correlation
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among the SC and EC data sets; but they are not correlated within the cell-free ex-

pression, heterologous expression and H.sapiens data. This lack of agreement with

heterologous expression levels have been reported as well in the literature [145].

Since CAI uses parameters that are calculated by looking at the proteins with the

highest level of expression among an organisms own genes (i.e. homologous), it is

correlated well with those results. However, this calculation is most likely biased

toward the homologous data, and cannot predict the expression levels of a foreign

gene. CBI, Fop, and CAI indices should only be calculated for those species where

selection for the translational efficiency has overcome mutational drift. If these in-

dices are calculated for genes where codon usage is determined by mutational bias,

the resulting index value is essentially meaningless. For example, the CAI values

of H. sapiens genes have no ”meaning” because human codon usage is driven by

mutational biases [154].

Looking at the results, features that give information about the size and length

of the protein seem to be the descriptors that are most negatively correlated with

protein expression levels near universally. This is apparent in Figure 3.8, where

the Molecular Weight (MW) of the proteins are clustered together and the expres-

sion levels are shown. However, such indices are not very useful for heterologous

expression or codon optimization.
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Table 3.10: Pearson and Spearman correlations for cross-dataset predictions in
S.cerevisiae

# of Rows Corr. of
Prediction

Corr. of
Experi-
ments

Training Set Test Set Train Test Common rp rs rp rs

SC-APEX SC-Spectral 833 1415 437 0.64 0.67 0.71 0.73

SC-Western 833 2872 632 0.51 0.58 0.49 0.55

SC-Combined SC-APEX 3112 833 702 0.56 0.70 0.59 0.62

SC-GFP 3112 1940 1834 0.66 0.73 0.65 0.69

SC-mRNA 3112 3958 3104 0.60 0.68 0.64 0.66

SC-ProdRate 3112 3971 3110 0.66 0.71 0.67 0.68

SC-Spectral 3112 1415 1415 0.73 0.77 0.85 0.85

SC-Western 3112 2872 2869 0.64 0.69 0.94 0.94

SC-GFP SC-APEX 1940 833 472 0.57 0.74 0.60 0.69

SC-Combined 1940 3112 1834 0.67 0.69 0.65 0.69

SC-mRNA 1940 3958 1934 0.62 0.70 0.70 0.74

SC-ProdRate 1940 3971 1939 0.65 0.70 0.68 0.72

SC-Spectral 1940 1415 1054 0.71 0.75 0.62 0.68

SC-Western 1940 2872 1764 0.60 0.66 0.60 0.64

SC-mRNA SC-APEX 3958 833 831 0.58 0.75 0.56 0.69

SC-Combined 3958 3112 3104 0.67 0.68 0.64 0.66

SC-GFP 3958 1940 1934 0.66 0.72 0.70 0.74

SC-ProdRate 3958 3971 3955 0.69 0.73 0.93 0.93

SC-Spectral 3958 1415 1410 0.70 0.71 0.64 0.66

SC-Western 3958 2872 2865 0.59 0.64 0.58 0.62

SC-Spectral SC-APEX 1415 833 437 0.53 0.70 0.71 0.73

SC-Combined 1415 3112 1415 0.69 0.72 0.85 0.85

SC-GFP 1415 1940 1054 0.64 0.73 0.62 0.68

SC-mRNA 1415 3958 1410 0.57 0.66 0.64 0.66

SC-ProdRate 1415 3971 1414 0.61 0.66 0.66 0.66

SC-Western 1415 2872 1177 0.58 0.65 0.56 0.58

SC-Western SC-APEX 2872 833 632 0.57 0.71 0.49 0.55

SC-Combined 2872 3112 2869 0.71 0.73 0.94 0.94

SC-GFP 2872 1940 1764 0.65 0.73 0.60 0.64

SC-mRNA 2872 3958 2865 0.61 0.68 0.58 0.62

SC-ProdRate 2872 3971 2871 0.67 0.72 0.62 0.65

SC-Spectral 2872 1415 1177 0.72 0.75 0.56 0.58
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Table 3.11: Pearson and Spearman correlations for predictions in Heterologous
expression sets

# of Rows Correlation of prediction

Training Set Test Set Train Test rp rs

CFS-PURE HET-EC-SYN 2956 62 0.659 0.674

EC-APEX 430 62 -0.021 -0.020

EC-emPAI 731 62 0.175 0.162

EC-mRNA 378 62 -0.371 -0.415

HS-APEX 843 62 0.108 0.103

SC-APEX-YPD 833 62 0.303 0.311

CFS-PURE HET-EC-Pfalc 2956 62 0.184 0.129

EC-APEX 430 62 0.226 0.149

EC-emPAI 731 62 0.282 0.139

EC-mRNA 378 62 0.113 0.166

HS-APEX 843 62 0.177 0.213

SC-APEX-YPD 833 62 0.279 0.237

CFS-PURE HET-PP 2956 70 0.216 0.206

EC-APEX 430 70 -0.018 -0.018

EC-emPAI 731 70 0.172 0.178

EC-mRNA 378 70 -0.073 -0.056

HS-APEX 843 70 0.070 0.144

SC-APEX-YPD 833 70 0.197 0.126

HET-EC-Pfalc HET-EC-SYN 62 62 0.305 0.339

HET-PP HET-EC-SYN 70 62 0.466 0.507

HET-EC-SYN HET-EC-Pfalc 32 62 0.265 0.123

HET-EC-Pfalc HET-PP 62 70 0.066 0.075

HET-EC-SYN HET-PP 62 70 0.049 0.131

HET-EC-SYN CFS-PURE 30 2956 0.541 0.449

EC-APEX 32 430 0.363 0.395

EC-emPAI 32 731 0.285 0.368

HS-APEX 30 843 0.451 0.579

SC-APEX-YPD 32 833 0.441 0.457

HET-PP HS-APEX 70 843 0.436 0.573

HET-EC-Pfalc SC-APEX-YPD 62 833 0.603 0.522115



Table 3.12: Pearson and Spearman correlations for cross-species predictions.

# of Rows Correlation of prediction

Training Set Test Set Train Test rp rs

CFS-PURE EC-mRNA 2956 378 0.402 0.452

SC-Combined 2956 3112 0.259 0.284

SC-GFP-YPD 2956 1940 0.203 0.231

SC-Western 2956 2872 0.279 0.276

HS-APEX 2956 843 0.478 0.607

CFS-PURE-Sol SC-mRNA 2956 3958 0.400 0.357

HS-APEX 2956 843 0.465 0.555

EC-APEX SC-APEX-YPD 430 833 0.664 0.593

HS-APEX 430 843 0.427 0.542

EC-emPAI CFS-PURE-Sol 731 2956 0.466 0.496

HS-mRNA 731 843 0.104 0.134

SC-APEX-YPD 731 833 0.712 0.605

EC-mRNA SC-Western 378 2872 0.363 0.289

HS-APEX CFS-PURE-Sol 843 2956 0.452 0.449

EC-mRNA 843 378 0.541 0.511

SC-APEX-YPD 843 833 0.752 0.585

SC-Combined 843 3112 0.652 0.629

SC-mRNA 843 3958 0.669 0.588

SC-Spectral 843 1415 0.649 0.646

HS-mRNA CFS-PURE 843 2956 0.112 0.118

EC-APEX 843 430 0.555 0.536

SC-GFP-YPD 843 1940 0.664 0.576

SC-APEX-YPD EC-emPAI 833 731 0.636 0.634

HS-APEX 833 843 0.325 0.300

HS-mRNA 833 843 0.123 0.167

SC-Combined CFS-PURE 3112 2956 0.163 0.161

SC-GFP-YPD EC-emPAI 1940 731 0.612 0.600

HS-APEX 1940 843 0.483 0.619

HS-mRNA 1940 843 0.215 0.327

SC-mRNA EC-APEX 3958 430 0.579 0.564

SC-Spectral HS-APEX 1415 843 0.068 0.140

EC-APEX 1415 430 0.457 0.457
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3.8.4 Discussion

This study is the most comprehensive review of effects of different codon usage

indices and amino acid features to the protein expression in literature. Whereas

other studies analyze one to three data sets for a specific organism, we opted on

using a variety of data sources distributed among different expression hosts, as

well as including heterologous expression data, which are problematic to charac-

terize and predict. Several studies focused on determining protein level factors

that may be involved in active heterologous protein production stage. In a study

by Kuratoni et al., they looked at the impact of 39 physiochemical features to

active protein production stage [155]. They concluded that the length of the pro-

tein, hydrophobicity, PI, amino acid composition, solvent accessibility, presence of

intrinsically disordered regions were significant factors. In a separate study, Tuller

et al. studied the factors involved in protein aggregation [156] and summarized

that proteins that have high negatively charged amino acids, Glu and Asp, tend

to be more soluble whereas proteins with high ring structured amino acid content

tend to aggregate more. Tokmakov et al. studied the impact of post-translational

modification to heterologous protein production yields [157]. They determined

that phosphorylation, sumoylation, ubiquitination and prenylation were associ-

ated with increased protein production yields of recombinant protein production.

We use a variety of features to quantify the effects of such different factors to

the expression levels of protein product. Most commonly preferred codon usage

indices such as codon adaptation index (CAI) and frequency of optimal codons

(Fop) show little to no relation to the protein yield in heterologous expression and

are not good measures of codon optimization. The newly developed Ribosome

Flow Model (RFM) and our novel features ”tRNA Adaptation Index bottleneck”
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Figure 3.8: Expression vs Molecular Weight on the clustered results.
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and ”tAI longest rate limiting segment” are shown to be the best measures of pro-

tein production rate, without being affected by organism-specific instances. Even

better is the fact that parameters required for tAI and RFM can be calculated

much more easily for a novel organism compared to CAI (which requires the iden-

tification and quantification of the highly expressed genes). Since we show that

cross-species predictions are possible to some extent, we suggest the use of such

robust indices in future studies.

Generally speaking, protein abundance levels are determined by a balance be-

tween protein production and degradation rates. However, the protein degradation

rates are unavailable in most of the analyzed cases. Consequently, any model to

predict protein abundance must average out the effect of protein degradation and

focus on the contribution of the production rate to the determination of protein

abundance levels. Even though features based on PEST motifs and hydrophobic

surface patches are shown to increase degradation rates, the predictive capabili-

ties are not equal among all hosts. Further studies may be necessary, along with

large-scale experiments that quantify the half-life of different proteins to be able

to also capture the effects of degradation.

Finally, we propose the first available system capable of predicting protein

abundance, with the ability to predict both homologous and heterologous expres-

sion for different hosts. Such a prediction tool can simplify the technical aspects of

protein expression, and can be used to filter out infeasible targets, select suitable

hosts for a target and can be used for codon optimization by detecting the rate

limiting factors of translation efficiency. Coupling an optimization procedure to

this prediction step can yield a tool that automatically optimizes a given nucleotide

sequence for a given host.
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4 PARTIAL PERIODIC PATTERN
MINING FOR SHORT MOTIFS

4.1 Introduction

Finding recurring motifs is an important problem in bioinformatics. Such motifs

can be used for any number of problems including sequence classification, label

prediction, knowledge discovery and artificial sequence synthesis that fit a specific

purpose.

However, discovery and representation of gapped short motifs is still an impor-

tant problem. The main shortcoming of the existing prediction methods is their

dependence on fixed length motifs. Most machine learning methods require the

sequences to be of the same length (or aligned beforehand using multiple sequence

alignment) to successfully discover the motifs. Multiple sequence alignment is not

robust enough to capture short, weak motifs in a large set of relatively long se-

quences. While there are motif mining algorithms that can work with unaligned

sequences [158, 159], the rigid constraints on the motif structure make it difficult to

find gapped, weak partial motifs. In order to overcome this limitation, we propose

the use of time-based motif mining methods that work position-independently.

This chapter explains the partial periodic pattern mining algorithm, a length-

independent and alignment-free motif mining method which can also be used to

find discriminative, class-specific motifs. Given a set of sequences, our algorithm

will give a list of over-represented motifs (compared to a background set, or as
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shown in this chapter, in a discriminative manner). These motifs can be used

in conjunction with machine learning methods for the prediction of any label or

quantitative value that is correlated with the sequence motifs.

An important problem for motif-mining is the MHC binding prediction for a

given peptide. MHC (Major Histocompatibility Complex) is a key player in the

immune response of most vertebrates. The computational prediction of whether

a given antigenic peptide will bind to a specific MHC allele is important in the

development of vaccines for emerging pathogens, the creation of possibilities for

controlling immune response, and for the applications of immunotherapy. One of

the problems that make this computational prediction difficult is the detection

of the binding core region in peptides, coupled with the presence of bulges and

loops causing variations in the total sequence length. Due to the short peptide

length, length variance within the peptides and very high promiscuity of the MHC

molecules, defining a clear binding rule is usually not possible. These problems

make the MHC binding prediction an excellent test case for our algorithm.

The partial periodic pattern mining method was tested on a benchmark set of

28 different alleles for MHC class I and 27 different alleles for MHC class II. The

obtained results are comparable to the state of the art methods for both MHC

classes, surpassing the published results for some alleles. The average prediction

AUC values are 0.897 for class I, and 0.858 for class II.

We conclude that temporal motif mining using partial periodic patterns can

capture information about the sequences well enough to predict the binding of the

peptides and is comparable to state of the art methods in the literature. Unlike

neural networks or matrix based predictors, our proposed method does not depend

on peptide length and can work with both short and long fragments. This advan-
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tage allows better use of the available training data and the prediction of peptides

of uncommon lengths.

Because the motif mining and prediction steps are uncoupled, the method

can be used for different purposes. Other than MHC binding predictions, our

algorithm can also be applied to find motifs in gapped sequences. The algorithm is

presented here for use with amino acid sequences; however it can run on any linear

sequence with arbitrary alphabets, such as nucleic acid sequences, reduced amino

acid alphabets, and even alphabets from different representations (e.g. protein

blocks and bond orientational order labels defined in Chapter 2).

4.2 Background

MHC (Major Histocompatibility Complex) is a large gene family with an impor-

tant role in the immune system, autoimmunity, and reproduction. MHC molecules

assume roles in the presentation of peptides, including self and non-self (antigenic)

on their surface to T-cells. T-cells recognize antigenic peptides and trigger a cas-

cade of events which leads to the destruction of pathogens and infected cells. Since

MHCs have a key role in immune response, they are critical in many diseases, and

can be used for controlling specific immunological processes by creating peptides

to bind to specific MHC alleles. This binding affinity to specific peptides may be

exploited for creating peptide vaccines for emerging pathogens [160], suppressing

specific alleles in organ transplants [161, 162], and many other possible areas in

immunotherapy.

MHC class I molecules bind short peptides, whose N- and C-terminal ends

are anchored into the pockets located at the ends of the peptide binding groove
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[163]. While the majority of the peptides are of length 9, longer peptides can

be accommodated by the bulging of their central portion [164, 165], resulting in

binding peptides of length 8 to 15 [166]. Peptides binding to class II proteins are

not constrained in size [167, 168] and can vary from 11 to 30 amino acids long

[169]. The peptide binding groove in the MHC class II molecules is open at both

ends, which enables binding of peptides with relatively longer length. Though

the core nine residues long segment contributes the most to the recognition of the

peptide, the flanking regions are also important for the specificity of the peptide to

the class II allele [170, 171]. MHC molecules bind peptides with high promiscuity;

it is estimated that each HLA (human leukocyte antigen system) protein can bind

between 1000 and 10,000 peptides for class I allotypes [172] and more than 2000

peptides for class II allotypes [173]. Thus, the large number of possible structures

makes it unfeasible to find peptides that will bind to a specific allele using solely

an experimental approach.

Computational methods for prediction of the binding affinity of a peptide to

an MHC allele are based on three main artificial learning systems: statistical,

structural, and neural methods [174, 175, 172]. The combination of these models

is also common [176]. Computational approaches available for predicting MHC

binding peptides from amino acid sequences include: (i) Motif-based methods

such as methods that use a position weight matrix (PWM) to model a gapless

multiple sequence alignment of MHC binding peptides, and a statistical approach

based on Hidden Markov Models (HMMs); (ii) Machine learning methods based

on Artificial Neural Networks (ANN) and Support Vector Machines (SVMs); (iii)

Semi-supervised machine learning methods. Existing methods are reviewed in

detail in [177, 178].
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The formation of bulges and loops may allow peptides that are shorter or

longer than 9 amino acids to bind to class I alleles. This length variance shifts

the positions of amino acids in anchor locations, causing position-specific scoring

matrices or other position-dependent methods to fail. Most existing methods en-

force a length constraint of 9 peptides for class I prediction. ANN, quantitative

matrices and similar methods require the peptides to be of the same length, with

appropriate peptides aligned in the same location. Peptides of different lengths

are either ignored or grouped into separate datasets by their length. This step

may not always be feasible if the data is limited, especially for short and variable

peptides.

Unlike MHC class I prediction methods, most of the MHC class II prediction

methods can utilize peptides of variable length. However, the prediction strategy

requires the determination of the core 9-mer region of the peptide. This core

segment is assumed to be fixed-length and the possibility of longer binding core

sequences is disregarded. Although peptides bind to MHC class II alleles mostly

by the anchor residues, the interactions of the flanking regions may be important

for specificity and therefore have to be taken into account [179].

In order to overcome these obstacles, we suggest a method using partial periodic

pattern mining, which does not require the peptides to be of same length or the

anchor positions to be specific. We propose a novel method for extracting the

motifs on peptides with variable lengths by finding partial motifs in sequence

data. Our method, called MHC-PPM, may capture aforementioned variations in

peptides, without filtering or pre-processing the shorter/longer peptides or treating

them as separate datasets. Additionally, the information in the flanking regions of

the core 9-mers is taken into account without any information loss that may have
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arisen due to length constraints.

4.3 Methods

4.3.1 Dataset

We used 28 different alleles from the Immune Epitope Database (IEDB) benchmark

dataset by Peters et al. [180, 181] for MHC class I prediction (total of 36,829 pep-

tides). For MHC class II, we used two benchmark sets from Wang et al., 16 alleles

containing 10,017 peptides [177] (referred to as Wang2008), and 26 alleles contain-

ing 44,541 peptides [182] (referred to as Wang2010). Wang 2010 contains data

from several different human alleles, including HLA DR, DP and DQ. Wang2010

data also contains a similarity reduced subset (SR), where sequence similarity is

minimized in order to reduce the overlap between cross-validation folds. In Peters

and Wang2010 datasets, the same cross-validation folds are used for comparison

to the benchmark values. 10-fold cross-validation was used in Wang2008 dataset.

The peptides from these alleles are assigned into positive and negative classes

by the IC50 = 500 nM cut-off. Unlike other MHC prediction methods, no filtering

was made with regard to length during the motif mining and prediction steps.

4.3.2 Motif Mining

4.3.2.1 Apriori Method

Our motif mining method is based on the apriori algorithm used in frequent asso-

ciation rule discovery [183]. An itemset is defined as a set of items or events that

co-occur frequently. The Apriori algorithm uses the principle that all subsets of a
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frequent itemset must also be frequent. Accordingly, the algorithm has a bottom-

up approach where the shorter frequent itemsets are extended to create longer

candidates, which are then filtered by frequency of occurrence [183, 184, 185].

This iterative extension process continues until no frequent itemsets of a certain

length can be found.

Due to the context difference, the formal statement of the problem in the

Apriori algorithm [184] is slightly modified. Let I = i1,i2,...,im be an alphabet of

items called events (amino acids in our case). Let D be a set of sequences, where

each sequence S is an ordered set of items such that S ⊆ I. A sequence S contains

itemset X, an ordered set of some items in I, if X ⊆ S. A rule is of the form

X → Y , where X ⊂ I, Y ⊂ I. With temporal information, X → Y also implies

that the events in X occur before Y in a sequence S containing the rule.

The ratio of the sequences containing the association rule to all of the sequences

is called the support of the rule. The ratio of the sequences containing a new rule

created by the combination of two rules to the sequences containing the previous

rule is called the confidence. That is,

Conf(X → Y ) =
Support (X

⋃
Y )

Support (X)
(4.1)

Our motif mining method (MHC-PPM) is similar to temporal event mining in

time-related databases [186]. In general, the partial periodic pattern mining algo-

rithms for time series data will attempt to find frequently co-occurring events, or

causality relationships between them. These methods try to capture the patterns

which occur in an order which is not necessarily a consecutive one. In the domain

of protein motifs, the amino acids become the events and the causality/future
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prediction aspects become the motifs that are sought [187].

In the proposed approach, each sequence is taken as a separate time series, with

many parallel events occurring at the same time, with each event related only to the

sequence upon which it is found. In these time series, if an event happens frequently

after another one within a given time window, this frequent occurrences considered

an episode of events, a motif. To exploit the apriori principle for performance, the

motifs begin from length 1. A longer motif including a specific amino acid will have

support less than or equal to the support of that amino acid. Hence, if an amino

acid is infrequent, any motif that includes that amino acid will also be infrequent.

Thus, iteratively LN (frequent itemset of size N) is created from filtering of CN ,

candidate itemset of size N by CN = L(N−1) → L1.

First L1, the frequent itemsets of size 1 (i.e. amino acids) are found. The first

step is straightforward: only the amino acids within the sequences are counted,

and if an amino acids frequency (support of the rule) is below the given threshold,

the amino acid is filtered out.

Then the candidate set of size 2, C2 is created from the amino acids by L1 → L1,

that is, the combination of any two frequent itemsets of size 1. For example, if

all of the 20 amino acids were frequent, we would have 400 candidate rules at C2

for the given parameters. Those candidate rules would then be filtered according

to the preset minimum support values, yielding L2. Only a handful of those 400

rules would be frequent in the data. An example rule of size 2 would be L → V ,

which represents Leucine followed by Valine in a window specified by parameters.

The support of this candidate rule will be the ratio of occurrence of L→ V to all

of the sequences, and the confidence of the rule would be the ratio of occurrence

of L → V to all of the sequences that contain L at some point. In other words,
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confidence would be the conditional probability of seeing Valine in the window,

given that we observed a Leucine.

To account for the position variations in the alleles, a specific window should

be defined. If an amino acid X is followed by Y after at least MinS and at most

MaxS positions, then the rule X → Y is present in that sequence. If these amino

acids co-occur within this window by this specific order at least minimum support

times, then it is considered frequent.

In the motif mining context, the frequent rules are not simply association rules

as in a shopping basket analysis; items also have a temporal value, which is used

for relations such as ”before” and ”after” (”simultaneously” is not used in protein

motifs since at each time point, that is a specific position in the sequence, only one

amino acid can occur). The episode A → B then becomes, ”whenever the events

in the rule A occur in a given sequence, event B is likely to occur within n to m

positions after A, with P(A
⋂
B) as p (support) and P(B — A) as c (confidence)”.

There are two parameters, the slack length (s), which is the length after an

event within which we do not look for a rule, and the window size (w), in which

the consequent event may occur. Thus, MinS = s and MaxS = s + w − 1, and

the rule is given as A→ B (p, c) for parameters (s, w). An example motif mining

step is given in Figure 4.1 and 4.3, the pseudocode of the algorithm is given in

Algorithm 1.

In our simulations, we used a window size of 1 to 3 and slack length of -8 to

8, producing different rulesets. Negative slack values are taken by reversing the

input sequences and applying the algorithm with the absolute value of the slack.

For s = 1 and s = 1, the rules that consist of consecutive/nearby amino acids

were mined whereas for the larger values of s, the motifs consisting of amino acids
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Figure 4.1:

An example of the temporal rule mining process.
a-) Schematic representation of the sliding windows approach on a sample set of
sequences binding to MHC class I allele HLA A*0201. The windows are shifted

with the given s and w values until all sequences are covered. The resulting rules
are then filtered by their support. This process is repeated for all s values from

-8 to -1 and 1 to 8.
b-) Representation of the L→V rule captured with the parameters s=6 and

w=3. For HLA A*0201, Leucine in 2nd position and Valine around 9th position is
a well-known binding motif [188]. Although this motif is present in 6 of the 7
sequences (support of 0.86), it is unlikely to be captured by position specific

methods due to length variance and positional shifts.

at separate ends of the peptide were found. Since the anchor positions of MHC

motifs may be different, different slack lengths are needed to mine them all.

4.3.3 Position dependent 1-rules

With the addition of position information, single amino acids can be employed

as rules for anchors. When mining 1-rules, the position information is kept along

with the window size. Thus, an example rule with window size of 2 may be L,
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Algorithm 1 Partial Periodic Motif Mining algorithm

Input: S ← List of sequences from which the motif will be mined
Input: ε← Minimum occurrence count of a rule to be considered frequent
Input: s← slack length
Input: w ← window size
Output: All frequent rules inside S

function TemporalApriori(S, ε, s, w)
L1 ← List of amino acids that appear more than ε times in S
k ← 2
while Lk−1 6= ∅ do

Ck ← Lk−1 + L1

for all candidate c in Ck do
for all sequence seq in S do

if CheckMotif(seq, c, s, w) is true then
count[c]← count[c] + 1

end if
end for

end for
Lk ← {c : c ∈ Ck ∧ count[c] ≥ ε}
k ← k + 1

end while
return

⋃
k=2 Lk

end function

Input: seq ← a sequence
Input: c← a rule that may or may not exist inside the sequence s
Input: s← slack length
Input: w ← window size
Output: true if c exists in s, false otherwise

function CheckMotif(seq, c, s, w)
pos[]← positions of c[1] in seq
for all position k in pos[] do

if CheckMotifRecursive(s, c, k + s, s, w) then
return true

end if
end for
return false

end function

function CheckMotifRecursive(seq, c, i, s, w)
e← c[i]
pos[]← positions of e in seq
for all position k in pos[] do

if e is the last event in c then
return true

else if k + s ≤ length(seq) then
ss← substring of seq starting from k + s to the end
if CheckMotifRecursive(ss, c, i+ 1, s, w) is true then

return true
end if

end if
end for
return false

end function
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between positions 3-4 (support: p, confidence: c). This rule will be counted as

present in a peptide which includes a Leucine between the positions 3 and 4.

4.3.4 Recursive Rule Mining on Training Set

In the rule mining process, the rules are mined for different slack lengths and finally

1-rules are added to the collection of rules. Following the rule mining process, all

of the peptides in the training set are scored by the rules according to the Support-

based prediction described below. After scoring every peptide in the training data,

any peptide scoring below a predefined threshold is separated. Those separated

peptides that are not sufficiently explained by the motifs are fed into the motif

mining recursively.

This process can be thought of as mining rules for different clusters of sequences;

the first iteration will try to capture the motifs for the cluster with the most

sequences. After that, sequences that scored poorly will be used in motif mining

again in the second iteration, and since the data is only a subset of the previous

iteration, the limit for reaching minimum support will be lower. This process

is repeated until the number of peptides that score lower than the threshold is

below a predefined limit, until no more improvement can be gained by dividing

the dataset or until a hard limit on iteration is reached. The supports for the

newly mined rules are updated to reflect the support in all of the data, not the

subset. An overall view of the recursive rule mining steps are given in Figure 4.2.

The recursive rule mining has advantages compared to setting the minimum

support and confidence threshold to lower values and mining the rules in one pass.

If the rules are mined in one pass with a very low support threshold, a greater

number of rules will be found. Unless those rules are significant, the signal-to-
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noise ratio will decrease. By using a greater initial support value and progressively

decreasing it on only a subset of data, the number of possible rules is reduced; if

the first pass can capture motifs that are present in 70% of all sequences, we will

only mine rules for explaining the remaining 30%, not the entire dataset. Hence,

we end up with a lower number of more significant rules that explain the majority

of the data.

4.3.5 Prediction

Before prediction, rules from both the binding and non-binding sequences are

mined separately. During classification of an unknown peptide, the peptide is

scored independently by both the binding and non-binding rules. The simplest

classification method is the direct comparison of the scores for binding/non-binding

rules. To calculate the scores, the support values of the rules that occur in the

given peptide are summed for both classes. The peptide is predicted to belong

to the class with a higher score. This näıve approach is called Support-based

prediction and only used during the recursive rule mining step.

The presence of one significant negative motif can turn an otherwise strongly

binding peptide to a non-binding one. For example, in the allele H-2Kd, charged

or bulky amino acids inhibit binding when they are present at the 5th position,

even though the binding motif may also be present [189]. In a näıve prediction

method, if the binding motifs are strong enough, the large number of binder rules

will overpower the single negative motif, causing a false positive. Consequently,

there is need for a way to predict these enhancing/inhibiting effects of the rules.

Non-linear classification methods that intrinsically find the discriminant function

on the feature space would fare better in such data.
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For SVR-based prediction, motif mining is employed on the training data as

described above. Using the motifs, a dataset is built by creating a binary matrix,

where each row is a peptide and each column (feature) represents a motif. A

cell has the value 1 if the peptide corresponding to that row includes the motif,

otherwise 0. As additional columns, the sums of support and confidence scores for

both the positive and negative classes are given. This data matrix is built for both

the training and the test sets. Then, an SVR is trained on the training set, and

the binding affinities of the peptides in the test set are predicted by the support

vectors. The resulting binding affinity values can be converted into a binary class

using an IC50 threshold where a binary class is required, such as feature selection

methods or AUC calculation.

Since the training set is used in all of the rule mining, SVR training and

parameter optimization steps, the prediction of the test set does not include any

bias and represents the actual predictive performance of MHC-PPM.

The overall view of the prediction workflow can be seen in Figure 4.3.

4.4 Results and Conclusions

4.4.1 MHC class I

The prediction results of the proposed method are given in Table 4.1, along with

the benchmark results for comparison [181]. The given values represent the area

under the ROC curve (AUC) for the 5-fold cross validation using the same fold

splits in the benchmark set.

Note that for some alleles (given in the top part of Table 4.1) the AUC values

between the methods are not directly comparable because filtering of the data
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differs based on the prediction method in use. ANN [190] use only the 9-mers,

the peptides of other lengths are filtered out. SMM uses 9-mers and 10-mers, but

trained and tested independently (i.e. 9-mers belonging to an allele and 10-mers

belonging to the same allele are taken as separate sets and are fed to different pre-

dictors). As stated, our method uses peptides of all lengths in the same classifier,

without any filtering or separation. For comparison, in Table 4.1, the weighted

average of AUC values using the 9-mer and 10-mer peptide counts are given for

SMM [191] and ARB [192]. The results are directly comparable for alleles with

only 9-mers.

Although superior in 9-mers, the main limitation of ANN is the need for the

peptides to be of fixed length. The same constraint is also present in SMM and is

overcome by using separate datasets for 9-mers and 10-mers. The main advantage

of MHC-PPM is giving comparable and superior results to other methods without

enforcing any constraints on peptide length. This flexible approach allows the use

of information from all of the available data. Peptides that do not have enough

representation in the dataset to train a separate classifier (e.g. 8 or 11 amino acids

long) can still be predicted using the data from the 9 and 10-mers.

4.4.2 MHC class II

Results for Wang2008 [177] and Wang2010 [182] datasets are given in Table 4.2

and Table 4.3, respectively. Each method in the Table 4.3 has results for both all

of the dataset (ALL) and a similarity-reduced version of the dataset (SR), used to

decrease the sequence similarity between data folds.

In case of class II peptides, MHC-PPM is the top performer by the average

score in the Wang2008 dataset benchmark results. However, as can be seen in the
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Table 4.1:

Results of MHC-PPM in class I predictions in Peters dataset [181]. The
best-performing method for each allele is underlined. The given AUC values for

ARB and SMM are the weighted averages of the AUC values for 9-mers and
10-mers based on the given peptide counts for a specific allele. The alleles in the

bottom
part of the table were only trained & tested in 9-mers and are directly comparable.

  
Allele 

# Peptides 
ANN ARB SMM MHC-PPM 

  9 10 

9
-m

er
s 

+ 
10

-m
er

s 

HLA-A*0201 3089 1316 - 0.919 0.939 0.931 

HLA-A*0202 1447 1056 - 0.851 0.879 0.871 

HLA-A*0203 1443 1055 - 0.838 0.878 0.882 

HLA-A*0206 1437 1054 - 0.849 0.890 0.885 

HLA-A*0301 2094 1082 - 0.883 0.915 0.911 

HLA-A*1101 1985 1093 - 0.897 0.932 0.937 

HLA-A*2402 197 78 - 0.722 0.809 0.833 

HLA-A*3101 1869 1057 - 0.881 0.903 0.878 

HLA-A*3301 1140 1055 - 0.866 0.888 0.863 

HLA-A*6801 1141 1055 - 0.827 0.874 0.864 

HLA-B*0702 1262 205 - 0.925 0.952 0.954 

HLA-B*3501 736 177 - 0.833 0.886 0.866 

HLA-B*5101 244 177 - 0.782 0.875 0.886 

HLA-B*5301 254 177 - 0.758 0.854 0.847 

9
-m

er
s 

HLA-A*0101 1157 - 0.982 0.964 0.980 0.963 

HLA-A*2601 672 - 0.956 0.907 0.931 0.901 

HLA-A*2902 160 - 0.935 0.755 0.911 0.907 

HLA-A*6802 1434 - 0.899 0.865 0.898 0.867 

HLA-B*0801 708 - 0.955 0.936 0.943 0.926 

HLA-B*1501 978 - 0.941 0.900 0.952 0.922 

HLA-B*1801 118 - 0.838 0.573 0.853 0.906 

HLA-B*2705 969 - 0.938 0.915 0.940 0.938 

HLA-B*4002 118 - 0.754 0.541 0.842 0.891 

HLA-B*4402 119 - 0.778 0.533 0.740 0.891 

HLA-B*4403 119 - 0.763 0.461 0.770 0.847 

HLA-B*5401 255 - 0.903 0.847 0.921 0.883 

HLA-B*5701 59 - 0.826 0.428 0.871 0.929 

HLA-B*5801 988 - 0.961 0.889 0.964 0.944 

  Average (All)     0.888 0.798 0.893 0.897 

  Average (9mers)     0.888 0.751 0.894 0.908 

  Weighted Avg     0.932 0.872 0.910 0.901 
. 
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Wang2010 dataset, NN-align [193] outperforms all other methods when included

in the comparison. Nonetheless, even though MHC-PPM is designed only to find

position independent rules, and there are no external steps for core region detection

(or any information about the core region length), it still performs exceptionally

well with an average AUC value of 0.858, slightly above SMM-align [191] (AUC of

0.849) and only < 0.03 lower than NN-align (AUC of 0.882).

Unlike what has been observed in class I molecules, class II molecules are

believed to bind only to the core 9-mer region of a peptide. Although the core

region occupies the peptide binding groove, the non-bound N- and C-terminus

residues that lie outside the MHC anchor residues, called peptide flanking residues

(PFRs), have been shown to affect the binding affinity and stability [194, 170].

NN-align and SMM-align use the length and composition of the peptide flanking

residues in addition to the peptide binding core sequence. However, to keep the

same length of the input throughout the data, the flanking residues are encoded

in a summarized form, decreasing the information content. Due to nature of our

algorithm, the differences in affinity due to the PFRs can be captured without

losing any information. To test that hypothesis, we used experimental affinity

values of 9 sequences which have the same core sequence and differ only in the

flanking regions [170] and tried to predict the binding affinity values from the

sequence (Table 4.4). Although available data is limited, MHC-PPM has the lowest

root mean squared error (RMSE). MHC-PPM also significantly outperforms ARB,

SMM-align and NN-align in correlation of the predictions with the actual affinity

values.
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Table 4.2:

Results of MHC-PPM in class II predictions in Wang2008 dataset [177]. The (#)
column gives the total number of pep-

tides for the given allele. The best-performing method for each allele is underlined.

Allele # RANKPEP ARB PROPRED 
SMM-
align 

MHCMIR 
MHC-
PPM 

HLA-DRB1*0101 3882 0.700 0.760 0.740 0.770 0.810 0.878 

HLA-DRB1*0301 502 0.670 0.660 0.650 0.690 0.640 0.712 

HLA-DRB1*0401 512 0.630 0.670 0.690 0.680 0.730 0.666 

HLA-DRB1*0404 449 0.660 0.720 0.790 0.750 0.730 0.792 

HLA-DRB1*0405 457 0.620 0.670 0.750 0.690 0.730 0.734 

HLA-DRB1*0701 505 0.580 0.690 0.780 0.780 0.830 0.893 

HLA-DRB1*0802 245 - 0.740 0.770 0.750 0.740 0.827 

HLA-DRB1*0901 412 0.610 0.620 - 0.660 0.620 0.666 

HLA-DRB1*1101 520 0.700 0.730 0.800 0.810 0.810 0.817 

HLA-DRB1*1302 289 0.520 0.790 0.580 0.690 0.720 0.679 

HLA-DRB1*1501 520 0.620 0.700 0.720 0.740 0.730 0.759 

HLA-DRB3*0101 420 - 0.590 - 0.680 - 0.712 

HLA-DRB4*0101 245 0.650 0.740 - 0.710 0.760 0.829 

HLA-DRB5*0101 520 0.730 0.700 0.790 0.750 0.710 0.845 

H-2 IAb 500 0.740 0.800 - 0.750 0.690 0.786 

H-2 IEd 39 0.830 - - - - 0.867 

Average   0.661 0.705 0.733 0.727 0.732 0.779 

Weighted Avg   0.671 0.722 0.738 0.743 0.760 0.780 

. 

143



Table 4.3:

Results of MHC-PPM in MHC class II predictions in Wang2010 dataset [182].
Each method contains results from all of the peptides (ALL) and the similarity
reduced data (SR). The best-performing method for each allele in ALL dataset
is marked by bold and the best performing method in SR dataset is underlined.

Allele 
# Peptides ARB SMM-align NN-align MHC-PPM 

ALL SR ALL SR ALL SR ALL SR ALL SR 

HLA-DPA1*0103-DPB1*0201 1404 603 0.823 0.745 0.921 0.767 0.943 0.793 0.931 0.772 

HLA-DPA1*01-DPB1*0401 1337 540 0.847 0.746 0.930 0.767 0.947 0.802 0.935 0.751 

HLA-DPA1*0201-DPB1*0101 1399 604 0.824 0.743 0.909 0.786 0.944 0.818 0.938 0.806 

HLA-DPA1*0201-DPB1*0501 1410 586 0.859 0.709 0.923 0.728 0.956 0.787 0.948 0.773 

HLA-DPA1*0301-DPB1*0402 1407 602 0.821 0.771 0.932 0.818 0.949 0.828 0.935 0.815 

HLA-DQA1*0101-DQB1*0501 1739 584 0.871 0.741 0.930 0.783 0.945 0.805 0.949 0.754 

HLA-DQA1*0102-DQB1*0602 1629 593 0.777 0.708 0.838 0.734 0.880 0.762 0.842 0.730 

HLA-DQA1*0301-DQB1*0302 1719 596 0.748 0.637 0.807 0.663 0.851 0.693 0.845 0.709 

HLA-DQA1*0401-DQB1*0402 1701 585 0.845 0.643 0.896 0.761 0.922 0.742 0.920 0.778 

HLA-DQA1*0501-DQB1*0201 1658 589 0.855 0.700 0.901 0.736 0.932 0.777 0.919 0.766 

HLA-DQA1*0501-DQB1*0301 1689 602 0.844 0.756 0.910 0.801 0.927 0.811 0.915 0.771 

HLA-DRB1*0101 6427 3504 0.770 0.710 0.798 0.756 0.843 0.763 0.821 0.758 

HLA-DRB1*0301 1715 1136 0.753 0.728 0.852 0.808 0.887 0.829 0.828 0.747 

HLA-DRB1*0401 1769 1221 0.731 0.668 0.781 0.721 0.813 0.734 0.763 0.711 

HLA-DRB1*0404 577 474 0.707 0.681 0.816 0.789 0.823 0.803 0.885 0.717 

HLA-DRB1*0405 1582 1049 0.771 0.716 0.822 0.767 0.870 0.794 0.831 0.734 

HLA-DRB1*0701 1745 1175 0.767 0.736 0.834 0.796 0.869 0.811 0.846 0.804 

HLA-DRB1*0802 1520 1017 0.702 0.649 0.741 0.689 0.796 0.698 0.752 0.687 

HLA-DRB1*0901 1520 1042 0.747 0.654 0.765 0.696 0.810 0.713 0.762 0.671 

HLA-DRB1*1101 1794 1204 0.800 0.777 0.864 0.829 0.900 0.847 0.858 0.811 

HLA-DRB1*1302 1580 1070 0.727 0.667 0.797 0.754 0.814 0.732 0.768 0.717 

HLA-DRB1*1501 1769 1171 0.763 0.696 0.796 0.741 0.852 0.756 0.813 0.745 

HLA-DRB3*0101 1501 987 0.709 0.678 0.819 0.780 0.856 0.798 0.782 0.718 

HLA-DRB4*0101 1521 1011 0.785 0.747 0.816 0.762 0.870 0.789 0.860 0.772 

HLA-DRB5*0101 1769 1198 0.760 0.697 0.832 0.776 0.886 0.795 0.843 0.812 

H-2-IAb 660 546 0.800 0.775 0.855 0.830 0.858 0.847 0.824 0.807 

Average     0.785 0.711 0.849 0.763 0.882 0.782 0.858 0.755 

WeightedAverage     0.784 0.709 0.843 0.762 0.879 0.778 0.853 0.754 
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Table 4.4:

Effect of flanking peptides on the binding affinity to HLA DRB1*1501
allele. Experimental affinity measurements are from [170]. Predic-
tions of other values calculated from the IEDB website [180]. MHC-
PPM has the lowest root mean squared error (RMSE) and has a
correlation score approximately equal to the top performing method.

 

 Experimental ARB NetMHCIIpan SMM_align NN_align MHC-PPM 

Sequence IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM) 

ENPVVHFFKNIVTPR  33 21.9 10 21 8 11 

   VVHFFKNIVHAAA  33 21.9 9.2 52 10.7 139 

   VVHFFKNIVTAAA  45 21.9 9.5 20 11.5 224 

   VVHFFKNIVTKAA  35 21.9 8.1 20 10.5 142 

   VVHFFKNIVTAKA  4 21.9 8.1 20 9.8 83 

   VVHFFKNIVTAAK  5 21.9 8.9 20 11.1 263 

 DAVVHFFKNITVA  326 82.5 23.6 25 23.8 316 

 ADVVHFFKNITVA  454 82.5 23.8 25 23.9 320 

 AADVHFFKNITVA  264 1286.7 45 30 74.4 392 

RMSE  371.90 190.78 191.84 187.13 134.35 

Pearson’s Corr.  0.349 0.728 0.041 0.540 0.721 
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4.5 Discussion

In this study we present a position independent motif mining method representing

amino acid sequences as time series data to predict peptides binding to MHC class

I and class II proteins.

In class I MHC-peptide complexes, peptides have been observed to bulge out

of the binding groove [164, 165], shifting the peptide side chains in the binding

pockets. The main shortcoming of the existing prediction methods is their depen-

dence on fixed length motifs, even though peptides of various lengths are known

to bind to class I molecules [166]. Although a separate predictor can be created

by applying the same method on a dataset of peptides of a different length, there

is usually not enough available data for uncommon sequence lengths. There have

been methods that use random sampling of insertions and deletions to fit the

peptide into the 9-length window for prediction [195], however the fixed length

limitation still present in the core.

For MHC class I predictions, MHC-PPM has been shown to slightly outperform

other methods on the average. However, all methods have very close scores and

perform equally well. Our main advantage is the ability to use peptides of any

length during both training and prediction phases. While the curated benchmark

dataset contains only 9-mers and 10-mers for the given alleles, we expect MHC-

PPM to fare better in a more diverse dataset.

Commonly used prediction servers give the consensus prediction of different

algorithms. The addition of our predictions into a consensus-decision step with

other state-of-the-art algorithms will almost certainly benefit the end-users; the

overall accuracy for the 9-mers will increase, and longer peptides that would have
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been previously ignored (or treated as 9-mers) will also be evaluated.

On MHC class II molecules, MHC-PPM was the top performing one in Wang2008

dataset by average AUC and just below NN-align in Wang2010 dataset. Even

though NN-align outperforms all other methods including ours, the difference in

performance values are not as drastic. Due to the fixed size core region, length

independence is not much of an issue during score calculation. On the other hand,

the position independence allows the inherent detection of the core region and al-

lows better representation of the peptide flanking residues. During the prediction

of the effects of PFRs on binding affinity (Table 4.4), MHC-PPM resulted in the

highest agreement with the experimental data, though more data is required for

conclusive results.

On the subject of peptides binding to MHC class II molecules, the current

view is that the peptides lie on a shallow groove with multiple contacts along the

entire length of the peptide binding groove [196, 168]. This view does not address

the possibility of peptides bulging out from the groove. There have been studies

that proposed examples of peptide bulging (i.e. core binding region longer than

9 amino acids) in class II molecules for several alleles [197, 198, 199, 168]. Even

though it is not known whether this is a general phenomenon for all class II alleles,

it is possible that certain alleles can anchor peptides sufficiently at their N- and C-

terminals to allow bulges, similar to class I molecules. If that is the case, a length

insensitive method is required to correctly identify such examples, since NN-align

and other methods require a fixed length core sequence.

The strength of MHC-PPM is its ability to capture length independent short

motifs that are in close vicinity. Because the motif mining and prediction steps

are uncoupled, the method can be used for different purposes. We have shown
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that the rules mined from the data can be used in conjunction with support vector

machines or neural networks for non-linear prediction of any label (or quantitative

value) that is correlated with the sequence motifs. However, the actual output

of the algorithm is a collection of human-understandable rules and those motifs

can be used as templates during sequence analysis or synthesis. Other than MHC

binding predictions, the MHC-PPM method can also be applied to find motifs in

gapped sequences, such as TCR recognition or receptor-ligand prediction prob-

lems. It is straightforward to extend the method to mine multiple groups of short

sequence motifs (separated by relatively long distances) which co-occur frequently.

We believe this approach can help uncover previously overlooked subtle sequence

motifs in any large scale data.
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Figure 4.4:

A sample run of the algorithm. The candidate and frequent itemsets of all lengths
for the given example sequences in Figure 4.1, for minimum support value of 0.4.
Red/bold values represent rules above the support threshold. At each step a
candidate set Ck is generated by extending the last frequent itemset Lk−1, then
the candidates are filtered according to the support values to generate the frequent
itemset Lk. This process is repeated until no frequent itemsets of a certain size can
be found. Afterwards, the resulting frequent sets of different sizes (except L1) are
merged together and filtered according to a given minimum confidence boundary.
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5 SEMI-SUPERVISED LEARNING
OF DISCRIMINATIVE MOTIFS
WITH DEEP BELIEF NETWORKS

5.1 Introduction

When dealing with a large number of long sequences, finding a relatively small

region that are common among all the inputs becomes problematic due to mainly

two reasons. One is, the motif can be in any position within the inputs, e.g. at

the start of protein 1, at the middle of protein 2, near the end of protein 3 and so

on. Second problem is, the motif can be of any form, the motif description matrix

can potentially take on an astronomical number of possible states.

Because of these two problems, majority of the methods in literature make use

of the position constraint to find motifs. To create the motif definition, as a PSSM

(position specific scoring matrix) or pHMM (profile hidden Markov models), such

methods require an input alignment. That is, given an alignment, we can create

the motif easily since the alignment acts as anchoring the specific positions of the

motif to be fixed along the input sequences. Or, for other methods, given a motif

description, we can search it among all the sequences and find its positions.

The actual problem begins if we don’t have the alignment nor the motif de-

scription. If the inputs do not have a strong global motif profile but a local one,

multiple alignment will fail; unlike multiple global alignment, multiple local align-

ment is computationally intractable to be efficiently solved for anything more than
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a few sequences. This problem requires finding the motif position and definition

concurrently.

There are a few algorithms that deal with this problem. Gibbs sampling is

used in motif mining for such purposes [200], but it has its limitations; while

it allows mutations in the motif, insertions/gaps are not allowed, it requires the

exact motif length to be known, it assumes exactly 1 copy of motif is present

in each sequence, and finally, it does not find discriminative motifs (motifs that

differentiate between two classes). A popular method that solves many of these

problems is MEME (Multiple EM for Motif Elicitation) [201, 158]. MEME can

decide on the optimal motif length, can work with any number of occurrences in

each sequence (exactly 1 copy, 0 or 1 copy, 0 to N copy per sequence) and can find

discriminative motifs (for two classes). However, it still lacks the ability to find

motifs that include insertion/deletions.

We propose a new approach based on deep learning to possibly extract discrim-

inative motifs (for any number of classes) that can include short or long stretches

of insertion/deletions in its definition, without requiring user input.

Deep learning is an area of machine learning which utilizes a set of hierarchical

learners that operate in a sequential fashion. The motivation behind the idea is

inspired by the hierarchical architecture of the neocortex in the mammalian brains.

This kind of layered, ”deep” approach allows learning new representations of the

raw input data, which are then fed to the next learner. Since the higher levels

use the processed, informative features extracted from the input instead of its raw

form, they can perform decision making in a much more abstract level.

Even though the idea of deep, hierarchical learning dates back to 1980 [202],

practical issues stopped it from gaining ground. Training neural networks with
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multiple layers is computationally very complex. Training such a network using

backpropagation is futile, because the error gradient that is used to modify the

weights get progressively more dilute as it travels down the network. With such

a minimal correction signal, the network tends to stuck in a local minima. It

has been shown that without proper weight initialization, deep networks perform

worse than shallow networks [203].

However, recently Hinton et al. described a fast algorithm for training a net-

work in an unsupervised manner [11]. Moreover, each layer can be trained sep-

arately in a greedy manner, and then stacked together to form what is called

Deep Belief Networks (DBN). The unsupervised greedy layer-wise training step

helps in initializing the network with stable weights. With those initial weights

in place, backpropagation can train the network much more efficiently, without

getting stuck in local minima as frequently.

In the last few years, deep belief networks and similar approaches became the

state-of-the-art machine learning methods for image and sound based learning.

However, they haven’t been applied to the biological problems, and with good

reasons. The first problem is, proteins are not of fixed length. In the nature of

the classification, fixed length inputs are nearly a universal requirement. Proteins

are also highly variable in their composition and structure, and can be either very

robust or very fragile to slight changes in their make-up depending on the context,

e.g. some proteins can conserve their fold and function despite a great number

of mutations, some proteins can retain their overall 3D structure but lose their

activity with very few number of mutations, and some proteins will completely

misfold even with one mutation. This disproportionate relationship between the

input (e.g. primary structure for this case) and the output (3D structure, function,
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dynamics etc.) makes it very hard to create a non-case-specific machine learning

method to find motifs in protein structures.

We propose some work-arounds and solutions to these problems. Combining

the representations from Chapters 2 with our approach, we performed deep learn-

ing methods to classify, cluster, and finally, find discriminative length-independent

motifs between in any set of input protein data for both sequence and structural

representations. Due to the very general approach presented here, our algorithm

was not developed for a specific problem or representation. We present its appli-

cation to a set of very diverse problems to show its feasibility and performance.

5.2 Background

5.2.1 Semi-supervised learning

We described supervised and unsupervised learning in Chapter 1. Semi-supervised

learning is a mixture of the two. Semi-supervised learning includes the unlabeled

instances during learning to settle on a better decision boundary. To see an exam-

ple of how unlabeled data can help during classification, see Figure 5.1. Using only

the supervised data, there is not enough information about the background proba-

bility distribution to fine-tune the decision boundary. By addition of the unlabeled

instances, we can better estimate the probability distribution of the samples and

find a much better decision boundary between the classes. Essentially, while the

labeled instances are used with supervised learning to create class boundaries, the

unlabeled instances give a priori information about the distribution of the data

itself.

The importance of semi-supervised learning is apparent in machine learning
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when there is a lack of labeled data. Without a large number of training ex-

amples, even the best machine learning methods will perform poorly. In most

domains, getting a sufficient number of correctly labeled training instances is a

very problematic task within itself, e.g. structure data for protein that show a

specific activity, genomics data for patients in a clinical setting, enzymes with

a specific attribute we are interested in... Such data might be expensive, time

consuming and potentially infeasible to collect in a large scale.

In such cases where the labeled data is limited, the ability to use unlabeled data

becomes really important. The huge amount of data present in the global databases

might be utilized to capture possible motifs, spatial and structural relationships

that are present in the whole biological domain. Then, after learning about ”what

a protein is” in a global context, the machine learner might be able to differentiate

the smaller number of labeled instances using the alphabet of descriptors (that are

possible among all proteins) it learned beforehand.

5.2.2 Energy Based Learning

Energy-Based Models

Energy-Based Models (EBM) capture dependencies between variables by associat-

ing an energy value to each configuration of the variables [204]. Let us consider a

model with two variables, X and Y. The energy-based model is an energy function

E(X, Y ), which measures the ”goodness” (or badness) of each possible conguration

of X and Y. If the joint probability P(X, Y) is high, E(X, Y) will result in a small

energy value. That is highly compatible congurations of the variables correspond

to small energies whereas highly incompatible configurations of X and Y will result

in large energy values.
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Figure 5.1:

An example case of semi-supervised learning where using unlabeled data would
improve the decision boundary that is estimated from the labeled instances.

If we are given the value of X, the energy function can be used for prediction

of the Y value Y ∗ that is most compatible with the given X, i.e. E(X, Y) is

minimized.

Y ∗ = argminY ∈ΥE(X, Y ) (5.1)

where Υ is the set of possible values Y can take. Since this approach compares

the energy values within themselves, we don’t need to normalize this energy value.

But if required, we can define a partition function by integrating the energy values

for all (X, Y) using Gibbs distribution, and use the partition function to convert

the energies into a probability-like scale between [0, 1] [204].
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Latent Variables

We can increase the descriptive power of the energy function by adding latent

variables. That is, we may not be able to observe the actual ”X” value, or assume

there are non-observed variables that change the relationship (thus, energy) of X

and Y. Using these ”hidden” variables (Z), we will have an energy function defined

as E(X, Y, Z).

To give an example, assume the Y variable to be the binding energy between

two proteins (a and b) that are defined by the feature set X (X = Xa ∪ Xb). If

we have a set of experimental data that gives us the relationship between Y and

X, we might learn an energy function E(X, Y) and use this EBM for prediction

and inference. However, we might encounter problems finding E(X, Y) that can

predict Y ∗ values that perfectly correlate with the experimental Y values. In such

cases, the hidden variables act as the excluded or unseen/unobserved variables

that are present in the data. For example, we can define the hidden variable Z as

the folding state of protein a, which affects the binding energy, but is not directly

observable.

Since Z is never observed, we can take the energy between X and Y by

E(X, Y ) = minZ∈zE(X, Y, Z) (5.2)

The prediction will then become;

Y ∗ = argminY ∈Υ,Z∈zE(X, Y, Z) (5.3)
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Figure 5.2: A visualization of a Restricted Boltzmann Machine layer

Learning in EBM

Learning the energy function can be carried out by minimizing the empirical neg-

ative log-likelihood of the training data using stochastic gradient descent. Due

to the difficulty in calculating the gradient of the negative log-likelihood function

when dealing with hidden variables, we consider a specific type of EBM called

Restricted Boltzmann Machines (RBM).

Restricted Boltzmann Machines (RBM)

Boltzmann Machines (BMs) are a particular form of log-linear Markov Random

Field, that is, their energy function is linear in its free parameters. We can add

hidden variables to increase the modeling capacity of the BM enough to represent

complicated distributions. We will represent the visible (observed) features as

v, and the latent hidden variables as h. Restricted Boltzmann Machines further

restrict BMs to those without visible-visible and hidden-hidden connections. A

graphical depiction of an RBM is shown below.

The energy function E(v, h) of an RBM is defined as:

E(v, h) = −b′v − c′h− h′Wv (5.4)

where W represents the weights connecting hidden and visible units and b, c
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are the offsets of the visible and hidden layers respectively.

Because of the specific structure of RBMs, visible and hidden units are condi-

tionally independent given one-another. Using this property, we can write:

P (h|v) =
∏
i

P (hi|v) (5.5)

P (v|h) =
∏
j

P (vj|h) (5.6)

We can further simplify the input and output of the RBMs by restricting the

visible and hidden states to take on binary values. Thus, the relationship between

those hidden units define a Bernoulli distribution. The neuron activation function

becomes a probabilistic function from Bernoulli distribution.

P (hi = 1|v) = sigm(ci +Wiv) (5.7)

The free energy of an RBM with binary units (i.e. the backward pass) is

P (vj = 1|h) = sigm(bj +W ′
jh) (5.8)

These function are important; the forward pass (neuron activation function) is

identical to the output of a standard perceptron layer with a sigmoid activation

function. Consequently, this means that an RBM an be used in place of a neural

network layer with the weight matrix of W . The effects of the forward pass using

the input of v to get the output h will be mathematically identical. But, the RBM

has an important distinction; the model is learned in a generative manner instead

of the discriminative manner of neural networks. RBMs can utilize a backward
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pass for inference, i.e. generate the input features from the output by fixing the

output values and sampling on the joint probability function. And since they are

generative models, the stochastic gradient of the energy function does not depend

on a label. Instead of learning by backpropagation on supervised data, RBMs

work with unsupervised instances.

5.2.3 Deep Belief Networks

RBMs can be stacked in a deep manner to learn to deep hierarchical representation

of the data. Hinton et al. proposed the Deep Belief Network architecture [11]

which is trained in a greedy manner. The greedy pretraining is carried out in

an unsupervised manner to model the joint distribution of the observed variables.

Due to the minimization of the energy function in the RBM layers, the relationship

between the input and output is formed in a way to allow the visible input to be

generated from the output of the hidden variables. Thus, the output of the hidden

layers are the learned features from the input data.

Since the RBMs can be used to model a perceptron layer as we mentioned, the

deep belief network can behave as a multilayer neural network. After pretraining,

we can convert the deep RBM architecture to use labelled instances, and train the

DBN by backpropagation in a supervised fashion.

A representation of DBNs are given in Figure 5.3. DBNs model the joint

distribution between observed vector x and the ` hidden layers hk as:

P (x, h1, . . . , h`) =

(
`−2∏
k=0

P (hk|hk+1)

)
P (h`−1, h`) (5.9)

where x = h0, P (hk−1|hk) is a conditional distribution for the visible units
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Figure 5.3: Stacking multiple layers of RBMs to create a Deep Belief Network

conditioned on the hidden units of the RBM at level k, and P (h`−1, h`) is the

visible-hidden joint distribution in the top-level RBM.

The principle of greedy layer-wise unsupervised training for DBNs is as follows

[205, 11].

1. Train the first layer as an RBM that models the raw input x = h(0) as its

visible layer.

2. Perform a forward-pass on the visible units to obtain their hidden variables.

The hidden units will be act as the representation of the input that will be

used as data for the second layer.

3. Train the second layer as an RBM, taking the transformed data as training

examples (for the visible layer of that RBM).

4. Repeat steps 2 and 3 for all of the layers, each time taking the output of the

previous layer as input and propagating the data upward.
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After step 4, we have a pre-trained network. We can then use backpropagation to

fine-tune all the parameters of this deep architecture with respect to a supervised

training criterion. The supervised learning can be a classifier, a regressor, or, an

auto-encoder.

Stacked Auto-encoders

An auto-encoder is a model which learns to encode the data in such a way to allow

reconstruction from that encoding. Auto-encoders can be though of as similar

to dimensionality reduction using Principal Component Analysis (PCA). Whereas

PCA is linearly defined, auto-encoders can create any non-linear representation of

the data.

Using a DBN structure, a deep auto-encoder can be built by stacking multiple

RBMs on top of each other. It is common to reduce the amount of hidden variables

in each layer as the data is propagated upwards. After reaching the desired number

of variables, the network can be fine-tuned by supervised learning to minimize the

reconstruction error.

5.3 Method

5.3.1 Network structure

Convolutional layers

It is possible to use convolutional units during training. A convolution ”filter” is

a matrix of weights. A filter of size A × B will convolve the given input of size

X ×Y , and the result of the operation will be the valid part of convolution of size

(X − A+ 1)× (Y −B + 1).
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Convolution of a 2D signal can be represented as

o[m,n] = f [m,n] ∗ g[m,n] =
∞∑

u=−∞

∞∑
v=−∞

f [u, v]g[u−m, v − n] (5.10)

Convolution operation allows sharing weights among all the input. Since the

filter will be replicated across the entire input features can be detected regardless

of their position in the input data. For example, if we assume the input data to

be a 20 × N matrix that represents a protein sequence of length N (as described

in Chapter 2), we can define a sequence motif PSSM as a convolution filter of size

20 ×M,M ≤ N . Convolving the input with this filter will produce an output of

size 1× (N−M +1). This one dimensional vector will give us the ”fitness” of that

filter (motif) among all the positions in the sequence. The greatest score among

this vector will give where this motif shows the strongest presence in the input

amino acid sequence.

Therefore, instead of parameterizing each possible motif and each position com-

bination separately, we will have one set of shared weights for each motif. The

convolution operation correspond perfectly with our aim to find a motif regard-

less of its position in the input sequence, and greatly reduces the number of free

parameters to learn.

Gradient descent can still be used to learn such shared parameters for convolu-

tional filters, with only a small change to the original algorithm. The gradient of

a shared weight is simply the sum of the gradients of the parameters being shared.
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Max-pooling

Max-pooling is a form of non-linear down-sampling. Max-pooling partitions the

input data into a set of non-overlapping regions, for each such sub-region outputs

the maximum value. Max-pooling an input of size X × Y with a pool size of a× b

will result in d(X/a)e × d(Y/b)e features.

Max-pooling is useful because it provides a form of position invariance and pro-

vides additional robustness to position. Since we will choose the maximum value

among the axb, slight shifts in the input will not change the input to the higher lay-

ers. Consequently, by reducing the dimensionality of intermediate representations,

it reduces the computational complexity for upper layers.

Network architecture

The networks used during our experiments can be summarized as follows. We

will have a number of convolutional layers, each followed by a max-pooling layer

as necessary, which takes the output of the previous layer as its input. These

convolutional layers can be trained unsupervised in a greedy, layer-wise manner

using Convolutional RBMs as described by Lee et al. [206].

During supervised learning, the output of the final convolution/maxpooling

unit will be then fed through a fully-connected neural network layer with a num-

ber of hidden layers followed by a final logistic regression layer for classification,

resulting in a prediction. The error (negative log-likelihood of the logistic regres-

sion layer) will be backpropagated through the fully-connected and convolutional

layers, and this process will be repeated for every mini-batch of training examples

and for a number of epochs until training stops.

The input will be of size F × N , where F is the number of features for each
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residue( or coarse-grained unit), and N is the length of the protein. Since this data

is linear and one-dimensional, our convolution filters for the first layer also need to

be of size F. Assuming a convolutional unit of size FxC1 and a total of U1 filters,

the first layer will produce a 1D output of size 1× (N −C1 + 1)×U1. The output

will be downsampled using max-pooling of size 1 ×D1 to result in the output of

first layer as 1 ×
⌈

(N−C1+1)
D1

⌉
× U1. The second convolution layer will work with

those U1 linear outputs by using a filter length of U1 × C2, and this process will

be repeated as necessary.

5.3.2 Learning informative motifs

5.3.2.1 Prediction with variable length input

Convolution and max-pooling allows the extraction of informative, gapped and

relatively position-independent motifs from the input sequences. However, RBMs

and neural networks require a constant-length input. Considering proteins can the-

oretically be of any length, there is no way to represent these unbounded sequences

in neural networks.

To overcome this limitation, we assume that the motif we are trying to extract

is of length M , and M is relatively short and bounded. By giving an estimate

for the maximum length of M (including possible insertions within the motif) as

M ′, we can limit our search to M ′-long segments at each step. By this approach,

we may try to divide a length of protein N into overlapping segments of M ′,

guaranteeing at least one of the segments completely cover the whole motif.

While this approach solves the representation of the input as a fixed size vec-

tor, it doesn’t solve training and prediction. If we divide the protein P into s

166



overlapping segments of length M ′, each of one of the s segments will act as an

instance by itself, and we will have s output predictions. The problem becomes on

deciding which of those s predictions will be correct for P . If M << |P |, only a

few segments of those segments will contain the motif in question; other segments

may contain the motif partially, or not contain at all.

We propose 3 different approaches.

Maximum average probability

The classification of the input is carried out by the logistic regression layer at the

top. A logistic regressor will give a vector Y of size C where C is the number

of possible labels/outputs. Since logistic regression acts as a softmax of its input

((
∑C

i=1 Yc) = 1), each one of those C predictions Yi can be interpreted as the

probability of the input belonging to the class i. Normally, the output prediction

of a logistic regression layer is ypred = argmaxiYi.

Utilizing this probabilistic nature, we can choose the class with the maximum

average probability for the s different Y vectors:

ypred = argmaxi(
s∑

σ=1

Y σ
i ) (5.11)

It is possible that averaging over the whole of the sequence may cause the result

of an informative motif to be lost due to noise. We can increase the weight of the

few instances with very high predictions by taking the maximum squared average

probability instead:
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ypred = argmaxi(
s∑

σ=1

(Y σ
i )2) (5.12)

Minimum entropy

Instead of averaging over the whole protein that consists of s segments, we may

choose the segment si with the most confident prediction. If we assume C=3, there

are 3-classes that we can assign an input to, logistic regression will give an output

vector [Y1, Y2, Y3] where Y1 + Y2 + Y3 = 1. Both of the predictions [0.34, 0.33, 0.33]

and [1, 0, 0] have the first class probability as the maximum value, and will be

classify the instance as class 1. However, the second prediction is much more

confident about the prediction probabilities. In such cases, we’d like to find the

segment with the most confident prediction.

We define ”confidence” as the information content of a prediction; if there is

a lot of ambiguity in the probabilities, then the information content, Shannon

entropy [207] of that prediction will be maximized, whereas a prediction with high

confidence will result in a lower ambiguity, and lower entropy.

Using the definition of Shannon entropy, we select the segment sk with the

most confident prediction results as:

sk = argmini(−
C∑
j=1

Y i
j log2Y

i
j ) (5.13)

and the prediction becomes

ypred = argmaxiY
sk
i (5.14)
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Non-parametric class distribution

In this approach, we take all of the Y vectors from the inputs belonging to a specific

class from the training data, and build a non-parametric model by kernel density

estimation. Each class will have its own probability distribution that outputs a

probability when given an input vector of size C. During prediction, we compare all

the Y vectors of the test instance by the density function of every class, and assign

the protein to the class with the maximum probability for all of its segments.

5.3.2.2 Learning with variable length input

The above section deals with predicting the class of a protein consisting of many

input segments, but it assumes our model has correct weights. But to predict, we

must first train the network on the input. Training on all of the segments will be

problematic for the reasons given above, only a few of the segments will actually

contain the motif we are looking for. If we backpropagate to minimize errors in

uninformative segments, the network will not be able to find the correct weights

for a motif.

Rational thought dictates that we must train the network using only the motif

samples as an input. Our problem is, we don’t know the location or the description

of the motifs. Thus, the network should be able to find both the location and the

structure of the motif together.

We propose the following solution. After pre-training the network using all

of the segments, continue with supervised training for n epochs, still using all of

the segments. After the initial n steps, we assume the network has reached a

potentially good starting point. From then on, during training, predict all of the

segments of a protein, and find the most informative segment by the minimum
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entropy method described above. Backpropagate using only that segment alone.

This approach is similar to the idea of Gibbs sampling. It presumes that the

random weights in the initial state will start to converge to the actual definiton of

the motif, which will in turn the segments containing the motif to be found with

higher probability, which will cause the motif to be even more well-defined and so

on, until the weights settle on a specific motif.

5.4 Experiments

5.4.1 Learning DNA Binding Domains from Sequence In-

formation

The first test focuses on finding the protein sequence motifs that are found in

different DNA-binding domains. From Uniprot [208, 209], we select approximately

8000 protein sequences that include any of the Zinc-Finger, Leucine-Zipper and

Helix-Turn-Helix domains or related sub-domains. The sequences were filtered by

minimum length of 50 and sequence identity of less than 90%. We built 3 different

benchmark sets using further different maximum length and identity constraints,

as well as sub-domain filtering. The sequences were converted into the residue-

centered similarity-score representation explained in Chapter 2.

Since there is no comparable study that deals with alignment-free discrimina-

tive motif mining or giving the predictive performance of their motifs, we opted on

using raw features with an SVM (support vector machine) classifier. The results

of this approach are given in column 1 of Table 5.1.

Using the same data, a Convolutional RBM with two layers (a Convolutional

Deep Belief Network, CDBN) were built on the sequences in an unsupervised
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manner; the information about which sequence belongs to which class was never

utilized during the training process. First layer has 30 filters of size 20 times5,

and the second layer has 40 filters of size 1 times8 (corresponding to an input of

20 times12 without using any max-pooling).

The filters of the convolution layers after this unsupervised training are visu-

alized in Figure 5.4. For the first layer, each ”block” of 20 by 5 image represents

the scores of 20 amino acids for the 5 positions in the motif, with brighter colors

representing positive scores, dark colors representing negative scores and gray are

uninformative/background. The amino acids are ordered from charged to polar to

hydrophobic (from top to bottom) in the visualization.(In order: R, H, K, D, E,

S, T, N, Q, C, G, P, A, V, I, L, M, F, Y, W)

As we can see, the first layer generally utilizes only one of the positions among

the 5. While some of the filters recognize a specific residue (second row, second

column recognizes only Proline), some of the filters act in a more general manner

(first element in second row recognizes any hydrophobic, plus Cysteine with a low

score). However, by combining these 1-position elements, the second convolution

layer can find motifs that are much more variable as seen in Figure 5.4.

While these motifs may not be discriminative (since we trained them in an un-

supervised manner), they should contain enough information to capture the general

trends and feature clusters that may be present in the data. After converting our

raw input into a deeper representation by feeding it through the network, we end

up with a much smaller number of features that should be informative. To test

this hypothesis, we classify the sequences by SVM using the preprocessed repre-

sentation instead of the raw input. Results are shown in column 2 of Table 5.1.

The results confirm our hypothesis, even though the classifier is identical, the noise
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and random variance across all the positions are converted into a more meaningful

representation by the CDBN, resulting in a significantly higher accuracy among

all three data sets.

We can test whether the representations contain enough information about

their corresponding amino acid sequences by making a forward and backwards pass;

by converting the sequences into a deep representation, and then reconstructing the

AA sequence from this deep representation. A visualization of the reconstruction

by the CDBN is given in Figure 5.5. While it is hard to compare and quantify

such a complex structure, we see that the main informative parts of the sequence

are preserved. If we probabilistically assign an amino acid label into a 20x1 vector

for a specific position by comparing it to the BLOSUM vector, we are left with a

sequence that has ¿ 0.7 identity (mean of 0.81) and ¿ 0.9 similarity (mean of 0.94)

to the raw sequence. In fact, such modifications to the raw input is equivalent to

filtering out uninformative and uncharacteristic parts of the sequence to better fit

the overall structure of the motifs.

Finally, we add the label information to the training instances and further

train the CDBN by connecting the output of the second convolutional RBM layer

to 2 fully connected hidden layers and a final logistic regression layer, in essence

creating a convolutional neural network (CNN). After this supervised training step,

we end up with the results given in column 3 of Table 5.1. Out of the 3 methods,

CNN is the best performer in all of the input sets, improving upon the base CDBN

results.
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Figure 5.4:

Visualization of the sequence filters (first and second convolutional layers) for the
DNA-binding motif data set.
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Table 5.1: Results for the DNA-binding sequence motif data set

Data set Raw Data SVM CDBN + SVM CNN

Benchmark Set 1 0.8 0.91 0.93

Benchmark Set 2 0.77 0.87 0.89

Benchmark Set 3 0.84 0.89 0.91

5.4.2 Learning CATH Folds from Structure Information

The second experiment focuses on the extraction of possible motifs and folds from

the structural topology of the proteins.

Data set

All of the protein structures from the representative folds database of CATH [33]

are downloaded. CATH database follows a hierarchical structure of Class - Archi-

tecture - Topology - Homologous superfamily. From the 3 main classes (”mainly

alpha (helix)”, ”mainly beta”, ”alpha-beta”), we choose 7 architectures (out of 39)

that contain at least 100 separate topologies. This results in 1015 proteins, each

with a separate topology, from a total of 7 classes.

Deep Auto-encoder

An auto-encoder of the architecture (2000→ 500→ 100→ 2) is used to represent

20 neighbor contact information of 100 residues by only 2 features. Whether

such an unsupervised dimensionality reduction technique can represent the whole

protein with only 2 numerical values is an important problem; such an approach

can be used as global features to supplement the features we described in Chapter
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3.

The resulting 2 features are plotted and colored by the architecture, shown

in Figure 5.6. The results are clear; even in the absence of class information,

the auto-encoder will try to learn the most efficient representation to be able to

reconstruct a protein structure from just 2 inputs. Due to this strong bottleneck

factor, most of the information that explains the general structure of the proteins

are embedded in the network itself, and the encoder will represent only the most

informative, distinguishing factors by those 2 features. This allows similar proteins

to be grouped together while separating different classes.

Using 10 features instead of 2, we are able to classify a sequence by its class

(3-class) by 86.3% accuracy, and by its architecture (7-class) by 67.2% accuracy.

Convolutional Neural Network

While an auto-encoder results in a very small number of informative global fea-

tures, they are not as useful for finding discriminative motifs. Using a similar

architecture described in the previous section, we build a CNN using different

representations that are defined in Chapter 2.

The network is composed of a two to three convolutional layers, each followed

by a max-pooling layer downsampling its output by 2, which is fed through a fully

connected network and a logistic regression layer. Each protein is divided into

segments of length 50 to 70 by sliding a window over the sequence. The parameter

optimizations were carried out differently for each representation.

We train this network using the 1015 proteins in 5-fold cross validation. The

results for the different representations are given in Table 5.2. Residue specific

representations are amino acid sequence (AA), Protein Block sequence (PB) and
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Figure 5.6:

Results of unsupervised dimensionality reduction using stacked auto-encoders.
Blue hues: Mainly-alpha, Red hues: Alpha-Beta, Green hues:Mainly Beta
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Bond-Orientational Order parameters. Pairwise representations with N consecu-

tive neighbors are Probabilistic contact map (PCM), Relative Orientation angle

and amino acid similarity between the contacts. We tried a large number of com-

binations for those features, and a representative set is shown.

The best results seem to come from PCM, with increasing number of neighbors

decreasing the classification accuracy. This is somewhat problematic for our case.

In theory, unsupervised learning methods should not be affected by the curse-

of-dimensionality that causes the accuracy to decrease as the number of features

grow beyond a point. However, a large number of features require learning more

free parameters, which negatively affects the training process and requires longer

computational time to reach the same level of maturity.

While the structural features like PCM (91%) and PB (81%) perform quite

well, sequence information is also quite discriminative (77%). We see that bond

orientational orders lack the discriminative power, though this may be causes by

the large number of features denoting each residue (40) as discussed above.

Two samples from the learned filters are given in Figures 5.7 and 5.8. The filter

represents the motif created by the probabilistic contact map representation for 10

neighbors. The elements in the top part of the filters represent further neighbors

to the forward, the middle line represents the immediate neighbors of that residue

and the bottom part represents the neighbors that are to the back of the center

position.

If we keep the learning rate too high, we end up with features as shown in Fig-

ure 5.7. Since the alpha-helices dominate the input data (most common element,

easier to distinguish, high predictive power), the convolution filters will learn to

represent the helices; each of the filters in the second or the third layer describes
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different configurations of alpha-helices.

We can learn a much better representation by diminishing the learning rate of

the network, resulting in Figure 5.8. While not immediately clear, the different

diagonals represent separate curved structures and combination of sheet structures

with helices.

Table 5.2: Results of CNN in the CATH dataset

Data Accuracy

AA Sequence 77.10%

PB Sequence 81.10%

Bond-Orientational Order 67.40%

PCM, N=5 91.30%

PCM, N=10 89.70%

PCM, N=20 86.40%

Relative Angle, N=5 73.20%

Relative Angle, N=10 67.40%

PCM + AA similarity, N=5 88.40%

PCM + AA similarity, N=10 83.50%

PCM + Relative Angle, N=5 85.30%

PCM + Relative Angle, N=10 80.10%

5.5 Discussion

We present a novel algorithm based on deep belief networks and convolutional

neural networks to extract informative, discriminative motifs from sequence and

structural information. The ability to work with unlabeled data is very important

for studies where labeled data is scarce. By training the network on unlabeled

instances, it will learn to represent the building blocks and background distribution
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(a) Convolution Layer 1.
(b) Convolution Layer 2.

(c) Convolution Layer 3.

Figure 5.7: Visualization of the contact map filters showing the helix structures
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Figure 5.8: Visualization of the contact map filters showing different folds
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of the possible configurations of features within themselves. After this pre-learning,

even a small number of labeled instances can be used for discrimination by the

use of the deviations from the background probability embedded into the network

structure.

We further propose a solution to be able to use variable length inputs (such

as biological data), into a deep learner. By this approach, it is possible to mine

informative, discriminative motifs without knowing the sequence alignment of the

motif description. Addition of the max-pooling step allows the motif to include

up to 75% of its length in insertion/deletions for 2 convolution layers. Also, since

higher layers combine the feature representations from below, the network is able to

create super-motifs that can contain different domain/folds that can be separated

by segments of variable length.

Our algorithm was not developed for a specific problem or representation. We

present its application to both sequence and structural motif mining to show its

feasibility and performance. However, it is not without its problems. We found

that the network is limited by the number of features due to its computational

complexity. However, it may be necessary to mix and match features from different

domains to be able to capture an actually discriminative motif. This area requires

further studies to make such alignment-free semi-supervised learning feasible.

Another point is, the problems presented here are ”toy” problems; while there

are no other such unsupervised method to compare our results against, we know

that the CATH families and DNA-binding domains are well-characterized. An

expert can manually surpass these results using a variety of tools and knowledge

buried in the literature (multiple alignment, motif databases, sequence search and

similarity measures). However, our approach is not aimed to perform better than
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a knowledgeable person that manually chooses the best possible way to approach

the problem. This method is more suitable for cases when there is not enough

domain information about the problem to decide on an approach, or when the

user lacks the expertise, or when there is too much data to analyze, cluster and

classify manually. If such un- and semi-supervised methods gain acceptance, the

vast amount of raw data that are deposited into the biological databases might be

searched and analyzed with little to no user input, presenting only the meaningful

information to the researchers to analyze and comment on.

In conclusion, while the method we presented here requires further work, it can

perform quite well even in its current form. It is possible that this approach may

shift a big portion of the manual labor to the artificial learners, and change the

workflow of many researchers in a positive way.
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6 CONCLUSIONS

Proteins are complex biological molecules that perform a tremendous variety of

functions in cells under diverse physiological conditions. Proteins can be classified

based on their function, structural motifs that they possess, cellular location or

adaptation to an external variable such as temperature, pH or salinity. All the

diversity that is present in protein structure and function is encoded in protein

sequence which determines a protein’s structure, function or response to an exter-

nal variable. Bridging the gap between protein sequence and structure or function

is an active area of research in bioinformatics that can enable us to determine a

target attribute of a novel protein (e.g. structural class, important binding sites,

activity, half life and etc.) with high accuracy, and even allow the design of novel

proteins fit for a specific purpose.

To that end, we introduced a variety of strategies to systematically represent

a protein by a number of conventional and novel descriptors, and mine predictive

and discriminative motifs using those representations along with novel machine

learning algorithms.

Chapter 2 introduces and explains a number of techniques to describe a short

local segment of a protein quantitatively using its sequence, local structural fold,

its contacts, its centrality and importance in the global structure of the network

by its graph properties, and by the relative orientation of its neighbors using

bond-orientational order. The feasibility of the novel features are investigated by

applying them to common problems such as multiple alignment and secondary
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structure and fold recognition.

Chapter 3 builds upon the local features to describe a number of features that

contain and summarize informative regional features over the protein to represent

the protein globally. We define a large number of features that contain informa-

tion from the nucleic acid sequence, amino acid sequence, secondary and tertiary

structure, physicochemical data, catalytic and active site information and the 3D

surface patches and hot spots. To test the plausibility of combining our features

with novel machine learning algorithms, we apply those features to the problem

of predicting mRNA and protein expression levels. This enables us to predict the

protein translation rate and abundance within the host, and the solubility or ag-

gregation of the final gene product. Creating and using the most comprehensive

data set published so far, we built a model of the transcription and translation

process for different organisms. The model is created by a number of descriptors

that explain a significant portion of the variance within the protein levels. We pro-

posed the first available system capable of predicting protein abundance, with the

ability to predict both homologous and heterologous expression for different hosts.

Such a prediction tool can simplify the technical aspects of protein expression such

as host-selection and codon optimization.

Chapter 4 presents a novel algorithm of partial periodic motif mining (PPM)

that can mine discriminative gapped short motifs that are highly variable within

their composition. The strength of PPM is in its ability to capture length in-

dependent short motifs that are in close vicinity. Because the motif mining and

prediction steps are uncoupled, the method can be used for different purposes. We

applied the algorithm to the MHC class I and II peptide binding prediction prob-

lem, and shown that the rules mined from the data can be used in conjunction with
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support vector machines or neural networks for non-linear prediction of any label

(or quantitative value) that is correlated with the sequence motifs. When applied

to the MHC problem, our algorithm outperformed the state-of-the-art methods in

different data sets.

Finally, Chapter 5 describes a novel algorithm based on deep belief networks

and convolutional neural networks to extract informative, discriminative motifs

from sequence and structural information. We further propose a solution to be

able to use variable length inputs like proteins in neural networks. By this ap-

proach, it is possible to mine informative, discriminative motifs without knowing

the sequence alignment of the motif description. Our method is also possible to

work with unlabeled instances when the labeled data is scarce.

One of the main problems of machine learning in bioinformatics is the lack of an

obvious representation that explicitly defines a protein’s structure. This problem

is much more common than it is in other domains. For image recognition and

similar tasks, representation of the visual information is obvious and standardized

to a degree between the tasks. This allows the algorithm development to focus

more on the machine learning side. However, the representation of sequence and

especially 3D structural information for variable length input is not clearly defined.

While we proposed some solutions to these problems, it is necessary to find more

native forms of representation.

As future work, we suggest the descriptors and the representations to be more

tightly integrated to allow more robust motif matching. The scoring methods

for graph properties, bond-orientational order parameters and other quantitative

measures can be modified to use adaptive weights based on the task at hand. As

mentioned in Chapter 5, the deep learning step requires optimization and further
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work to mine motifs without as much user input. We hope that such unsupervised

and semi-supervised learning methods will automate and reduce the manual work

required during data analysis and prediction, shifting the focus of research to

decision making on a higher-level.
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Figure A.1:

Visualization of the 16 protein blocks. Used with permission.
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Table A.5:

Codon Adaptation Index (CAI) and Frequency of Optimal Codons (FOP)/Codon Bias
Index (CBI) values for the codons. In FOP/CBI columns, 1 defines a non-optimal/rare

codon, 2 defines a common codon and 3 defines an optimal codon.

CAI FOP/CBI
E.coli S.cerevisiae E.coli S.cerevisiae

TTT 0.296 0.113 2 2
TCT 1 1 3 3
TAT 0.239 0.071 2 2
TGT 0.5 1 2 3
TTC 1 1 3 3
TCC 0.744 0.693 3 3
TAC 1 1 3 3
TGC 1 0.077 3 2
TTA 0.02 0.117 2 2
TCA 0.077 0.036 2 2
TAA 0 0 2 2
TGA 0 0 2 2
TTG 0.02 1 2 3
TCG 0.017 0.005 2 2
TAG 0 0 2 2
TGG 1 1 2 2
CTT 0.042 0.006 2 2
CCT 0.07 0.047 2 2
CAT 0.291 0.245 2 2
CGT 1 0.137 3 2
CTC 0.037 0.003 2 2
CCC 0.012 0.009 2 2
CAC 1 1 3 3
CGC 0.356 0.002 3 2
CTA 0.007 0.039 2 2
CCA 0.135 1 2 3
CAA 0.124 1 2 3
CGA 0.004 0.002 2 2
CTG 1 0.003 3 2
CCG 1 0.002 3 2
CAG 1 0.007 3 2
CGG 0.004 0.002 2 2
ATT 0.185 0.823 2 3
ACT 0.965 0.921 3 3
AAT 0.051 0.053 2 2
AGT 0.085 0.021 2 2
ATC 1 1 3 3
ACC 1 1 3 3
AAC 1 1 3 3
AGC 0.41 0.031 3 2
ATA 0.003 0.003 2 2
ACA 0.076 0.012 2 2
AAA 1 0.135 3 2
AGA 0.004 1 2 3
ATG 1 1 2 2
ACG 0.099 0.006 2 2
AAG 0.253 1 2 3
AGG 0.002 0.003 2 2
GTT 1 1 3 3
GCT 1 1 3 3
GAT 0.434 0.554 2 2
GGT 1 1 3 3
GTC 0.066 0.831 2 3
GCC 0.122 0.316 2 2
GAC 1 1 3 3
GGC 0.724 0.02 3 2
GTA 0.495 0.002 2 2
GCA 0.586 0.015 2 2
GAA 1 1 3 3
GGA 0.01 0.002 2 2
GTG 0.221 0.018 2 2
GCG 0.424 0.001 3 2
GAG 0.259 0.016 2 2
GGG 0.019 0.004 2 2
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Table A.6:

tRNA copy numbers used in the calculation of tRNA Adaptation Index

E.coli S.cerevisiae S.pombe P.pastoris H.sapiens

TTT 0 0 0 0 0
TTC 2 10 5 5 53
TTA 1 7 2 1 7
TTG 1 10 4 3 17
TCT 0 11 7 4 11
TCC 2 0 0 0 0
TCA 1 3 2 2 5
TCG 1 1 1 1 4
TAT 0 0 0 0 1
TAC 3 8 4 4 14
TAA 0 0 0 0 2
TAG 0 0 0 0 1
TGT 0 0 0 0 0
TGC 1 4 3 2 30
TGA 1 0 0 0 3
TGG 1 6 3 3 9
CTT 0 0 5 2 23
CTC 1 1 0 0 0
CTA 1 3 1 1 3
CTG 4 0 1 1 10
CCT 0 2 6 2 10
CCC 1 0 0 0 0
CCA 1 10 2 4 7
CCG 1 0 1 1 4
CAT 0 0 0 0 0
CAC 1 7 4 3 11
CAA 2 9 4 3 12
CAG 2 1 2 2 25
CGT 4 6 8 2 7
CGC 0 0 0 0 0
CGA 0 0 1 1 7
CGG 1 1 1 1 16
ATT 0 13 8 5 14
ATC 3 0 0 0 3
ATA 0 2 1 1 6
ATG 8 10 7 2 30
ACT 0 11 7 5 12
ACC 2 0 0 0 0
ACA 1 4 2 1 6
ACG 2 1 1 1 7
AAT 0 0 0 0 2
AAC 4 10 6 4 32
AAA 6 7 3 3 28
AAG 0 14 9 5 17
AGT 0 0 0 0 0
AGC 1 2 3 2 9
AGA 1 11 2 4 6
AGG 1 1 1 1 5
GTT 0 14 9 5 16
GTC 2 0 0 0 0
GTA 5 2 2 1 5
GTG 0 2 1 1 16
GCT 0 11 9 5 65
GCC 2 0 0 0 0
GCA 3 5 2 2 38
GCG 0 0 1 0 15
GAT 0 0 0 0 0
GAC 3 16 8 6 19
GAA 4 14 4 5 13
GAG 0 2 6 4 19
GGT 0 0 0 0 0
GGC 4 16 8 5 15
GGA 1 3 3 3 9
GGG 1 2 1 1 7
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Table A.7:

Expected time of translation of a codon used in Ribosome Flow Model calculations

E.coli S.cerevisiae S.pombe P.pastoris H.sapiens

TTT 72.8814 62.1868 77.9043 42.02152 97.3804
TTC 43 27.3 34.2 24.7927 42.75
TTA 86 39 85.5 123.9635 73.2857
TTG 65.1515 22.3039 36.8534 37.3384 55.5195
TCT 72.8814 24.8182 24.4286 30.99087 46.6364
TCC 43 34.4697 33.9286 43.04288 64.7727
TCA 86 90.9666 85.4701 61.96935 102.5774
TCG 65.1515 139.2857 104.2683 75.58749 91.6071
TAT 48.5876 77.7335 97.3804 52.5269 71.7884
TAC 28.6667 34.125 42.75 30.99087 34.8505
TGT 145.7627 155.467 129.8405 105.0538 38.9522
TGC 86 68.25 57 61.98175 17.1
TGG 65.1515 45.5 57 41.32116 51.506
CTT 145.7627 621.8679 34.2 61.98175 42.75
CTC 86 273 47.5 86.08576 59.375
CTA 86 91 170.9145 123.9387 170.9316
CTG 19.9074 284.375 129.5455 93.91173 46.8066
CCT 145.7627 136.5 28.5 61.98175 51.3
CCC 86 189.5833 39.5833 86.08576 71.25
CCA 86 27.2995 85.4744 30.98932 73.2752
CCG 65.1515 85.3125 104.2683 54.36995 82.2115
CAT 145.7627 88.8383 97.3804 70.03587 106.2332
CAC 86 39 42.75 41.32116 46.6364
CAA 43 30.3333 42.75 41.32116 46.6364
CAG 32.5758 70.3608 52.1341 41.87956 20.9217
CGT 21.5 45.5 21.375 61.98175 73.2857
CGC 58.1081 63.1944 29.6875 86.08576 101.7857
CGA 856.5737 1365 170.8633 123.9387 85.49
CGG 86 273 129.5455 93.91173 74.1329
ATT 48.5876 21 21.375 24.7927 29.2942
ATC 28.6667 29.1667 29.6875 34.4343 28.3739
ATA 573.3333 136.4113 170.8633 123.9015 102.5713
ATG 10.75 27.3 24.4286 61.98175 25.65
ACT 72.8814 24.8182 24.4286 24.7927 51.3
ACC 43 34.4697 33.9286 34.4343 71.25
ACA 86 68.2312 85.4701 123.9015 85.4858
ACG 37.069 119.7368 104.2683 93.91173 64.7727
AAT 36.4407 62.1868 64.9203 52.5269 34.0909
AAC 21.5 27.3 28.5 30.99087 15.6785
AAA 14.3333 39 57 41.32116 30.1763
AAG 44.7917 16.8103 17.1687 20.79924 22.861
AGT 145.7627 310.9339 129.8405 105.0538 146.0706
AGC 86 136.5 57 61.98175 64.125
AGA 86 24.8182 85.5 30.99087 85.5
AGG 65.1515 60.3982 104.2683 54.36995 74.1329
GTT 72.8814 19.5 19 24.7927 46.6364
GTC 43 27.0833 26.3889 34.4343 64.7727
GTA 17.2 136.4045 85.4615 123.9015 102.5774
GTG 53.75 103.4091 104.2683 93.91173 29.1477
GCT 72.8814 24.8182 19 24.7927 17.6897
GCC 43 34.4697 26.3889 34.4343 24.569
GCA 28.6667 54.588 85.4615 61.96625 56.9816
GCG 89.5833 170.625 104.2683 193.693 65.1015
GAT 48.5876 38.8667 48.6902 35.01794 61.5034
GAC 28.6667 17.0625 21.375 20.66058 27
GAA 21.5 19.5 42.75 24.7927 39.4615
GAG 67.1875 42.1296 23.489 22.13634 29.8951
GGT 36.4407 38.8667 48.6902 42.02152 77.9043
GGC 21.5 17.0625 21.375 24.7927 34.2
GGA 86 91 57 41.32116 57
GGG 65.1515 92.2297 87.2449 63.24668 51.9231
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